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Evaluation of exact analytical solution for flow to a well, under the assumptions made 
in its development commonly requires large amounts of computation time and can 
produce inaccurate results for selected combinations of parameters. Large computation 
times occur because the solution involves the infinite series. Each term of the series 
requires evaluation of exponentials and Bessel functions, and the series itself is 
sometimes slowly convergent. Inaccuracies can result from lack of computer precision 
or from the use of improper methods of numerical computation. This paper presents a 
computationally efficient and an accurate new methodology in differential quadrature 
analysis of diffusivity equation to overcome these difficulties. The methodology would 
overcome the difficulties in boundary conditions implementations of second order 
partial differential equations encountered in such problems. The weighting coefficients 
employed are not exclusive, and any accurate and efficient method such as the 
generalized differential quadrature method may be used to produce the method’s 
weighting coefficients. By solving finite and infinite boundary condition in diffusivity 
equation and by comparing the results with those of existing solutions and/or those of 
other methodologies, accuracy, convergences, reduction of computation time, and 
efficiency of the methodology are asserted. 

Key words: Differential quadrature, finite-radial reservoir, infinite-radial reservoir, pseudo-
steady state, unsteady-state, diffusivity equation. 

1. INTRODUCTION 

 Numerical methods play a fundamental role in solving the dynamics of real 
world phenomena, see, for example, Refs. [1–3]. In seeking alternative numerical 
algorithms, using less grid points with acceptable accurate solutions to differential 
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equations, another numerical scheme called differential quadrature method (DQM) 
was introduced in Ref. [4] and was further developed in Ref. [5]. Bert and his 
coworkers [6–11] contributed to the development of the method and used DQM for 
the analysis of structural problems.  
 In the implementation of this method to structural problems one would 
encounter a difficulty in imposing the boundary conditions. To solve this difficulty 
several different schemes have been introduced. 
 There are several methods to evaluate the reservoir parameters [12]. It was 
showed that solutions to differential equations describing flow in petroleum 
reservoir for given initial and boundary conditions can be expressed compactly 
using dimensionless variables and parameters. It was examined several of these 
solutions that are important in reservoir engineering applications, see Refs. [13–18].  
 The solution of the diffusivity equation models radial flow of a slightly 
compressible liquid in a homogeneous reservoir of uniform thickness; reservoir at 
uniform pressure ip  before production; no flow across the outer boundary (at 

er r= ); and production at constant rate q  from the single well (centered in the 

reservoir) with wellbore radius wr  [19]. The solution-pressure as a function of time 

and radius for fixed values of , ,e wr r  and rock and fluid properties is expressed 

most conveniently in terms of dimensionless variables and 

parameters ( , , )D D D eDp f t r r= , which states that Dp  is a function of the variables 

Dt  and Dr  for a fixed value of the parameter eDr . The most important solution is 

that for pressure at the wellbore radius ( wr r= or 1Dr = ): 1 ( , )
DD r D eDp f t r= = . 

The most useful form of the diffusivity equation solution relates flowing pressure, 

wfp , at the sandface to time and to reservoir rock and fluid properties. When 

expressed in terms of dimensionless pressure evaluated at 1Dr = , solution shows 

the functional form of ( , ),D eDf t r  an infinite series of exponentials and Bessel 

functions [20]. This series has been evaluated for several values of eDr  over a wide 

range of values of Dt  [13]. Chatas tabulated these solutions [21]. In order to 

generalize DQ’s application to multi-dimensions and to different conditions and 
geometry, a new one-dimensional differential quadrature method formulation is 
presented and implemented. 
 This manuscript has the following structure: after the introduction, in Section 
2, the differential quadrature method is presented. The main problem is stated in 
Section 3. In Section 4 we impose the boundary conditions for the diffusivity 
equation for various physical reservoirs. Numerical approach as the main 
contribution of the paper is presented in Section 5. In Section 6 some numerical 
examples are illustrated. Finally, the concluding remarks are discussed in Section 7. 
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2. THE DIFFERENTIAL QUADRATURE METHOD 

 The DQM is based on the idea that the partial derivative of a field variable at 
the i-th discrete point in the computational domain is approximated by a weighted 
linear sum of the field variable along the line that passes through that point, which 

is parallel to the coordinate direction of the derivative [22]. For example, the thm  

derivative of the field variable ( , )p r t  at point ir is approximated as 

 ( )

1

( , )
i

Nm
m

ij jm
jr r

p
A p r t

r ==

∂
=

∂ ∑  (1) 

where ( )m
ijA  are the weighting coefficients associated with the m-th order derivative 

and N  is the number of grid points in the r -direction. 
 There are two points in successful applications of the DQM; one is how to 
determine the weighting coefficients and the other one is how to select the grid 
points. In order to obtain the weighting coefficients, one may use the polynomial 
test functions in Eq. (1) and solve the Vandermonde system of equations by using 
the usual linear equation solver. However, the Vandermonde matrices are known to 
be inherently ill-conditioned, and increasing the number of grid points causes 
Vandermonde equations to become increasingly inaccurate. Another method for 
evaluating the weighting coefficients in our analysis is GDQM. In the present 
method, the weighting coefficients for the derivatives may be obtained directly, 
irrespective of the number and position of the grid points from an explicit formula 
[11]. These coefficients for the first-order derivatives are given by 
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where ( )M r  and (1) ( )M r  are defined as 
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(3) 

 The weighting coefficients of higher-order derivatives are obtained from the 
following recurrence relationship, 

 
( 1)
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for , 1,2,..., , ,i j N i j= ≠  and 2.m ≥  

 A natural and often convenient choice for the grid points are the equally 
spaced points. Another choice which gives more accurate results, are unequally 
spaced grid points [8]. A well accepted set of grid points is the cosine type (or the 
Gauss–Lobatto–Chebyshev) points given by 

 
( 1)1

1 cos .
2 1

i

i
r

N

− π 
= − − 

 (5) 

 In this work, unequally spaced grid points in conjunction with GDQM are 
used to evaluate the weighting coefficients [23, 24]. 

3. THE PROBLEM STATEMENT 

 To develop diffusivity equation some assumptions are assumed. These 
assumptions are introduced as needed, to combine (1) the law of conservation of 
mass, (2) Darcy's law, and (3) equations of state to achieve our objectives [19–20], 
[25–26]. 
 Consider radial flow toward a well in a circular reservoir. Combining the law 
of conservation of mass and Darcy's law for the isothermal flow of fluids of small 
and constant compressibility, a partial differential equation is obtained that 
simplifies to 

 

2

2

1

0.000264

cp p p

r r r k t

φµ∂ ∂ ∂
+ =

∂ ∂ ∂
 

(6) 

where it is assumed that compressibility, ,c  is small and independent of pressure; 

permeability, ,k  is constant and isotropic; viscosity, ,µ  is independent of pressure; 

porosity, ,φ  is constant; and that certain terms in the basic differential equation 

(involving pressure gradients squared) are negligible. This equation is called the 

diffusivity equation. The term 0.000264k
cµφ is called the hydraulic diffusivity 

and frequently is given by the symbol .η  

 It is convenient and customary to present graphical or tabulated solutions to 
flow equations. Such as Eq. (6), in terms of dimensionless variables. In this way, it 
is possible to present compact solutions for a wide range of parameters , , ,cφ µ  and 

,k  and variables , ,r p  and .t  

 It should be identified the dimensionless variables and parameters required to 
characterize the solutions to the equations describing radial flow of a slightly 
compressible liquid in a reservoir. It is assumed that Eq. (6) adequately models this 
flow. Specifically, we analyze the situation in which (1) pressure throughout the 
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reservoir is uniform before production; (2) fluid is produced at a constant rate from 

a single well of radius wr  centered in the reservoir; and (3) there is no flow across 

the outer boundary (with radius er ) of the reservoir. Stated mathematically, the 

differential equation, and initial and boundary conditions are 

 

1
( ) ,

0.000264

p pc
r

r r r k t

∂ ∂∂ φµ
=

∂ ∂ ∂
 

(7) 

at 0, it p p= =  for all ,r  
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 It may be defined a dimensionless radius, D
w

rr
r

= (any other convenient 

reference length, such as ,er  
could have been used). From the form of the 

differential equation, a convenient definition of dimensionless time is 

2
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w

kt
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 The initial and boundary conditions suggest that a convenient definition of 

dimensionless pressure is 
0.00708 ( )
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p

qB

−
=

µ
 

With this definition, the boundary condition of Eq. (7) becomes 

1 ,
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D
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D w
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Expressed in terms of dimensionless variables, the differential equation and its 
initial and boundary conditions become 
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Dimensionless variables are 
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p
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Obviously, ,Dr  is dimensionless. It is easy to show that Dt  and Dp  are 

dimensionless, too [27]. 

4. THE BOUNDARY CONDITIONS 

 There are four solutions to Eq. (6) that are particularly useful in well testing: 
the solution for a bounded cylindrical reservoir; the solution for an infinite 
reservoir with a well, considered to be a line source with zero wellbore radius; the 
pseudosteady-state solution; and the solution that includes wellbore storage for a 
well in an infinite reservoir. Below we summarize the assumptions that were 
necessary to develop Eq. (6), namely: homogeneous and isotropic porous medium 
of uniform thickness; pressure-independent rock and fluid properties; small 
pressure gradients; radial flow; applicability of Darcy’s law (sometimes called 
laminar flow); and negligible gravity forces. We will introduce further assumptions 
to obtain solutions of Eq. (6). 

4.1. BOUNDED CYLINDRICAL RESERVOIR 

 Solution of Eq. (6) requires specifying two boundary conditions and an initial 
condition. A realistic and practical solution is obtained if we assume that (1) a well 
produces a constant rate, ,qB  into the wellbore ( q refers to flow rate in STB/D at 

surface conditions, and B is the formation volume factor in RB/STB); (2) the well, 

with wellbore radius ,wr  is centered in a cylindrical reservoir of radius ,er  and 

that there is no flow across this outer boundary; and (3) before production begins, 
the reservoir is at uniform pressure, .ip  The most useful form of the desired 

solution relates flowing pressure, ,wfp at the sandface to time and to reservoir rock 

and fluid properties.  
At 0, it p p= =  for all ,r  

at , 0er r q= =
 
for 0,t>  or | 0,
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p

r

∂
=

∂
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0.001127(2 )

, w

w

r h pk
r r q

B r

− π ∂
= =

µ ∂
 for 0t >  or |

0.00708wr

w

p qB

r khr

∂ µ
= −

∂
 

or 0Dp =  for all D
r  at 0,Dt =  | 0

D e w De

D

r r r r

D

p

r
= =

∂
=

∂
 for 0,Dt > 1| 1

D

D

r

D

p

r
=

∂
=

∂
 for 
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These initial and boundary conditions were for finite-radial reservoir [27]. 

4.2. INFINITE CYLINDRICAL RESERVOIR WITH LINE-SOURCE WELL 

 Assume that (1) a well produces at a constant rate, qB; (2) the well has zero 
radius; (3) the reservoir is at uniform pressure, pi, before production begins; and (4) 

the well drains an infinite area (i.e., that ipp→ as ∞→r ). 

at 0, it p p= =  for all ,r  

at ip p=
 
for 0,t >  

at 
0.001127(2 )

, w

w

r h pk
r r q

B r

− π ∂
= =

µ ∂
 for 0t >  

or 

0Dp =  for all D
r  at 0,Dt =  

0
D
p =  for 0Dt >  at D Der r=  

,1| 1=∂

∂
=Dr

D

D

r

p
 for ,0>Dt  

These initial and boundary conditions were for infinite-radial reservoir [27]. 

5. THE NUMERICAL APPROACH 

Applying differential quadrature method on diffusivity equation gives 

 

(1) (2)

1 1

1 N N

Di

ij Dj ij Dj

j jDi D

p
A p A p

r t= =

∂
+ =

∂∑ ∑
 

(10) 

For 2,..., 1.i N= −  

The boundary conditions of the finite reservoir can be written as 
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Solving Eqs. (11) and (12) gives 
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 For infinite reservoir, for the purposes of convenience during the numerical 

computations, Dr  is normalized by 

 1 exp(1 )D DR r= − −  (15) 

Using Eq. (15), Eq. (9) can be transformed to, 
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and DQ discretization is 

 (1) (2)2

1 1
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For infinite reservoir, DQM gives the following boundary conditions  
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Solving Eqs. (18) and (19) yields 
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Substituting Eqs. (13) and (14) into Eq. (10), a system of linear equations is 
obtained that may be solved by any standard method, namely 
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for 2, 3,..., 1,i N= −  for finite reservoir. 

Substituting Eqs. (19) and (20) in Eq. (16), a system of linear equations is resulted 
that can be solved by any standard method 
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for 2,3, ..., 1,i N= −  for infinite reservoir. 
The final results are the initial value problems. These equations can be solved by 
some standard methods such as fourth-order Runge-Kutta method. The first case is 
the result of finite reservoir and the last case is the infinite reservoir result. 
In the above DQ discretization the grid points are the cosine type (or the Gauss–
Lobatto–Chebyshev) points given by 
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for finite reservoir and  
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for infinite reservoir. 

6. NUMERICAL EXAMPLES 

 To illustrate the generality and accuracy of the present DQM, this procedure 
is applied to diffusivity equation problem under various boundary conditions. The 
problem under boundary conditions was considered by other researchers [28–34]. 
The results are compared with those of the same problems solved by van 
Everdingen and Hurst [13]. 
 Tables 1 and 2 show the computation times of DQM, which are less than one 
second in all cases. The computation times for finite difference method are 
considerably more than DQM. However, the computation time for finite difference 
method is not considered in the presented method (DQM). 
 Figure 1 shows the analysis results for infinite reservoirs. Figures 2, 3, 4 and 
5 are the results of finite reservoirs for reD = 1.5, 4, 7, and 10, respectively. As it 
can be shown the number of grid points has no effect on the infinite acting 
reservoir and finite reservoir up to reD = 7. However, higher tD in the case of infinite 
reservoir needs more number of grid points. In the case of finite reservoir more 
number of grid points resulted in a better prediction. 
 As it can be seen from Figures 1, 2, 3, 4, and 5, the stability of the DQM is 
independent of number of grid points. So, this is a good property of this method. 
The other necessary condition for convergence is consistency that it is very good 
and it can be visualized from the following figures. However, the consistency is 
better for lower reD. For the greater number of grid points, better results can be 
reported. 

Table 1  

Computation of time for infinite-radial system 

Computational time (Second) 
tD 

N=9 N=11 N=15 

0.003 0.001769 0.003821 0.004268 

0.008 0.002255 0.002263 0.004096 

0.007 0.002769 0.003660 0.005187 

0.2 0.002663 0.002084 0.004913 

0.9 0.002763 0.001926 0.004056 

1.4 0.001461 0.002910 0.005157 

6.0 0.002680 0.001918 0.003649 

10.0 0.001379 0.003742 0.004652 

40.0 0.001389 0.001941 0.004408 
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Table 2  

Computation of time for finite-radial system with closed exterior boundary 

Computational time (Second) 
reD tD 

N=9 N=11 N=15 

 0.06 0.001025 0.001520 0.002690 
1.5 0.24 0.001977 0.001616 0.003233 
 0.45 0.001217 0.001678 0.003285 
 1.5 0.001226 0.001513 0.002900 
4 2.8 0.001165 0.002865 0.003412 
 5.5 0.001236 0.001517 0.002703 
 6.0 0.001159 0.001565 0.002619 
7 11.0 0.001106 0.001796 0.003315 
 17.0 0.000975 0.001400 0.002323 
 12.0 0.001117 0.001520 0.002391 
10 17.0 0.001137 0.001515 0.002913 
 26.0 0.001119 0.001565 0.003280 
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Fig. 1 – Plot of pD vs. tD for infinite acting reservoir. 
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Fig. 2 – Plot of pD vs. tD for finite reservoir where reD=1.5. 
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Fig. 3 – Plot of pD vs. tD for finite reservoir where reD=4. 
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Fig. 4 – Plot of pD vs. tD for finite reservoir where reD=7. 
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Fig. 5 – Plot of pD vs. tD for finite reservoir where reD=10. 
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7. CONCLUSIONS 

 A new one-dimensional DQM was introduced to show the applicability of the 
proposed DQM to one dimensional radial problem with two forms of geometry or 
boundary conditions. Examples have been presented for diffusivity equation 
analysis. Fast rate of convergence is demonstrated and the results are in excellent 
agreement with the solutions of other methods even with few numbers of DQ grid 
points in all examples presented. Acceptable results with a few number of grid 
points can be obtained and there is no concern about instability problems due to 
selection of large time steps. In other words, DQM can be claimed as an 
unconditionally stable and efficient method for numerical simulation of porous 
media. The results obtained confirm the applicability of the present DQ 
methodology and can be used for solving a variety of diffusivity equation 
problems. Due to the high accuracy of the presented approach, these solutions can 
be used as benchmark for future works. 
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