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Abstract 

 

ABSTRACT 

The transition towards e-mobility represents a crucial cornerstone to fulfill global and national 

climate protection regulations. However, the integration of future electric vehicles into the 

power system must be planned adequately to prevent grid restrictions in the upcoming years. 

On this account, the presented thesis initially examines the suitability of conventional grid 

simulation methods applied to identify future grid reinforcement needs. Considering static 

deterministic grid simulations, conventional approaches to model grid customers’ electrical 

loads neglect temporal interdependences between different customer classes (e.g., 

households and electric vehicles). Furthermore, most approaches applied in the current state 

of research underestimate the grid customers’ coincidence at the end of the grid’s feeders. 

Consequently, future grid conditions caused by future electric vehicles, photovoltaic modules, 

or electric heat pumps are misjudged.  

In addition, the presented thesis demonstrates how to accurately quantify future grid 

reinforcement measures and costs in a large-scale area. Due to the heterogeneity of real-life 

grids, the simulation of a few individually selected grids and the scaling of their results might 

lead to erroneous assessments. In fact, several thousand low-voltage grids must be simulated 

to quantify total grid reinforcement costs adequately. This thesis develops and presents a fully 

automated large-scale grid simulation tool to overcome the highlighted shortcomings. The 

developed tool allows the simulation of several thousand grid structures while keeping the 

required computing time adequate. Furthermore, it uses novel coincidence factors, modeled 

and validated in this thesis, to take temporal interactions between all customer classes into 

account. Thereby, future grid conditions are estimated correctly, and grid reinforcement costs 

are accurately quantified. 

Besides identifying future grid restrictions, the presented thesis analyzes how various e-

mobility use cases can be integrated into the existing distribution grid in a grid-friendly way. 

Considering electric vehicles charged at home or work, classic grid reinforcement measures 

can successfully be prevented by the analyzed voltage-controlled measures. However, limiting 

the available charging power, e.g., by implementing adequate charging tariffs, is the most 

effective measure to prevent future grid congestions. Furthermore, decentralized energy 

storage systems enable the grid-friendly supply of e-mobility use cases with strict schedules, 

e.g., electric busses, requesting high-power charging to fulfill their mobility needs. 

Implementing the findings, tools, and methods acquired and developed in this work will 

increase the accuracy and the level of detail of future grid planning processes. Thereby, this 

thesis helps design the future power system more adequately to enable the integration of 

future e-mobility.  



Kurzfassung 

 

KURZFASSUNG 

Die Elektrifizierung des Verkehrssektors stellt eine entscheidende Säule zur Erreichung der 

globalen und nationalen Klimaschutzziele dar. Die Integration zukünftiger Elektrofahrzeuge in 

das bestehende Stromnetz erfordert frühzeitige Planung, um zukünftigen Netzengpässen 

vorzubeugen.  

Zu diesem Zweck untersucht die vorliegende Arbeit zunächst die Eignung konventioneller 

Simulationsmethoden zur Identifikation zukünftiger Netzauswirkungen. Herkömmliche 

Lastansätze, die in statisch-deterministischen Netzsimulationen zum Einsatz kommen, 

vernachlässigen die zeitliche Überlagerung unterschiedlicher Kundentypen (z. B. Haushalte 

und Elektrofahrzeuge). Zusätzlich unterschätzen sie die Gleichzeitigkeit der Netzkunden am 

Ende des Netzstrangs. Folglich werden zukünftige Netzengpässe, hervorgerufen durch 

zukünftige Netzkunden, falsch eingeschätzt. Darüber hinaus verdeutlicht die vorliegende 

Arbeit, wie zukünftige Netzverstärkungskosten in einem großflächigen Netzgebiet 

quantifiziert werden können. Aufgrund der hohen Heterogenität von 

Niederspannungsnetzen, kann die Simulation einiger weniger, individuell ausgewählter Netze 

und die Skalierung ihrer Ergebnisse zu einer Fehleinschätzung führen. Die Genauigkeit der 

Kostenabschätzung steigt jedoch mit zunehmender Anzahl der simulierten Netze. 

Um den aufgezeigten Unsicherheiten entgegenzuwirken, wird im Rahmen dieser Arbeit ein 

vollautomatisiertes Netzberechnungstool präsentiert. Dieses ermöglicht die detaillierte 

Simulation mehrerer tausend Netze bei angemessener Rechenzeit. Mithilfe der im Rahmen 

dieser Arbeit entwickelten neuartigen Gleichzeitigkeitsfaktoren wird das zeitliche 

Zusammenspiel sämtlicher Kundentypen realistisch abgebildet. 

Zusätzlich analysiert die vorliegende Arbeit zahlreiche Maßnahmen für eine netzschonende 

Netzintegration unterschiedlicher Use Cases der Elektromobilität: Netzgesteuerte 

Maßnahmen ermöglichen eine netzschonende Versorgung von Elektrofahrzeugen, die zu 

Hause oder am Arbeitsplatz laden. Die Begrenzung der verfügbaren Ladeleistung, z. B. durch 

entsprechende Ladetarife, stellt diesbezüglich jedoch die effektivste Maßnahme dar. Use 

Cases, die aufgrund ihrer strikten Zeitpläne hohe Ladeleistungen benötigen (z. B. 

Elektrobusse), lassen sich mithilfe dezentraler Energiespeichersysteme unter der Vermeidung 

klassischer Netzausbaumaßnahmen integrieren. 

Die Anwendung der in dieser Arbeit gewonnenen Erkenntnisse, sowie entwickelter Tools und 

Methoden erhöht die Genauigkeit und den Detaillierungsgrad zukünftiger 

Netzplanungsprozesse. Damit trägt diese Arbeit dazu bei, das zukünftige Stromnetz 

angemessen zu gestalten, um die Integration der zukünftigen Elektromobilität zu ermöglichen.  
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Nomenclature 

I 

NOMENCLATURE 

Abbreviation 

EV Electric vehicle 

DSO Distribution system operator 

MV Medium voltage 

LV Low voltage 

PV Photovoltaic 

HP Heat pump 

ESS Energy storage system 

DC Direct current 

AC Alternating current 

 

Indices 

Indices Description [Unit] 

R‘ Specific resistance [Ω/km] 

X‘ Specific inductance [Ω/km] 

R Total resistance [Ω] 

X Total inductance [Ω] 

𝛥𝑈 Complex voltage deviation between a grid line’s sending- and receiving-end 
[V] 

𝑈1 Complex sending-end voltage [V] 

𝑈2 Complex receiving-end voltage [V] 

𝑈𝑡 Transverse voltage deviation between a grid line’s sending- and receiving-
end [V] 

𝑈𝑙 Longitudinal voltage deviation between a grid line’s sending- and receiving-
end [V] 

𝜗 Phase angle between the sending- and receiving-end voltage [°] 



Nomenclature 

II 

𝐼𝑎 Active current transmitted by a grid line [A] 

𝐼𝑟 Reactive current transmitted by a grid line [A] 

P Active power [W] 

Q Reactive power [var] 

𝑆𝑠,𝑛𝑜𝑑𝑒
′′  Short-circuit apparent power at a node [VA] 

𝑈𝑁𝑜𝑚. Nominal voltage [V] 

𝑐 Voltage factor [-] 

𝑍𝑛𝑜𝑑𝑒 Impedance between a grid node and the power supply [Ω] 

𝑈𝑖 Complex voltage at node i [V] 

𝐼𝑖 Complex current injected at node i [A] 

𝒀 Node admittance matrix [S] 

𝑌𝑖𝑗 Complex admittance between node i and node j [S] 

δ Phase angle of voltage [°] 

𝑆𝑖 Complex apparent power injected at a node [VA] 

𝑃𝑖  Complex active power injected at a node [W] 

𝑄𝑖 Complex reactive power injected at a node [var] 

∆𝑷 Deviation between the targeted and calculated active power [W] 

∆𝑸 Deviation between the targeted and calculated reactive power [var] 

𝜈 Iteration [-] 

𝒙 Vector including all nodes’ voltages and phase angles [V,°] 

𝑱 Jacobi matrix [W/V, W/°, var/V, var/°] 

𝑁𝑜𝐶 Number of customers [-] 

𝑃𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑  Aggregated active power [W] 

𝑃𝑐𝑢𝑠𝑡. Active power of grid customers [W] 

Snom Nominal apparent power [VA] 

𝑆𝐸𝑉 Apparent power of EV charging [VA] 



Nomenclature 

III 

𝑆𝐸𝑆𝑆 Apparent power of ESS [VA] 

𝑆𝐿𝑜𝑎𝑑,𝑖𝑛𝑖𝑡 Initial apparent power of grid elements [VA] 

𝑆𝑚𝑎𝑥,𝑡ℎ𝑒𝑟𝑚 Maximum thermal apparent power of grid elements [VA] 

𝑃𝐸𝑆𝑆 Apparent power of ESS [W] 

𝜂𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 Discharging efficiency of ESS [-] 
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1 INTRODUCTION 

The increase of greenhouse gas emissions within the last decades has unquestionably been 

the major driver of global warming and resulting climate- and environmental-related 

challenges [1]. In Europe, for example, more than a fourth of greenhouse gas emissions are 

caused by the traffic sector. Thereof, road transport accounted for 71.7 % in 2019, including 

passenger vehicles (43.5%), heavy-duty trucks and busses (18.8%), light-duty trucks (8.5%), 

and others (0.9 %). [2] In the European Green Deal [3], the European Commission defined 

multiple goals to decarbonize the traffic sector: Increasing transport’s efficiency by forcing 

multimodal transport, removing fossil-fuel subsidies, and implementing more stringent CO2-

emission targets for vehicles. Considering the latter, passenger vehicles (- 37.5 % by 2030), 

vans (- 31 %), and trucks (- 30 %) must decisively reduce their greenhouse gas emissions [4, 5].  

However, the achievement of these ambitious emission targets requires, among other things, 

enhancing the electrification of the traffic sector in the future. In fact, e-mobility has already 

been declared on the global [6] and European level [3] to be forced and promoted in the 

upcoming years. Therefore, monetary and non-monetary incentives should foster the share 

of registered electric vehicles (EVs) [7]. Furthermore, public charging infrastructure is 

implemented extensively (one million public charging points by 2025 [8]) to reduce range 

anxiety [9] and allow long-distance traveling with EVs [3]. All these measures combined will 

further raise the number of registered EVs in the following decades (Figure 1). Depending on 

Austria's political and economic framework conditions, between 21 – 27 % of passenger 

vehicles might be electrified by 2030 [10–14]. In 2050, the share of EVs in Austria might 

deviate between 52 – 100 % [10, 12, 13, 15]. 

 

Figure 1: Actual and forecasted share of electric vehicles in Austria (own illustration based on [10–15]) 

While these trends contribute to the traffic sector’s decarbonization, the supply of future EVs 

will unquestionably challenge the existing energy- and power system. As demonstrated in 

several studies, the charging of EVs will increase the energy demand in the upcoming years 

[16–18], e.g., between 14 - 16 % if all vehicles are electrified [19, 20]. Furthermore, these 
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amounts of energy must be supplied by local distribution networks. From the perspective of 

a distribution system operator (DSO), EVs represent new customers characterized by high 

nominal power (compared to existing customers) and high, challenging-to-predict energy 

demand [21]. As a result, their integration must comply with local grid conditions. Recent 

studies (e.g. [22–27]) demonstrate limited capacity on the medium- (MV) and low-voltage (LV) 

levels to integrate these new customers. Hence, the integration of e-mobility into the power 

system must be planned at an early stage by prematurely identifying EV-induced grid 

restrictions. 

In addition to EVs, present-day distribution networks face new challenges due to the forced 

implementation of other domestic low-carbon technologies, e.g., photovoltaic (PV) modules 

and electric heat pumps (HP) [28]. PV modules feed power into the power system during 

midday hours based on the sun's daily course. The power demand of electric HPs, on the other 

hand, shows several peaks during the day, especially during winter [28, 29]. Hence, when 

planning the grid integration of future e-mobility, existing (e.g., households, commercial 

businesses) and future grid customers’ temporal characteristics (e.g., PV modules, HPs) must 

be investigated together.  

Besides the temporal aspect, the spatial development of future EVs, domestic PV modules, 

and HPs is crucial to identify future grid reinforcement measures. Suburban and rural areas 

are characterized by a high share of single- or two-family houses. Compared to multi-

apartment residual buildings, they facilitate the installation of private charging infrastructure 

at home (the preferred location of charging [30–33]), domestic PV modules, or electric HPs. 

Hence, the transition towards those technologies will occur in large parts in suburban and 

rural areas [34–36]. Both temporal and spatial criteria must be met to identify EV-induced 

grid restrictions. This can be done by performing detailed load flow simulations. Therefore, 

temporal interdependences between various customer classes and different grid regions’ 

characteristics can be considered. 

In case of grid congestions, existing grid structures are usually extended or reinforced, e.g., by 

installing additional grid lines or by enhancing substations’ capacities. However, those classic 

grid reinforcement measures often entail significant investment costs and lengthy processes 

[37]. Consequently, the future integration of additional EVs could be postponed or even 

inhibited. Furthermore, the timespan, most distribution grids require increased capacity is 

limited to a few hours per year [38]. Grid-relieving measures, e.g., implementing demand-side 

measures or energy storage systems (ESSs), might provide the required capacity during that 

period. Thus, the power grid can be designed for the most frequent grid conditions, and classic 

grid reinforcement measures can be reduced to a high extend. Therefore, various grid-
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relieving measures must be examined as alternatives to classic grid reinforcements and 

included in future grid planning processes. 

Besides private passenger vehicles, decarbonizing the traffic sector also requires the 

electrification of other vehicles classes. For example, numerous countries have already 

integrated electric busses into their public transportation system, above all China with a 

projected number of more than 1.3 billion busses in 2025 [39]. Several Austrian cities also 

operate electric busses for public transportation [40]. Furthermore, more and more taxies and 

car sharing vehicles have been electrified because of benefits in city transport compared to 

vehicles with an internal combustion engine (lower fuel costs, lower maintenance effort, and 

faster acceleration) [41, 42]. EVs are also applicable for last-mile delivery providers, e.g., retail 

or postal services [43], due to their constant mobility needs. Indeed, more and more last-mile 

delivery providers have already electrified their fleets (e.g., [44]). These trends demonstrate 

that the electrification of the transport sector includes several e-mobility use cases. 

However, future e-mobility use cases differ considerably regarding vehicle specifics (e.g., 

specific energy consumption, battery capacity) and charging behavior (e.g., time and power 

of charging). Both represent crucial aspects for determining the EVs’ future charging loads 

which the local power grid must supply. While EV manufacturers define vehicle specifics, the 

EVs’ temporal charging behavior strongly depends on individual mobility patterns, including 

parking time (Figure 2), covered distances, and the number of trips.  

 

Figure 2: Time-resolved share of parking vehicles considering various e-mobility use cases [45] 

The majority of private EVs, for example, are parked at home between 18:00 – 08:00 or at 

work during the day. Flexibility options, implemented to prevent classic grid reinforcement 

measures, must comply with mobility- and charging patterns of future EV use cases. For 

example, e-busses or last-mile delivery EVs impede demand-side measures to assure a fast 

onward journey. On this account, the evaluation of grid-relieving measures must include 

various EV use cases and accurately predict their mobility patterns and charging behavior. 

  



State of research 

PAGE | 4 

2 STATE OF RESEARCH 

As demonstrated in Chapter 1, the planning of integrating future e-mobility into the power 

system must include the following aspects: 

 Identifying EV-induced grid restrictions using detailed load flow simulations (Chapter 2.1): 

Therefore, temporal interdependences between EVs, PV modules, and HPs 

(Chapter 2.1.1) as well as differences in grid regions (Chapter 2.1.2) should be considered 

 Evaluating grid-relieving measures including various EV use cases’ mobility- and charging 

patterns (Chapter 2.2) 

The following chapters illustrate whether the current state of research fulfills the criteria 

mentioned above. Therefore, recent studies evaluating the integration of e-mobility into the 

power system are divided accordingly. 

2.1 Identifying EV-induced grid restrictions using load flow 

simulations 

2.1.1 Temporal interdependences between customer classes 

Recent studies (e.g., [22, 23, 37, 38, 46–55]) have already analyzed the impacts of EVs, PV 

modules, or HPs on the present-day power system. However, they differ in the applied 

simulation method and how temporal interdependences between different customer classes 

are taken into account: Some studies determine potential grid bottlenecks based on time-

series analyses [37, 48–51]. Thereby, temporal differences between EVs, PV modules, and HPs 

are included by using time-resolved profiles. Monte-Carlo simulations provide another 

possibility to estimate future grid restrictions and are applied by several works [38, 46, 47, 55]. 

Therefore, the power at each grid node is stochastically determined for numerous iterations 

based on statistical data [56]. As a result, temporal interactions between customers classes 

are considered based on their probability of occurrence. While time series analyses and 

Monte-Carlo simulations facilitate the consideration of temporal customer interdependences, 

they require the simulation of several time steps or iterations (Chapter 5.3.2). In contrast, 

static deterministic grid simulations, applied by several recent studies [22, 23, 53, 54, 57–59], 

allow much faster computation [60, 61]. In this simulation method, grid customers’ 

aggregated load in the power grid is determined using coincidence factors [62, 63]. The 

coincidence factor takes temporal characteristics and interdependences between multiple 

grid customers into account. However, recent studies' coincidence factors only consider 

temporal interdependences individually within one customer class (e.g., households or EVs). 
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Temporal interactions between customer classes, such as EVs, HPs, and PV modules, are 

neglected in the current state of research using static deterministic grid simulations. 

In addition, recent studies consider different grid elements in the power grid to determine 

grid customers’ coincidence factors: While many studies (e.g., [22, 53]) neglect to define this 

detail, the majority of studies [23, 53, 57, 58] determine coincidence factors based on the 

number of grid customers supplied by the MV/LV substation. Others [22, 59] use the number 

of customers supplied by each feeder to estimate coincidence factors applied for load flow 

simulation. However, none of these studies takes grid customers’ coincidence at the end of 

feeders into account. 

2.1.2 Differences in grid regions 

Besides the applied simulation method, the current state of research varies concerning the 

analyzed distribution networks and their region: Many recent works only analyze single 

distribution grids in urban [48, 51] and rural areas [46]. However, these studies exclude real-

life housing types (e.g., family houses, multi-apartment residential buildings) and, thereby, 

their ability to integrate future EVs, PV modules, or HPs. Furthermore, most works neglect 

defining the analyzed grid region (e.g., [37, 47, 50]).  

While the studies mentioned above analyze the impact of EVs on one grid respectively, others 

quantify EV-induced grid reinforcement measures in a large area, including several thousand 

LV grids. Therefore, they use two different methods: Most recent works [22, 23, 38, 54, 55] 

identify potential grid congestions in individually selected, representative grids based on load 

flow simulation. The selected grids’ results are aggregated and scaled to the whole area of 

investigation. The other group of studies [53, 59] quantifies the total grid reinforcement needs 

by simulating each grid in the investigated area. Based on the different quantification methods 

applied in recent studies, their results substantially differ when considering the same scenario 

[55]. Hence, the current state of research misses a comparison of different quantification 

methods (scaling of individually selected grids’ results or simulating all grids) and their impact 

on estimating future grid reinforcement costs. 

2.2 Evaluating grid-relieving measures applied to mitigate EV-

induced grid impacts 

While research presented in Chapter 2.1 focuses on identifying EV-induced grid congestions, 

this chapter describes studies examining the suitability of grid-relieving measures to prevent 

them. However, the grid-friendly application of such options must comply with the particular 

e-mobility use case and its mobility- and charging patterns. Due to their long daily duration 

connected to the power grid, EVs charged at home (mainly during the night) or at work (mainly 
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during the day) allow for the control of charging processes. Thus, recent studies [64–71] 

primarily focus on demand response based on controlled charging (Chapter 5.4.4) regarding 

these use cases [72]. They either attempt to mitigate local grid congestions on the distribution 

level [64–69] or increase the share of charged energy generated by local PV [70, 71]. 

Furthermore, the prevention of voltage violations triggered by EVs charged at home or work 

is dealt with in previous research. Therefore, voltage-controlled reactive- [73, 74] or active 

power regulation [75–77] is implemented into EV charging infrastructure (Chapter 5.4.2). 

Thereby, the available charging power of EVs is adapted according to the actual voltage in the 

supplying distribution network. Other studies [78–81] combine those concepts with the 

control of charging processes to increase their effectiveness. Besides charging at home or 

work, the grid-dependent regulation of reactive charging power has been applied for public 

fast-charging of EVs [82, 83]. Several recent studies analyzed the potential of distribution 

transformers equipped with on-load tap-changers (Chapter 5.4.1) to prevent voltage 

violations on the LV level triggered by EVs charged at home [84] or elsewhere [85–87]. 

Besides investigating demand-side and voltage-controlled measures, several recent studies 

focus on decentralized ESSs to support EV charging (Chapter 5.4.3). They can be classified 

depending on the ESS’s objective: Multiple works [88–93] investigate the potential of ESSs to 

minimize the operation costs of EV charging. Another study [94] tries to maximize the share 

of charged energy locally generated by renewable energy sources. However, most studies [95–

106] investigate the implementation of decentralized ESSs to cover EV-induced peak loads 

according to classic peak shaving. The latter group can further be divided according to their 

analyzed e-mobility use case. They analyze ESS specifications required to supply public 

charging points [96–99, 104, 105], domestic charging at home [100, 101], e-bus charging [95, 

106]. Some studies neglect defining the considered use case [102, 103].  

However, most studies presented in this chapter consider only one particular use case. 

Although, none of these studies analyze the flexibility required to integrate electric last-mile 

delivery vehicles into present-day distribution networks preventing grid restrictions. In 

addition, recent works focus on one charging power of EVs, and a fixed number of available 

charging points, respectively. As a result, the correlations between the flexibility demand and 

the different use cases’ mobility patterns, charging power, and the number of charging points 

are missing in the current state of research. Similarly, many studies in this regard focus on one 

particular measure (e.g., [65, 66, 73, 78]) to relieve stress from the LV grid. Hence, they neglect 

a direct comparison of possible stress mitigation measures. Furthermore, grid-relieving 

measures are primarily evaluated based on economic aspects [95, 97, 105, 106]. On the 

contrary, technical criteria have been neglected so far in the current state of research.  
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3 RESEARCH QUESTIONS 

Chapter 1 demonstrates multiple criteria essential to plan the integration of future e-mobility 

into distribution grids: Firstly, temporal interdependences between grid customers and 

differences in grid regions must be considered when identifying EV-induced grid restrictions. 

Secondly, evaluating potential grid-relieving measures must consider various EV use cases’ 

mobility and charging patterns. However, the current state of research (Chapter 2) often 

neglects these criteria. Hence, the following research questions unanswered by the current 

state of research should be addressed in this work.  

According to Chapter 2, the described criteria and related research questions are divided into 

two fields: The first field of research deals with the identification of EV-induced grid 

restrictions. In this regard, modern-day grid planning primarily relies on numerical grid 

analyses based on load flow simulations (Chapter 5.3). However, as highlighted in Chapter 2.1, 

the following research questions in this field are unanswered in the current state of research: 

1) How to realistically consider temporal interdependences between grid customers (e.g., 

EVs, PV modules, and HPs) using static deterministic load flow simulations? 

2) How many coincidence factors (single, double, multiple) must be applied for each grid, 

and based on which grid elements should they be determined? 

3) What is the qualitative correlation between the region (urban, suburban, rural) of the 

analyzed LV grids and their hosting capacity in terms of voltage violations and thermal 

congestions? 

4) How many LV grids (in %) must be simulated to quantify future grid reinforcement costs 

in a large service area with adequate accuracy? 

5) How to technically (required reinforcement measures) and economically (required costs) 

quantify future grid reinforcement needs?  

The second field of research includes the evaluation of grid-relieving measures as a 

countermeasure to classic grid reinforcements. In this field, the following research questions 

are unanswered in the current state of research and addressed in the presented thesis: 

6) Which grid-relieving measures are suitable for preventing classic grid reinforcement 

measures while complying with user behavior of EV use cases? 

7) How must these measures be designed and operated to provide sufficient grid support 

depending on the supplying EV use case? 

8) Can grid-relieving measures provide cost benefits compared to classic grid 

reinforcements? If so, can they still be operated at technical optima? 
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3.1 Structure of this work 

The methodology applied to answer the highlighted research questions, including the papers’ 

contribution to this work, is described in detail in Chapter 4. To ensure the required theoretical 

background, Chapter 5 summarizes the state-of-the-art in the fields of EV charging (5.1), the 

structure of the electricity system (5.2), load flow simulations (5.3), and grid-relieving 

measures (5.4). 

Chapter 6 demonstrates the thesis’ results for answering the research questions in both 

research fields: Identifying EV-induced grid restrictions (6.1) and evaluating the potential of 

grid-relieving measures (6.2). Chapter 7 provides a holistic discussion of acquired results and 

presents the conclusions derived from this thesis. Finally, Chapter 8 gives an outlook to further 

studies in this thesis’ research fields. 

Relevant journal and conference papers published during this dissertation can be found in 

Appendix A, including contribution statements. Appendix B lists additional conference papers 

and other scientific articles contributed to this work. 
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4 METHODOLOGY 

The presented thesis gives answers to all research questions highlighted in Chapter 3. 

Therefore, it refers to the author’s works published in three peer-reviewed journals and three 

conference papers (Appendix A). This chapter describes the applied methodology, the 

connection between published papers, and how they contribute to this thesis.  

The methodology applied in this thesis can be divided into three parts illustrated in Figure 3: 

As the foundation for both research fields (identification of grid restrictions and evaluating the 

potential of grid-relieving measures), realistic charging profiles of different EV use cases are 

modeled based on real-life mobility patterns, measured charging curves, and EV specifics. 

Table 1 illustrates which e-mobility use cases are modeled and analyzed in the author’s works. 

A detailed description of analyzed e-mobility use cases can be found in the respective papers. 

Table 1: E-mobility use cases analyzed in this work and corresponding journal and conference papers 

Use Case Paper 1 Paper 2 Paper 3 CIRED 

2019 

NEIS 

2019 

IEWT 

2021 

Charging at home       

Charging at work       

On-street public charging       

Highway fast-charging       

e-taxies       

e-car sharing       

e-busses       

Electric last-mile delivery vehicles       

The applied modeling approaches have been published in Paper 1 and 2 [29, 107]:  

THORMANN, B.; KIENBERGER, T., Evaluation of Grid Capacities for Integrating Future E-

Mobility and Heat Pumps into Low-Voltage Grids, In: Energies 2020, 13, 5083. 

doi.org/10.3390/en13195083 

THORMANN, B.; PUCHBAUER, P.; KIENBERGER, T., Analyzing the suitability of flywheel energy 

storage systems for supplying high-power charging e-mobility use cases, In: Journal of 

Energy Storage 2021, 39, 102615, doi: 10.1016/j.est.2021.102615. 

The second step is about the identification of potential grid restrictions caused by EV charging 

by performing numerical load flow simulations (Chapter 6.1). Therefore, novel coincidence 

factors are calculated based on the modeled time series. The author published this work in 

Paper 1. 
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Figure 3: Methodology of this work including corresponding journal and conference papers 

Furthermore, a fully automated large-scale grid simulation tool is developed to analyze several 

thousand grids and quantify future grid reinforcement needs. The developed tool is described 

and published in Paper 3 [108]: 

THORMANN, B.; KIENBERGER, T., Estimation of Grid Reinforcement Costs Triggered by Future 

Grid Customers: Influence of the Quantification Method (Scaling vs. Large-Scale 

Simulation) and Coincidence Factors (Single vs. Multiple Application), In: Energies 2022, 

15, 1383, doi: 10.3390/en15041383 

In addition, one journal- and three conference papers analyze the following flexibility options 

to mitigate EV-induced grid restrictions (Chapter 6.2) and give answers concerning their 

design: ESSs (NEIS 2019 [109], Paper 2 [107], IEWT 2021 [110]), as well as grid-controlled and 

demand-side measures (CIRED 2019 [111]). All these measures represent countermeasures to 

classic grid reinforcement measures (e.g., transformer- and line extensions). 
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5 THEORETICAL BACKGROUND 

The following chapter provides the theoretical background necessary to put the presented 

work into context. Therefore, the state of the art regarding electric vehicles and their charging 

infrastructure is summarized (Chapter 5.1). Chapter 5.2 describes the structure of the current 

power system. The concept of load flow simulations to analyze and plan the power system is 

illustrated in Chapter 5.3. Finally, different measures to prevent conventional grid 

reinforcements are depicted (Chapter 5.4). 

5.1 Electric vehicles and charging infrastructure 

Although the electrification of vehicles started more than 180 years ago, it just accelerated in 

the past few years due to breakthroughs in lithium-ion technology and the increased attention 

regarding climate protection [112]. Per definition, the group of four-wheeled EVs includes all 

vehicles with one or more electric machines integrated into their drive unit. While battery EVs 

are powered only by the electric machine, hybrid EVs have an additional power source (e.g., 

an internal combustion engine) integrated into the vehicle. [113] The latter can be classified 

according to their drive train design (parallel, serial, or combined) or their degree of 

hybridization (micro, mild, full, or plug-in hybrid). From all EVs mentioned above, only battery 

and plug-in hybrid EVs allow the recharging of their battery via an external power source, e.g., 

the power grid. [114] While the power system must supply both types of EVs, the market share 

of plug-in hybrid EVs will likely decrease in the upcoming years in favor of battery EVs [115]. 

Hence, only four-wheeled battery EVs are considered in this thesis and, from now on, 

consistently termed EV.  

Today, electric versions of many vehicle classes (e.g., busses [116], trucks [117], vans [118], 

passenger vehicles [119, 120]) are available on the market. However, those substantially differ 

in their vehicle specifics: While today’s passenger EVs and e-vans provide a battery capacity 

between 17.6 - 95 kWh [121] and 33 - 79 kWh [118, 122–125], e-busses (85 - 550 kWh) [126] 

and e-trucks (343 - 540) [117, 127, 128] can store a higher amount of energy. This is indeed 

necessary, due to a significantly higher specific energy demand: 0.147 – 0.240 kWh/km [121] 

and 0.250 – 0.530 kWh/km [129] considering passenger EVs and e-vans, 1.160 – 

1.990 kWh/km [130] considering e-busses and 0.980 – 1.440 kWh/km [131, 132] considering 

e-trucks. 

Theoretically, EV charging can be done via the conventional (domestic) power socket. 

However, in most cases, EVs are charged via a charging station to allow for higher charging 

power and shorten the required duration of charging. Most public charging stations provide 

two or more charging points (connection of one EV), enabling the simultaneous charging of 
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multiple EVs [115]. Since the EV’s battery requires direct current (DC) to be recharged, power 

electronics convert alternating current (AC) from the power grid into DC. AC/DC and DC/DC 

inverters are either integrated into the EV (AC charging) or into the charging infrastructure 

(DC charging) [115]. However, some existing EV models do not support DC charging and only 

use AC charging [133]. 

Furthermore, state-of-the-art EV models vary in their possible charging power and their 

number of phases used for AC charging. While some EV models only support one- or two-

phase AC charging with a charging power of 3.7 or 7.4 kVA, the general trend is towards three-

phase AC charging with 11 kVA up to 43 kVA. Single-phase charging of EVs can result in voltage 

unbalance in the power grid. While state-of-the-art EV models differ in their maximum DC 

charging power (50 – 270 kW [134]), the trend towards higher power is also apparent in this 

regard. [81] 

Besides the EV model, the actual charging power depends on the supplying charging 

infrastructure. Thereby, one has to distinguish between public (non-discriminatory access for 

all users) and private (limited access) charging points [135]. Private charging points at home 

or work often support AC charging only. The installed charging power lies between 3.7 kVA – 

22 kVA depending on the type of housing: Charging points with a maximum power of 11 kVA 

(in some cases 22 kVA) are primarily installed in single- or two-family houses. On the other 

hand, in multi-apartment residential buildings, most charging points provide a maximum 

power of 3.7 kVA (in some cases 11 kVA). [136] Public charging points can either provide AC, 

DC, or both. While AC charging is limited to 43 kVA [137], DC charging currently allows up to 

350 kVA (increasing trend similar to EV models) per charging point [138].  

5.2 Structure of the power system 

The present-day power system is divided into the transmission- and the distribution system. 

The transmission system includes the extra-high voltage (380 and 220 kV) level, whereas the 

distribution system includes the MV (6 – 30 kV) and LV (< 1 kV) levels. The high voltage level 

(110 kV) can be assigned to the transmission or distribution system. [139] The Austrian power 

system (as well as the German and the Suisse one) is additionally classified into seven network 

levels: Network levels 1, 3, 5, and 7 represent the four voltage levels, levels 2, 4, and 6 

represent the voltage transformation between them [140]. The latter is based on three-phase 

transformers located at the grid’s substation (Figure 4). While AC charging stations are 

primarily connected to network levels 6 and 7, DC charging stations providing multiple 

charging points and high charging power can also be connected to the MV level, i.e., network-

level 5. However, the presented thesis focuses exclusively on charging stations integrated into 

the LV level (network-level 7) or directly connected to MV/LV substations (network-level 6). 
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The topology of real-life LV grids differs in their structure and used equipment (lines and 

transformers). Both depend on the region the grid is located and its load density. LV grids in 

urban areas with high load density (> 30 MVA/km2 [141]) are often structured based on 

multiple rings, in which feeders are connected via separation points (Figure 4b). Those rings 

are openly operated during normal grid conditions. Though, they can be closed to increase 

the supply reliability, e.g., in the event of a short circuit. Due to the high load density, grid 

customers in urban LV grids are primarily supplied by short feeders (< 300 m [142]). In 

contrast, suburban or rural LV grids with low load density (< 5 MVA/km2 [141]) are usually 

built on a radial structure (Figure 4a) to supply grid customers via long feeders (up to 1,000 m 

[142]). [141, 143–145] 

 

(a) 

 

(b) 

Figure 4: Grid topology of (a) a radial and (b) a ring network on the LV level (own illustration based on [141, 

143]) 

Besides their structure, real-life LV grids vary regarding their equipment. Transformers 

integrated into the MV/LV substation typically have the following nominal capacities: 100 kVA, 

250 kVA, 400 kVA, 630 kVA, 800 kVA, or 1000 kVA [142, 146]. However, MV/LV substations in 

urban areas with high load density are generally equipped with higher transformer capacity 

than those in suburban or rural areas with low load density. 

From the MV/LV substation, the power is transmitted via overhead lines or cables with 

primarily aluminum conductors and a cross-sectional area between 50 – 240 mm2 [141]. The 

electrical behavior of overhead lines and cables with short or medium length can be simulated 

using a π-equivalent circuit. The latter is characterized by a series resistance and a series 

inductance as well as a shunt capacitance and shunt conductance [147]. However, due to 

negligible capacitance and conductance of LV lines [141], their behavior can be simulated by 

considering the series resistance (R) and series inductance (X) exclusively (Figure 5a) [147, 

148]. Although both overhead lines and cables share the same equivalent circuit, they differ 

in their specific (per km) impedance values (Table 2): Overhead lines on the LV level show 

higher specific resistance (R’) and inductance (X’) compared to LV cables. Furthermore, LV 
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cables (up to 10.8) have a higher ratio between resistance and inductance (R’/X’) than 

overhead lines (up to 4.7). [141, 149] 

Table 2: Specific resistance (R’) and inductance (X’) of LV overhead lines and cables (at ambient temperature) 

[141, 149] 

Line type R’ (Ω/km) X’ (Ω/km) R’/X’ ratio 

Overhead line 0.29 – 1.87 0.29 – 0.40 1.00 – 4.70 

Cable 0.14 – 0.86 0.08 1.80 – 10.80 

The impedance of grid lines, and thereby their length and type, influences the change in 

voltage along them. As illustrated in Figure 5b, the complex voltage difference (𝛥𝑈) between 

the sending- (𝑈1) and the receiving-end voltage (𝑈2) can be divided into a transverse (𝑈𝑡) and 

a longitudinal voltage component (𝑈𝑙 ). The former describes the phase angle between 

sending- and receiving-end voltages (𝜗). The longitudinal component specifies the difference 

between sending- and receiving ends’ absolute voltage values (|𝑈1| − |𝑈2|) with sufficient 

accuracy. Thereby, it indicates the effective (or measurable) voltage change along the line. 

According to Eq. (5-1) [56, 149] and Figure 5b, the longitudinal voltage change equals the 

product of the line’s transmitted active current (𝐼𝑎) and its resistance (𝑅), plus the product of 

the line’s transmitted reactive current (𝐼𝑟) and its inductance (𝑋). [148] 

 

(a) 

 

(b) 

Figure 5: Simplified equivalent circuit of LV lines (a) and the respective phasor diagram supplying an 

ohmic/inductive customer (b) [56, 147] 
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Hence, in addition to the impedance, the voltage change along a line depends on the 

transmitted active (𝑃) and reactive power (𝑄). However, considering LV lines with a high R‘/X‘-

ratio (R‘ >> X‘), the effective voltage change is primarily caused by the active power 

transmitted. [149] 

|𝑈1| − |𝑈2|  ≈ 𝑈𝑙 = 𝐼𝑎 ∙ 𝑅 + 𝐼𝑟 ∙ 𝑋 =
𝑃

3 ∙ 𝑈
∙ 𝑅 +

𝑄

3 ∙ 𝑈
∙ 𝑋 (5-1) 

In order to calculate the voltage at a particular grid node, the voltage change of each line 

between the grid node and the power supply must be aggregated. Since LV grids have 

numerous grid nodes, modern-day planning relies on numerical load flow simulations to 

identify each nodes’ voltages depending on the grid customers’ active and reactive power 

(Chapter 5.3). However, a node’s vulnerability regarding voltage violations can also be 

estimated without knowing active or reactive power flows by considering its short-circuit 

power (𝑆𝑠,𝑛𝑜𝑑𝑒
′′ ). According to Eq. (5-2), this parameter only depends on the nominal voltage 

(𝑈𝑁𝑜𝑚.), the voltage factor (𝑐), and the total impedance between the considered node and the 

power supply (𝑍𝑛𝑜𝑑𝑒) [56, 143].  

𝑆𝑠,𝑛𝑜𝑑𝑒
′′ =

𝑐 ∙ 𝑈𝑁𝑜𝑚.
2

𝑍𝑛𝑜𝑑𝑒
 (5-2) 

Thereby, a grid’s voltage stability can be determined based on its most critical node, i.e., the 

one with the lowest short-circuit power (highest impedance): The higher the minimal short-

circuit power in the LV grid, the higher the voltage stability [143]. Due to long feeders with 

primarily overhead lines, rural LV grids show a lower minimal short-circuit power 

(0.4 – 1.1 MVA [150]) than urban LV grids with short cables (1.2 – 3.1 MVA [150]). Hence, they 

are more sensitive to voltage violations. [151–153]  

5.3 Load flow simulation 

The modern-day planning, analysis, and operation of real-life power grids rely on numerical 

load flow simulations to determine their behavior in various scenarios. The objective of load 

flow simulations is to calculate active and reactive power flows, the grid nodes’ voltages 

(absolute value and angle), and network losses depending on the load and generation in the 

power grid [147]. Thereby, power grids can be evaluated, e.g., in terms of congestions or the 

fulfillment of planning criteria (contingency or stability analysis), and optimized [154]. 

Besides the rarely used method based on Kirchhoff’s voltage law, most load flow simulations 

rely on Kirchhoff’s current law. Thereby, a grid with 𝑁  nodes is analyzed using the linear 

equation system demonstrated in Eq. (5-3). While 𝑈𝑖  represents the complex voltage of a 
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node 𝑖 as output value, 𝐼𝑖 represents the complex net current injected at node 𝑖 as the load 

flow simulation’s input value. Eq. (5-4) demonstrates the described equation system in matrix 

notation (matrices are illustrated in bold). [155, 156] 

(

 
 
 

𝑌11 𝑌12 ⋯ 𝑌1𝑖 ⋯ 𝑌1𝑁
𝑌21 𝑌22 ⋯ 𝑌2𝑖 ⋯ 𝑌2𝑁
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑌𝑖1 𝑌𝑖2 ⋯ 𝑌𝑖𝑖 ⋯ 𝑌𝑖𝑁
⋮ ⋮ ⋱ ⋮ ⋱ ⋮
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 (5-3) 

𝒀 ∙ 𝑼 = 𝑰 (5-4) 

The parameter 𝒀 represents the grid’s node admittance matrix, including the admittances 

between each grid node. The elements in this matrix are calculated based on the equivalent 

circuit of transformers and lines between nodes. For example, 𝑌12 defines the admittance of 

the line between nodes 1 and 2. If two nodes have no connection, the respective entry in the 

node admittance matrix is zero. The diagonal elements of the matrix (e.g., 𝑌11) represent the 

negative self-admittance at a node (e.g., node 1) and serves exclusively as calculation value. 

[147, 157] 

The method used to solve this equation system depends on the type of grid nodes and their 

load specification: If loads are defined as currents, the linear equation system (Eq. (5-3) is 

straightforward to solve. However, since the current injected at a node depends on its voltage, 

it is usually unknown. In fact, most grid nodes are parameterized by the following four 

parameters: Active- (P) and reactive power (Q), as well as the absolute value (U) and phase 

angle of their voltages (δ). While two of these parameters are specified by grid- or customer 

data, the remaining ones are unknown [56, 155]. Depending on the specified parameters, one 

generally differentiates between three types of nodes (Table 3): Each grid model requires at 

least one slack node to specify the reference voltage (U and δ) for all the other nodes and 

balance the grid’s surplus and shortage of power. The slack node’s active and reactive power 

(initially unknown) equals the sum of all supplied and generated powers, including grid losses.  

Table 3: Most typical types of nodes including their specified and unknown parameters [156, 157] 

Type of node Specified input Unknown output 

PQ-node P, Q U, δ 

PU-node P, U Q, δ 

Slack node U, δ P, Q 

Since active and reactive power is known for most consumers, they are connected to the so-

called PQ-nodes. The PQ-nodes’ absolute voltages and phases angles must be calculated using 
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load flow simulation. The active power and the absolute voltage are specified for each PU-

node (e.g., based on generator data), whereas the reactive power and the phase angle are 

unknown. [156, 157]. The P- and Q-values defined at a grid node represent the aggregated 

power of all consumers and generators connected to it. Hence, both can either be positive or 

negative. In general, the following definitions are made [139]: 

 P > 0: Node represents load and demands power from the grid 

 P < 0: Node represents generator and feeds power into the grid 

 Q > 0: Node demands inductive reactive power from the grid 

 Q < 0: Node demands capacitive reactive power from the grid 

Due to the parametrization of most grid nodes based on the injected power (instead of 

currents), the equation system in Eq. (5-4) must be converted accordingly. The three-phase 

complex apparent power injected at a node 𝑖 (𝑆𝑖) can be expressed as the product of the 

node’s complex voltage (𝑈𝑖) and the complex conjugated injected current (𝐼𝑖
∗) multiplied by 

three (in a three-phase power system), illustrated in Eq. (5-5). This correlation can be 

expressed in matrix notation (bold) considering all grid nodes (Eq. (5-6). Expressing the 

injected complex conjugated currents (𝑰∗ ) according to Eq. (5-4), reveals the non-linear 

correlation between the pre-defined active (𝑷) and reactive power (𝑸) and the voltages (𝑼) 

to determine. [158] 

𝑆𝑖 = 𝑃𝑖 + 𝑗𝑄𝑖 = 3 ∙ 𝑈𝑖 ∙ 𝐼𝑖
∗ (5-5) 

𝑺 = 𝑷 + 𝑗𝑸 = 3 ∙ 𝑑𝑖𝑎𝑔(𝑼) ∙ 𝑰∗ = 3 ∙ 𝑑𝑖𝑎𝑔(𝑼) ∙ 𝒀∗ ∙ 𝑼∗ (5-6) 

Hence, the power-flow problem can be described as follows: The unknown output variables 

are to be determined in such a way that the predefined input values are set for each grid node 

(Table 3) [158]. Load flow simulations tackle this problem by iteratively determining all the 

nodes’ voltages solving the described non-linear equation system. Furthermore, the 

calculated voltages serve as the basis for determining currents and power flows along 

elements (e.g., lines). In general, two iterative methods are applied to solve the non-linear 

equation system: The method of joints and the Newton-Raphson method [56, 155, 156]. 

However, since most load flow simulations rely on the latter [143], it is described in the 

following chapter.  

5.3.1 Newton-Raphson method 

The Newton-Raphson method (or Newton method) is based on the grid nodes’ power 

equations, demonstrated in Eq. (5-6). The left side of the equation includes the power pre-

defined by node data (𝑷 + 𝑗𝑸). The right side (3 ∙ 𝑑𝑖𝑎𝑔(𝑼) ∙ 𝒀∗ ∙ 𝑼∗) represents the power 
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transported via grid elements (e.g., lines). In the following, the diagonal matrix 𝑑𝑖𝑎𝑔(𝑼) is 

simple referred as 𝑼. In the first step of the Newton-Raphson method, the equation system is 

transformed to obtain a zero vector on the right side (Eq. (5-7). The terms ∆𝑷  and ∆𝑸 

represent the deviation between the power pre-defined by node data and the power 

transported via grid elements. The previously described power-flow problem now requests to 

determine these equation system’s zeros. Therefore, the equation system is divided into a 

real- (Eq. (5-8) and imaginary part (Eq. (5-9). [156] 

3 ∙ 𝑼 ∙ 𝒀∗ ∙ 𝒖∗ − (𝑷 + 𝑗𝑸) = ∆𝑷 + 𝑗∆𝑸 = 𝟎 + 𝑗𝟎 (5-7) 

𝑅𝑒{3 ∙ 𝑼 ∙ 𝒀∗ ∙ 𝒖∗} − 𝑷 = 𝑷 − 𝑷 = ∆𝑷 = 𝟎 (5-8) 

𝐼𝑚{3 ∙ 𝑼 ∙ 𝒀∗ ∙ 𝒖∗} − 𝑸 = 𝑸 − 𝑸 = ∆𝑸 = 𝟎 (5-9) 

In the next step, Eq. (5-8) and (5-9) are linearized for each iteration 𝜈 using the Taylor’s series 

expansion, demonstrated in Eq. (5-10) and (5-11). The vector 𝒙  includes all nodes’ phase 

angles and voltages referred to the previous iteration’s voltages. Finally, Eq. (5-10) and (5-11) 

are combined and transformed according to Eq. (5-12). [156] 

(
𝜕∆𝑷

𝜕𝒙
)
(𝜈)
∆𝒙(𝜈+1) + ∆𝑷(𝜈) = 𝟎 (5-10) 

(
𝜕∆𝑸

𝜕𝒙
)
(𝜈)
∆𝒙(𝜈+1) + ∆𝑸(𝜈) = 𝟎 (5-11) 

[

𝜕∆𝑷

𝜕𝒙
𝜕∆𝑸

𝜕𝒙

]

(𝜈)

∆𝒙(𝜈+1) = 𝑱(𝜈) ∆𝒙(𝜈+1) = −[
∆𝑷
∆𝑸
]
(𝜈)

 (5-12) 

The coefficient matrix 𝑱 is called the Jacobi matrix. It is built based on four sectional matrices, 

including the derivation of pre-defined parameters (active and reactive power) with respect 

to unknown parameters (voltages and phase angles). In contrast to the node admittance 

matrix, the Jacobi matrix depends on the particular operation point and must be calculated 

for each iteration. The reduced equation system (Eq. (5-12) is solved for each iteration until 

the deviation between the power pre-defined by node data and the power transported via 

grid elements falls below a defined limit. [158] 

5.3.2 Variants of load flow simulations 

While the procedure of iteratively calculating the grid’s voltages and currents is always the 

same, three different variants of load flow simulations are primarily used in modern-day grid 
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planning: Time series-based simulations, (stochastic) Monte-Carlo simulations, and static 

deterministic simulations. Those variants differ in defining each grid node's active and reactive 

power. 

Time series-based load flow simulations use time-resolved profiles of the grid’s consumers 

and generators. These profiles define each grid node’s power for each time step of a certain 

period (e.g., one year). Usually, time steps of 1, 5, 15, or 60 minutes are applied for load flow 

simulations [139]. While this variant allows the analysis of numerous load and generation 

cases, it requires detailed knowledge regarding grid customers’ temporal behavior. Electrical 

loads of households, as well as commercial- and agricultural customers, can be modeled using 

standardized load profiles (e.g., [159]). Synthetic load profiles (e.g., [160]) of households and 

EVs allow even more realistic modeling of electrical loads. The generation by renewable 

energy sources can be modeled in detail based on location-specific temperature and weather 

data, e.g., provided by open-source data (e.g., [161]).  

The Monte-Carlo simulation is a stochastic method to define the power at each grid node. 

Therefore, the probability of occurrence of different power values is determined based on 

statistical data and defined as probability density functions [56]. Load flow simulations are 

performed by iteratively drawing the power for each node based on these probability density 

functions and random numbers. Hence, the number of performed load flow simulations 

equals the number of analyzed iterations. Thereby, the probability of occurrence of thermal 

congestions and voltage violations can be identified. Like time series-based load flow 

simulations, this method requires detailed knowledge of grid customers’ behavior. [139] 

Static deterministic load flow simulations analyze worst-case load conditions and their 

impacts on the power grid. Therefore, two cases are investigated: The Load Case—

representing the maximum load and minimum generation—and the Generation Case—

representing the minimum load and maximum generation [62]. Thus, only two load flow 

simulations are performed to determine worst-case grid impacts. The power at each grid node 

is defined using coincidence factors for both cases. Considering a certain number of customers 

(𝑁𝑜𝐶 ), their aggregated power (𝑃𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 ) is calculated by multiplying the sum of all 

customers’ maximum power (𝑃𝑐𝑢𝑠𝑡.) by the respective coincidence factor (Eq. (5-13) [63]. The 

coincidence factor considering a defined number of customers 𝑁𝑜𝐶 represents the maximum 

of their aggregated electrical power divided by the sum of their individual maximum power 

(Eq. (5-14) [62].  

𝑃𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 (𝑁𝑜𝐶) =  ∑max
𝑡
(𝑃𝑐𝑢𝑠𝑡.(𝑡))

𝑁𝑜𝐶

𝑖=1

∗ 𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑁𝑜𝐶) (5-13) 
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𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑁𝑜𝐶) =  
max
𝑡
(∑ 𝑃𝐶𝑢𝑠𝑡.(𝑡)

𝑁𝑜𝐶
𝑖=1 )

∑ max
𝑡
(𝑃𝐶𝑢𝑠𝑡.(𝑡))

𝑁𝑜𝐶
𝑖=1

 (5-14) 

The coincidence factor indicates the probability of temporal overlaps between grid customers’ 

electrical consumption and generation. Hence, it decreases with an increasing number of 

considered customers (Figure 6). Furthermore, it depends on the considered customer class: 

Households show a rather stochastic load behavior, resulting in lower coincidence factors than 

electrical direct- or water heaters, characterized by similar behavior. However, the current 

state of research (Chapter 2.1.1) uses coincidence factors individually for each customer class 

and neglects the combination of several customers classes (e.g., households, EVs, and HPs). 

 

Figure 6: Coincidence factor of grid customers depending on their number and class (own illustration based on 

[63]) 

Table 4 provides a qualitative comparison of the previously described variants of load flow 

simulations. As already mentioned, time series-based or Monte-Carlo simulations require 

detailed knowledge regarding grid customers’ temporal behavior for each grid node. As a 

result, they show a higher demand for modeling the grid nodes’ power than static 

deterministic load flow simulations using coincidence factors. On the other hand, they provide 

information regarding the probability or the frequency of grid congestions, which is inhibited 

using the static deterministic approach. By performing time series-based load flow 

simulations, the duration of grid congestions can additionally be derived, which is crucial to 

evaluate grid-relieving measures (e.g., energy storage systems or demand-side measures). 

Table 4: Qualitative comparison of different variants of load flow simulation (derived from [56, 62, 139]) 

 
Time series-

based 
Monte-Carlo 

Static 

deterministic 

Demand for modeling nodes’ power + + ++ 

Information to be gained +++ ++ + 

Simulation effort + + +++ 
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However, since the static deterministic variant only requires two load flow simulations (one 

for the load- and generation case, respectively), they allow much faster computation than 

time series-based or Monte-Carlo simulations (Table 4) [60, 61]. As a result, they provide 

significant benefits for the large-scale simulation of numerous grid structures. 

5.4 Grid-relieving measures preventing conventional grid 

reinforcements 

The integration of future grid customers, such as EVs, PV modules, and electric HPs, will 

challenge the present-day power system. The conventional option to prevent future grid 

restrictions is the extension or reinforcement of existing grid structures, e.g., installing 

additional grid lines or exchanging the transformer at the substation. Besides classic grid 

reinforcements, grid-relieving measures might provide the required flexibility to integrate 

future e-mobility into the power system. The most important measures in this regard are 

explained in this chapter. 

5.4.1 MV/LV transformers with on-load tap changer 

Three-phase transformers convert the grid’s nominal voltage between different voltage levels 

(Chapter 5.2). The transmission ratio is defined by the number of windings on the high- and 

LV sides. Usually, present-day MV/LV substations are equipped with conventional 

transformers, whose transmission ratio can only be adapted with zero potential and no 

connected loads. [158] 

The integration of EVs or renewable energy sources into the LV level is often inhibited due to 

voltage violations. The EN 50160 [162] defines the admissible voltage range of ± 10 % of the 

nominal voltage. However, using conventional transformers with a fixed transmission ratio, 

this voltage range is specified for the MV and LV conjunctly. The exact distribution of the 

allowed voltage deviations between the high-voltage and LV levels is specified by each DSO 

individually. Considering the example in Figure 7, a maximal voltage deviation of 3 % (due to 

generation) and 5 % (due to consumers) are available on the LV level. 

Transformers used at higher voltage levels are equipped with on-load tap changers. Thereby, 

they enable regulating the transmission ratio by adapting the transformer’s effective windings 

during operation [163]. Implementing on-load tap changers into transformers between the 

MV and LV level allows the voltage control at the substation within a given control bandwidth 

(Figure 7). Thus, the nominal voltage at the MV/LV substation can be adapted depending on 

the particular grid condition, either maximum generation (voltage increase) or maximum load 

(voltage decrease). Based on this measure, the MV and LV levels are decoupled, which 

increases their allowed voltage range to ± 10%, respectively. As a result, the maximum voltage 
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deviation on the LV level is increased to 7 % (due to generation) and 9 % (due to consumers), 

considering the example in Figure 7. [38] 

 

Figure 7: Exemplary distribution of the allowed voltage range (± 10 % of the nominal voltage) with and without 

an on-load tap changer at the MV/LV substation (own illustration based on [38]) 

The adaption of the MV/LV substation’s voltage is automatically controlled based on the 

voltage measured in the local LV grid or centrally controlled by the DSO. All control strategies 

require the implementation of measurement equipment as well as information and 

communication technology into the power grid. [38] The application of such variable 

transformers has already been tested between the MV and LV levels to prevent voltage 

violations due to domestic PV modules or EVs [164]. Besides the MV/LV substation, the on-

load voltage regulation can also be implemented in single feeders affected by critical voltages 

[165].  

5.4.2 Voltage-controlled active- and reactive power regulation 

The regulation of grid customers’ active or reactive power represents another measure to 

mitigate potential grid restrictions. Voltage-controlled power regulation is effective, especially 

in LV grids sensitive to voltage violations, e.g., suburban or rural areas (Chapter 5.2). However, 

this measure requires the continuous detection of the local voltage at the grid customer’s 

point of common coupling [76, 166]. Furthermore, grid customers (e.g., EV charging points) 

are equipped with fully automated active or reactive power regulation following a pre-defined 

characteristic (Figure 8) [73]. In most cases, the active power regulation of AC charging points 

relies on adapting the active current available for charging the EV [18]: If the voltage falls 

below a specific limit, the active current is limited (Figure 8a). Vice versa, the active power fed 

into the grid by generators (e.g., domestic PV modules) is limited if the voltage exceeds a 

defined voltage limit. Similarly, the fully automated regulation of grid customers’ reactive 

power follows a pre-defined characteristic (Figure 8b): In case of a critical voltage increase 

(e.g., > 7 % of the nominal voltage), the ratio between inductive reactive power (Q) and the 
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nominal apparent power (Snom) is increased. The reactive power demand changes to capacitive 

if the voltage falls below a specific limit (e.g., 92 %). [18] 

 

(a) 

 

(b) 

Figure 8: Exemplary characteristic to regulate the power of EV charging points: (a) active current (Ia) and (b) the 

ratio between reactive power (Q) and nominal apparent power (Snom) depending on the power grid’s voltage (U) 

referred to the nominal voltage (Unom) (own illustration based on [18]) 

Figure 9 illustrates how active and reactive power regulation affects the voltage deviation 

along a LV line based on the simplified equivalent circuit in Figure 5a (described in detail in 

Chapter 5.2). The regulation of grid customers’ active and reactive power influences the 

complex current (I) transmitted by the grid line. Consequently, it changes the complex (ΔU) 

and the effective voltage deviation (Ul) along the line, described in Eq. (5-1).  

 

(a) 

 

(b) 

 

(c) 

Figure 9: Phasor diagram of LV lines without power regulation (a), as well as with voltage-controlled active- (b) 

and reactive power regulation (c) 
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In this example, both active (Ia) and reactive currents (Ir) are adjusted to the same extent to 

decrease the effective voltage drop. However, as demonstrated in Table 2, LV lines are 

characterized by an R’/X’ ratio of 1.0 – 10.8. As a result, the active power transmitted by the 

grid line has a more significant impact on the voltage deviation. Thus, active power regulation 

more decisively limits the effective voltage drop (Figure 9) on the LV level and is more suitable 

than reactive power regulation. 

5.4.3 Decentralized energy storage systems (ESSs) 

Implementing decentralized ESSs into the local power system is another measure to reduce 

grid congestions and prevent conventional grid reinforcements [167]. ESSs allow for a 

bidirectional power exchange with the power grid and can be applied as a consumer (charging 

of ESS) or generator (discharging of ESS). Hence, they might support the power grid in many 

forms, e.g., storing energy during high generation and supplying consumers during peak 

periods. [168] Implemented into the power grid, decentralized ESSs can mitigate EV-induced 

peak loads by discharging the stored energy to supply the charging of EVs (Figure 10). Thereby, 

EVs can be charged with high power, which without ESS would not comply with the capacity 

of the local power grid. ESS recharging with low power flattens the power grid’s load curve 

and avoids critical grid conditions. 

 

Figure 10: Mitigation of electric vehicle (EV) charging peak loads by the energy storage system (ESS) 

In general, ESS technologies are classified into potential, kinetic, mechanical, thermal, and 

chemical ones [169]. However, to mitigate grid loads at the distribution level, especially 

battery- and flywheel ESSs, are applied and analyzed in the current state of research 

(Chapter 2.2). Compared to battery ESS, flywheels are characterized by low energy density 

[98, 170] and a high self-discharging rate due to standby energy losses [171]. However, when 

it comes to the support of high-power EV charging, they provide several advantages 

(compared to battery ESSs): High life cycle numbers [90, 98, 102, 170–176], high power density 

[98, 102, 170, 171, 173–176], short access time [98, 174], low maintenance effort [98, 174], 

high efficiency [90, 98, 171, 174], small environmental impact [98, 171–174] as well as the 

independency of power and energy content [171, 172].  
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5.4.4 Demand-side measures 

While the previously mentioned measures are implemented at the supply side, i.e., the power 

grid, grid loads can successfully be regulated from the customer perspective. Thereby, 

demand-side measures describe any adaption of grid customers’ load behavior [177]. In 

general, demand-side measures can be classified as dispatchable and non-dispatchable 

measures. The former refers to controlling the customer’s electrical load by the system 

operator, which is today sometimes voluntarily granted by the grid customer in exchange for 

financial incentives. The latter, also called price-based measures, use dynamic electricity 

pricing rates to motivate the customer to adapt its load behavior. [178]  

Like voltage-controlled power regulation (Chapter 5.4.2), demand-side measures can adapt 

the power supplied by or fed into the power grid. In addition, some measures allow controlling 

the time of electrical loads. Considering the charging of EVs, their charging can either be 

limited regarding the available power or temporarily rescheduled to times with low electricity 

prices or high grid capacity. Thereby, demand-side measures mitigate EV-induced peak loads 

in the power grid and flatten its load curve. [64] 

Demand-side measures are not limited to the power supplied by the power grid to the EV. 

Since EVs’ batteries have large energy capacities (Chapter 5.1), they can be discharged and fed 

power into the power grid. The so-called vehicle-to-grid technology allows the bidirectional 

power exchange between the EV and the power grid. [179] As a result, EVs can be operated 

as decentralized ESSs (Chapter 5.4.3). In addition to grid-relieving measures, the bidirectional 

operation of EVs enables other fields of applications, e.g., the provision of grid ancillary 

services or arbitrage activities [180, 181].  
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6 RESULTS 

The following chapters present the results of the author’s publications (Appendix A) to answer 

the proposed research questions (Chapter 3). Initially, the author’s works in the field of 

identifying EV-induced grid restrictions are presented in Chapter 6.1., which is structured as 

follows: Chapter 6.1.1 presents novel coincidence factors (published in Paper 1), enabling the 

accurate consideration of temporal interdependencies between different customer classes 

(research question 1). Different approaches to apply these coincidence factors are examined 

in Chapter 6.1.2 to answer research question 2 (Paper 3). Furthermore, the correlation 

between the region of LV grids and their hosting capacity (research question 3) is identified in 

Chapter 6.1.3 (Paper 1). Chapter 6.1.4 answers research question 4 by examining different 

methods to quantify future grid reinforcement costs due to EVs, PV modules, and HPs 

(Paper 3). A fully automated large-scale grid simulation tool (published in Paper 3) is 

presented in Chapter 6.1.5, allowing the detailed simulation of several thousand grids 

(research question 5). 

Chapter 6.2 summarizes the results in the field of evaluating grid-relieving measures and 

answers the respective research questions (6 - 8). Thereby, it differentiates between e-

mobility use cases: On the one hand, Chapter 6.2.1 deals with measures supporting private 

EVs charged at home (published in CIRED 2019 and NEIS 2019). Chapter 6.2.2, on the other 

hand, discusses the implementation of decentralized ESSs to support the charging of 

remaining use cases (Paper 2 and IEWT 2021).  

6.1 Identifying EV-induced grid restrictions using load flow 

simulations 

6.1.1 Modeling novel coincidence factors considering temporal 

interdependencies between future grid customers 

As described in Chapter 5.3, static deterministic load flow simulations use coincidence factors 

to estimate electrical loads at different locations in the power grid. However, real-life 

information concerning future grid customers’ aggregated coincidence is missing due to 

currently low EV-, PV-, and HP-penetrations. On this account, novel coincidence factors are 

modeled in this work (Figure 11). Therefore, long-term (one year) time-series with high 

resolution (one minute) are modeled, considering existing (e.g., households, commercial and 

agricultural businesses) and future (EVs, PV modules, and HPs) customers. Thereby, the 

penetration of EVs, PV modules, and HPs is varied between 0 % (no future customers) and 

100 % (all vehicles are electrified, and each house has a PV module and a HP). The coincidence 

factor of a defined number of customers is calculated using Eq. (5-14), described in 
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Chapter 5.3. The exact methodology applied is described in Paper 1 and 3. In contrast to the 

current state of research (Chapter 2), the novel coincidence factors modeled in this thesis 

consider various customer classes and their behavior conjunctly. As a result, they properly 

consider temporal interdependences between various customer classes and the accurate 

determination of grid conditions. 

 

Figure 11: Novel coincidence factors regarding the temporal aggregation between households, electric vehicles 

(EVs), heat pumps (HPs), and photovoltaic (PV) modules [29] 

Naturally, the coincidence factor decreases with an increasing number of customers 

(Chapter 5.3.2). Besides, it depends on the distribution of customer classes: Combinations 

with a high share of EVs (e.g., > 75 %) show a higher coincidence factor (based on the assumed 

uncontrolled charging primarily during evening hours) than combinations with a high share of 

households or HPs. For example, the aggregation of 32 households, 45 EVs, 21 HPs, and three 

PV modules results in a maximal coincidence of 0.18.  

6.1.2 Analyzing different approaches to apply grid customers’ coincidence 

factors 

Identifying potential grid restrictions using static deterministic grid simulations relies on the 

appropriate application of coincidence factors. Therefore, it is crucial to determine the 

appropriate coincidence factor depending on the considered number of customers (Figure 

11). In this thesis, different approaches to determine and apply grid customers’ coincidence 

factors, according to the current research (Chapter 2), are examined and compared regarding 

their simulation results. At first, we qualitatively investigated the impact of the applied 

coincidence factor’s value on the extent of grid restrictions (Paper 1). While the location of 

existing customer classes (households, commercial- and agricultural businesses) is provided 

by real-life grid data, future customer classes (EVs, PV modules, and HPs) are distributed 

uniformly in the grid depending on the analyzed penetration (0 – 100 %). Besides applying 
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coincidence factors for each customer class individually, novel coincidence factors combining 

various customer classes (Chapter 6.1.1) are analyzed. Static deterministic load flow 

simulations are performed using both approaches to validate their simulation results with 

those gained by time series-based simulations (Figure 12). 

Applying coincidence factors individually for each customer class neglects their temporal 

interdependences of electrical loads. Consequently, aggregated loads are overestimated 

significantly compared to a detailed time series-based grid simulation. Furthermore, future 

grid restrictions, e.g., thermal congestions of lines and transformers and voltage violations, 

are misjudged (Figure 12). In fact, the potential error using individual coincidence factors 

increases with the number of considered customers and classes. Consequently, this grid 

planning approach, applied in several studies (Chapter 2.1.1) and used by several DSOs, is 

inadmissible for identifying future grid congestions unless adapted to comply with future grid 

customers. Therefore, the developed combined coincidence factors (Figure 11) take temporal 

interactions between all customer classes into account (Figure 12).  

 

Figure 12: Comparison of voltage violations using static (individual and combined application of coincidence 

factors) and time series-based load approaches [29] 

Hence, using these novel coincidence factors, static deterministic load flow simulations 

provide similar accuracy to time series-based ones while keeping the required computing time 

adequate. The latter aspect is crucial when simulating several thousand LV grids. As a result, 

most studies determining the total grid reinforcement costs in a large area with several 

thousand grids rely on this variant of load flow simulation (Chapter 5.3.2). Nevertheless, they 

use different approaches to apply grid customers’ coincidence factors, have been examined 

in this work (Figure 13): 

Due to geographical differences, real-life LV grids show considerable heterogeneity in the 

number and classes of customers (e.g., households, EVs, PV modules). Thus, when analyzing 

several thousand LV grids, applying one single coincidence factor (e.g., determined at the 

MV/LV substation) consistently to each grid might misjudge grid loads in some of them. As a 

result, the total demand for transformer- and line extensions might deviate considerably from 
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applying grid-specific coincidence factors. Hence, the appropriate coincidence factor of 

existing and future customers must be determined for each grid specifically to avoid that.  

 

Figure 13: Comparison of required transformer- and line extensions indicated by various approaches to apply 

coincidence factors (CF) [108] 

Furthermore, we analyzed the impact of how many coincidence factors (single, double, or 

multiple) are applied to each grid and based on which grid element they are determined 

(Paper 3). Therefore, three approaches to applying grid customers’ coincidence factors are 

analyzed by simulating several thousand LV grids, respectively.  

Single coincidence factors determined at the MV/LV substation (grid-specific) misjudge the 

coincidence factor at grid nodes with few customers connected. Consequently, the future 

demand for line extensions is underestimated compared to applying multiple coincidence 

factors depending on the analyzed grid element (Figure 13). Even considering double 

coincidence factors, determined at the MV/LV substation and feeder lines (connected to the 

LV bus bar), provides insufficient simulation accuracy. Hence, to estimate the future demand 

of grid reinforcements at the LV level accurately, multiple coincidence factors, determined for 

each grid element individually, must be determined and applied to grid customers. 

6.1.3 Qualitative analysis of different grid regions’ hosting capacity regarding 

EVs and HPs 

The presented thesis identifies potential grid congestions on the LV level triggered by future 

e-mobility. In the first step, four real-life LV grids located in different regions (urban – city 

center, urban – outskirt, suburban, and rural) are analyzed using load flow simulations. 

Therefore, grid-specific (combined) coincidence factors are applied depending on the 

analyzed grid element (demonstrated in Chapters 6.1.1 and 6.1.2). Each grid’s hosting capacity 

is determined based on voltage violations according to EN 50160 [162] and thermal 

congestions of transformers and lines. A qualitative comparison of the analyzed grid regions 

is made using the maximally integrable penetration of EVs (Figure 14). The investigated LV 

grids differ substantially regarding their hosting capacity: More than 80 % of vehicles can be 
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electrified in urban LV grids without any voltage violations or thermal congestions. In contrast, 

this study's suburban and rural grids face critical voltage violations at an EV penetration higher 

than 20 % and 10 % (Figure 14). 

 

Figure 14: Maximally integrable penetration of electric vehicles (EVs) and heat pumps (HPs) depending on the 

grid region  

Furthermore, potential synergies between EVs and HPs regarding their induced grid 

restrictions are demonstrated (Figure 14). Therefore, electric HPs are additionally integrated 

into the analyzed LV grids. Based on realistic time-resolved load profiles, a temporal 

aggregation of EVs’ and HPs’ electrical loads was demonstrated in many households, 

especially during the evening. This aspect affects the combined coincidence factor of EVs and 

HPs: Considering ten households with ten EVs and ten HPs (30 customers in total) leads to a 

combined coincidence factor of 0.52 (Figure 11). Due to temporal interdependences, the 

aggregated load in the power grid increases substantially if EVs and HPs must be supplied 

together, which decreases the maximum hosting capacity. A combined integration of EVs and 

HPs is especially critical in grid regions with many single- or two-family houses (Urban – City 

outskirt and suburban) equipped with both technologies (Figure 14). However, the 

investigation of only four LV grids, i.e., one grid per region, only allows a qualitative 

comparison of different regions. The simulation of several thousand LV grids might be 

necessary to allow more general conclusions. 

6.1.4 Methods to quantify total grid reinforcement measures 

While previous results include a qualitative comparison of four LV grids (Chapter 6.1.3), DSOs 

are urged to quantify grid reinforcement costs in a large area with several thousand grids. 

Therefore, future voltage violations and thermal congestions of transformers and lines are 

analyzed using load flow simulations. Then, necessary grid reinforcements (exchange or 

additional installation of transformers or lines) as countermeasures are determined, and 

respective costs are estimated. However, the current research uses two different methods 

(Chapter 2.1.2) to quantify grid reinforcement costs in a large area: Firstly, the simulation of 

selected representative grids and the scaling of their results to the whole area of investigation. 

Secondly, the simulation of all grids located in the area of investigation. Thus, four different 
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quantification methods are examined in the presented thesis to illustrate how many LV grids 

must be simulated to provide sufficient accuracy. Paper 3 provides a detailed description of 

the analyzed quantification methods.  

In the first quantification method analyzed (QM 1), the results of three LV grids located in 

various grid regions (Urban – City center, suburban, and rural), demonstrated in Chapter 6.1.3 

(Figure 14), are scaled to the whole area of investigation including 7,114 LV grids. However, 

as demonstrated in Chapters 5.2 and 6.1.3, power grids at the LV level show a high 

heterogeneity regarding topology and customers. In addition, present-day LV grids differ 

considerably even within the same grid region [182]. Consequently, grid reinforcement costs 

acquired by scaling grid regions’ results deviate from those gained by simulating all LV grids 

(Figure 15). 

 

Figure 15: Grid reinforcement costs in the area of investigation (7,144 LV grids) identified using different 

quantification methods (QM) [108] 

The scaling of representative LV grids’ results depends on the selected grid structures and 

their number. If only a few grids are arbitrarily selected for simulation (QM 2), the determined 

grid reinforcement costs might be misjudged considerably. Even if LV grids are selected based 

on statistical data (using the root mean square deviation regarding the grids’ transformer 

capacity, number of nodes, total line length, and number of customers) only slightly improves 

the acquired accuracy (QM 3). In fact, several thousand LV grids must be simulated to quantify 

total grid reinforcement needs with adequate accuracy (QM 4). For example, in the area 

investigated in this thesis (7,114 grids), more than 5,000 grids must be simulated to reach an 

accuracy of 95 %. These results demonstrate the need for automated large-scale grid 

simulation. 

6.1.5 Fully automated large-scale grid simulation tool 

Based on the insights and requirements presented in previous chapters, a fully automated 

large-scale grid simulation tool is developed in this thesis. It allows a detailed simulation of 
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several thousand grids, including evaluating potential grid reinforcement measures and 

resulting costs. Figure 16 illustrates the tool’s scheme applied for each grid respectively:  

In the first step, original grid data is converted from commercial grid simulation software (e.g., 

NEPLAN [183], PowerFactory [184]) into MATLAB [185] using tailor-made and automated 

interfaces. In the next step, future grid customers, e.g., EVs, PV modules, and HPs, are 

integrated into the grid model depending on the selected penetration (0 – 100 %) and spatial 

allocation algorithm (uniform or stochastic). Subsequently, required grid reinforcements due 

to thermal overloads or voltage violations are identified by performing static deterministic 

load flow simulations (Chapter 5.3). Therefore, each node’s active and reactive power is 

determined, incorporating all previous insights regarding the grid customers’ coincidence 

factor (Chapter 6.1.1) and its location of determination (6.1.2).  

 

Figure 16: Scheme of the developed fully automated large-scale grid simulation tool [108] 

Finally, the developed large-scale grid simulation tool provides the length of grid lines and 

transformers to be reinforced or additionally installed for each grid. Paper 3 (Appendix A) 

describes each of these steps in detail (Figure 16). The parallelization of the presented scheme 

using 32 CPUs (3 GHz, 128 GB RAM) allows simultaneously simulating several grid models. 

Thereby, the required computing time is decreased by 94 % (20.8 seconds per 1,000 grid 

nodes) compared to a sequential simulation. 
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6.2 Evaluating the potential of grid-relieving measures to mitigate 

EV-induced grid restrictions 

6.2.1 Grid-relieving measures supporting private charging at home 

Two studies performed in this thesis investigate different measures and their potential to 

reduce grid restrictions on the LV level caused by EVs charged at home. In the conference 

paper CIRED 2019 [111], we have first determined the impacts of domestic charging (with up 

to 22 kVA) on a suburban LV grid without any measures (Figure 17, red dashed line). 

Subsequently, the grid congestions we have identified are counteracted by implementing 

various voltage- and user-controlled grid-relieving measures: 

The potential of variable distribution transformers between MV and LV levels (Chapter 5.4.1) 

strongly depends on the selected control strategy. The on-load tap changer adjustment based 

on local voltage control (based on the voltage measured at the MV/LV substation) prevents 

inadmissible voltages only slightly (Figure 17a, yellow line). In contrast, EV-induced voltage 

violations can successfully be avoided using a remote-controlled tap changer adjustment 

(based on the voltage measures at the end of critical feeders). The remote-controlled tap 

changer adjustment can be realized either at the MV/LV substation’s transformer (green line) 

or by variable transformers installed in endangered feeders (grey line). Equipping e-mobility 

charging infrastructure with voltage-controlled phase-switches (connecting single-phase 

charging EVs to the grid phase with the highest voltage) provides the same relief in voltage 

violations (purple line). Furthermore, it successfully prevents voltage unbalance at the LV level 

if EVs are charged single-phased and distributed to the same phase. 

 

(a) 

 

(b) 

Figure 17: Share of (a) critical grid nodes (voltage violations) and (b) critical lines (thermal congestions) 

depending on the EV penetration and grid-relieving measures [111] 

Despite preventing voltage violations, these measures miss protecting from thermal overloads 

in single grid lines due to domestic EV charging (Figure 17b). In fact, only two of the 



Results 

PAGE | 34 

investigated measures prevent voltage violations, critical voltage unbalance and thermal 

congestions: The implementation of voltage-controlled active power regulation at the 

charging infrastructure (black line), described in Chapter 5.4.2, and the limitation of available 

charging power to 3.7 kVA (blue line). The latter can be established without any loss in user 

comfort due to long parking periods during the night. Of course, this requires a transition from 

single- to three-phase EV charging or a uniform phase-distribution of single-phase charging 

EVs. With both measures, up to 80 % can be supplied by the investigated suburban LV grids 

without any voltage violations or thermal congestions. These results demonstrate that 

conventional grid reinforcement measures caused by domestic EV charging can be 

successfully counteracted by implementing grid-relieving measures into the LV level. 

6.2.2 Implementation of decentralized ESSs to support high-power EV 

charging 

In addition to voltage- and user-controlled measures, demonstrated in Chapter 6.2.1, the 

presented thesis analyzes the implementation of decentralized ESSs into charging 

infrastructure. Therefore, various e-mobility use cases charging with power higher than 

11 kVA are addressed in two conference papers. NEIS 2019 [109] deals with public on-street 

AC charging of passenger EVs with 22 – 44 kVA. Complementarily, IEWT 2021 [110] 

determines required ESS specifications to supply highway fast-charging stations (DC charging 

with up to 350 kW), e-taxies, e-car sharing (both up to 100 kW), e-busses (up to 600 kW), and 

electric last-mile delivery vehicles (up to 350 kW).  

In order to identify required ESS specifications for each e-mobility use case, time-resolved (one 

minute) charging load profiles (𝑆𝐸𝑉 ) are modeled based on real-life mobility data and EV 

specifics. As demonstrated in Eq. (6-1), each ESS’s apparent power (𝑆𝐸𝑆𝑆) is calculated for each 

time step 𝑡 by subtracting the EV charging load and the respective grid element’s initial load 

(𝑆𝐿𝑜𝑎𝑑,𝑖𝑛𝑖𝑡) from its maximum thermal power (𝑆𝑚𝑎𝑥,𝑡ℎ𝑒𝑟𝑚).  

𝑆𝐸𝑆𝑆(𝑡) = 𝑆𝑚𝑎𝑥,𝑡ℎ𝑒𝑟𝑚 − 𝑆𝐿𝑜𝑎𝑑,𝑖𝑛𝑖𝑡 (𝑡) − 𝑆𝐸𝑉(𝑡) (6-1) 

𝐸𝑛𝑒𝑟𝑔𝑦𝐸𝑆𝑆(𝑡) = 𝐸𝑛𝑒𝑟𝑔𝑦𝐸𝑆𝑆(𝑡 − 1) + ∫ 𝑃𝐸𝑆𝑆 ∗ 𝑑𝑡
𝑡

𝑡−1

 (6-2) 

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐸𝑆𝑆 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟 =  
min(𝑆𝐸𝑆𝑆(𝑡))

𝜂𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
 (6-3) 

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐸𝑆𝑆 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  min(𝐸𝑛𝑒𝑟𝑔𝑦𝐸𝑆𝑆(𝑡)) (6-4) 
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According to classic peak shaving, ESSs are discharged (𝑆𝐸𝑆𝑆 < 0) when EV charging loads 

exceed the available capacity of the grid. After discharging triggered by peak shaving needs, 

the supplied amount of energy is recharged (𝑆𝐸𝑆𝑆 > 0) into the ESS during off-peak periods, 

when the available grid capacity exceeds EV charging demands. The amount of energy stored 

in the ESS (𝐸𝑛𝑒𝑟𝑔𝑦𝐸𝑆𝑆) is calculated in each time step t using Eq. (6-2). Finally, the required 

discharging power and energy capacity of each ESS is calculated based on Eq. (6-3) and (6-4). 

In this study, a discharging efficiency (𝜂𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔) of 0.9 is used for ESSs. 

This methodology reveals a broad range of required ESS specifications depending on the 

supplied EV use case and its charging characteristics (Figure 18): We found ESS capacities per 

charging point between 1 – 295 kWh, whereas an ESS discharging power between 6 – 356 kVA 

per charging point is necessary to provide sufficient grid support. E-mobility use cases 

integrated into the LV level (e.g., e-taxies, e-car charging) allow for even small ESS units (e.g., 

5 kWh capacity and 100 kVA discharging power) to mitigate EV-induced peak loads. On the 

contrary, use cases charging with high power (> 100 kVA) require larger ESS units to prevent 

classic grid reinforcements. These results demonstrate that ESSs must be designed individually 

for each EV use case and application.  

 

Figure 18: Specifications of energy storage systems (ESSs) required to prevent classic grid reinforcement 

measures depending on the supplied e-mobility use case [110] 

In order to investigate the impact of the supplied EV application on the required ESS 

specifications, we have performed a comprehensive techno-economic analysis (Paper 2). 

Therefore, the correlations between EVs’ mobility- and charging patterns, required ESS 

specifications, as well as technical- and economic aspects, are analyzed based on a sensibility 

analysis. Hence, the following parameters are altered while fixing the remaining ones to 

understand these correlations in detail: The covered distance per charging event, the available 

charging power per charging point, the number of installed charging points, and the installed 

grid capacity. 



Results 

PAGE | 36 

In our work, we focus primarily on flywheel ESSs, characterized by low energy- but high power 

density (Chapter 5.4.3). Thus, the required energy capacity of the ESS is selected as the first 

crucial indicator to evaluate its suitability. Since flywheels are also characterized by significant 

standby energy losses, their technical suitability is evaluated based on the ESS’s energy 

efficiency as the second indicator. The total costs of operating the EV charging infrastructure, 

including grid connection, grid utilization, inverter, and flywheel, are selected as the third 

indicator. 

Since flywheel ESSs allow for being discharged with very high power, three high-power 

charging EV use cases are selected for this analysis (see Table 1): Highway fast-charging of 

passenger vehicles (HFC), e-busses (EB), and electric last-mile delivery trucks (ELDT). By 

varying the previously mentioned parameters regarding EV charging, their influence on the 

required ESS capacity, the total annualized costs, and the ESS efficiency are identified for each 

use case. Figure 19 shows the correlation between the charging power of EVs and the total 

costs for operators of charging infrastructure (a) as well as the efficiency of flywheel ESS (b): 

Increasing the charging power of EVs increases the required ESS capacity and total costs. 

Simultaneously, it results in shorter charging periods, which increases the stand-by period of 

the flywheel. Due to higher stand-by losses, an increase in charging power decreases the 

efficiency of flywheel ESSs (Figure 19b). The correlations between each parameter and the 

analyzed indicators and their causes are described in Paper 2. 

 

(a) 

 

(b) 

Figure 19: Impact of the EV charging power on (a) annualized total costs per charging point, and (b) ESS 

efficiency, regarding electric last-mile delivery trucks (ELDTs), highway fast-charging (HFC), and electric bus 

charging (EB) [107] 

Based on these correlations, the economic (costs savings due to ESS) and technical suitability 

(ESS efficiency) are identified (Table 5). Short distances covered by EVs before recharging 

decrease the required ESS capacity, which allows higher cost savings when implementing ESSs. 

In contrast, they lead to shorter charging periods, which increases the stand-by period of ESSs 

and decreases their efficiency. Charging the EV with higher power leads to higher peak loads, 

which increases grid utilization charges. Consequently, the high-power charging of EVs allows 
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higher costs savings due to ESS. Vice versa, charging with higher power decreases the 

efficiency of ESS due to shorter charging periods (higher stand-by losses). Multiple charging 

points allow lower ESS costs per charging point than a single one.  

Table 5: Correlations between EV charging parameters and the economic and technical suitability of (flywheel) 

ESSs 

Parameter to be increased Economical: 

Costs savings due to ESS 

Technical: 

ESS efficiency 

Covered distance per charging event ↓ ↑ 

Charging power per charging point ↑ ↓ 

Number of charging points ↑ ↓ 

Hence, increasing the number of charging points improves the economic suitability of ESSs. In 

contrast, installing multiple charging points results in significant peak loads occurring only in 

a short period. However, the design of ESSs to cover these occasional short-term peak loads 

leads to low utilization and efficiency. 

In summary, ESSs can provide costs benefits compared to classic grid reinforcements if 

multiple charging points supply low-distance EVs with high power. On this account, electric 

busses operated for urban transportation are the perfect use case for implementing ESSs. 

Stand-by energy losses (generally high due to short charging periods) are kept moderate due 

to the high frequency of bus stops and their recharging. Considering the supply of highway 

fast-charging and electrified last-mile delivery vehicles, ESSs enable minimal expenses only in 

the case of low-distance energy demands supplied with high charging power. However, the 

former criterion does not comply with the current mobility demand of these use cases. A 

significant decrease of specific ESS costs or a substantial rise in power-based grid utilization 

charges would definitely enhance the economic suitability of ESS, even for these two use 

cases. 

The acquired conclusions regarding the economic suitability of flywheel ESSs can be applied 

to other ESS technologies, e.g., battery ESSs. In contrast, technical analysis of other ESS 

technologies would require another criterion (than stand-by energy losses applied in this 

study), e.g., the number of full cycles or lifetime.  
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7 DISCUSSION AND CONCLUSIONS 

The implementation of future EV charging infrastructure must comply with the grid capacity 

of distribution networks. Potential bottlenecks in present-day distribution grids must be 

estimated realistically to plan the grid integration of e-mobility at an early stage. 

Consequently, DSOs are urged to identify potential grid reinforcement measures in their 

existing grids. However, the qualitative analysis of four LV grids (Chapter 6.1.3) demonstrates 

significant discrepancies between grid regions regarding their capacity to integrate EVs. While 

urban grids allow integrating numerous charging points, suburban and rural grids face 

inadmissible voltage deviations and/or transformer loads even at low EV penetrations. The 

hosting capacity of present-day LV grids also depends on the charging power of EVs: While 

charging with 11 kVA triggers significant grid restrictions even at low EV penetrations, three-

phase charging with 3.7 kVA prevents any grid reinforcement measures. 

The quantitative analysis of several thousand LV grids (Chapter 6.1.4) demonstrated that real-

life distribution networks vary considerably in topology and customers even within the same 

grid region. The presented thesis examines this heterogeneity’s impact on quantifying grid 

reinforcement costs for the first time: Several thousand LV grids must be simulated to evaluate 

the total need for grid reinforcement measures in a selected area with sufficient accuracy. In 

contrast, the simulation of only a few selected grids and their results' scaling might lead to 

erroneous results. Consequently, potential grid reinforcement needs and resulting costs due 

to future e-mobility might be misjudged significantly. Hence, large-scale grid simulations 

become more and more crucial to help future grid planning.  

Nevertheless, the simulation of multiple grids requires significant computing resources and 

time. Static deterministic load flow simulation allows faster computation than time series-

based or Monte-Carlo simulation (Chapter 5.3.2). In contrast, the latter two facilitate the 

consideration of temporal interdependences between grid customers’ electrical loads. Static 

deterministic simulation methods applied in recent studies (Chapter 2.1.1) often neglect 

temporal intersections between grid customers, e.g., EVs, PV modules, or HPs. As a result, 

future grid conditions and resulting grid restrictions are misjudged substantially 

(Chapter 6.1.2). As a countermeasure, grid customers’ behavior and temporal interactions 

must be accurately considered in grid simulations. 

On the one hand, this includes the temporal intersection between different e-mobility use 

cases, e.g., charging at home or work. On the other, their temporal aggregation with other 

low carbon technologies (e.g., EVs, PV modules, or electric HPs) must also be considered. 

Novel coincidence factors developed in this study allow these considerations with adequate 

accuracy (Chapters 6.1.1 and 6.1.2). 
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Of course, the calculation of each customer’s actual coincidence factor requires detailed 

knowledge concerning their actual behavior and characteristic. Considering EVs, both strongly 

depend on the particular use case. As a result, modeling realistic charging profiles based on 

use case-specific mobility data is crucial for future grid planning processes to integrate e-

mobility into the power system. Furthermore, calculating each customer’s actual coincidence 

factor increases the required computing time compared to more simplified load approaches. 

However, this level of detail is necessary to perform static load flow simulations with a 

sufficient level of accuracy. 

In addition, the number of coincidence factors (single, double, or multiple) and the grid 

element based on which they are determined (e.g., the MV/LV substation) are crucial to 

perform accurate grid simulations. As analyzed in Chapter 6.1.2, simplified load approaches 

allow faster computation than more detailed ones. However, their misjudgment of grid 

customers' coincidence when evaluating remaining grid elements underestimates required 

grid reinforcement measures. In conclusion, the coincidence factor applied to grid customers 

must be adapted according to the grid element to be analyzed. Hence, multiple coincidence 

factors per grid must be applied for load flow simulation to determine future grid loads 

accurately.  

In summary, the presented thesis demonstrates the following criteria to ensure accurate 

identification of future grid restrictions: 

 Grid customer-combined coincidence factors, modeled based on realistic time series 

of existing and future grid customers, to include temporal interdependences 

(Chapter 6.1.1 and 6.1.2) 

 Consideration of multiple coincidence factors depending on the grid element to be 

analyzed (Chapter 6.1.2) 

 Large-scale grid simulation considering numerous grid structures (Chapter 6.1.3 and 

6.1.4) 

As demonstrated in Chapter 6.1, neglecting these aspects might misjudge future grid 

conditions and potential grid congestions. Consequently, the future power system might be 

designed inappropriately to integrate future grid customers. As part of the critical 

infrastructure, distribution networks must be designed to bear future power flows with 

sufficient certainty. Nevertheless, their oversizing should be avoided due to cost- and time-

intensive grid planning and construction processes. Hence, classic deterministic load 

approaches are inadmissible for identifying future grid congestions unless adapted to 

comply with future grid customers. 
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All the presented criteria are considered when developing a fully automated large-scale grid 

simulation tool (Chapter 6.1.5). As a result, the developed grid simulation tool allows accurate 

quantification of grid reinforcement measures and costs triggered by future EVs, PV modules, 

and HPs. Therefore, novel coincidence factors are modeled, validated, and presented in this 

work (Chapter 6.1.1). By applying these combined coincidence factors, future grid loads 

induced by EVs, PV modules, or HPs, can be estimated correctly and applied for grid planning 

(6.1.2). Thereby, the benefits of static (fast computation) and time series-based grid 

simulations (considering temporal interdependences of customers accurately) can 

successfully be combined. Tools and methods presented in this thesis allow us to overcome 

the highlighted shortcomings in the field of grid simulation. Thereby, it helps plan the 

integration of future customers, EVs in particular, more adequately. 

At this stage, the presented grid simulation tool only includes classic grid reinforcement 

measures, e.g., exchange of transformers, installation of additional grid lines. However, as 

demonstrated in Chapter 6.2, the analyzed grid-relieving measures can successfully prevent 

those measures. Hence, besides accurate grid simulation, future grid planning processes must 

include several flexibility options, e.g., ESSs, demand-side measures, and local grid 

reinforcements. Their selection, though, depends on the particular e-mobility use case. In 

particular, it depends on the use case’s charging characteristics and the voltage level to be 

integrated. On the LV level, voltage violations induced by future EVs charging at home can 

successfully be prevented by installing a variable transformer at the MV/LV substation or 

critical feeders of present-day grids (Chapter 6.2.1). These measures could substantially 

increase the capacity to integrate future EVs, especially in suburban and rural areas, with 

primarily voltage violations as the most limiting factor (Chapter 6.1.3). 

Nevertheless, variable transformers have no impact on thermal congestions of lines or 

transformers and are not applicable in urban areas. Regardless of the considered grid region, 

a decrease of available charging power represents the most effective measure to mitigate 

grid congestions. If charged, e.g., with 3.7 kVA, numerous EVs can be supplied by present-day 

distribution networks, avoiding voltage violations and thermal overloads (Chapter 6.2.1). In 

contrast, the increase of charging power (e.g., 11 kVA) increases the number of grid 

congestions and the demand for flexibility options.  

As demonstrated in Chapter 5.4, there are two ways to limit the available power of EV 

charging: Grid-controlled (voltage- or current-controlled) or user-controlled. The former 

requires adequate information and communication technology to detect voltages or currents 

in the grid and adapt the charging power accordingly. Considering the latter, each EV user can 

freely decide about the power available at its charging point. Of course, to reduce the available 

charging power, adequate business models providing attractive incentives to the user must 
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be implemented. Adequate network tariffs, allowing the temporal switch between low- and 

high-power charging, could provide the required flexibility to the power grid. Besides the 

required amount of energy, the costs of charging the EVs would then depend on the selected 

charging power: If EV users choose to charge with low power (e.g., 3.7 kVA), charging costs 

can be reduced. Still, they would have the possibility to increase the available charging power 

if needed (e.g., to 11 kVA), of course, with higher charging costs. Analyzing real-life mobility 

data of the use case “Charging at home” illustrates that most users' mobility needs mainly 

comply with low-power charging (Figure 20). While 40 % of EVs do not require increased 

charging power during one year, only 8 % require high-power charging (> 3.7 kVA) more than 

20 times a year. Hence, implementing power-based charging tariffs can avoid expensive and 

time-consuming grid reinforcement measures while fulfilling the user’s mobility needs. 

 

Figure 20: Annual frequency of high-power charging (> 3.7 kVA) required to fulfill EV users’ mobility needs (Use 

case: Charging at home) 

Of course, the limitation of charging power increases the required time of charging. While 

power-based charging tariffs do not lead to a loss in user comfort for private EV users, many 

e-mobility use cases (e.g., e-taxies, e-busses, highway fast-charging of passenger vehicles, and 

electric last-mile delivery vehicles) are characterized by strict schedules. Since these use cases 

request high charging power to fulfill these schedules, they inhibit many demand-side 

measures, e.g., the temporal limitation of charging power. High-power charging use cases 

challenge present-day distribution networks in particular due to considerable peak loads 

(Chapter 2). Although, charging peak loads occur only for short periods, in most cases, only a 

few minutes per year (Paper 2). Decentralized ESSs can successfully cover these short-term 

EV-induced peak loads by discharging the stored energy amount. The recharging of ESSs with 

low power during off-peak periods flattens the power grid’s load curve and prevents classic 

grid reinforcements.  

In fact, even small ESS units with a capacity of 5 kWh and 100 kVA can provide substantial 

grid support, supplying e-taxies or e-car sharing vehicles (Chapter 6.2.2). However, high-

power charging EV use cases provide the most appropriate application of decentralized ESSs: 

Charging points of e-busses, highway fast chargers, and electric last-mile delivery vehicles are 
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mostly integrated into the MV level via specially installed transformers. ESSs can cover short-

term peak loads and reduce the required transformer capacity (Chapter 6.2.2). Thereby, costs 

of grid connection and -utilization can be reduced considerably. For e-bus charging points, 

ESSs even allow substantial cost benefits compared to an exclusive supply by the local power 

grid (Chapter 6.2.2). Moreover, the local supply of e-bus charging represents the technically 

optimum application of flywheel ESSs. Due to its constant charging behavior and high EV 

charging power, flywheel ESSs can be operated with the highest efficiency, i.e., lowest standby 

energy losses from all the analyzed use cases (Chapter 6.2.2).  

The characteristic of the charging demand of electric last-mile delivery vehicles or highway 

fast-charging EVs inhibits in most cases an economical implementation of ESSs. Unless the 

following framework conditions change: Firstly, ESSs would benefit from increased power-

based system utilization charges in the upcoming years. Thereby, peak load shaving of short-

term EV charging loads becomes more crucial and increases the economic suitability of ESSs. 

Several DSOs already demanded such tariffs to accomplish the integration of future grid 

customers [23]. Secondly, the total costs of ESSs must be reduced to compete with classic grid 

reinforcement measures economically. However, from a technical standpoint, flywheel ESSs 

are not suitable to supply electric last-mile delivery vehicles and highway fast-charging EVs 

(Chapter 6.2.2). Their charging behavior, characterized by long off-peak periods, results in 

significant standby energy losses using this ESS technology. Thus, besides economic aspects, 

technical criteria must be considered in grid planning processes, especially since energy 

savings are on the political agenda (e.g., [3]). Of course, ESS’s standby energy losses during 

charging processes can be avoided by using other ESS technologies (e.g., battery ESS) to supply 

these use cases. Nevertheless, the results presented in Chapter 6.2.2 demonstrates that 

considering ESSs in future grid planning processes is crucial, especially concerning high-power 

charging EV use cases with short-term peak loads. Therefore, both economic and technical 

aspects must be taken into account.  

Although this work focuses primarily on flywheel ESSs, its design methods and findings can 

also be applied to other ESS technologies, e.g., battery ESS or supercapacitors. Furthermore, 

the detected demand of flexibility, in this work provided by user- or voltage-controlled 

measures (Chapter 6.2.1) or ESSs (Chapter 6.2.2), can be provided by any form of flexibility 

option. In fact, the presented results clearly show that several grid-relieving measures can 

prevent classic grid reinforcement measures triggered by EV charging. Although, the individual 

selection of the optimum measure must undoubtedly comply with the supplied EV use case 

and its charging characteristics. Consequently, from demand-side measures over ESSs to 

classic grid reinforcements, various solutions must be part of the future power system. Only 

this way, future e-mobility use cases are integrated most efficiently. 
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The accurate identification of EV-induced grid restrictions (Chapter 6.1) and the adequate 

evaluation of countermeasures (Chapter 6.2) require detailed knowledge of grid customers’ 

electrical loads. Concerning EVs, this knowledge can be acquired by real-life mobility data. 

Furthermore, EV classes (e.g., passenger vehicles, trucks) and models (e.g., Tesla Model S, 

BMW i3) differ significantly regarding the following aspects (Chapter 5.1): Charging process 

(possible charging power, number of phases, charge curve, power factor), battery capacity, 

specific energy demand. Both real-life mobility data and EV specifics must also be included 

when modeling realistic charging profiles of EVs. Hence, future grid planning would benefit 

from an extensive database containing users’ mobility patterns and vehicle charging specifics. 

Of course, in an anonymous form fulfilling all data protection issues.  
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8 OUTLOOK 

Although the presented thesis answers the highlighted research questions (Chapter 3), it still 

shows room for improvements and future research. Initially, a fully automated large-scale grid 

simulation tool developed and published in this work uses static (or steady-state) 

deterministic load flow simulations. While those allow significantly faster computation than 

time series-based simulations, they inhibit considering time-related aspects. For example, the 

duration of grid congestions or voltage violations according to the EN 50160 (evaluation based 

on 10-minute mean values) [162] are excluded. Furthermore, adequate implementation of 

ESSs or demand-side measures relies on a time-resolved comparison of grid conditions (e.g., 

voltages) and the flexibility potential (e.g., available energy stored in the ESS or given mobility 

needs). Therefore, future work should focus on the presented grid simulation tool's extension 

to allow time-resolved load flow simulations. Of course, the required computing time must 

still be reasonable. On this account, further studies should also analyze the trade-off between 

time resolution (e.g., 1 minute vs. 15 minutes) and simulation accuracy concerning the 

investigation of future grid customers. 

Besides, this work analyzes the potential of various measures to integrate EVs in a grid-friendly 

way separately. Thus, it neglects a combined implementation of multiple flexibility options 

and its grid-relieving potential. However, the integration of future e-mobility will rely on the 

optimum cooperation of multiple options. This cooperation will depend on the particular e-

mobility use case and the local distribution network. For example, if some EV users in LV grids 

refuse demand-side measures, individual power regulation or local grid reinforcement 

measures might additionally be required. 

Furthermore, schedules of high-power charging e-mobility use cases (e.g., e-busses) might be 

modified to reduce the required ESS capacity required to mitigate peak loads. Future research 

should optimize the cooperation of multiple grid-relieving measures regarding different EV 

use cases. Of course, the actual application of flexibility options will strongly or entirely 

depend on their economic suitability. Therefore, future work should compare multiple 

flexibility options’ economic efficiency (including grid reinforcement measures) to guide 

future grid planners. 

Finally, the presented thesis focuses in particular on decentralized flywheels as an energy 

storage technology. While the findings of the presented thesis can validly be applied to other 

ESS technologies, each of them has its benefits and shortcomings. On this account, the 

suitability of various ESS technologies to supply different EV use cases would be interesting. 

Also, in this regard, the current state of research would benefit from comparing ESS 

technologies’ total costs of ownership.   
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Abstract: While an area-wide implementation of electric vehicles (EVs) and electric heat pumps 
(HPs) will contribute to a decarbonization of the energy system, they represent new challenges for 
existing low-voltage (LV) power grids. Hence, this study investigates potential grid congestions on 
the basis of three contrasting load approaches applied to four different grid regions. Within the three 
load approaches, temporal characteristics of various grid customer classes (EVs, HPs, households 
etc.) are derived from highly resolved realistic load profiles. In accordance with classic grid 
planning, firstly a static load approach is analyzed by applying the modeled coincidence for each 
consumer class individually. Secondly, this static approach is modified by including combined 
coincidence factors, taking temporal consumer class interactions into account. Finally, both static 
load approaches are compared with detailed annual time series analyses by means of load flow 
simulations using real-life LV grid data. The evaluation of inadmissible voltage characteristics and 
thermal congestions identifies future grid extension needs depending on the considered grid region. 
In addition, the variation of the applied load approach highlights the need to consider consumer-
specific temporal behavior. In fact, by neglecting temporal interactions between conventional and 
future grid customers, the classic grid planning approach overestimates future grid extension needs. 
To counteract an oversizing of future grid structures, this paper presents a combined consideration 
of EVs’ and HPs’ coincidence as well as resulting grid consequences on the LV level. 

Keywords: low-voltage level; electric vehicle; heat pump; load approach; grid region 
 

1. Introduction 

In 2019, the European Commission announced its vision to achieve the EU’s climate neutrality 
by 2050 [1]. Considering the energy-related end user greenhouse gas (GHG) emissions in the 
European Union [2], the transportation and residential sectors represent crucial fields of action. Thus, 
on the one hand, this vision is further concretized by the European Green Deal [3], which includes, 
inter alia, a 90% reduction in traffic-related GHG emissions by 2050 as one cornerstone to reach this 
ambitious goal. Thereby, the EU intends to accelerate the shift to sustainable mobility by an area-
wide implementation of one million (2019: 0.14 Mio.) public charging stations by 2025 [3]. In 
accordance with Norway’s leading role with respect to electric vehicle (EV) numbers [4], this measure 
will likely result in an increasing number of battery EVs in the EU. On the other hand, the European 
Commission’s vision is supposed to be realized by increasing the residential sector’s energy efficiency 
[3], e.g., by an area-wide implementation of electric heat pumps (HPs) [5,6]. In fact, a large-scale 
transition to electric HPs could decrease the European residential sector’s GHG emissions by up to 
30%, assuming a market share of 100% [7]. Besides positive aspects regarding the decarbonization of 
the traffic and residential sectors, these future technologies will confront the existing power system 
with new challenges [6]. Since most charging processes take place at home [8,9] and electrical HPs 

https://goo.gl/maps/vNKsQHGjQRn6vuyv8
mailto:thomas.kienberger@unileoben.ac.at
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will be installed primarily in residential areas, these challenges will especially affect the low-voltage 

(LV) level. However, due to today’s relatively low penetration of EVs and electric HPs, these potential 

consequences for existing distribution grids are hard to identify by the use of actual measurements. 

Despite the early stage of EV- and HP-penetration, future challenges for distribution system 

operators (DSOs) have to be analyzed now in order to develop appropriate adaption strategies. 

1.1. State of Research 

Numerous studies analyze potential impacts of future EVs on the LV level with regards to 

voltage characteristics [10–15], thermal overload of grid lines [15,16], distribution substation (DS) 

transformer utilizations [12,15,17] as well as the effects on load curves of existing grid customers 

[11,12,18–22]. Analogously, the implementation of electric HPs and its consequences for existing (LV) 

grids are investigated by several publications [6,22–26]. Navarro-Espinosa et al. (2016) [27] assess the 

impacts of, inter alia, EVs and HPs on numerous LV feeders individually based on a Monte Carlo 

simulation using time series, but their study lacks a combined evaluation of potential synergies. In 

contrast, the following studies deal with possible grid extension needs induced by an aggregation of 

these technologies and are therefore described in detail. 

Mendaza et al. (2014) [28] use a static Monte Carlo simulation, in order to investigate the 

capability of a rural LV grid to integrate future EV- and HP-loads. Therefore, the authors vary EVs 

and HPs spatially in numerous iterations depending on various penetrations, but applying consumer 

class-specific peak loads exclusively. Hülsmann et al. (2019) [29] analyze the capacity of a German 

25,000-noded network to integrate these future grid customers conjunctly considering numerous 

penetration levels. Based on maximum individual coincidence factors for EVs and HPs, static Monte 

Carlo simulations are performed. On the other hand, Shao et al. (2013) [30] apply time series with a 

resolution of one hour in order to examine the integration of a 100% penetration of EVs and HPs into 

one Danish urban LV grid. Li et al. (2014) [31] analyze EV- and HP-induced voltage deviations and 

voltage imbalance in one LV feeder based on daily load profiles with a time resolution of one minute, 

considering several penetration levels. Similarly, Baccino et al. (2014) [32] determine possible grid 

congestions in one LV grid in order to test the presented demand response algorithms. On this 

account, they apply daily load profiles considering a certain number of integrated EVs and HPs (one 

penetration level exclusively). Birk et al. (2018) [33] determine critical voltage characteristics and 

thermal congestions caused by a penetration of EVs and HPs of 60% in a section of an urban LV grid 

located in the city center by applying 15-min resolved time series. Finally, Sinha et al. (2020) [34] test 

the operation flexibility of EVs and HPs combined, implemented into one LV grid. Therefore, one 

penetration level of these technologies is simulated as the reference scenario, using highly resolved 

load profiles and a steady-state time series analysis. 

In summary, future grid congestions triggered by a combined integration of e-mobility and the 

electrification of the space heating sector are examined using two different simulation approaches: 

On the one hand, a static simulation approach considering one time step, mostly in the form of a 

stochastic Monte Carlo simulation [28,29]. On the other hand, the majority of studies [30–34] apply 

time series analyses based on time-resolved load profiles. Besides static (stochastic) Monte Carlo 

simulations, classic power grid planning performed by DSOs is based on an analytical static load 

approach [35,36] because of its simple and fast application. While Monte Carlo simulations model a 

variety of grid conditions stochastically based on their probability of occurrence [35], analytical static 

simulations apply worst-case load conditions. Therefore, the aggregated peak load of a number of 

grid customers is calculated by multiplying the number of customers by the respective coincidence 

factor and the average individual peak load [35]. The coincidence factor thereby takes temporal 

characteristics and resulting load aggregations of numerous grid customers of one consumer class 

(households, EVs etc.) into account. Both static approaches attempt to consider temporal aggregations 

for each consumer class individually by the application of individual coincidence factors, whereby 

temporal interactions between various consumer classes are neglected (e.g., [28,29,35]). Nevertheless, 

while a stochastic Monte Carlo simulation must be performed for a certain number of iterations [37], 

any analytical static modeling approach simulating one time step offers advantages in terms of the 
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calculation effort compared to detailed time series analyses [38]. This becomes more important when 

it comes to the large-scale simulation of numerous grid structures. 

Besides the consideration of temporal consumer class interactions, recent studies differ in terms 

of the analyzed grid region: While the majority fail to define the analyzed grid region (e.g., 

[29,31,32,34]), urban [30,33] and rural [28] LV grids are investigated in a few studies. However, these 

studies exclude the fact that real-life housing types (family houses, multi-apartment residential 

buildings etc.) depend on the considered grid region, which is crucial for evaluating grid impacts 

especially in urban areas. 

1.2. Open Research Questions and Structure of This Paper 

The previous section presents the state-of-the-art research in the field of grid simulations 

analyzing future impacts of EVs and HPs. Thereby, the unanswered research questions with respect 

to the temporal (1) and spatial (2) components are as follows: 

1. What impact does the applied load approach have on the estimation of future grid extension 

needs on the LV level? Is it necessary to take realistic temporal interactions between 

conventional grid customers, EVs and HPs into account? How can fast static grid simulation 

meet with a detailed consideration of these consumer class interactions? Does the classic grid 

planning approach comply with an increase in various grid customer classes, and is it applicable 

for future grid planning? 

2. What impact does the considered grid region have on the determination of grid congestions, 

applying consistent simulation approaches as well as real-life grid topologies and housing 

types? 

To answer these research questions, this paper identifies potential impacts on the LV level 

triggered by projected numbers of EVs and HPs based on co-simulations. Therefore, four LV grid 

structures in various regions are modeled in detail (Section 2.1) using real-life grid data. The method 

for modeling time-resolved load profiles considering conventional grid customers (Section 2.2.1), 

future EV charging (Section 2.2.2) as well as future electric HPs (Section 2.2.3) using the software 

MATLAB [39] is described in this paper. Both grid and consumer load modeling are based on real 

grid and consumer data, provided in an anonymous form and in compliance with data protection 

regulations by the Austrian DSO Energienetze Steiermark GmbH [40]. Based on modeled time series, 

the coincidence of various consumer classes (Section 2.3) is determined depending on the considered 

number of consumers. To analyze the effects of temporal load aggregations of several grid customers, 

two static load approaches (applying coincidence factors) as well as a time series-based load approach 

(Section 2.4) are investigated in the form of load flow simulations using the software NEPLAN [41]. 

These simulation methods are applied consistently for all LV grids, providing a uniform comparison 

of various grid regions (Section 3), which are discussed in detail (Section 4). 

2. Methodology 

2.1. Grid Topologies and Modeling 

This analysis deals with the comparison of methods for the determination of potential grid 

extension needs in various grid regions caused by private charging of EVs and HP loads. Therefore, 

four real-life LV grids are selected for grid simulations and classified in accordance with the Degree 

of Urbanization (DEGURBA) defined by the European Commission [42] as urban (densely 

populated), suburban (intermediate density) and rural (thinly populated). However, we analyze the 

urban area based on two LV grids, one located in the city center and one located in the city outskirts 

(Table 1). The selected LV grids are each characterized by a DS (Figure 1), transforming the medium 

voltage (MV) of 20 kV to a nominal voltage of 400 V (phase-to-phase) via a three-phase transformer 

(vector group Dyn5). With a classic radial grid structure typical for the LV level [43], this substation 

supplies a number of feeders and points of common coupling (PCCs) via cables or overhead lines. 

However, the suburban and urban grids are equipped with several grid separation points, enabling 
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the creation of a partial ring network structure in case of failure. The selected LV grids show 

significant differences (Table 1) in terms of nominal transformer power at the DS, number of feeders, 

number of PCCs, degree of cabling, admissible building density, total line length and the share of 

family houses (FHs). 

Table 1. Grid configurations depending on the grid region. 

 
Urban 

(City Center) 

Urban 

(City Outskirts) 
Suburban Rural 

Nom. transformer power [kVA] 2 × 630 630 250 100 

No. of feeders 14 12 9 3 

No. of PCCs 21 80 87 18 

Degree of cabling [%] 100 100 91 57 

Admissible building density 0.6–1.2 0.3–0.8 0.2–0.4 0.2–0.3 

Total line length [km] 2.17 6.13 5.64 2.31 

Share of family houses [%] 0 87.5 100 100 

The latter is especially significant for the possibility of investigating private parking at home or 

the installation of electric HPs. While FHs are predominant in the suburban and rural area, the urban 

grid located in the city center is characterized by multi-apartment residential buildings (MARBs) 

exclusively, which show limited possibility for private parking and inhibit the installation of HPs. 

For the implementation of load flow simulations, the mentioned grid configurations (e.g., Figure 1) 

are modeled in detail using the software NEPLAN [41]. For this purpose, real-life line- and 

transformer-specifications as well as real-life PCC-allocations of present grid customers are applied. 

As a result, potential grid consequences (e.g., voltage deviations and thermal overload) are identified 

with a high level of detail. In each of the four grid models, the higher voltage side of the DS is 

connected to a slack node (Figure 1), providing constant voltage. Consequently, voltage deviations 

in the MV level are excluded, which is taken into account when contrasting node voltages with 

standardized voltage limits (e.g., Section 2.4.2). 

 

Figure 1. Grid model of an urban low-voltage grid located in the city outskirts. 

To model future grid customers, each PCC is equipped with six load modules, representing 

conventional consumer loads—present household (HO) loads, commercial businesses (CBs), 

agricultural businesses (ABs), electrical water heaters (WHs)—future EV charging loads (EV) as well 

as future electric HP demands (HP). All of these load modules are provided with either static load 

values or annual time series with a time resolution of one minute in order to perform long-term load 

flow simulations. 

Slack node

Distribution 
substation

HO CB AB WH EV HP
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2.2. Modeling of Grid Loads as Time Series 

2.2.1. Conventional Consumer Loads 

Spatially and time-resolved loads of conventional grid customers are modeled separately 

depending on their consumer class. Therefore, consumers are classified in accordance with Austrian 

Grid Codes [44] into HOs as well as CBs, ABs and WHs (Table 2). In the first step, time series of CB-, 

AB- and WH-loads are modeled by means of standardized load profiles pursuant to [45], which 

further classifies them into seven CB types, three AB types and six WH types. 

Table 2. Number of persons (estimated) and number of conventional grid customers depending on 

consumer type and grid region. 

 
Urban 

(City Center) 

Urban 

(City Outskirts) 
Suburban Rural 

Estimated number of persons 509 346 231 50 

Households (HOs) 331 170 88 18 

Commercial businesses (CBs) 76 31 22 1 

Agricultural businesses (ABs) 0 1 10 4 

Electrical water heaters (WHs) 298 85 19 2 

These load profiles provide annual phase-balanced active power time series for numerous 

consumer classes unified for an annual energy consumption of 1000 kWh. Finally, the scale of these 

unified load profiles by the real consumer’s annual energy demand provides consumer class-

dependent active and reactive power loads (a power factor of 0.98 lagging is assumed). Besides these 

standardized load profiles, HO load profiles are modeled with the behavior-based load profile 

generator by Pflugradt [46]. Thereby, this tool provides pre-defined HO structures, which differ in 

terms of the number, age and behavior of residents. For each of the grid’s HOs, one of these pre-

defined HO structures and its according active load profile is selected randomly based on the number 

of persons. While the number of persons of pre-defined HO structures is provided by the applied 

load profile generator, this information is not available within the DSO’s data. Therefore, the number 

of persons is estimated for each of the LV grids’ HOs by the real-time annual energy consumption 

and an average energy demand of 2050 kWh per person [47]. This results in an aggregated number 

of 509 (urban—city center), 346 (urban—city outskirts), 231 (suburban) and 50 (rural) persons (Table 

2). After selecting the appropriate pre-defined HO (active power) profile based on the estimated 

number of persons, reactive power characteristics are taken into account depending on households’ 

underlying devices and their power factor [48,49]. All the modeled time series cover one year with a 

time resolution of one minute, taking seasonal as well as daily load deviations into account. Finally, 

all types of conventional consumer loads (CB-, AB- and WH-loads as well as HO-loads) are 

aggregated for each PCC (e.g., Figure 2), distributed symmetrically to all the grid phases and 

calibrated with real data acquired by long-term measurements (described in detail in Appendix A.1). 

The load profile calibration using measured data enables an (almost) exact load simulation on the DS 

level considering conventional grid customers exclusively (neither EV nor HP). Nevertheless, since 

measured transformer loads at the DS level include grid losses during operation, this calibration 

results in a slight overestimation of conventional consumer loads. As a result, the maximum thermal 

utilization of the LV grids’ transformers determined by grid simulations in the form of time series 

analyses exceeds the measured one by 0.57% (urban: city center), 0.55% (urban: city outskirts), 0.64% 

(suburban) and 2.02% (rural). Still, the performed load profile calibration allows for an accurate 

consideration of existing grid customers, required for a detailed analysis of the LV grids’ capacity for 

integrating additional consumer loads, such as EVs or HPs. 
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Figure 2. Modeled time series aggregated for one point of common coupling (PCC) supplying 

conventional consumers (three households), three electric vehicles charged at home as well as one 

heat pump. 

2.2.2. Electric Vehicle Charging Loads 

In addition to conventional grid customers, this study deals with potential grid impacts caused, 

inter alia, by the future supply of EVs, charged at private charging points. The European Directive 

2014/94/EU of the European Parliament and of the Council of October 22nd 2014 on the deployment 

of alternative fuels infrastructure [50] defines public charging infrastructure for EVs as non-

discriminatory access for all users within the European Union. However, due to a missing definition 

of private charging, all charging possibilities may be defined as private charging points, which 

violates non-discriminatory access, e.g., by several kinds of authorization, usage or payment. Hence, 

two of these private charging EV user groups are taken into account in this study: 

 Charging at home: This user group deals with EVs charged at domestic charging points 

 Charging at work: EVs of this user group are charged at the enterprise parking area 

Analogously to the methods applied in previous studies [12,51,52], an uncontrolled, stochastic 

charging behavior is taken into account for both of them. To model this stochastic charging behavior, 

the following aspects must be considered individually for each user group: the spatial distribution of 

charging points, individual mobility patterns (time of charging and covered distance), EV model 

specifics (battery capacity, specific energy consumption, charging efficiency and charging power). A 

detailed description of the stochastic determination of these characteristics is presented in 

Appendixes A.2–A.4 as well as in the authors’ recent publications [53–55]. Before modeling time 

series of EV charging loads, the actual charging power must be defined for each connection between 

an EV and its charging point. Therefore, the available installed power of private charging 

infrastructure depending on the grid area must be taken into account: Private parking or rather 

charging possibilities depend significantly on the housing type, which is differentiated into FHs and 

MARBs. In Austria (and a few other countries), the vast majority of HOs are integrated into the LV 

level based on a three-phase connection [36], tolerating a maximum installed charging power of 11 

kVA. Nevertheless, most of the charging points in MARBs are equipped with reduced charging 

power [56]. Hence, charging points at FHs and at work are in this study considered to be equipped 

with 11 kVA available power, whereas charging points at MARBs are considered to provide only 

limited power of 3.7 kVA per charging point. Since all of the considered EV models enable charging 

with 11 kVA (Appendix A.4), the actual available charging power depends solely on whether it is 

charged at a FH, a MARB or at work. As a result, EVs are charged with 11 kVA in the rural (100% of 

charging processes), the suburban (100%) and the urban LV grid located in the city outskirts (61.3%). 

In contrast, 100% (city center) and 38.7% (city outskirts) of charging processes are supplied with 3.7 

kVA by the urban LV grids (Figure 3). Assuming a uniform phase-allocation at MARBs, low-power 



Energies 2020, 13, 5083 7 of 30 

 

charging with 3.7 kVA (usually in the form of single-phase charging) is considered as phase-balanced 

three-phase charging. 

 

Figure 3. Share of available charging power depending on the grid region. 

Finally, after determining the spatial distribution of private charging points (where are EVs 

charged?), user group-specific mobility patterns, state-of-the-art EV model specifics (when and for 

how long are they charged?) and the available charging power (with which power?), annual time 

series of EV charging loads with a time resolution of one minute are modeled for each EV. Therefore, 

measured charging data available for all the listed EV models (Table A5), including phase-imbalanced 

active and reactive power profiles, are applied. Depending on the selected EV model (Appendix A.4), 

the measured charging data are scaled according to the defined charging power, while maintaining 

original (measured) power factors. For each charging event, these scaled charging curves are adapted 

pursuant to the required amount of energy and added to the EV-specific annual load profile according 

to the time of charging. After modeling EV charging load profiles (one year) for all EVs, active and 

reactive power profiles are aggregated for each PCC (e.g., Figure 2), in accordance with the EVs’ spatial 

allocation depending on the considered EV-penetration. 

2.2.3. Electric Heat Pump Loads 

Analogous to the modeling of time-resolved EV charging loads, potential grid impacts triggered 

by electric HPs depend on a spatial (where?) and a temporal (when?) component. For dealing with 

the former, the same approach as for determining the spatial distribution of private EV charging 

points (Appendix A.2) is applied. Therefore, the maximum number of HPs (HP-penetration of 100%) 

within each LV grid is initially detected based on the respective housing type (FH or MARB). Since 

only FHs allow the installation of future HPs, the maximum number of potential HPs equals the 

number of FHs supplied by the according LV grid: 0 (urban—city center), 60 (urban—city outskirts), 

70 (suburban) and 15 (rural). Similar to the analysis of future EV numbers, this study analyzes 

potential impacts induced by future HP-penetrations (0%, 5%, 10%, 20%, 30%, 50% and 80%). 

However, for defining which FH is virtually equipped with a HP considering a certain HP-

penetration, a uniform HP-share is applied to each of the LV grid’s feeders. 

For modeling the temporal component on the other hand, time-resolved HP load profiles, pre-

defined for numerous house structures (e.g., single-family house hosting 1–2 persons, house with a 

solar thermal system, 300 L storage tank and gas heating etc.) are acquired also by Pflugradt [46]. 

Furthermore, these HP load profiles are uniformly scaled according to an average domestic space 

heating demand of 14316 kWh/a/household and an average domestic warm water demand of 2995 

kWh/a/household [57,58] assuming a coefficient of performance of 3.0. Reactive power profiles are 

derived by applying a constant power factor of 0.9 (lagging) [23,24,26]. Finally, considering a certain 

HP-penetration, the individual HP-loads of FHs are aggregated for the supplying PCC (e.g., Figure 

2) in accordance with the spatial determination, defined in the previous step. The modeled HP load 

profiles show HP-typical characteristics according to Brendan et al. (2014) [23], e.g., increased starting 

current/power due to the compressor motor as well as a certain base load during operation. If an FH 
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is virtually equipped with a HP, the previously modeled electric water heating loads (WH) as well as 

loads for electrical space heating are neglected. 

2.3. Modeling the Coincidence of Current and Future Grid Loads 

The coincidence of grid customers’ electrical loads represents a crucial aspect for grid operators 

regarding the planning and operation of power grids. This “is a measure of the simultaneity of peak 

demands of a group of N customers” [35] and describes temporal aggregations of numerous electric 

loads: Considering a certain number of grid customers, a high coincidence equals a high probability 

for a power demand at the same time. Equation (1) [35] describes this correlation in the form of the 

coincidence factor (CF) considering a certain number of customers (NoC). It is defined by the ratio 

between the maximum of the aggregated load, max(∑ 𝑃𝑖(𝑡)
𝑁𝑜𝐶
𝑖=1 ) , and the aggregated maxima of 

individual loads, ∑ max⁡(𝑃𝑖(𝑡))
𝑁𝑜𝐶
𝑖=1 . 

𝐶𝐹⁡ (𝑁𝑜𝐶) = ⁡
max⁡(∑ 𝑃𝑖(𝑡)

𝑁𝑜𝐶
𝑖=1 )

∑ max⁡(𝑃𝑖(𝑡))
𝑁𝑜𝐶
𝑖=1

 (1) 

Due to currently low EV- and HP-penetrations, real information with respect to the coincidence 

of numerous charging EVs and HPs is missing. On account of this, the presented analysis provides 

the coincidence of existing and future grid customers based on long-term time series with a resolution 

of one minute, necessary for deriving the exact coincidence of grid customers [35]. Therefore, the 

modeled load profiles of households (HOs), commercial businesses (CBs), agricultural businesses 

(ABs), electrical water heaters (WHs), electric vehicles (EVs) and electrical heat pumps (HPs) are 

applied for each grid respectively. Since this study investigates potential grid impacts within a time 

period of one year, the maximum coincidence is stochastically modeled for this period and each NoC. 

Assuming an NoC of ten units for example, ten daily load profiles of the according consumer class 

are randomly selected, aggregated and divided by the aggregated maxima of these selected load 

profiles for each day of the year, according to Equation (1). Finally, the year’s maximum CF 

(maximum of 365 daily values) is detected for each NoC and each consumer class, demonstrated in 

Figure 4a for the suburban LV grid. 

 

(a) 

 

(b) 

Figure 4. Coincidence factor (CF) of various consumer classes modeled individually (a) and in a 

combined way (b) including CF-areas predominated (>75%) by households (HOs), electric vehicles 

(EVs) or heat pumps (HPs). 

In addition to varying consumer classes, two different approaches for dealing with the 

coincidence between these are investigated by this study: the CF-modeling for each consumer class 

individually (Figure 4a) as well as the CF-consideration of various consumer classes combined 

(Figure 4b). The former determines the coincidence of each consumer class on its own, neglecting the 

temporal correlation with other consumer classes (e.g., as applied in [29] using a Monte Carlo 

simulation). In contrast, the latter takes temporal interactions between various consumer classes into 

account by aggregating all kinds of electrical loads supplied by the power grid. Based on numerous 
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possible customer class compositions, the combined coincidence at a certain aggregated NoC varies 

within the modeled and illustrated bandwidth (Figure 4b). In addition, Figure 4b highlights CF-areas 

defined by a predominant proportion (>75%) of HOs, EVs or HPs in relation to the total aggregated 

NoC. As already demonstrated by an individual CF-consideration (Figure 4a), EVs are characterized 

by increased simultaneity compared to HOs and HPs. Consequently, the analysis of grid customers 

representing EVs primarily requires a higher CF compared to customer groups with a predominant 

share of HOs or HPs, especially at a low aggregated NoC. Based on the assumed uncontrolled 

charging primarily during evening hours (Appendix A.3), a CF of (almost) one is determined even at 

a number of four vehicles (Figure 4a), considering EV charging with 3.7–11 kVA and both EV user 

groups. Regardless of consumer class and modeling approach, the probability of a simultaneous grid 

demand and thereby the CF decreases with an increasing number of customers [35] starting from 

one. The application of standardized load profiles for modeling CBs, ABs and electric WHs (Section 

2.2.1) results in high coincidence compared to other consumer classes. In fact, a more accurate 

modeling of their coincidence would require more individual load profiles, e.g., measured during 

real-life operation. 

2.4. Grid Simulations Using Load Flow Calculations 

2.4.1. Load Approaches Analyzing Temporal Interactions between Various Consumer Classes 

In this study, we analyze two static simulation approaches based on the modeled coincidence 

(Figure 4) in combination with the aggregated peak power of modeled load profiles. On the one hand, 

we investigate a static individual aggregation (SIA) of several consumer classes in accordance with 

classic grid planning [35], using the consumer class-individual coincidence factors. Hence, the 

electrical grid customers’ aggregated load 𝑃  in this approach is calculated by accumulating the 

mathematical product of the maximum power of each consumer class 𝑃𝑚𝑎𝑥,𝑐𝑙𝑎𝑠𝑠 and the according 

individual coincidence factor 𝐶𝐹𝑖𝑛𝑑,𝑐𝑙𝑎𝑠𝑠 for all the considered consumer classes (Table 3). 

Table 3. Comparison of various load approaches applied for grid simulation. 

Load Approach No. of Time Steps Power Determination 

Static individual aggregation (SIA) 1 𝑃 = ∑ (𝑃𝑚𝑎𝑥,𝑐𝑙𝑎𝑠𝑠 ∙ 𝐶𝐹𝑖𝑛𝑑,𝑐𝑙𝑎𝑠𝑠)

𝑁𝑜.𝑜𝑓⁡ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑐𝑙𝑎𝑠𝑠=1

 

Static combined aggregation (SCA) 1 𝑃 = ( ∑ 𝑃𝑚𝑎𝑥,𝑐𝑙𝑎𝑠𝑠

𝑁𝑜.𝑜𝑓⁡ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑐𝑙𝑎𝑠𝑠=1

) ∙ 𝐶𝐹𝑐𝑜𝑚𝑏,𝑁𝑜.𝑜𝑓⁡ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

Time series analysis (TSA) 525,600 𝑃 = max( ∑ 𝑃𝑐𝑙𝑎𝑠𝑠(𝑡)

𝑁𝑜.𝑜𝑓⁡ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑐𝑙𝑎𝑠𝑠=1

)  

On the other hand, a static combined aggregation (SCA) of various consumer classes is examined 

within a second approach: The electrical grid customers’ aggregated load 𝑃  results from the 

aggregation of the maximum power of each consumer class 𝑃𝑚𝑎𝑥,𝑐𝑙𝑎𝑠𝑠  multiplied by a consumer 

class-combined coincidence factor 𝐶𝐹𝑐𝑜𝑚𝑏,𝑁𝑜.𝑜𝑓⁡ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠. The latter is selected from the modeled CF-

bandwidth (Figure 4b) depending on the number of HOs, CBs, ABs, WHs, EVs and HPs. The 

maximum power of each consumer class 𝑃𝑚𝑎𝑥,𝑐𝑙𝑎𝑠𝑠 is defined by the maximum of the aggregated 

load profile, including a certain number of consumers of a certain consumer class (e.g., ten 

households). 

Despite similarities between these two static simulation approaches (SIA and SCA), they differ 

significantly with regards to the consideration of temporal overlaps between considered electrical 

consumer classes. This difference is demonstrated by a simple load determination, considering 32 

HOs (with a peak load of 2 kVA each), three CBs (3 kVA each), seven ABs (2 kVA), three electric WHs 

(5 kVA), 45 EVs (11 kVA) and 21 electrical HPs (10 kVA), resulting in an aggregated peak load of 807 
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kVA. The SIA applying individual coincidence factors of 0.195, 0.96, 0.756, 0.973, 0.339 and 0.262 

(Figure 4a) results in an aggregated peak load of 269.1 kVA. In contrast, a combined consideration of 

grid customers’ coincidence (SCA) of 0.181 (highlighted in Figure 4b) results in an aggregated peak 

load of 146.1 kVA (−46%). In addition to these static load approaches, a real-life simulation approach 

on the basis of modeled annual time series with a time resolution of one minute is applied. Using this 

time series analysis (TSA), the electrical grid customers’ aggregated load 𝑃  is identified by the 

maximum of aggregated load profiles including all consumer classes (Table 3). While the TSA enables 

the implementation of time-resolved reactive power profiles (Section 2.2), constant power factors (PF) 

are applied in order to determine the reactive power demand in the SIA- and SCA-approach. 

Therefore, an average PF of 0.955 (lagging) is estimated considering existing grid loads based on long-

term measurements at the DS (Figure A1) and applied for consumer classes HO, CB, AB and WH. 

Similarly, the reactive power demand of EVs is determined by measured charging data (applied for 

modeling time series of EV charging loads) including 15 varying EV models. These measured 

charging data demonstrate, that for most EV models, the power factor strongly differs between 

constant-current-phase (average PF of 0.995, leading) and constant-voltage-phase (0.280, leading) 

during the charging process. Consequently, an annual average PF including all the modeled time 

series of EV charging is detected (0.971, leading) and applied for the SIA- and SCA-approach. Due to 

missing measurement data regarding electrical HPs, a PF of 0.9 (lagging) [23,24,26] is assessed, 

analogous to the modeled time series (Section 2.2.3). For a combined aggregation of various consumer 

classes in the SCA-approach, an average PF weighted by individual numbers of consumer classes is 

applied in a simplified manner (e.g., the combined consideration of two HOs, two EVs and one HP 

results in a PF of 0.993, lagging). 

2.4.2. Evaluation of Grid Reinforcement Needs 

To examine the future need for grid extensions in various LV grids, induced by EVs and/or HPs, 

the mentioned load approaches are analyzed by determining grid loads at certain grid locations 

(Figure 5) including the DS and each feeder separately. Therefore, both static load approaches require 

the number of grid customers (for identifying the according CF) and the aggregated peak load of each 

consumer class, depending on the considered point of load determination. The aggregated load 

calculated at these locations is distributed to all involved PCCs (points of load application in Figure 

5) according to their contribution to the feeders’ or distribution substation’s peak load. In the TSA-

approach, time series are modeled for each of the involved grid customers and aggregated for each 

time step in accordance with the point of load application. To evaluate inadmissible voltage 

characteristics caused by future EV- and HP-numbers, voltage deviations are detected at the 

distribution substation’s LV side (DS1; Figure 5) as well as at the farthest grid node in each feeder 

(e.g., F1; Figure 5). Furthermore, detected voltage deviations are examined regarding the compliance 

with EN 50,160 [59], which defines an admissible voltage range of ± 0.1 per unit (pu) compared to the 

nominal voltage. In fact, this permitted voltage range is shared by the MV and LV levels conjunctly. 

However, pursuant to the voltage range partitioning presented in [60], a voltage range of only [−0.065 

pu; +0.045 pu] is available on the LV level. 

 

MV slack
Distribution 
substation

F1

F2

F3

F1

F2

F3

DS1

DS1

Point of load determination

Point of load application

Detection of voltage

Detection of thermal utilization 
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Figure 5. Grid locations of load determination, load application, voltage detection and the detection 

of thermal overload. 

As a result, this admissible voltage range is taken into account to evaluate the number of critical 

grid nodes with respect to inadmissible voltage deviations. Besides voltage characteristics, potential 

needs for grid reinforcement measures are additionally derived based on the thermal utilization of 

feeders (e.g., F1; Figure 5) and the thermal utilization of the distribution substation’s transformer 

(DS1). 

3. Results 

This study deals with potential grid impacts caused by future grid customers by analyzing three 

varying load approaches and four different grid regions. Therefore, the results of performed grid 

simulations in the form of load flow calculations are classified accordingly: Firstly, deviating results 

in terms of voltage characteristics and thermal overload considering the analyzed load approaches 

are presented (Section 3.1). Secondly, this study provides an estimation of future grid expansion 

needs depending on the grid region, the applied load approach and the considered EV- and HP-

penetration (Section 3.2). 

3.1. Comparison of Various Load Approaches 

To demonstrate the influence of the applied load approach, voltage deviations (Figure 6) and 

thermal utilizations (Figure 7) are contrasted considering the LV grids’ distribution substation (DS1) 

and feeders (F1, F2 etc.). Due to the fact that it has the highest number of EVs and HPs, the load 

approach comparison is demonstrated using the suburban LV grid’s simulation results. Therefore, 

three degrees of existing and future grid customers are investigated taking various EV- and HP-

penetration levels into account: conventional consumers only (CC), conventional consumers in 

combination with EVs (CC and EV) as well as conventional consumers in combination with EVs and 

HPs (CC, EV and HP). The evaluated voltage deviations in the suburban LV grid (Figure 6) 

considering these different degrees of consumer classes differ significantly with the applied load 

approach. The SIA-approach results in minimal voltages (feeder F4) of 0.955 pu (CC), 0.933 pu (CC 

and EV) and 0.915 pu (CC, EV and HP), exceeding the defined voltage limit of 0.935 pu even at an 

EV-penetration of 5%. Additionally, a voltage decrease of 0.017 pu (CC), 0.018 pu (CC and EV) and 

0.022 pu (CC, EV and HP) is detected at the LV side of the distribution substation (DS1). As a result, 

one (CC and EV) or rather three feeders (CC, EV and HP) face inadmissible voltage reductions caused 

by charging EVs or rather EVs in combination with HPs. 

In contrast, the SCA- and TSA-approaches show rather similar impacts on voltage deviations, 

all complying with the admissible voltage range: While conventional consumers only (CC) causes a 

minimal voltage (F4) of 0.964 pu (SCA) and 0.968 pu (TSA), these values decrease to 0.961 pu (SCA) 

and 0.954 pu (TSA) supplying 5% EVs or rather to 0.951 pu (SCA) and 0.948 pu (TSA) supplying 5% 

EVs and HPs (Figure 6). Using the SCA-approach, the following voltages are detected at DS1: 0.989 

pu (CC), 0.988 pu (CC and EV) and 0.988 pu (CC, EV and HP). 
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Figure 6. Comparison of various load approaches regarding voltage deviations at the distribution 

substation (DS1) as well as at feeders (F1–F9) considering an EV- and HP-penetration of 5% supplied 

by the suburban LV grid. 

Otherwise, voltages of 0.992 pu, 0.991 pu and 0.990 pu are triggered at DS1 by these grid loads 

applying the TSA load approach. In addition to CC-, EV- and HP-caused voltage deviations, we 

discover a maximal thermal utilization in the LV grid’s most critical feeder (F4) of 40.4% (CC), 61.3% 

(CC and EV) and 73.0% (CC, EV and HP) presuming the SIA-approach. The SCA load approach on 

the other hand results in a thermal load of 36.3%, 38.2% and 50.4%. Finally, a maximal thermal 

utilization of 29.4%, 38.2% and 41.4% is determined based on the TSA-approach (Figure 7). 

 

Figure 7. Comparison of various load approaches regarding the thermal utilization of the distribution 

substation’s transformer (DS1) as well as feeders (F1–F9) considering an EV- and HP-penetration of 

5% supplied by the suburban LV grid. 

Analogously, the evaluation of the suburban LV grid’s transformer (DS1) illustrates a similar 

trend: 74.7% (CC), 97.3% (CC and EV) and 114.1% (CC, EV and HP) are detected using the SIA-

approach; 48.9%, 56.5% and 57.1% using the SCA-approach; and 41.9% (CC), 57.2% (CC and EV) and 

59.1% (CC, EV and HP) using the TSA-approach. Besides differences regarding the most critical grid 

locations—e.g., feeder F4 (voltage) and the transformer at the DS (thermal overload)—we analyze the 

correlation between load approach-induced deviations and the number of additional grid customers 

in the grid. Therefore, we determine the normalized root mean square deviation (NRMSD) between 

the static load approaches (SIA and SCA) and the time series analysis (TSA) as a function of numerous 

EV- and HP-penetration levels: Equations (2) and (3) show the NRMSD’s exact calculation regarding 
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voltage 𝑉 deviations (referring to an admissible voltage range of 6.5 pu) and thermal utilization 𝑈 

deviations (referring to a maximal thermal load of 100%) including all feeders. 

𝑁𝑅𝑀𝑆𝐷𝑉𝑜𝑙𝑡𝑎𝑔𝑒 =⁡
√

1
𝑁𝑜. 𝑜𝑓⁡ 𝑓𝑒𝑒𝑑𝑒𝑟𝑠

∙ ∑ (𝑉𝑇𝑆𝐴 − 𝑉𝑆𝐼𝐴⁡ 𝑜𝑟⁡ 𝑆𝐶𝐴)
2𝑁𝑜.𝑜𝑓⁡ 𝑓𝑒𝑒𝑑𝑒𝑟𝑠

𝑖=1

𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒⁡ 𝑣𝑜𝑙𝑡𝑎𝑔𝑒⁡ 𝑟𝑎𝑛𝑔𝑒⁡ 𝑜𝑓⁡ 6.5⁡ 𝑝𝑢
 

(2) 

𝑁𝑅𝑀𝑆𝐷𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =⁡
√

1
𝑁𝑜. 𝑜𝑓⁡ 𝑓𝑒𝑒𝑑𝑒𝑟𝑠

∙ ∑ (𝑈𝑇𝑆𝐴 − 𝑈𝑆𝐼𝐴⁡ 𝑜𝑟⁡ 𝑆𝐶𝐴)
2𝑁𝑜.𝑜𝑓⁡ 𝑓𝑒𝑒𝑑𝑒𝑟𝑠

𝑖=1

𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒⁡ 𝑚𝑎𝑥𝑖𝑚𝑎𝑙⁡ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙⁡ 𝑙𝑜𝑎𝑑⁡ 𝑜𝑓⁡ 100%
 

(3) 

Figure 8 demonstrates load approach-induced NRMSDs compared to the TSA for the suburban 

LV grid depending on the considered EV- and HP-penetration. The NRMSD analysis for the urban 

LV grid in the city center (Figure A5), the urban grid in the city outskirts (Figure A6) as well as the 

rural LV grid (Figure A7) is demonstrated in Appendix A.5. It points out that the static load 

approaches differ when it comes to the grid simulation of numerous different grid customer classes 

and penetration levels: Considering the supply of conventional consumers (CC)—HOs, CBs, ABs and 

electrical WHs—only (EV- and HP-penetration of 0%), the estimation using the SIA-approach 

deviates by 19.64% (voltage) and 12.12% (utilization) from the according thresholds (6.5 pu and 100%) 

compared to the time series analysis (Figure 8). In contrast, the application of the SCA load approach 

results in an NRMSD of 7.93% and 3.93%. 

 

Figure 8. Load approach-induced normalized root mean square deviations (NRMSDs) compared to 

the TSA in terms of voltage characteristics and thermal utilization considering the suburban LV grid. 

Both voltage- and utilization-NRMSD show very similar trajectories as a function of increasing 

EV- and HP-penetrations. Nevertheless, they differ significantly depending on the applied load 

approach. On the one hand, the SCA- and TSA-approaches provide very similar results rather 

independent of the EV- and HP-penetration (Figure 8): The determined NRMSDVoltage fluctuates 

between 4.62% (5% EV- and HP-penetration) and 24.62% (80% EV-penetration), and the 

NRMSDUtilization fluctuates between 1.98% (5% EV-penetration) and 12.77% (80% EV- and HP-

penetration). On the other hand, the NRMSD between the SIA- and the TSA-approach increases 

decisively when considering an additional customer class: While the simulation of conventional grid 

customers in combination with future EVs (CC and EV) results in maximal NRMSDVoltage and 

NRMSDUtilization of 30.77% (20% EV-penetration) and 23.72% (80%), these values increase to 86.15% and 

59.44% (both at 80% EV- and HP-penetration) when including additional HPs (CC, EV and HP). 

3.2. Comparison of Different Grid Regions 

In addition to the load approach analysis, we analyze future grid extension needs in four 

different grid regions. Therefore, the share of critical feeders with respect to inadmissible voltage 

characteristics (dropping below 0.935 pu) and thermal overloads (exceeding 100%) is determined for 

each LV grid and each load approach (Figures 9 and 10), considering CC and EVs (a) as well as CC, 
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EVs and HPs (b). The evaluation of inadmissible voltage deviations shows a clear influence of the 

considered grid region in particular. The urban LV grid located in the city center shows no impacts 

on voltage characteristics, neither with regard to the applied load approach nor with regard to the 

degree of grid customer classes (Figure 9). The urban grid located in the city outskirts faces critical 

voltage decreases starting with 10% (SIA), 80% (SCA) and 30% (TSA) EV- and HP-penetration. Still, 

the supply of conventional consumers in combination with EVs (without HPs) can be provided even 

for high EV numbers (Figure 9b), applying the SCA or TSA. Using the SIA, this provision is limited 

to an EV-penetration of 10% in 8.3% (one) of all feeders. Initial voltage problems also occur even at 

low penetration levels in at least one of the suburban grid’s feeders: 5% (SIA) and 30% (SCA and TSA) 

penetration supplying CC and EV and 5% (SIA), 30% (SCA) and 20% (TSA) integrating additional 

HP-loads (Figure 9). Similarly, the rural LV grid is strongly affected by future EV- and HP-numbers 

with respect to critical voltage deviations. While only 10% (SIA and TSA) and 20% (SCA) of EVs can 

be supplied, the integration of additional HPs is restricted to 10% (SCA and TSA) or even impeded 

completely (SIA). 

 

(a) 

 

(b) 

Figure 9. Share of critical feeders in terms of inadmissible voltage deviations caused by CC and EV 

(a) as well as CC, EV and HP (b) considering various load approaches, grid regions and penetration 

levels. 

Furthermore, the SIA-approach determines thermal overloads caused by CC and EVs in at least 

one feeder in the urban grid located in the city outskirts (80% EV-penetration) and the suburban one 

(50%). The supply of CC, EVs and HPs on the other hand triggers grid line overloads at 30% 

(outskirts), 20% (suburban) and 80% (rural) EV- and HP-penetration (Figure 10). Using the SCA- or 

TSA-approach, thermal problems only occur in one feeder in the suburban LV grid at 80% (CC and 

EV) and 50% (CC, EV and HP) penetration. 

 

(a) 
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(b) 

Figure 10. Share of critical feeders in terms of thermal overloads caused by CC and EV (a) as well as 

CC, EV and HP (b) considering various load approaches, grid regions and penetration levels. 

In addition to critical voltage characteristics and thermal overloads, we investigate the maximal 

thermal utilization of the LV grids’ DS depending on the supplied grid customers (Figure 11): CC 

and EV (a) or CC, EV and HP (b). The urban (city center) grid’s transformer shows a maximal thermal 

load of 75.8% (SIA), 46.1% (SCA) and 28.2% (TSA) supplying CC and EV and thereby the compliance 

with its nominal transformer capacity (Table 1). Since the investigated urban grid structure impedes 

the installation of HPs, no additional loads are added in the CC, EV and HP scenario. 

 

(a) 

 

(b) 

Figure 11. Maximal thermal utilization of the distribution substation’s transformer caused by CC and 

EV (a) as well as CC, EV and HP (b) considering various load approaches, grid regions and 

penetration levels. 

The urban grid located in the city outskirts faces grid restrictions (only) when applying the static 

individual load aggregation (SIA) and considering CC, EV and HP. In fact, the supply of these EV- 

and HP-numbers results in a maximal transformer load of 114.80% (SIA), 66.44% (SCA) and 71.91% 

(TSA). Without integrated HPs, the maximal transformer load decreases to 94.6% (SIA), 55.8% (SCA) 

and 58.1% (TSA). In the suburban LV grid on the other hand, the congestion of the transformer’s 

capacity depends strongly on the applied load approach: While the SIA-approach results in a 

maximal thermal utilization of 106.0% (CC and EV) and 130.8% (CC, EV and HP) powering a 

penetration of 10%, the SCA- (66.5% and 72.8%) and TSA-approach (66.8% and 69.7%) estimate this 

scenario differently (Figure 11). An integration of numerous EVs (80% penetration) creates a maximal 

thermal utilization of 225.1% (SIA), 179.5% (SCA) and 172.4% (TSA) in the suburban grid’s DS, 
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whereas the installation of additional electric HPs increases this load to 298.9%, 187.7% and 211.9%. 

Despite lower nominal capacity (Table 1), the rural grid’s transformer shows quite similar results in 

this respect (Figure 11): Initial thermal restrictions are triggered by 20% (CC and EV) and 10% (CC, 

EV and HP) applying the static individual load aggregation (SIA). Using the static combined load 

approach (SCA), these EV- and HP-numbers induce a maximal thermal utilization of 71.7% and 

80.7%. Furthermore, the performed time series analyses (TSAs) indicate utilizations of 74.3% (CC and 

EV) and 82.0% (CC, EV and HP) compared to the nominal transformer power. 

4. Discussion 

By means of static (SIA and SCA) and time series-based (TSA) load flow calculations, we analyze 

the impacts of the following factors on the identification of future grid extension needs on the LV 

level: 

 The consideration of temporal load aggregations of various grid consumer classes in the form of 

three load approaches; 

 The investigated grid region, including realistic housing types, affecting the available charging 

power and HP-numbers. 

The analyzed load approaches—static individual aggregation (SIA), static combined 

aggregation (SCA) and time series analysis (TSA)—vary in terms of the consideration of temporal 

interactions between numerous consumer classes: While the SIA-approach assumes a temporal 

aggregation of all consumer classes’ peaks, the other two take consumer class-specific peak periods 

into account, either by “combined” coincidence factors (SCA) or stochastically modeled time series 

(TSA). On both the DS-transformer level as well as the feeder level, grid analyses based on the static 

load aggregation applying an individual coincidence (SIA) result in an overestimation of aggregated 

maximal loads, compared to the SCA- and TSA-approach. Neglecting temporal consumer class 

interactions, peak loads of all consumer classes are summed up, resulting in increased voltage 

decreases (Figure 6) and thermal utilizations (Figure 7). As a result, even the simulation of existing 

grid customers only (0% penetration) in the form of HOs, CBs, ABs and WHs reveals much higher 

transformer load (e.g., 74.7% in the suburban grid) compared to that measured during real-life 

operation (42.0%). This high degree of deviation between modeled and measured loads, even when 

evaluating present-day grid conditions, highlights the need to calibrate modeled grid customer loads 

with real-life data (Appendix A.1). The TSA benefits from this calibration and thereby allows for an 

exact consideration of current consumer loads. On this account, the TSA provides this study’s “true” 

results as a benchmark for static load approaches. 

Besides conventional consumer loads, deviations between the SIA and the TSA become more 

considerable with an increasing number of supplying grid customer classes and with increasing EV- 

and/or HP-penetrations. In fact, the more grid customers are taken into account for grid simulations, 

the more temporal peak load aggregations between EVs, HPs and conventional consumers (CC) are 

assumed by the SIA-approach. While deviations compared to the TSA-approach slightly increase 

(thermal utilization) or even decrease (voltage) with raising EV-numbers (CC and EV), the inclusion 

of an additional consumer class varying in terms of temporal load characteristics, e.g., in the form of 

electric HPs (CC, EV and HP), enhances this effect (Figure 8). Considering EV charging with 3.7 kVA 

and 11 kVA in combination with electrical HPs, the presented SIA-approach differs by up to 86.15% 

(voltage) and 59.44% (thermal loads) with reference to the defined thresholds and compared to a grid 

simulation based on time series. Consequently, these load approach deviations result in a 

significantly higher extent of calculated grid reinforcement needs: Except for the urban LV grid 

located in the city center, all grid regions face initial inadmissible voltage deviations as well as 

thermal overload at much lower EV- and HP-penetrations and thereby at a much earlier stage. 

The load aggregation applying a “combined” coincidence factor (SCA) on the other hand 

corresponds more precisely to detailed long-term TSAs (Figure 8). Due to a missing load profile 

calibration, deviations compared to the TSA cannot be prevented completely in the reference scenario 

(excluding EVs and HPs), although they are decreased significantly compared to the ones between 
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the SIA and TSA. More importantly, deviations compared to the TSA show reduced dependence on 

the number of varying grid customer classes (demonstrated by two cases: CC and EV as well as CC, 

EV and HP) in contrast to the SIA-approach. Despite a low NRMSD including all grid components, 

increasing penetration levels reveal substantial differences between the SCA and TSA in single 

feeders. Due to the missing calibration of conventional consumer loads, the SCA-approach results in 

slightly higher grid loads compared to the TSA considering CC only. As a result, the majority of 

feeders follow this trend when considering additional EV- and HP-numbers: Supplying an EV- and 

HP-penetration of 20% (Figure 12a) and 50% (Figure 12b), the SCA identifies slightly higher voltage 

drops in most feeders relative to the TSA-approach. Considering for example a penetration of 50%, 

the TSA reveals inadmissible voltage characteristics in one (CC and EV) or three feeders (CC, EV and 

HP) respectively, whereas the SCA-approach detects these in three or four feeders (Figure 9) 

respectively. However, the SCA-approach reveals slightly decreased grid loads and, thereby, lower 

voltage deviations in feeder F2 and F4 (Figure 12) compared to the TSA. This finding is based on the 

stochastic nature applied for modeling consumer load profiles and their coincidence. 

 

(a) 

 

(b) 

Figure 12. Comparison of various load approaches regarding voltage deviations at the distribution 

substation (DS1) as well as at feeders (F1–F9) considering an EV- and HP-penetration of 20% (a) and 

50% (b) supplied by the suburban LV grid. 

As described in Section 2.3., the latter is modeled by selecting individual load profiles randomly 

(according to the number of supplied consumers) from a pool of all the modeled time series and by 

aggregating them for each iteration (365) representing each day of the year. According to probability 

theory’s urn problem, the number of possible combinations when drawing r individual load profiles 

from a pool of n load profiles is calculated by the binominal coefficient (𝑛
𝑟
) [61]. Since the SCA-

approach uses a combined consideration of grid customers’ coincidence, theoretically the number of 

possible load profile combinations of each grid customer class (HO, CBs etc.) must be multiplied. 

Therefore, to determine all possible load profile combinations in feeder F2 supplying 32 HOs (out of 

231), three CBs (88), seven ABs (22), three WHs (10), eleven EVs (160) and five HPs (70), a number of 

1.46 · 1075 combinations must be considered. Hence, the maximum coincidence may be 

underestimated in single feeders based on a limited number of 365 iterations applied for this study. 

As a result, the SCA- (zero feeder) and TSA-approach (one feeder) reveal a different share of 

inadmissible voltage characteristics in the suburban LV grid considering an EV- and HP-penetration 

of 20%, demonstrated in Figures 9b and 12a. This stochastic nature also affects the SIA-approach and 

its accuracy when determining the maximum coincidence of individual consumer classes. 
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Furthermore, with an increasing EV- and HP-penetration, the number of grid consumers (and classes) 

rises, which enhances this stochastic effect. Based on the disproportional impact of large deviations 

on the NRMSD, it is very sensitive to outliers [62]. As a result, this stochastic nature influences the 

NRMSD in both static load approaches, especially at higher penetration levels: While the SCA’s slight 

underestimation of grid loads in single feeders compared to the TSA results in increasing NRMSDs, 

the SIA’s overestimation of grid loads is reduced, which triggers a decrease in the NRMSD (Figure 

8). Apart from the suburban region, the urban (city outskirts) and rural LV grids are both affected by 

this issue, causing an underestimation of aggregated grid loads and, thereby, voltage problems in 

single feeders by the SIA compared to the TSA-approach. In order to solve this problem, yet avoiding 

having to run all possible combinations, the number of iterations could be increased until certain 

criteria are fulfilled, e.g., the standard error of the mean is below a defined limit [37], completely 

decoupled from the number of analyzed grid customers. However, even with 365 iterations the 

described effect only leads to minor differences. In general, deviations between static and time series 

simulations in terms of voltage estimations can result from a uniform spatial distribution of static 

loads to the feeder’s (or substation’s) grid nodes [35]. In this study, this aspect is counteracted by 

spatially allocating the calculated aggregated static load according to the PCC’s contribution to the 

aggregated feeder (or substation) load (Section 2.4.1). Nevertheless, small deviations between the 

analyzed load approaches will remain, even with high numbers of iterations, due to this effect. 

Besides an investigation into various load approaches, the presented results allow an estimation 

of grid extension needs induced by future EVs and HPs considering four different grid regions. In 

fact, the analyzed urban LV grid in the city center shows little impacts, based on the assumed 

charging power of 3.7 kVA (three-phase) available at MARBs and their lack of potential for installing 

electric HPs. This insight correlates with the findings of Birk et al. (2018) [33], in which, inter alia, the 

impact of EV charging with 3 kW on a city center LV grid is found to be nonexistent. Furthermore, 

even the urban LV grid located in the city outskirts faces little impacts regarding inadmissible voltage 

deviations (the TSA-approach identifies critical voltage only in one feeder starting at an EV- and HP-

penetration of 30%) and thermal overload (neither grid lines nor transformer) applying the SCA- or 

TSA-approach. On the contrary, EV charging with 11 kVA in combination with the supply of electric 

HPs in the suburban and rural regions triggers inadmissible voltage deviations and/or transformer 

loads at the DS even at low EV- and HP-penetrations. For example, a penetration of 20% EVs and 

HPs combined already results in thermal congestions in suburban and rural DS transformers, while 

preventing thermal overload in grid lines—both similarities to Hülsmann et al. (2019) [29]. In 

addition, these penetration levels cause inadmissible voltage deviations in the suburban and rural 

LV grid, comparable with the findings of Mendaza et al. (2014) [28]. Apart from region-specific grid 

structures (e.g., degree of cabling, number of PCCs etc.), these results demonstrate the significance of 

considering realistic housing types (e.g., available charging power and possibility of installing HPs) 

for evaluating future grid extension needs on the LV level. Furthermore, they clarify that EV charging 

with a reduced power of 3.7 kVA (neglecting HPs) enables a grid-friendly integration of numerous 

vehicles, presuming a balanced phase-allocation. Otherwise, further simulations dealing with 

imbalanced grid conditions caused by an area-wide implementation of single-phase charging EVs 

must be performed. Of course, potential incentives for EV users aimed at low-power charging (e.g., 

tariff-based charging) must be addressed in addition. Moreover, a variation of available state-of-the-

art charging power and its impacts on existing power grids are crucial for detailed grid planning. 

Besides the abovementioned limitations due to a time period of one year and the need to 

investigate additional EV charging characteristics, further studies should focus on the simulation of 

a higher number of LV grids per region, enabling a more general comparison of different grid regions 

and their capacity for integrating future grid customers. Furthermore, in this study only certain grid 

lines and bus bars are examined in terms of voltage characteristics and thermal overload, assuming 

a uniform spatial distribution of EV- and HP-penetrations. Still, based on local aggregations of EV 

charging loads or HP-loads, certain feeders may require grid reinforcements at an earlier stage. On 

the other hand, voltage evaluation in accordance with the EN 50,160 [59] is based on the calculation 

of ten-minute means, from which 95% must comply with defined limits in each week. Compared to 
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this study, which assesses inadmissible voltage characteristics according to their minimum during 

one year considering a time resolution of one minute, this would provide more room for EV- and/or 

HP-induced voltage deviations. However, the authors will address the highlighted aspects by means 

of further research projects and will publish new findings in this field. 

5. Conclusions 

The performed grid simulations clarify the range of potential grid restrictions induced by future 

EVs and electric HPs, depending on two aspects: the applied load approach and the considered grid 

region. The former’s variation demonstrates the need to include consumer-specific temporal behavior 

and thereby load aggregations along with other grid customers. Since the analyzed classic grid 

planning approach (SIA) is based on consumer class individual coincidence factors, it overestimates 

future grid extension needs, assuming the temporal aggregation of all consumer classes’ peak loads. 

In fact, this issue becomes more important with an increasing number of varying consumer classes 

(households, EVs, HPs etc.). Consequently, this classic grid planning approach is inadmissible for 

identifying future grid congestions, unless it is adapted to comply with future grid customers. 

Therefore, this paper presents the modeling of applicable coincidence factors based on highly 

resolved time series using a combined load aggregation of conventional grid customers, EVs and 

electric HPs. Applying the modeled combined coincidence factors (SCA), temporal load aggregations 

of various consumer classes are estimated in a realistic way, allowing their application in future grid 

planning. Nevertheless, slight deviations remain compared to detailed time series analyses (TSAs) 

using calibrated consumer loads. This finding highlights the need to integrate measured consumer 

data into future grid planning procedures. 

As for the second aspect, this paper demonstrates significant differences in terms of the 

considered grid region, applying real-life grid structures and realistic housing types. While urban LV 

grids (located in the city center and in the city outskirts) show increased capacity for integrating 

future grid customers, suburban and rural grids face inadmissible voltage deviations and/or 

transformer loads even at low EV- and HP-penetrations. Consequently, when it comes to the 

evaluation of grid extension needs induced by future grid customers, various grid regions must be 

evaluated individually including real-life grid structures and housing types. Furthermore, this work 

points out that EV charging with 11 kVA triggers future grid extension requirements even at low EV 

numbers, whereas the reduction of charging power enables a grid-friendly integration of numerous 

EVs. 
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Appendix 

Appendix A.1. Calibration of Modeled Time Series Representing Conventional Consumer Loads 

The time-resolved calibration of conventional consumer loads uses measured active 

(𝑃𝐷𝑆,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡) and reactive power profiles (𝑄𝐷𝑆,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡) from each distribution substation (DS). 

Figure A1 demonstrates these time series with a time resolution of one minute. 

 

Figure A1. Measured load profiles and calibration parameter (CP), including active and reactive 

power, considering the suburban LV grid’s distribution substation (DS). 

The correlation between measured and modeled active and reactive power time series is 

determined on the DS level by a time-resolved calibration parameter 𝐶𝑃(𝑡)  calculated with 

Equations (A1) and (A2). 

𝐶𝑃𝑃(𝑡) = ⁡
𝑃𝐷𝑆,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡(𝑡)

∑ 𝑃𝑃𝐶𝐶,𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑(𝑡)
𝑁𝑜.𝑜𝑓𝑃𝐶𝐶⁡
𝑃𝐶𝐶=1

 (A1) 

𝐶𝑃𝑄(𝑡) = ⁡
𝑄𝐷𝑆,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡(𝑡)

∑ 𝑄𝑃𝐶𝐶,𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑(𝑡)
𝑁𝑜.𝑜𝑓𝑃𝐶𝐶
𝑃𝐶𝐶=1

 (A2) 

The calibration of modeled conventional consumer load profiles with real measured data 

demonstrates the need to use real-time load profiles: On the one hand, modeled HO- and CB-loads 

are decreased (CF < 1) in most of the time steps during the day. One the other hand, this calibration 

increases modeled electrical WH-loads significantly during the night (CF > 1), which is based on the 

usage of standardized, averaged load profiles considering this consumer class. Finally, these time-

resolved calibration parameters are applied to adapt modeled conventional consumer load profiles 

to each time step 𝑡 and each PCC according to Equations (A3) and (A4).

𝑃𝑃𝐶𝐶(𝑡) = ⁡ 𝑃𝑃𝐶𝐶,𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑(𝑡) ∙ 𝐶𝑃𝑃(𝑡) (A3) 

𝑄P𝐶𝐶(𝑡) = ⁡ 𝑄𝑃𝐶𝐶,𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑(𝑡) ∙ 𝐶𝑃𝑄(t) (A4) 

Appendix A.2. Modeling the Spatial Distribution of EV Charging Points 

To model the spatial distribution of privately charged EVs individually for each LV grid, we 

initially determine the total number of vehicles (corresponding to an EV-penetration of 100%) for 

each PCC and both user groups. The LV grids’ total number of vehicles charging at home is 

determined according to Equation (A5) based on the estimated number of persons per household 

(Table 2) in combination with a grid region-dependent degree of mobility (DoM) [63]. The DoM 

represents the correlation between the number of passenger vehicles and the number of persons 

(Table A1). 
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𝑁𝑜. 𝑜𝑓⁡ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠⁡ 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔⁡ 𝑎𝑡⁡ ℎ𝑜𝑚𝑒𝑃𝐶𝐶 =⁡ 𝑁𝑜. 𝑜𝑓⁡ 𝑝𝑒𝑟𝑠𝑜𝑛𝑠𝑃𝐶𝐶 ∙ 𝐷𝑜𝑀 + 𝑁𝑜. 𝑜𝑓⁡ 𝐴𝐵𝑃𝐶𝐶  (A5) 

In Equation (A5), we additionally assume one vehicle per agricultural business (AB) taking 

domestic EV charging at farms into account. Furthermore, the number of vehicles charging at work 

is estimated for each PCC on the basis of available parking possibilities (one EV per parking lot) at 

commercial businesses (CBs), identified by the use of Geographic Information System (GIS) data [64]. 

However, since CBs in the considered LV grids are small- and medium-sized enterprises exclusively, 

these parking possibilities and thereby the total number of employees charging at work are rather 

low (Table A1) compared to domestic charging at home. For example, despite the existence of CBs in 

the rural grid and the urban grid located in the city center, they show no possibility of installing 

potential charging points at work. 

Table A1. Degree of mobility (DoM) and number of vehicles depending on the grid region. 

 
Urban 

(City Center) 

Urban 

(City Outskirts) 
Suburban Rural 

Degree of mobility (DoM) [%]. [63] 47.7 47.7 61.6 61.6 

No. of vehicles charging at home 243 152 153 34 

No. of vehicles charging at work 0 5 17 0 

To analyze potential grid impacts induced by future EV-numbers, we simulate several EV-

penetration rates (0%, 5%, 10%, 20%, 30%, 50% and 80%), which represent the share of EVs in relation 

to the total number of passenger vehicles. Of course, the EV-penetration may differ spatially within 

a certain LV grid or a certain feeder depending on demographic, (age, gender etc.), sociological 

(income, level of education etc.) and psychological aspects (motives, attitudes etc.) [20]. Therefore, 

after determining the total number of vehicles and defining the considered EV-penetration rate, it has 

to be decided which of the LV grid’s passenger vehicles are electrified and require a supply by the 

local power grid. However, to enable a feeder-specific analysis of potential grid restrictions, in this 

study the selected EV-penetration rate is applied to each feeder uniformly. In other words, the 

number of EVs supplied by a certain grid feeder equals its number of vehicles multiplied by the EV-

penetration rate. 

Furthermore, these EVs are distributed to the feeder’s PCCs in accordance with their total 

number of vehicles: Starting with the PCC at the end of each feeder, EVs are “added” one by one to 

PCCs closer to the DS until the feeder’s number of supplying EVs is reached. If all vehicles allocated 

to a certain PCC are electrified, this PCC is skipped for further EV-allocations. The selected allocation 

method results in a slightly higher EV density at the end of the feeder, providing rather critical 

analyses of future EV-induced grid impacts. 

Appendix A.3. Modeling Realistic Mobility Patterns of Passenger Vehicles 

Independent of the spatial component, a time-resolved modeling of EV charging loads requires 

detailed knowledge about user group-specific mobility patterns, including the time of charging and 

the driven mileage. Since this study deals with uncontrolled charging of numerous EV users (without 

any temporal coordination of EV charging or price-triggered charging etc.), the following 

assumptions are made: While domestically charged EVs are connected to the power grid for 

recharging after their final trip of the day, EVs are charged at work during morning periods after 

their arrival at the parking lot. For modeling these uncontrolled charging characteristics, the hour-

resolved probability density of the time of arrival at home and at work (Figure A2) is acquired by 

real-life traffic analysis [53–55,65]. The histograms of the time of arrival demonstrate clear peak 

periods between 14:00 and 18:00 (at home) and between 6:00 and 10:00 (at work). Considering 

uncontrolled EV charging, the majority of vehicles are connected to the grid during these periods of 

the day. Furthermore, the cumulative distribution function (CDF) of the time of arrival is 

approximated for both user groups by using a linear interpolation between hourly resolved sample 

points (Figure A4). 
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(a) 

 

(b) 

Figure A2. Probability density of the time of arrival at home (a) and at work (b) [65]. 

In addition to the time of charging, the modeling of EV charging load profiles requires the 

determination of traveled distances for each day of the year. Considering EVs charged at home, we 

apply statistical data concerning the mobility indicator, the number of trips per day and the share of 

trips covered by motorized individual transport (MIT) in the form of standard normal distributions, 

acquired by traffic surveys [66], considering various regions, seasons and weekdays (Table A2). 

Table A2. Mean (µ) and standard deviation (σ) of the standard normal distribution considering the 

mobility indicator, the number of trips per day as well as the share of trips covered by motorized 

individual transport (MIT) depending on season, weekday and grid region (urban–suburban–rural) 

[66]. 

 
Mobility Indicator 

[%] 

Number of Trips per 

Day 

Share of Trips Covered by 

MIT 

µ: summer workday 85.1–83.0–80.0 3.58–3.44–3.32 34.9–54.8–57.7 

µ: summer Saturday 81.8–77.3–72.7 3.39–3.35–3.37 33.8–48.4–53.6 

µ: summer Sunday 73.5–61.0–66.1 3.02–2.89–2.88 32.2–41.6–43.9 

µ: transition 

workday 
86.1–83.0–84.5 3.47–3.39–3.25 41.5–50.7–55.5 

µ: transition 

Saturday 
82.7–77.3–76.8 3.29–3.30–3.30 40.2–44.8–51.8 

µ: transition Sunday 74.4–61.0–69.8 2.93–2.85–2.82 38.3–38.5–42.2 

µ: winter workday 80.6–81.7–82.5 3.41–3.38–3.43 36.6–44.0–55.9 

µ: winter Saturday 77.4–76.1–75.0 3.23–3.29–3.48 35.5–38.9–51.9 

µ: winter Sunday 69.7–60.0–68.1 2.88–2.84–2.97 33.8–33.4–42.5 

σ: summer 35.6–37.6–40.0 1.77–1.80–1.68 47.7–49.8–49.4 

σ: transition 34.6–37.6–36.1 1.63–1.79–1.69 49.3–50.0–49.7 

σ: winter 39.5–38.6–38.0 1.68–1.63–1.91 48.2–49.6–49.7 

The mobility indicator is defined as the share of mobile persons out of the total number of 

persons and is applied to define whether a vehicle leaves its charging point at home for a trip on a 

certain day. While EVs charged at home may perform several trips per day, a mobility indicator of 

100% and a constant number of trips per day covered by MIT of one is assumed for each workday 

considering EVs charging at work. Still, despite the annual modeling of mobility patterns, potential 

periods of the year with no EV charging (holidays, sick leave, vehicle service etc.) are neglected. In 

addition, the traffic surveys used [66] provide user group-specific statistical data with regards to the 

covered distance per trip homewards and to work depending on the grid region and weekday (Table 

A3). 
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Table A3. Share of trips in % according to the covered distance depending on the EV user group, 

weekday and grid region (urban–suburban–rural) [66]. 

Covered 

Distance 

Homeward—

Weekday 

Homeward—

Saturday 

Homeward—

Sunday 

To work—

Weekday 

<0.5 km 0.9–2.3–1.9 2–1.6–2.4 1.1–2.7–1.7 3.3–3.6–6 

0.5–1.0 km 4.4–4.6–5.5 2.3–7.5–5.9 2.5–5.1–4.7 5.3–4–6.2 

1.0–2.5 km 13–13.8–11.4 11.3–12.4–17.6 8.6–12.5–13.9 11.7–11.7–8.6 

2.5–5.0 km 27.7–20.3–20.4 28.2–24.4–19.6 23.8–20.1–19.4 29.3–13.6–14.9 

5.0–10 km 24.8–21.1–19.5 22.7–19.7–16.2 21.9–15.4–20.1 25.9–20.1–15.4 

10–20 km 16.2–18.9–19.6 20.8–16.9–18.1 22.4–18.8–22.2 15.8–22–19.9 

20–50 km 9–14.4–16.1 6.8–12.5–15.1 12.3–13.6–11.7 6.4–20.8–22 

>50 km 4–4.6–5.6 5.9–5–5.1 7.4–11.8–6.3 2.3–4.2–7 

Evidently, the probability density of covered distances per trip indicates very similar 

distributions regarding homeward trips and trips to work. The majority of trips (e.g., 95.4% 

homewards and 95.8% to work on a workday in a suburban region) are characterized by distances of 

less than 50 km, which can easily be supplied by state-of-the-art EV models (Table A5). The applied 

data with regards to the time of arrival and the covered distance show high similarity to those 

presented by Lojowska et al. (2012) [51]. Furthermore, we apply these statistical data in order to 

approximate the CDF of covered distances by log-normal distributions for each weekday and each 

user group (Table A4). Assuming no trips to work on Saturdays and Sundays, only workdays are 

relevant for this user group. 

Table A4. Mean (µ) and standard deviation (σ) of the log-normal distribution of covered distances 

per trip derived from statistical data (Table A3) [66], depending on the EV user group, weekday and 

grid region (urban–suburban–rural). 

 Homeward—Weekday Homeward—Saturday Homeward—Sunday To work—Weekday 

µ 1.86–1.96–2.05 1.94–1.88–1.90 2.17–2.13–2.02 1.67–2.1–2.07 

σ 1.14–1.27–1.31 1.19–1.29–1.37 1.21–1.47–1.31 1.13–1.32–1.50 

Based on the prepared statistical mobility data, annual driving performances are individually 

modeled for each EV of both user groups (Figure A3) by a probabilistic predictive approach according 

to [19,53–55,67]. Therefore, we initially examine for each day of the year the occurrence of a trip 

(home)—by applying a random number (1. RN) and the CDF (1) of the mobility indicator of MIT—

as well as whether it is a workday or not (work). If so, the time of arrival at home after the final trip 

of the day or the time of arrival at the workplace’s parking lot is determined by applying additional 

random numbers (2. RN and 6. RN) and the prepared mobility data in the form of CDFs (2 and 6), 

demonstrated in Figure A4. In the next step, the number of trips—3. RN and (3)—and the share of 

trips covered by MIT—4. RN and (4)—are defined and applied to calculate the number of trips 

covered by MIT. Considering EV charging at work, the number of trips covered by MIT equals one 

on workdays and zero on Saturdays and Sundays. Finally, the covered distance is determined for 

each MIT-trip by using 5. RN and 7. RN as well as (5) and (7). Since this study deals with grid impacts 

caused by private charging at home and at work, public (re-)charging during the day is neglected. As 

a result, the complete electric energy demand is supplied exclusively by private charging points at 

home or at work, depending on the considered user group.
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(a) 

 

(b) 

Figure A3. Probabilistic modeling of mobility patterns: charging at home (a) and charging at work (b). 

 

(a) 

 

(b) 

Figure A4. Probabilistic determination of time of arrival (a) and covered distance (b) based on real 

mobility data. 

Therefore, the daily trips’ covered distances are aggregated to identify the total distance each EV 

has covered on this day. Assuming charging at work solely, the stochastically determined work-trip’s 

distance is multiplied by two, taking round trips (work–home–work) into account. In the end, this 

probabilistic approach provides the time of charging as well as the covered distance of each EV for 

both user groups, for each day of the year. 

  

Random number

Time of arrival

Random number

Covered distance
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Appendix A.4. EV Model Specifics 

Besides realistic mobility patterns, the time-resolved modeling of EV loads requires the 

consideration of several EV model specifics. Since both EV user groups (charging at home and 

charging at work) deal with passenger vehicles, numerous commercial EV models are taken into 

account. Therefore, Germany’s 15 most registered EV models are picked for this study, based on the 

number of registrations in the year of 2019 [68]. Finally, state-of-the-art EV model specifics (Table A5) 

are acquired for each of them: the frequency of occurrence [68], battery capacity, specific energy 

consumption and charging efficiency [69]. 

Table A5. Specifics of EV models applied for modeling EV charging loads. 

EV 

Model 

Frequency (%) 

[68] 

Battery Capacity 

(kWh) [69] 

Specific Energy 

Consumption (kWh/km) [69] 

Charging 

Efficiency (-) 1 [69] 

1 19.0 41 0.203 0.828 

2 16.8 75 0.209 0.838 

3 15.0 27.2 0.184 0.708 

4 8.6 34.9 0.173 1.000 

5 7.3 17.6 0.183 1.000 

6 6.4 95 0.237 1.000 

7 6.3 64 0.195 0.866 

8 4.5 40 0.221 1.000 

9 4.1 17.6 0.183 1.000 

10 3.2 28 0.147 0.906 

11 2.9 27 0.191 1.000 

12 1.6 90 0.276 0.893 

13 1.5 90 0.240 1.000 

14 1.3 18.7 0.177 1.000 

15 1.3 40 0.281 0.853 
1 In the case of an efficiency of 1.0, charging losses are included in the energy consumption. 

Since the listed specific energy consumption was measured at an ambient temperature of 20 °C 

[69], the impact of ambient temperature is estimated for all EV models equally considering summer 

(mean temperature of 18.8 °C [70], increase of 1.6%), transition (mean temperature of 10.5 °C [70], 

increase of 13.1%) and winter periods (mean temperature of 2.7 °C [70], increase of 28.3%) based on 

Tober (2016) [71]. Besides individual EV specifics, measured EV charging profiles of all the listed EV 

models including phase-imbalanced active and reactive power are applied to model annual charging 

profiles. These real-life charging curves enable the consideration of realistic charging characteristics, 

e.g., the EV-model-specific transition from constant-current-phase to constant-voltage-phase. 

Analogous to the probabilistic determination of mobility patterns (Figure A4), the individual vehicle 

model (including vehicle specifics) is selected for each EV by applying the EV models’ frequency of 

occurrence (Table A5) in the form of the CDF (approximated by linear interpolation) in combination 

with random numbers. Based on the determined specific energy consumption and charging 

efficiency of a certain EV model in combination with the predefined daily covered distance, the 

energy demand supplied by the grid is calculated and limited to the battery capacity eventually. 

Considering state-of-the-art EV models and the trend towards increasing charging power (even at 

private charging points at home or at work), charging with 11 kVA is technically feasible for each of 

the selected EV models. Nevertheless, the actual available charging power might be limited by 

restricted power installed at the interconnected charging point at home or at work. 

Appendix A.5. Supplementary Results: Deviations between Static and Time Series-Based Load Approaches 

In addition to load approach deviations in the suburban LV grid demonstrated in Section 3.1, 

Figures A5–A7 show the remaining analyzed grid regions. 
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Figure A5. Load approach-induced normalized root mean square deviations (NRMSDs) compared to 

the TSA in terms of voltage characteristics and thermal utilization considering the urban LV grid 

located in the city center. 

 

Figure A6. Load approach-induced normalized root mean square deviations (NRMSDs) compared to 

the TSA in terms of voltage characteristics and thermal utilization considering the urban LV grid 

located in the city outskirts. 

 

Figure A7. Load approach-induced normalized root mean square deviations (NRMSDs) compared to 

the TSA in terms of voltage characteristics and thermal utilization considering the rural LV grid. 
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The trend towards increasing the charging power of future e-mobility will challenge existing distribution power 

systems and raise grid utilization- and connection costs. Flywheel energy storage systems (FESSs) may reduce 

future power grid charges by providing peak shaving services, though, are characterized by significant standby 

energy losses. On this account, this study evaluates the economic- and technical suitability of FESSs for supplying 

three high-power charging electric vehicle use cases. Therefore, we initially investigate the impact of individual 

charging patterns on the required FESS capacity, the annualized costs, and the FESS efficiency. Based on these 

correlations, the economic and technical optima of FESS applications are identified for each use case: The supply 

of electric buses enables a cost-efficient operation at the technical optima of FESSs. In contrast, the economic 

suitability of FESSs considering electric last-mile delivery trucks or highway fast-charging is restricted to low 

recharging energy demands and high charging power of electric vehicles. Furthermore, a cost-efficient operation 

of FESSs at the technical optima requires either a reduction of flywheel costs or an increase of power-based grid 

utilization charges in the upcoming years. 
 

 

 

1. Introduction 

Since more than a fourth of greenhouse gas emissions in the Euro- 

pean Union are caused by the transport sector, the EU’s targeted carbon- 

neutrality till 2050 will depend significantly on traffic-related emission 

savings [1]. These traffic-related emissions are, besides shipping and 

aviation, primarily caused by road transport, including passenger cars 

(43.5%), heavy-duty trucks and busses (18.8%), and light-duty trucks 

(8.5%) [2]. Consequently, the European Parliament approved new 

CO2-emission targets in 2019 [3,4], which should be complied, among 

other things, by enhanced electrification of the traffic sector in the up- 

coming years [1]. Nevertheless, while forced electrification of various 

vehicle classes will clearly contribute to the transport sector’s decar- 

bonization, it will face the existing power system with unknown energy- 

and especially power demand. Aside from private charging of passenger 

vehicles at home or work [5–9], numerous studies demonstrate that 

future grid loads are triggered by electric vehicles (EVs) urging for 

high-power charging: electric busses (EBs) [10–12], highway fast-

charging (HFC) of passenger vehicles [13,14] or electric last-mile 

delivery trucks (ELDTs) [5]. In combination with the energy system’s 

ongoing electrification, these new, increased power demands will limit 

local grid capacities. Since classic grid reinforcement measures often 

entail significant investment costs and lengthy approval processes [15], 

the future integration of additional EV charging points (CPs) could be 

inhibited. As a countermeasure, flexibility options on the customer side 

allow for a decrease of installed grid capacity and should be considered 

in future grid connection processes. Therefore, implementing these 

flexibility tools must comply with the respective EV use case and its user 

behavior. Demand-side measures [16–21], for example, interfere with 

EV customer charging behavior [22] and are rather unsuitable for EV 

use cases with a strict schedule [11]. Similarly, grid support provided by 

bidirectional charging via vehicle-to-grid technology depends signifi- 

cantly on the EV parking time, which inhibits its provision by EV use 

cases with short idle times (e.g. EBs, HFC, ELDT, etc.) [23]. Energy 

storage systems (ESSs), on the other hand, contribute to increased 

flexibility in the power system [11,24], while allowing uncontrolled EV 

charging without interventions in daily life. Besides developing suitable 

operation- and control strategies [22,25–32], the integration of ESSs 
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into future planning processes certainly requires detailed knowledge 
about required ESS specifications regarding various high-power 
charging EV use cases. 

1.1. State of research 

Numerous studies deal with the design of ESS-specifications required 
for smoothing EV-induced peak loads according to classic peak shaving 
measures. However, these works differ substantially in terms of the 
applied design criteria and are therefore classified as followed. 

1.1.1. FESS design based on predefined grid capacity 
The majority of works [23,33–36] use predefined grid capacity for 

designing appropriate ESSs: Ligen et al. (2019) [23], for instance, 
examine varying ESS-specifications to limit potential grid reinforcement 
needs at an EV ultra-fast-charging station. Therefore, they iteratively 
increase the ESS capacity (starting with 100 kWh) until a month of 
operation can be supplied safely, assuring compliance with the available 
grid capacity. Bai et al. (2010) [33] design an ESS for supplying a public 
fast-charging station in a simplified way: Based on stochastically 
modeled charging profiles of ten passenger EVs, the average power is 
defined as the available grid capacity, whereas exceeding power peaks 
are supplied by an ESS. Based on that, they determine ESS specifications 
necessary for complying with the available grid capacity. Joos et al. 
(2010) [34] analyze a combined integration of a flywheel energy storage 
system (FESS) and a supercapacitor into a public fast-charging station, 
though, excluding realistic EV charging behavior. Gjelaj et al. (2019) 
[35] propose the design of a battery energy storage system (BESS) for 
integrating public DC fast-charging points into the low-voltage level. 
Therefore, EV charging demands are stochastically modeled based on 
real-life mobility data and applied for ESS-design. Bryden et al. (2019) 
[36] demonstrate a method to identify the ESS’s optimum capacity to 
support a fast-charging station. Therefore, the authors initially indicate 
the required number of fast-charging points at a specific location 
depending on EV users’ acceptable average waiting time. 

1.1.2. FESS design based on the prevention of voltage violations 
Required ESS-specifications are also determined based on local grid 

restrictions in the form of voltage violations [37,38]: Piromjit et al. 
(2017) [37] identify appropriate sizes of ESSs to prevent inadmissible 
voltage deviations within the medium-voltage IEEE 34-Node test feeder. 
For that purpose, time-resolved residential load profiles and domestic 
EV charging loads are aggregated and, in addition to lithium-ion BESSs, 
integrated into power grid simulations. Similarly, Held et al. (2018) [38] 
use an optimal power flow algorithm to determine BESS specifications 
required to avoid inadmissible voltage deviations and thermal conges- 
tions in a suburban low-voltage grid. 

1.1.3. FESS design based on economic aspects 
Besides the design of ESSs based on local grid restrictions, some other 

authors [11,12,23,39] focus on economic aspects: Ligen et al. (2019) 
[23] apply the previously described method (Section 1.1.1) on a specific 
case study in Switzerland to examine potential cost benefits of ESSs. 
Ding et al. (2015) [11], for instance, investigate cost minimization 
(including investment and charging costs combined) of one existing EB 
charging station by a stationary ESS. Therefore, they design lithium-ion 
BESSs using a mixed-integer linear programming model. However, the 
minimization problem addressed in this study includes the limitation of 
electricity purchase, among other things, by the possibility of price 
arbitrage. This aspect may deviate results compared to an ESS design 
exclusively based on the available grid- or transformer capacity. Simi- 
larly, Yan et al. (2019) [12] examine three BESS configuration methods 
to support high-power EB charging. Hence, optimum ESS capacities are 
calculated based on a multi-objective cost model, including operation- 
and investment costs. Bayram et al. (2011) [39] examine numerous 
variations  of  the  installed  grid-  and  ESS-capacity,  to  find  the  best 

combination—in terms of quality of service and profit—for imple- 
menting public fast-charging stations. 

1.2. Open research topics 

As demonstrated in Section 1.1, state-of-the-art research covers the 
design of ESSs based on local grid restrictions and economic aspects. 
Though, when it comes to the determination of optimum ESS-designs for 
supplying high-power charging EVs, the presented studies lack an 
evaluation based on technical aspects. However, the inclusion of tech- 
nical criteria, like standby losses or the efficiency of ESSs, into the design 
approach is crucial, especially since energy-saving measures are on the 
political agenda. 

Furthermore, the majority of state-of-the-art research [23,33–36,39] 
focuses on implementing ESSs into public charging stations. In contrast, 
only a few studies cover domestic charging at home [37,38], EB 
charging [11,12], or they even miss to define the considered use case 
[29,30]. However, besides public charging of passenger EVs and EB 
charging, none of these studies cover the supply of ELDTs by integrated 
ESSs. Moreover, most studies highlighted in the previous section are 
limited to investigating only one EV use case, one charging power, and a 
fixed number of available CPs, respectively. Hence, the correlation be- 
tween mobility behavior, available charging power, and installed 
number of CPs on the one side, and the suitability of ESS applications on 
the other, is missing in state-of-the-art research. Due to the mentioned 
open research topics, the following main contributions are provided by 
this study: 

(1) Firstly, this work analyzes the impact of varying charging char- 
acteristics on the required ESS capacity as well as on economic 
and technical criteria. Therefore, mobility patterns, available 
charging power, and the installed number of CPs are varied for 
three different EV use cases. 

(2) Secondly, this study presents a comparison between economic- 
and technical optima of ESS applications. While economic optima 
represent minimized investment- and operation costs, technical 
optima include applications with maximum ESS efficiency. Based 
on that, it demonstrates which ESS applications are applicable in 
present-day conditions and which require future changes 
regarding the economic framework. 

Besides the considered EV use case and the applied design criteria, 
state-of-the-art research deviates as well in terms of the analyzed ESS 
technology. While some studies consider ESS in general [33,36,39] or 
FESSs [22,29,34,40], the majority of recent studies focuses on BESS in 
general [23,35,38] or lithium-based BESS [11,12,26–28,31,37] in 
particular. When it comes to the short-term supply of high-power EV 
charging, FESSs certainly show several advantages compared to BESSs: 
High life cycle numbers [29,34,40–42], high power density [29,34,41, 
42], short access time [34,41], low maintenance effort [34,41], small 
environmental impact [34,40–42] as well as the independency of power 
and energy content [40,42]. On this account, we selected the FESS as the 
appropriate energy storage technology to support future EV charging 
within this work. 

1.3. Structure of this work 

This work starts with the modeling of time-resolved EV charging 
profiles, considering three different EV use cases: ELDTs (Section 2.1.1), 
HFC (Section 2.1.2) and EBs (Section 2.1.3). Based on these charging 
load profiles, required FESS specifications are determined depending on 
the available power provided by the power grid (Section 2.2). Further- 
more, numerous FESS applications are evaluated based on economic and 
technical criteria (Section 2.3). The performed sensibility analysis 
(Section 3.1) indicates correlations between varying input variables on 
the one side, and the required FESS-capacity as well as economic- and 
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technical criteria on the other. These correlations are finally used to 
identify optimum FESS applications (Section 3.2) depending on the in- 
dividual EV use case and its particular charging demand. Finally, this 
study investigates the discrepancy between economic- and technical 
optima based on a techno-economic analysis (Section 3.3). 

2. Material and methods 

2.1. Modeling of time-resolved ev charging loads considering varying 
input variables 

The evaluation of suitable FESS applications bases on detailed, time- 
resolved modeling of EV charging loads. To investigate the impact of 
mobility behavior and charging characteristics on economic- and tech- 
nical criteria, we vary the following input variables (Table 1) for 
modeling EV charging loads of each use case: While the number of CPs is 
varied from two to eight for each considered use case, five different 
distances per charging event are selected for each use case individually, 
either based on mobility patterns (ELDTs and EBs) [43,44] or state-of-
the-art EV battery capacities (HFC) [45]. Besides, we alter the available 
charging power per CP between 100 – 300 kVA (ELDT) [43], 22 – 200 
kVA (HFC) [45], and 250 – 450 kVA (EBs) [10–12] based on 
state-of-the-art charging technology. 

One EV charging load profile is modeled for each combination of 
covered distance, number of CPs, and charging power (resulting in 175 
profiles per use case), covering a period of one year with a time reso- 
lution of one minute (Fig. 1). Therefore, realistic temporal charging 
patterns are derived from real-life mobility data. In our work, only un- 
controlled charging is assumed for each use case. As a result, each 
charging event’s start time equals the time of arrival at the CP. In 
addition to mobility data, EV model specifics—specific energy demand, 
charging efficiency, and charging power factor—depending on the 
considered use case are taken into account (Table 2). Both charging 
patterns, as well as EV specifics, are described in detail in Sections 2.1.1. 
– 2.1.3. Based on these aspects, time-resolved active- and reactive power 
are modeled for each charging event and each EV. Finally, each EV’s 
annual time series are aggregated depending on the respective number 
of CPs. 

Based on the aggregated EV charging profiles, we derive the tem- 
poral occupancy of CPs for each use case (Fig. 1). The occupancy of CPs 
at a specific time step equals the aggregated charging power at this 
specific time step divided by the aggregated installed charging power 
(the number of CPs multiplied by the charging power per CP). As a 
result, the occupancy of CPs represents the share of simultaneously 
charging vehicles. Fig. 1 illustrates the annual duration curves consid- 
ering the occupancy of eight CPs. They illustrate the maximum occu- 
pancy and the period of maximum occupancy throughout one year. In 
this particular case, covered distances of 60 km (ELDT), 150 km (HFC), 
and 6 km (EB) are recharged with a charging power of 200 kVA, 150 
kVA, and 350 kVA per CP. 

However, regardless of the EV use case, the temporal occupancy of 
CPs, and thereby the number of simultaneously charging vehicles, de- 
pends on the following charging characteristics: Both the maximum CP- 
occupancy (defining the aggregated peak load) as well as the number of 
hours with maximum occupancy, increase with a raising distance before 

 
Table 1 

 

 
 

Fig. 1. Annual duration curves considering the temporal occupancy of eight 
charging points (CP) supplying electric last-mile delivery trucks (ELDTs) 
charging, highway fast-charging (HFC), and electric busses (EBs). 

 
Table 2 
EV model specifics considering electric last-mile delivery trucks (ELDTs), high- 
way fast-charging (HFC), and electric bus (EB) charging [43,46–51].  

Parameter ELDTs HFC EBs 
 

 

Specific energy demand (kWh/km): Summer 2.000 0.150 – 0.290 1.860 
Specific energy demand (kWh/km): Transition 2.090 0.170 – 0.320 1.240 
Specific energy demand (kWh/km): Winter 2.130 0.190 – 0.360 2.480 
Charging efficiency 0.930 0.710 – 1.000 0.920 
Charging power factor 0.950 0.280 – 0.996 0.990 

 
 

 
recharging, due to an increased duration of charging. On the contrary, 
both decrease with raising charging power (due to a decreased duration 
of charging events) and with a growing number of CPs (c.f. Thormann 
et al. (2020) [52]). 

2.1.1. Modeling of ELDT charging loads 
Temporal mobility patterns of ELDTs are derived by a real-life 

schedule, covering a total daily distance between 200 – 240 km, pro- 
vided by last-mile delivery providers [43]. To vary the covered distance 
per charging event (Table 1) while assuring the overall mobility need of 
ELDTs, we adapt the initial schedule in terms of the following indicators: 
Covered distance per trip (or charging event), number of trips per day as 
well as the period available for loading and unloading at the distribution 
hub (Table 3). All the listed routes include several trips per day on 
weekdays and Saturdays, whereas Sundays are excluded from last-mile 
delivery services. Each route’s mean trip durations are determined by 
assuming an average speed of 13.9 km/h (including driving, loading, 
and unloading) [43]. 

Based on that, each trip’s actual duration is stochastically deter- 
mined by applying a normal distribution (standard deviation of 5%) in 
combination with random numbers. Assuming a starting time of 04:00 in 
the morning for each route, the arrival time (or rather the start of 
charging) after the first trip of the day is then determined by adding the 
start time to the trip’s actual duration. After arriving at the distribution 
hub, ELDTs stay there for a defined period (Table 3), in which they are 

 
Table 3 
Last-mile delivery routes’ schedules applied for modeling realistic charging 
patterns of ELDTs. 

Variation of mobility- and charging parameters considering electric last-mile 
delivery trucks (ELDT), highway fast-charging (HFC), and electric busses (EBs). 

Input variable to be varied ELDT HFC EB 

 
(km) 

Route Covered 
distance per trip 
(km) 

Mean trip 
duration 
(hours) 

No. of 
trips per 
day 

Period of (un-) 
loading at the hub 
(hours) 

Covered distance per charging event 20:20:100 50:50:250 2:2:10  1 
21 

20 
40 

1.4 
2.9 

10 
5 

0.5 
1.0 

Available charging power per 100:50:300 
charging point (kVA) 

Number of installed charging points 2:1:8 

22, 
50:50:200 

250:50:450 
 3 

4 
5 

60 
80 
100 

4.3 
5.8 
7.2 

4 
3 
2 

1.5 
2.0 
2.5 

(-)    1  Ori  inal last-mile delivery route [43].  
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(un-)loaded and recharged for their next trip. The original period of one 
hour [43] is adapted according to each route’s demands, though as- 
suring complete recharging in this period. Based on these assumptions, 
the time of arrival of every following trip and each vehicle is determined 
by adding this trip’s actual duration and the route-specific period of 

 
Table 4 
Classification of passenger EVs according to their state of charge (SOC) and 
definition of respective recharging actions.  

Group SOC range Action 
 

 

1 SOC > 0.20 No charging 

loading at the hub to the previous trip’s arrival time. In this study, the 
delay of delivery schedules caused by ELDTs waiting for an available CP 
is prevented by assuming one CP per vehicle. Hence, the number of 

2 0.20 ≥ SOC > 
0.15 

3 0.15 ≥ SOC > 

Charging, if at least one CP is available 
 

Charging, if the minimum waiting time is lower than 
available CPs equals the number of ELDTs at a particular distribution 

4
 0.10 6 min 

hub. In the next step, the required amount of recharged energy is 
calculated for each charging event, using a specific energy demand be- 
tween 2.00 – 2.13 kWh/km [46] (Table 2) and the respective distance 
per charging event. Finally, the end of charging is defined by the 
calculated energy demand to be recharged, the respective charging 
power (Table 1), and the vehicle-specific charging efficiency and 
charging power factor (Table 2). Since, for the approach discussed here 
(one ELDT per CP), CPs are completely occupied (1.0) only 54 h per year 
(Fig. 1), the implementation of FESSs could decrease the required grid 
capacity by covering short-term load peaks. However, most of the time 
(7285 h), no ELDT is recharged at the distribution hub. 

2.1.2. Modeling of HFC loads 
Besides EV charging at home, the implementation of fast-charging 

points at highways will be a crucial step towards e-mobility, enabling 
long-distance traveling. For modeling the time-resolved recharging de- 
mands at a specific HFC station, we use present-day traffic data [53], 
providing the number of passenger vehicles passing the selected high- 
way station at each hour (Fig. 2): While morning and evening hours are 
characterized by increased traffic volume, only a few vehicles (357) are 
counted between 00:00 – 04:00. The number of passing passenger EVs is 
finally derived for each hour by assuming an EV penetration of 5%. 
Knowing the number of EVs passing the highway station at each hour, 
their exact time of passing is determined stochastically, assuming a 
uniform distribution within each hour (c.f. Xie et al. (2018) [54]). 
Furthermore, the vehicles’ state of charge (SOC) is randomly determined 
between 0.1 and 0.9 based on a normal distribution (c.f. Rios et al. 
(2014) [55]). Therefore, a standard deviation of 0.25 and a mean value 
of 0.625 (from 05:00 to 09:59 on weekdays) or instead 0.5 (rest of the 
week) is estimated. This temporal variation of the SOC distribution also 
takes vehicles, which are completely charged before the first trip of the 
day, during weekday morning hours, into account (c.f. Bae et al. (2019) 
[56]). 

After that, we categorize all passing EVs into four different groups 
according to their SOC to ascertain the number of EVs with recharging 
needs. Each group is defined by individual recharging actions (Table 4): 
While EVs with a SOC higher than 0.20 (Group 1) do not enter the 
highway station at all, EVs with a SOC between 0.20 and 0.15 [54] 
(Group 2) recharge only if at least one CP is available. Recharging ac- 
tions of vehicles in group 3 depend on whether the minimal waiting time 

SOC ≤ 0.10 Charging 
 

 

 
is lower than 6 min (c.f. [36]). EVs with a SOC of 0.10 or lower enter the 
highway station independent of the availability of CPs or waiting time 
and recharge their vehicle. Analogous to use case ELDT, the number of 
installed CPs is varied between two and eight (Table 1). 

After picking out EVs entering the highway station (time of passing 
equals the time of arrival), this method eventually requires the post- 
poning of charging events: If no CP is available (Group 3 and 4) at the 
time of arrival, the beginning of charging is postponed until at least one 
CP is available. On the contrary, in case of available CPs, the EV’s arrival 
time represents the start of charging, assuming uncontrolled charging 
behavior. This simplified queuing model uses a “first come, first served” 
principle (c.f. Bryden et al. (2019) [36]). Each charging events’ duration 
and, thereby, end time depends on the respective covered distance and 
charging power (Table 1), as well as the vehicles’ specific energy de- 
mand, charging efficiency, and charging power factor (Table 2). 
Considering passenger EVs, the latter three are stochastically derived 
using present-day registration numbers of EV models. The methodology 
for modeling charging load profiles of passenger vehicles using real-life 
measured charging data of present-day EV models is described in 
Thormann et al. (2020) [52]. The annual occupancy duration curve of 
an HFC station (Fig. 1) demonstrates an increased occupancy of CPs 
compared to ELDTs and EBs: While no charging power is demanded 
during 2035 h a year, the installed CPs are completely occupied for 
recharging during 326 h a year. 

2.1.3. Modeling of EB charging loads 
The modeling of EB charging profiles is also based on real-life traffic 

patterns, provided by the open data platform of Vienna [44], in the form 
of General Transit Feed Specification data. These annual traffic data 
include inter alia, departure time, arrival time, and each trip’s distance 
considering several terminal stations and numerous bus lines (101) 
operated by Wiener Linien GmbH [57]. On weekdays, the first trip of the 
day starts at 04:40 in the morning, whereas the final trip ends at 01:02 in 
the morning the following day. Considering these urban bus routes, most 
covered trips (59.4%) between terminal stations are between 2 – 6 km 
(Fig. 3). To investigate the impacts of the covered distance per charging 
event and the available charging power, we apply the same present-day 
temporal mobility patterns (i.e., time of arrival and period of parking 

 
 

 

  
 

  
 

Fig. 2. Number of passenger vehicles and electric passenger vehicles (EVs) 
passing the selected highway station at each hour. 

Fig. 3. Distribution of distances (terminal-to-terminal) covered by urban bus 
routes [44]. 
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according to schedule) throughout their variation. Therefore, we 
initially select eight bus routes, which allow recharging of EB charging 
needs in compliance with present-day schedules for each of the selected 
distances and charging powers (Table 1). 

In this study, we assume one CP per bus route installed at the ter- 
minal station, each providing the respective charging power (250 – 450 

covered by the integrated FESS—e.g., a GRF of 0.1 indicates that the 
FESS covers 10% of EVs’ aggregated peak load, whereas the power grid 
supplies lower EV loads. Both the GRF and the maximum EV charging 
load (SEV) further define the required grid capacity (SGrid,cap), according 
to Eq. (1). 

kVA). Besides, EBs are recharged exclusively at the terminal station after 
each trip (c.f. Rogge et al. (2015) [10]). Consequently, we derive the 

SGrid,cap = max(SEV ) (1)
 

start of each charging event from the time of arrival at the terminal 
station. Analogous to the other use cases, each charging events’ duration 
is calculated using the respective covered distance and available 
charging power (Table 1) as well as the specific energy demand [47,48], 
charging efficiency [49–51], and the charging power factor (Table 2). 
The annual occupancy duration curve (Fig. 1) of the selected terminal 
station with eight CPs demonstrates that up to five EBs (maximum oc- 
cupancy of 0.63) are charged simultaneously for only 0.4 h a year. In 
contrast, EBs are disconnected from the charging infrastructure for 
3760 h a year. 

2.2. Determination of required FESS-specifications 

In this study, high-performance FESSs are integrated into fast- 
charging stations as follows (Fig. 4): Distribution system (AC/DC), CPs 
(DC/DC or DC/AC), and FESS (DC/AC) are connected to a DC voltage 
link via the respective inverter (c.f. Dragicevic et al. (2014) [29] and Yan 
et al. [12]). EV charging demands are either supplied by the distribution 
system, by the FESS (in case of available energy capacity), or both. 

Notwithstanding the above, both AC and DC power can be provided 
by the CP, depending on the supplying EV use case and EV charging 
power. [40,58] Based on the previously modeled time-resolved EV 
charging profiles, we determine FESS-specifications required for peak 
shaving services and, thereby, the decrease of installed grid capacity. 
However, since this study deals with several EV applications, the 
required grid capacity depends on the considered EV use case, charging 

Based on the calculated grid capacity, the periods of charging and 
discharging the FESS are identified: As demonstrated in Eq. (2), FESSs 
are discharged when EV charging loads SEV t  exceed the grid capacity 
(SFESS t > 0) and recharged during off-peak periods (SFESS t < 0). For 
both charging and discharging of the FESS, power losses in the electric 
machine- ηE Machine  and  in  the  inverter  ηInverter  are  considered 
(Table 5). In the first step of FESS-design, we use Eq. (3) to identify the 
requested discharging power FESSdischargingPower, which equals the 
maximum FESS power.Since we assume equal power available for 
charging and discharging, the maximum charging power FESSchargingPower 
equals the designed discharging power of the FESS. Furthermore, FESS- 
charging (SFESS t   < 0) is limited to the determined maximum charging 
power, demonstrated in Eq. (4). To identify the required storage ca- 
pacity, active charging and discharging power is calculated by multi- 
plying apparent power SFESS(t) by power factors PFcharging or PFdischarging 
(Table 5), according to Eq. (5). While the discharging power factor of the 
FESS equals the power factor of the EV charging load (PFEV), a power 
factor of 1.0 is applied for recharging the FESS. Based on that, the 
amount of energy stored in the FESS EnergyFESS t is determined at each 
time step based on Eq. (6). To ensure that FESSs only recharge the 
amount of energy they have discharged during previous operation, the 
stored energy EnergyFESS t is limited to [0, ∞]. The necessary storage 
capacity of the FESS is finally defined by Eq. (7) as the maximum amount 
of stored energy considering one year. 

t : SEV (t) ≥ SGrid cap ,  
 
SEV (t)   SGrid,cap 

)
 

power per CP, and the number of CPs. 
To evaluate the correlation between grid capacity and FESS design SFESS(t)= { 

 

ηE Machine ⋅ηInverter (2) 

independent of these aspects, we initially implement the “grid relief 
factor” (GRF). The GRF defines the share of EV charging peak load, 

t : SEV (t) < SGrid,cap ,
 

SEV (t)   SGrid,cap 
)

⋅ηE   Machine ⋅ηInverter 

FESSdischargingPower = max(SFESS (t)) = FESSchargingPower (3) 

SFESS (t)= {t : SFESS (t) <   FESSchargingPower ,    FESSchargingPower (4) 

t : SFESS (t) ≥ 0, SFESS (t)⋅PFDischarging 

t : SFESS (t) < 0, SFESS (t)⋅PFCharging 

t 

 
(5) 

EnergyFESS(t) = EnergyFESS(t    1) + 
t 1 

PFESS⋅dt (6) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Integration of flywheel energy storage system (ESS) into charging 
infrastructure supplying varying EV use cases. 

FESSCapacity = max(EnergyFESS(t)) (7) 

 
Table 5 
Parameters of the flywheel energy storage system (FESS) [42,58,59]. 

 
 

FESS parameter Value 

Efficiency of the electric machine ηE Machine 0.93 

Efficiency of the inverter ηInverter 0.95 

Charging power factor PFCharging 1.00 

Discharging power factor PFDischarging PFEV 

Minimum bearing losses per kWh capacity (SOC = 0%) PBL,min 3.0 W 

Maximum bearing losses per kWh capacity (SOC = 100%) PBL,max 12.0 W 

Minimum flow losses of per kWh capacity (SOC = 0%) PFL,min 0.0 W 

Maximum flow losses of per kWh capacity (SOC = 100%) PFL,max 14.0 W 
Weight compensation per kWh capacity PWC 15.0 W 
Vacuum pump per kWh capacity PVP 7.3 W 
Cooling system per kWh capacity PCS 24.7 W 

 

P (t)= 
{  

, 
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The resulting active power supplied by the distribution grid PGrid  t is 
finally determined with Eq. (8), including power losses and additional 
power demand of the FESS (PFESS,Losses). The latter is calculated with Eq. 
(9), considering the following components: Bearing- (Eq. (10)) and flow 

 
Table 7 

Cost parameters regarding the flywheel energy storage system, including 
flywheel and inverter [12,40,64,65].  

Parameter Value 

losses of the flywheel (Eq. (11)) depend on the flywheel’s SOC (Table 5), 
based on an assumed linear characteristic between 0% and 100%. 

Specific purchase and installation costs of the flywheel 
(€/kWh) 

cF 2500 

PGrid(t) = PEV (t)    PFESS(t) + PFESS,Losses(t) (8) 
Flywheel lifetime (years/cycles) TF 30/ 

3e5 

PFESS,Losses(t) = (PBL(t) + PFL(t) + PWC + PVP + PCS)⋅FESSCapacity (9) 
 
PBL,max    PBL,min 

)
 

Annual flywheel maintenance costs as the share of purchase 
and installation costs (%) 

Specific purchase and installation costs of the inverter 
(€/kVA) 

xF,Maintenance 5 

cI 340 

PBL (t) = PBL,min + (100 %    0 %) ⋅SOCFESS(t) (10) Inverter lifetime (years) TI 30 

PFL (t) = PFL min +
 

PFL,max        PFL,min 
)

⋅SOCFESS (t) (11) 

Annual inverter maintenance costs as the share of purchase 
and installation costs (%) 

xT,Maintenance 5 

 

(100 %   0 %) 

In this study, we assume a linear correlation between the flywheel’s 
useable SOC and its speed: For a SOC of 100%, the flywheel runs at a 
speed of 30,000 rpm. However, a minimum speed of 10,000 rpm allows 
no further discharging (SOC = 0%) of the FESS [59]. On the other hand, 
we apply a constant power demand due to the flywheel’s magnetic 

of charging stations are excluded in this investigation. 

Annualized costs per CP CGrid,Connection + CGrid,Utilization + CFlywheel + CInverter 

No. of CPs 
(12) 

weight compensation, the vacuum pump, and the cooling system. All the C S ⋅
( 

c 
SPC ⋅ i⋅(1 + i)TT

 c ⋅x 
) 

(13) 

applied power loss components of the FESS are described in detail by 
Haidl (2021) [59]. Specific values of all components (per kWh FESS 

Grid,Connection = Grid,cap [ T + ] 
(1 + i)TT   

  1 
+ T

 T,Maintenance 

capacity) are listed in Table 5. Though, their actual power demand de- 
pends on the respective flywheel size. Therefore, we scale all power loss 
components by the determined FESS capacity, demonstrated in Eq. (9). 
Since the analyzed e-mobility use cases are clearly characterized by off-
peak periods (Section 2.1)—on Sundays (ELDT), between 00:00 – 04:00 
(HFC) or between 01:02 – 04:40 (EB)—with no or low recharging 

CGrid,Utilization = CGrid,Utilization,Energy + CGrid,Utilization,Power + AFR (14) 

CGrid,Utilization,Energy  = 
( ∑ 

EGrid (t)⋅EP(t)
) 

+ 
( ∑ 

EGrid (t)
)

⋅EBC (15) 

CGrid,Utilization,Power = SGrid,cap ⋅(SUC + PBC) (16) 

needs, the FESSs is turned off (PFESS,Losses = 0) during these periods to 
C

 FESS ⋅c ⋅
( 

i⋅(1 + i)TF 

x 
) 

(17) 
prevent unnecessary power losses. This work deals with a power-based 
approach for designing required FESS specifications with a time reso- 

Flywheel = Capacity     F (1 + i)TF      
    1 

+ F,Maintenance 

lution of one minute. However, the impact of FESSs on power quality is C FESS ⋅c ⋅
( 

i⋅(1 + i)TI 

x 
) 

(18) 
not addressed and is reserved for future works. Inverter = dischargingPower      I + I,Maintenance 

(1 + i)TI      
    1 

 
2.3. Evaluating the suitability of FESS-applications 

 
2.3.1. Economic criteria 

The economic evaluation of suitable FESS applications bases on 
annualized total costs per CP, including all cost components from Eq. 
(12): Grid connection costs, grid utilization costs, flywheel costs, and 
inverter costs. Eq. (13) – (18) describe the calculation of all relevant cost 
components, whereas all applied parameters and their values are listed 
in Table 6 and Table 7. According to Eq. (14), grid utilization costs are 
further divided into an energy-based component, a power-based 
component, and additional flat rate charges (AFR). However, the costs 

 
Table 6 
Cost parameters regarding the connection and utilization of the power grid [11, 
12,61–63].  

Parameter Value 

This study assumes grid connection of the charging infrastructure at 
the distribution level, particularly at ENTSO-e network-level six [60]. 
Consequently, all relevant cost parameters related to the power grid 
connection and utilization (Table 6) are acquired for this network level 
from the Austrian energy market regulator E-Control [61]. These cost 
parameters include system provision charges (SPC), system utility 
charges (SUC), general power-based components (PBC; green electricity 
support payments), general energy-based components (EBC; electricity 
levy, green electricity support payments, charges for system losses, 
charges for system services, metering charges, etc.) and additional flat 
rate charges (AFR: flat-rate renewable charge and green electricity 
support payments). In addition, we use a time-resolved (15 min) energy 
price EP t , provided by Energy Exchange Austria [62]. 

One-time costs (material- and installation costs as well as system 
provision charges [61]) are annualized by using a lifetime-based annuity 
factor (c.f. Schroeder et al. (2012) [66] and Yan et al. (2019) [12]), 
which depends on the discount rate i and the equipment’s lifetime TT 

Specific purchase and installation costs of the 
transformer (€/kVA) 

cT 610 
(transformer), TF (flywheel) and TI (inverter). While transformers and 
inverters are taken into account based on a specific temporal lifetime of 

System provision charge (€/kW) SPC 133.8 

Discount rate (%) i 3 
Transformer lifetime (years) TT 40 

certain years, flywheels must be replaced either after 30 years of oper- 
ation or 3e5 full cycles, depending which occurs first. Furthermore, their 
annual maintenance costs are taken into account by xT,Maintenance, 

Annual transformer maintenance costs as the share of 
purchase and installation costs (%) 

xT,Maintenance 1 xF,Maintenance and xI,Maintenance as the share of total purchase- and installa- 
tion costs (Table 7). The latter are determined with specific material- 
and installation costs cT, cF, and cI and the equipment’s respective design 
specifics SGrid,cap, FESSCapacity and FESSdischargingPower (Section 2.2). 

2.3.2. Technical criteria 
Besides economic criteria, this study evaluates numerous FESS ap- 

, 

Electricity price (€/kWh) EP(t)  0.11 – 
0.12 

System utilization charge (€/kW) SUC 41.04 

Additional power-based cost component (€/kW) PBC 10.96 

Additional energy-based cost component (€/kWh) EBC 0.0441 

Annual flat rate (€) AFR 961.1 
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plications also from a technical standpoint. Considering short-term peak 
load shaving, high self-discharging rates of FESSs represent the most 
challenging drawback compared to other ESS technologies [42]. On this 
account, this work examines the technical suitability of a FESS based on 
its efficiency (ηFESS) during operation—illustrated in Eq. (19). 

 
Table 8 
Reference values of input variables applied for sensibility analysis. 

 
 

Input variable ELDT HFC EB 

η   EDischarging  

∫ t=1a PDischarging (t)⋅dt      Grid relief factor (-) 0.1 0.1 0.1  
FESS = E E = ∫ t 1a   t=1 

Charging + FESS,Losses 
= PCharging (t) + PFESS,Losses (t) ⋅dt  

(19) 
 

For each variation of input variables, the required FESS capacity (Eq. 
Therefore, the annual amount of discharged energy (EDischarging) is 

divided by the sum of the annual amount of charged energy (ECharging) 
and annual energy losses (EFESS,Losses). All energy amounts are calculated 
by the integral of the respective time-resolved power component (Fig. 5) 
over one year. Thus, the efficiency of FESSs includes several loss com- 
ponents demonstrated in Section 2.2. Besides power losses during dis- 
charging and charging, FESSs are characterized by significant standby 
losses during periods without charging or recharging: According to Eq. 
(9), a FESS with a capacity of 8 kWh causes standby power losses of 0.58 
kW at a SOC of 100% (Fig. 5). Considering a standby period of, e.g., two 
hours, an energy amount of 1.16 kWh must be provided by the power 
grid to compensate FESS losses. 

Consequently, the efficiency of FESSs is primarily affected by 
standby energy losses during operation. These, on the other hand, 
depend on the frequency of operation (i.e., how often FESSs are required 
for peak load shaving) and the duration of charging and recharging 
periods (i.e., how long they are operated). Both of them further correlate 
with the respective EV charging patterns as well as the available grid 
capacity. 

2.3.3. Sensibility analysis: Identifying the impact of different input variables 
on the suitability of FESSs 

In this study, we evaluate the suitability of FESSs for covering short- 
term EV charging peak loads based on economic- (Section 2.3.1) as well 
as technical criteria (Section 2.3.2). Both further depend on the required 
FESS specifications. Since FESSs are characterized by low energy den- 
sities [34,67], this study focuses primarily on the required FESS capacity 
(Section 2.2) as the most crucial FESS specification. Considering the 
supply of EV charging, the required FESS capacity, and economic- and 
technical criteria, depend on the supplied EV use case, individual EV 
charging patterns, and the charging infrastructure. To understand these 
correlations in detail, we initially perform a sensibility analysis. 
Therefore, we alter the covered distance per charging event, the avail- 
able charging power per CP, the number of installed CPs (according to 
Table 1) as well as the GRF (between 0.0 and 0.6), respectively, while 
fixing the others to use case-specific reference values (Table 8). 

 
 

Fig.  5.  Illustration  of   discharging,   charging,   and   losses   of   a   FESS   (8 
kWh capacity). 

(7)), annualized costs per CP (Eq. (12)), as well as the efficiency of the 
FESS (Eq. (19)) is determined. Thereby, this sensibility analysis provides 
crucial information, how different charging demands and varying sup- 
ply infrastructures affect the economic and technical suitability of 
FESSs. 

2.3.4. Determination of economically- and technically optimum FESS- 
applications 

While we alter both charging demands (covered distance and 
available charging power) and supply infrastructure (installed number 
of CPs and GRF) arbitrarily in the sensibility analysis, these two groups 
differ in terms of their definition: Concerning the analyzed use cases, the 
former group of input variables is often predetermined by strict mobility 
needs. The covered distance per charging event depends on individual 
daily routes’ characteristics (ELDT and EB) or user patterns (HFC). The 
available charging power must allow a fast onward journey and corre- 
lates with schedules (ELDT and EB) or the acceptable break period 
(HFC). In contrast, the number of installed CPs, and the GRF, are in most 
cases, freely selectable by charging infrastructure owners. On this ac- 
count, we apply the correlations illustrated by the sensibility analysis 
(Section 2.3.3) to identify the optimal supply infrastructure for each EV 
use case and each of its charging demands. Therefore, we use mixed- 
integer nonlinear programming to optimize the number of installed 
CPs (integers between 2 – 8) as well as the installed GRF (float number 
between 0.00 – 1.00), based on economic- (Eq. (20)) and technical 
objective functions (Eq. (21)). 

Min(Annualized costs per CP) (20) 

Max(ηFESS) (21) 

While identifying economic optima bases on minimizing annualized 
costs per CP (Section 2.3.1), we maximize the efficiency during opera- 
tion (Section 2.3.2) to identify technically optimum FESS applications. 

3. Results and discussion 

3.1. Impact of different input variables on the suitability of FESSs 
 

3.1.1. Reference results 
The performed sensibility analysis demonstrates correlations be- 

tween different input variables (covered distance, charging power, 
number of CPs, and GRF) and selected output variables (FESS capacity, 
annualizes costs per CP, and FESS efficiency). To illustrate these corre- 
lations uniformly and independently of the EV use case, all the varied 
input variables are referred to the respective reference values (Table 8) 
and demonstrated as per unit (p.u.) values. For example, a covered 
distance of ELDTs of 80 km equals 1.33 p.u. (reference value of 60 km). 
Similarly, the sensibility analysis’ output variables are referred to the 
respective reference results (Table 9), calculated by applying the 
described methodology and the reference input variables in Table 8. In 
addition to the sensibility analysis’ output variables, Table 9 lists all 
relevant cost components and annual standby energy losses. These 
reference results already demonstrate substantial differences between 
the analyzed EV use cases: The supply of EB charging causes the highest 
costs per CP due to increased energy- and power-based grid utilization 
costs. However, this use case requires the lowest FESS capacity, which 

t 

Covered distance per charging event (km) 60 150 6 
Available charging power per charging point (kVA) 200 100 350 
Installed number of charging points (-) 5 5 5 
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Table 9 
Reference values of output variables, calculated by the performed sensibility 
analysis.  

 

Output variable ELDT HFC EB 

FESS capacity (kWh) 68.1 58.3 5.9 
Total annualized costs per CP (k€) 
Annualized grid connection costs (k€) 

34.0 
29.0 

34.5 
14.5 

46.6 
30.4 

Annualized grid utilization costs: Energy-based (k€) 
Annualized grid utilization costs: Power-based (k€) 
Annualized flywheel costs (k€) 
Annualized inverter costs (k€) 

72.5 
46.8 
17.2 
3.4 

117.4 
23.4 
14.7 
1.7 

147.4 
49.1 
1.5 
3.6 

FESS efficiency (-) 0.22 0.38 0.66 
Annual standby energy losses (MWh) 35.9 26.3 3.2 

 
further results in the lowest flywheel costs of all considered use cases. In 
contrast, the supply of ELDTs or HFC requires higher storage (or FESS) 
capacities, which raises flywheel costs significantly. 

Furthermore, reference results demonstrate the correlation between 
FESS efficiency and EV use case: Due to a high frequency of charging and 
low FESS capacity, the supply of EBs results in relatively low standby 
energy losses compared to ELDTs or HFC. As a result, FESSs are operated 
more efficiently. While these results relate to one particular reference 
case only (Table 8), the following sections demonstrate the correlation 
between different input variables on the one side and the required FESS 
capacity, annualized costs, and FESS efficiency on the other. 

3.1.2. Impact of the covered distance per charging event 
Varying EVs’ covered distance per charging event (while fixing the 

remaining input variables) affects the required FESS capacity signifi- 
cantly (Fig. 6a). The higher the distance covered before recharging, the 
higher the required energy demand at the charging station. Assuming a 
constant GRF (as in this sensibility analysis), the amount of energy 
required by the FESS raises similarly: If the distance is increased from 
0.34 p.u. to 1.00 p.u., integrated FESSs must increase their capacity by 
0.68 p.u. (ELDT: 43 kWh), 0.87 p.u. (HFC: 51 kWh) and 0.33 p.u. (EB: 2 
kWh) to provide peak load shaving (according to the reference values in 
Table 8). Furthermore, a covered distance of 1.67 p.u. requires a ca- 
pacity of 1.47 p.u., 3.15 p.u. and 1.33 p.u. (Fig. 6a). Due to the broadest 

spectrum of analyzed distances (50 – 250 km), use case HFC shows the 
highest impact on the FESS capacity, especially at distances higher than 
1 p.u. (150 km). 

As a result of higher FESS capacities, an increasing distance per 
charging event also raises the flywheel’s (energy-dependent) costs. 
Additionally, it increases energy-based grid utilization costs caused by 
higher energy demands from the power grid (Section 2.3.1). Both as- 
pects contribute to raising total annualized costs per CP when extending 
the covered distance per charging   event—with   or   without   FESS 
(Fig. 6b): An extension from 0.34 p.u. to 1.00 p.u. increases the annu- 
alized costs by 0.12 p.u., 0.50 p.u. and 0.29 p.u., whereas a further 
extension to 1.67 p.u. results in an increase by 0.04 p.u. (ELDT), 0.50 p. 
u. (HFC) and 0.10 p.u. (EB). 

Besides FESS capacity and costs, the covered distance affects the 
FESS’s efficiency (Fig. 6c). Assuming constant charging power, the 
duration of EV charging increases with raising distances (or rather en- 
ergy demand). Consequently, the FESS is charged and discharged for a 
more extended period, which decreases its standby energy losses, and 
increases its efficiency. Extending the distance of use case HFC (while 
fixing the remaining variables according to Table 8) from 0.34 p.u. to 
1.67p.u. raises the FESS’s efficiency from 0.41 p.u. to 1.02 p.u. The 
extension of the covered distance allows a 1.5-times higher efficiency 
(from 0.71 p.u. to 1.04 p.u.) when supplying EBs (Fig. 6c). Since we 
maintain the daily route’s total distance as the overall mobility need of 
ELDTs (Section 2.1.1), the variation of covered distances per charging 
event entails a deviating number of routes per day (Table 3). Naturally, 
fewer routes per day result in fewer charging events and higher standby 
energy losses. As a result, the FESS efficiency decreases with raising 
covered distance considering ELDTs in this analysis (Fig. 6c). 

3.1.3. Impact of EV charging power per CP 
The EV charging power per CP, available at the charging station, 

influences the required FESS capacity in two ways: Firstly, an increasing 
EV charging power requires higher discharging power of the FESS, 
assuming a constant GRF (applied for the sensibility analysis). Since we 
equate FESS’s discharging- and charging power, this enables faster 
recharging of the FESS. Faster recharging of the FESS increases the 

 
 
 
 
 
 
 
 
 
 

       

 
 

         

    

         

         

 

     

 

Fig. 6. Impact of the covered distance on (a) the required FESS capacity, (b) annualized total costs per CP, and (c) FESS efficiency, regarding electric last-mile 
delivery trucks (ELDTs), highway fast-charging (HFC), and electric bus charging (EB). 
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available energy stored in the FESS at the next EV charging event and 
reduces the need for larger FESS capacity. This limitation by low 
recharging power of FESSs becomes more crucial the lower the available 
EV charging power, illustrated by use case HFC (Fig. 7a). Secondly, an 
increasing EV charging power reduces the duration of the maximum 
occupancy of CPs due to shorter charging periods. While we detect this 
effect in the range of several minutes considering ELDT and HFC, the 
period of the maximum occupancy of EBs is reduced in the range of 
seconds due to a higher power level. However, since we model EB 
charging load profiles with a time resolution of one minute, this effect is 
limited: Except for charging with 250 kVA (four minutes), each charging 
power (300 – 450 kVA) results in a maximum occupancy of CPs of three 
minutes in average. Though, the supply with increasing power during an 
(almost) constant period requires higher energy demands. As a result, 
the required FESS capacity decreases (Fig. 7a) from charging with 250 
kVA (0.95 p.u.) to 300 kVA (0.85 p.u.) due to shorter peak shaving 
periods (three instead of four minutes). Though, it raises to 1.29 p.u., if 
the charging power is increased to 1.29 p.u. (450 kVA) due to constant 
peak shaving periods (three minutes). While the modeling of EV 
charging loads with a time resolution of one minute provides sufficient 
accuracy for use cases ELDT and HFC, EB charging with power higher 
than 350 kVA may require a finer temporal resolution. Indeed, the two 
described characteristics trigger decreasing capacity needs with 
increasing charging power considering the other use cases: ELDT- 
charging with 0.50 p.u. instead of 1.50 p.u. reduces the required FESS 
capacity from 1.04 p.u. to 0.90 p.u. Similarly, HFC with higher power 
results in lower FESS energy demands—from 1.92 p.u. with a power of 
0.22 p.u. to 0.60 p.u. with a power of 2.00 p.u. (Fig. 7a). 

Despite decreasing FESS capacity and flywheel costs, the increase of 
available charging power raises annualized investment and operation 
costs per CP (Fig. 7b). In fact, they correlate with the available charging 
power in a (rather) linear way, based on the power-based component of 
grid utilization costs (Section 2.3.1) and (negligible) power-based 
inverter costs. If ELDTs are charged with 0.50 p.u. and 1.50 p.u. 
instead of 1.00 p.u. annualized costs per CP deviate by    0.25 p.u. and 

0.24 p.u. (Fig. 7b). An increase of HFC power from 0.22 p.u. to 1.00 p. 
u. (and further to 2.00 p.u.) triggers a rise of costs by 0.43 p.u. (0.27 p. 

u.). When varying the available charging power per CP of EBs between 
0.71 – 1.28 p.u., annualized costs fluctuate between 0.77 – 1.22 p.u. On 
the other hand, the energy-based cost component shows a negligible 
impact regarding the available charging power. While the extension of 
EVs’ distances prolongs the duration of FESS-operation (Section 3.1.2), 
EV charging with increased power has quite the opposite effects: The 
higher the EV charging power, the shorter EV charging processes and the 
shorter periods of FESS-operation. Consequently, standby losses of 
FESSs increase with raising EV charging power, which decreases the 
efficiency of the FESS (Fig. 7c): Raising the available charging power per 
CP from 0.50 p.u. to 1.50 p.u.—while fixing the remaining input vari- 
ables according to Table 8—reduces the FESS efficiency of use case ELDT 
from 1.90 p.u. (0.42) to 0.43 p.u. (0.10). Varying the charging power 
from 0.22 p.u. to 2.00 p.u. (HFC) or from 0.71 p.u. to 1.28 p.u. (EB), 
triggers a reduction of efficiency by 0.53 p.u. (HFC) or 0.08 p.u. (EB). 

3.1.4. Impact of the number of CPs 
As the third input variable, we alter the number of installed CPs 

while fixing the remaining input variables to examine its impact on the 
FESS capacity and economic- and technical criteria. In general, the more 
CPs are installed at the charging station, the more EVs must be supplied 
by the FESS. Hence, the required FESS capacity increases with an 
increasing number of CPs (Fig. 8a): When fixing all the remaining input 
variables, a growth of CPs from 0.40 p.u. (two CPs) to 1.60 p.u. (eight 
CPs) raises the required FESS capacity by 0.96 p.u. (ELDT) and 0.67 p.u. 
(EB). However, we detect the following characteristic analyzing use case 
HFC, already described in Section 3.1.3.: The FESS-supply of a few CPs 
(e.g., two) requires only low discharging power, compared to the supply 
of numerous CPs (e.g., eight). Due to the same discharging and charging 
power of the FESS, assumed in this study (Section 2.2), a low number of 
CPs limits the FESS’s recharging. 

Thereby, it requires a higher storage capacity to supply the upcoming 
EV charging event. In the sensibility analysis, the supply of two CPs (0.4 
p.u.) requires a FESS capacity of 108 kWh, whereas the supply of eight 
CPs (1.6 p.u.) requires only 44 kWh. While the total FESS capacity 
(supplying all CPs) increases (or even decreases considering use case 
HFC), the FESS capacity per CP decreases with a growing number of CPs. 

 
 

  
 

 

 

Fig. 7. Impact of the charging power on (a) the required FESS capacity, (b) annualized total costs per CP, and (c) FESS efficiency, regarding electric last-mile 
delivery trucks (ELDTs), highway fast-charging (HFC), and electric bus charging (EB). 
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Fig. 8. Impact of the number of charging points on (a) the required FESS capacity, (b) annualized total costs per CP, and (c) FESS efficiency, regarding electric last- 
mile delivery trucks (ELDTs), highway fast-charging (HFC), and electric bus charging (EB). 

 
This aspect results in lower flywheel costs per CP. As described in Sec- 
tion 2.1, the maximum occupancy of CPs, and thereby the number of 
simultaneously charging EVs decreases the more CPs are installed. 
Hence, power-based cost components per CP also decrease with the 
number of CPs, whereas the energy-based cost component per CP shows 
little deviation. Based on these characteristics, total annualized costs per 
CP decrease if the number of CPs is increased from two (0.4 p.u.) to eight 
(1.6 p.u.): From 1.03 p.u. to 0.97 p.u. for use case ELDT; from 1.8 p.u. to 

 
0.72 p.u. for use case HFC; from 1.19 p.u. to 0.84 p.u. for use case EB 
(Fig. 8b). Besides the level of the maximum occupancy of CPs, the 
number of available CPs also affects the number of hours with maximum 
occupancy: The more CPs are installed, the shorter the period of 
maximum CP-occupancy (and the maximum number of simultaneously 
charging EVs) and the shorter the occurrence of the aggregated EV 
charging peak load. Assuming a constant GRF (and other input vari- 
ables) in this sensibility analysis, this results in shorter periods of FESS- 

 
 

  
 

  
 

 

 

 

Fig. 9. Impact of the grid relief factor (GRF) on (a) the required FESS capacity, (b) annualized total costs per CP, and (c) FESS efficiency, regarding electric last-mile 
delivery trucks (ELDTs), highway fast-charging (HFC), and electric bus charging (EB). 
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operation, which further induces higher standby losses. Consequently, 
the efficiency of the FESS during operation (Fig. 8c) is reduced by 1.31 p. 
u. (ELDT), 0.83 p.u. (HFC) and 0.25 p.u. (EB), when the number of CPs is 
extended from two (0.4 p.u.) to eight (1.6 p.u.) while remaining input 
variables remain constant (Table 8). 

3.1.5. Impact of the grid relief factor 
Finally, the variation of the GRF between 0.0 – 0.6 (0.0 – 6.0 p.u.) 

illustrates its consequences for the suitability of FESSs regarding 
different use cases. A GRF of 0.0 equals a complete supply by the local 
power grid and excludes any FESS. Implementing a GRF of, e.g., 0.1 
(1.00 p.u.), on the other hand, requires a FESS discharging (and 
charging) power of 10% of the EV charging peak load. Additionally, it 
requires a FESS capacity of 1.00 p.u., which corresponds to the reference 
capacities listed in Table 9. The higher the GRF, the higher the share of 
EVs’ peak load covered by the FESS, and the higher the required FESS 
capacity (Fig. 9a): If the GRF is increased, e.g., from 0.1 (1.0 p.u.) to 0.6 
(6 p.u.) while fixing the other input variables, a 6.4- (ELDT), 40- (HFC) 
and 76-times higher FESS capacity is required (Fig. 9a). 

While this effect is rather linear considering the supply of ELDTs and 
EB (until a GRF of 5.4 p.u.), the capacity requirement of HFC raises 
rather quadratically with the GRF. As a result of higher FESS capacity, 
total annualized costs per CP of use cases ELDT and HFC grow analo- 
gously if other input variables remain constant (Fig. 9b): Starting at a 
GRF of 0.0 p.u. (without FESS) with minimal costs of 0.91 p.u., a GRF of 
4.0 p.u. causes 1.43- (ELDT) and 2.64-times higher annualized costs. In 
other words, in this analysis, minimal costs of use cases ELDT and HFC 
are achieved with an exclusive grid supply, without FESS (GRF of 0.0). 
In contrast, use case EB is characterized by high power-based grid costs 
yet requires minimal FESS capacity than the other use cases (Table 9). 
Thus, power-based grid costs can be reduced substantially by imple- 
menting a FESS with low capacity and comparatively low costs. In the 
reference case, according to Table 8, the supply of EBs requires a GRF of 
0.54 (5.4 p.u.) to provide maximal cost benefits (Fig. 9b). Simulta- 
neously in this sensibility analysis, this particular GRF of 5.4 p.u. allows 
minimal standby losses and the highest efficiency of the FESS when 
supplying EBs (Fig. 9c). As demonstrated in Table 5 and Fig. 5, the 
FESS’s power losses depend on its average SOC during operation. 
Considering the supply of EB, a GRF lower than 0.54 p.u. results in a 
lower amount of discharged energy from the FESS, which results in a 
higher average SOC. On the other hand, a GRF higher than 0.54 requires 
a significantly higher FESS capacity (Fig. 9a), thus, also increases the 
average SOC. Both phenomena are also detected when supplying use 
cases ELDT and HFC: Since the required FESS capacity of ELDTs only 
slightly raises with the GRF (Fig. 9a), the lowest average SOC and the 
highest efficiency of the FESS is achieved at a GRF of 0.60 (6.0 p.u.)—the 
maximum GRF in this sensibility analysis. In contrast, the supply of HFC 
with increasing GRFs requires substantially higher FESS capacities, 
which increases the average SOC and standby losses of the FESS. 
Thereby, the maximum efficiency of use case HFC in this sensibility 
analysis is enabled at a GRF of 0.04 (0.4 p.u.). 

Of course, the optimal GRFs demonstrated in this section represent 
only one particular case, characterized by reference values listed in 
Table 8. Moreover, the spectrum of analyzed GRFs analyzed only varies 
between 0.0 and 0.6, which neglects FESS applications with a GRF 
higher than that. 

3.2. Economic- and technical optima of FESS-applications depending on 
EVs’ charging demand 

In the performed sensibility analysis (Section 3.1.), we vary only one 
input variable respectively while fixing the remaining ones to the 
reference values in Table 8. Although, the identification of optimum 
FESS applications requires the simultaneous variation of all input vari- 
ables. On this account, we additionally perform a mathematical opti- 
mization to provide the optimum GRF (Section 3.2.1 and 3.2.2) for 

several charging demands (covered distance, charging power, and 
number of CPs). While economic optima represent minimized total 
annualized costs per CP, technical optima represent the application with 
the highest FESS efficiency. As demonstrated in Section 3.1.4, the pre- 
viously performed sensibility analysis reveals a substantial discrepancy 
between economic- (Fig. 8b) and technical optima (Fig. 8c) in terms of 
their ideal number of CPs. Annualized costs per CP are minimized at a 
high number of CPs. Accordingly, the mathematical optimization pro- 
cess identifies economic optima for each use case at the maximum 
number of CPs (eight). In contrast, the maximization of the FESS’s ef- 
ficiency requires a low number of CPs. Hence, the results of technical 
optima include a minimum number of CPs (two). 

3.2.1. Optimum grid relief factor (GRF) based on economic criteria 
In general, the economic suitability of FESS applications depends on 

the relation between cost savings due to a reduced grid capacity required 
on the one hand and FESS costs on the other. The higher the aggregated 
EV charging peak load and the lower the required FESS capacity, the 
higher the economically optimum GRF. In other words, the higher the 
EV peak load per kWh FESS capacity, the higher the economically op- 
timum share covered by the FESS. Both EV peak load and FESS capacity 
strongly correlate with the e-mobility charging demand, namely, the 
covered distance per charging event and the available charging power 
per CP. As demonstrated in Section 3.1.2, an increasing distance of EVs 
raises the required FESS capacity (Fig. 6a). The maximum occupancy of 
CPs and the maximum EV peak load also increase with raising distances, 
though negligible compared to the growing capacity need. On the other 
hand, charging with a higher power increases the maximum EV peak 
load while decreasing (or slightly increasing considering EBs) the 
required FESS capacity (Fig. 7a). Based on these correlations, the 
economically optimum GRF decreases with extending distances of EVs 
and increases with raising charging power (Fig. 10): For most charging 
demands of ELDTs (Fig. 10a) and HFC (Fig. 10b), economic optima 
require a GRF of 0.0. (supply exclusively by the grid without any FESS). 
Nevertheless, when supplying low-distance trips of ELDTs (up to 20 km) 
with a charging power of 250 or instead 300 kVA, the most cost-efficient 
application includes a GRF of 0.12 or rather 0.25 (Fig. 10a) and the 
according FESS with a capacity of 36 kWh or instead 75 kWh. Cost- 
efficient recharging of short distances of use case HFC with high 
charging power urges for the following GRFs (and the respective FESS 
energy capacities): 0.57 (54 kWh) when recharging after 50 km with a 
charging power of 100 kVA; 0.01 – 0.62 (2.5 – 62 kWh) when recharging 
after 50 – 100 km with 150 kVA; 0.01 – 0.71 (3 – 88 kWh) when 
recharging after 50 – 200 km with 200 kVA (Fig. 10b). 

In contrast to the supply of ELDTs and HFC, all the analyzed charging 
demands of EBs enable an   economical   implementation   of   FESSs 
(Fig. 10c). The most cost-efficient supply of short-distance (2 km) EB 
charging demands is enabled with a GRF between 0.58 (with a charging 
power of 250 kVA) and 0.73 (450 kVA), which requires a FESS capacity 
of 30 kWh and 41 kWh. Bus routes with a distance of 10 km, on the other 
hand, request a GRF of 0.40 (FESS: 28 kWh) and 0.45 (76 kWh) if 
recharged with the same power, respectively. In summary, the supply of 
EB charging provides the most promising application of FESSs from an 
economic standpoint. Since the implementation of EB charging infra- 
structure requires the highest costs per CP and per year (Table 9), peak 
load shaving by an integrated FESS allows the most saving potential: If, 
for instance, EBs are charged with 450 kVA, an exclusive grid supply 
costs between 34,910 € (2 km distance) and 61,600 € (10 km) per CP. 
Compared to that, the integration of a FESS with a power of 45% (2 km 
distance) – 73% (10 km) of the EV peak load reduces annualized costs 
per CP by 7 – 16%. These price ranges correlate with the findings of 
recent studies, analyzing one particular number of CPs and one partic- 
ular charging power of EBs: Ding et al. (2015) [11] determine cost 
savings between 9.0 – 22.9%, depending on the ESS technology, when 
supplying six CPs with a charging power of 450 kVA each. Similarly, Yan 
et al. (2019) [12] identify cost benefits between 11.7 – 15.8%, 
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Fig. 10.  Economically and technically optimum grid relief factors (GRF) regarding the supply of varying charging demands of (a) electric last-mile delivery trucks, 
(b) highway fast-charging, and (c) electric busses. 

 

depending on the applied ESS configuration, when supplying eight CPs 
with 450 kVA each. 

In comparison, the integration of FESSs into ELDT- (recharging after 
a distance of 20 km with 300 kVA) and HFC charging infrastructure 
(recharging after a distance of 50 km with 200 kVA) allows maximum 
cost reduction of 4.3% and 15.6%. This measure requires a FESS ca- 
pacity of 172 kWh and 88 kWh. Nevertheless, regarding these two use 
cases, the assurance of economic benefits by FESSs requires minimal 
recharging energy demands in combination with high EV charging 
power. 

3.2.2. Optimum grid relief factor based on technical criteria 
As demonstrated in Sections 3.1.2 and 3.1.3, standby losses and the 

efficiency of the FESS strongly correlate with the covered distance per 
charging event (Fig. 6c) and the available charging power (Fig. 7c): Due 
to lower standby losses, the FESS efficiency increases with raising dis- 
tance per charging event (except use case ELDT, described in Section 
3.1.2). The increase of charging power per CP, on the other hand, trig- 
gers a reduction of the FESS’s efficiency. Consequently, the technically 
optimum GRF slightly decreases with increasing covered distance 
(except use case ELDT) and decreasing charging power (Fig. 10b,c): The 
majority of HFC charging demands request a GRF lower than 0.05 to 
maximize FESS efficiency. Based on that, they require only little FESS 
capacities between 1 – 20 kWh. Although, the supply of HFC with low- 
distance energy demand (50 km) and 200 kVA reaches its technical 
optima at a GRF of 0.25 (Fig. 10b), which increases the required FESS 
capacity to 40 kWh. 

Considering the supply of EBs, technically optimum GRFs show little 
impact regarding the covered distance or the charging power: 0.71 if EBs 
are charged with 250 kVA or between 0.71 and 0.82 if charged with 450 
kVA. Thereby, the integrated FESS must provide an energy capacity of 
22 kWh (250 kVA) or between 25 – 39 kWh (450 kVA). Similar to other 

use cases, technically optimum GRFs of use case ELDT increase with 
raising charging power (Fig. 10a): From an average (including all dis- 
tances) of 0.71 with 100 kVA charging power to an average of 0.90 (300 
kVA). This increase of charging power only slightly affects the required 
average FESS capacity, which raises from 214 kWh (100 kVA) to 276 
kWh (300 kVA) on average. Nevertheless, as described in Section 3.1.2, 
the FESS’s efficiency decreases with extending distances per charging 
event (Fig. 6c) due to the applied modeling approach. As a result, a 
higher distance requires a higher GRF to maximize the FESS efficiency 
(Fig. 10a). Recharging after a distance of 20 km with 200 kVA, for 
example, requires a GRF of 0.82, whereas recharging after a distance of 
100 km requires a GRF of 0.86. These GRFs require a FESS capacity of 
88 kWh and 435 kWh to cover ELDTs’ peak loads. 

 
3.3. Techno-economic analysis 

As demonstrated in the previous sections, optimum FESS applica- 
tions differ in terms of economic- and technical criteria: Regardless of 
the considered EV use case, the ideal number of installed CPs must be 
either low (technical) or high (economic) to reach the respective optima. 
On the contrary, the deviation between economically and technically 
optimum GRFs depends crucially on the analyzed use case: While the 
supply of ELDTs shows significant divergences (Fig. 10a), use cases HFC 
(Fig. 10b) and EBs (Fig 10c) allow quite similar GRFs. Hence, the 
following questions appear in terms of technically optimum FESS ap- 
plications: Can technical optima be realized in a cost-efficient way, i.e., 
providing cost benefits compared to an exclusive grid supply without 
FESS? If not, which adaptions regarding grid charges or FESS costs are 
necessary? To answer these questions, we select the two cost parame- 
ters, most likely to be changed in the upcoming years: Firstly, specific 
purchase costs of flywheels (Table 7), which may be reduced due to 
industrial series production [40]. Secondly, many distribution system 
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operators already recommend an increase of power-based grid utiliza- 
tion charges (Table 6) to accomplish the integration of future grid cus- 
tomers [68]. By transforming Eqs. (12) – (18), we calculate maximally 
allowed flywheel costs and minimally required system utilization 
charges (SUC), respectively, providing the same annualized costs as an 
exclusive grid supply (GRF of 0.0). Fig. 11 demonstrates specific 
flywheel costs (per kWh) and SUC for each use case depending on the 
covered distance and the  available  charging  power  (according  to 
Fig. 10). The comparison between calculated costs and reference 
costs illustrates the need for change: Maximally allowed flywheel costs of 
EBs (Fig. 11a) exceed costs of 2500 €/kWh in 2020 (assumed in this 
study), which indicates that technical optima can already be realized 
in an economic sense. Simultaneously, the cost-efficient supply of EBs 
at technical optima requires a SUC lower than the present-day SUC 
of 
41.04 €/kW (Fig. 11b), signifying no need for cost adaption neither. In 
contrast, the economic integration of technically optimum FESSs into 
ELDT charging infrastructure requires the following changes: Either a 
reduction of specific flywheel costs (e.g., to 53 – 1657 €/kWh when 
charging with “High” power), an increase of SUC (to 56 – 240 €/kW), or 
both. Although we stochastically model vehicle-specific schedule de- 
viations, we assume the same route characteristics for each ELDT (Sec- 
tion 2.1.1). As a result, the modeled aggregated ELDT charging profiles 
are characterized by a high coincidence of charging during peak periods. 
While this assumed mobility behavior represents the best case in terms 
of economic criteria (due to high EV peak load), it represents the worst 
case in terms of technical ones. The temporal sequencing of vehicles’ 
schedules could decrease standby energy losses of the FESS and increase 

 
 

 

 

 

 
 

                         
 

 

 

Fig. 11. (a) Maximally allowed specific flywheel costs and (b) minimally 
required system utility charges (SUC), required to enable cost parity between 
exclusive grid supply and technical optima of FESSs supplying electric last-mile 
delivery trucks (ELDT), highway fast-charging (HFC) of electric passenger ve- 
hicles or electric bus (EB) charging. 

its efficiency. While the impact of controlled charging on the ESS-design 
has already been analyzed for EBs (e.g., Ding et al. (2015) [11]), future 
research should include this possibility when analyzing the supply of 
ELDTs by ESSs. 

Considering use case HFC, the operation of FESSs at technical optima 
allows economic benefits in the case of the following conditions: A 
reduction of flywheel costs (lower than 771 €/kWh) or an increase of 
SUC (higher than 96 €/kW) compared to 2020 (Fig. 11). Nevertheless, 
this requires low-distance energy demands in combination with high 
charging power. Long-distance recharging of EVs (e.g., 250 km) with 
low charging power (e.g., 22 kVA) inhibits a cost-efficient FESS-opera- 
tion at technical optima. This study focuses on the identification of 
economic and technical optima of FESS applications and their compar- 
ison. However, possible compromises in FESS design between these 
optima are not part of this work. Thus, the authors’ future work will 
focus on possible design approaches combining economic and technical 
aspects. Future studies will also provide a guideline for configuring 
FESSs for supplying future EV charging based on several practical 
examples. 

4. Conclusions 

The suitability of FESSs for covering EV charging peak loads depends 
strongly on the supplied EV use case and its particular charging demand 
(covered distance, charging power, and the number of charging points). 
Though, this study identifies substantial differences between the eco- 
nomic- and technical suitability of FESSs. The economic suitability of 
FESSs is evaluated based on annualized investment- and operation costs 
and increases with 

decreasing distances of EVs covered before recharging (due to 
decreasing flywheel capacities and -costs), 
raising charging power per CP (due to increasing grid utilization 
charges), 
and a growing number of CPs (due to decreasing flywheel costs per 
CP). 

Consequently, several analyzed charging demands of EBs allow the 
integration of a FESS to minimize investment and operation costs. In 
fact, even low storage capacities enable significant cost benefits 
compared to an exclusive grid supply (without FESS). On the contrary, 
most charging demands of use cases ELDT and HFC inhibit an 
economical implementation of FESSs. Though, low-distance energy de- 
mands of these use cases supplied with high charging power allow FESSs 
to achieve minimal expenses. 

The technical suitability of FESSs for covering short-term EV peak 
loads is evaluated based on its efficiency during operation. The latter 
crucially correlates with the amount of standby energy losses of the 
FESS, which decreases with 

• increasing distances of EVs, 
• decreasing charging power per CP, 
• and a decreasing number of CPs. 

Due to the demonstrated discrepancies, economically and techni- 
cally optimum FESS applications (characterized by the optimum number 
of CPs and the optimum grid relief factor) differ significantly. On this 
account, this study additionally investigates which FESS applications 
allow a cost-efficient implementation of FESSs at technical optima: 
Considering use cases ELDT and HFC, a cost-efficient FESS-operation at 
technical optima requires either a reduction of flywheel costs or an in- 
crease of power-based grid utilization charges. On the contrary, the 
supply of EBs by FESSs allows both the maximization of FESS efficiency 
and the reduction of investment and operation costs. 

• 

• 

• 
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Abstract: The integration of future grid customers, e.g., electric vehicles, heat pumps, or photovol-
taic modules, will challenge existing low-voltage power grids in the upcoming years. Hence, distri-
bution system operators must quantify future grid reinforcement measures and resulting costs 
early. On this account, this work initially evaluates different methods to quantify future grid rein-
forcement needs, applied by the current state of research. Thereby, it indicates the significance of 
large-scale grid simulations, i.e., simulating several thousand low-voltage grids, to quantify grid 
reinforcements accurately. Otherwise, a selected area’s total grid reinforcement costs might be mis-
judged significantly. Due to its fast application, deterministic grid simulations based on coincidence 
factors are most commonly used in the current state of research to simulate several thousand grids. 
Hence, in the second step, recent studies’ approaches to applying grid customers’ coincidence fac-
tors are evaluated: While simplified approaches allow fast simulation of numerous grids, they un-
derestimate potential grid congestion and grid reinforcement costs. Therefore, a fully automated 
large-scale grid simulation tool is developed in this work to allow the simulation of multiple grids 
applying grid customers’ coincidence factors appropriately. As a drawback, the applied determin-
istic framework only allows an estimation of future grid reinforcement costs. Detailed determina-
tion of each grid’s grid reinforcement costs requires time-resolved grid simulations. 

Keywords: distribution power networks; grid reinforcement; grid simulation; electric vehicle;  
photovoltaic; heat pump 
 

1. Introduction 
Carbon-neutrality has been declared a priority objective on both the European [1] 

and national level (e.g., in Austria [2]) to mitigate global warming in the upcoming years. 
This ambitious objective shall be fulfilled, among other things, by the enhancement of 
renewable energy sources and a transition towards climate-neutral mobility with a high 
share of battery electric vehicles (EVs) [1]. In addition, the residential sector’s energy effi-
ciency shall be increased, e.g., by implementing residential electric heat pumps (HPs) 
[1,3]. While these transitions will reduce the traffic, energy, and residential sector’s carbon 
footprint, they require integrating numerous new grid customers into the existing power 
system. The majority (in number) of EVs, photovoltaic modules (PVMs), and electric HPs 
will be connected to the low-voltage (LV) level [4,5]. 

As a result, these trends will unquestionably challenge existing LV grids in the fol-
lowing years [6–8]. However, future power system structures are planned and designed 
several decades in advance [9]. Hence, distribution system operators (DSOs) pursue quan-
tifying future grid reinforcement measures (and resulting costs) in their service area at an 
early stage [9–11]. Besides statistical approaches (e.g., [12]), modern-day grid planning 
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relies on numerical load flow simulations to identify potential grid reinforcement 
measures caused by voltage violations or thermal congestions [13]. Therefore, future grid 
customers’ loads must be modeled realistically using real-life information (e.g., type, in-
stalled power, and energy demand of grid customers). Grid customers’ loads are then 
implemented into grid models, modeled based on real-life grid topologies and data (e.g., 
line length and cross-section area) [14]. 

However, a DSO’s service area often includes several thousand LV grids. The simu-
lation of several thousand grids requires a significant amount of data and computing re-
sources [15]. For DSOs, both are not always available to the required extent. Consequently, 
quantifying future grid reinforcement needs in a DSO’s service area, including the applied 
approach to model grid customers’ loads, must comply with given data- and computing 
criteria. Nevertheless, since grid reinforcements cause significant investment costs for the 
public sector, the accuracy of grid simulations must not suffer. On this account, this work 
evaluates different methods to quantify future grid reinforcement costs, applied in the 
current state of research (Section 2). Furthermore, recent studies’ approaches to model 
grid customers’ loads are examined regarding accuracy and computing time. 

2. State of Research 
While several studies analyze the impacts of EVs, PVMs, and HPs on individual LV 

grids (e.g., [16–18]), the presented work focuses on quantifying future grid reinforcements 
in a large area, including several thousand LV grids. Therefore, the current state of re-
search uses two different ways (Table 1): Most studies identify future grid restrictions in 
individually selected, representative grids based on load flow simulations. The selected 
grids’ results are aggregated and scaled to the whole area of investigation (Section 2.1). 

Table 1. Classification of recent studies according to their method to quantify total grid reinforce-
ment costs for several thousand grids. 

Method to Quantify Total Grid Reinforcement Costs Studies 
Simulation of representative grid structures and scaling of 

their results: 
[5,7,10,19–25] 

- synthetic grids modeled based on real-life grid data [5,19,22–24] 
- real-life grids selected from the area of investigation [7,10,20,21,25] 

- classification of grids into representative classes [5,7,19,20] 
Large-scale grid simulation of numerous real-life grid 

models 
[6,10,26] 

Others perform load flow simulations in all grids in the investigated area. The total 
amount of grid reinforcement measures equals the sum of all grids’ results (Section 2.2). 
In the following, recent studies in this field are classified accordingly. 

2.1. Simulation of Representative Grid Structures and Scaling of Their Results 
In Austria, for example, future costs of grid extension measures have recently been 

estimated by Oesterreichs Energie [10]. Therefore, grid impacts on the LV level caused by 
integrating EVs (10 and 30% penetration) and PVMs (increase by factor seven) are identi-
fied. Fifteen Austrian DSOs (supplying 87% of Austrian grid customers) participate in this 
study. From those, a third chose to simulate individually selected, representative LV grids 
and scale their results to the whole service area. Finally, grid reinforcement costs of each 
participating DSO are aggregated and scaled to the whole of Austria. Based on this ap-
proach, this study predicts total grid reinforcement costs on the Austrian LV level between 
0.8–2.2 billion euros by 2030 (in addition to regular capital expenditure). 

Vu [19] developed a simulation and optimization model to quantify reinforcement 
costs on the LV level induced by renewable energy sources and EVs. Therefore, repre-
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sentative LV grids are modeled based on typical real-life network characteristics and sim-
ulated. The total grid reinforcement costs (between 11.6–22.2 billion euros) are acquired 
by scaling simulated grids’ results to the whole of Germany. The study performed by Ag-
ora [7] determines the required costs of grid extension measures triggered by a future 
energy transition in Germany. Therefore, this study assumes 6–45 million EVs and 13–17 
GW installed power of electric HPs, supplied by renewable energy sources with 65–88% 
penetration. Real-life grid data of representative power grids are applied for load flow 
simulation. Finally, the results of representative grid structures are scaled to the entire 
area of Germany, which results in total grid reinforcement costs between 19–39 billion 
euros required on the LV level. 

Similarly, two additional German studies performed by the German Energy Agency 
[20] and the German Ministry of Economics and Technology [5] investigate future grid 
reinforcement costs of German LV networks. For this purpose, both consider possible sce-
narios based on network development plans and the German federal states’ objectives and 
projections. In these studies, grid reinforcement costs of representative grids are deter-
mined based on grid simulations to scale their results up to the national LV level: 3.6–4.2 
billion euros till 2030 [20] and 4.0–9.6 billion euros till 2032 [5]. 

Matrose et al. [21] investigated grid reinforcement costs caused by EV charging in 
five countries. On both the medium-voltage (MV) and LV levels, most representative grids 
are chosen by experts for grid planning and operation. Grid reinforcement costs are de-
termined using load flow simulations for each selected grid. Finally, the relation between 
required grid reinforcement costs and the grids’ total grid value (representing an ex-
change of all grid assets) is determined and scaled to all five countries. About 2% (charg-
ing with 3.7 kW) or 3% (11 kW) of the total grid value must be invested in MV and LV 
grids to avoid grid congestions, considering an EV penetration of 30% 

Pudjianto et al. [22] quantified future costs required to integrate PVMs in eleven 
countries in the EU by 2030 (e.g., Italy, UK). This study creates representative European 
MV and LV grids based on statistical grid data to perform load flow simulations. Finally, 
total grid reinforcement costs per generated energy (MV and LV level combined) are de-
rived for each of the eleven countries from the simulated results: Between 9.6–13.4 €/MWh 
(Italy) and between 14.0 €/MWh (UK). 

Similarly, Hartvigsson et al. [23] use statistical grid data to model synthetic LV grids, 
whose capacity for integrating PVMs is determined using grid simulations. The modeled 
grids’ results are scaled to the whole of Sweden, the UK, and Germany, to quantify these 
countries’ total hosting capacity on the LV level: 33 GW (Sweden), 63 GW (UK), 248 GW 
(Germany). However, this study excludes the calculation of required grid reinforcement 
costs. Durusut et al. [24] indicated that 15.5 billion ₤ (about 18.6 billion euros) must be 
invested in the UK power system (LV level only) until 2030 due to an extensive transition 
towards EVs (8.0 million) and HPs (6.8 million). Therefore, ten representative grid models 
are developed synthetically based on statistical grid data. Flinn et al. [25] determined the 
integration costs for PVMs in California, USA (up to 744 $ until 2026). Therefore, the au-
thors selected and investigated 75 representative feeders and extrapolated their results to 
the rest of California (over 10,000 feeders). 

While all the studies mentioned above simulate individually selected grids to scale 
their results to the area of investigation, they vary in the selection (Section 2.1.1) and the 
number of representative grids to be simulated (Section 2.1.2). 

2.1.1. Selection of Representative Grids to Be Simulated 
Studies quantifying total grid reinforcement costs by scaling representative grids’ re-

sults use different approaches to acquire appropriate grids (Table 1). Four recent studies 
[5,19,22–24] synthetically model representative grids based on real-life grid data and ap-
ply them for simulation. Others [7,10,20,21,25] select real-life representative grids to be 
simulated from all grids in the area of investigation. Therefore, they rely on the experience 
and insights of experts in the operating and planning of grids. 
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However, recent studies analyzing total grid reinforcement costs in whole Germany 
[5,7,19,20] classify German LV grids into, e.g., eleven [20], 18 [5] or 238 [19], representative 
classes depending on their grid region, topology, or future trends towards renewable en-
ergy sources (Table 1). Thus, the scaling of simulated grids’ results is initially done for 
each class to scale each class’s results to the whole of Germany. Nevertheless, classifying 
several grids into representative classes requires time-consuming pre-processing, enor-
mous amounts of data, and significant computing effort [15]. 

2.1.2. Number of Representative Grids to Be Simulated 
From all the studies using the described scaling method, only five define the exact 

number of representative grids to be simulated: The German Ministry of Economics and 
Technology [5] modeled over two million representative grids synthetically to perform 
load flow simulations. Pudjianto et al. [22], Hartvigsson et al. [23], and Durusut et al. [24] 
simulated only 15, 373 and ten synthetically created LV grids, respectively. 

In total (considering all representative grid classes), 177 representative LV grids are 
selected by the German Energy Agency [20] to perform load flow simulation. Matrose et 
al. [21] and Flinn et al. [25] performed grid simulations in 200 and 75 selected grids, re-
spectively. The remaining works [7,10,19] did not provide this information. 

2.2. Large-Scale Grid Simulation of Numerous Real-Life Grid Models 
Studies in the second group each simulate several thousand real-life LV grids in the 

area of investigation to quantify its total grid reinforcement costs. Gupta et al. [6] deter-
mined grid impacts of future solar PVMs (20–70% penetration), HPs (up to 100%), and 
EVs (15–100%) on the LV level, considering the service area of one Swiss DSO. Therefore, 
the authors perform load flow simulations in 5879 MV/LV substations using GIS data. The 
authors conclude that by 2050 the total grid reinforcement costs can amount to 11.0 billion 
CHF (about 10.1 billion euros). 

As described in Section 2.1, fifteen Austrian DSOs quantify their grid reinforcement 
costs by 2030 in the study by Oesterreichs Energie [10]. In contrast to the ones already 
described, six DSOs perform load flow simulations in all their LV grids to determine re-
quired grid reinforcement measures. Lemmens et al. [26] developed a large-scale grid sim-
ulation tool to quantify future grid reinforcement measures caused by three different pen-
etrations of EVs and PVMs. Therefore, Flemish LV grids, including 60,000 km grid lines, 
are simulated and examined regarding voltage violations and thermal congestions. Con-
sidering penetrations of 14.4% (PVM), 7.7% (plug-in hybrid EV), and 6.7% (EV), 15,900 km 
of grid lines (26.5%), and 8% of all transformers must be exchanged. 

2.3. Applied Approaches to Modeling Grid Customers’ Load 
Besides the applied quantification method, recent studies use different approaches 

to model future grid customers’ loads as the basis for grid simulations (Table 2): Durusut 
et al. [24] neglected to specify the applied modeling approach. In only one study [22], grid 
customers’ loads are taken into account using time series. Three recent studies [5,19,21] 
use the Monte-Carlo method to stochastically determine the power at each grid node 
based on statistical data. However, based on its stochastic nature, the Monte-Carlo 
method requires multiple iterations to be simulated [27]. In contrast to time series-based 
and Monte-Carlo simulations, static deterministic grid simulations analyze only one load 
case, which aims to represent the worst-case in terms of grid impacts [28,29]. Therefore, 
grid customers’ loads are estimated using coincidence factors. Considering a defined 
number of grid customers (𝑁𝑁𝑁𝑁𝑁𝑁), the coincidence factor represents the maximum of their 
aggregated electrical power (𝑃𝑃𝑖𝑖) divided by the sum of their individual maximum power 
(Equation (1)) [6,28]. 
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Table 2. Classification of recent studies according to their approach to modeling grid customers’ load. 

Applied Approach to Modeling Grid Customers’ Load Studies 
No specification [24] 
Time series-based simulation [22] 
Monte-Carlo simulation [5,19,21]  
Deterministic grid simulations using coincidence factors: [6,7,10,20,23,25,26] 
- single, consistent coincidence factor [20,25] 
- single, grid-specific coincidence factor [6,23,26] 
- double, grid-specific coincidence factors [7,10] 

The coincidence factor takes temporal interdependences between grid customers’ 
electrical loads into account. Thus, it also indicates the probability of simultaneously oc-
curring electrical loads considering a defined number of grid customers: The higher the 
coincidence factor, the higher the probability of temporal aggregations between grid cus-
tomers’ loads. Naturally, the more customers are considered, the lower the probability of 
temporal peak load aggregations and the lower the coincidence factor [30]: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑁𝑁𝑁𝑁𝑁𝑁) =
max
𝑡𝑡

(∑ 𝑃𝑃𝑖𝑖(𝑡𝑡)𝑁𝑁𝑁𝑁𝑁𝑁
𝑖𝑖=1 )

∑ max
𝑡𝑡

(𝑃𝑃𝑖𝑖(𝑡𝑡))𝑁𝑁𝑁𝑁𝑁𝑁
𝑖𝑖=1

 (1) 

Since it only requires one time step to be simulated, the application of coincidence 
factors allows much faster computation [27,31] than time series-based and Monte-Carlo 
simulations. That is why most studies analyzing many real-life grids [6,7,10,20,23,26] use 
this approach (Table 2). 

However, since the coincidence factor depends on the number of considered custom-
ers, it must be adapted according to the grid element to be analyzed: Grid elements sup-
plying numerous customers (e.g., the MV/LV substation) are characterized by low coinci-
dence factors. In contrast, grid elements supplying few customers (e.g., grid lines at the 
end of feeders) are characterized by high coincidence factors. Nevertheless, recent studies 
use various approaches to applying grid customers’ coincidence factors. Hence, they con-
sider this aspect differently: 

Hartvigsson et al. [23] and Gupta et al. [6] determined one single coincidence factor 
specifically for each grid based on the number of grid customers supplied by the MV/LV 
substation (Figure 1). This single value is applied to each grid customer to perform load 
flow simulations. The German Energy Agency [20] and Flinn et al. [25] also apply one 
single coincidence factor to each grid customer. Although, these studies use a consistent 
coincidence factor for each LV grid to be simulated, neglecting the grid’s actual number 
of customers. Lemmens et al. [26] applied one single coincidence factor to each grid cus-
tomer. Therefore, the number of customers supplied by the respective feeder’s main line 
(Figure 1) is considered for each grid specifically. 

In contrast to the previous works, the studies performed by Oesterreichs Energie [10] 
and Agora [7] apply two different coincidence factors to each grid customer depending 
on the grid element to be analyzed. The coincidence factor applied to analyze the MV/LV 
substation is determined based on the total number of customers the substation supplies. 
For a second load flow simulation, the number of customers supplied by each feeder’s 
main line is used to define the coincidence factor for all remaining elements in the respec-
tive feeder. Both coincidence factors are varied for each LV grid specifically. 
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Figure 1. Typical grid topology of one low-voltage (LV) feeder supplying four grid customers. 

In conclusion, recent studies’ approaches to applying coincidence factors differ re-
garding the following aspects (Table 2): Firstly, the coincidence factor’s variation in the 
analyzed grids (consistent or defined for each grid specifically). Secondly, the number of 
various coincidence factors applied to each grid (single or multiple). Thirdly, the grid el-
ement on the basis of which the coincidence factors are determined (MV/LV substation or 
each feeder’s main line). By applying one single coincidence factor to each grid customer 
(e.g., defined based on the number of customers the MV/LV substation supplies), numer-
ous grid elements might be examined using inappropriate coincidence factors. As a coun-
termeasure, multiple coincidence factors must theoretically be applied to grid customers 
to analyze each grid element adequately. However, recent studies determining total grid 
reinforcement costs in several thousand grids include this aspect differently due to differ-
ent approaches to applying coincidence factors. 

2.4. Remaining Gap in the Current State of Research 
Previous sections indicate different methods to quantify grid reinforcement needs 

(Sections 2.1 and 2.2) and model grid customers’ electrical loads (Section 2.3) applied in 
recent studies. This broad spectrum of methods and simplifications impedes comparing 
recent works in this field and their results [32]. Indeed, Vu [19] demonstrated significant 
differences (about 21–45% concerning the total line length to be reinforced in Germany) 
between the presented study and the ones performed by the German Energy Agency [20] 
and the German Ministry of Economics and Technology [5]. 

Identifying the impact of the selected quantification method (scaling of representa-
tive grids’ result or large-scale grid simulations) and the approach to model grid custom-
ers’ electrical loads (consistent or grid-specific, single or multiple) would facilitate the 
comparison of studies in this field. To the authors’ best knowledge, only one study ad-
dresses this issue: Eberl et al. [15] have analyzed different methods (e.g., [19,20]) to quan-
tify grid reinforcement costs in a large area with several thousand grids. However, those 
methods are evaluated only qualitatively regarding the accuracy of results, assumptions 
and simplifications, and the required amount of data. 

The shortage of applying only one single coincidence factor for all grid customers has 
been quantified in 13 LV grids by Ulffers et al. [33]. Nevertheless, the current state of research 
lacks a quantitative analysis of how recently applied methods and approaches can affect the 
calculated grid reinforcement costs in a large area with several thousand grids [32]. 

3. Open Research Questions and Structure of This Work 
Based on the remaining gap in the current state of research (Section 2.4), the following 

research questions remain unsolved: 
1) What is the potential error when simulating only a few individually selected LV grids 

and scaling their results to quantify grid reinforcement costs in a large area? 
2) How many grids (in %) must be simulated to reach a certain degree of accuracy? 
3) How to apply grid customers’ coincidence factors to quantify grid reinforcement 

measures accurately (consistent or grid-specific; single or multiple; based on which 
grid element)? 

4) What is the trade-off between the acquired simulation accuracy and required com-
puting time? 

MV Slack MV/LV
substation

Feeder's 
main line

Grid
customer
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5) How to quantify future grid reinforcement costs allowing both high accuracy and 
adequate computing time in the most optimal way? 
Various quantification methods and approaches to applying coincidence factors, 

used in the current state of research, are analyzed to answer these research questions for 
one DSO’s service area with several thousand LV grids. Therefore, an automated large-
scale grid simulation tool is developed (Section 4.1) and applied to quantify future grid 
reinforcement needs using real-life grid data (Section 4.2). The investigated scenario re-
garding the penetration of EVs, PVMs, and HPs is described in Section 4.3. Sections 4.4 
and 4.5 demonstrate the evaluated quantification methods and approaches to applying 
coincidence factors. Their impacts on the determined grid reinforcement measures and 
the required computing time are demonstrated in Section 5. Finally, Section 6 discusses 
this paper’s results according to the presented research questions and provides an outlook 
on further work. 

4. Materials and Methods 
4.1. Automated Large-Scale Grid Simulation Tool: Quantification of Grid Extension Needs 

The grid simulation tool developed in this study allows fully automated analysis of 
several thousand grid models, including evaluating potential grid reinforcement needs. 
Thereby, all LV grids in a DSO’s service area can be simulated and examined in terms of 
grid restrictions. The tool’s scheme applied for each grid model respectively is illustrated 
in Figure 2. The following sections describe each of these steps in detail. The paralleliza-
tion of the presented scheme (Figure 2) using 32 CPUs (3 GHz, 128 GB RAM) in MATLAB 
allows the simulation of several grid models simultaneously (one grid model per CPU). 
Thereby, it enables an average computing time of 20.8 s per 1000 grid nodes, about 16 
times faster compared to a sequential simulation. 

4.1.1. Import and Processing of Original Grid Data 
In the first step of the grid simulation tool, each grid’s original grid data is imported 

into MATLAB. Therefore, we developed interfaces between commercial grid simulation 
tools (e.g., NEPLAN [34], PowerFactory [35]), database software (e.g., MS Access), and 
MATLAB, allowing fully automated and standardized data transfer. For a successful per-
formance of the developed tool, each grid’s data set must include the following infor-
mation: 
• Power lines and transformers: Maximum current, internal impedance (R’, L’, C’), and 

connected nodes 
• Grid nodes: Type of node (Slack, PQ, or PV), nominal voltage as well as type (e.g., 

household, PVMs, EVs, and HPs), number, and installed power of connected grid 
customers 
Each grid’s topology is structured into feeders and feeder levels, as shown in Figure 

3. The feeder level represents the distance of grid elements (transformers, nodes, and 
lines) from the MV slack: The higher the feeder level, the higher the distance. Transform-
ers at the MV/LV substation and the connected LV bus bar are characterized by feeder 
level 1. 
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Figure 2. Scheme of the developed fully automated large-scale grid simulation tool. 

Grid lines and nodes connected to the LV bus bar are assigned feeder level 2. This scheme 
is continued until all grid elements are assigned a particular feeder level (Figure 3). 

Like recent studies simulating several thousand LV grids (Section 2.3), the developed 
tool uses coincidence factors to model grid customers’ loads. However, the coincidence 
factor depends on the number of customers considered. 

 
Figure 3. Structuring the grid topology into feeder levels. 

Hence, it must be adapted according to the grid element to be analyzed. The implemen-
tation of feeder levels allows us to apply the appropriate coincidence factor to each grid cus-
tomer depending on the grid element to be analyzed (described in detail in Section 4.1.3). 

4.1.2. Spatial Allocation of Future Grid Customers 
Besides existing grid customers, the automated large-scale grid simulation tool ana-

lyzes future EVs, PVMs, and HPs and their impacts on LV networks. Therefore, the total 
number of EVs, PVMs, and HPs in each LV grid is determined based on the analyzed 
penetrations (from 0–100%) and the total number of households (assuming maximally one 
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EV, PVM, and HP per household). While existing grid customers’ location in the grid is 
documented in the imported grid data (Section 4.1.1), future customers’ spatial allocation 
is, of course, unclear. The distribution of future grid customers significantly influences 
their grid impact and on resulting grid reinforcement costs [24]. Therefore, the spatial al-
location of EVs, PVMs, and HPs can freely be selected using the automated large-scale 
grid simulation tool (e.g., stochastic or uniform). As relaxation of the problem, this study 
assumes a uniform placement of future customers to the grid’s nodes (cf. Thormann et al. 
(2020) [8]). In the end, this step provides all relevant data regarding existing and future 
grid customers for each node, which is then applied to determine realistic grid loads (Sec-
tion 4.1.3). 

4.1.3. Determination of Grid Loads 
Quantifying grid reinforcement measures requests the identification of critical grid 

loads and their impacts on the investigated grid. Since the automated large-scale grid sim-
ulation tool uses static deterministic grid simulation, critical grid loads are determined 
using coincidence factors (described in Section 2.3). Considering a certain number of cus-
tomers (𝑁𝑁𝑁𝑁𝑁𝑁), their aggregated power (𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) is calculated by multiplying the sum 
of their individual maximum powers (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) by the respective coincidence factor (𝐶𝐶𝐶𝐶), 
according to Equation (2) [28]: 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑁𝑁𝑁𝑁𝑁𝑁) = ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖

𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=1

� ∙ 𝐶𝐶𝐶𝐶(𝑁𝑁𝑁𝑁𝑁𝑁) (2) 

The maximum power of existing customers is provided by original grid data (Section 
4.1.1). In contrast, future customers’ peak power is defined as follows: The possibility of 
charging EVs strongly depends on the type of housing, i.e., family houses or multi-apart-
ment residential buildings. Analogously to Thormann et al. [8], this study classifies future 
EVs accordingly: EVs charged with high power (11 kW) at family houses and EVs charged 
with low power (3.7 kW) at multi-apartment residential buildings. Additional PVMs are 
integrated into the grid model with a maximum power of 5 kW (feeding into the grid). 
The load profile of electric HPs is characterized by increased starting current/power due 
to the compressor motor [36]. However, since starting currents last only few seconds, a 
base load of 3.0 kW (cf. [37–39]) is assumed for this customer type. 

As described in Section 2.3, coincidence factors are applied for load flow simulations to 
take temporal interdependences between grid customers into account. Besides the number of 
grid customers, these interdependences depend on the customer types (e.g., households, EVs). 
While state-of-the-art coincidence factors neglect this aspect, novel coincidence factors have 
been modeled in the authors’ previous work (Thormann et al. [8], Figure 4). It also describes 
the methodology applied for modeling these new coincidence factors. 

Since the modeled coincidence factors combine different customer types, the coinci-
dence factor at a certain aggregated number of customers varies depending on their dis-
tribution. For example, three households are characterized by a lower coincidence factor 
than one household with one EV and one HP (in total, three customers). In general, EVs 
and PVMs (near one) are characterized by high coincidence factors, whereas households 
and HPs are characterized by lower ones (Figure 4). As described in Section 2.3 and 
demonstrated in Equation (2), the coincidence factor (and the resulting aggregated power) 
depends on the number of considered customers. Hence, it must be adapted according to 
the grid element to be analyzed and its number of supplied customers. As a result, static 
deterministic load flow simulation (one time step only) using coincidence factors does not 
allow the accurate simulation of all grid elements at once. 



Energies 2022, 15, 1383 10 of 28 
 

 

 
Figure 4. Novel coincidence factors considering temporal interdependences between various customer 
types: households, electric vehicles (EVs), photovoltaic modules (PVMs), and heat pumps (HPs). 

Therefore, each LV grid is structured into several feeder levels, described in Section 
4.1.1 (Figure 3). The coincidence factor defined at each customer depends on the analyzed 
grid element, hence, the respective feeder level (Figure 5): When analyzing the MV/LV 
substation in feeder level 1 (e.g., supplying three customers), the respective coincidence 
factor (e.g., 0.65) is applied to each connected customer. The aggregated power (13.0 kW), 
calculated using Equation (2), is distributed to grid customers (6.5, 2.6, and 3.9 kW) ac-
cording to their maximum individual power (10.0, 4.0, and 6.0 kW). 

 
Figure 5. Exemplary allocation of coincidence factors (CF) and resulting power (P) to the grid’s cus-
tomers depending on the analyzed feeder level (FL). 

Each feeder’s main line (Line 1 in Figure 5) is evaluated, considering feeder level 2 
(e.g., supplying two customers). Therefore, each connected customer is assigned the re-
spective coincidence factor (e.g., 0.80), whereas non-relevant customers are neglected (co-
incidence factor of 0.0). This procedure is done for each feeder level. In the end, each cus-
tomer is assigned one coincidence factor and one power value for each feeder level, re-
spectively (Figure 5). After determining the active power for each grid customer and 
feeder level, reactive power is calculated by using the following power factors: 0.99 (lead-
ing) for EVs, 1.00 for PVMs, and 0.90 (lagging) [8,36,40,41]. 
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4.1.4. Load Flow Simulation 
In the next step, active and reactive power values of each customer and each feeder 

level are applied to analyze potential grid restrictions. Therefore, static load flow simula-
tions are performed using the Newton-Raphson method. For each feeder level, one static 
load flow simulation is performed using the appropriate coincidence factor for each cus-
tomer (Figure 5). All grid elements assigned to the same feeder level are analyzed simul-
taneously. Hence, the number of required load flow simulations equals the number of 
feeder levels assigned to each grid, respectively. However, the developed grid simulation 
tool allows users to define the number of simulated feeder levels to adapt to the available 
computing power. In this study, the number of simulated feeder levels is varied (Section 
4.5) to investigate different approaches to applying coincidence factors and their impact 
on simulation accuracy. 

As output data, the static load flow simulation provides each node’s complex voltage 
(𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂; Figure 6a) and the thermal utilization of transformers and lines (Figure 6b) for 
each simulated feeder level. However, the actual results of individual elements (nodes, 
transformers, and lines) depend on their actual coincidence factor and, thereby, the as-
signed feeder level. Thus, the actual current of transformers and lines is retrieved from 
the output data (Figure 6b) according to their assigned feeder level, e.g., at feeder level 1 
for the MV/LV substation or at feeder level 3 for Line 2 (Figure 5). 

  
(a) (b) 

Figure 6. Exemplary output of static load flow simulations performed for three feeder levels (FL): 
Each node’s voltage (a) and the thermal utilization of the MV/LV substation and lines (b). 

The actual complex voltage of a node n (𝑉𝑉𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) is calculated according to Equation 
(3), based on the actual complex voltage of the previous node (𝑉𝑉𝑛𝑛−1,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) and their com-
plex output voltages (𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂; Figure 6a) at the feeder level of node n (𝐹𝐹𝐹𝐹𝑛𝑛). The applied 
calculation of voltages can only be used for evaluating radial grid structures, not for mesh 
networks. However, considering radial grid structures on the LV level, this method has 
been validated by time series-based grid simulation in Thormann et al. [8] 

𝑉𝑉𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑛𝑛−1,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝐹𝐹𝐹𝐹𝑛𝑛,𝑛𝑛) − 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝐹𝐹𝐹𝐹𝑛𝑛,𝑛𝑛 − 1) (3) 

In the end, the performed load flow simulations provide each node’s actual voltage 
and the actual current of transformers and lines. The grid’s actual voltages and currents 
are then applied to evaluate potential grid reinforcement needs (Section 4.1.5). 

4.1.5. Determination and Aggregation of Grid Reinforcement Needs 
In the final step of the automated large-scale grid simulation tool, required grid rein-

forcement measures induced by various grid customers (existing ones, EVs, PVMs, and 
HPs) and resulting costs are determined. Therefore, each grid’s results are examined for 
voltage violations and thermal congestions (cf. [7,19,20]). The acceptable voltage range 
and the maximum thermal utilization of transformers and lines are defined freely by the 
user. The European standard EN 50160 [42] defines the acceptable voltage range of the LV 
and MV levels with ±10% of the nominal voltage. However, this voltage range is shared 
by both voltage levels conjunctly. According to the voltage range partitioning presented 
in [5,43], an acceptable voltage range of [104.5%; 93.5%] of the nominal voltage (0.4 kV) is 
used in this study. In addition, grid reinforcements are required if transformers or lines 

FL Node 1 Node 2 Node 3

1 97.8 pu 96.7 pu 95.2 pu

2 98.1 pu 96.0 pu 93.3 pu

3 98.6 pu 97.1 pu 93.9 pu

FL MV/LV 
substation Line 1 Line 2

1 81 % 40 % 33 %

2 73 % 71 % 59 %

3 53 % 51 % 70 %
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exceed their allowed thermal utilization of 100%. Depending on the type of grid re-
striction, the following grid reinforcement measures are automatically executed in the 
grid model (cf. [7,20,44]): 
• Thermal overload of the transformer(s) at the MV/LV substation: The developed tool 

initially examines whether the parallel installation of an additional transformer with 
the same nominal power as the existing one(s) is sufficient to prevent thermal over-
load. If not or the maximum number of parallel transformers is already reached (Ta-
ble 3), existing transformers at the MV/LV substation are exchanged with new ones, 
providing sufficient nominal power. 

• Thermal overload of individual lines: If individual grid lines are overloaded, addi-
tional lines are installed parallel until the maximum power can be transmitted or the 
maximum number of parallel lines (Table 3) is reached. Therefore, the cable type 
NAYY 4 × 150 mm2 (cf. [7,20]) with a maximum current of 245 A is installed by de-
fault. 

• Voltage violations: If one or more nodes show inadmissible voltages, the affected 
feeder is divided into two feeders at 2/3 of the total length from the MV/LV substation 
(cf. [20]). 
As a result, this step provides the number and nominal power of additional trans-

formers as well as the total length of additional grid lines to be installed in the grid. Grid 
reinforcement costs are estimated for each grid by applying specific construction- and ma-
terial costs of additional transformers and grid lines. While the user can define specific 
costs freely, this study uses values listed in Table 3, including personnel-, planning- and 
construction costs [7,20,44]. 

Table 3. Parameters applied for determining required grid reinforcement costs [7,20,44]. 

Parameter Applied Values 
Max. number of parallel transformers (-) 2 

Max. number of parallel lines (-) 4 

Nominal power of additional transformers (MVA) 
0.1, 0.25, 0.4, 0.63, 

0.8, 1.0, 1.25 

Material and installation costs of additional transformers (k€) 7.0, 17.3, 27.7, 29.6, 
35.6, 38.0, 41.4 

Specific construction costs of additional grid lines (€/km) 65,000  
Specific material costs of additional grid lines (€/km) 10,000 

In the current version of the developed grid simulation tool, measures of congestion 
management are excluded. However, they will be integrated into further versions of the 
tool. The developed automated large-scale grid simulation tool executes the workflow de-
scribed in Section 4.1 (Figure 2) for each grid. All the grids’ costs are aggregated to deter-
mine total grid reinforcement measures in the investigated area caused by a user-defined 
scenario (e.g., characterized by a specific EV-, PVM- and HP-penetration). 

4.2. Grid Data Applied in This Study 
This study evaluates various methods and approaches to quantify potential grid re-

inforcement needs based on 7114 real-life LV grids. The analyzed LV grids are operated 
by a major Austrian DSO whose service area is mainly characterized by suburban and 
rural regions. Figure 7 describes the analyzed LV grids by illustrating their frequency of 
occurrence and median regarding the installed transformer capacity, the number of nodes, 
the total line length, and the average number of customers per point of common coupling. 
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(a) (b) 

  
(c) (d) 

Figure 7. Frequency of occurrence of (a) the installed transformer capacity, (b) the number of nodes, 
(c) the total line length, and (d) the number of customers per point of common coupling (PCC) in 
the analyzed LV grids. 

Most LV grids are supplied by a MV/LV transformer with a capacity of 0.10 (34%), 
0.16 (15%, median), 0.25 (21%), or 400 MVA (13%). Only 13% of MV/LV substations are 
equipped with a higher transformer capacity (Figure 7a). In total, the investigated LV 
grids include about 740,400 nodes with a median of 83 nodes per grid (Figure 7b) and 
23,000 km of grid lines with a median of 2.89 km (Figure 7c). All grids together supply 
498,600 customers via 207,400 points of common coupling. The median of 1.47 customers 
per point of common coupling (Figure 7d) demonstrates a relatively low population den-
sity in the area of investigation. 

Grid customers can be classified into 307,200 households (median: 43), 60,300 com-
mercial businesses, 29,800 agricultural businesses, 83,100 electric water heaters, 2000 light-
ing systems and 16,200 existing PVMs. Each grid is structured as a radial network and 
supplied by the MV grid (represented by an MV slack node) via one or two MV/LV sub-
stations and transformers (Figure 3). In conclusion, the investigated LV grids show a high 
heterogeneity regarding the installed transformer capacity, the number of nodes, the total 
line length, and the number of customers per point of common coupling (Figure 7). How-
ever, this discrepancy between real-life LV grids has also been noticed in central Europe 
and the USA due to various grid planning approaches of DSOs and geographical differ-
ences [45–48]. In fact, the statistical distribution of the analyzed LV grids’ parameters 
shows similarities to other studies (e.g., [49–51]). 

4.3. Scenario Applied in This Study 
Besides the quantification method and the approach to applying coincidence factors, 

recent studies differ concerning the considered scenarios. In contrast, this work compares 
those methods and approaches by applying one consistent scenario. Therefore, the future 
penetration of EVs, PVMs, and HPs is derived for 2030. According to the Environment 
Agency Austria [52], this study assumes an EV penetration of 27% in 2030. Furthermore, 
we assume that 30% of households will be equipped with domestic PVMs in 2030, accord-
ing to Fechner [53]. The future penetration of electric HPs is estimated based on the study 
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by Fraunhofer [54], which predicts their penetration between 14–31% in 2030. Hence, this 
study uses the mean value of 23% to compare various quantification methods and ap-
proaches to applying coincidence factors. 

4.4. Varying the Applied Method to Quantify Grid Reinforcement Measures 
The presented study evaluates four different methods to quantify grid reinforcement 

costs (Table 4) in the area of investigation, including 7114 LV grids (Section 4.2). Those 
follow the methods applied by the current state of research and presented in Section 2. 
Thereby, they vary in the selection and number of grids to be simulated based on load 
flow simulations: The first method (Scaling of grid regions) performs load flow simula-
tions selecting three representative LV grids, one per grid region (urban, suburban, and 
rural according to [55]). As in most recent studies (Section 2.1.1), representative grids are 
selected in consultation with the respective grid planners and based on their experience 
and know-how. The total grid reinforcement costs in the selected area are determined by 
simulating the selected grids and scaling their costs to the whole area (7114 grids) accord-
ing to Equation (4): 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
�∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑖𝑖=1 � ∙ 7114

𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
 (4) 

The second quantification method (scaling of arbitrarily selected grids) randomly se-
lects representative grids from the available grid data to perform grid simulations. Total 
grid reinforcement costs are then estimated by scaling the grids’ results to the defined area 
(Equation (4)). This method’s results strongly depend on the number of selected grids and 
the selected grids’ structures. On this account, we vary the number of simulated grids 
between 1–7114 using this method (Table 4). For each number of simulated grids, the ran-
dom selection and simulation of grids are repeated 1000 times to vary the analyzed grid 
structures as well. Since this method neglects the statistical distribution of grids’ parame-
ters (e.g., transformer capacity, number of nodes, number of customers, total line length), 
it represents a simplified approach to select grids for simulation. 

Table 4. Evaluated methods to quantify future grid reinforcement costs. 

 Quantification Method Selection of Representative Grids 
to Be Simulated 

No. of Simulated 
Grids 

1 Scaling of grid regions Based on the grid planner’s 
expertise (one per region) 

3 

2 Scaling of arbitrarily 
selected grids Randomly for 1000 iterations Varied between 

1–7114 

3 
Scaling of statistically 

selected grids Based on statistical data 
Varied between 

1–7114 
4 Simulation of all grids - 7114 

In contrast, the third quantification method (scaling of statistically selected grids) se-
lects representative grids to be simulated based on statistical data (cf. [46,56]). Therefore, 
the root mean square relative deviation between each grid’s parameters (installed trans-
former capacity, number of nodes, total line length, and the number of customers per 
point of common couplings) and the respective medians (demonstrated in Section 4.2) are 
calculated. Similar to method 2, the number of simulated grids is varied between 1–7114. 
For each number of simulated grids, those with the lowest root mean square relative de-
viation are selected for simulation. The total grid reinforcement costs are calculated by 
scaling their results to the whole area of investigation (Equation (4)). In the fourth quanti-
fication method (simulation of all grids), we simulate all 7114 LV grids in the investigated 
area, requiring no scaling or grid selection. Total grid reinforcement costs are determined 
by aggregating all grids’ results. 
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The developed grid simulation tool (Section 4.1) is applied for each method, though 
different numbers of grids are simulated (Table 4). Furthermore, all feeder levels are sim-
ulated in each quantification method to consider each grid element’s appropriate coinci-
dence factor (approach 4 in Section 4.5). 

4.5. Varying the Approach to Applying Coincidence Factors 
As demonstrated in Section 2.3, studies quantifying future grid reinforcement costs 

in a large area vary regarding the following aspects: 
• The coincidence factor’s variation in the analyzed grids (consistent or grid-specific) 
• The number of various coincidence factors applied per grid (single or multiple) 
• The grid element on the basis of which the coincidence factors are determined (the 

MV/LV substation or each feeder’s main line) 
The presented study identifies these aspects’ impact on the calculated total grid rein-

forcement costs. Therefore, four different approaches to applying coincidence factors (Ta-
ble 5), following the current state of research (Section 2.3), are evaluated. With each ap-
proach, all 7114 LV grids (Section 4.2) are simulated using the developed large-scale grid 
simulation tool (Section 4.1). 

Table 5. Evaluated approaches to applying coincidence factors (CF). 

 
CF-Variation in the 

Analyzed Grids  
No. of Various CFs 
Applied per Grid 

Grid Element as Basis of 
CF-Determination 

Simulated Feeder 
Levels 

1 Consistent Single MV/LV substation Feeder level 1 
2 Grid-specific Single MV/LV substation Feeder level 1 

3 Grid-specific Double MV/LV substation and 
each feeder’s main line 

Feeder level 1 
and 2 

4 Grid-specific Multiple Each grid element All feeder levels 

However, the applied tool is adjusted according to the approach to be investigated. 
Firstly, depending on how coincidence factors vary throughout the analyzed LV grids: In the 
first approach, one consistent coincidence factor is applied to each LV grid. Therefore, this 
study uses a coincidence factor of 0.26, selected from the calculated values (Figure 4) based on 
the average number of 43 households (Section 4.2) and the respective EV- (27%), PVM- (30%), 
and HP-penetration (23%), described in Section 4.3. This method neglects the actual number 
of customers in the analyzed grid. In contrast, approaches 2–4 determine the coincidence fac-
tor for each grid specifically depending on its number of grid customers. 

Secondly, we vary the number of different coincidence factors applied per grid and 
the grid element on the basis of which these coincidence factors are determined. Both can 
be defined by the number of feeder levels to be analyzed (Section 4.1.3) using the devel-
oped large-scale grid simulation tool. In this study, the number of simulated feeder levels 
is adjusted according to the investigated approach to applying coincidence factors (Table 
5): The first and second approaches apply a single coincidence factor to each grid cus-
tomer, determined based on the number of customers the MV/LV substation supplies. 
Hence, only feeder level 1 is simulated in these approaches using the respective coinci-
dence factors (consistent or grid-specific). In the third approach, feeder levels 1 and 2 are 
simulated to take two different coincidence factors at the MV/LV substation and each 
feeder’s main line (Figure 3) into account for each grid customer. Finally, approach 4 de-
termines the actual coincidence factors for each grid element to be analyzed depending 
on its number of connected customers. Therefore, multiple coincidence factors are applied 
to grid customers, and all feeder levels are simulated. 

Using the developed large-scale grid simulation tool, the number of analyzed feeder 
levels equals the number of required load flow simulations. Thus, the approaches ana-
lyzed in this study differ in the number of performed load flow simulations. 
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5. Results 
5.1. Comparing Different Quantification Methods 

This work analyzes various methods (Table 4) to quantify the total grid reinforce-
ment costs in the selected area, including 7114 LV grids. Due to data protection issues, the 
actual costs required in the investigated area must not be published. However, the actual 
costs are divided by a selected non-published reference value to compare various quanti-
fication methods. Thus, total grid reinforcement costs determined by the analyzed quan-
tification methods are illustrated as per unit (pu) values depending on the number of sim-
ulated grids (Figure 8): 

The simulation of one representative grid per grid region (urban, suburban, and ru-
ral—three grids in total) and the scaling of their results up to the total number of grids 
(Scaling of grid regions) reveals total grid reinforcement costs of 0.66 pu. The second 
method’s results (Scaling of arbitrarily selected grids) strongly depend on the selected 
grids’ structures. Consequently, this method shows a broad range of possible grid rein-
forcement costs, especially at a low number of simulated grids. When simulating, for ex-
ample, 50 randomly chosen grids (0.7% of all grids) and scaling their results to the selected 
area, the total costs differ between 0.08 pu and 3.18 pu (Figure 8). However, with an in-
creasing number of simulated grids, the spectrum of possible results narrows: Between 
0.93–1.68 pu at 1000 simulated grids (14%); between 1.15–1.44 pu at 3500 grids (49%); be-
tween 1.23–1.36 pu at 6000 grids (84%). 

 
Figure 8. Comparison of different quantification methods regarding their detected total grid rein-
forcement costs depending on their number and share of simulated grids. 

Total grid reinforcement costs determined by scaling statistically selected grids’ results 
(method 3) also vary depending on the number of simulated grids. Only 54 of the statistically 
500 most representative grids (7.0% of all grids), chosen according to the procedure depicted 
in Section 4.4, require grid reinforcements in the selected scenario. Scaling their results to the 
selected area reveals grid reinforcement costs of 1.02 pu. However, the simulation of more 
grids (and their scaling) leads to total grid reinforcement costs of 1.13 pu (1000 grids), 1.16 pu 
(3500), and 1.33 pu (6000). Based on the same approach to applying coincidence factors (ap-
proach 4: Grid-specific, multiple coincidence factors), quantification methods 2–4 all reveal 
total costs of 1.29 pu if all 7114 LV grids are simulated (Figure 8). 
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The results of simulating all LV grids are graphically illustrated in Figure 8 as a red 
dashed line to provide a better comparison to other quantification methods. The scaling 
of grid regions’ representative grids (method 1) underestimates grid reinforcement costs 
by 49% compared to a detailed simulation of all grids (method 4). The scaling of arbitrarily 
selected and simulated grids (method 2) approaches the actual result (1.29 pu) the more 
grids are simulated. If LV grids are selected for simulation based on statistical data 
(method 3), the scaled grid reinforcement costs oscillate around all grids’ aggregated costs 
(1.29 pu). In this method, all grids are ranked according to their statistical deviation from 
the “most representative” grid and selected for simulation. The statistically 4600 most rep-
resentative grids (65%) in the selected area require on average lower grid reinforcement 
costs (1.7967 × 10-4 pu) than the overall average of all 7114 grids (1.8165 × 10-4 pu). Conse-
quently, the scaling of their results underestimates the actual total costs required in the 
selected area. Simulating between 4601 and 5200 LV grids and scaling their results to the 
whole area of investigation provides similar (deviation between ±1.6%) results than sim-
ulating all grids. However, the simulation and scale of more grids (between 5201 and 7110) 
overestimate the actual demand of grid reinforcement costs (acquired by simulating all 
grids). These numbers demonstrate that the “most representative” LV grid in the investi-
gated area shows a high capacity for integrating future customers. On the contrary, total 
grid reinforcement costs are triggered mainly by grids deviating from the median in the 
selected area. 

5.2. Comparing Different Approaches to Applying Coincidence Factors 
5.2.1. Required Grid Reinforcement Measures 

Besides different quantification methods, this study examines various approaches to 
applying coincidence factors (Table 5) and their suitability for quantifying future grid re-
inforcement needs. The latter is divided into the total (all 7114 grids) transformer capacity 
and total length of lines additionally installed to overcome grid restrictions. Similar to 
costs (Section 5.1), both are divided by selected non-published reference values and illus-
trated as pu values to fulfill all data protection criteria (Figure 9): 

A consistent, single coincidence factor determined based on the average number of 
customers supplied by the MV/LV substation and applied to each grid (approach 1) ne-
glects the grid’s actual number of customers and misjudges grid conditions in many ana-
lyzed grids. As demonstrated in Figure 4, the coincidence factor strongly correlates with 
the number of customers. Hence, this method overestimates the coincidence factor at the 
MV/LV substation in grids with considerably more households than the average grid (ap-
plied to calculate the coincidence factor in this method). Vice versa, it underestimates the 
coincidence factor at the MV/LV substation in grids with considerably fewer households. 
Consequently, the required transformer extensions determined by this method exceed all 
remaining approaches’ results by 3.22 pu (4.00 pu in total). Since all the other approaches 
determine grid-specific coincidence factors for the MV/LV substation (feeder level 1), they 
indicate the same transformer reinforcements, i.e., 0.78 pu (Figure 9). However, the signif-
icant discrepancy between consistent and grid-specific coincidence factors (413%) demon-
strates the importance of determining the actual coincidence factor at the MV/LV substa-
tion for each grid individually. Otherwise, potential grid restrictions are misjudged sig-
nificantly. 

The investigated approaches to applying coincidence factors also differ concerning 
their resulting line extension needs (Figure 9): Applying single coincidence factors, de-
fined according to the number of customers the MV/LV substation supplies, reveals total 
line extensions of 0.66 pu (approach 1: Consistent) and 0.24 pu (approach 2: Grid-specific). 
A value of 0.63 pu is detected, considering grid-specific, double coincidence factors at the 
MV/LV substation and each feeder’s main line (approach 3, feeder level 1 and 2). Simulat-
ing each feeder level, including grid-specific, multiple coincidence factors (approach 4), 
provides a total line extension of 1.20 pu. 
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Figure 9. Comparison of different approaches to applying coincidence factors (CF) regarding the 
required transformer- and line extensions (7114 LV grids simulated). 

These results demonstrate the importance of applying grid customers’ coincidence 
factors appropriately: Considering single coincidence factors based on grid elements in 
feeder level 1 (MV/LV substation) underestimates grid loads at higher feeder levels since 
coincidence factors rise with lower numbers of customers (Figure 4). Hence, using these 
methods, the sum of indicated line extension measures in all 7114 LV grids is 45% (ap-
proach 1: Consistent) and 80% (approach 2: Grid-specific) lower than the exact considera-
tion of all feeder levels (approach 4). As already mentioned, the consistent coincidence 
factor of 0.26 (applied in approach 1) overestimates the coincidence factor for many grids’ 
MV/LV substation (feeder level 1). However, since the coincidence factor increases with 
an increasing feeder level (decreasing number of grid customers), it estimates grid loads 
at higher feeder levels and line congestions more appropriately (Figure 9). 

Even the application of grid-specific, double coincidence factors (approach 3) accord-
ing to the MV/LV substation and each feeder’s main line (feeder level 1 and 2) underesti-
mates the total length of additionally required lines (Figure 9): Only 53% of line reinforce-
ment measures are indicated compared to considering grid customers’ coincidence for 
each grid element in approach 4 (all feeder levels). This discrepancy demonstrates that in 
the investigated LV grids, a large part of grid reinforcements are required at higher feeder 
levels, i.e., grid elements distanced from the MV/LV substation. 

5.2.2. Required Grid Reinforcement Costs 
Similar to Section 5.1, the total grid reinforcement costs, determined using various 

approaches to applying coincidence factors, are divided by a non-published reference 
value and illustrated as pu values (Figure 10). This study uses the same cost parameters 
of transformer- and line reinforcements for each approach (Table 3). However, due to sig-
nificant differences concerning the required grid reinforcement measures (Figure 9), the 
examined applications of coincidence factors evaluate total grid reinforcement costs dif-
ferently. Consistent, single coincidence factors (approach 1) result in total grid reinforce-
ment costs of 1.09 pu (Figure 10). Determining single coincidence factors (MV/LV substa-
tion) for each grid individually provides total grid reinforcement costs of 0.33 pu (ap-
proach 2). Considering each grid’s coincidence factor at the MV/LV substation and each 
feeder’s main line and applying both for load flow simulations increases the required costs 
to 0.72 pu (approach 3). Applying grid-specific, multiple coincidence factors depending 
on the grid element to be analyzed (approach 4) detects total costs of 1.29 pu, which are 
needed to prevent potential grid congestions in the analyzed scenario. 

Required grid reinforcements (pu)
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Figure 10. Comparison of different approaches to applying coincidence factors (CF) regarding the 
required grid reinforcement costs (7114 LV grids simulated). 

The comparison of all approaches reveals the following insights: Applying con-
sistent, single coincidence factors to each grid, the overestimation of required transformer 
extensions, and the underestimation of required line extensions partly balance each other 
out (Figure 9). Based on the specific cost parameters selected in this study (Table 3), the 
underestimation of required line extension measures more decisively affects total grid re-
inforcement costs. As a result, only 84% (−16%) of the grid reinforcement costs in approach 
4 (1.29 pu) are also depicted using this simplified method (Figure 10). Compared to the 
application of one consistent coincidence factor to each grid (approach 1), grid-specific 
values (approach 2) misjudge required line extensions more decisively (Figure 9). Due to 
a more expensive reinforcement of grid lines (compared to transformers), total grid rein-
forcement costs deviate even more (−74%). 

The consideration of grid-specific, double coincidence factors (approach 3), accord-
ing to the MV/LV substation and at each feeder’s main line, increases the detected costs. 
However, even this method misjudges total grid reinforcement costs substantially: Com-
pared to grid-specific, multiple coincidence factors (simulating each feeder level), costs 
are underestimated by 44%. 

5.2.3. Computing Time 
Each approach to applying coincidence factors (Table 5) is tested with the same com-

puting power (32 CPUs, 3 GHz, 128 GB RAM) using the developed large-scale grid simu-
lation tool. However, since they vary in the number of simulated feeder levels, hence, load 
flow simulations, they show significant differences in the required computing time (Fig-
ure 11): Applying single coincidence factors to each grid customer (either consistent or 
grid-specific) requires one load flow simulation per grid (approaches 1–2). Thus, these 
methods allow the simulation of all 7114 LV grids in 0.24 h, which corresponds to 1.16 s 
per 1000 grid nodes (Figure 11). 

Two load flow simulations per grid (approach 3), necessary to apply double coinci-
dence factors to grid customers, increase the computing time to 0.45 h for all grids or 2.19 
s per 1000 nodes. 
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Figure 11. Comparison of different approaches to applying coincidence factors (CF) regarding the 
required computing time (7114 LV grids simulated). 

Finally, individually considering grid customers’ coincidence factor for each grid ele-
ment to be analyzed (approach 4) requires 4.27 h in total or 20.77 s per 1000 nodes (Figure 11). 
The 17.8-times longer computing time, compared to the application of single coincidence fac-
tors, correlates with 16.2-times more feeder levels to be simulated on average per grid. 

6. Discussion and Outlook 
This section discusses the paper’s results (Section 5) and its contribution to the cur-

rent state of research. Furthermore, it provides an outlook on further work necessary in 
this field of research. Therefore, this section is divided according to the presented research 
questions unanswered by the current state of research (Section 3). 

6.1. What Is the Potential Error When Simulating Only a Few Individually Selected LV Grids 
and Scaling Their Results to Quantify Grid Reinforcement Costs in a Large Area? 

Present-day LV grids show high discrepancies regarding their maximum hosting ca-
pacity considering EVs, PVMs, and HPs [8]. This paper’s results identify the impact of LV 
grids’ heterogeneity on quantifying future grid reinforcement costs: Considering the ana-
lyzed grid area, simulating only a few individually selected grids and scaling their results 
leads to a broad spectrum of total grid reinforcement costs (Figure 8): If, for example, 
about 200 grids are selected for load flow simulation (cf. [20,21]), the total costs might 
deviate between -66% and +82% from the actual value. Assuming actual grid reinforce-
ment costs of 42.5 billion euros [20], this equals a deviation between -28.0 and +34.9 billion 
euros. Using statistical data to select representative grids (in this work, the root mean 
square deviation to the median) only slightly decreases the potential error compared to 
an arbitrary selection of grids to be simulated (Figure 8). 

If even fewer grids are simulated, the potential error increases significantly, and the 
selection of which grids to simulate becomes more crucial. Even if grids are classified de-
pending on their grid region, the simulation of a few grids per region is insufficient to 
adequately determine overall grid reinforcement costs (Figure 8). However, while this 
study investigates only one grid per region, selecting other or more grids per region might 
increase this method’s accuracy. Nevertheless, grid topologies at the LV level significantly 
fluctuate, even within the same region (urban, suburban, or rural) [48]. Thus, when simu-
lating multiple grids per region, the question of which grids to simulate arises again. 
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6.2. How Many Grids (in %) Must Be Simulated to Assure a Certain Degree of Accuracy? 
The more LV grids are analyzed using load flow simulations, the more accurate fu-

ture grid reinforcement costs can be estimated (Figure 8). Though, considering the area 
investigated in this study, up to 5800 grids (82%) must be selected arbitrarily and simu-
lated to enable accuracy of 95%. Decreasing the acceptable accuracy to 85% still requires 
the simulation of 2800 LV grids (39%). 

As demonstrated in Figure 8, selecting representative grids based on statistical data 
only slightly increases the reliability of results: In some cases, for example, simulating the 
4600 (or 5200) most representative grids in the investigated area, total grid reinforcement 
costs can be determined very accurately (100%). Nevertheless, the acquired results deviate 
to the same extent as randomly selecting grids. Consequently, the large-scale quantifica-
tion of potential grid reinforcement costs with adequate accuracy requires simulating sev-
eral thousand LV grids. 

6.3. Impact of the Analyzed Grid’s Variance 
It has to be mentioned that this work compares the presented quantification methods 

only for one Austrian DSO and its LV grids (Section 4.2). Despite similarities to LV grids 
investigated in other studies (e.g., [49–51]), applying the presented insights to other DSOs, 
hence, different grid topologies and grid planning strategies, requires further investiga-
tions. For example, a DSO operating LV grids with similar topology as well as customer 
density and types may provide deviating results. On this account, we additionally analyze 
the impact of LV grids’ variance on the share of recommended grids to be simulated. 
Therefore, similar LV grids are picked from all the LV grids (7114) based on statistical data 
to establish two classes with different variance: According to Levi et al. [46], Class 1 in-
cludes LV grids with a total line length within the 25%-(1.69 km) and 75%-quantile (4.41 
km) of all grids. In addition to the total line length, the number of customers per point of 
common coupling is limited to the 25%-(1.25) and 75%-quantile (2.27) to further decrease 
the variance of LV grids in class 2. For each class, the share of selected, simulated, and 
scaled grids is varied between 0–100% (Figure 12). 

Decreasing the variance of analyzed LV grids, hence, analyzing more similar grids, 
allows higher accuracy if simulating only a small share of all grids: Between 0–10% share 
of simulated grids, the average error is decreased to 13.8% (class 1) and 16.7% (class 2), 
compared to 32.6% when analyzing all 7114 LV grids (Figure 8). However, despite the 
lower variance in total line length and customers per point of common coupling, the po-
tential error increases if simulating more grids (>10%): From a maximum error of 23% 
when analyzing all 7114 grids to 24% (class 1) and 28% (class 2) when analyzing more 
similar grids (Figure 12). 

These results demonstrate that even if the analyzed LV grids show a lower variance, 
their required reinforcement costs due to future customers might deviate substantially. 
Consequently, the potential error when simulating representative grids and scaling their 
results to the whole area of investigation grids must not be neglected. 
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Figure 12. Comparison of scaling statistically selected LV grids’ results for two grid classes, classi-
fied according to the total line length and the number of customers per point of common coupling 
(PCC). 

As illustrated in Figure 12, LV grids vary significantly even within the same class. 
Hence, the same question arises when classifying grids into representative classes (cf. 
[5,7,19,20]). Only if grids are classified finely enough, and multiple grids are simulated 
per class, the scaling of grid reinforcement costs enables adequate accuracy. On the other 
hand, this approach requires lengthy pre-processing, with huge time- and computation 
effort [15]. In fact, recent studies using this approach (e.g., [5,20]) analyze all grids of Ger-
many, which justifies time-consuming pre-processing. Since this study investigates one 
particular service area, including 7114 LV grids, this approach (including pre-processing) 
would require more time than the simulation of all grids. How to apply grid customers’ 
coincidence factors to quantify grid reinforcement measures accurately (consistent or 
grid-specific; single or multiple; based on which grid element)? 

Besides the necessity to simulate several thousand grids, this paper’s results (Section 
5.2) illustrate another crucial aspect to quantify required grid reinforcements adequately: 
The appropriate application of grid customers’ coincidence factors. Therefore, this section 
provides relevant guidelines to accomplish that. While the question of which coincidence 
factors to use has already been answered in Thormann et al. [8], these guidelines focus on 
how to apply them for simulating numerous grids: 

Firstly, assuming one consistent coincidence factor for each grid (approach 1) is in-
appropriate to identify grid conditions in several thousand LV grids. This method mis-
judges both required transformer (overestimated) and line extensions (underestimated) 
significantly (Figure 9). While in this study, both errors partly balance each other out re-
garding total grid reinforcement costs (Figure 10), this effect strongly depends on the se-
lected cost parameters. Applying, for example, higher specific transformer costs might 
increase this method’s error. Thus, each grid’s coincidence factor must be specifically de-
fined depending on its number of supplied customers to overcome this problem. 

However, determining single coincidence factors according to the number of custom-
ers supplied by the MV/LV substation (approaches 1–2) misjudges grid elements at higher 
feeder levels, i.e., nodes, transformers, or lines more distanced to the MV/LV substation. 
The application of double coincidence factors, based on the number of customers supplied 
by the MV/LV substation and each feeder’s main line (Figure 3), only slightly increases 
the accuracy of results (approach 3). Consequently, grid customers’ actual coincidence 
factor must be defined individually for each grid element depending on the number of 
supplied customers (approach 4). Only then, future grid reinforcement measures and re-
sulting costs can be calculated accurately. As demonstrated in Section 2.3, the current state 
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of research, using coincidence factors [6,7,10,20,23,26], neglects these guidelines. Conse-
quently, their estimated grid reinforcement costs due to future EVs, PVMs, and HPs, 
might be even higher. 

Nevertheless, discrepancies between the analyzed approaches to use coincidence fac-
tors apply to the investigated service area with primarily suburban and rural LV grids. 
Considering grid customers’ coincidence only at the MV/LV substation or each feeder’s 
main line might be more accurate if applied to urban LV grids, often characterized by 
fewer grid nodes. Furthermore, due to the selected cost parameters (Table 3), line exten-
sions more significantly affect total grid reinforcement costs than the installation of addi-
tional transformers. Cost deviations between the analyzed approaches might be lower, 
applying higher transformer costs. On this account, the impact of various grid topologies, 
grid planning strategies, and cost parameters on this issue will be analyzed in further 
studies. 

6.4. What Is the Trade-Off between the Acquired Simulation Accuracy and Required Computing 
Time? 

As demonstrated in Section 4.1.3, the coincidence factor of each grid customer can be 
considered accurately by simulating multiple feeder levels (Section 4.1.3). While this 
measure increases the accuracy of grid simulations (Figure 9), it increases the required 
computing time (Figure 11). However, what is the trade-off between the results’ accuracy 
and required computing time? In other words: How many feeder levels must be simulated 
to determine grid reinforcement costs adequately? To answer this question, we vary the 
number of simulated feeder levels from one (determining single coincidence factors) to all 
feeder levels (determining multiple coincidence factors, according to the grid element to 
be analyzed) when simulating all 7114 LV grids. Furthermore, we compare the deter-
mined total grid reinforcement costs and the required computing time (Figure 13). 

 
Figure 13. Grid reinforcement costs (relative to the simulation of all feeder levels) and required 
computing time depending on the number of simulated feeder levels. 

This time, costs are referred to the value of 1.29 pu (Figure 10), acquired by the most 
accurate application of coincidence factors (simulation of all feeder levels). As demon-
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all feeder levels. Despite twice the computing time (0.90 h), a further increase to four 
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all feeder levels only slightly enhances the accuracy of results (+5%). Though, it extends 
the required computing time by one hour (+23%). 
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6.5. How to Quantify Future Grid Reinforcement Costs Allowing Both High Accuracy and 
Adequate Computing Time in the Most Optimal Way? 

While Section 5.1 highlights the need for large-scale grid simulations to quantify fu-
ture grid reinforcement costs, Section 5.2 demonstrates two criteria they should comply 
with: Applying grid customers’ coincidence factors appropriately depending on the grid 
element to be analyzed and keeping the required computing time adequate. Both criteria 
are fulfilled using the developed large-scale grid simulation tool (Section 4.1). The former 
is tackled by simulating multiple feeder levels and adapting grid customers’ coincidence 
factors accordingly. Thereby, temporal interdependences between existing (e.g., house-
holds) and future customers (EVs, PVMs, and HPs) are accounted for accurately. 

Despite the simulation of multiple feeder levels, the required computing time re-
mains reasonable: 20.8 s per 1000 grid nodes. Assuming 104 nodes per grid on average 
(Section 4.2), about 1600 LV grids can be simulated per hour. In conclusion, the developed 
tool enables the fast quantification of future grid reinforcement measures and costs with 
high accuracy. Thereby, it helps to avoid the misjudgment of future power grid invest-
ments caused by poor grid selection and inadequate applications of coincidence factors. 

Besides classic grid reinforcements (e.g., exchange of transformers or grid lines), grid 
congestions caused by future customers can be limited or even be prevented by grid-re-
lieving measures. Grid restrictions on the LV level triggered by future EVs can success-
fully be reduced by demand-side measures, e.g., the adaption of charging power based 
on appropriate user tariffs [57–62]. Furthermore, the conventional power system’s transi-
tion towards a power electronics-based power system promotes the provision of grid an-
cillary services, such as active- or reactive power control. Recent studies [63–68] demon-
strated these measures’ potential to mitigate grid overloads. Based on their grid-relieving 
impact, these measures can save investment costs of the DSO by delaying the upgrade of 
LV infrastructure, such as adding new cables [69,70]. According to Durusut et al. [24], 
demand-side measures, for example, can reduce the required grid reinforcement costs by 
7% in the UK. 

However, the potential of grid-relieving measures to mitigate grid restrictions 
strongly depends on the investigated grid and its region [71]: While urban LV grids are 
rather characterized by thermal overload, suburban and rural ones are more likely to face 
voltage violations [8]. Consequently, the quantification of future grid reinforcement costs 
implementing these measures in a large area will once again require the simulation of 
numerous grids. Since this paper focuses on comparing different methods to quantify grid 
reinforcement costs (and not the determined costs themselves), grid-relieving measures 
are neglected in this work. Nevertheless, the authors will further develop the presented 
automated large-scale grid simulation tool and implement various flexibility options (e.g., 
demand-side management, active- and reactive power control, energy storage systems). 
Thereby, various grid-relieving measures as a countermeasure to classic grid reinforce-
ments can be evaluated considering a large area with several thousand grids. 

In addition, the developed large-scale grid simulation tool is restricted in its current 
version to static deterministic load flow simulations. On the one hand, those provide sig-
nificant advantages regarding the required computing time when simulating several 
thousand LV grids. On the other, they inhibit the consideration of time-related effects, 
crucial to investigate the duration of grid restrictions (e.g., the long-term of thermal over-
loads) and the potential of flexibility options (e.g., the implementation of energy storages 
or demand-side measures). 

The authors’ following works will further extend the grid simulation tool to allow 
both fast computation and the consideration of time-related effects: Static deterministic 
grid simulations are initially performed for several thousand grids to identify potentially 
endangered grids (based on worst-case conditions). Endangered grids are further exam-
ined based on time series-based load flow simulations regarding the duration of grid ele-
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ments and the potential for implementing grid-relieving measures. Furthermore, the de-
veloped tool will be provided as open-source MATLAB code (e.g., GitHub, MATLAB File 
Exchange) to allow its free application by the scientific community and grid planners. 

7. Conclusions 
In the analyzed service area operated by an Austrian distribution system operator, 

low-voltage grids differ significantly in topology and grid customers. As a result, the ap-
plied quantification method (scaling of simulated grids’ results or simulating all grids) 
has a significant influence on quantifying future grid reinforcement costs: The simulation 
of only a few grids and the scaling of their grid reinforcement costs to the whole service 
area strongly depends on the selected grids. In case of a poor grid selection, total grid 
reinforcement costs in the analyzed area might be misjudged significantly using this quan-
tification method. The classification of low-voltage grids in the analyzed area according 
to their region or grid parameters (e.g., number of customers, total line length) only 
slightly increases the reliability of results. Consequently, large-scale grid simulations are 
crucial to quantify grid reinforcement costs triggered by future electric vehicles, photo-
voltaic modules and electric heat pumps. By varying the approach to applying coinci-
dence factors, this work additionally highlights the importance of accurate grid simula-
tions when quantifying grid reinforcement costs: Simplified approaches, often applied in 
the current state of research, require only one or two load flow simulations per grid and 
allow a fast investigation of several thousand grids. Nevertheless, their misjudgment of 
grid customers’ coincidence factor when evaluating remaining grid elements underesti-
mates required grid reinforcement measures and costs. As a countermeasure, multiple 
coincidence factors must be applied to grid customers, according to the grid element to be 
analyzed. While this measure moderately increases the total computing time, it decisively 
enhances the acquired simulation accuracy. 

Knowing the substantial influence of the applied quantification method and the ap-
plication of coincidence factors helps classify recent studies in this field and their results. 
Furthermore, the large-scale grid simulation tool developed in this study enables addi-
tional analyses by investigating several thousand low-voltage grids with reasonable com-
puting effort. In contrast to recently published grid simulation tools, grid customers’ co-
incidence factors are accurately considered. Thereby, future grid reinforcement costs due 
to electric vehicles, photovoltaic modules, or electric heat pumps can accurately be deter-
mined while keeping the required computing time adequate. 
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ABSTRACT 

Within this study the impacts of future electric vehicle 

penetrations on the low-voltage level are analyzed. 

Therefore, the need for grid expansions is prematurely 

identified based on a suburban grid, operated by the 

Austrian distribution system operator Energienetze 

Steiermark GmbH. The future development of 

electromobility-induced grid effects is demonstrated by 

simulating several electric vehicle penetration rates. 

Additionally, grid restrictions are counteracted by 

analyzing grid- and user-controlled measures. 

The investigated suburban low-voltage grid could face 

inadmissible voltage range deviations per EN 50160 at an 

EV-penetration of only 10 %. Moreover, an increased 

share of electric vehicles leads to critical voltage 

unbalances (around 40 % EV) and thermal overloads 

(around 20 % EV). This study shows in addition, that 

voltage deviations are reduced significantly by several 

measures. Furthermore, grid expansions can be avoided 

by a charging infrastructure equipped with voltage-

dependent active power control, or switching to three-

phase charging with reduced power. These measures 

prevent inadmissible voltage range deviations and voltage 

unbalances as well as critical thermal conditions even at 

an 80 % electromobility penetration. 

INTRODUCTION 

The amount of traffic-related greenhouse gases in Austria 

increased by 67% between 1990 and 2016, triggered by 

higher mileage of passenger cars and trucks [1]. As a 

countermeasure, Austria’s climate and energy strategy for 

2030 aims for a carbon-free traffic sector by 2050, and 

accordingly, for an expansion of electric mobility in the 

upcoming years [2]. The rapid development of electric 

vehicles (EV) in Norway [3], a role model with respect to 

the implementation of electromobility, demonstrates the 

potential of how EV-incentives can help to increase the 

share of electrified vehicles. Austria’s plan to increase the 

number of EV by monetary (funding for purchasing an EV, 

taxation benefits) and non-monetary (parking benefits) 

incentives [4, 5] should promote electromobility in a 

similar way. According to the Austrian Federal 

Environment Agency, the number of battery electric 

vehicles will reach 210,000 in 2020, when providing ideal 

political and environmental framework conditions [6].  

The last years illustrated, that most charging processes 

take place at household charging stations [7]. As a result 

of little private charging possibilities in urban areas 

combined with a lacking implementation of public and 

semi-public charging infrastructure, the future change to 

electrified vehicles will specially take place in suburban 

and rural areas [8]. Consequently, distribution system 

operators (DSO) will be faced with new challenges due to 

rising numbers of electric vehicles in the upcoming years 

[5], especially in suburban and rural low-voltage (LV) 

grids. Despite Austria’s early stage of e-mobility (0.39 % 

battery electric vehicle penetration rate in 2018 [2]), these 

upcoming challenges should be identified prematurely. 

The integration of future EV-penetrations in existing 

distribution grids can of course be established by classic 

grid expansion measures. Due to high costs for excavation, 

new grid lines and new substations, DSOs are interested in 

more cost-efficient alternatives [5]. For this reason, this 

study analyzes future impacts of private charged electric 

vehicles on a suburban low-voltage grid with respect to 

voltage range deviations, voltage unbalance and thermal 

conditions. Based on the identification of critical grid 

elements, the potentials of several grid relieving measures 

are also analyzed. This paper provides the methodology 

behind the executed simulations, the results for a range of 

EV-penetrations from 10 % to 100 % and a conclusion 

with key-insights. 

METHODOLOGY 

Simulations are performed as co-simulations in MATLAB 

and NEPLAN in order to determine the effects of projected 

EV numbers on a suburban low-voltage grid. Scenario-

dependent grid impacts are analyzed by long-term load 

flow simulations in NEPLAN. The modelling of the 

analyzed grid, the modelling of consumer- and EV load 

profiles and considered control strategies for grid relieving 

measures are described in the following chapters. 

Grid specifications and -modelling 

The potentials of grid-oriented measures that may reduce 



 25th International Conference on Electricity Distribution Madrid, 3-6 June 2019 
 

Paper 0938 

 
 

CIRED 2019  2/5 

EV-caused grid restrictions are demonstrated on the basis 

of a suburban low-voltage grid operated by Energienetze 

Steiermark GmbH. The grid topology is characterised by a 

250 kVA-substation, supplying radially located feeders 

via cable (91 %) and overhead lines (9 %). Real grid data 

enables highly accurate grid modelling (NEPLAN) and 

thereby the identification of grid impacts with a high level 

of detail. In the grid model, the upper voltage side of the 

LV substation is connected to a constant voltage source 

(slack), which means that voltage deviations in the 

medium-voltage level won’t be considered. The permitted 

voltage range of ± 10 % of the nominal value in 

accordance with EN 50160 [9] is shared by the medium- 

and low-voltage level conjunctly. However, only 6.5 % are 

available for voltage drops at the substation and the LV 

grid pursuant to the voltage range partitioning in [10]. 

Therefore, the nominal voltage on the upper voltage side 

of the LV substation is set to 0.965 pu. This takes the 

maximal voltage drop caused by medium-voltage loads 

into account. 

Modelling of consumer load profiles 

Modelling of consumer loads is separated into a two-step 

procedure: In the first step, industrial and agricultural 

consumers are modelled by phase-symmetrical standard 

load profiles in accordance with [11]. The behavior-based 

load profile generator by Pflugradt [12] is used in the 

second step to create highly resolved long-term power 

profiles for various household structures. This provides 

phase-asymmetrical synthetic household load profiles, 

which enables unbalanced load conditions to be 

considered. All types of consumer load profiles 

(symmetrical industrial- and agricultural loads as well as 

asymmetrical household loads) are scaled by the specific 

customer’s annual energy consumption, provided by 

Energienetze Steiermark GmbH, and aggregated for each 

grid connection node. Finally, this aggregated load profiles 

are calibrated by real data. Therefore, long-term active- 

and reactive power profiles are measured at the LV 

substation. 

Modelling of EV load profiles 

EV-caused grid impacts are evaluated by means of an EV 

reference scenario, considering state of the art charging 

technology and -distribution: single- and multi-phase 

charging with 3.7 kW - 22 kW charging power (Figure 1). 

EV load profiles are modeled for several EV-penetrations 

(10 % - 100 %) by the use of measured charging data of 21 

different EV-models [13] including active- and reactive 

power profiles. A time resolution of one minute allows the 

consideration of short-term peak loads. In addition, 

realistic charging behavior of EV users charging at private 

charging stations is taken into account. Therefore, the 

following parameters are determined by statistical data and 

random numbers for each vehicle, according to the 

probabilistic approach from Razee et al [14]: driving type 

(EV or ICE), EV-model (battery capacity, electric 

consumption, technically feasible charging power), 

 
Figure 1: Statistical distribution of charging power for an EV-

penetration of 40 % 

installed charging power as well as the required amount of 

energy and time of charging based on traffic analyses. 

While the described probabilistic approach enables the 

modelling of realistic charging patterns, it also risks 

excluding critical grid conditions. Consequently, this 

modelling approach was done for a number of iterations. 

Finally, the iteration which includes the highest number of 

charging processes is selected for each EV-user and 

prepared for load flow simulations. Based on this 

methodology, charging processes with 3.7 kW (40.6 %) 

and 11 kW (39.2 %) are represented with a high share 

within the simulated period (Figure 1). Charging with 

7.4 kW and 22 kW is considered with a share of 16.3 % 

and 3.9 % respectively, which results in an average 

charging power of 7.9 kW within the reference scenario. 

All the single-phase charging EV are connected to the 

same grid phase in order to consider the most critical case 

with respect to power unbalance. 

Control strategies 

On the basis of identified grid restrictions provided by the 

reference scenario, measures for reducing, or rather 

avoiding the future need for grid expansions, should be 

examined. Therefore, a range of grid- (A-E) and user-

controlled (F) strategies (listed in Table 1) are 

investigated. Grid controlled measures are characterized 

by voltage measurements at defined grid nodes. The 

regulation of scenario-dependent parameters (active 

power, phase connection between grid and charging 

station, tap changer) is executed with a time interval of five 

minutes corresponding to the lowest phase voltage value.  

 
Table 1: List of analyzed grid relieving measures 

Scen. Measure 

A Remote control at distribution substation (RC) 

B Local control at distribution substation (LC) 

C Remote control at critical feeders 

D Voltage-controlled phase selection 

E Voltage-controlled active power regulation - P(V) 

F Three-phase charging with reduced power (3.7kW) 
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For analyzing grid-controlled measures (A-E), the EV-

user behavior and thereby EV load profiles of the reference 

scenario are considered. Existing technological- (voltage 

measurement, power control, communication system) and 

legal frameworks, required for grid control strategies are 

assumed. The following chapters provide a detailed 

description of the considered control strategy for each 

measure. 

Voltage-controlled tap changer at the substation (A, B) 

or rather at critical feeders (C) 

Within these scenarios (A-C), EV-caused voltage 

deviations should be limited to admissible limits according 

to EN 50160 [9] by the implementation of transformers 

equipped with on-load tap changers. Voltage-controlled 

tap changer adjustment at the distribution substation is 

analyzed by means of two control strategies: remote 

control based on voltage measurements at defined grid 

connection nodes in critical feeders (scen. A) and local 

control based on the voltage measurement at the lower-

voltage side of the substation (scen. B). If the measured 

voltage exceeds the defined voltage control bandwidth 

(± 0.05 pu for scenario A and ± 0.02 pu for scenario B), 

the tap changer is adjusted within nine taps ([-2, 6]) with a 

tap range of 0.01 pu. Scenario C is defined by the 

installation of variable transformers (voltage-dependent 

remote control analogically to scenario A) not at the 

substation but in critical feeders. 

Voltage-controlled phase selection (D) 

Each charging station in scenario D is equipped with a 

voltage-controlled phase-switch. The application of this 

feature enables load-balancing of asymmetrical loads, for 

example single-phase charging EV. Therefore, grid phases 

with minimal and maximal voltage values are detected for 

each grid connection node with a time interval of five 

minutes. Finally, phase connections between grid and EV-

load are switched accordingly in the grid model in case of 

voltage values lower than 0.95 pu.  

Voltage-controlled active power regulation (E) 

In contrast to uncontrolled charging of electric vehicles 

(reference scenario and scenario F), a voltage-controlled 

regulation of available charging power is analyzed within 

this scenario. Therefore, each charging station is equipped 

with an active current/voltage regulation in accordance 

with the characteristic in Figure 2 in order to avoid critical 

voltage deviations. Regarding higher charging power, an 

adaptation of the control characteristic may be necessary. 

 

 
Figure 2: I-u-characteristic of active power control [5] 

Three-phase charging with reduced power (F) 

This scenario covers a change to three-phase charging with 

a reduced charging power of 3.7 kW, which can be 

considered as the optimal charging scenario concerning 

the prevention of peak loads and power unbalances. 

Furthermore, this scenario considers area-wide phase-

balancing of several single-phase chargers. EV load 

profiles for scenario F are modelled analogously to the 

described approach in the reference scenario, considering 

a charging power of 3.7 kW. 

RESULTS 

Evaluation of critical grid elements 

The need for grid extension measures on the low-voltage 

level caused by increasing EV numbers is derived by the 

number of critical grid elements for a certain penetration 

rate of electric vehicles. Therefore, the following criteria 

are considered for contrasting with the simulated results of 

grid nodes and grid lines:  

 

1) Permissible voltage deviation per EN 50160 [9]: 

95 % of all 10-minute mean values of one week have 

to be within ± 10 % of the nominal voltage 

2) Permissible voltage unbalance per EN 50160 [9]: 

Within one week, 95 % of all 10-minute mean values 

of the relation between negative and positive 

sequence voltage must be lower than 2 % 

3) Thermal line utilization within the line-specification 

The examination of voltage range compliance (criteria 1) 

is based on the determination of the 5 %- and the 100 %-

quantiles of all 10-minute mean values within one week 

for each grid node. Criteria 2 is verified by means of the 

95 %-quantile of the relation between negative and 

positive sequence voltages (10-minute mean values). 

Critical grid lines are identified accordingly to the 

maximal thermal utilization within the simulated period. 

Identification of grid expansion needs (reference 

scenario) 

The future development of EV-induced grid impacts on the 

low-voltage level is derived by the simulation of several 

electromobility penetration rates (10 – 100 %). However, 

an EV-penetration of 10 % already can result in 

inadmissible voltage range deviations according to 

EN 50160 [9] in a number of grid nodes. Figure 3 

illustrates the 5 %- and 100 %-quantiles of all 10-minute 

mean voltage values of each grid node for a 10 %-

penetration. The nominal voltage of 0.965 pu as well as the 

lower voltage limit of 0.9 pu (EN 50160) is marked by a 

red line. Temporal aggregations of household- and EV-

loads, trigger inadmissible voltage decreases in 19 grid 

nodes. These are located at the end of long feeders, which 

are characteristic for radially arranged low-voltage grids in 

suburban and rural areas. In contrast, the considered grid 

shows no inadmissible voltage unbalance or thermal 

overload at an EV-penetration of 10 % (Figure 3).  
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Figure 3:Voltage range deviations, unbalances and thermal 

utilizations for a 10 %-EV-penetration (reference scenario) 

Nevertheless, the described charging pattern (Figure 1) 

with a high share of single-phase chargers can lead to 

critical voltage unbalances at future penetrations of around 

40 %. Thermal overloads on the other hand are caused by 

simultaneously charging electric vehicles with high 

charging power, connected on the same feeder. Therefore, 

such overloads can occur already at low EV-penetrations 

(around 20 %). Based on the probabilistic modelling of 

EV-load profiles, the proportion of critical grid elements 

does not increase necessarily with higher penetration rates 

(Figure 4). Therefore, the fitted expectation values of 

critical grid elements (reference scenario) with respect to 

voltage deviations, unbalance and thermal overload are 

added to Figure 4. In other words, a certain share of 

electrified vehicles (e.g. 40 %, Figure 4) triggers critical 

voltage characteristics without showing thermal overloads. 

The reason for that is the probabilistic selection and spatial 

distribution of single- and multi-phase chargers (with 

various charging power) by the use of random numbers 

and statistical data which result in the charging-pattern 

shown in Figure 1. The further increase of electric vehicles 

(up to 80 % EV-penetration) raises the share of 

endangered grid elements for the considered grid and 

charging-pattern to 41 % (voltage deviation), 39 % 

(unbalance) and 3 % (thermal overload). These results 

clarify, that critical voltage characteristics represent the 

limiting factor for integrating future EV into the analyzed 

LV grid. 

Potentials of grid relieving measures (scen. A-F) 

The verified grid relieving measures aim especially for a 

decrease of inadmissible voltage range deviations and 

voltage unbalance according to EN 50160. The 

proportions of endangered grid nodes and grid lines 

(Figure 4) are therefore illustrated for each strategy 

(scenario A-F) and contrasted to the reference scenario. 

Voltage-controlled tap changer adaptations at transformers 

in dependence of critical grid nodes (remote control) can 

reduce inadmissible voltage drops even at high EV-

penetrations. The use of remote control at the substation 

(scen. A) or rather the use at critical feeders (scen. C) can 

reduce the share of voltage range deviations to 0 % or 

rather 1 %, considering an 80% penetration (Figure 4). In 

case of critical voltage characteristics in isolated feeders, 

these two measures (scen. A and C) must be compared 

with respect to cost-efficiency. Implementing local voltage 

control at the lower voltage side of distribution substations 

(scen. B) has lower influence on critical grid nodes 

compared to remote control: critical voltage conditions 

will occur continuously with higher EV-penetrations (40-

80 %). These results clarify the relevance of the chosen 

control strategy using a variable distribution substation. 
 

 
Figure 4: Potential of analyzed strategies with respect to 

voltage deviations, voltage unbalance and thermal utilization 
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Beside the reduction of voltage range deviations, scenario 

A, B and C show little potential for avoiding thermal 

overload and unbalanced voltage conditions. In contrast, 

the voltage-controlled allocation of EVs on grid-phases 

(scen. D) even allows the implementation of EV 

penetrations up to 80 % without critical voltage 

characteristics (Figure 4). Similar to the scenarios A-C, the 

impact on thermal utilization is low: an EV-penetration of 

80 % triggers critical conditions in 3 % of all grid lines. 

Within analyzed grid relieving measures (scen. A-E), the 

voltage-controlled regulation of available active charging 

power (scen. E) represents the most effective strategy that 

integrates high numbers of EV in the considered LV grid. 

Even at an EV-penetration of 80 %, impermissible voltage 

range deviations, critical voltage unbalance and thermal 

overload are avoided (Figure 4) by an extended 

implementation of P(V)-control. Additionally, EV-

induced grid-impacts can as well be prevented by an area-

wide adaptation of charging parameters. The limitation of 

available charging power to 3.7 kW (uniformly phase-

distributed) allows for large EV installation capacity and 

avoids critical voltage- and thermal conditions at high EV-

penetrations. This scenario demonstrates, that even poorly 

developed low-voltage grids are capable of supplying 

future electromobility, if vehicles are charged three-phase 

with reduced power. Due to low charging demand in daily 

life [6] and high duration of parking at home, the comfort 

of EV-users wouldn’t be affected by this measure. 

CONCLUSION 

Regarding state of the art charging technology (charging 

with up to 22 kW), the investigated LV grid shows limited 

capacity for integrating electric vehicles. EV-penetrations 

of 10 - 20 % could already result in inadmissible voltage 

range deviations and thermal overload. Furthermore, the 

local accumulation of single-phase charging EV could lead 

to critical grid conditions with respect to voltage unbalance 

at a 40 % penetration. In addition, these grid restrictions 

are counteracted by the simulation of several grid relieving 

measures. The relevance of the selected control strategy 

using a variable distribution transformer is illustrated by 

the comparison between remote and local control. The tap 

changer adjustment based on local voltage control shows 

little potential for avoiding critical voltage deviations at 

high EV-penetrations. In contrast, EV-induced voltage 

drops can be reduced by remote control at the substation, 

and by variable transformers installed in endangered 

feeders using remote control. Moreover, the 

implementation of charging infrastructure equipped with 

voltage-dependent phase-switches represents an effective 

measure that avoids inadmissible voltage conditions. 

Beside positive effects on voltage characteristics, the 

mentioned measures are not capable of adequately 

reducing the thermal utilization of grid elements. 

Nevertheless, thermal overload and inadmissible voltage 

characteristics can be avoided by voltage-controlled active 

power regulation as well as an area-wide change to three-

phase charging with reduced charging power even for an 

80 % EV-penetration. Consequently, charging at home 

during night enables the use of low charging power and 

provides thereby high potential for reducing the need for 

grid expansions without any loss of EV-user comfort. 
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Abstract 

An area-wide electrification of the transport sector requires, in addition to private charging at home, the implementation 

of public charging infrastructure. However, the aggregation of private- and public-charging loads could push existing 

distribution grids to their limits, considering future electric vehicle penetration prospections. In this regard, potential grid 

impacts of private- and public EV charging on an urban low-voltage grid are evaluated for several charging scenarios and 

various electromobility penetrations. Furthermore, it is investigated if EV related grid restrictions can be counteracted by 

the implementation of flywheel energy storage systems. Finally, this study demonstrates the potential of locally generated 

photovoltaic energy for supplying electric vehicle charging demands based on decentralized storage systems. 
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1 Introduction 

Increasing numbers of zero-emission vehicles integrated 

into Austria’s road transport system should ensure a CO2-

neutral transport sector by 2050 [1]. For this purpose, 

monetary incentives are supposed to advance 

electromobility in Austria into the next stage. The Austrian 

Ministry for Transport, Innovation and Technology and the 

Ministry for Sustainability and Tourism (in cooperation 

with OEMs) provide e-mobility funding measures in the 

extent of 93 million Euros for 2019 and 2020 [2] to private 

and commercial users. Combined with future price 

reducing effects, triggered by technological developments, 

these and even more efficient measures in other countries 

[3] will increase electric vehicle (EV) numbers not only for 

private use, but also in several other fields of application 

(electric busses, electric taxis, etc.). Besides positive 

aspects with regard to a decarbonisation of the traffic 

sector, new challenges for distribution system operators 

arise [4-6]. 

1.1 Energy Storage Systems for EV 

Charging Purposes 

Besides other measures, these future challenges might be 

counteracted by the integration of energy storage systems 

(ESS) into the EV charging infrastructure. Several types of 

ESSs and their potential for various EV user groups have 

already been analyzed by means of theoretical- [7-9] and 

prototype-applications [10-12]. The reduction of grid 

exchange by implementing a local lithium-ion battery 

energy storage system (BESS) into an EV charging point 

has been demonstrated by Chandra Mouli et al. [7]. In 

addition, Ding et al. have examined the decrease of 

network integration costs by ESSs. Therefore, fast 

charging stations for electric busses equipped with lithium-

ion battery systems have been tested. [8] An approach for 

designing the optimal size of a flywheel energy storage 

system (FESS), supporting fast charging stations, has been 

published by Negarestani et al. [9]. In contrast to these 

theoretical applications, demand side management 

strategies have been demonstrated by Makohin et al. [10], 

based on test bed conditions including a fast charging 

station, a lithium-ion BESS and a PV-generation system. 

Similarly, Novoa et al. verified a small-scale power system 

for EV charging purposes. In this context, several ESS-

control strategies have been analyzed in a test environment 

including PV-supply, EV charging points as well as a 

lithium-ion BESS. [11] In addition, the study by Zhao et al. 

[12] demonstrates an intelligent energy management, using 

an EV charging station supplied by PV-generation and a 

lithium-ion BESS. Most of the mentioned research focus 

on battery energy storage systems. Though, when it comes 

to the support of EV charging infrastructure, FESSs show 

several advantages compared to BESSs. While BESSs 

have lower costs per kWh [9], they are characterized by 

significantly shorter lifetime [9, 13]. As a result, FESSs 

provide lower life-cycle costs [13] combined with higher 

charging- and discharging efficiency [9]. 

1.2 Project FlyGrid 

In this regard, the project “FlyGrid” deals with the future 

grid impacts triggered by various e-mobility use-cases and 

their counteracting by FESSs. Therefore, high-

performance FESSs are integrated into fast-charging 

stations in order to investigate grid-friendly EV-charging. 

The cooperation with the Austrian distribution system 

operator Energienetze Steiermark GmbH allows detailed 

grid analyses based on real grid- and consumer data, 

provided in an anonymous form and in compliance with 

data protection regulations. The project “FlyGrid” is 

funded by the Austria Research Promotion Agency FFG. 

Recent studies show: Electric vehicles should preferably be 

charged at private charging points at home with low power.  



Nevertheless, the future integration of EVs into the traffic 

sector will depend significantly on the extent of available 

public charging possibilities - besides incentive measures 

and lower investment costs. [14] An area-wide 

implementation of a public charging infrastructure 

provides the change to electrified vehicles for a broader 

audience, especially in urban areas, where on-street 

parking prevails. Consequently, grids in these areas could 

possibly benefit from the integration of FESSs charged 

with local photovoltaic (PV) energy. 

Therefore, this paper provides first project insights by 

regarding one of the project’s use-cases: Public charging of 

electric vehicles and its impacts on an urban low-voltage 

(LV) grid located near the city center. Besides public EV-

charging, private charging at home is taken into account in 

order to investigate the aggregation of these two user 

groups. 

2 Methodology 

Future grid effects occurring from private- and public EV-

charging and their counteracting by the integration of 

FESSs are investigated based on co-simulations. Time 

resolved consumer loads (2.1), EV loads (2.2), PV-

generation and FESS-profiles (2.3) are modelled in 

MATLAB. Detailed grid analyses of an urban LV-grid 

(2.4) are executed by means of long-term load flow 

simulations in NEPLAN, using a time resolution of one 

minute. 

2.1 Modelling of Consumer Loads 

Consumers supplied by the analyzed LV-grid can be 

divided, in accordance with Austrian Grid Codes [15], into 

76 commercial grid customers and 333 households. In this 

work, commercial customers are modelled by phase-

balanced, standardized load profiles pursuant to [15]. 

Additionally, we use the load profile generator by 

Pflugradt [16], in order to model highly-resolved, phase-

unbalanced load profiles for various household structures. 

Both, commercial- and household load profiles, are scaled 

by the real consumer’s annual energy consumption. In each 

point of common coupling (PCC), all connected consumer 

loads are aggregated and prepared for unbalanced load 

flow simulations. 

2.2 Modelling of EV Loads 

For analyzing future grid impacts on an urban LV-grid, the 

following electric vehicle user groups are taken into 

account:  

 

1) Private chargers at home (PCH): EVs charged at private 

charging points installed in underground parking areas 

of domestic apartment buildings 

2) Public on-street chargers (POC): EV-users who are 

forced to park their vehicles on the street due to missing 

private parking possibilities 

 

Table 1  EV charging scenarios 

EV-scenario Considered charging types 

A PCH 

B PCH and POC with 3.7-22 kW 

C PCH and POC with 44 kW 

 

Interactions between these types of EV-users are 

investigated on the basis of three EV-scenarios (Table 1): 

While scenario A deals with private chargers exclusively, 

scenarios B and C demonstrate the aggregation of private 

and public EV charging in an urban area with a high 

population density. Within all scenarios, PCHs are charged 

with 3.7 kW (66.6 % of charging processes), 7.4 kW 

(8.2 %) and 11 kW (25.2 %), uniformly distributed to all 

grid phases (scenario A, Figure 1). In contrast, POCs are 

implemented with charging powers of 3.7 – 22 kW (scen. 

B) and 44 kW (scen. C) exclusively. Single-phase charging 

POCs are all connected to the same grid phase in order to 

consider the most critical case in terms of power unbalance. 

The accumulation of all charging processes including both 

EV user groups results in a high share of 3.7 kW-chargers 

(Figure 1), even in scenario B and C. This demonstrates 

different numbers of PCHs (303 parking lots) and POCs 

(37) in the considered area. For both user-groups, realistic 

mobility- and charging patterns are taken into account, 

applied by stochastic modelling of EV loads according to 

Rezaee et al. [17]. Thereby, the following parameters are 

determined by statistical data and random numbers for each 

vehicle: Drive train (EV or ICE), EV-model (battery 

capacity, electric consumption), as well as the required 

amount of energy and time of charging. The latter two are 

provided by the Austrian traffic planer verkehrplus GmbH 

[18] for typical Austrian driving patterns. Measured 

charging data of 21 different EV-models enable the 

consideration of real active- and reactive power profiles. 

Finally, these measured charging profiles in combination 

with determined charging patterns are used to create long-

term unbalanced EV load profiles for each point of 

common coupling (PCC) depending on the charging 

scenario. The future development of EV-induced grid 

impacts is analyzed based on the simulation of various EV-

penetration rates (0 – 80 %), which define the degree of 

extended charging infrastructure.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  Scenario-dependent distribution of charging 

power 

 



For example, half the private and public parking lots are 

equipped with charging points at an EV-penetration of 

50 %. By means of this approach, future events regarding 

e-mobility, e.g. an (drastic) increase of EV, can be 

demonstrated in an easy way. Furthermore, certain PCH- 

and POC-penetrations and their impacts on existing grid 

structures might be investigated. 

2.3 FESS-Implementation and PV-

Modelling 

Based on the scenario-dependent identification of critical 

grid elements, FESSs are implemented into public 

charging points. Thereby, classic grid extension measures 

should be prevented by covering POC-caused peak loads. 

Therefore, FESS-charging (supplying POCs) is 

investigated with two various strategies: Grid- and PV-

charging. The former one is characterized by FESS-

charging during off-peak periods [9, 11] in order to avoid 

the aggregation of EV- and FESS-charging. Therefore, 

FESSs are immediately charged with 5 kW (phase-

balanced) when no EV is connected to the grid, aiming for 

a complete charge as soon as possible. Considering 

strategy “PV-charging”, FESSs are supplied exclusively by 

locally generated PV-energy. Hence, FESSs are charged 

phase-balanced during sunny periods when local PV-

generation exceeds EV charging demands (1). 

 

 

Otherwise, POC-charging is directly supplied by local PV-

generation [12]. For that purpose, PV-generation profiles 

are modelled based on real weather data from the Austrian 

Central Institute for Meteorology and Geodynamics 

(ZAMG) [19] combined with data from a solar-roof 

register [20]. The applied approach determines the direct 

and diffuse share of global radiation based on the Perez 

model [21]. Furthermore, the correlation between 

temperature and PV-module-efficiency as well as the 

correlation between load and inverter-efficiency are 

derived by previous projects. The investigated urban LV-

grid supplies solely apartment buildings characterized by 

flat roofs. Hence, an azimuth of 0 ° (south) and a tilt angle 

of 35 ° is assumed for all potential PV-areas [22]. For 

charging FESSs by renewable energy, the whole PV-

potential within the urban LV-grid is considered, which 

represents a complete expansion of PV-modules. 

Regardless of the charging strategy, FESSs are discharged 

in case of POC loads exceeding certain power limits. These 

limits are defined in accordance with grid line 

specifications, aiming for the prevention of thermal 

overloads. Furthermore, real-time detection of POC loads 

enables a phase-unbalanced compensation of POC 

charging demands by FESSs including a variable power 

factor. For analyzing the influence of FESS’s available 

energy content, each charging strategy is tested applying 

capacities of 5 kWh and 10 kWh (Table 2) per FESS-

module (compare to [4]). Assuming an average energy 

consumption of current electric passenger models of  

Table 2  FESS-specifications applied for grid simulation 

FESS-parameter per module Value 

Energy capacity 5 and 10 kWh 

Max. discharging power 100 kW 

Charging power 5 kW / PV-dependent 

Depth of discharge 100 % 

Charging efficiency 90 % 

Discharging efficiency 90 % 

Max. stand-by losses  0.5 kW(100 % SOC) 

Power factor: Charging 1 

 

14.9 kWh/100 km (New European Driving Cycle) [23], an 

amount of 5 kWh equals to a covered distance of 33.6 km. 

Based on statistics about mobility patterns in Austria [24], 

92.4 % of motorized, individual trips can be covered by 

this amount of energy (10 kWh considering round trips). 

Further FESS-parameters (Table 2) – maximal discharging 

power, depth of discharge, charging- and discharging 

efficiency, maximal stand-by losses and power factor of 

charging – are specified within the project FlyGrid and 

applied for FESS-simulations. Therefore, each extended 

public charging point (depending on EV penetration rates) 

is equipped with one FESS-module, characterized by the 

mentioned specifications. 

2.4 Grid Topology and -Modelling 

The analyzed LV-grid is operated by Energienetze 

Steiermark GmbH and located in an urban area near the 

city center with high population density. Moreover, it is 

characterized by ring network structures (Figure 2) openly 

operated under normal grid conditions. Two parallel 

630 kVA-substations supply consumers and electric 

vehicles via 21 PCCs. Real grid data enables highly 

accurate grid modelling (NEPLAN) and thereby the 

identification of grid impacts with a high level of detail.  

Private- and public charging points are assumingly 

supplied by existing grid infrastructure. Hence, all types of 

grid loads (conventional consumers, PCHs and POCs) are 

aggregated for each PCC and integrated as one load 

module. Additionally, scenario-dependent PV-modules 

and FESSs are integrated three-phase into the grid model 

(Figure 2) as a measure of EV-penetration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  Grid topology of the analyzed, urban LV-grid 

  𝑃𝐹𝐸𝑆𝑆(𝑡) =  𝑃𝑃𝑉(𝑡) − 𝑃𝑃𝑂𝐶(𝑡)  (1) 

 



In the grid model, the distribution substation’s high-

voltage side is connected to a constant voltage source 

(slack) with a nominal voltage of 1 per unit (pu). As a 

result, voltage deviations in the medium-voltage level are 

excluded. This aspect is taken into account when 

contrasting simulation results to specified grid limits. 

3 Results 

3.1 Evaluation of EV-induced grid 

restrictions 

Three EV-charging scenarios (A - C) and their 

consequences for existing grid structures are investigated 

by long-term (one week), 1-minute resolved load flow 

simulations. The need for grid extension measures is 

derived by the number of critical grid elements at certain 

EV-penetration rates (0 – 80 %). Therefore, voltage 

characteristics (voltage deviation and voltage unbalance) 

of all grid nodes are compared with limits according to 

EN 50160 [25]. The permitted voltage range of ± 10 % is 

shared by the medium- (MV) and low-voltage level 

conjunctly. However, only a limited voltage range between 

-6.5 pu and +4.5 pu is available for voltage deviations at 

the MV/LV-substation and in the LV-grid, pursuant to the 

voltage range partitioning in [26]. Thus, the maximum- 

(1.045 pu) and minimum voltage (0.935 pu) are defined 

accordingly, in order to take maximum voltage deviations 

in the medium-voltage level into account. In addition to 

voltage deviations, voltage unbalance, determined by the 

relation between negative and positive sequence voltage, is 

limited to 2 % [25]. These defined thresholds have to be 

complied by 95 % of all 10-minute means (deviation and 

unbalance) within one week. Besides voltage 

characteristics, critical grid lines as well as the 

transformers’ capacities are verified based on their thermal 

utilization according to equipment specifications. EV-

induced voltage deviations, voltage unbalance and thermal 

utilizations are compared to a reference scenario, in which 

neither electric vehicles nor photovoltaic modules are 

connected to the grid. 

The analyzed, urban LV-grid shows high capacity for 

integrating future electric vehicles in terms of voltage 

characteristics per EN 50160. Although already 40 % 

electric vehicles trigger minimal 10-minute voltage means 

below the limit of 0.935 pu (scen. B and C), the 95 %-

criteria is fulfilled for each grid node (Figure 3). 

Furthermore, single-phase charging POCs (scen. B) cause 

increased voltage unbalance in several grid nodes, 

compared to balanced, three-phase charging within 

scenario C (Figure 3). Nevertheless, voltage deviations as 

well as voltage unbalances are ranged within admissible 

limits, despite high numbers (70 %) of private- and public 

charging EVs (scen. B and C). Within this study, the 

implementation of FESSs aim specifically for a reduction 

of short-term thermal line utilizations by peak shaving of 

POC loads. As a result, voltage characteristics will be 

affected positively by this measure as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  Scenario-dependent grid impacts considering an 

EV-penetration of 40 % 

 

On this account, further results focus exclusively on 

thermal overloads, while disregarding voltage 

characteristics. Considering charging of private parkers at 

home (scen. A), even an EV-penetration of 60 % 

(Figure 4) can be supplied without grid restrictions, due to 

phase-balanced charging with low power (3.7 – 11 kW). In 

contrast, the aggregation of PCHs and POCs triggers short-

term overloads in one single grid line at penetrations of 

40 % (scen. B) and 20 % (scen. C). Moreover, further 

increases of EV numbers (80 %) could result in critical 

thermal utilizations in two (scen. A), three (scen. B) and 

four (scen. C) grid lines (Figure 4).  

 

 

 

 

 

 

 

 

 

Figure 4  Number of thermally overloaded grid lines in 

dependence of charging scenario and EV-penetration 

 

Nevertheless, these results demonstrate the urban grid’s 

little need for grid extension measures: Future 

electromobility can be integrated by focussing on few grid 

lines, either by line extension (more or less within the 

scope of normal grid planning), the integration of FESSs or 

alternative measures. 

3.2 Prevention of grid extensions by FESSs 

Based on identified grid impacts, the equipment of public 

on-street chargers with FESSs is simulated by means of 

two FESS-charging scenarios (grid-charging and PV-

 

 



charging) as well as two FESS-capacities (5 kWh and 

10 kWh). 

3.2.1 Grid-charging 

Assuming POC-charging with 3.7 – 22 kW (scen. B), the 

selected FESS-specification shows no influence on the 

line-conditions (Figure 5): Even FESS-capacities of 5 kWh 

allow a “delay” of thermal overloads until a 50 % EV-

penetration. In contrast, charging of public on-street 

parkers with 44 kW (scen. C) requires higher FESS-

capacities for sufficient grid support. Considering the same 

power limits triggering FESS-interference as well as the 

same charging behaviour, high-power charging POCs 

(scen. C) force significantly increased FESS-interferences, 

compared to low-power charging: 131.6 kWh in 

scenario B and 305.0 kWh in scenario C are provided by 

the implemented FESS (10 kWh) within one week. Hence, 

the potential of FESSs with a capacity of 5 kWh for 

supplying high-power charging POCs are limited due to a 

shortened state of charge (SOC) during peak periods. 

Though, even 60 % of high-power charging POCs can be 

integrated without grid restrictions by increasing the 

available FESS-capacity to 10 kWh (Figure 6, scenario C). 

Furthermore, an EV-penetration of 60 % illustrates the 

temporal aggregation of low-power charging PCHs and 

low-power charging POCs (scen. B). Therefore, the 

simultaneity of charging is determined by the relation 

between accumulated EV load profiles 𝑃𝑖(𝑡) and the sum 

of EV-specific power peaks (2) [27], and compared 

between scenario B and C (Figure 6).  

 

 

 

Assuming consistent charging behavior (time of arrival and 

amount of energy), the simultaneity of charging differs 

with various charging powers: As a result of longer 

charging processes, low-power charging of POCs (scen. B) 

causes higher simultaneity (0.45) than charging with 

44 kW (0.39) in scenario C (Figure 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5  Number of thermally overloaded grid lines in 

dependence of FESS-charging strategy and FESS-capacity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  Thermal line utilization, state of charge (FESS) 

and simultaneity of EV-charging considering the limiting 

grid line at an EV-penetration of 60 % 

 

According to the same power limits (2.3) and independent 

to FESS-interference, low-power POC-charging 

(scenario B) is characterized by longer charging periods, 

compared to scenario C. Consequently, even FESS-

reduced POC-loads temporally overlap with private 

charging loads, which triggers short-term overloads despite 

FESS-application. 

In contrast, short-term charging of POCs with high power 

(scen. C) prevents the aggregation with PCH-loads. 

Furthermore, load peaks still occurring can easily be 

covered by the implementation of FESSs avoiding critical 

thermal conditions. 

3.2.2 PV-charging 

Besides grid-charging, a complete supply of FESSs by 

locally generated renewable energy is examined. 

Therefore, a full extension of PV-areas is assumed, 

generating a total energy amount of 5.8 MWh per week 

(summer period). However, in the considered urban grid 

situation, even a full PV-extension covers neither the 

present consumer demands (21.6 MWh per week) nor 

future electromobility demands (20.1 MWh (scen. A), 

22.9 MWh (scen. B) and 23.1 MWh (scen. C) per week; 

EV-penetration: 50 %). Nevertheless, in the considered 

urban grid situation local PV-generation enables the 

charging of decentralized FESSs, guaranteeing same grid 

relieving potentials as grid supply (Figure 5): EV-induced 

grid restrictions can be prevented until high EV-

penetrations by the implementation of FESSs, even though 

charged exclusively by local PV-generation. 

4 Conclusions 

The analyzed low-voltage grid located in an urban area 

with a high population density shows high capacity for 

integrating future electric vehicle numbers. Even a 

 𝑆𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑖𝑡𝑦(𝑡) =
∑ 𝑃𝑖(𝑡)𝑖

∑ max (𝑃𝑖(𝑡))𝑖

  (2) 

 

 



penetration of 70 %, considering private- and public 

charging EVs, can be supplied without inadmissible 

voltage characteristics according to EN 50160. 

Additionally, only one grid line faces critical thermal 

conditions, when up to 60 % of both EV user groups are 

electrified (Figure 4). Besides normal grid extension as 

solution to tackle overload-situations, also the integration 

of FESSs into public charging points can prevent them: 

Considering public charging with 3.7 – 22 kW, even 

FESSs with a capacity of 5 kWh provide the sufficient 

reduction of peak loads until a 50 %-penetration. In 

contrast, high-power charging with 44 kW requires at least 

10 kWh-storage units, supplying this share of electric 

vehicles. Furthermore, the application of FESSs enable the 

temporal bridging between PV-generation and EV-

demands. Thereby, even high electromobility numbers can 

be supplied by locally generated renewable energy, 

avoiding grid extension measures.  
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Abstract:  

An increasing number of electric vehicles will challenge the present-day power system, 
especially on the low- and medium-voltage level. Energy storage systems might have the 
potential to mitigate grid loads substantially. Hence, in the project “FlyGrid,” energy storage 
systems are integrated into electric vehicle charging infrastructure. Furthermore, the required 
design of these systems is determined in detail, considering numerous electric vehicle use 
cases. This work presents the project’s previous results and conclusions acquired so far: The 
required specifications of energy storage systems strongly depend on the electric vehicle 
application, including its charging power and the number of installed charging points. However, 
even storage units with low capacity and moderate discharging power enable significant grid 
relief for the local power grid in most cases. 

Keywords: Electric vehicle, distribution system, peak load shaving, energy storage system 

1 Introduction 

On both the European [1] and the national level [2], climate-neutrality shall be realized, inter 
alia, by transitioning towards clean electric mobility. However, future electric vehicle (EV) 
numbers will also challenge existing distribution systems [3]. On this account, new innovative 
solutions must be found to avoid costly grid expansions yet fulfilling the EV user’s mobility 
needs. The integration of energy storage systems (ESSs) into EV charging infrastructure 
represents one of them. Nevertheless, integrating decentralized ESSs into future grid planning 
processes certainly requires detailed knowledge about their required specifications depending 
on the supplied EV use case. The research project “FlyGrid” [4] tackles this problem by 
identifying ESS specifications required for covering short-term charging peak loads of various 
e-mobility use cases. 

1.1 Project FlyGrid and structure of this work 

The project “FlyGrid” [4] is funded by the Austrian “Klima- und Energiefonds” via the Austrian 

Research Promotion Agency (FFG) program “Leuchttürme eMobilität”. Within the project, high-
performance ESSs are integrated into (fast-) charging stations as follows (Fig. 1): Distribution 
system, ESS, and charging infrastructure are connected to a DC voltage link via AC/DC, 
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DC/AC or DC/DC inverters, comparable with Dragicevic et al. (2014) [5] and Yan et al. [6]. 
Future EV charging demands are either supplied by the distribution system, the ESS (in case 
of available energy capacity), or both.  

 

Figure 1: Scheme of the project “FlyGrid”: Grid integration of future e-mobility use cases by implementing 
a flywheel energy storage system (ESS) [4] 

Notwithstanding the above, both AC and DC power can be provided by the charging point. 
Hence, even at the low-voltage level, high charge-power can be reached while at the same 
time stabilizing the grid. Regarding the short-term supply of high-power EV charging, flywheel 
ESS provide substantial benefits compared to battery ESS [7–10]: High life cycle number, high 
power density, fast access time, low maintenance effort, small environmental impact, and the 
independency of power and energy content. In addition, flywheel ESSs allow lower investment 
and operation costs compared to supercapacitors [5,11]. As a result, flywheel ESSs are 
selected as energy storage technology in the project “FlyGrid”. However, the project’s results 

and conclusions are also applicable to other storage technologies. Before testing the 
application of a flywheel ESS based on real-life demonstrations, the project “FlyGrid” identifies 
its specifications required for supplying future e-mobility in detail. Therefore, e-mobility use 
cases (Table 1) with significant environmental and economic importance are selected for 
investigation. 

Table 1: E-mobility use cases and their respective charging power considered in the project “FlyGrid” 

EV Use Case Charging power (kVA) 

1 Charging at public parking lots 3.7 – 44.0 

2 EV car sharing 3.7 – 100.0 

3 Highway fast charging 50.0 – 350.0 

4 Public charging at shopping centers 3.7 – 100.0 

5 Electrified busses 100.0 – 600.0 

6 Electrified taxies 3.7 – 100.0 

7 Electrified last-mile delivery trucks 100.0 – 350.0 
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Parts of the project’s previous results have already been published in Thormann et al. (2019) 
[12], considering use case 1, and in Thormann et al. (2021) [13], considering use cases 3, 5, 
and 7. This work describes the methodology (Section 2) applied in the project “FlyGrid”, and 
summarizes all use cases’ results (Section 3). Finally, Section 4 provides the most significant 
conclusions from the project acquired so far and an outlook regarding further research 
questions.  

2 Methodology 

In the project “FlyGrid”, realistic charging patterns and loads are modeled based on real-life 
mobility data (Section 2.1). These charging loads of EVs are integrated into existing distribution 
networks to identify potential grid impacts of EV charging. Based on identified grid restrictions, 
ESS specifications required for counteracting them are determined in detail (Section 2.2). 

2.1 Modeling of realistic charging loads 

In the first step of the project, realistic annual time-series (1 min. temporal resolution) of EV 
charging loads are modeled stochastically for each of the pre-defined EV use cases (Table 1). 
Therefore, the following aspects are taken into account:  

 The spatial distribution of charging points 
 Individual mobility patterns (time of charging and covered distance) 
 EV model specifics (battery capacity, specific energy consumption, and charging efficiency) 
 Charging power (Table 1) 

The spatial distribution of charging grids is derived from real-life locations of public parking lots 
(Use case 1), car-sharing terminals (2), highway service stations (3), shopping centers (4), bus 
stations (5), taxi terminals (6) and hubs of last-mile delivery vehicles (7). The time of charging 
and the distance covered before charging are both determined stochastically using statistical 
data [14–17] (in the form of cumulative distribution functions) and random numbers (Fig. 2).   

 

Figure 2: Probabilistic determination of the covered distance (left) and the time of arrival (right) using 
the cumulative distribution function (CDF) and random numbers 

Besides temporal mobility patterns, the timely-resolved modeling of EV loads requires the 
consideration of the state-of-the-art EV model specifics. Battery capacities, specific energy 
consumptions, and charging efficiencies applied in this project are described in Thormann et 
al. (2020 and 2021) [13,18]. For analyzing potential grid impacts caused by EV charging, 
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numerous scenarios regarding various charging powers are analyzed for each use case. 
Based on these four aspects, EV charging profiles are modeled for each use case, either by 
using measured charging data [18] or rectangular charging curves with constant charging 
power during the charging process. 

2.2 Determining required ESS specifications 

The modeled EV charging loads are then virtually integrated into grid models of existing real-
life distribution power grids, operated by Energienetze Steiermark GmbH. Long-term (one 
year) load flow simulations are performed to identify thermal grid restrictions of lines or 
transformers triggered by future EV use cases. In the next step, the capacity and power of 
decentralized ESSs required to counteract these thermal grid restrictions are determined in 
detail. Therefore, the apparent power available in the power grid (𝑆𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ) is calculated in 
each time step t using the nominal power of grid elements (𝑆𝑚𝑎𝑥,𝑡ℎ𝑒𝑟𝑚) and the grid elements’ 
initial load without EVs (𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙) according to Eq. 1.  

𝑆𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (𝑡) = 𝑆𝑚𝑎𝑥,𝑡ℎ𝑒𝑟𝑚 − 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙  (𝑡) (1) 

𝑆𝐸𝑆𝑆(𝑡) = 𝑆𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒  (𝑡) − 𝑆𝐸𝑉(𝑡) (2) 

𝐸𝑛𝑒𝑟𝑔𝑦𝐸𝑆𝑆(𝑡) = 𝐸𝑛𝑒𝑟𝑔𝑦𝐸𝑆𝑆(𝑡 − 1) + ∫ 𝑃𝐹𝐸𝑆𝑆 ∗ 𝑑𝑡
𝑡

𝑡−1

 (3) 

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐸𝑆𝑆 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟 =  
min(𝑆𝐸𝑆𝑆(𝑡))

𝜂𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

 (4) 

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐸𝑆𝑆 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  min(𝐸𝑛𝑒𝑟𝑔𝑦𝐸𝑆𝑆(𝑡)) (5) 

Each ESS’s apparent power (𝑆𝐸𝑆𝑆) is determined by subtracting the EV charging load from the 
available capacity at the particular power grid location (Eq. 2). Thus, ESSs are discharged 
(𝑆𝐸𝑆𝑆 < 0) when EV charging loads exceed the available capacity of the grid. After discharging 
triggered by peak shaving needs, the supplied amount of energy is recharged (𝑆𝐸𝑆𝑆 > 0) into 
the ESS during off-peak periods, when the available grid capacity exceeds EV charging 
demands. Furthermore, the amount of energy stored in the ESS (𝐸𝑛𝑒𝑟𝑔𝑦𝐹𝐸𝑆𝑆) is calculated in 
each time step t using Eq. (3): The amount of energy stored in the ESS decreases during ESS-
discharging and increases during ESS-charging. Furthermore, we limit the energy stored in 
the ESS with [-∞; 0] to ensure that ESSs only recharge the amount of energy they have 
provided during previous peak shaving services. Since flywheels are selected as storage 
technology in this study, the following characteristics are applies specifically for this storage 
technology: A charging and discharging efficiency of 90 % [19] is applied to model realistic 
operation of the flywheel ESS. Furthermore, a linear approximation between dissipation losses 
and the state of charge of the flywheel ESS is implemented [20]. Hence, dissipation losses 
vary between 0.5 kW (100 %) and 0.0 kW (0 %), depending on the flywheel’s state of charge. 
Finally, the required ESS discharging power and capacity are identified for each use case and 
each charging power (Table 1) using Eq. (4) and (5).  

3 Results 

This section provides the ESS discharging power and capacity per charging point required to 
cover short-term EV charging loads and prevent local grid restrictions. Regardless of the 
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supplied use case, both – power rating and energy content - strongly depend on the actual EV 
charging power: The higher the EV charging power, the higher the capacity and discharging 
power requested by the ESS per charging point. Of course, the actual ESS specifications 
depend on the particular distribution grid and its local load conditions. Furthermore, the 
required ESS specifications correlate with the number of supplied charging points. The more 
charging points are supplied by the ESS, the more energy must be stored per charging point 
to counteract local grid overloads. Similarly, the required ESS discharging power per charging 
point increases the more charging points are installed.  

Based on these correlations, the applied design method identifies a broad spectrum of required 
ESS specifications for each use case, illustrated in Fig. 3 (ESS capacity) and Fig. 4 (ESS 
power). Considering low-power charging use cases (1, 2, 4, and 6), the required ESS capacity 
(Fig. 3) varies between 0.5 and 158 kWh per charging point, with medians between 0.5 (Use 
case 2) and 1.5 kWh (Use Case 4). Furthermore, integrated ESSs must provide a discharging 
power between 0.25 and 53 kVA per charging point to supply these use cases (Fig. 4).  

 

Figure 3: Spectrum of ESS capacity per charging point supplying various EV use cases 

For example, a ESS integrated into an electric taxi charging station with six charging points 
and charging power of 22 kVA each requires at least a capacity of 2.2 kWh and a discharging 
power of 24.6 kVA. The supply of high-power charging EV uses cases (3, 5, and 7), one the 
other hand, requires a ESS capacity (Fig. 3) between 0.17 and 295 kWh, with a median 
between 4 (Use case 5) and 88 kWh (Use case 7).  

 

Figure 4: Spectrum of ESS power per charging point supplying various EV use cases 

The short-term covering of peak loads requests ESS discharging power (Fig. 4) between 6 and 
356 kWh per installed charging point, with medians of 83 (Use case 3), 110 (5), and 117 kVA 
(7). Despite the broad spectrum of ESS specifications, most charging demands of future EV 
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use cases can be supplied by integrating a ESS with relatively low capacity (e.g., 5 kWh) and 
moderate power (e.g., 100 kVA) per charging point. This tendency correlates with the fact that 
most (95.1 %) individual trips are shorter than 50 km [14], corresponding to an energy demand 
of about 10 kWh. However, EV applications requiring higher ESS capacity and discharging 
power may be supplied either by larger ESSs, or a modular approach of several ESS units. 

4 Conclusions and Outlook 

The modeling of timely-resolved charging profiles based on accurate mobility data 
demonstrates crucial differences in the charging behavior of varying EV use cases. When 
applying these realistic charging profiles, even numerous charging points can be integrated 
into existing low- and medium-voltage grids considering EV charging with moderate charging 
power (up to 44 kVA). Furthermore, the project’s previous results confirm that any kind of 
energy storage can severely mitigate potential grid congestions in many cases. However, the 
required ESS specifications depend significantly on the individual EV use case, EV charging 
power, and the grid location. The demonstrated discrepancies between EV use cases inhibit 
the design of one single ESS unit suitable for all considered applications. Nevertheless, most 
EV cases can entirely be supplied by the ESS specifications of 100 kVA discharging power 
and 5 kWh capacity per ESS module. Considering flywheel ESSs, for example, e-mobility use 
cases with higher energy- and power demands may require a modular approach of several 
flywheel units. Thereby, even high-power charging EV applications, e.g., opportunity charging 
of electric busses, can be supplied in a grid-friendly way considering a moderate number of 
charging points and moderate charging power.  

Of course, the application of ESSs must also be evaluated in terms of the total investment and 
operation costs. Therefore, future work should compare the integration of different ESS 
technologies with demand-side measures or classic grid reinforcements in terms of overall 
costs. Flywheel ESS, for example, can provide significant economic benefits when supplying 
high-power EV charging demands characterized by numerous, though short, charging 
processes (e.g., electric busses), demonstrated in Thormann et al. (2021) [13]. 
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