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A B S T R A C T   

For almost a century commercial aluminum alloys were developed and optimized for high per
formance in a specific and narrow range of application, which commonly coincides with their 
industrial classification. Overcoming the limitations associated with the modern lightweighting 
concept requires new alloy design strategies that offer an expanded property portfolio with a 
better trade-off between formability and achievable strength. The associated materials would be 
key to circumventing the need for a multi material mix that diminishes the recyclability of the 
final product. This review summarizes current knowledge about a new class of materials, 
“crossover alloys”, that combine advantageous properties normally limited to certain classes of 
commercial aluminum alloys. It focuses on the crossover alloys AlMg/AlCuMg (5xxx/2xxx) and 
AlMg/AlZnMg(Cu) (5xxx/7xxx). Recently available research data provides indications for supe
rior formability with simultaneously high age-hardening potential, which may pave the way for 
broader industrial application in the foreseeable future. Because these new alloys exhibit Mg as 
their major constituent but are – in contrast to commercial AlMg alloys – age hardenable, they do 
not fit into the current alloy classification scheme. This review formalizes crossover alloys as a 
potential new aluminum alloy class which features an innovative alloy design methodology.   

1. Introduction 

Global warming and climate change have been identified as global threats to mankind. Their undesired and harmful consequences 
are strongly correlated with the accelerated growth of the transportation sector over the last few decades, which is responsible for 
increasing CO2 emission levels [1,2]. The increasing economic implications and rising political awareness of the climate change 
challenge have boosted research and development activities to address it, but definitive solutions have not yet been reached [3,4]. 

From a holistic point of view, significant improvements in mitigating greenhouse gas emissions require an overall decrease in 
energy consumption. Even though new automotive technologies like those featured in electric cars can to some extent enhance fuel 
efficiency in traffic and transportation [5–9], from an engineering perspective major energy savings also require that substantial 
improvements be made to the design of vehicles and the materials used to make them. Consequently, the development of new materials 
which address the increased demand for both appropriate properties and sustainability must become a major focus. 

* Corresponding author. 
E-mail address: peter.uggowitzer@mat.ethz.ch (P.J. Uggowitzer).  

Contents lists available at ScienceDirect 

Progress in Materials Science 

journal homepage: www.elsevier.com/locate/pmatsci 

https://doi.org/10.1016/j.pmatsci.2021.100873 
Received 11 June 2021; Received in revised form 29 September 2021; Accepted 29 September 2021   

mailto:peter.uggowitzer@mat.ethz.ch
www.sciencedirect.com/science/journal/00796425
https://www.elsevier.com/locate/pmatsci
https://doi.org/10.1016/j.pmatsci.2021.100873
https://doi.org/10.1016/j.pmatsci.2021.100873
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmatsci.2021.100873&domain=pdf
https://doi.org/10.1016/j.pmatsci.2021.100873
http://creativecommons.org/licenses/by/4.0/


Progress in Materials Science 124 (2022) 100873

2

Lightweighting by deploying low-density materials such as aluminum alloys as substitutes for high-density materials such as steel is 
a well-established [10–12] but insufficient approach to mitigating greenhouse gas emissions, because the applicability of commercially 
available aluminum alloys is restricted due to their usually limited property spectrum. In addition, multiple operational demands and 
engineering criteria, in particular those related to material’s formability and strength [13], still require the utilization of several 
different material concepts which limit product recyclability [14–17]. 

Overcoming the limitations associated with state-of-the-art lightweighting concepts requires the development of new alloy design 
strategies capable of delivering an extended property portfolio which features both good formability during processing and high 
strength in use. The associated materials would be key to circumventing the need for a multi material mix that diminishes the 
recyclability of the final product. 

2. Crossover alloying 

Although most commercial aluminum alloys might exhibit a limited spectrum of properties, they are designed for high performance 
in a specific and narrow field of use. Their main purpose is often predefined by their major alloying constituents [18], which also 
determine their industrial classification, i.e. Cu in 2xxx-series alloys (AlCu(Mg) alloys with a Cu/Mg ratio > 1), Mg in 5xxx-series alloys 
(AlMg(Mn) alloys with a Mg/Mn ratio > 1) or Zn in 7xxx-series alloys (AlZnMg(Cu) alloys with a Zn/Mg ratio > 1). Note that alloy 
compositions are presented in wt.% throughout this review, and scientific abbreviations are used to refer to certain alloy classes (for 
example, “AlCuMg alloys” indicates 2xxx-series alloys). Within these classes, materials’ properties vary over a relatively wide range 
(depending on the exact alloy composition and condition), but there is an overall trend, at least in some distinct attributes, compared to 
other alloy classes. In terms of mechanical performance, commercial aluminum alloys usually offer poor formability during processing 
but high in-use strength [19–21] or good formability but only moderate final strength [21,22]. To address this longstanding trade-off 
between formability and achievable strength, which is very significant for future aluminum-based materials, it is reasonable to identify 
alloys or classes of alloy which outperform others in at least one of the desired material property categories. 

Alloys corresponding to the AlZnMg(Cu) classification, for example, offer the highest achievable yield strength levels [18,23–31], 
closely followed by AlCu(Mg) alloys [18,32–37]. Commercial AlMgSi alloys exhibit sufficient bake hardening potential, surface quality 
and corrosion resistance [10,18]. Since they also offer good levels of fracture elongation in soft condition [38–44], they currently hold 
around 60 % of the aluminum-based materials market [15]. However, tuning AlMgSi alloys for higher in-use strength by either 
increasing the Si content [45], adding additional alloying elements such as Zn [46] or performing a pre-aging treatment [40] results in 
significantly impaired performance during forming. Several attempts have been made to enhance the forming capability of these alloys 
[39,47,48] but a definitive and reliable approach is still pending. As opposed to AlMgSi alloys, commercial AlMg(Mn) alloys exhibit a 
high level of ductility and work hardenability [18,49,50], which makes them more suitable for complex forming operations [21,22]. 
However, surface deterioration via formation of stretcher strains and only moderate strength – these alloys cannot be age hardened – 
limit their broad application [51–54]. 

Given the limitations of state-of-the-art commercial aluminum alloys described above, it is indicated that new alloys requiring good 
formability during processing and high strength in use should combine the beneficial formability of AlMg(Mn) alloys with the good 
strengthening ability of AlCu(Mg) or AlZnMg(Cu) alloys. Bringing this merger about by alloy design – thus creating a “crossover” 
between different alloy classes – has attracted the attention of the metallurgical community, and promising results have recently been 
reported. Initially, normally non-heat-treatable AlMg alloys were chosen with the aim of establishing a high level of formability, as 
work hardenability and uniform elongation tend to increase with increasing Mg content [55]. Subsequently, sufficient age hardening 
potential was established by adding alloying elements such as Cu and/or Zn, which tend to form composition-dependent hardening 
precipitates upon aging. Because Mg is consumed by all major precipitates in the AlMgZnCu system, relatively high levels of Mg (Mg/ 

Fig. 1. (a) Equilibrium phase diagram Al-Cu-Mg at 190 ◦C. (b) Evolution of yield strength in AlMgCu alloys with varying Cu/Mg ratios. Reprinted 
from [60] with permission from the JIM (Japan Institute of Metals and Materials). 
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Zn > 1, Mg/Cu > 1) are required to ensure an adequate amount of this element in solid solution to maintain both a good formability in 
pre-aged conditions and a sufficient damage tolerance upon final heat treatment. 

As these new alloys exhibit Mg as their major constituent but, in contrast to commercial AlMg alloys, are indeed age hardenable, 
they do not fit well into the current alloy classification scheme. Hence the proposal was made to call them “crossover alloys” 
[14,56,57]. This review provides a comprehensive overview of these new crossover alloys, and consolidates crossover alloying as an 
innovative design concept in metallurgy. 

3. AlMgCu crossover alloys 

While AlCu(Mg) alloys (Cu/Mg ratio > 1) are well established for commercial use as 2xxx-series alloys, adding Cu to AlMg alloys 
(Cu/Mg ratio ≪ 1) has only recently attracted the attention of the metallurgical community. This type of alloy was mentioned in a 
publication for the first time in the early 1990s, as preventing softening during the paint bake process [58]. The hardening response 
observed during heat treatment (175 ◦C/30 min) of pre-deformed (2%) sheets successfully counteracted recovery processes. 

Early studies by Ratchev et al. [59,60] investigated the hardening response during aging in the range of 60 ◦C to 180 ◦C in several 
AlMgCu alloys exhibiting Cu/Mg ratios of between 0.14 (Alloy X in Fig. 1) and 0.29 (Alloy Z in Fig. 1). Upon aging at 180 ◦C, all the 
alloys investigated exhibited an initial jump in yield strength (ΔRp0.2 = 20 – 40 MPa), followed by a linear increase until peak hardness 
(ΔRp0.2 = 70 – 120 MPa) was reached (Fig. 1b). This hardening characteristic was found to be similar to that of AlCu(Mg) alloys 
[61,62] and was attributed to precipitation of the S-phase and its precursors following the sequence:  

SSSS (supersaturated solid solution) → Cu/Mg clusters (GPB-zones) → S’-phase → S’’(S) (Al2MgCu) [59]  

The initial jump in the yield strength (see black arrow in Fig. 1b) is attributed to rapid formation of Cu/Mg clusters [61,62] which is 
significantly faster and more pronounced at higher Cu/Mg ratios, but less affected by temperature variations at higher temperature 
levels (140 – 180 ◦C). At a low Cu/Mg ratio and low aging temperature, the peak hardness – which is attributed to S’-precipitates – 
shifts to longer aging times. In contrast to thermodynamic calculations (see Fig. 1a), T-phase (Mg32(Al,Cu)49) hardening was not 
observed, which may result from impurities (Si, Fe, Mn) stabilizing the S-phase [59,60]. Even though the S-phase has been identified as 
the major hardening precipitate in aluminum alloys containing significant amounts of (e.g.) Mg and Cu, its precipitation and devel
opment are still subjects of ongoing research and debate in the areas of both AlCuMg alloys [63–65] and AlMgCu alloys [66–69]. 

The beneficial effect of Cu in AlMg alloys and the associated hardening response to avoid softening of pre-deformed sheets depends 
on the recrystallization / solution annealing and aging treatment used, but is also linked to the level of deformation applied before the 
final aging treatment. This is discussed in detail below. 

In order to establish sufficient age hardening potential, the supersaturation of solutes and vacancies is required. It renders 
commonly utilized recrystallization annealing treatments at medium temperatures (black lines in Fig. 2a and Fig. 2b; for details see 
figure caption) insufficient if > 2% pre-deformation is applied [70]. If adequate high-temperature solutionizing and quenching (red 
lines in Fig. 2a and Fig. 2b) are performed, softening during subsequent heat treatment can be significantly mitigated [71] or even 
prevented up to either 5% [70] or 10% [72] pre-deformation if the alloy composition and heat treatment parameters are appropriately 
adjusted. Medrano et al. [73] revealed that additions of (only) 0.12 at% of Cu are sufficient to establish a rapid hardening response at 
the initial stage of aging at 200 ◦C. Strengthening particles (clusters/GPB-zones) were observed to exhibit similar size and geometry, 
but they incorporate a significantly lower amount of Cu compared to commercial AlCuMg alloys after 20 min of aging, thus explaining 

Fig. 2. Evolution of yield strength with applied processing/aging. (a) AlMg4.6Cu0.54; values correspond to 30 min of aging [70]. (b) 
AlMg5.4Cu0.33, batch-annealed (350 ◦C/1 h, slow cooling, black lines), solution heat treated (450 ◦C/10 min, fast cooling, red lines) [71]. 
Reprinted from [70,71] with permission from Elsevier. Figures are slightly modified for easier readability. 
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the relatively high particle density regardless of the low bulk Cu content [73]. Negative effects of natural aging such as deteriorated 
hardenability or limited formability – known from commercial AlMgSi alloys [74–77] – are not observed in AlMg alloys which contain 
Cu [71,78,79]. 

Zhang et al. [80,81] investigated the potential of AlMgCu crossover alloys for processing via equal channel angular pressing 
(ECAP). An AlMg4.3Cu1.2 alloy was artificially aged to under-, peak- and over-aged condition before being subjected to several ECAP 
passes at 180 ◦C. While coarse hardening precipitates (S-phase or its precursors) in peak-aged condition fractured and dissolved during 
processing, small precipitates in under-aged condition dissolved similarly but re-precipitated, resulting in significantly higher yield 
stress caused by strengthening contributions from dislocations and grain boundaries but also from beneficial interactions of dislo
cations with solutes and re-precipitated hardening phase. Post-ECAP aging had no effect on initially peak-aged samples but resulted in 
a significant loss of strength in initially under-aged samples [80,81]. 

Because adding Cu has been shown to prevent Mg-migration towards grain boundaries and also to suppress the formation of 
β-Phase (Al3Mg2) in favor of Cu-bearing hardening phase, AlMgCu alloys offer enhanced resistance against intergranular corrosion 
(IGC) if an adequate solutionizing treatment is applied [70]. While susceptibility to pitting corrosion was observed to be neither 
improved nor degraded compared to a Cu-free reference alloy, resistance to filiform corrosion was reported to be enhanced by Cu 
addition [71]. 

4. AlMgZn crossover alloys 

While η-precipitates are the dominant hardening phase in commercial AlZnMg(Cu) alloys (corresponding to the class of 7xxx-series 
alloys) [82], strengthening by T-phase is not widely established. Even though this ternary phase has been known since 1936 and was 
included in Al-Mg-Zn equilibrium phase diagrams by Köster et al. [83,84], interest in potential T-phase hardening was only minor 
during the twentieth century [82,85–89]. This may be because alloys of commercial interest, which were supposed to consist of only T- 
phase and aluminum matrix (under equilibrium condition), were also observed to harden only via η or its precursors [89]. Therefore it 
was suggested that T-phase tends to evolve from η-particles only at higher temperatures (> 200 ◦C) [89,90], as opposed to direct 
formation upon aging, since other T-precursors (with deviating crystal structure from equilibrium T) are not known [89]. Recently, 
however, sole T-phase hardening in AlZnMg(Cu) alloys with Zn/Mg ratios ≤ 2.2 has attracted increased attention [91,92]. Because the 
AlMgZn crossover alloys investigated here contain Mg in excess (Zn/Mg ratios < 1), hardening by T-phase and/or its precursors can be 
similarly expected. 

Today it is generally accepted that under equilibrium conditions, the T-phase (denoted as Mg3Zn3Al2, Mg32(Al,Zn)49 or 
Mg32Zn31.9Al17.1) exhibits a body-centered cubic crystal structure containing 162 atoms in its unit cell [93–96]. It can be identified 
according to its distinct reflection spots within the aluminum matrix along the 〈001〉 zone axis, exposing the characteristic T-phase 
diffraction spots at the 2/5 and 3/5 〈022〉 Al positions [97]. The precipitation sequence of the T-phase is still a matter of debate, as the 
Al and Zn atoms can randomly occupy Al/Zn substitutional lattice sites in the T-phase unit cell [93]. Therefore the precipitation 
sequence in AlMgZn crossover alloys is strongly dependent on a given alloy composition [90,93,98–101]. This has also been observed 
in AlZnMg(Cu) alloys hardened by co-precipitation of η- and T-phase [91,92,102,103]. Consequently, a wide variety of possible 
precipitation sequences have been proposed for the Al-Mg-Zn system; they are summarized in Table 1. 

According to the findings of Bigot et al. [98] in an AlMg4.9Zn3.2 alloy, precursor T’- and equilibrium T-phase exhibit similar crystal 
structures (and therefore similar electron-diffraction signals) and similar orientation relationships with the Al matrix, but can be 
distinguished by their chemical compositions, which were found to be independent of particle size. However, determining the evo
lution state of T-phase particles by chemical constitution may be applied to a single alloy composition only, rather than being deployed 
for a general comparison, because the equilibrium composition of T-phase is probably affected by overall alloy constitution due to 
random occupancy of Al/Zn lattice sites [91]. More recent investigations into the precipitation sequence in an AlMg5.1Zn3.0(Cu0.15) 
alloy by Hou et al. [105] resorted to the level of coherency to identify the evolution state of precipitates. Two different types of GP zone 
were observed at early stages of aging. While fully coherent solute clusters without distinct diffraction signals were denoted as GPI 
zones, slightly larger, but still fully coherent precipitates with distinct diffraction signals were assigned as GPII (T’’) zones. Because T’- 
and T-precipitates exhibit similar crystal structures, as observed by Bigot et al. [98], they were distinguished by their respectively semi- 
coherent and incoherent interfaces with the matrix. It is important to emphasize that GPI and GPII zones in AlMgZn crossover alloys do 
not correspond to GPI and GPII zones in commercial AlZnMg(Cu) alloys [82,107]. Slightly different precipitation behavior was 
observed by complementary deployment of atom probe tomography (APT), transmission electron microscopy (TEM) and density 
functional theory (DFT) techniques conducted in-house. We recently proposed that transient η’-surrogates might be involved in the 
transformation from GPI zones into T’ in an AlMg4.7Zn3.6 alloy [106]. 

Table 1 
Proposed precipitation sequences for the η and T phases within the Al-Mg-Zn system.  

a) SSSS → GP (Guinier-Preston) zone → intermediate η’ →equilibrium η → equilibrium T [90] 
b) SSSS → solute–vacancy-complex → GP zone → intermediate η’ or T’ →equilibrium η or T [99] 
c) SSSS → GP zone → intermediate η’ or T’ →equilibrium η or T [101] 
d) SSSS → GP zone → intermediate T’ →equilibrium T [104] 
e) SSSS → GPI zone → GPII zone (T’’) → intermediate T’ →equilibrium T [105] 
f) SSSS → GPI zone →(transient η’ →) intermediate T’ →equilibrium T [106] 

SSSS (supersaturated solid solution). 
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Although the recent interest in the crossover AlMgZn alloys can be attributed to their good hardening potential, Zn addition (in 
relatively low amounts) was first utilized to enhance the resistance of commercial AlMg alloys to several corrosion mechanisms (see 
Table 2). This beneficial effect has been attributed to the suppression of highly anodic β-phase at grain boundaries in favor of less 
anodic T-phase upon stabilization and sensitization [108–113]. In addition to improved corrosion resistance, small additions of Zn (<
1 wt%) were also reported to increase the yield strength (see Fig. 3a) after stabilization treatment (250 ◦C/1 h). This can be explained 
by the synergistic effects of increased solid solution strengthening and hardening precipitates [109,112]. 

Increasing the Zn content and applying a solutionizing treatment (rather than recrystallization annealing) has been shown to cause 
a significant increase in yield strength upon both artificial and natural aging [106,114–119]. 

The hardening response upon artificial aging has been found to be caused mainly by precipitation of T-phase and/or its precursors 
[114,115,117–119]. Cao et al. [115] investigated the artificial aging behavior of an AlMg5.2Zn2.0(Mn0.2) alloy at 180 ◦C, revealing 
an incubation period of approximately 2 h before hardness increased towards peak level after 24 h of aging. Yun et al. [117] observed 
hardening only at Zn levels higher than 3 wt% in an AlMg5 alloy upon aging at 120 ◦C (compare Fig. 3b and c). In contrast, however, 
hardening incubation was much shorter and the overall hardness level was significantly higher. The latter results are consistent with 
the findings reported in [118], where the aging behavior of an AlMg5.0Zn3.8(Mn0.8) alloy at a temperature range of 75 – 200 ◦C was 
investigated. Both the earliest hardening onset (approximately 1 h) and the greatest hardness gain were found at lower temperatures 
(100 ◦C), probably due to a beneficial tradeoff between nucleation and growth of hardening phase [118]. On the other hand, it has also 
been reported that hardening initiates only after approximately 16 h at 125 ◦C in an AlMg4.7Zn3.5(Mn0.4) alloy, which resulted in a 
peak-aging time of 9 days [119]. 

In contrast to the works mentioned above, which observed sole T-phase hardening in AlMgZn crossover alloys only, investigations 
by Zhu et al. [121] on Fe-rich (1.5 wt%) AlMg5(Mn0.5) alloys manufactured by high pressure die casting (HPDC) revealed that Zn 
addition (up to 3 wt%) resulted in sole η-phase hardening if a low-temperature heat treatment (430 ◦C/60 min + water quenching +
120 ◦C/16 h) was applied. 

All these results indicate that alloy composition and aging strategy have to be carefully matched to establish a sufficient and 
optimal hardening response. In addition, inconsistencies in the hardening behavior between the reported alloys might be attributed to 
the presence and number of additional alloying elements and impurities such as Mn, Fe, Si, Cr, Ti, Zr, Sc, etc., which can affect 
nucleation of precipitates and thus facilitate [122] or degrade [123] the hardening response. 

In contrast to the hardening behavior in most commercial AlZnMg(Cu) alloys [92], peak hardness in T-hardened AlMgZn crossover 
alloys shifts to longer aging times, usually between 24 h [115] and 9 days [119] upon single-step aging, but this depends on the alloy 
composition and heat treatment parameters. Because processing time – especially the aging time in the final heat treatment stage – is a 
key aspect for industrial applicability, efforts must be made to accelerate the hardening response. Performing a low-temperature pre- 
aging treatment (from 3 h to 12 h at 80 ◦C to 100 ◦C) prior to the final high-temperature aging stage has been shown to significantly 
accelerate the hardening response, thus results in a shortening of the total time to reach peak hardness. This has been attributed to the 
formation of stable precursors in high number density, acting as preferential nucleation sites for subsequent development of the 
hardening phase [97,118,119,124,125]. Minor deformation (2%) after pre-aging was also reported to have a boosting effect on the 
hardening response; this has been attributed to enhanced mobility of solutes facilitated by dislocations introduced by deformation 
[106]. 

Pre-aging and natural aging caused both an increase in yield strength and a shift of the onset of serrated flow to higher strain levels 
(see Fig. 3b). This is attributed to both the strengthening ability and the vacancy-trapping nature of small coherent Mg-Zn clusters/GPI 
zones [106,114]. Increased levels of Zn (up to 5 wt%) have also been shown to have no deteriorating effect on elongation in AlMg 
alloys with low Mg content (≤ 5 wt%) in either as-quenched [117] (see Fig. 3c) or pre-aged condition [106], regardless of their 
potential higher strength. Geng et al. [126] also observed a partial suppression of Lüders elongation in a pre-aged (485 ◦C/10 min +
water quenching + 80 ◦C/12 h) AlMg5.1Zn3.0 alloy which is not seen in AlMg4.6Cu0.15 in soft-annealed (450 ◦C/1 h) condition. 

Based on the indications for such alloys’ beneficial forming performance in pre-aged condition, Stemper et al. [106] compared two 
pre-aged (PA) crossover alloys – AlMg4.7Zn3.6 (black line in Fig. 4)) and AlMg4.7Zn3.6Cu0.6 (red line in Fig. 4) – with a commercial 
EN AW-5182 alloy in its dedicated forming condition (soft annealed, blue line in Fig. 4), by plotting the strain hardening rate (SHR) 
over plastic stress (σ-σ0) for their corresponding true stress–strain curves as an indication for stretch-formability. 

The observed higher level of SHR over the full range of plastic stress and the flatter slope of the curves were linked to enhanced 
formation and inhibited annihilation of dislocations, respectively, thus indicating a better performance during stretch-forming 
commonly applied in the manufacturing of automotive sheets [106,119,127–129]. A similar conclusion arises by comparing the 

Table 2 
Effect of Zn addition on the corrosion resistance of crossover alloys. Vertical arrows indicate an improvement in corrosion resistance.  

Zn[wt.%] Mg[wt.%] Processing* Stabilization treatment Sensitization treatment Corrosion resistance** Ref. 

0.68–0.70 4.7 H, HR, IA, CR 110 ◦C/2 h 200 ◦C/24 h ↑ (exfoliation) [108] 
0.00–1.00 5.8 H, HR, IA, CR 250 ◦C/1 h 100 ◦C/7 d ↑↑ (IGC) [109] 
0.00–1.00 5.8 H, HR, IA, CR 250 ◦C/1 h, 1 % 100 ◦C/7 d ↑↑ (IGC), ↑↑ (SCC) [112] 
0.00–0.78 4.5 H, HR, CR 200 ◦C 7 d ↑↑ (IGC), ↑↑ (PC) [111] 
0.70–1.50 4.0–7.0 H, HR, CR, IA, CR, SA 200–260 ◦C/1–24 h 150 ◦C/3 d ↑↑ (SCC) [120] 

* H: Homogenization; HR: hot rolling; IA: intermediate annealing; CR: cold rolling; SA: solution annealing. 
** ICG: intergranular corrosion; SCC: stress corrosion cracking; PC: pitting corrosion. 
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Fig. 3. Effect of Zn content on the yield strength of crossover alloys. Plots in (a) after stabilization (250 ◦C/1 h) [109]; (b) after solutionizing and 
natural aging for 60 days, where onset of serrated flow is shifted to higher strain levels [114]; (c) engineering stress–strain curves after solution 
annealing (430 ◦C/10 min) and quenching [117]; (d) engineering stress–strain curves after aging for 24 h at 120 ◦C [117]. (Reprinted from 
[109,114,117] with permission from Elsevier and Trans Tech Publications, Ltd.) 

Fig. 4. Kocks-Mecking-plots [127] of AlMg4.7Zn3.6 (PA 100 ◦C/3h, black line), AlMg4.7Zn3.6Cu0.6 (PA 100 ◦C/3h, red line), EN AW-5182 (soft 
annealed, blue line), EN AW-6016 (PA 100 ◦C/5h, green line) and EN AW-7075 (PA 120 ◦C/2h, pink line). Both crossover alloys exhibit a 
significantly higher level of strain hardening rate over the full range of plastic stress indicating a more beneficial stretch-forming performance. σ0- 
values correspond to Rp0.2 (PA) shown in Table 3. Reprinted from [106] with permission from Elsevier. Note that figure has been slightly modified 
for easier readability. 
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results assessed from commercial alloys EN AW-6016 (green line in Fig. 4) and EN AW-7075 (pink line in Fig. 4) in comparable heat 
treatment states (for details see figure caption). Note that these conditions have been chosen as both alloys require such processing 
prior to forming to achieve their intended strength in use upon final paint bake treatment (20 min at 185 ◦C) [39,46,130–132]. 
However, it has to be mentioned that comprehensive experimental data addressing the formability of crossover alloys has not been yet 
published and requires further research. Nevertheless, investigations of the paint bake response ΔRp0.2 of the alloys shown in Fig. 4 
(summarized in Table 3) also reveal a significant hardening potential of crossover alloys, which can be further tailored by minor alloy 
modification (for details see section 5). 

As previously mentioned, small additions of Zn (< 1 wt%) can enhance the resistance of AlMg alloys to IGC given adequate heat 
treatment (stabilization). By increasing the levels of Zn and applying artificial aging treatments to exploit the full hardening potential, 
the susceptibility of AlMgZn alloys to IGC is significantly increased due to the non-beneficial galvanic coupling between precipitate 
free zones (PFZ) and grain boundary precipitates (GBP) [134]. Increasing the Zn/Mg ratio (at levels below 1) [135], adding Cu (for 
details see the next section) [135] or applying a retrogression and re-aging (RRA) treatment [136] (first introduced by Cina et al. [137] 
for AlZnMg(Cu) alloys) have been shown to generate narrower PFZs and discontinuous GBPs, thus enhancing IGC resistance. 

Beside their beneficial strengthening ability T-phase particles in overaged AlMgZn crossover alloys were also observed to exhibit a 
significant resistance to heavy ion irradiation (Pb+). This was attributed to the high phase fraction and advanced chemical complexity 
of the hardening phase, and makes such alloys potential candidates for utilization in vehicles intended for space exploration [56]. 

5. AlMgZn(Cu) crossover alloys 

Because adding both Zn and Cu has been shown to have beneficial effects on the corrosion susceptibility and the hardening 
capability of AlMg alloys, combined addition of these elements was also investigated. While corrosion was the major focus of the 
earlier studies, recent work has aimed to exploit the hardening potential of AlMgZn(Cu) alloys. 

Carroll et al. [138,139] investigated the effect of different Cu levels (0.075 – 0.24 wt%) on the formation and corrosion impact of 
potential secondary phases in Zn-modified (0.6 wt%) 5083 alloys upon extensive sensitization (165 ◦C/175 – 350 h). While at lower Cu 
additions only Cu-enriched T-phase (Mg32(Al, Zn, Cu)49) was observed at grain boundaries, alloys with high Cu levels contained a 
significant amount of corrosion-prone S-phase in the grain interior. Tensile tests on alloy samples containing Zn and Cu in a corrosion- 
promoting environment indicated that well-balanced Cu addition significantly counteracts the susceptibility to stress corrosion 
cracking (SCC) observed in Cu-free AlMgZn alloys, as long as the formation of S-phase is inhibited. Even though these alloys showed 
lower ductility compared to commercial 5083 in a non-corrosive environment (dry air) upon sensitization, they outperformed them in 
a corrosive (aqueous NaCl) environment [138,139]. 

Systematic investigations of the hardening response and the associated microstructural evolution in AlMgZn(Cu) alloys started 
rather recently, in 2016. Cao et al. [115] addressed the effects of combined Zn- and Cu addition by investigating the impact of 
gradually increasing Zn levels (0.6 – 1.9 wt%) in an AlMg5.2Cu0.45 alloy upon aging at 180 ◦C (Fig. 5a). At early aging stages, the 
effect of Zn was less pronounced because rapid hardening (I) via the formation of Mg-Cu clusters (similar to AlCuMg [61,62] or 
AlMgCu [59,60] alloys) was found to dominate over that of Mg-Zn clusters. With increasing Zn content (up to 1.9 wt%) the incubation 
time for T-phase precipitation was shortened (II) and peak hardness (III) was both shifted to shorter aging times and significantly 
enhanced (compare black and green lines in Fig. 5a) by subsequent development of the T-phase, thereby increasing the Cu/Mg ratio in 
the matrix and thus accelerating the formation of the S-phase. The maximum strength was attributed to the synergistic effects of both 
T- and S-phases (see Fig. 6b). Due to the relatively small Zn content and the resulting low Zn/Mg ratio, the absolute increase in 
hardness is only moderate under the applied aging conditions seen in Fig. 5b [115,118,119]. 

However, these findings contrast with the results of Tang et al. [140], who investigated the hardening response of an AlMg5.0Zn3.0 
cast alloy containing a large amount of Cu (1 wt%) during single-step artificial aging experiments at temperatures between 120 ◦C and 
175 ◦C. While peak hardness was found to be almost independent of the aging temperature and was attributed to small globular GPII 
zones (T’’) and large, rod-shaped Cu-enriched T’-particles, the time required to reach the highest strength levels was significantly 
shorter (4 h) at 175 ◦C when compared to aging at 120 ◦C (125 h). Higher aging temperatures were assumed to promote the formation 
of T’ over GPII (T’’) due to enhanced diffusion of solutes (especially Cu), thus increasing the average precipitate size and finally 
resulting in a deteriorated ductility and a decreased impact toughness [140]. 

For AlMgZn alloys with lower Cu levels (0.15 – 0.6 wt%), applying a low-temperature pre-aging treatment (3 h to 48 h at 80 ◦C to 

Table 3 
Change in yield strength of alloys shown in Fig. 4 upon paint bake treatment.  

Alloy Rp0.2 (PA*)[MPa] Rp0.2 (PB**)[MPa] ΔRp0.2[MPa] ΔRp0.2[%]  

Crossover alloys      
AlMg4.7Zn3.6 157 204 47 30 [106] 
AlMg4.7Zn3.6Cu0.6 226 353 127 56 [106] 
Commercial alloys      
EN AW-5182 159 159 0 0 [106] 
EN AW-6016 154 242 88 57 [133] 
EN AW-7075 429 508 79 18 [130] 

* PA: Pre-aged condition (for details see caption of Fig. 4). 
** PB: Paint bake condition (185 ◦C/20 min). 
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100 ◦C) prior to subsequent high-temperature final aging (140 – 180 ◦C) was found to significantly accelerate the hardening response 
during the second aging stage, shift the peak hardness to earlier times [97,118,119,125] and generate higher hardness levels 
[97,119,125] (see Fig. 5b) due to major changes in the microstructure. While peak hardness was attributed to coarse, lath-like T-phase 
and needle-shaped S-phase in low density if no pre-aging is applied, the microstructure in pre-aged and subsequently peak-aged 
condition consists of finely-dispersed, equiaxed T-phase particles in higher density. Although the T-phase particles exhibit similar 
crystal structures in both conditions, their chemical compositions were found to differ significantly. It is assumed that low temperature 
pre-aging promotes the formation/nucleation of precursors (GP zones) by vacancy-assisted diffusion; they are able to grow and evolve 
into Cu-enriched T-phase upon subsequent high-temperature aging by solute attachment of Zn and Cu, thus suppressing S-phase 
formation (see Fig. 6a). It seems reasonable to assume that adding Cu in larger quantities [140] will – if high-temperature single-step 
aging is applied – have an effect similar to that of the precursors present after pre-aging in low-Cu AlMgZn alloys [97,118,119,125]. 

These results were confirmed by Hou et al. [141], who followed a similar approach to Cao et al. [115] and investigated the effect of 
increasing Zn levels (1 – 4 wt%) in an AlMg5.1ZnXCu0.15 alloy during two-stage aging treatments by means of APT analysis. They 
found an enhanced and accelerated hardening response (during both natural aging and second-stage artificial aging) when the Zn 
content was ≥ 3 wt% (Zn/Mg ratio 0.6 – 0.8). The chemical composition of precursors after pre-aging (24 h at 90 ◦C) was found to have 
a major impact on their capability for subsequent development. Because T-phase evolves in a gradual manner, precursors with 

Fig. 5. (a) Hardening response of AlMg alloys with varying Zn- and Cu content during aging at 180 ◦C [115]; (b) Hardening response of 
AlMg5.2Zn2.0Cu0.45 upon aging at 180 ◦C without (green rectangles) and with (green dots) prior pre-aging (80 ◦C/12 h) [97]. Reprinted from 
[97,115] with permission from Elsevier. 

Fig. 6. Schematic illustration of precipitate development in AlMg5.2Zn2.0Cu0.45 upon aging at 180 ◦C with (a) and without (b) prior pre-aging 
(80 ◦C/12 h) [97]. Reprinted from [97] with permission from Elsevier. 
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compositions similar to the next evolution stage can transform more easily, thus rendering overall alloy composition a key factor in 
optimizing hardening behavior [141]. Based on scanning transmission electron microscopy (STEM) investigations into the 
AlMg5.1Zn3.0Cu0.15 alloy under different aging conditions, Hou et al. [105] proposed that the precipitation sequence of Cu- 
containing T-phase follows:  

SSSS → GPI zone (fully coherent) → GPII zone (T’’, fully coherent) → intermediate T’ (semi-coherent) → equilibrium T (incoherent) [105]  

Hardening upon pre-aging (24 h at 90 ◦C) was attributed to two types of small, coherent solute agglomerations. While smallest 
solute agglomerations caused no electron-diffraction signal, a distinct structure was observed for larger ones; they were denoted as GPI 
and GPII (T’’), respectively. Similar particles were also found after extensive natural aging but were present in smaller sizes and higher 
number density. Upon subsequent artificial aging at higher temperatures, pre-aged samples exhibited a significant increase in hard
ness, while the strength of natural aged samples declined, indicating that a certain critical particle size (between 1.5 and 2.5 nm) is 
required for subsequent growth and development into T’- and T-precipitates [105]. Investigations on related alloys (AlMg4.7Zn3.6 
with and without 0.6 wt% Cu) had similar results [106] and support the findings by Hou et al. [105]. It was also discovered that 
precursors require both a critical size of roughly 700 atoms and a complex local chemistry (Mg/(Zn + Cu) ratio ≥ 0.7) to develop into 
T’-precipitates during the second high-temperature aging stage (185 ◦C) [106]. 

Because Cu diffusion is limited in the aluminum matrix at lower temperatures [41,142], post-pre-aging precursors contain low 
amounts of Cu and high amounts of Zn [97]. However, the smallest clusters (initial nuclei) are observed to exhibit a much higher Cu/ 
Zn ratio compared to the majority of precursors formed during the pre-aging procedure [97]. In the absence of Cu, the number density 
of precursors is significantly lower, which produces a slower and less pronounced hardening response upon subsequent high- 
temperature aging [106,119,124]. It is assumed that Cu (even in low quantities) promotes nucleation of clusters in the earlier 
stages of pre-aging, which is similar to the effects observed in Cu-containing AlMg [59,60] and AlZnMg alloys [143]. Meanwhile, DFT 
calculations [106] revealed that adding Cu neither promotes nor hinders early-stage cluster formation, but that it significantly de
creases the formation energy of η’- and, to an even greater extent, T-phase. Based on the chemical composition of post-pre-aging 
precursors in an AlMg4.7Zn3.6Cu0.6 alloy found by complementary APT analysis it was suggested that transient η’ might act as a 
surrogate phase in T-phase development [106]. In addition to an enhanced formation trend, Cu was also found to improve the thermal 
stability and strengthening ability of subsequent precursors [106,124]. In consequence, Cu-containing precursors in high density are 
stable enough to grow and develop during high-temperature aging and to prevent extensive formation of precipitate free zones (PFZ) 
adjacent to grain boundaries, thus resulting in increased strength [118] and improved resistance to intergranular corrosion [124]. 

Pan et al. [135] examined the effect of an increasing (Zn + Cu)/Mg ratio (0.63, 0.71, 0.85, 0.97 and 1.21) on the double-step 
hardening response and the IGC resistance of AlMgZn(Cu) alloys. Peak hardness was observed to shift to earlier aging times and 
higher levels if the (Zn + Cu)/Mg ratio was increased up to 0.97 due to the decreased size, increased number density and higher volume 
fraction of Cu-incorporated T-phase. The lattice spacing of the hardening phase gradually decreases with the (Zn + Cu)/Mg ratio as a 
result of the corresponding substitution of Al by Zn and Cu, thus increasing its thermal stability and hardenability. Simultaneously the 
IGC resistance was improved, which is attributed to smaller differences in galvanic potential between grain boundary precipitates 
(GBP) and the matrix [135]. 

Variations in Mg content (3.5 – 5.6 wt%) were also observed to have a major impact on the mechanical performance of AlMgZn(Cu) 
alloys. Higher Mg levels have been found to increase the overall strength level which is attributed to increased grain boundary 
strengthening due to a smaller grain size after solution annealing and an enhanced solid solution strengthening due to higher su
persaturation of Mg in the matrix [144]. IGC resistance decreased with increasing Mg (especially at levels higher than 4.6 wt% [145]), 
but can be improved by a pre-treatment at temperatures close to the solvus temperature of the T-phase prior to artificial aging due to 
alterations in grain boundary occupancy without major deterioration of achievable peak strength [146]. A similar trend was observed 
for the susceptibility to stress corrosion cracking (SCC), proving that lower Mg levels are more beneficial due to inhibited anodic 
dissolution of grain boundary precipitates [147]. Experiments investigating exfoliation corrosion (EXC) in an AlMg4.6Zn3.1Cu0.15 
alloy in T6-condition revealed a strong correlation between the alloy’s susceptibility to EXC and its subgrain microstructure. Even 
though EXC seems to be inevitable if grain boundary precipitates (GBP) are present, a lower proportion of subgrain stripes (adjustable 
via adequate processing) improves EXC resistance [148]. 

Besides the outstanding hardenability of AlMgZn(Cu) alloys, recent studies have also revealed that adjusted additions of Zn and Cu 
are capable of limiting Lüders elongation [126] and serrated flow [149] in the pre-aged condition (80 ◦C/12 h). This has been 
attributed to a lower effective Mg content in the matrix available for Mg/dislocation interactions, due to its consumption by precipitate 
formation during pre-aging. Additionally, alloys optimized for fast hardening exhibit the onset of serrated flow at higher strain levels 
than in non-optimized alloys. While this benefit is more pronounced at low strain rates (1.7 × 10-4 s− 1), it tends to diminish at high 
strain rates (3.3 × 10-3 s− 1) [149]. 

Because AlMgZn(Cu) crossover alloys seem to offer beneficial properties for use as construction material, their weldability is a key 
factor for any broad industrial application in this sector. Investigations by Zhang et al. [150,151] revealed a similarly low liquation 
cracking tendency of low-Cu (0.15 wt%) alloys exhibiting a Zn/Mg ratio < 1 in peak-aged condition (90 ◦C/24 h + 140 ◦C/24 h) when 
compared to commercial AlMg alloys during fusion welding. Improved weldability is attributed to a lower difference in solid fraction 
(precipitates) between fusion zone (FZ) and partially melted zone (PMZ) during the solidification stage than that of Cu-free alloys with 
Zn/Mg ratios > 1, thus offering a better crack healing ability due to a higher liquid metal fraction in the PMZ [150,151]. Follow-up 
research by Pan et al. [152] revealed a similar trend for AlMgZn(Cu) alloys with higher Cu content (1 wt%, Cu/Mg ratio ≤ 0.25). The 
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superior hot cracking tendency compared to a commercial 7075 alloy (1.6 wt% Cu, Mg/Zn ratio ≥ 2.4, Cu/Mg ratio ≥ 0.6) has been 
similarly attributed to a lower number of micro cracks in the weld due to a lower stress concentration at the end of solidification caused 
by a narrower solidification temperature interval and an increased liquid metal fraction at the terminal stage of welding [152]. 

AlMgZn(Cu) alloys have also been found to be suitable for joining operations by friction stir welding (FSW). Due to their hard
enability by T-phase precipitation, FSW joints offer significantly higher strength compared to commercial AlMg alloys if an adequate 
post-weld-heat treatment (PWHT) is applied. The deterioration of elongation observed has been attributed to the extensive coarsening 
of precipitates in the heat affected zone (HAZ) due to the increased temperature during FSW [153]. 

As a result of their low hot cracking tendency, AlMgZn(Cu) alloys were also tested for application in a wire arc additive 
manufacturing (WAAM) process. After post-WAAM heat treatment specimens were observed to offer beneficial mechanical perfor
mance, thus verifying their suitability for WAAM processing [154,155]. 

6. Summary 

A complex and longstanding challenge for the metallurgy of lightweight non-ferrous alloys is the trade-off between good form
ability and high strengthening potential. Here existing technological solutions based on aluminum alloys have several limitations, and 
the development of new alloy design strategies and concepts at the frontier of current scientific knowledge is called for. Today this 
challenge is also linked to the development of materials for a sustainable future, with an initial focus on lightweight automotive or 
other traditional transportation applications which will reduce greenhouse gas emissions. However, it has become apparent that the 
range of applications also – unexpectedly – includes a new class of space materials. 

Merging the most beneficial properties of existing commercial aluminum alloys has laid the foundation for a new aluminum alloy 
design strategy known as crossover alloying. The state of the art of the most recent work and conclusions in this new field of research 
have been thoroughly reviewed above, and can be summarized as follows.  

(i) AlMgCu crossover alloys can limit or even compensate for the undesired strength drop upon paint baking of cold-deformed 
commercial AlMg alloys. However, the level of compensation is strongly dependent on the level of deformation and process
ing applied.  

(ii) AlMgZn crossover alloys with low Zn content offer improved corrosion resistance due to the suppression of corrosion-prone 
β-phase at grain boundaries in favor of homogeneously distributed T-phase particles. At increased Zn levels and if adequate 
processing is applied, surface deterioration by Lüders band and serrated flow is limited and a significant hardening capability by 
T-phase precipitation can be established.  

(iii) If the alloy composition and its processing are carefully matched and optimized, AlMgZn(Cu) crossover alloys can provide an 
even greater strengthening potential, almost reaching the levels of commercial high-strength AlZnMg(Cu) alloys, and enhanced 
corrosion resistance compared to Cu-free AlMgZn crossover alloys. Given the state-of-the-art, the crossover alloys herein 
reviewed are capable of providing good formability, which appears to be similar to or even better than that of commercially 
available alloys. Nevertheless, it must be mentioned that further experimental data is still limited in this field and more research 
is required. 

Therefore, crossover alloys have the potential to outperform existing commercial aluminum alloys in areas where mechanical 
strength and corrosion are (for example) the major engineering criteria. Further, because the available research provides strong in
dications of the feasibility of combining high strengthening ability and good formability in a single alloy system, crossover alloys may 
be a suitable way to reduce the wide variety of materials deployed for lightweighting, thus contributing to a more sustainable life cycle 
in the traffic and transportation sectors. According to the facts and scientific evidence presented in this review this class of alloys also 
has enormous potential for further scientific investigation and subsequent technological development, which may pave the way for the 
consolidation of an entirely new commercial aluminum alloy class. In addition, controlled alloying with Cu, Zn or Cu + Zn is believed 
to significantly improve the recyclability of the crossover alloys. This aspect needs to be further evaluated, as it is a criterion of 
paramount importance to address the current requirements of circular economy. 

Even though the current results are promising, further research is required to exploit the full potential of aluminum crossover 
alloys. This research should not be limited to the crossover between 5xxx/2xxx and 5xxx/7xxx as reviewed here, but should possibly 
cover the entire aluminum alloy spectrum. 
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[44] Glöckel Felix, Uggowitzer Peter J, Felfer Peter, Pogatscher Stefan, Höppel Heinz Werner. Influence of Zn and Sn on the precipitation behavior of new Al-Mg-Si 
alloys. Materials 2019;12(16):2547. https://doi.org/10.3390/ma12162547. 

[45] Hirth S, Marshall G, Court S, Lloyd D. Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016. Mater Sci Eng, A 319-321 
(2001) 452–456, https://doi.org/10.1016/S0921-5093(01)00969-8. 

[46] Guo MX, Sha G, Cao LY, Liu WQ, Zhang JS, Zhuang LZ. Enhanced bake-hardening response of an Al–Mg–Si–Cu alloy with Zn addition. Mater Chem Phys 2015; 
162:15–9. https://doi.org/10.1016/j.matchemphys.2015.07.033. 

[47] Naronikar Aditya H, Jamadagni HN Akshay, Simha Amruthamshu, Saikiran B. Optimizing the heat treatment parameters of Al-6061 required for better 
formability. Mater Today: Proc 2018;5(11):24240–7. https://doi.org/10.1016/j.matpr.2018.10.219. 

[48] Yan Lizhen, Li Zhihui, Zhang Yong-an, Xiong Baiqing, Li Xiwu, Liu Hongwei, et al. Pre-aging on early-age behavior and bake hardening response of an Al- 
0.90Mg-0.80Si-0.64Zn-0.23Cu alloy. Prog Natural Sci: Mater Int 2016;26(4):398–403. https://doi.org/10.1016/j.pnsc.2016.06.005. 
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[83] Köster W, Dullenkopf W. The Al-Mg-Zn ternary system. III. The partial region Mg-Al3Mg4-Al2Mg3Zn3-MgZn2-Mg’. Z Metallkd 1936;28:363–7. 
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