

Lehrstuhl für Geologie und Lagerstättenlehre

Masterarbeit

Bewertung von Sekundärrohstoffen auf Bergbauhalden in Bleiberg, Kärnten

Sabrina Dollinger, BSc

Januar 2022

MONTANUNIVERSITÄT LEOBEN

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt, und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Ich erkläre, dass ich die Richtlinien des Senats der Montanuniversität Leoben zu "Gute wissenschaftliche Praxis" gelesen, verstanden und befolgt habe.

Weiters erkläre ich, dass die elektronische und gedruckte Version der eingereichten wissenschaftlichen Abschlussarbeit formal und inhaltlich identisch sind.

Datum 24.01.2022

Unterschrift Verfasser/in Sabrina Dollinger

Zusammenfassung

Auf über 200 Bergbauhalden liegen im Bereich von Bleiberg-Kreuth, Kärnten, geschätzt rd. 3 Mio. m³ Material des ehemaligen Bergbaus. Dort wurden Blei (Pb), Zink (Zn), Molybdän (Mo), Cadmium (Cd) und Germanium (Ge) aus karbonatgebundenen Pb-Zn-Erzen gewonnen. Mineralogische und chemische Untersuchungen der Halden wurden in Zusammenhang mit dem COMET-Projekt "Competence Network for the Assessment of Metal-Bearing By-Products" (kurz: COMMBY) der Montanuniversität Leoben und dem Projektpartner GKB-Bergbau GmbH durchgeführt. Das Ziel der Arbeit ist die Bestimmung der Metallkonzentrationen in den Bergbauhalden Matthäus, Altstefanie und Glück. Im Vordergrund steht auch der Vergleich unterschiedlicher Analysemethoden. So werden für die chemischen Untersuchungen der Matthäus-Halde Röntgenfluoreszenzanalyse (RFA) und portable RFA (pRFA) verglichen. Messungen mit pRFA im Feld zeigen im Vergleich zu RFA an Schmelzpillen und pRFA an Pulvern, gewonnen aus repräsentativem Probenmaterial, sehr abweichende Werte. An den im Jahr 2021 entnommenen Proben der Matthäus-Halde wurden mittels RFA an Schmelzpillen 0,09 % Mo, 0,54 % Zn und 0,30 % Pb als Mittelwerte der Analysen aller Probenahmepunkte bestimmt.

Für die mineralogische Charakterisierung wurde mit einem Rasterelektronenmikroskop und dem Programm SmartPI[™] der Firma ZEISS gearbeitet. Die Verwendung dieser "Smart Particle Investigation" ermöglicht eine Flächenmessung von Partikeln mit grafischer Darstellung und automatischer Mineral-Zuweisung. Die wichtigen Metalle sind an die Minerale Wulfenit (Mo), Galenit (Pb), Cerussit (Pb), Sphalerit (Zn, Cd, Ge) und Smithsonit (Zn) gebunden, die vermehrt in den Korngrößen <1 mm vorkommen. Ab einer Korngröße <0,3 mm liegen die metallreichen Partikel größtenteils frei vor. Ein Anteil der Schwermetalle ist an schwer lösliche, feinkörnige Eisenoxyhydroxide gebunden. In den gröberen Fraktionen sind die Wertmineralphasen im karbonatischen Nebengestein eingebettet oder mit Gangartmineralen verwachsen. Zusätzlich wurde eine aktuelle Bedienungsanleitung für die Software SmartPI[™] erstellt.

Die Kombination der chemischen und mineralogischen Untersuchungen mit aufbereitungstechnischen Versuchen ermöglicht eine Neubewertung des Haldenmaterials als zukünftige Rohstoffquelle.

Abstract

An estimated 3 Mio. m³ of material have been dumped at more than 200 sites around the inactive Bleiberg-Kreuth mining area, Carinthia. Lead (Pb), zinc (Zn), molybdenum (Mo), cadmium (Cd) and germanium (Ge) have been extracted from carbonate-hosted Pb-Zn ores. Mineralogical and chemical analysis of the dump material was performed in the framework of a COMET-Project (Competence Network for the Assessment of Metal-Bearing By-Products, short: COMMBY) at the Montanuniversität Leoben in co-operation with the project partner GKB-Bergbau GmbH. The aim of the work is to determine the metal concentrations of the dumps at Matthäus, Glück and Altstefanie. The comparison of different analytical methods plays a big role in evaluation. Therefore, chemical analysis by X-ray fluorescence (XRF) is compared to XRF on fused beads and pXRF on powdered samples. The representative material from the Matthäus dump analyzed with XRF on fused beads contains 0,09 % Mo, 0,54 % Zn und 0,30 % Pb as an average of all sampling points.

For mineralogical characterisation a scanning electron microscope and the program SmartPI[™] from ZEISS were used. This "Smart Particle Investigation" enables the measurement of an area of particles with graphical illustration and automated assignment to a mineral. The most important metals are bound to the minerals wulfenite (Mo, Pb), galenite (Pb), cerussite (Pb), sphalerite (Zn, Cd, Ge) and smithsonite (Zn). These are found mainly in samples with grain sizes <1 mm. However, at grain sizes <0.3 mm the metal-rich particles are mostly separated from the surrounding rock. Some of the heavy metals are bound to poorly soluble, fine-grained iron-oxyhydroxides. In the coarser fractions, the valuable mineral phases are embedded in the carbonate host rock, or within gangue minerals. In addition, the operational guide handbook of the SmartPI[™] software was updated.

The combination of chemical and mineralogical investigations with mineral processing methods enables a reassessment of the dump material as a probable future source of raw materials.

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die mich während der Erstellung meiner Masterarbeit unterstützt haben.

Zunächst danke ich Univ.-Prof. Mag.rer.nat. Dr.mont. Frank Melcher für die Möglichkeit und die Betreuung dieser Masterarbeit sowie die langen Stunden am REM.

Ein großes Danke geht an Dr.mont. MSc Gustav Hanke für den unermüdlichen Einsatz, dass diese Masterarbeit zustande kommt. An dieser Stelle auch Danke an Dipl.-Ing. Lukas Marousek.

Danke an Dipl.-Ing. Dr.techn. Alessandra Rachetti für die Messungen mit pRFA und die Hilfestellung bei der Auswertung. Danke an Ao.Univ.-Prof. Mag. et Dr.rer.nat. Gerd Rantitsch für die Hilfestellung bei der Messung und Auswertung mittels RFA.

Ich möchte mich bei DI Hanspeter Nußbacher von der GKB-Bergbau GmbH für die Unterstützung im Feld und die Aufnahme der Koordinaten bedanken.

Auch richte ich einen großen Dank an Frau Brigitte Mang, ohne die vieles nicht funktionieren würde.

Zuletzt möchte ich meinen Dank an Dipl.-Ing. Simone Elmer richten, die einen großen Anteil zu dieser Arbeit beigetragen hat. Danke, für die Hilfestellung am REM, für die Einführung in die Schmelzpillenherstellung und jegliche weitere Form der Unterstützung.

Inhaltsverzeichnis

1.	Ein	leitung		1
2.	Zie	l und A	ufgabenstellung	2
3.	Die	Pb-Zn	-Lagerstätte Bleiberg	3
	3.1.	Geog	raphischer Überblick	3
	3.2.	Geolo	gischer Überblick	4
	3.2	.1. S	tratigraphische Einteilung	4
	3.2	.2. E	ntstehung alpiner Pb-Zn-Lagerstätten	6
	3	5.2.2.1.	Pb-Zn-Lagerstättentypen	7
	3	.2.2.2.	Genesemodelle für Bleiberg	8
	3.2	.3. T	ektonik	9
	3.3.	Miner	alogie	9
	3.4.	Einbli	ck in die Geschichte des Bergbaus	12
	3.5.	Überli	eferte Haldenbeprobungen	14
4.	Me	thodik.		16
	4.1.	Halde	nbeprobung und Probenahme	16
	4.2.	RFA ເ	and pRFA	18
	4.2	.1. P	Probenvorbereitung und Auswertung	20
	4.2	.2. V	VROXI-Standards	21
	4.3.	C- un	d S-Untersuchung	22
	4.4.	REM-	EDS	23
	4.4	.1. S	martPl™	24
5.	Anl	eitung	zu SmartPI [™]	26
	5.1.	Einste	ellungen der Bleiberger Proben	43
6.	Erg	jebniss	e	46
	6.1.	RFA ເ	and pRFA	46
	6.1	.1. H	lalde Matthäus	47

	6.1.1.	1. C- und S-Untersuchungen	52
	6.1.2.	Halde Leininger	55
6	.2. REM	M-EDS mit SmartPI [™]	55
	6.2.1.	Halde Matthäus	55
	6.2.2.	Halde Glück	59
	6.2.3.	Halde Altstefanie	60
	6.2.4.	Mineralogie	61
	6.2.5.	Mineralogischer Vergleich der Halden	62
	6.2.6.	Auffälligkeiten der Messergebnisse	67
7.	Diskussi	ion	70
8.	Schluss	folgerung	74
9.	Literatur	rverzeichnis	75
Anł	nang A: Ü	Jbersicht der Probenahmepunkte – Halde Matthäus (Maßstab 1:	1000) 79
Anł	nang B: pl	RFA/RFA	82
A	nhang B	1: Ergebnisse der Messung mit pRFA	82
A	nhang B2	2: Ergebnisse der Messung mit RFA	93
A	nhang B3	3: Verteilung von Elementgehalten – Halde Matthäus	99
A	nhang B4	4: Trendliniendiagramme	109
Anł	nang C: R	REM	122
A	nhang C	1: Klassifikation SmartPl [™]	122
A	nhang C2	2: Ergebnisse SmartPl [™]	130
A	nhang C	3: Ergebnisse REM – Vergleich mit SmartPI [™]	142

1. Einleitung

Seit dem Jahr 1333 existieren Aufzeichnungen über den Bergbau in der Marktgemeinde Bad Bleiberg in Kärnten. Mit einer Gesamtproduktion von je 1,1 Mio. t Blei und Zink ist das Revier Bleiberg-Kreuth neben Mežica in Slowenien und Raibl in Italien das größte Pb-Zn-Erz-Vorkommen in den Alpen. Zusätzlich wurden insgesamt 500 t Molybdän, sowie ~1000 t Cadmium und fast 200 t Germanium aus Bleiberger Erzen gewonnen (Schroll, 2008). Im Vergleich dazu beträgt heutzutage die weltweite Jahresproduktion von Blei rd. 5 Mio. t, von Zink rd. 15 Mio. t, von Molybdän rd. 300.000 t, von Cadmium rd. 25.000 t und von Germanium rd. 100 t. (Reichl & Schatz, 2021).

Zehn Jahre nach Schließung des Reviers Bleiberg im Jahr 1993 kommt es zur Fusion der BBU AG i. L. mit der voest-Alpine Erzberg GmbH (Zeloth, 2004). 2004 übernimmt die GKB-Bergbau GmbH den Altbergbau mit Ziel der Untersuchung der Bergbauhalden auf ihre Aufbereitbarkeit. In Zusammenarbeit mit dem an der Montanuniversität Leoben laufenden COMET-Projekt "Competence Network for the Assessment of Metal-Bearing By-Products" (kurz: COMMBY) sollen Bewertungen der Halden durchgeführt werden. Das COMMBY behandelt die Thematik der Sekundärgewinnung metallischer Produkte und ist in drei Bereiche unterteilt. Das Projekt 1.1 beschäftigt sich mit der Charakterisierung von Sekundärrohstoffen. In Projekt 1.2 werden Prozesse optimiert oder neu entwickelt. In weiterer Folge soll in Projekt 1.3 ein Leitfaden zur Klassifizierung von Sekundärrohstoffen erstellt werden. Das Thema dieser Masterarbeit wird dem Projekt 1.1 zugeteilt.

Obwohl zahlreiche Untersuchungen im Gebiet des ehemaligen Bergbaureviers die Mineralvielfalt belegen oder Erkenntnisse über das Alter und die Entstehung der Lagerstätte liefen, hält sich der Fokus zur Verwertung des Haldenmaterials noch in Grenzen. Trotz der guten Forschungsfortschritte ist die Bewertung des Haldenmaterials noch nicht vollständig geklärt. Seit den Haldenbeprobungen von Schroll (1952) und Scherer (1979) gibt es kaum aktuelle Erkenntnisse. Deshalb soll im Zuge des COMMBY-Projektes eine Bewertung möglicher sekundärer Rohstoffe der Bleiberger Halden durchgeführt werden.

2. Ziel und Aufgabenstellung

Ziel dieser Arbeit ist die mineralogische und chemische Charakterisierung der Bleiberger Halden Altstefanie, Matthäus und Glück, um Erkenntnisse über die Aufbereitbarkeit des Materials zu liefern. Anschliffe des Haldenmaterials mit unterschiedlichen Korngrößenbereichen sollten mit dem Rasterelektronenmikroskop (REM) unter Verwendung des Programmes SmartPI[™] der Firma Carl Zeiss AG analysiert werden. Zusätzlich sollten bei einer Feldbegehung der Halde Matthäus Messungen mit einem transportierbaren RFA-Spektrometer (pRFA) durchgeführt und mit Laborwerten eines RFA-Spektrometers verglichen werden. Am Ende sollte eine Empfehlung zur Bewertung von Sekundärrohstoffen auf Halden erfolgen. Im Fokus stehen im Besonderen die Elemente Molybdän, Blei, Zink, Cadmium und Germanium.

3. Die Pb-Zn-Lagerstätte Bleiberg

Die Lagerstätte Bleiberg bildete eines der wichtigsten Blei-Zink-Erz-Vorkommen im gesamten Alpenraum. Einführend soll nicht nur auf die Lage, Geologie und Mineralogie, sondern auf fast 700 Jahre Bergbaugeschichte näher eingegangen werden.

3.1. Geographischer Überblick

Die Marktgemeinde Bad Bleiberg im Bezirk Villach Land, Kärnten, liegt auf 902 m ü. A. in den Gailtaler Alpen (Abbildung 1). Das Hochtal ist westlich von Villach und östlich von Hermagor zwischen dem Bleiberger Erzberg/Spitzegelgruppe im Norden sowie dem Dobratsch im Süden eingebettet. Die Gailtaler Alpen werden vom Gailtal im Süden sowie dem nördlich liegendem Drautal begrenzt.

Abbildung 1: Geographische Lage der Gemeinde Bad Bleiberg in Gelb markiert (Maßstab 1:100.000, kagis.ktn.gv.at)

Laut Angaben der Geologischen Bundesanstalt liegen geschätzt rd. 3 Mio m³ Material auf den insgesamt 213 Bergbauhalden in Bleiberg. Die Halde Altstefanie befindet sich östlich, die Matthäus- und Glück-Halde befinden sich nord-östlich des Ortszentrums Bad Bleiberg (Abbildung 2).

Abbildung 2: Lage der Halden Matthäus (H, blau), Glück (K, rot) und Altstefanie (A, grün) im Nord-Osten von Bad Bleiberg. Die nicht abgebildete Leininger Halde befindet sich süd-westlich. (Maßstab 1:5.000, kagis.ktn.gv.at)

3.2. Geologischer Überblick

Nördlich des periadriatischen Lineaments und südlich der Drautal Störung befindet sich die Bleiberger Lagerstätte im Drauzug-Gurktal-Deckensystem – dem Hangenden des Austroalpinen Deckenstapels im Oberostalpin (Schmid et al., 2004). Im Liegenden befindet sich das Bundschuh-Ötztal-Deckensystem, welches mit dem Drauzug-Gurktal-Deckensystem die tektonische Oberplatte des Oberostalpin bildet.

Die in der Trias gebildete karbonatische Abfolge im Bereich der Lagerstätte (Cerny, 1989) wurde durch die eoalpidische Metamorphose nur gering beeinflusst: Die kretazische Überprägung der Oberplatte zeigt einen Metamorphosegrad von maximal der unteren Grünschieferfazies (Schmid et al., 2004; Schuster et al., 2013).

3.2.1. Stratigraphische Einteilung

Die Mächtigkeit der erzführenden Schichten in Bleiberg summiert sich auf ca. 350 m. Diese werden in sechs Erzhorizonte eingeteilt, wobei der im Liegenden befindliche anisische erzführende Zwischendolomit nur im Norden der Gailtaler Alpen aufzufinden ist. Ins Hangende reihen sich die fünf wichtigsten Erzhorizonte: die Maxer Bänke, der Erzkalk sowie der 1.-3. Cardita-Horizont (Abbildung 3). Die Basis der ca. drei Kilometer mächtigen Sedimentabfolge des Bleiberger Raumes bildet das Gailtalkristallin mit darüber lagerndem permischen Grödener Sandstein bzw. Permoskythsandstein. Die Untertrias (Skyth) ist durch die Werfener Schichten mit zumeist mergeligen bis sandigen roten und grünen Schiefern vertreten. Im Anis folgt der alpine Muschelkalk mit Überlagerung von ladinischem Wettersteinkalk und Wettersteindolomit (Cerny, 1989). Die mittlere Einheit des Wettersteinkalkes beinhaltet die schichtigen, erzführenden, zinkreichen Maxer Bänke mit einer Mächtigkeit von >100 m (Cerny, 1989; Schroll, 2008).

Abbildung 3: Die zeitliche Zuordnung inkl. Mächtigkeiten der Gesteinseinheiten und erzführenden Schichten im Raum Bleiberg (Cerny, 1989). Die Erze treten in Gängen und Erzlagern sowie als Netzvererzungen auf.

Der hauptsächliche Abbau erfolgte jedoch im Erzhorizont Erzkalk (auch Bleiberger Sonderfazies), welcher sich im oberen Wettersteinkalk befindet. Die Vererzungen sind in den sogenannten "edlen Flächen" konzentriert (Holler, 1936). Diese Leitflächen bildeten sich im flachmarinen Bereich, wo es in wiederholten Abständen zur Sedimentation und gelegentlichen Verlandung kam (Cerny, 1989). Im Erzkalk-Horizont gibt es laut Schroll (2008) insgesamt 14 solcher edlen Flächen, gekennzeichnet durch Stromatolithen oder eine schwarze bis grüne Färbung. Begrenzt wird der Erzkalk durch die Megalodusbank – eine Ansammlung von Megalodonten – im Liegenden und die Raibler-Schichten bzw. Cardita-Horizonte im Hangenden.

Die Cardita-Schichten zeigen eine Mächtigkeit von zehner Metern und sind jeweils durch erzreiche Karbonatlagen getrennt. Die Cardita-Horizonte bestehen aus tonigem Schiefer der Raibler Schichten und unterscheiden sich durch ihre Einlagerungen: Oolithe im ersten, Lumachelle im zweiten und Onkolithe im dritten Cardita-Horizont. Darüber liegt der 1.000 m mächtige, nicht erzführende Hauptdolomit des Nor (Cerny, 1989).

Die Erze finden sich in unterschiedlichen Erztexturen wie Lagen, Adern, Brekzien und Netzwerkvererzungen. Sehr häufig treten Erzlager auf. Erzgänge sind vor allem in der Bleiberger Sonderfazies (Erzkalk-Horizont) anzutreffen. Außerdem sind auch netzförmige Vererzungen sichtbar (Schulz & Schroll, 1977).

3.2.2. Entstehung alpiner Pb-Zn-Lagerstätten

Die Bildung des gesamten Alpenraumes beginnt mit dem Zerfall des Großkontinents Pangäa ab dem Perm, was zur Öffnung des Meliata-Hallstatt-Ozeans (Trias, Abbildung 4a) und in weiterer Folge zur Öffnung des Penninischen-Ozeans (Jura, Abbildung 4b und c) führte. Der Penninische Ozean wurde durch einen Block kontinentaler Lithosphäre (Brianconnais) in den Valais- (im Norden) und den Piedmont-Ligurian-Ozean (im Süden) getrennt (Schmid et al., 2004; Schmidt et al., 1991).

Im Früh- bis Mitteljura erfolgte die Separation der heutigen Ostalpinen Decken der Adriatischen Platte von der Europäischen und Apulischen Platte (Neubauer et al., 1999). Die Decken des Ostalpin wurden ab der Unterkreide abgeschert und versenkt, was zur eoalpinen Metamorphose führte (Schuster & Stüwe, 2010). Von Mitteljura bis Unterkreide wurde der Meliata-Ozean unter die Adriatische Platte subduziert und die Adriatische Mikroplatte wurde zur apulischen Platte integriert (Neubauer et al., 1999); Abbildung 4c).

Abbildung 4: Rekonstruktion der Bildung des Alpenraumes: a) Öffnung des Tethys-Ozean; b) Abspaltung der Adriatischen Platte von der Europäischen Platte; c) Schließung des Meliata-Hallstatt-Ozeans; W = Wien, G= Genua (Schuster & Stüwe, 2010)

3.2.2.1. Pb-Zn-Lagerstättentypen

Neben Ganglagerstätten wird Blei und Zink besonders in SEDEX- (sedimentgebundenen submarin-exhalativen), VHMS- (volcanic hosted massive sulphide) und karbonatgebundenen Lagerstätten angereichert. Letzteres beschreibt die im flachmarinen Bereich gebildeten Pb-, Zn-, F- und Ba-führenden Dolomite und Kalke des Bleiberger Raumes. Die Vorkommen von karbonatgebundenen Lagerstätten liegen größtenteils in Europa, Nordafrika und Nordamerika. Sie sind an passiven Kontinentalrändern oder Intrakratonen gebildet und gliedern sich in Mississippi Valley Type (MVT), alpiner Lagerstättentyp und Irish Type (IRT) (Sawkins, 1984). MVT-Lagerstätten werden an Plattformrändern bzw. im Epikontinentalmeer epigenetisch bei Temperaturen von 80-200 °C durch Hebung und daraus resultierender gravitativer Bewegung der Erzlösungen gebildet (Bsp.: Pine Point, Alberta, Tri-State-Distrikt, ...). Das Alter der Vererzung im devonisch-karbonischen Nebengestein kann dem Mesozoikum zugeordnet werden (Cerny, 1989; Leach et al., 2005; Leach & Sangster, 1993; Paradis et al., 2007). Während die salinare Erzlösung der MVT-Lagerstätten Formations- und Grundwässern zugeordnet werden kann, bilden sich alpine und IRT-Lagerstätten überwiegend durch Reaktion mit Meerwasser. IRT- Lagerstätten bildeten sich oberflächennah bei 40-220 °C im Unterkarbon, die Bleiberger Lagerstätte bei maximal ~100 °C (Leach et al., 2005; Schroll, 2008).

3.2.2.2. Genesemodelle für Bleiberg

In Bleiberg stellten Schroll und Rantitsch (2005) anhand von Schwefelisotopen fest, dass einerseits – gekennzeichnet durch schweren Sulfidschwefel – hydrothermaler Schwefelwasserstoff zugeführt wurde und andererseits – gekennzeichnet durch leichten Sulfidschwefel – eine bakteriogene Sulfatreduktion (BSR) durch reichhaltige Anlieferung von Sulfaten aus Meerwasser stattgefunden hat. Die Dominanz an bakteriogenen Sphaleriten deutet auf ein mäßig temperiertes, offenes und oberflächennahes System. Diese Daten wurden durch Kucha et al. (2010) und Henjes-Kunst et al. (2013) erweitert und bestätigt. Weitere Schwefelisotopen-Untersuchungen wurden von Henjes-Kunst et al. (2017) an zwei Proben durchgeführt, die gegenläufige Evolutionstrends zeigen: Im Erzkalk kann für eine Pb-Zn-Ba-Mineralisation mit schwerer hydrothermaler Schwefelisotopensignatur und Cd-reichem Sphalerit ein älterer Bildungszeitpunkt angenommen werden, als für die BSR-dominierte Pb-Zn-F-Stufe. Im Gegensatz dazu zeigen die Maxer Bänke eine ältere BSR-dominierte eisenreiche Zn±(Pb)-F-Mineralisation mit darauffolgender Kristallisation von Cd-reichem Sphalerit und hydrothermalem Sulfidschwefel. Interpretiert wird dieser gegenläufige Trend als ein Vermischen verschiedener schwefel- und metallhaltiger Fluide.

Bereits Kucha et al. (2005) gelang der Nachweis fossiler Bakterientätigkeit anhand von Sphalerit in Bleiberg: Mineralisierte Bakterienkolonien (Peloide) weisen auf eine syngenetische Erzbildung bei <120 °C (Schroll, 2006; Southam & Saunders, 2005) vor ~220 Ma hin. Rantitsch (2001) nahm eine Wärmeüberprägung durch Versenkung auf 130 °C an, wobei Diagenese und bakterielle Aktivitäten Einfluss auf die Erzmineralisation haben. Ein epigenetisches Modell wurde anhand von Pb- und Sr-Isotopie von Schroll et al. (2006) und mittels Rb-Sr-Isotopie an Bleiberger Sphaleriten durch Henjes-Kunst (2014) belegt. Diese Daten zeigen ein Bildungsalter der Erze von etwa 200 Ma in der triassischen Abfolge von Wettersteindolomit und Raibler Schichten und bestätigen die Annahmen von u.a. Cerny (1989).

3.2.3. Tektonik

Zwischen der Drautal Störung (bzw. Drau-Möll-Störung) im Norden und dem Periadriatischen Lineament im Süden erstrecken sich drei tektonische Einheiten (Abbildung 5). Die Rubland-Einheit ist durch die Drautal Störung begrenzt und durch Faltenbau charakterisiert. Sie weist zusammen mit der steil einfallenden Bleiberger Einheit die wertvollen erzreichen Strukturen auf. Die Überschiebung der Bleiberger Einheit auf die Rubland-Einheit markiert nur eine von mehreren Ost-West Störungen. Die Ausbildung der Faltenstrukturen und Überschiebungen lassen sich durch die Kompressionstektonik erklären. Die flach lagernde Dobratsch-Einheit im Süden ist nicht erzführend und somit kein Teil der Lagerstätten (Cerny, 1989).

Abbildung 5: N-S-Profil durch die Lagerstätte Bleiberg (Cerny, 1989)

3.3. Mineralogie

Ein Großteil der auftretenden Minerale in Bleiberg ist sekundären Ursprungs. Die wichtigsten Minerale primärer und oxidischer Herkunft sind in Tabelle 1 aufgelistet (Kanaki, 1972). Bei Tiefen der Oxidationszone bis zu 600 m unter die Berggipfel im Osten der Lagerstätte kommt es zur Bildung von Hydrozinkit, Hemimorphit und Smithsonit aus Sphalerit. Zu den häufigeren Oxidationsmineralen von Bleiglanz zählen Cerussit und Wulfenit. Eisenoxide bzw. -hydroxide wie Limonit und Goethit finden sich v.a. am Übergang des Wettersteinkalkes zu den Raibler Schichten (Cerny, 1989).

Die drei Minerale Wulfenit, Ilsemannit und Hydrozinkit wurden in Bleiberg erstmals beschrieben. Das Blei-Molybdat Wulfenit (PbMoO₄) wurde 1845 nach Franz Xaver von Wulfen benannt und war zu dieser Zeit in Österreich besser als Gelbbleierz bekannt (Wulfen, 1785). Die häufigsten Wulfenit-Funde in Bleiberg gibt es im Wettersteinkalk, Molybdänit und Ilsemannit treten in den Raibler Schichten und im Hauptdolomit auf (Cerny, 1989). Das wasserlösliche, blaufärbende Molybdänoxid Ilsemannit ist ein Oxidationsprodukt des Molybdäns mit fehlender Kristallstruktur. Von Höfer (1871) wurde dieses in Bleiberg charakterisiert und als sehr seltenes, molybdänsaures Molybdänoxid eingestuft. In den 50er Jahren stellte sich heraus, dass ein Molybdängehalt von bis zu 10 ppm in bituminösen Karbonaten – mit fortschreitender Technik sogar bis zu 17 ppm Mo in sulfidischen Blei- und Zinkerzen – nachweisbar ist (Schroll, 1984). Der auch als Zinkblüte oder Galmei (Calamin) bekannte Hydrozinkit wurde von Smithson (1803) von Smithsonit unterschieden.

Puttner (1997) untersuchte auf Wulfenit wachsende violette Kristalle, die als Chromatit (CaCrO₄) ausgewiesen wurden. Niedermayr et al. (1987, 1988) beschreibt das Mineral Fraipontit erstmals in Bleiberg. Das meist lilafarbene, Zn-führende, mikrokristalline Schichtsilikat wurde u.a. von Hasler (2020) auf cm-großen Wulfenit-Kristallen abgelichtet.

Besonders attraktiv für den Abbau waren allerdings Zinkblende und Bleiglanz. Das Verhältnis Pb:Zn variiert über die Lagerstätte. Grundsätzlich ist anzumerken, dass die Zn-Gehalte gegen Osten hin abnehmen. Abbildung 6 verdeutlicht auch die Zusammengehörigkeit von Fluorit mit Sphalerit und Baryt mit Galenit.

Mineral	chemische Formel	<u>Kristallsystem</u>				
Primärminerale						
Bleiglanz/Galenit	PbS	kubisch				
Zinkblende/Sphalerit & Wurtzit	ZnS	kubisch bzw. hexago- nal				
Pyrit & Markasit	FeS ₂					
Calcit	CaCO ₃	trigonal				
Aragonit	CaCO ₃	rhombisch				
Dolomit	CaMg(CO ₃) ₂	trigonal				
Baryt	BaSO ₄	rhombisch				
Quarz	SiO ₂	trigonal				
Flussspat/Fluorit	CaF ₂	kubisch				
Anhydrit	CaSO ₄	rhombisch				
vermutlich durcl	h Mobilisation entstandene l	Minerale				
Cölestin	SrSO ₄	rhombisch				
Strontianit	SrCO ₃	rhombisch				
β-Palygorskit	(Mg,Al) ₂ Si ₄ O ₁₀ (OH)·4H ₂ O	monoklin				
Jordisit & Molybdänglanz/ Molybdänit	MoS ₂	hexagonal				
Gips	CaSO ₄ ·2H ₂ O	monoklin				
	Oxidationszone					
Cerussit	PbCO ₃	rhombisch				
Plumbocalcit						
Anglesit	PbSO ₄	rhombisch				
Baryto-Anglesit	(Pb,Ba)SO ₄					
Wulfenit/Gelbbleierz	PbMoO ₄	tetragonal				
Ilsemannit	Mo ₃ O ₈					
Vanadinit	Pb5(VO4)3Cl	hexagonal				
Descloizit	PbZn(VO4)(OH)	rhombisch				
Hemimorphit	Zn4Si2O7(OH)2·H2O	rhombisch				
Smithsonit/Zinkspat	ZnCO ₃	trigonal				
Hydrozinkit/Zinkblüte	Zn5(CO3)2(OH)6	monoklin				
Limonit, Goethit & Lepidokrokit	FeOOH	rhombisch				
Baryt	BaSO ₄	rhombisch				

Tabelle 1: Primär- und Oxidationsminerale	der Lagerstätte	Bleiberg nach Kanaki	(1972)
---	-----------------	----------------------	--------

Abbildung 6: Die Konzentration von Zink nimmt gegen Osten hin ab. Während Fluorit (CaF₂) vermehrt in den Znüberwiegenden Bereichen auftritt, findet sich Baryt (BaSO₄) im Pb-reicheren Osten der Lagerstätte (Cerny, 1989).

3.4. Einblick in die Geschichte des Bergbaus

Aufzeichnungen über den Bergbau in der Marktgemeinde Bad Bleiberg gibt es seit 1333: Aus den ersten gut erhaltenen Dokumentationen des Bleiabbaus in Bleiberg geht ein Lehen vom damaligen Bischof Werntho an Heinrich Putigler hervor (Zeloth, 2004). Es kann jedoch vermutet werden, dass der Abbau von Blei – zumindest in geringeren Mengen – in Kärnten spätestens 800 Jahre v. Chr. stattgefunden hat. Hinweise darauf liefern Figuren aus dem Schwermetall, die in der östlich von Villach gelegenen Ausgrabungsstätte Frög gefunden wurden (Enzfelder, 1972).

Aufgrund der steigenden Anzahl an Aufzeichnungen mit detaillierteren Gehaltsangaben am Beginn des zweiten Drittels des 14. Jahrhunderts wird die Bedeutung des Bergbaureviers immer mehr verdeutlicht. Im Laufe der Jahre kommen die Ländereien in unterschiedliche Hände, so werden diese 1335 an Graf Ulrich von Pfannenberg verpfändet. 1759 erwirbt der österreichische Staat die Kärntner Besitztümer des Bamberger Bischofs und wird nach weiteren neun Jahren Inhaber von Bleiberg. Zu Beginn des 19. Jahrhunderts findet der Abbau unter französischer Hand statt. 1495 erhalten die drei Gebrüder Fugger das Einverständnis des Bamberger Bistums zur Errichtung einer Seigerhütte (ehem. Saigerhütte) und des Schlosses Fuggerau am gut gelegenen Verkehrsknoten Arnoldstein in Kärnten. Das Schloss wird 1570 vom Kloster Arnoldstein erworben.

Ende des 15. Jahrhunderts wird die erste Bleiberger Bergwerksordnung verfasst und somit u.a. Auskunft über Lohngrenzen, Arbeitszeiten und Grubenmaß vermittelt. Im Jahr 1550 wird diese überarbeitet und die neue Bamberger Bergwerksordnung festgesetzt, welche bis 1759 gänzlich gültig bleibt. Doch von Unglücken bleibt Bleiberg nicht verschont: 1879 verlieren 41 Menschen ihr Leben bei einem Lawinenabgang, 1893 gibt es einen Großbrand, Kriegszeiten bringen Hungersnöte mit sich. Das heutige Thermenangebot in Bleiberg ist dem Verbruch der Thermalwasserquelle in den Bergbau im Jahr 1951 zu verdanken. Zwischen 1580 und 1620 kommt es zu protestantischen Auseinandersetzungen und zur Verlegung des Wirtschaftsraumes vom Mittelmeer an den Atlantik. Dies führte zu einem großen Produktionsrückgang.

1867 wird die Bleiberger Bergwerksunion (BBU) ins Leben gerufen, die nach ca. 30 Jahren auch in Unterkärnten Fuß fasst. Um diese Zeit kommen auch Sprengstoff und eine hydraulische Bohrmaschine das erste Mal zum Einsatz und die Gruben aus Bleiberg und Kreuth werden miteinander verbunden. Ab Ende des 19. Jahrhunderts gelingen mehr und mehr industrielle Fortschritte. So wird 1882 eine Bleihütte in Gailitz bei Arnoldstein errichtet und – durch Fortschritte der Elektrifizierung – in den darauffolgenden Jahren die Aufbereitung erweitert, Kraftwerke errichtet und eine elektrische Grubenbahn installiert.

Im Ersten Weltkrieg ist Blei für Munition sehr gefragt und führt zu Raubbau. Auch in Bleiberg-Kreuth wird die Weltwirtschaftskrise durch Kündigungen spürbar, bis 1931 der Abbau sogar gestoppt wird. Allerdings kann der Betrieb nach nur einem Jahr durch Einführung einer Blei-Zoll und dem Verbot von Bleiimport wieder aufgenommen werden. Im Zweiten Weltkrieg wird in den Abbau investiert und Anlagen werden erneuert. Zwangsarbeiter sind notwendig. 1942 beginnt der Abbau von Molybdän in Rubland, nördlich des Bleiberger Erzberges. Aufgrund der geringen Mo-Gehalte erfolgt jedoch nach drei Jahren bereits die Schließung. 1965 kommt es zur Verbindung des Bergbaureviers mit Bleiberg durch den Bau des Rublandstollen. Nach dem Zweiten Weltkrieg wird die BBU von der britischen Property Control überwacht. Einige Monate später kommt die BBU in Besitz des österreichischen Staates. Nach dem zweiten Weltkrieg folgen weitere Investitionen in den Ausbau der Anlagen, u.a. beginnt die Aufbereitung von Altmaterial. Die Anzahl der Beschäftigten steigt. Technische Fortschritte in Bleiberg bzw. Arnoldstein führen ab 1957 zur Gewinnung von Germanium sowie dem Vertrieb von Superphosphat, welches das Umwandlungsprodukt aus unlöslichem, natürlichem Phosphat mit Schwefelsäure ist und als Dünger verwendet wird. Im gleichen Zeitraum kommt es auch zur Entwicklung des Bleiberger-Rundherdofen-Verfahren. 1967 wird die Errichtung des Antonischacht in Bleiberg-Kreuth vollendet. Bis zur Schließung des Bergbaus im Jahre 1993 steht die Automatisierung des Abbaus und Investition in neue Aufbereitungsanlagen im Vordergrund (Zeloth, 2004).

3.5. Überlieferte Haldenbeprobungen

Bereits Schroll (1951, 1952) erhielt den Auftrag zur Durchführung von Haldenbeprobungen, um Kenntnisse über die Wiederverwertung der Bleiberger Halden zu erlangen. Für acht Halden (darunter Matthäus und Glück) konnten die Molybdänkonzentrationen als bauwürdig ausgewiesen werden. Somit könnten bei den auf Molybdän untersuchten Halden (insgesamt 125.000 t) mit einem durchschnittlichen Gehalt von 0,227 % weit über 100 t Molybdän gewonnen werden. Weiters konnten für >900.000 t Haldenmaterial 0,63 % Pb (sulfidisch + oxidisch) und 3,51 % sulfidisch gebundenes Zn bestimmt werden. Basierend auf diesen Ergebnissen folgte eine Aufbereitungskampagne von Blei und Zink in den Bergbaurevieren Antoni und Rudolf, welche von Jedlicka (1983) begleitet und dokumentiert wurde. Laut diesem Bericht gab es auch schon im Jahr 1938 eine Untersuchung von 38 Halden, wobei für >1 Mio. t Material Gehalte von 0,70% Pb (sulfidisch + oxidisch) und 4,74 % sulfidisches Zn bestimmt wurden. Eine Neueinschätzung im Jahr 1982 ergab noch immer einen Bestand von fast 900.000 t mit 0,40 % Pb und 1,95 % sulfidisches Zn. Für Pb-Zn-Untersuchungen entnahm Scherer (1979) Proben an 17 weiteren Bleiberger Halden. Im Mittel konnten auf den Halden zwischen 0,049 % (Staberin-Halde) bis 0,397 % (Glück-Halde) sulfidisch gebundenes Blei, sowie 0,092 % (Maria Sümpfen-Halde) bis 0,484 % (Heerenbauhalde) sulfidisch gebundenes Zink ermittelt werden. Von Schroll (1952) und Scherer (1979) wurden die Haldenvorräte mit einem Faktor von 1,5 t/m³ eingeschätzt. Somit belaufen sich die Angaben für die Glück-Halde auf 3.000 bzw. 4.000 t und für die Matthäus-Halde auf 30.000 bzw. 21.000 t. Die Altstefanie-Halde wurde ausschließlich von

Scherer (1979) auf 125.000 t kalkuliert. Neuere Haldenabschätzungen sind nicht bekannt.

4. Methodik

Messungen mit Rasterelektronenmikroskop (REM; engl.: selective electron microscope, SEM) und Röntgenfluoreszensanalyse (RFA; engl.: X-ray fluorescence, XRF) sollen die Basis dieser Arbeit bilden. Am Lehrstuhl für Geologie und Lagerstättenkunde der Montanuniversität Leoben wurden dafür das REM Zeiss EVO MA 10 mit dem Bruker Nano XFlash Detector 430-M sowie das RFA-Spektrometer Axios mAX-Advanced von Malvern Panalytical mit Rh-Röhre und WROXI-Kalibration verwendet. Auch erfolgte zur Untersuchung der Kohlenstoff- und Schwefelgehalte eine Analyse mit dem LECO CS230. Für die Feldbegehung und Pulvermessung mit dem RFA-Handgerät wurde der Thermo Scientific NITON XL3t XRF-Analyzer mit Ag-Röhre des Lehrstuhls für Allgemeine und Analytische Chemie der Montanuniversität Leoben mit der Kalibration "Minerals" genutzt.

4.1. Haldenbeprobung und Probenahme

Im Zusammenhang mit dem COMMBY-Projekt fanden drei Beprobungen im Zeitraum 2018 bis 2021 statt. Die erste Beprobung im Jahr 2018 der Halden Matthäus, Altstefanie und Glück diente für eine Ersteinschätzung des Haldenmaterials und als Basis für mineralogische Untersuchungen. Dabei wurde keine repräsentative Entnahme durchgeführt, jedoch auf ausreichend Material für eine Siebanalyse geachtet.

Im Jahr 2019 wurde eine große, repräsentative Beprobung der sehr steilen Halden Matthäus, Glück und Altstefanie mit einem Schreitbagger (Löffelbreite 60 cm, Inhalt ~100 I) sowie Seilwinde vorgenommen. Bei regnerischem Wetter wurden aus mehreren Bereichen Proben entnommen und zu Sammelproben (schätzungsweise >1 t) vereinigt. Somit entstanden je eine Sammelprobe für die Halden Matthäus und Glück. Für die größere Halde Altstefanie (Abbildung 7) wurde eine Sammelprobe am Haldenfuß und eine von den Haldenflanken entnommen. Vor Ort wurde dieses Material mit einem Sieblöffel auf 40 mm gesiebt, Material >40 mm wurde gebrochen. Anschließend wurde das Material mit einem Bagger durch Vierteilung auf eine transportierbare Probenmenge (~60-70 kg) geteilt. Die Schreitbagger-Probenahmepunkte der Halde Matthäus vom 10.04.2019 sind in Anhang A abgebildet.

Abbildung 7: Beprobung der Halde Altstefanie mit Schreitbagger und Seilwinde im April 2019.

Für Analysen mittels RFA wurde die Halde Matthäus am 28.05.2021 bei sonnigem, leicht bewölktem Wetter beprobt. In Abständen von ca. 15 m wurden an der Haldenflanke (80x60 m) je ~2 kg Probe ca. 20 cm unterhalb der Oberfläche mit einem Spaten entnommen, in Plastiksäcke gefüllt und danach im Feld mittels pRFA gemessen (Abbildung 8a). Ebenso wurde am flachen Haldenkopf (30x60 m) an der im Vorjahr hinterlassenen Mischprobe (hergestellt durch Schreitbagger) eine Probe entnommen. Die Haldenflanke fällt steil ab (Abbildung 8b-c). Bohrversuche per Auger haben aufgrund der großen Korngrößen und fehlenden Feinfraktion (Haftkräfte) nicht gut funktioniert (Abbildung 8d-f). Es konnte nur an Probenahmepunkt H13 mittels Auger eine Bohrprobe entnommen werden.

Die mittels GPS ermittelten Probenahmepunkte an der Matthäus-Halde sind bildlich und in Tabellenform in Anhang A dargestellt. Das verwendete Koordinatensystem ist MGI / GK Austria Central (EPSG:31255). Zusätzlich wurden am gleichen Tag auch drei Proben an der Leininger Halde mittels Auger entnommen, jedoch keine Koordinaten eingemessen. Auf der Leininger Halde wurden Flotationsrückstände aus den letzten Jahren der Aufbereitung deponiert.

Abbildung 8: Probenahme auf der Matthäus-Halde; a) Messung mit pRFA; b) Haldenkopf mit Blick nach Osten; c) Haldenfuß mit Blick nach Norden; d) Probenahmepunkt H1 mit Korngrößenbereich Sand-Stein sowie Organik; e) Probenahmepunkt H4 mit Korngrößen im Bereich Kies-Stein; f) Probenahmepunkt H16 mit Kongrößenbereich Sand-Kies.

4.2. RFA und pRFA

Mittels Röntgenfluoreszenzanalyse (RFA) kann die Elementzusammensetzung einer Probe quantitativ ausgewertet werden. Wird die Probe angeregt, kann die fluoreszierende Röntgenstrahlung gemessen werden. Jedes Element produziert eine charakteristische Röntgenfluoreszenzstrahlung. Eine feste Probe wird mit hoch energetischen Röntgenstrahlen bestrahlt. Wird ein Atom der Probe mit ausreichend Energie getroffen, wird sogleich ein Elektron in der Innenschale des Atoms entfernt. Diese Lücke wird von einem Elektron aus der höher energetischen Außenschale aufgefüllt. Weil dieses Elektron nun in eine Schale mit geringerer Energie springt, setzt es eine für dieses Atom charakteristische Strahlung frei. Das Ergebnis ist ein Spektrum mit unterschiedlichen Intensitäten von XRF-Peaks. Die Höhe bzw. Intensität der Peaks ist ein Parameter für die Elementkonzentration (Wirth & Barth, 2020).

Die Messungen im Feld wurden mit dem kabellosen, mobilen Handgerät NITON XL3t durchgeführt. Ident zum RFA-Spektrometer werden durch hoch energetische Röntgenstrahlung Elektronen der Innenschale des Atoms entfernt und die Leerstellen durch nachrückende Elektronen besetzt. Die Energie der Röntgenstrahlung sowie das zu messende Material sind die limitierenden Faktoren der Eindringtiefe des Strahls. Im Gegensatz zur Eindringtiefe, welche von der Energie der Röntgenstrahlung abhängig ist, ist die Analyse- bzw. Informationstiefe beschränkt von der charakteristischen Röntgenfluoreszenzenergie der einzelnen Elemente.

Die Messung wird automatisch auf 100% normiert. Dies erfolgt unter Einbeziehung des Bal-Wertes. Die Balance (Bal) gibt den Gehalt der Elemente an, die nicht messbar sind. Dies sind v.a. die Elemente mit niedrigerer Ordnungszahl als Magnesium. Die Analyse wird beeinflusst durch Verunreinigungen wie Öle, Fette, etc. Durch Feuchtigkeit kann es zu Verdünnung kommen und der Bal-Wert wird erhöht. Für die zufällige Messabweichung wird der Error-Wert während der Messung ermittelt (Helfert & Ramminger, 2012).

Lohmeier et al. (2021) führten Haldenbeprobungen von Kupferschlacken durch. Dabei wurden Analysen mit portabler RFA (Niton XL3t 900 mit Ag-Röhre) an Pulvern im Vergleich zu RFA an Schmelzpillen, AAS (Atomabsorptionsspektrometrie) und ICP-MS (inductively coupled plasma-mass spectrometry) an Pulvern verglichen. Die Messungen mit ICP-MS und AAS zeigen für Mo, Pb und Zn meistens höhere Werte (bis ca. ~10 % Differenz). Bei den gemessenen Mo-Konzentrationen mit pRFA und RFA gibt es größtenteils nur minimale Abweichungen. Festzuhalten ist, dass die Pb-Gehalte mit RFA meistens um einige Prozent geringer sind als mit pRFA. Geglüht wurden die Proben für die Schmelzpillenherstellung bei 1000°C.

4.2.1. Probenvorbereitung und Auswertung

Für die Analyse mittels RFA von insgesamt 20 Proben der Halde Matthäus und 3 Proben der Halde Leininger wurden Schmelzpillen hergestellt. Im ersten Schritt wurden die zumeist sehr feuchten Proben für einige Stunden bei 70 °C im Trockenschrank getrocknet, mit einem Hammer gebrochen, mit einem Riffelteiler auf eine angemessene Probenmenge (min. 10g) geteilt und mit einer Scheibenschwingmühle mit Achateinsatz feingemahlen. Die weitere Vorgehensweise der Pulverprobe wird in Abbildung 9 dargestellt. Das Glühen in Porzellantiegeln erfolgte im Muffelofen Carbolite Gero Economy Kammerofen.

Abbildung 9: Flussdiagramm der Vorgehensweise für die Vorbereitung von Schmelzpillen. Der Masseverlust beim Glühen wurde mit zwei Stunden angenommen.

Der Glühverlust errechnet sich aus dem Quotienten der getrockneten Probe und dem Masseverlust nach dem Glühen entsprechend Gleichung (1).

$$LOI = \frac{m_{Probe,getrocknet}}{m_{Verlust}} = \frac{m_{Tiegel+Probe,getrocknet} - m_{Tiegel}}{m_{Tiegel+Probe,getrocknet} - m_{Tiegel+Probe,geglüht}}$$
(1)

Die Massen der Tiegel und Proben wurden mit einer Genauigkeit von 10⁻⁴ g bestimmt. Um Kontaminationen zu vermeiden, wurde mit Latexhandschuhen gearbeitet und regelmäßig mit Alkohol (Ethanol) gereinigt.

Nach Abkühlen im Exsikkator folgte das Einwiegen von Flussmittel (Lithium Tetraborate + Lithium Metaborate + Lithium Iodide) und Probe im Platintiegel auf je ±0,0005 g genau. Das Verhältnis Probe zu Flussmittel beträgt 1:8. Danach wurde die Masse mit einem Glasstab homogenisiert. Nach dem Einbau von Platinteller und Platintiegel in den Schmelzofen (Malvern Panalytical Claisse Eagon2) erfolgte der Schmelzvorgang der Probe bei einer Temperatur von 1050 °C bzw. 1200 °C. Nach Abkühlen und Entfernen von Platintiegel und -teller konnte die fertige Schmelzpille herausgestürzt werden. Da bei einigen Proben bei einer Schmelztemperatur von 1050 °C die Schmelztabletten eine ovale Form annahmen, wurde auf eine Temperatur von 1200 °C erhöht. Tabelle 17 in Anhang B2 gibt eine Zusammenfassung über die eingewogenen Massen, sowie die verwendete Schmelztemperatur und den berechneten Glühverlust.

Die Summe der Gehalte der RFA-Analyse bezieht sich auf die geglühte Probe und nicht auf die Gesamtprobe. Demnach muss der Glühverlust entsprechend Gleichung (2) korrigiert werden.

$$C_{Corr} = C_{Berechn} * \frac{100 - LOI(\%)}{100}$$
 (2)

C_{Corr} korrigierter Wert

C_{Berechn} durch RFA ermittelter Wert

LOI Loss Of Ignition/Glühverlust

4.2.2. WROXI-Standards

Die synthetischen WROXI-Standards der Firma Malvern Panalytical sind ein qualitativ hochwertiges Kalibriermodul für die wellenlängendispersive RFA-Analyse von Oxiden. Sie sind speziell für geologische Materialen entwickelt worden und erlauben die Analyse von diversen Gesteinen und Böden, Eisen- und Manganerz, aber auch Industriematerial wie Hochofenschlacke. Die Basis bilden 21 Standards (Tabelle 2), die in Pulverform geliefert und vom Kunden selbstständig zu Schmelztabletten im Verhältnis 1:10 mit Flussmittel verarbeitet werden. Diese werden dann zur Kalibrierung verwendet. Zusätzlich können noch weitere solche synthetischen Standards (z.B. MoO₃) durch Malvern Panalytical hergestellt werden (Malvern Panalytical Ltd., 2021).

Tabelle 2: Oxidverbindungen	der WROXI-Standards und	deren Konzentrationsbereich.	Molybdän gehört nicht zu
den 21 Basis-Standards und	wurde eigens von Malvern	Panalytical angefertigt (Malve	rn Panalytical Ltd., 2021).

Verbindung	Konzentrationsbe- reich [%]	Verbindung	Konzentrationsbe- reich [%]	
Na ₂ O	0–58	Mn ₃ O ₄	0–80	
MgO	0–78	Fe ₂ O ₃	0–81	
Al ₂ O ₃	0–78	NiO	0–12	
SiO ₂	0–80	CuO	0–8	
P ₂ O ₅	0–40	ZnO	0–10	
SO ₃	0–59	SrO	0–20	
K ₂ O	0–40	ZrO ₂	0–43	
CaO	0–80	BaO	0–43	
TiO ₂	0–40	HfO ₂	0–10	
V ₂ O ₅	0–10	PbO	0–10	
Cr ₂ O ₃	0–10	MoO ₃	n.a.	

4.3. C- und S-Untersuchung

Die Untersuchungen der Schmelzpillen mit dem RFA-Spektrometer ergaben bei den Proben H1-3, 5-6, 8-10 niedrige Summenprozente (<98 %). Um den Grund für diese geringen Werte zu untersuchen, wurden Kohlenstoff- und Schwefelanalysen mit dem LECO-Gerät an allen Proben durchgeführt.

Zuerst erfolgt eine Kalibrierung für die Messung der Kohlenstoff- und Schwefelgehalte. Die Basis bildet das Einfüllen von Brandbeschleuniger und Metall (Fe-Chips) mit einem Messlöffel in einen Keramiktiegel. Hinzugefügt wurden die C- und S-Standards aus Tabelle 3. Danach folgt eine Verbrennung des Materials und Messung der entstehenden Gase auf Kohlenstoff und Schwefel. Es bedarf mindestens drei Messungen mit jedem Standard, bis eine Kalibrationsgerade erstellt werden kann.

NO. 501-024	Carbon %	3.41 ± 0.05
	Sulfur %	0.029 ± 0.002
NO. 502-449	Carbon %	0.040 ± 0.002
	Sulfur %	0.307 ± 0.010

Tabelle 3: Kalibrationsstandards für Kohlenstoff-Schwefel-Untersuchungen mit LECO CS230.

Um den Kohlenstoff- und Schwefelgehalte von Proben bestimmen zu können, wird in den Keramiktiegel an Stelle der Kalibrationsstandards ~0,1-0,3 g Pulver eingewogen.

4.4. REM-EDS

Das Rasterelektronenmikroskop verwendet ein energiedispersives Verfahren zur Elementbestimmung, um Materialoberflächen durch Beschuss mit Elektronen zu analysieren und somit die Elementzusammensetzung der Minerale zu bestimmen. Für diese Analyse können sowohl Dünnschliffe und Anschliffe als auch feste Proben verwendet werden. Jedoch müssen die Proben vor der Analyse mit Kohlenstoff beschichtet werden. Das REM besteht zum einen aus einer Vakuumprobenkammer mit der Wolfram-Kathode, die Elektronen durch Erhitzen emittiert, und zum anderen aus dem EDX-Detektor. Die Elektronen werden in einem elektrischen Feld mit Spannungen zwischen 10-30 kV beschleunigt. Durch diesen Elektronenstrahl werden die Atome der Probe angeregt. Die dabei emittierte charakteristische Röntgenstrahlung wird zur Bestimmung der Elementzusammensetzung des Materials herangezogen. Der EDX-Detektor misst die Energie und Intensität dieser charakteristischen Röntgenstrahlung und liefert ein Elementspektrum als Ergebnis. Des Weiteren sind der SE- und BSE-Detektor zu unterscheiden. Während der SE-Detektor die Sekundärelektronen (SE) misst und nur ein Bild der Oberflächenstruktur wiedergibt, misst der BSE-Detektor die rückgestreuten Elektronen (backscatter electrons, BSE) und produziert ein Materialkontrastbild. Umso höher die Atomnummer der Elemente, desto größer ist die Rückstreuung und desto heller erscheinen die Minerale (Swapp, 2017).

Für die Arbeit mit SmartPI[™] wurden insgesamt zwölf Anschliffe mit 4 cm Durchmesser untersucht. Es wurde gebrochenes Material der Halden von der im Jahr 2018 durchgeführten Probenahme durch Siebung in unterschiedliche Korngrößenbereiche eingeteilt (Tabelle 4). Des Weiteren sind zwei Anschliffe eines Handstücks der Matthäus-Halde hinzuzufügen. Die Probe mit cm-großen Bleiglanz-Körnern wurde am Tag der Probenahme (28.05.2021) auf der Halde entnommen und mit Digitalmikroskop und REM analysiert.

Halde	Korngröße	Schliffnummer	
	6.3 – 4.0 mm	Math6.3/4	
	4.0 – 2.0 mm	Math4/2	
	2.0 – 1.0 mm	Math2/1	
	1.0 – 0.5 mm	Math1/0.5	
Matthäus	0.5 – 0.3 mm	Math0.5/0.3	
	0.3 – 0.1 mm	Math0.3/0.1	
	< 0.1 mm	Math<0.1	
	Teil von Handstück	21FM11	
	Teil von Handstück	21FM12	
	1.0 – 0.5 mm	Glück1/0.5	
Glück	0.5 – 0.3 mm	Glück0.5/0.3	
Gluck	0.3 – 0.1 mm	Glück0.3/0.1	
	< 0.1 mm	Glück<0.1	
Altstefanie	4.0 – 1.0 mm	Altst4/1	
, itotolarilo	1.0 – 0.5 mm	Altst1/0.5	

Tabelle 4: Anschliffe von drei Bleiberger Halden mit Angabe der Korngrößenbereiche

4.4.1. SmartPI[™]

Das Programm SmartPI[™] (Smart Particle Investigator) ist eine Partikelanalysesoftware der Carl Zeiss Microscopy GmbH und wird mit dem REM Zeiss EVO MA 10 des Lehrstuhls Geologie und Lagerstättenlehre der Montanuniversität Leoben verwendet. Die Software ermöglicht automatische Analysen einzelner Partikel anhand der Erfassung unterschiedlicher Back-Scatter-Electron (BSE) Graustufen, bestimmt deren Morphologie (Größe und Form) und liefert Ergebnisse der Charakterisierung mittels Röntgenstrahlung. Zusätzlich zur EDS-Analyse erfolgt optional die Speicherung von Bildern und Spektren eines jeden Partikels.

Um eine automatische Analyse starten zu können, bedarf es einiger Voreinstellungen. Diese werden in diversen Registerkarten, sogenannte RECIPES, durchgeführt.

Im Probenhalter wird ein Kupferstandard fixiert, welcher für die Kalibrierung benötigt wird. Dieser Cu-Standard wird im Probenhalter für die Anschliffe mit 4 cm Durchmesser oben rechts montiert. Bis zu drei Proben können hier in den zusätzlichen freien Positionen eingebaut und mit dem Kupferband befestigt werden. Zunächst muss das Programm SMARTSEM USER INTERFACE gestartet und das z-Limit (hier: 7,5 mm) festgelegt werden. Zu beachten ist, dass die Schliffe sehr bündig (horizontal) eingebaut werden.

Einen Teil dieser Masterarbeit bildet die Herangehensweise mit dem Programm Smart-PITM. Deshalb soll eine schrittweise Anleitung zum Vorgehen verfasst werden, um die Nutzung für jedermann möglichst einfach und verständlich zu machen.

Als Hilfestellung dient neben dieser Instruktion auch das – allerdings bereits etwas veraltete – Handbuch SMARTPITM OPERATIONAL GUIDE von Zeiss. Dieses unterscheidet sich von der SmartPITM-Version des Lehrstuhls für Geologie und Lagerstättenlehre Leoben u.a. durch abweichende Bezeichnungen von Schaltflächen. Sowohl Handbuch als auch Programm werden in englischer Sprache geführt.

5. Anleitung zu SmartPI[™]

I. Computer und SMARTSEM USER INTERFACE starten

- a) Bei den 4 cm Schliffen wird der Cu-Standard oben rechts und die restlichen Proben in den verbleibenden Plätzen im Halter eingebaut.
- b) Das z-Limit muss definiert werden. Für die 4 cm Anschliffe wird das z-Limit auf 7,5 mm gesetzt.
- c) Zusätzlich kann der Elektronenstrahl eingeschaltet, die Probe fokussiert und Helligkeit/Kontrast angepasst werden. Wichtig ist das Ausschalten des Elektronenstrahls vor Schließung des Programmes.

II. SMARTSEM USER INTERFACE schließen und SMARTPI starten

 a) Nach Eingabe von Benutzername und Passwort erscheint ein Dialogfeld (Abbildung 10). Die Auswahl der Applikation SETUP ermöglicht eine bereits gespeicherte Einstellung. Mit RUN kann eine automatische Analyse gestartet werden.
 Die Applikationen SMARTPI REPORTER und SMARTPI EXPLORER werden für die Auswertung benötigt und sind in Unterpunkt XII.d) und XII.e) erklärt.

Abbildung 10: Start-Dialogfeld erscheint nach Eingabe von Benutzername und Kennwort.

b) Nach der Auswahl SETUP kann das Dialogfeld DO YOU WANT TO RUN THE CONDI-TIONS MACRO FOR THIS RECIPE? mit YES beantwortet werden, sofern sichergestellt ist, dass der für dieses Rezept richtige Halter eingebaut und das z-Limit in SMARTPI korrekt definiert ist. Durch die Bestätigung wird der Elektronenstrahl automatisch eingeschalten.

- c) Über STAGE → LIMITS wird das z-Limit in SMARTPI definiert (7,5 mm f
 ür die 4 cm-Anschliffe).
- d) Die Programmierung des Programmes erfolgt über die folgenden Registerkarten (Recipes). Die Registerkarten sind in der Navigationsleiste (siehe u.a. Abbildung 11) aufrufbar.
- III. <u>APPLICATION RECIPE</u>
 - a) Die in Abbildung 11 markierten Schaltflächen ermöglichen das Erstellen (CRE-ATE), Umbenennen (RENAME), Speichern (SAVE) und Löschen (DELETE) von Rezepten.

oplication Type		-	
elected Plug-In		a) 🛶	>
Custom (ZEISS-Mineral	-PI.db)		(ppli
			cati
Application Type			S I
		b) → 🔬 🗟 🔒 😰	ype
Test Bleiberg020321		-	
		Assign Recipes	
		·	0
Application Recipe			
		b) —— 🔊 🖃 🗃 😰 🚽	ø
Test Bleiberg020321			
Desire Desciption			
Recipe Description:			
Zeiss 2021_03_02			
Recipe Status Recipe (Options Stop Crit	eria 💳 C)	-il
Item	Recipe Name	Reason	
SEM	Test210222_2	Ready	
Holder	Test210222	Ready	
M Calibration	Test010321	Ready	52
M Image Processing	Bleiberg Test5	Ready	
M Image Analysis	Test210222	Ready	40
EDS	Bleiberg Test	Ready	R
DParticle	Bleiberg Lest	Ready	tive
			_
•	"		
	_		
Run Application	Recipe d		

Abbildung 11: APPLICATION RECIPE: a) Navigationsleiste der Registerkarten; b) Schaltflächen CREATE, RENAME, Save und Delete; c) Möglichkeit der Überprüfung aller Parameter unter Recipe Status (hier: alle Recipes sind bereit und grün markiert) sowie d) Ausführung einer automatischen Analyse unter RUN APPLICATION RECIPE.

- b) Neben der Ausführung einer automatischen Analyse (RUN APPLICATION RECIPE) erfolgt die Überprüfung aller Recipes mit Farbkennzeichnung:
 - i) grün (bereit),
 - ii) orange (es gibt Konflikte, automatische Analyse kann trotzdem durchgeführt werden) oder
 - iii) rot (es gibt Konflikte, automatische Analyse kann nicht durchgeführt werden)).

Zusätzlich ist die Auswahl der minimalen Größe der zu messenden Partikel und zu speichernden Daten (Bilder, Spektren, etc.) unter RECIPE OPTIONS möglich. Sollte eine Zeitlimitierung der Analyse gewünscht sein, kann solche über STOP CRITERIA definiert werden.

IV. SEM RECIPE (Abbildung 12)

- a) Der SAVE-Button dient zur Speicherung von u.a. Helligkeit, Kontrast, Anregungsspannung und Abstand zum Probenhalter (Working Distance). Diese Einstellungen sind notwendig für die automatische Analyse, um die Genauigkeit der Analysen zu steigern und verschwommene Bilder zu vermeiden. Deshalb sollten diese vor Analysestart gesichert werden. Bei Ausführung einer Analyse (unter RUN APPLICATION RECIPE in Abbildung 11) werden die in diesem SEM Recipe gespeicherten Einstellungen verwendet. Unter SELECT → EDIT → EDIT ITEM können die genannten Einstellungen eingesehen bzw. geändert werden. Hier kann die kV-Stärke definiert werden.
- b) Um die Probe zu fokussieren, sollte nach Einstellung der WORKING DISTANCE eine Hysterese-Korrektur durchgeführt (C1/2/3 HYSTERESIS) und die Höhe (z) angepasst werden.
- c) Für die AUTO-SATURATION wurde bei den Proben in Bleiberg die Position eines Kalzit-Partikels (d.h. ein im REM dunkel erscheinendes Partikel) bestimmt.

SEM							4
SEM Recipe							
						8 3 8 8	
Test210222_2						-	·
SEM Macro							SEV
Test210222.mlc							
Save	Run	Sel	ect	a)			0 2
Macro Va	cuum Mod	e Currer	nt 🔻				<u> </u>
C1/2/3 Hysteres	sis 🔶 📛	- b)					<u>*</u>
Miscellaneous Beam On Delay	(s)						
5							
Scan Rate When	Capturing	Image					**
5 -	Get Rate						
Auto Saturation							- 🚨
Use Auto Satu	uration						
Use Auto Ape	erture Alian						522
Mag	X	Y	Z	R			
1000	70,469	15,382	6,420	325,0	−− c)	
Get Mag	Goto	Get Po	sition)		
Test	Current Se	ttings					
							-

Abbildung 12: SEM RECIPE: a) Speichern der gewünschten Einstellungen unter SAVE und Änderung von Einstellungen wie z.B. kV-Stärke unter SELECT → EDIT → EDIT ITEM; b) Durchführung einer Hysterese und c) Speichern einer Position für die AUTO-SATURATION.

V. HOLDER RECIPE

- a) Die Auswahl des richtigen Halters (Abbildung 13) ist essentiell für eine problemlose Analyse. Sollte ein gewünschter Halter noch nicht definiert sein, wird die Auslegung der Halter im Handbuch SMARTPITM OPERATIONAL GUIDE schrittweise erklärt.
- b) Für die automatische Analyse muss ein Bereich festgelegt werden, in welchem die Analyse durchgeführt werden soll. Dieser Bereich kann den gesamten Schliff beinhalten oder nur einen Ausschnitt davon. Mit Rechtsklick auf den gewünschten Halterplatz kann unter SETUP SCAN DETAILS ein Feld bzw. mehrere Felder oder ein Raster ausgewählt werden (Abbildung 14).
 - i) Ein einzelnes Feld bzw. ENTIRE FIELD wird mit der niedrigsten Vergrößerung gemessen.
 - ii) Ein Raster bzw. GRID OF FIELDS kann zwischen den zwei Eckpunkten links oben und rechts unten aufgezogen werden. Die Größe des Rasters ist beliebig wählbar. Die Größe der Kästchen ist von der ausgewählten
Vergrößerung abhängig. Zusätzlich kann noch eine prozentuelle Überlappung der Kästchen (FIELD OVERLAP) ausgewählt werden.

iii) Die Einstellung MULTIPLE FIELDS erlaubt es mehrere Felder auf einem Schliff in unterschiedlicher Vergrößerung und beliebiger Anordnung zu definieren.

Abbildung 13: HOLDER RECIPE: a) Auswahl des eingebauten Probenhalters; b) Darstellung des Halters: Mittels Rechtsklick auf den gewünschten Halterplatz erfolgt die Einstellung des Rasters (hier: GRID OF FIELDS).

Abbildung 14: Das Programm SmartPITM ermöglicht die Analyse a) eines Feldes mit niedrigster Vergrößerung, b) eines Rasters beliebiger Größe oder c) mehrerer Felder in unterschiedlichen Vergrößerungen und willkürlicher Anordnung.

VI. CALIBRATION RECIPE

- a) Um eine komplikationsfreie Analyse zu starten, bedarf es einer Kalibrierung. Hierfür muss der Elektronenstrahl eingeschalten sein. In den Untermenüs X-RAY CPS und X-RAY ENERGY (Abbildung 15) erfolgt die Einstellung direkt am Cu-Standard mit einer 300-fachen Vergrößerung. Eine Stelle am Kupfer muss über GET POSITION gespeichert werden. TEST CURRENT SETTINGS ermöglicht eine Überprüfung der eingestellten Daten.
- b) Auf der zu analysierenden Probe wird abschließend im Untermenü BRIGHTNESS
 & CONTRAST unter EDIT CALIBRATION SETTINGS der Histogramm Peak bestimmt. Grundsätzlich sollte der Histogramm Peak zwischen 20 und 200 liegen.
- c) Nach der Kalibrierung sollten die gewählten Einstellungen im SEM RECIPE (Punkt IV) gespeichert werden.

bration 🕴	
alibration Recipe	
Test010321	0,0
Calibration Check Frequency 1 Check Calib. Stubs 0 Check Calib. Fields 0 Check Calib. Fields	
-Ray CPS Probe Current X-Ray Energy Brightness & Contrast b	alibration
X-Ray CPS Recipe	1
Test010321 -	
CPS Calibration Settings 60000 X-Ray CPS 4 Tolerance(%)	
Scanning 5 Scan Rate Get Rate 300,0 Magnification Get Mag	
Stage Location X Y Z R 18,009 19,045 6,362 325,0 325,0 Goto Get Position Test Test Test Current Settings	

Abbildung 15: CALIBRATION RECIPE: a) Ob die Kalibration erfolgreich war, kann über den Button TEST CALIBS getestet werden; b) Die Kalibration erfolgt durch Einstellungen in den Untermenüs X-RAY CPS, X-RAY ENERGY und BRIGHTNESS & CONTRAST.

VII. IMAGE PROCESSING RECIPE (Abbildung 16)

- a) Über den Kamera-Button links unten kann das aktuelle Bild importiert werden (= INPUT). Das importierte Bild sollte die für die Analyse gewählte Vergrößerung haben. Das Hinzufügen diverser Schaltflächen ermöglicht das Erkennen einzelner Partikel und ergibt das Ausgabebild (= OUTPUT).
- b) Für diese Masterarbeit wurde ein Weg laut Abbildung 16 programmiert. Mit DE-LINEATE werden die Korngrenzen schärfer gestellt. Über MULTI THRESHOLD lassen sich die Graustufen einstellen, mit OPEN Hohlräume eliminieren und mit AD-VANCED WATERSHED die Partikelgrenzen erfassen. Über den normalen THRESHOLD wird der Wert von Harz vom Gesamtbild subtrahiert (SUBTRACT). Dies liefert das zu analysierende Endergebnis.
 - i) Um die Schaltfläche ADVANCED WATERSHED zu verwenden muss folgender Pfad gegangen werden: ADD → CONVOLUTION AND FILTERS → EDGE DETEC-TION (oder ein anderes) auswählen → Doppelklick auf EDGE DETECTION in Feld a) (Abbildung 16) → bei DETAILS (Feld b)) den Begriff EDGE DETECTION markieren und kopieren → auf ADVANCED WATERSHED in Feld a) klicken und bei DETAILS in der ersten Zeile einfügen. Danach kann das Kästchen EDGE DETECTION in Feld a) gelöscht werden.
 - ii) Die Pfade (blaue Linien in Feld a)) entstehen durch Verbinden der blauen Quadrate in den Schaltkästen. Weitere blaue Quadrate am OUTPUT können erzeugt werden: OUTPUT-Schaltkästchen anklicken → DETAILS → Umstellen von NORMAL auf USER DEFINED → bei NUMBER OF INPUTS die entsprechende Zahl angeben.
 - iii) Die Bedeutung aller Eingabeelemente ist im SmartPI-Handbuch erklärt, jedoch ist das beste Ergebnis nur durch Experimentieren mit diversen Einstellungen erreichbar.

Abbildung 16: IMAGE PROCESSING RECIPE: a) Der programmierte Weg für die Erkennung einzelner Partikel dieser Arbeit enthält diverse Komponenten; b) Diese Schaltflächen können über Add hinzugefügt und in den Details bearbeitet werden; c) Wenn der Elektronenstrahl eingeschalten ist, kann das Bild mit der betrachteten Vergrößerung importiert werden. Das Bild sollte in der Vergrößerung importiert werden, in der die darauffolgende Analyse gemacht werden soll.

VIII. IMAGE ANALYSIS RECIPE (Abbildung 17)

- a) Im Unterpunkt MEASUREMENTS kann anhand diverser Parameter (z.B. Fläche (AREA), Durchmesser (FERET MAX DIAMETER, FERET MEAN DIAMETER), etc.) bestimmt werden, welche Partikel analysiert werden sollen.
- b) Im Unterpunkt CLASSIFICATION wird die Image Analysis (IA) Classification durch Größenbereiche definiert.

c) Unter OPTIONS können weitere Möglichkeiten ausgewählt werden. Hier gilt u.a. zu entscheiden, ob die Partikel ID sichtbar sein soll, Transparenz verwendet werden soll, oder auch welche Partikel mit Farbe gefüllt werden sollen.

ige Analysis					ą	
mage Analysis Recipe				8 28		
Test210222					•	0,0
Measurements Classifica	ation Options	🔲 — a)				0
Classification						
Classifications:			8	í i 🚽 🕻		
30-65µm		←	b)	- 🛃 🛱	3	
Criteria			1			
Feature	Min(≥)	Max(<)				mag
Feret Max Diameter	30,00 µm	65,00 µm				e Ana
						lysis
						\sim
						<u> </u>

						52
			Add	/Remove		
Settings	, classification					
	sciassification					
100 Priority						
Save particle image	5					
Allow EDS analysis of	on particles					
Classification Result						
0 Particles match 30-65	μm					

Abbildung 17: IMAGE ANALYSIS RECIPE: a) Unterpunkte MEASUREMENTS, CLASSIFICATION und OPTIONS; b) Hinzufügen oder Entfernen der IMAGE ANALYSIS CLASSIFICATION als Partikelgrößen über Add/Remove.

IX. EDS RECIPE (X-RAY ANALYSIS RECIPE)

- a) Diverse Einstellungen sind im Unterpunkt SETTINGS möglich. Hier wird neben der Messzeit auch die Partikelscanmethode (FEATURE SCAN oder SPOT CENTROID) festgelegt, und welche Daten gespeichert werden sollen. Dazu gehören Konzentration bzw. normierte Konzentration, Intensität und alle gemessenen Spektren (Abbildung 18).
 - i) Mit der Einstellung FEATURE SCAN wird das Partikel über die gesamte Fläche gemessen, mit SPOT CENTROID wird der Röntgenstrahl im Massenzentrum positioniert.

Abbildung 18: EDS RECIPE/SETTINGS: a) Möglichkeit der Einstellungen in diversen Unterpunkten; b) Auswahl der Partikelscanmethode; c) Einstellung von Spektrum und Messzeit, d) Auswahl der zu speichernden Daten (u.a. auch Spektren).

b) Im Unterpunkt EDS CLASSIFICATION (Abbildung 19) sollen alle Minerale anhand ihrer Zusammensetzung mit minimalen und maximalen Elementgehalten definiert werden. Um ein optimales Ergebnis zu erzielen, müssen sowohl Elemente, die in den Mineralen nicht vorkommen, ausgeschlossen werden, als auch die minimalen und maximalen Werte so gesetzt werden, dass es keine Überschneidungen von zwei oder mehreren Mineralen gibt. Sollten Konflikte aufgrund der eingegebenen Werte auftreten, erscheint eine Warnung im Bereich STATUS. Das bedeutet, dass die Elementgehalte sich überschneiden und das Programm nicht eindeutig ein Mineral zuordnen kann.

Des Weiteren kann unter QUANTIFICATION DATA ausgewählt werden, ob die Angaben normiert werden sollen oder nicht. Dies muss für jedes Mineral einzeln bestimmt werden.

- i) Eine Tabelle mit allen Klassifikationen für die Proben von Bleiberg befindet sich in Anhang C1.
- ii) Sollen irrelevante Daten nicht gespeichert werden und somit die Analyse beschleunigt werden, ist PASS 1 MATERIAL auszuwählen. SAVE PASS 1 MATE-RIAL speichert diese Daten, anstatt sie zu löschen.

75 106 Paris				
US Recipe				
bielberg res			•	0
ettings EDS	Classification	Options		0
EDS Classific	ation			14
			a) — 😹 🖬 🖃 🗐	26
Wulfe	nit		- 🛃 🖾	
Criteria				
Advance	d Rule			~
Element	Min(≥)	Max(<)		
AI		3,00		
Fe		10,00		5
Mn		3,00		
Mo	5,00			
0	5,00			
S		5,00		
Si		3,00		2
V		1,00		
Zn		1,00		
Include / Periodic Ta EDS Classific	Average Grey able Eler cation	Value ment Ratio		
	Colour			
100	Priority	Attributer		
	on Data	Attributes		
EDS Norma	lised Concen	tration		
Deer 1 Oction				
Pass 1 Optio	laterial		-)	
Save Pas	s 1 Material	-	c)	
Status				
41 Classifica	tions Defined	•	—d)	
No Conflicts	s detected		,	

Abbildung 19: EDS CLASSIFICATION: a) Erstellen, Bearbeiten, Löschen und Speichern der Klassifikationen über diverse Schaltflächen; b) Definition der Minerale mit minimalen und maximalen Werten der Elemente. Die Elemente können im PERIODIC TABLE ausgewählt werden. Auch ein ELEMENT RATIO kann angegeben werden. Weitere Einstellungen sind möglich: COLOUR, PRIORITY, QUANTIFICATION DATA; c) PASS 1 MATERIAL beschleunigt Analysen durch Aussortieren von irrelevantem Material, SAVE PASS 1 MATERIAL speichert die Daten; d) Das STATUS-Feld gibt an, ob durch die gewählten Klassifikationen Konflikte (Überschneidungen) auftreten.

c) Unter OPTIONS (Abbildung 20) kann an einem Bild – aufgenommen im IMAGE PROCESSING RECIPE (Punkt VII.a)) – eine Analyse an einem oder mehreren Partikeln durchgeführt werden. Darüber hinaus können Einstellungen der Anzeige festgelegt werden: Es ist möglich Transparenz festzulegen, die Partikelnummer anzuzeigen oder auch zu bestimmen, ob alle Mineralklassifikationen aus dem Unterpunkt EDS CLASSIFICATION bei der Analyse eingefärbt werden sollen.

Abbildung 20: OPTIONS: a) Möglichkeit der Auswahl ob einzelne oder alle Partikel gemessen werden sollen; b) Einstellung der Anzeige; c) Festlegung, welche Klassifikationen gefärbt werden sollen.

X. PARTICLE RECIPE (CLASSIFICATION RECIPE)

a) Unter dieser Registerkarte geschieht die finale Zuordnung der Partikel. Es kann entweder ausschließlich die Klassifikation, wie sie im EDS-RECIPE bzw. im IMAGE ANALYSIS RECIPE definiert ist, verwendet werden, oder eine Kombination aus beiden. Letzteres dient der Zuordnung zu Zusammensetzung und Partikelgröße. Die Daten können sehr einfach durch Klicken auf FROM IA (Image Analysis) und/oder FROM EDS eingefügt werden (Abbildung 21).

Particle Recipe			4	
		R		
Bleiberg Test				0,0
Base Classifications				
IA Classifications From:				_ <u>~</u>
Test210222				
EDS Classifications From:				
Bleiberg Test				
Critaria				
Name	IA Classification	EDS Classification	-	-de-
30-65um	30-65um			**
65-125µm	65-125µm			
125-250µm	125-250µm			
250-500µm	250-500µm		=	P
500-1000µm	500-1000µm			arti
1000-2000µm	1000-2000µm			cle
0-30µm	0-30µm			
>2000µm	>2000µm			
Pyrit		Pyrit		
Quarz		Quarz		
Albit		Albit		-
Dolomit		Dolomit		
Chlorit		Chlorit		
Titanit		Titanit		
Apatit		Apatit		
Kalzit		Kalzit		
Rutil		Rutil		
Zirkon		Zirkon		
		Ilmenit	-	

Abbildung 21: PARTICLE RECIPE: a) Darstellung der Klassifikationen; b) Hinzufügen von Klassifikationen durch Import FROM IA und FROM EDS; c) weitere Optionen.

XI. <u>AUTOMATIC RUN</u>

a) Nach erfolgreicher Einstellung in den Registerkarten sowie Speicherung dieser Werte im SEM RECIPE mit SAVE (Abbildung 12: a)) und im APPLICATION RECIPE über den SAVE-Button (siehe Abbildung 11: b)) kann eine automatische Analyse über das APPLICATION RECIPE oder im Start-Dialogfeld (Abbildung 10) gestartet werden. Die einzelnen RECIPES sollten im APPLICATION RECIPE bestenfalls grün (jedoch zumindest orange) erscheinen und der Elektronenstrahl muss eingeschalten sein. Nach Klicken des Analyse-Buttons, sowie Auswahl von Speicherort, Halter und Schliffposition im Halter (durch Anklicken grün markieren), startet die Analyse. Bevor Partikel gemessen werden, erfolgt die im CALIBRATION RE-CIPE (Punkt VI) festgelegte Kalibrierung.

b) Wenn während einer automatischen Analyse die Nachricht FILAMENT HAS BLOWN erscheint, kann die Analyse nach Austausch des Filaments fortgesetzt werden, d.h. die Vakuumkammer muss zunächst gelüftet werden (VENT). Wenn nach erfolgreichem Wechsel des Filaments das Vakuum wieder aufgebaut ist (PUMP), wird durch Klicken auf CONTINUE automatisch der Elektronenstrahl eingeschalten und eine erneute Kalibrierung durchgeführt. Danach beginnt die Analyse auf jenem Feld, auf dem das Filament ausgefallen ist.

XII. Ergebnisse einsehen

- a) Nach Beendigung der Analyse können über die Navigationsleiste unter TOOLS → REVIEW OUTPUTS → STUB RESULTS die Analyseergebnisse eingesehen werden (Abbildung 22). Es folgt das Dialogfeld DO YOU HAVE THE CORRECT HOLDER FOR THIS BATCH CURRENTLY IN THE SEM? und kann mit YES oder No beantwortet werden. Wenn die zugehörige Probe montiert ist, kann auf ein spezifisches Feld oder Partikel zugegriffen werden.
- b) Unter VIEW → DISPLAY COLUMNS können die Konzentrationen bzw. Klassifikationen abgerufen werden. Es können sowohl die gemessenen als auch die normierten Elementkonzentrationen sowie die zugehörige Klassifikation als Excel-Tabelle exportiert werden. Ebenso sind die Spektren – insofern diese im EDS-RECIPE ausgewählt sind – aufrufbar (Abbildung 23). Mit Rechtsklick auf ein Analyseergebnis und Klicken auf GOTO PARTICLE bewegt sich der Probenhalter zu jenem Bereich. Um das richtige Partikel zu finden, empfiehlt sich oft die Vergrößerung zu reduzieren.
 - i) Als UNCLASSIFIED werden jene Ergebnisse definiert, die keiner EDS-Klassifikation zugeordnet werden.
 - ii) Ist die Gesamtzahl an Counts im Spektrum zu gering, werden die Ergebnisse als NOT CLASSIFIED bezeichnet.
 - iii) Zu kleine Partikel werden mit NOT ANALYSED ausgewiesen. Dies geschieht durch die Zuweisung der minimalen Partikelgröße im IMAGE ANALYSIS RE-CIPE.

Abbildung 22: Ergebnisse einsehen: a) Der richtige Pfad zur Datenbank (.db) muss gewählt sein; b) In Drop-Down-Menüs erfolgt die Zuweisung zur gemessenen Probe; c) Unter STUB RESULTS sind die Ergebnisse aufgelistet.

ile View	(— a)											
* • 🏋	•	🛃 🍙 •	iii	← b)								
Particle ID	C (C)	N (C)	0 (C)	F (C)	Na (C)	Mg (C)	AI (C)	Si (C)	P (C)	\$ (C)	CI (C)	K (C)
17618	0,00		36,44									
7621	0,00		34,60									
7622	0,00		43,38									
7623	0,00		30,47									
7625			6,42							7.23		
17644	0.00		29,53					2.83				
17648	0.00		34,19									
7650	0,00		31,42									
7651	0,00		42,70									
17652												
17653	0,00		39,70									
14681	0.00		30,43									
7654			43,85									
7655	0,00		31,49				1,17	2,48				
7042			14,50				3,17	6,71				
7656	0,00		41,44									
7657	0,00		33,95			5,10	2,63	2,46				
7045			17,88				11,68	11,25				
7050	0.00		43.05			11,60						
7658	0.00		30.83									
17659	0.00		17,93				9,95	8,74				
7660	0.00		34,93									
7661	0.00		36,91					0.04				
7069	0,00		37,52									
17088	0.00		40,57									
7095	0.00		32,55									
7119	0.00		40.70									
7124	0.00		37,01									
7125	0.00		21,89					1,77				
7662	0,00		38,60									
17663	0,00		29,99									
17664	0.00		16,74									
	A AA											

Abbildung 23: Auflistung der Ergebnisse: a) Möglichkeit der Auswahl der anzuzeigenden Partikel (z.B. COMPOSITE PARTICLES (grün) oder COMPOSITE PART PARTICLES (gelb) und Elementkonzentrationen und Klassifikationen zur zugehörigen Partikel-ID können aufgelistet werden (VIEW → DISPLAY COLUMS); b) Diverse Schaltflächen dienen zum Anzeigen des gemessenen Partikels sowie Spektrums, oder für den Export in Excel-Tabellen.

Die Analyseergebnisse zeigen häufig noch Verbesserungsbedarf. Es ist möglich, nach der Analyse und Überprüfung der Auswertung die Klassifikation zu überarbeiten. Dies trifft v.a. auf die Minerale mit der Kennzeichnung UNCLASSIFIED zu. Im Nachhinein können im EDS-RECIPE neue Minerale hinzugefügt oder die Elementgehalte geändert werden. Anschließend werden über TOOLS \rightarrow RETROSPECTIVE ANALYSIS \rightarrow ADD und Auswahl des richtigen Datenpfades die gewünschten Daten upgedatet. Der korrekte Halterplatz (STUB), die richtige Datenbank und das zugehörige APPLICATION RECIPE müssen gewählt werden (Abbildung 24). U.a. ist es so auch möglich die Farbkodierung der Partikel zu ändern. Es gibt drei Möglichkeiten der Neuklassifizierung:

- iv) Es können ausschließlich UNCLASSIFIED-Partikel neu eingeteilt werden (Reclassify unclassified items only, modify existing samples).
- v) Es können alle Daten mit der neuen Klassifikation neu eingeteilt werden (Reclassify using data from the output databas).

- vi) Es können alle Daten anhand der gespeicherten Bilder und/oder Spektren neu eingeteilt werden (Regenerate and Reclassify data (Use particle images/spectra))
- c) Die neue Auswertung kann wie in Punkt a) beschrieben eingesehen werden.

Retrospective Analysis		
Select Sample Please select a sample to reanalyse; when you have done so press next.		
Output Database:		
D:\images\Dollinger\SmartPI\Test\Math0.1.db		
□	Field Application Name Recipe Name Date of Analysis Batch Duration Status Message Operator Name Date of Sampling Sample Duration Batch ID Sample ID Stub Name Stub Position Sample Name	Value Test Bleiberg020321 Test Bleiberg020321 26.07.2021 09:08:44 07:03:33 Recipe 'Test Bleiberg020321' The run completed normally ONUKPI 26.07.2021 09:08:44 07:03:33 1 1 1 Stub_4 (61.45 , 18.87 , 5.53) Math<0.1
		Cancel I Prev Next S

Abbildung 24: RETROSPECTIVE ANALYSIS: Die zu ändernde Datenbank muss ausgewählt und der zugehörige Halterplatz (Stub) angeklickt werden. Nach Klicken auf NEXT und Auswahl des APPLICATION RECIPE kann die Art der Neuanalyse ausgewählt werden.

- d) SMARTPITM REPORTER
 - i) Der Reporter ist eine eigene Applikation zur Erstellung eines Analyseberichtes. Nach Beendigung einer automatischen Analyse ist es möglich zum SmartPI[™] Reporter weitergeleitet zu werden (VIEW THE RESULTS OF THE LAST RUN). Eine Zusammenfassung der Ergebnisse kann als Excel-File exportiert werden. So erfolgt u.a. die Anzeige der Anzahl der ermittelten Minerale in Tabellenform unter Zuordnung der Korngröße.
 - ii) Der Reporter kann auch über die zugehörige Applikation am Computer gestartet werden.
- e) SMARTPITM EXPLORER

i) Diese ebenfalls separate Applikation von SmartPI[™] dient zur Darstellung der aufgenommenen Bilder bzw. Partikel. Die Anzeige der Bilder erfolgt, sofern der richtige Pfad zum Speicherort der Dateien eingefügt ist. Durch Rechtsklick auf den zugehörigen Stub erscheint die Möglichkeit eine Montage zu erstellen und weiters auch diese zu speichern.

XIII. ESPRIT 1.9 FOR SMARTPI

a) Das Programm ESPRIT 1.9 FOR SMARTPI von BRUKER sollte nur geöffnet werden, wenn das Programm SmartPI geöffnet ist. Mit Hilfe der GOTO PARTICLE-Funktion (siehe Punkt XII.b)) kann ein Partikel mit längerer Messzeit (z.B. 10 s) gemessen und das Spektrum ausgewertet werden. Dies dient zum einen zur Bestätigung der Ergebnisse der kurzen Messungen in den automatischen Analysen von SmartPI. Zum anderen können Partikel identifiziert werden, die als UNCLASSIFIED ausgewiesen werden.

5.1. Einstellungen der Bleiberger Proben

Dieses Kapitel soll die wichtigsten Einstellungen zusammenfassen. Weitere Einstellungen, wie Transparenz, Einfärben, etc... sind nach Belieben zu wählen.

Durch Experimentieren mit unterschiedlichen Einstellungen, sind verschiedene Bezeichnungen der RECIPES entstanden. In Tabelle 5 sind die vielversprechendsten RE-CIPES für die Anschliffe dieser Masterarbeit aufgelistet. Diese wurden letztendlich auch für die Analysen mit SmartPI verwendet.

Die minimale Größe der zu messenden Partikel wurde mit 150 µm² definiert. Unterschiedliche STOP CRITERIA (z.B.: Stopp nach 2 Feldern oder nach 10 min Messzeit) wurden nur für die Versuchsanalysen verwendet. So konnte schnell ermittelt werden, ob die verwendeten Parameter in der Registerkarte IMAGE PROCESSING erfolgreich waren, d.h. dass einzelne Partikel anhand der unterschiedlichen BSE-Graustufen erkannt werden.

Im Probenhalter wird der Kupferstandard für die 4 cm-Anschliffe rechts oben eingebaut. Bis zu drei weiteren Anschliffen finden in den restlichen Halterplätzen dieses Probenhalters Platz. Der benötigte Halter war bereits programmiert. In Abhängigkeit von der Korngröße wurde die Größe und Anzahl der zu rasternden Felder gewählt. Somit wurde für große Korngrößen (z.B. 6.3 – 4 mm) eine geringe Vergrößerung (z.B. 50-fach) gewählt. Die Felder wurden mit der Funktion GRID OF FIELDS und mit 8-10 % Überlappung erstellt.

Die Kalibrierung von X-RAY CPS und X-RAY ENERGY erfolgte immer mit 300-facher Vergrößerung am Kupferstandard. Tabelle 6 zeigt weitere eingegebene Werte. Die Kalibration von BRIGHTNESS & CONTRAST wurde auf einem Kalzitpartikel durchgeführt, so, dass ein HISTOGRAMM PEAK von ~72 entstand. Gemessen wurde mit einer Anregungsspannung von 20 kV.

Der programmierte Weg des IMAGE PROCESSING RECIPE wurde bereits in Abbildung 16 und Punkt VII in Kapitel 5 dargestellt. Grundsätzlich sind gute Analysen nur durch Experimentieren mit den vorhandenen Schaltflächen erreichbar.

Im IMAGE ANALYSIS RECIPE wurden Korngrößenbereiche von 0-30 μ m, 30-65 μ m, 65-125 μ m, 125-250 μ m, 250-500 μ m, 500-1000 μ m, 1000-2000 μ m und >2000 μ m angeführt. Hier wurde nochmals definiert, dass die zu analysierenden Körner eine Mindestgröße von 15 μ m haben sollten.

Unter EDS RECIPE \rightarrow SETTINGS wurde als Partikelscanmethode SPOT CENTROID gewählt. Die X-RAY SETTINGS sind: 1000 min. Counts im Spektrum mit Standard Live-Analysezeit und 0,05 s Messzeit. Es wurden 39 Klassifikationen festgelegt (Anhang C1).

RECIPE	Bezeichnung
APPLICATION TYPE	Test Bleiberg020321
APPLICATION RECIPE	Test Bleiberg020321
SEM	Test210222_2
HOLDER	Test210222
CALIBRATION	Test010321
IMAGE PROCESSING	Bleiberg Test5
IMAGE ANALYSIS	Test210222
EDS	Bleiberg Test
PARTICLE	Bleiberg Test

Tabelle 5: Bezeichnung der RECIPES im Programm SmartPI[™].

Tabelle 6: Einstellungen für die Bleiberger Proben im CALIBRATION RECIPE (siehe auch Abbildung 15)

X-RAY CPS	
6000	X-Ray CPS
4 %	Tolerance
5	Scan Rate
300	Magnification
PROBE CURRENT	
None	Probe Current
X-RAY ENERGY	
Cu	Element
Κ-α	X-Ray Line

6. Ergebnisse

In diesem Kapitel werden die Auswertungen der Analysen der Bleiberger Halden dargestellt. Es werden die RFA- und pRFA-Ergebnisse der Halden Matthäus und Leininger der Probenahme 2021, sowie die REM-Ergebnisse der Halden Matthäus, Glück und Altstefanie der Probenahme 2018 behandelt. Zusätzlich sollen diese mit den Analysen der Probenahme 2019 verglichen werden. Der Fokus liegt auf den Konzentrationen von Beimengungen zu Blei und Zink – v.a. Molybdän und Cadmium. Außerdem sollen Unterschiede in den vorliegenden Proben ausgearbeitet werden.

6.1. RFA und pRFA

An den Halden Matthäus und Leininger wurden Proben zur Messung mittels RFA und pRFA entnommen. RFA-Messungen im Labor erfolgten an Schmelzpillen im Verhältnis 1:8 (Probe:Flussmittel). Die pRFA wurde sowohl im Feld direkt an Gesteinsproben als auch im Labor an ungeglühten und geglühten Pulverproben eingesetzt. An den im Feld gemessenen Proben gilt in den folgenden Kapiteln zwischen ungewaschenem und gewaschenem Material zu unterscheiden: Probenmaterial, welches direkt nach der Entnahme ohne weitere Behandlung mit pRFA gemessen wurde, wird als "ungewaschen" identifiziert. Probenmaterial, welches mit Leitungswasser von der überlagernden Tonschicht befreit wurde, wird als "gewaschen" bezeichnet. Die feinkörnige Kruste wurde vom grobkörnigeren Material gerubbelt.

Die mittels pRFA gemessenen Elemente Sn, Pd, Bi, Se, W, Co und Sb zeigten immer Werte unterhalb der Nachweisgrenze (NWG oder Limit of Detection = LOD) und werden deshalb nicht in den Auswertungen (Tabelle 14, Tabelle 15 und Tabelle 16 in Anhang B1) angeführt. Die Messungen mittels RFA an den Schmelzpillen wurde mit den WROXI-Standards kalibriert (Anhang B2). Für die Proben H1-3, 5-6, 8-10 wurden aufgrund niedriger Summenprozent der RFA-Analyse neue Schmelzpillen hergestellt, die bessere Gesamtsummen zeigten.

6.1.1. Halde Matthäus

Im Feld wurden mittels portabler RFA Messungen im Probensack auf ungewaschenem feinkörnigem Material, direkt auf ungewaschenen Steinen (bzw. grobkörniges bis kleinblockiges Material) und teilweise auf gewaschenem Material durchgeführt.

An den Karbonatbruchstücken hat sich eine sehr feinkörnige Kruste von ca. 1-2mm Dicke angelagert. Die Messungen zeigen eine deutliche Verringerung des Mo-Gehaltes am gewaschenen Material. Beim ungewaschenen Gestein schwanken die Mo-Gehalte zwischen 111 ppm (H9) und 2810 ppm (H5). Beim gewaschenen Gestein liegen die Gehalte an Molybdän immer unter 30 ppm und bei den Proben H5, H6 und H9 konnte kein Mo detektiert werden. Die Pb-Gehalte liegen beim ungewaschenen Gestein zwischen 2547 ppm (H11, Ausnahme: 258 ppm (H18)) und 3,3 % (H10), beim gewaschenen Gestein zwischen 358 ppm (H9) und 6246 ppm (Mischprobe Schreitbagger). Die höchsten Werte von Zink konnten an der ungewaschenen Probe H12 mit 2,6 % bestimmt werden. Nur Probe H18 zeigt Zn-Gehalte <1000 ppm für ungewaschene Proben. Eine große Schwankungsbreite gibt es bei den Zn-Gehalten der gewaschenen Proben (zwischen 137 ppm (H6) bis 3 % (Mischprobe Schreitbagger)). Bei den insgesamt neun gewaschenen Proben kann festgestellt werden, dass die Gehalte an Mo, Y, Rb, Pb, Fe, Ti und K im Vergleich zur ungewaschenen immer sinken. Zr, V und Cr können nur in den ungewaschenen Proben nachgewiesen werden. Die Werte an Ca, Mg, P, S steigen durch das Entfernen der Mo-reichen Kruste. Bei den restlichen Elementen kann durch das Entfernen der Mo-führenden Kruste keine eindeutige Zuteilung gemacht werden.

Die mittels Achat-Scheibenschwingmühle gemahlenen Proben wurden zur Herstellung von Schmelzpillen für RFA und zur Vergleichsmessung mit pRFA verwendet. Die Unterschiede der Messungen mit pRFA im Feld, pRFA an ungeglühten Pulverproben und RFA an Schmelzpillen sind in Karten im Anhang B3 für die Elemente Mo, Pb, Zn, Si, Al, Fe, Mg, Ca, P, S und Ba dargestellt. Hier ist zu erkennen, dass die Messungen im Feld nur selten mit den Messungen im Labor übereinstimmen. Vor allem für die Elemente Pb, Al und Mg sind die Gehalte in den ungeglühten Pulverproben erhöht. Auch wird verdeutlicht, dass sich die Konzentrationen an Molybdän und Zink durch das Glühen und Schmelzen nicht verändern. Auf der östlichen Haldenseite konnten mit pRFA-Pulver und RFA-Schmelzpillen höhere Mo-Werte gemessen werden (siehe Anhang B3). Erhöhte Mo-Gehalte sind v.a. an den Probenahmepunkten H12 (2238 ppm und

47

2126 ppm), H14 (4745 ppm und 3929 ppm) und H16 (1925 ppm und 1475 ppm) zu finden. Im Vergleich dazu liegen die Mo-Gehalte in der Mitte und auf der westlichen Haldenseite (H1-H11) bei einem Mittelwert von 643 ppm und 534 ppm. Eine ähnliche Verteilung lässt sich auch für die Elemente Pb und Zn definieren: An der Ostseite sind die Werte höher als im Westen.

Trendliniendiagramme in Abbildung 25 (Mo und Pb) und Anhang B4 (Zn, Si, Al, Fe, Mg,Ca, P, S und Ba) zeigen, dass die Werte der ungeglühten Pulver (pRFA) mit den Schmelzpillen (RFA) in den meisten Fällen korrelieren. Das Bestimmtheitsmaß (R²) von Mo, Pb, Zn, Fe, Ca und Ba nähert sich dem Wert 1 (siehe auch Tabelle 7). Silizium zeigt ein Bestimmtheitsmaß von ~0.7 Bei den Elementen Al, Mg, P und S ist dieser Wert deutlich geringer. Tabelle 7 verdeutlicht die Steigung k und die y-Achsenabweichung d aus Gleichung (3).

$$y = k * x + d \tag{3}$$

Die Steigung im Vergleich der ungeglühten Pulver zu Schmelzpillen ist bei Mo, Zn, Fe und Ba im Bereich 0,8-1,2. Ansonsten zeigen die Trendliniendiagramme große Abweichungen. Bei Pb ist die Steigung sogar bei einem Faktor 4,3. Das bedeutet, dass die ungeglühten Pulver deutlich mehr Pb enthalten als die Schmelzpillen. Dennoch kann festgehalten werden, dass die Pulverproben (pRFA) und Schmelzpillen (RFA) häufig ähnliche Werte ergeben und besser korrelieren als mit den Messungen im Feld (pRFA).

Um den Grund für die Differenzen der pRFA- und RFA-Messungen zu erläutern, wurden fünf geglühte Pulverproben (H2, H6, H7, H12 und H13B) mit pRFA gemessen. Die Auswertung von geglühtem zu ungeglühtem Pulver ergibt für die meisten Minerale – darunter Mo, Zn, Fe, Si, Ca, und Ba – eine Steigung >1. Das bedeutet, dass die Gehalte durch das Glühen bei 1050°C ansteigen. Konträr nehmen die Gehalte von Pb und Mg ab, S-Gehalte sinken auf null. Grafische und tabellarische Darstellungen sind in Abbildung 26, Tabelle 8 und Anhang B4 ersichtlich. Das Bestimmtheitsmaß R² nähert sich in den meisten Fällen dem Wert 1. Nur bei P, Al und S gibt es gravierende Abweichungen.

Abbildung 25: Trendliniendiagramme von Mo (a-c) und Pb (d-f) anhand der Messwerte von ungeglühtem Pulver (pRFA), Halde (pRFA) und Schmelzpille (RFA). Weitere Darstellungen sind in Anhang B4.

 Tabelle 7: Vergleich der Steigung (k), des y-Achsenabstandes (d) und des Bestimmtheitsmaßes (R²) für ausgewählte Elemente durch Korrelationen der Messwerte von ungeglühtem Pulver (pRFA), Halde (pRFA) und Schmelzpillen (RFA).

	Мо			Pb		
	k	d	R^2	k	d	R^2
Pulver ungeglüht/Halde	0,1731	878,84	0,0152	0,8473	2349,1	0,3582
Pulver ungeglüht/Schmelzpille	1,174	17,081	0,9926	4,331	-1212,5	0,9359
Halde/Schmelzpille	0,0979	727,56	0,0136	1,8316	5011,2	0,3355
		Zn			Si	
	k	d	R^2	k	d	R^2
Pulver ungeglüht/Halde	0,7352	-1223,4	0,5866	0,1651	4463,8	0,2382
Pulver ungeglüht/Schmelzpille	0,9075	242,64	0,9968	0,6675	3055,3	0,6601
Halde/Schmelzpille	0,7199	4267	0,5781	0,9254	15553	0,1452
		Al			Fe	
	k	d	R ²	k	d	R^2
Pulver ungeglüht/Halde	-0,0493	21870	0,0093	0,3947	-992,88	0,5443
Pulver ungeglüht/Schmelzpille	-0,2817	21700	0,0241	0,8823	172,14	0,9918
Halde/Schmelzpille	1,8906	8310,7	0,2827	1,2216	6124	0,5441
		Mg			Са	
	k	d	R ²	k	d	R ²
Pulver ungeglüht/Halde	0,2628	97917	0,015	0,0501	429117	0,0097
Pulver ungeglüht/Schmelzpille	-1,8066	105665	0,0349	1,884	-267217	0,8819
Halde/Schmelzpille	-0,5641	5174,5	0,0157	-0,2097	326931	0,0028
	Р			S		
	k	d	R ²	k	d	R^2
Pulver ungeglüht/Halde	-0,1135	753,51	0,005	-0,0132	488,46	0,052
Pulver ungeglüht/Schmelzpille	-2,1961	3820,7	0,4305	0,3587	199,62	0,3919
Halde/Schmelzpille	-0,5564	821,4	0,0711	-1,8595	5587,5	0,0352
		Ва				
	k	d	R^2			
Pulver ungeglüht/Halde	4 0700	246 75	0 3377			
5.5	1,3768	-240,75	0,0077			
Pulver ungeglüht/Schmelzpille	1,3768 0,8945	101	0,9901			

Abbildung 26: Gegenüberstellung von pRFA-Messungen auf geglühtem und ungeglühtem Pulver für Mo (a), Pb (b), Zn (c) und Fe (d).

Tabelle 8: Vergleich der Steigung (k)	, des y-Achsenabstandes (d) und des	Bestimmtheitsmaßes (R ²) für ausge-
wählte Elemente durch Korrelati	onen der Messwerte von geglühtem (und ungeglühtem Pulver (pRFA).

	Мо			Pb			
	k	d	R ²	k	d	R ²	
Pulver geglüht/ungeglüht	2,2763	-89,559	0,9978	0,2516	1745	0,8697	
		Zn			Si		
	k	d	R ²	k	d	R ²	
Pulver geglüht/ungeglüht	1,5214	-92,518	0,9987	1,9399	-5706,7	0,6759	
		AI			Fe		
	k	d	R^2	k	d	R^2	
Pulver geglüht/ungeglüht	-0,0474	35091	0,0135	1,417	133,78	0,9972	
		Mg		Са			
	k	d	R^2	k	d	R^2	
Pulver geglüht/ungeglüht	0,6849	94821	0,8775	1,2941	28284	0,9551	
		Р			S		
	k	d	R^2	k	d	R^2	
Pulver geglüht/ungeglüht	0,2369	407,85	0,0389	0	0	х	
	Ва						
	k	d	R^2				
Pulver geglüht/ungeglüht	1,4132	-141,51	0,9965				

Cadmium und Germanium wurden in Bleiberg aus Sphalerit gewonnen. Die Gehalte an Cd wurden ausschließlich mit pRFA-Messungen analysiert, jene von Ge wurden nicht bestimmt. Im Feld wurden an Probenahmepunkt H13-Bohrung 373 ppm Cd gemessen, bei Punkt H13 und H12 wurden ca. 140 ppm bestimmt. Weitere hohe Cd-Anteile zeigt die Mischprobe des Schreitbaggers mit 145 ppm für die ungewaschene und 228 ppm für die gewaschene Probe. Die Pulvermessung bestätigt die erhöhten Cd-Gehalte an den Punkten H13-Bohrung, H13 und H12. Germanium wurde mit den verwendeten Methoden nicht gemessen. Die Zn/Cd-Verhältnisse in den ungeglühten Pulverproben schwanken von 347/0 ppm (H18) bis 28248/162 ppm (H12). In den geglühten Pulvern sind Zn und Cd erhöht. So steigt in Probe H12 der Cd-Gehalt von 162 ppm (ungeglüht) auf 265 ppm (geglüht).

Die mit Auger entnommene Probe H13_B zeigt höhere Mo-Gehalte (0,11 %) in der Schmelzpille als die mit Spaten entnommene Probe H13 (0,05 %). Die Mischprobe zeigt Mo-Gehalte im Bereich von 0,1 %.

6.1.1.1. C- und S-Untersuchungen

Mit dem LECO-Gerät wurden die Gehalte an Kohlenstoff und Schwefel untersucht. Aus dem C-Anteil lässt sich die Menge CO₂ über den Element-Oxid-Faktor (3,664 – ermittelt über die molaren Massen von C = 12,011 g/mol und CO₂ = 44,01 g/mol) bestimmen und in weiterer Folge der CaCO₃-Gehalt über eine stöchiometrische Berechnung nach Gleichung (4).

$$CaCO_3 (s) \rightarrow CaO (s) + CO_2 (g)$$
 (4)

In Tabelle 9 sind die berechneten Konzentrationen an CaCO₃ (100,087 g/mol) und CaO (40.078 g/mol) einzusehen. Auch sind die mittels WROXI-Kalibrierung ermittelten und LOI-korrigierten CaO-Gehalte, sowie der für die Korrektur berechnete LOI dargestellt. Die Gegenüberstellung zeigt, dass der Glühverlust und das berechnete CO₂ im gleichen Bereich liegen. Die größten Differenzen von 4,4 bzw. 4,8 % gibt es bei den Proben H16 bzw. H18. Das berechnete CaO und das mittels RFA-Messung und LOI-Korrektur ermittelte CaO haben ebenfalls geringe Abweichungen von <4 %. Die einzige Ausnahme bildet Probe H18 mit einer Differenz von 10.4 %.

Eine Ermittlung der Schwefel-Konzentrationen ist bei den meisten Proben nicht möglich. Wenn kein eindeutiger Schwefel-Peak erkenntlich wurde, mussten die Analysen nach einigen Sekunden abgebrochen werden. Es kann davon ausgegangen werden, dass in den meisten Proben kein Schwefel enthalten ist. Eine Ausnahme bildet Probe H7. Hier konnte mittels LECO-Bestimmung Schwefel nachgewiesen werden. Die Probe H7 zeigt auch bei den RFA-Messungen an Schmelzpillen mit WROXI-Kalibration einen SO₃-Wert von 1,12 % nach LOI-Korrektur. Der Element-Oxid-Faktor für die Umrechnung von S auf SO₃ beträgt 2,497 (S = 32,066 g/mol, SO₃ = 80,064 g/mol). Somit ergibt sich mittels LECO-Methode für die Probe H7 ein SO₃-Gehalt von 0,95 %.

Die berechneten LOI-Gehalte und CO₂-Werte konzentrieren sich zwar im Bereich von ~40 %, korrelieren allerdings nicht gut (Abbildung 27).

Tabelle 9: LECO C- und S-Untersuchung: Die ermittelten C-Gehalte werden zur Berechnung der CO₂-Konzentration verwendet. Die Messung der S-Gehalte wurde bei den meisten Proben abgebrochen (durchgestrichene Werte, Ausnahme H7). Nach Gleichung (4) wurde der CaCO₃-Gehalt bestimmt.

Q	Einwaage [g]	C [%]	S [%]	CaCO _{3,berechnet} [%]	CaO _{berechnet} [%]	CaOLOI Korrektur [%]	CO2,berechnet [%]	[%] NOI
H1	0.0493	11.42200	0.39770	95.179	53.327	50.919	41.852	41.358
H2	0.0534	11.66900	0.15800	97.237	54.481	52.342	42.757	41.893
H3	0.0465	11.93800	0.20170	99.479	55.737	53.606	43.742	42.780
H4	0.2069	11.82200	0.03155	98.512	55.195	53.628	43.317	43.248
H5	0.1548	11.92700	0.03882	99.387	55.685	52.273	43.702	41.706
H6	0.1075	11.64400	0.03499	97.029	54.364	53.501	42.665	43.081
H7	0.1705	11.40400	0.38070	95.029	53.243	53.153	41.786	39.778
H8	0.1008	10.93200	0.02638	91.096	51.040	53.635	40.056	42.812
H9	0.1191	10.82200	0.18080	90.179	50.526	54.481	39.653	41.574
H10	0.1622	10.91200	0.12220	90.929	50.946	53.480	39.983	42.243
H11	0.1340	11.36800	0.03167	94.729	53.075	54.136	41.654	43.230
H12	0.1823	10.02700	0.08532	83.555	46.814	46.951	36.740	38.307
H13	0.1466	10.96900	0.03966	91.404	51.212	50.797	40.192	41.463
H13 _B	0.1820	10.43000	0.01671	86.913	48.696	50.645	38.217	40.075
H14	0.1089	11.61900	0.02462	96.821	54.247	52.834	42.573	41.683
H15	0.1135	12.26300	0.03055	102.187	57.254	53.655	44.933	43.089
H16	0.1332	10.30700	0.01979	85.888	48.122	52.802	37.766	42.198
H17	0.1115	12.36200	0.03003	103.012	57.716	53.867	45.296	42.743
H18	0.2633	13.24200	0.02235	110.345	61.825	51.444	48.520	43.742
H_{MP}	0.1947	11.94700	0.02221	99.554	55.779	52.926	43.775	41.793

Abbildung 27: Darstellung der Steigung und des Bestimmtheitsmaßes von LOI [%] zu CO_{2, berechnet} [%].

6.1.2. Halde Leininger

Auf der Leininger Halde wurden Flotationsrückstände des modernen Bergbaus abgelagert. Hier betragen die Gehalte von Mo an den gemessenen Proben bis zu 50 ppm (RFA-Schmelzpille), 33 ppm (pRFA-Halde) bzw. 71 ppm (pRFA an ungeglühtem Pulver) und sind somit geringer als die Gehalte der Matthäus Halde. Die Werte von Pb betragen bis zu 1732 ppm (RFA-Schmelzpille), 3618 ppm (pRFA-Halde) bzw. 2784 ppm (pRFA-Pulver), jene von Zink können auch 1% überschreiten. Im Vergleich zur Matthäus-Halde sind die Gehalte an Ca auf der Leininger-Halde um rund 40 % geringer, allerdings kann eine erhöhte Konzentration an Si, Al, Fe, Mg und S identifiziert werden.

Die Halde ist mittlerweile begrünt.

6.2. REM-EDS mit SmartPI[™]

Zwölf Anschliffe der Halden Matthäus, Glück und Altstefanie aus der Haldenbeprobung von 2018 wurden nach Korngrößenklassifizierung durch Siebanalyse mit dem Programm SmartPI[™] untersucht. Die Ergebnisse zeigen unterschiedliche Werte der als NOT ANALYSED, NOT CLASSIFIED und UNCLASSIFIED definierten Partikel, teilweise weit über 20 % (Anhang C2). Um die Proben besser vergleichen zu können, wurden die nicht zuordenbaren Partikel von der Gesamtsumme subtrahiert und das Ergebnis auf 100% normiert. Das Weitern wurden Partikel auch mit längerer Messzeit (10 s) untersucht, um Klarheit über die Genauigkeit der Ergebnisse zu schaffen.

6.2.1. Halde Matthäus

Von der Halde Matthäus gibt es sieben vorliegende Schliffe mit Korngrößen bis 6.3 mm (siehe Tabelle 4). Bei den Analysen mit SmartPI[™] ist deutlich zu sehen, dass große Korngrößenbereiche (6.3-4 mm und 4-2 mm) keine zufriedenstellenden Ergebnisse liefern. Bei Körnern, die auf mehreren Feldern liegen, kommt es vor, dass diese sowohl einem Mineral zugeordnet als auch als UNCLASSIFIED, NOT ANALYSED und NOT CLASSI-FIED bezeichnet werden können. Eine Montage der aufgenommenen Felder zeigt dies für die Kornfraktion 6.3-4 mm (Abbildung 28). Über 50% der gemessenen Partikel können keinem Mineral zugeordnet werden.

Abbildung 28: Am Anschliff Math6.3-4 ist an den großen Kalzit-Körnern zu erkennen, dass diese mehrfach gemessen werden und dass die Messungen unterschiedliche Ergebnisse liefern können. Das Bild zeigt eine Montage aus 29 Feldern mit einer Gesamtfläche von 680,14 mm².

Bei kleineren Kornfraktionen gelingt die Zuordnung viel besser. Dies kann z.B. bei der Kornklasse 0.3-0.1 mm gut beobachtet werden (Abbildung 29). Ab dieser Korngröße liegen die metallreichen Partikel größtenteils frei vor.

Den Großteil der gemessenen Partikel machen Kalzit und Dolomit aus (>60 %). In der kleinsten Kornfraktion (<0.1 mm) sind prozentmäßig die meisten Mo- und Pb-Minerale enthalten. Von den gemessenen Partikeln sind dort über 1 % Wulfenit und 6 % Cerussit sowie ~0,5 % Galenit mit SmartPI[™] ermittelt worden. Die Gehalte an Sphalerit sind mit ~0,01 % sehr gering. Hingegen liegen die Gehalte an Smithsonit, zinkhaltigem Kalzit bzw. Dolomit und Zn-Limonit in den meisten Kornfraktionen jeweils zwischen ~2-7 %.

In den gröberen Fraktionen (>0.3 mm) sind die Wertmineralphasen im karbonatischen Material eingeschlossen oder mit Gangartmineralen (neben Karbonat auch Quarz, Baryt und Fluorit) verwachsen. Zum Teil sind die Wertmineralphasen auch an schwer lösliche, feinkörnige Eisenhydroxide gebunden. Das sind v.a. Pb-, Mo- und Zn-führende Limonite. Mo/Pb-Limonit-Gehalte betragen in den Schliffen ab Korngröße <1 mm fast 1 %. Zn-Limonit ist ab Korngröße <4 mm mit bis zu 6,8 % angereichert.

Vergleichende Darstellungen aller zwölf Anschliffe der drei Halden sind in Kapitel 6.2.4 und Tabelle 11, Tabelle 12 und Abbildung 34 erläutert.

Abbildung 29: Schliff Math0.3-0.1 mit 3,77 % Smithsonit, 3,33 % Cerussit und 0,51 % Wulfenit gemessen auf 224 Feldern und einer Gesamtfläche von 554,88 mm².

Bei der Beprobung am 28.05.2021 wurde ein Handstück der Matthäus-Halde entnommenen, welches cm-große Galenit-Kristalle zeigt. In diesem konnte eine Zonierung von Wulfenit, Anglesit, Cerussit und Galenit gefunden werden. Untersuchungen mit Digitalmikroskop und REM zeigen die Umbildung von Galenit zu Cerussit und Wulfenit mit Einschaltungen von Anglesit (Abbildung 30 und Abbildung 31, Tabelle 10). Der zumeist feinkörnige Wulfenit ist bei genauerer Betrachtung auch mit freiem Auge erkennbar. Durch diese Untersuchungen kann eine Alteration von Bleiglanz zum Molybdän-führenden Wulfenit belegt werden.

Abbildung 30: Eine metallische Zonierung im Karbonatgestein ist mit freiem Auge nicht genau erkennbar (li). Diese tritt durch Untersuchung mit Auflichtmikroskopie (re) deutlich zum Vorschein (Digitalmikroskop, Fotos: Frank Melcher).

Abbildung 31: Zonierung um Galenit (gal) mit Cerussit (cerus), Anglesit (angl) und Wulfenit (wulf). Am Rand ist eine Fe-Oxid-Phase mit Anteilen von Zn, Pb und As zu finden (REM, 55-fache Vergrößerung, Foto: Frank Melcher).

Tabelle 10: Analysen zu Abbildung 31.

Sulfide	0	Pb	S								
	[Gew. %]	[Gew. %]	[Gew. %]								
Galenit	0,57	89,74	9,68								
Karbonate	Pb	PbCO ₃									
	[Gew. %]	[Gew. %]									
Cerussit	80,26	103,50									
Oxide/Sulfate /Molybdate	AI_2O_3	As_2O_3	CaO	FeO	MgO	MnO	MoO₃	PbO	SiO ₂	SO₃	Zn
	[Gew. %]	[Gew. %]	[Gew. %]	[Gew. %]		[Gew. %]	[Gew. %]	[Gew. %]	[Gew. %]	[Gew. %]	[Gew
Wulfenit							30,80	69,20			
Anglesit								78,60		21,40	
Fe-Oxid	4,56	3,04	2,06	68,67	0,04	0,09		5,56	6,09		9,8

6.2.2. Halde Glück

Der Gehalt an Smithsonit steigt mit abnehmender Korngröße auf fast 15 %. Die Werte des zinkhaltigen Karbonates auf der Glück-Halde betragen für die jeweiligen Korngrößen ~6 %. 0,44 % Sphalerit wurden mit SmartPITM für die Kornklasse 0.3-0.1 mm bestimmt. Die Anteile von Wulfenit, Galenit und Cerussit nehmen zwar mit abnehmender Korngröße zu, betragen jedoch höchstens 0,23 %, 0,12 % und 1,13 % (0.3-0.1 mm).

Auffallend ist der hohe Anteil an Fluorit mit 10,4 % (1-0.5 mm), 19,3 % (0.5-0.3 mm) und fast 8 % (0.3-0.1 mm). Die grün eingefärbten Fluorit-Partikel stechen auch bildlich in Abbildung 32 deutlich hervor. Es ist auch zu erkennen, dass die metallhaltigen Partikel bei dieser Korngröße größtenteils frei vorliegen.

Abbildung 32: Schliff Glück0.3-0.1. mit 14,28 % Smithsonit, 0,44 % Sphalerit, 1,13 % Cerussit, 0,23 % Wulfenit und 7,98 % Fluorit gemessen auf 224 Feldern und einer Gesamtfläche von 554,88 mm².

6.2.3. Halde Altstefanie

Die Anschliffe der Altstefanie-Halde zeigen einen sehr hohen Glimmer-Anteil. Hier finden sich für die Kornfraktion 4-1 mm ein Anteil von 13,8 % und für 1-0,5 mm sogar von 22 %. Mit <1 % bleiben Chlorit und Fraipontit jedoch im niedrigen Bereich. Sphalerit konnte nur im Anschliff Altst1-0,5 mit 0,43 % bestimmt werden. Der Anteil an Smithsonit ist im gleichen Anschliff höher (1,16 %) als bei der größeren Fraktion mit 4-1 mm (0,09 %). Galenit und Wulfenit befinden sich deutlich unterhalb von 1 %. Cerussit ist mit bis zu 1,85 % (4-1 mm) vertreten.

Die bildliche Darstellung der mineralogischen Verteilung ist in Abbildung 33 zu sehen.

Abbildung 33: Schliff Altst1-0.5 mit 0,6 % Smithsonit, 0,2 % Sphalerit, 0,2 % Cerussit, 0,02 % Wulfenit, 11,7 % Glimmer, 0,1 % Chlorit und 0,3 % Fraipontit gemessen auf 80 Feldern und einer Gesamtfläche von 458,7 mm².

6.2.4. Mineralogie

Den Hauptteil der Minerale bilden die Karbonate Kalzit und Dolomit. Diese sind sehr kantig ausgebildet bzw. teilweise abgerundet. Die grobkörnigeren Karbonate schließen häufig andere Minerale ein. Als zinkhaltiger Kalzit werden für diese Arbeit jene Phasen bezeichnet, deren Ca-Gehalt zwischen 10-50 % und Zn-Gehalt bis zu 40% beträgt.

Einen großen Anteil des Materials bildet feinkörniger Limonit mit variablen Gehalten von Mo, Pb und Zn. Aus den SmartPITM-Daten geht hervor, dass in den Limoniten zwischen 3 und 30 % Mo, Pb oder Zn enthalten sind. Im zinkhaltigen Aluminium-Silikat Fraipontit (siehe Anhang C3, Abbildung 63) variiert der Zn-Gehalt zwischen 10 und 50 %. Sphalerit ist wenig vorhanden und ist mit Kalzit assoziiert. Die Korngröße des unregelmäßig ausgebildeten Zn-Sulfides kann 500 µm betragen. Viel häufiger hingegen tritt das Zinkkarbonat Smithsonit auf (Abbildung 72). Die Partikel können bis zu 2 mm erreichen, sind unregelmäßig ausgebildet und mit Kalzit, teilweise auch Baryt, assoziiert. Das Zn-Silikat Hemimorphit (Abbildung 71) zeigt komplexere Verwachsungen mit karbonatischen Bruchstücken und Korngrößen bis 2 mm. Der im Karbonat verwachsene, würfelige Galenit kann max. 1 mm erreichen. Ein sehr ähnliches

Erscheinungsbild zeigen Wulfenit und Anglesit (siehe Kapitel 6.2.6). Das Pb-Molybdat und das Pb-Sulfat treten meist sehr feinkörnig mit einer max. Korngröße von 500 µm auf. Das selten auftretende globular ausgebildete Pb-Mn-Oxid Coronadit (Abbildung 68) bildet bis 250 µm messende Partikel. Wesentlich dominanter tritt das Pb-Karbonat Cerussit in Erscheinung, welcher sogar bis zu 2 mm Korngröße aufweist (siehe Kapitel 6.2.6).

Nur in einigen Schliffen konnte mit SmartPI[™] Pyrit analysiert werden (Abbildung 71). Die max. zwei Partikel pro Anschliff können einer Korngröße <30 µm zugewiesen werden. Ähnlich selten ist Chalkopyrit, welcher mit bis zu 65 µm Korngröße vorliegt. Der tafelig ausgebildete Albit (Abbildung 58) ist selten und tritt in Korngrößen bis 125 µm auf. Die max. Korngröße von Vanadinit liegt ebenfalls bei 125 µm, allerdings ist das Mineral teilweise sehr komplex im karbonatischen Nebengestein verwachsen. Einige Vanadinit-Partikel weisen bis zu 25 % Zn auf und könnten auf Descloizit hinweisen (Abbildung 67). Bis 1 mm große Fluorit-Partikel treten vermehrt in der Glück-Halde auf. Komplexe Verwachsungen von Fluorit treten in Dolomit und Kalzit auf (Abbildung 60). Der bis zu 2 mm große Baryt ist leistenförmig bis tafelig ausgebildet (Abbildung 59). Quarz ist als gerundete Komponente häufig in Kalzit und Dolomit eingeschlossen, kommt vermehrt in Korngrößen <250 µm vor und kann >4 % des Gesamtanteils betragen.

6.2.5. Mineralogischer Vergleich der Halden

In den Anschliffen mit Korngröße >0.3 mm sind die Wertmineralphasen hauptsächlich im karbonatischen Nebengestein und der Gangart eingebettet. Teilweise gibt es Verwachsungen der metallführenden Phasen mit Limonit und Gangartmineralen wie Quarz, Fluorit und Baryt. Ab Korngröße <0.3 mm liegen die metallreichen Bestandteile größtenteils frei vor.

Die prozentuelle Darstellung der Mineralgehalte in den Anschliffen verdeutlicht die Unterschiede der Halden Matthäus, Glück und Altstefanie (Tabelle 11Tabelle 12, Abbildung 34). Dabei handelt es sich um die auf die identifizierten Phasen normierten Werte ohne NOT ANALYSED, NOT CLASSIFIED und UNCLASSIFIED.

Im Vergleich zu Matthäus und Altstefanie zeigt die Glück-Halde erhöhte Konzentrationen von Fluorit (7,98-19,29 %) und den Zn-führenden Bestandteilen Smithsonit (8,9514,28 %), Sphalerit (0,08-0,44 %) und Zn-Kalzit/Dolomit (5,54-6,66 %). Die Halde Altstefanie weist den größten Glimmer-Anteil von fast 22 % für die Korngröße 1-0.5mm auf. Auf den anderen Halden übersteigt der Glimmer-Gehalt die 3 %-Marke in den einzelnen Fraktionen nicht. Mit 1,30 % hebt sich der Wulfenit-Gehalt der Matthäus-Halde von den anderen Halden ab. Auch zeigt die Korrelationsmatrix in Tabelle 12 die Zusammenhänge zwischen den einzelnen Mineralphasen. Folgende Wertmineralphasen korrelieren sehr gut: Cerussit mit Anglesit, Chlorit, Galenit, Ilmenit, Rutil und Wulfenit. Wulfenit korreliert auch gut mit Hemimorphit und Rutil. Bei Sphalerit und Smithsonit gibt es gute Korrelationswerte mit Baryt. Tabelle 11: Anteile der Minerale in den zwölf Anschliffen der Matthäus-, Glück- und Altstefanie-Halden in Prozent, normiert auf 100 % nach Abzug der als Not Analysed, Not Classified und Unclassified ausgewiesenen Phasen, dargestellt in Rot (<0,5 %), Hellgelb (0,5-1 %), Dunkelgelb (1-5 %), Hellgrün (5-10 %), Dunkelgrün (10-45 %) und Weiß (>45 %).

	Math 6.3/4	Math 4/2	Math 2/1	Math 1/0.5	Math 0.5/0.3	Math 0.3/0.1	Math <0.1	Glück 1/0.5	Glück 0.5/0.3	Glück 0.3/0.1	Altst 4/1	Altst 1/0.5
	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
Albit	0,00	0,13	0,01	0,03	0,02	0,03	0,17	0,02	0,03	0,01	0,05	0,06
Anglesit	0,20	0,22	0,44	0,34	0,42	0,51	1,49	0,07	0,07	0,13	0,09	0,03
Anhydrit	0,03	0,03	0,02	0,01	0,02	0,00	0,01	0,02	0,00	0,01	0,00	0,00
Ankerit	0,14	0,19	0,12	0,23	0,33	0,16	0,26	0,06	0,06	0,04	0,09	0,07
Apatit	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Baryt	0,00	0,02	0,00	0,00	0,11	0,73	0,47	1,31	4,16	9,12	0,46	2,41
Cerussit	0,41	0,19	1,59	1,61	2,54	3,33	7,20	0,52	0,87	1,13	1,85	0,32
Chalkopyrit	0,14	0,03	0,07	0,00	0,02	0,00	0,04	0,01	0,00	0,01	0,00	0,00
Chlorit	0,00	0,07	0,02	0,05	0,05	0,17	0,46	0,02	0,02	0,03	0,09	0,26
Coronadit	0,00	0,10	0,05	0,05	0,08	0,04	0,06	0,00	0,02	0,02	0,00	0,00
Dolomit	14,45	0,60	2,86	2,65	1,65	7,14	3,85	2,56	1,32	2,06	14,84	12,00
Epidot	0,31	0,21	0,13	0,19	0,47	0,31	1,37	0,11	0,06	0,09	0,83	2,03
Fluorit	0,99	0,03	0,96	0,00	0,00	0,10	0,13	10,41	19,29	7,98	0,09	0,29
Fraipontit	0,44	9,08	3,45	3,11	3,52	3,36	3,38	1,77	2,91	2,85	0,32	0,63
Galenit	0,20	0,02	0,22	0,23	0,39	0,55	0,54	0,08	0,09	0,12	0,42	0,02
Glimmer-Gruppe	0,17	0,59	0,22	1,59	0,40	0,64	2,97	0,47	0,23	0,45	13,78	21,96
Hemimorphit	11,92	0,13	0,76	0,29	1,14	0,55	0,32	3,66	2,51	3,02	0,05	0,19
Ilmenit	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00
Kalzit	57,3	69,7	67,8	65,7	63,3	64,9	65,0	59,7	47,5	49,7	57,1	51,4
Limonit	0,92	2,37	3,31	4,51	5,90	3,61	1,85	2,07	0,94	0,65	3,74	1,45
Magnesit	0,00	0,06	0,01	0,02	0,02	0,00	0,01	0,04	0,01	0,01	0,00	0,01
Mo/Pb-Limonit	0,03	0,15	0,38	0,52	0,95	0,66	0,26	0,13	0,12	0,18	0,23	0,05
Pyrit	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,27
Quarz	4,89	5,96	6,47	3,39	1,17	1,32	1,93	1,28	0,74	1,02	4,30	1,90
Rutil	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,01
Smithsonit	0,55	0,85	5,73	5,02	6,27	3,77	1,99	8,95	11,67	14,28	0,09	1,16
Sphalerit	0,03	0,03	0,00	0,01	0,00	0,01	0,01	0,22	0,08	0,44	0,00	0,43
Titanomagnetit	0,00	0,00	0,00	0,01	0,00	0,01	0,01	0,00	0,00	0,00	0,00	0,00
Vanadinit	0,07	0,01	0,03	0,04	0,09	0,05	0,05	0,00	0,02	0,01	0,00	0,01
Wulfenit	0,38	0,16	0,60	0,38	0,63	0,51	1,30	0,06	0,12	0,23	0,37	0,05
Zirkon	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Zn-Kalzit/Dolomit	6,22	3,16	2,31	3,19	3,93	2,70	2,53	5,54	6,66	5,93	0,69	1,43
Zn-Limonit	0,24	5,93	2,42	6,83	6,54	4,83	2,29	0,91	0,50	0,52	0,55	1,53

-	
4	
2	
1	
Ϋ́	
2	
<u>ص</u>	
4	
3	
ä	
5	
3	
ž	
g)
0	
N	
U	
9	
_	
Ð	
3	
2	
0	
š	
.=	
2	
<	
5	
ധ	
\sim	
g	
~	
.0	
1	
in in	
š	
2	
S	
5	
0	
. <u>-</u>	
3	
-0	
Ð	
E	
²	
3	
~	
· · .	
N	
7	
4.	
_Φ	
-	
Ð	
9	
, (C	
F	

JinomiJ-nZ																																	-
Zn-Kalzit/Dolomit																																-	-0,3
Zirkon																															-	-0,4	-0,1
tin ∋1lu\/√																														-	-0,1	-0,3	0,2
Vanadinit																													-	0,6	-0,2	0,1	0,4
Titanomagnetit																												-	0,3	0,4	9	-0,2	0,3
Sphalerit																											-	0	-0,4	-0,5	0,4	0,2	-0,4
Smithsonit																										-	0,4	-0,1	-0,2	-0,3	-0,2	0,7	-0,2
Rutil																									-	-0,2	-0,1	0,5	0,1	0,7	0,1	-0,2	-0,1
Quarz																								-	-0,2	-0,6	-0,4	-0,6	-0,1	0	0,3	-0,3	0,1
Pyrit																							-	-0,1	0,1	-0,3	0,6	0,2	-0,2	-0,3	0,7	-0,4	-0,1
tinomi∆-d9\oM																						-	-0,3	-0,2	-0,1	0	-0,4	0,3	0,7	0,4	-0,2	-0,2	0,7
tisəngaM																					-	-0,1	0	0,2	Ŷ	Ŷ	0	0	-0,3	-0,3	-0,1	0,1	0,4
tinomit																				-	0,1	0,9	-0,2	0,1	-0,2	-0,2	-0,6	0,2	0,4	0,3	-0,1	-0,5	0,7
Kalzit																			-	0,6	0,4	0,5	-0,3	0,5	0,2	-0,5	-0,7	0,1	0,3	0,5	-0,1	-0,4	0,7
tinemII																		-	0,3	9	-0,2	0,1	-0,1	-0,2	0,8	-0,2	-0,3	0,6	0,3	0,8	-0,2	-0,2	0,1
Hemimorphit																	-	-0,2	-0,3	-0,5	-0,2	-0,4	-0,2	0,1	-0,2	0	0	-0,3	0,3	-0,2	-0,2	0,7	-0,5
aqqui ലംബന്ദില																-	-0,3	-0,1	-0,4	-0,1	-0,2	-0,3	0,8	Ŷ	0,1	-0,4	0,4	0,1	-0,3	-0,2	0,6	-0,6	-0,3
Galenit															-	-0,1	-0,2	0,7	0,4	0,5	-0,5	0,6	-0,4	-0,1	0,4	-0,3	-0,6	0,4	0,5	0,8	-0,3	-0,4	0,2
Fraip ontit														-	-0,1	-0,5	-0,4	0,1	0,6	0,1	0,7	0,2	-0,3	0,3	Ŷ	0	-0,3	-0,1	9	0,1	-0,2	Ŷ	0,6
Fluorit													-	-0,1	-0,4	-0,3	0,2	-0,2	-0,6	-0,5	0	-0,4	-0,2	-0,5	-0,1	0,8	0,3	-0,1	-0,4	-0,4	-0,2	0,7	-0,5
Epidot												-	-0,4	-0,3	0,1	0,8	-0,3	0,4	-0,2	-0,1	-0,2	-0,2	0,8	-0,1	0,6	-0,5	0,3	0,4	0	0,2	0,5	-0,6	-0,1
Dolomit											-	0,5	-0,4	-0,7	0,2	0,6	0,4		-0,3	-0,1	-0,5	-0,3	0,4	0,2	-0,1	-0,6	0	-0,2	9	-0,1	0,2	-0,3	-0,4
Coronadit										-	-0,7	-0,2	-0,3	0,9	0,2	-0,4	-0,4	0,2	0,7	0,5	0,5	0,5	-0,3	0,2	0,1	-0,1	-0,5	0,1	0,4	0,4	-0,2	-0,2	0,8
Chlorit									-	0,1	0,1	0,8	-0,3	°	0,5	0,4	-0,4	0,8	0,1	-0,1	-0,1	9	0,4	-0,2	0,9	-0,4	0	0,6	0,1	0,6	0,2	-0,5	0
Chalkopyrit								-	-0,1	-0,1	0,3	-0,1	-0,2	-0,1	9	-0,3	0,8	Ŷ	0,2	-0,3	-0,2	-0,3	-0,2	0,5	0,1	-0,3	-0,3	-0,4	0,4	0,2	0,1	0,3	-0,2
Cerussit							-	-0,1	0,8	0,3	-0,1	0,3	-0,3	0	0,8	-0,1	-0,3	0,9	0,3	0,2	-0,3	0,4	-0,3	-0,2	0,8	-0,2	-0,4	0,6	0,4	0,9	-0,2	-0,3	0,2
Baryt						-	-0,2	-0,3	-0,1	-0,3	-0,2	-0,1	0,6	-0,1	-0,4	Ŷ	0,1	-0,2	-0,7	-0,6	-0,2	-0,3	0,1	-0,5	-0,1	0,8	0,8	-0,2	-0,4	-0,3	9	0,5	-0,5
Apatit					-	0,9	-0,1	-0,1	-0,2	-0,2	-0,2	-0,2	0,2	Ŷ	-0,2	-0,1	0,1	-0,1	-0,4	-0,4	-0,2	-0,1	-0,1	-0,3	-0,1	0,6	0,6	-0,3	-0,2	-0,2	-0,1	0,4	-0,3
Ankerit				-	-0,4	-0,6	0,5	0,1	0,3	0,8	-0,3	0,1	-0,6	0,4	0,5	-0,3	-0,2	0,4	0,7	0,7	0,2	0,7	-0,2	0,1	0,3	-0,4	-0,6	0,4	0,8	0,6	-0,3	-0,2	0,8
tinbydnA			-	0,2	-0,1	-0,3	-0,2	0,7	-0,2	0,3	-0,1	-0,3	-0,2	0,4	-0,3	-0,4	0,6	-0,1	0,4	-0,2	0,5	-0,2	-0,2	0,5	9	-0,2	-0,2	-0,4	0,2	9	-0,1	0,3	0,1
tie el gnA		-	0	0,6	-0,2	-0,3	0,9	0,2	0,7	0,4	-0,2	0,3	-0,4	0,2	0,7	-0,2	-0,2	0,9	0,5	0,1	-0,1	0,3	-0,2	9	0,9	-0,2	-0,4	0,5	0,5	0,9	-0,1	-0,3	0,2
fidiA	-	0,6	0,1	0,3	-0,2	-0,2	0,6	-0,1	0,8	0,4	-0,1	0,5	-0,3	0,5	0,2	0,2	-0,4	0,7	0,3	-0,1	0,4	-0,2	0,1	0,1	0,7	-0,4	-0,2	0,3	-0,1	0,5	-0,1	-0,4	0,2
	Albit	Anglesit	Anhydrit	Ankerit	Apatit	Baryt	Cerussit	Chalkopyrit	Chlorit	Coronadit	Dolomit	Epidot	Fluorit	Fraipontit	Galenit	Glimmer-Gruppe	Hemimorphit	Ilmenit	Kalzit	Limonit	Magnesit	Mo/Pb-Limonit	Pyrit	Quarz	Rutil	Smithsonit	Sphalerit	Titanomagnetit	Vanadinit	Wulfenit	Zirkon	Zn-Kalzit/Dolomit	Zn-Limonit

6.2.6. Auffälligkeiten der Messergebnisse

Eine längere Messzeit verdeutlicht die Ungenauigkeit des Programmes SmartPITM vor allem in Bezug auf die Elemente Pb, Mo und S sowie Zn und Na. Da sich die Linien dieser Elemente (Mo-L α , Pb-M α und S-K α sowie Zn-L α und Na-K α) überlagern, können sie nur schwer mit einer kurzen Messzeit unterschieden werden. So kommt es vor, dass ein durch SmartPITM bestimmtes Cerussit-Partikel eigentlich als Wulfenit bezeichnet werden muss (Abbildung 35). Es wird verdeutlicht, dass Molybdän anwesend ist. Ein ähnlicher Fall tritt bei Anglesit-Körnern auf: Abbildung 36 zeigt das Vorhandensein von Molybdän und die Abwesenheit von Schwefel.

Abbildung 35: Ein fälschlicherweise von SmartPITM identifiziertes Cerussit-Korn ist in Wahrheit Wulfenit.

Abbildung 36: Dieses Wulfenit-Korn wurde von SmartPI[™] als Anglesit ausgewiesen.

Obwohl es Abweichungen gibt, konnte SmartPl[™] die Minerale Cerussit und Anglesit in anderen Fällen doch richtig zuweisen (siehe Abbildung 37 für Cerussit, Abbildung 38 für Anglesit). Auch Wulfenit konnte mit der richtigen Kennzeichnung bestätigt werden (Abbildung 39).

Pb PbCO₃ [Gew. %]

76,18

98,24

[Gew. %]

Abbildung 37: Cerussit

Abbildung 38: Anglesit

Abbildung 39: Wulfenit

Durch längere REM-Messungen konnten weitere Minerale eindeutig identifiziert werden. Auch die feinkörnigeren Glimmer, Chlorit und Fraipontit konnten zugeordnet werden. Zugehörige Bilder und Ergebnistabellen sind in Anhang C3 zu finden.

Von den eigenständig definierten 39 Mineral-Klassifikationen (Anhang C1) konnten einige nicht in den Anschliffen gefunden werden. Dazu zählen die Elemente Gold und Elektrum, das Mo-Sulfid Molybdänit und das Cu-Sulfid Chalkosin.

7. Diskussion

An der Matthäus-Halde konnten MoO₃-Gehalte von bis zu 0,59 % (H14) an Schmelzpillen gemessen werden. Ein Mittelwert über die ganze Halde ergibt einen Wert von 0,09 % Mo bzw. 0,13 % MoO₃, 0,54 % Zn bzw. 0,67 % ZnO und 0,30 % Pb bzw. 0,32 % PbO. Die Cd-Gehalte liegen teilweise bei über 100 ppm. Germanium konnte mit den verwendeten Methoden nicht bestimmt werden. Von Scherer (1979) konnten für die Matthäus-Halde an 28 Proben Durchschnittswerte von 0,101 % Mo, 0,78 % Pb und 0,62 % Zn bestimmt werden. Demnach sind die neu ermittelten Mo- und Zn-Gehalte der Matthäus-Halde sehr ähnlich zu den Analysen von Scherer (1979). Schroll (1952) klassifizierte die Matthäus-Halde mit 0,227 % Mo und 3 % Pb als bauwürdig, jedoch sind keine Zn-Gehalte bekannt. Von Onuk (2018) konnte mittels Laser-Ablation ein Zn/Cd-Verhältnis von 44 (57.000/1.300 ppm) in Bleiberger Sphalerit nachgewiesen werden. Die für diese Arbeit mittels pRFA an Pulvern ermittelten Verhältnisse schwanken von 175 (28.000/160 ppm) an Probenahmepunkt H12 bis >300 (350/0 ppm) an Punkt H18 in den ungeglühten Proben. Das deutet auf einen Cd-Verlust auf den Halden hin.

Den Hauptbestandteil der Minerale der Bleiberger Halden bilden Kalzit und Dolomit. Zink ist in zinkhaltigem Kalzit, Fraipontit, Smithsonit, Zn-Limonit, Hemimorphit und Sphalerit enthalten. Die bleiführenden Mineralphasen sind Pb-Limonit, Cerussit, Coronadit, Anglesit und Galenit. Molybdän ist an Mo-Limonit und Wulfenit gebunden. Pyrit und Chalkopyrit sind nur in sehr geringen Mengen (<<0,01%) vorhanden. Auch gibt es minimale Gehalte von Vanadinit, Fluorit und Albit.

Anschliff 21FM11 von einem größeren Karbonatgesteinsbruchstück mit sichtbarem cm-großem Galenit zeigt die Alteration der Erzminerale. Durch Verwitterung kann Galenit (PbS) zu Cerussit (PbCO₃) umgewandelt werden. Mit dem Molybdän, evtl. aus bituminösen Kalken der Raibler Schichten, kann dies zur Bildung des Blei-Molybdat Wulfenit (PbMoO₄) führen. Eine Umwandlung der sulfidischen Phasen in Sekundärminerale wird auch durch die Analysen mit SmartPI[™] verdeutlicht. Es konnten bis zu 16-mal mehr Cerussit als Galenit und teilweise sogar mehr als das 1.000-fache an Smithsonit gegenüber Sphalerit bestimmt werden. Der geringe Schwefelgehalt auf der Mathäus-Halde konnte auch mit LECO-Analysen bestätigt werden. Die Bildung von

Sekundärmineralen in karbonatischen Pb-Zn-Lagerstätten wird z.B. von Reichert und Borg (2008) und Mondillo et al. (2020) beschrieben. Die Reaktion der sulfidischen Phasen Sphalerit und Galenit mit Kalzit, Wasser und Sauerstoff führt bei bereits niedrigen Ausfällungstemperaturen von 19 °C (Mondillo et al., 2020) zur Bildung der Karbonatphasen Smithsonit und Cerussit. Die Stabilität dieser Minerale ist des Weiteren von einem hohen CO₂-Partialdruck und einem basischen pH-Wert abhängig. Neben Pb- und Zn-Karbonaten treten als Sekundärminerale auch Oxide, Hydroxide (Limonit), Sulfate (Anglesit) und Zn-Silikate (Hemimorphit) auf (Reichert & Borg, 2008).

Ein Vergleich der Messung mit pRFA im Feld, pRFA an Pulvern und RFA an Schmelzpillen zeigt, dass die Konzentrationen an Mo, Pb und Zn an der Ostseite der Matthäus-Halde erhöht scheinen. Die Werte von pRFA-Pulver und RFA-Schmelzpillen korrelieren in den meisten Fällen sehr gut, lediglich die Pb-Gehalte weichen stärker ab. Die Messungen mit portablem RFA-Spektrometer an gewaschenen und ungewaschenen Gesteinen zeigen, dass das Molybdän im feinkörnigen Material liegt. Auch die Elemente Y, Rb, Pb, Fe, Ti und K befinden sich zu einem Großteil in dieser tonigen Kruste. Da die Mo-Gehalte in der mit Auger entnommenen Probe H13_B höher sind als in der mit Spaten entnommenen Probe H13, kann angenommen werden, dass die Mo-Gehalte im Feingut und in der Tiefe der Halde zunehmen. Die Mo-Gehalte in der mit Schreitbagger entnommenen Mischprobe sind am zweithöchsten. Auch dies bestätigt eine Zunahme der Molybdän-Gehalte mit der Tiefe.

Die im Jahr 2019 mit Schreitbagger entnommenen Proben der Halden Matthäus, Glück und Altstefanie wurden im Rahmen der laufenden Dissertation von Dipl.-Ing. Lukas Marousek nach einer Schwimm-Sink-Analyse – also Unterteilung in Leichtgut (<2,67 g/cm³), Mittelgut und Schwergut (>3,00 g/cm³) – mit RFA beurteilt, wobei die Wertphasen hauptsächlich in den Schwergutfraktionen angereichert sind. Ein endgültiger Bericht existiert zu diesem Zeitpunkt noch nicht, doch die RFA-Ergebnisse an Pulverpresslingen und Schmelzpillen sind vorhanden. Der Vergleich von Pulverpressling (d.h. ungeglühtes Pulver) mit den Schmelzpillen lässt erkennen, dass durch den Glühvorgang im Muffelofen die Pb-Konzentration abnimmt. Dies zeigen auch die Messungen mit pRFA an ungeglühtem und geglühtem Pulver für diese Masterarbeit. Ebenso nimmt der Pb-Gehalt in den Proben durch das Glühen bei den Analysen an Kupferschlacken aus Namibia von Lohmeier et al. (2021) und Messung mit RFA an Schmelzpillen im Vergleich zu Messungen mit pRFA an ungeglühten Pulvern ab. In den für Lukas Marousek untersuchten Pulverpresslingen konnten in den Schwergutfraktionen der Matthäus-Halde bis zu 33,7 % Pb, in der Altstefanie-Halde bis zu 32,8 % Pb und in der Glück-Halde bis zu 12,2 % Pb bestimmt werden. Die Pb-Gehalte der Schmelzpillen weisen höchstens 11,3 % für Matthäus, 21 % für Altstefanie und 3,5 % für Glück auf. Der Zink-Gehalt (Schwergut-Schmelzpille) ist auf den Halden Glück und Matthäus mit bis zu 21,2 % am höchsten. Auf der Altstefanie-Halde ist der Zn-Anteil immer <10 %. Mit RFA wurden für die Matthäus-Halde im Schwergut 2,5 % Mo bestimmt. Auf den Halden Altstefanie und Glück übersteigen die Mo-Konzentrationen kaum die 1 %-Schwelle. Diese Ergebnisse stimmen auch mit den Auswertungen von SmartPI[™] überein, da auf den Halden Glück und Matthäus die Anteile an Smithsonit und Zn-Limonit jene der Altstefanie-Halde übersteigen. Die Halde Matthäus zeigt außerdem die höchsten Werte an Galenit, Cerussit, Mo/Pb-Limonit und Wulfenit. Die CdO-Gehalte der Pulverpresslinge betragen höchstens 0,06 % auf den Halden Matthäus und Altstefanie und bis zu 0,7 % auf der Glück-Halde. .

Da die Messung mit pRFA im Feld nur auf einen Punkt des sehr heterogenen Haldenmaterials gerichtet ist, sollten die Werte immer im Labor an Pulverproben oder Schmelzpillen überprüft werden. Die Messungen im Feld weisen höhere Balance-Werte (Anhang B1) auf als die Messungen an den Pulverproben. Die Differenz kann auf den Feuchtigkeitsgehalt der Probe zurückgeführt werden, welcher durch den Zeitraum beginnend mit Probenahme bis hin zur Bearbeitung der Probe, sowie durch etwaige Trocknung im Trockenschrank und Wärmebildung, die durch das Mahlen mit der Scheibenschwingmühle entsteht, abnimmt. Die Genauigkeit der Analysen ist auch von der Messzeit abhängig. Die Messzeit der pRFA im Feld und an den Pulverproben wurde konstant bei 120 Sekunden gehalten (Anm.: Die Messung einer Schmelzpille mit WROXI-Kalibration dauert etwa 20 min.).

Die Menge an Probe kann ausschlaggebend sein für die Ergebnisse. Um vergleichbare Ergebnisse zu erzielen, wurde an jedem Entnahmepunkt ungefähr die gleiche Probenmenge gesammelt und im Labor mit Riffelteiler geteilt. Allerdings gilt auch hier wieder zu beachten, dass in manchen Gesteinsbruchstücken größere Mengen an Erzmineralen zu finden sein können. Erhöhte Si-Gehalte in der gemahlenen Probe sind möglicherweise durch den Einfluss der Achat-Scheibenschwingmühle zu erklären.

Obwohl die Analysen von SmartPI[™] mit den RFA-Analysen dieser Masterarbeit und der Dissertation von Lukas Marousek gut übereinstimmen, gilt es u.a. die Genauigkeit der Analyse mit REM bzw. SmartPI[™] bei der Messung von Pb-, Mo-, S-, Zn- und Na-

führenden Mineralen zu beachten, da sich die Peaks von Mo-Lα, Pb-Mα und S-Kα sowie Zn-Lα und Na-Kα überlagern. Durch die geringe Partikelmesszeit mit SmartPITM können diese Linien nicht eindeutig vom Programm unterschieden werden. Dies führt zu inkorrekten Elementauswertungen und in weiterer Folge zu fälschlichen Mineralzuweisungen. Die Minerale müssen eigenständig durch Angaben von Elementkonzentrationsbereichen definiert werden, wobei nicht zuordenbare Minerale als UNCLASSIFIED ausgegeben werden. Die Daten können allerdings jederzeit geändert werden ohne neue Analysen durchführen zu müssen. Da die Messungen theoretisch auch in Poren oder an Korngrenzen sein können, sind große Mengen an UNCLASSIFIED nicht untypisch. Damit das Programm die unterschiedlichen Phasen an den Graustufen erkennt, v.a. wenn es Verwachsungen gibt, sind genaue Einstellungen von Helligkeit und Kontrast wichtig. Trotz potenzieller Fehlerquellen ist SmartPITM ein nützliches Tool zur Bestimmung von Mineralphasen und -anteilen, besonders in Kombination mit weiteren Analysen wie RFA.

8. Schlussfolgerung

An den beprobten Halden Matthäus, Glück und Altstefanie können die metallhaltigen Elemente Molybdän (Wulfenit, Mo-Limonit), Blei (Galenit, Cerussit, Pb-Limonit) und Zink (Sphalerit, Smithsonit, Zn-Limonit) nachgewiesen werden. Im Vergleich zur Konzentration in der Erdkruste sind Mo mit ~0,09 % (x*10⁻⁶ nach Clarke und Washington (1924)), Pb mit 0,30 % (20 ppm) und Zn mit 0,54 % (120 ppm) auf der Matthäus-Halde stark erhöht. Diese Metalle liegen v.a. in oxidischer und karbonatischer, untergeordnet in silikatischer, sulfatischer, und sulfidischer Form als Minerale vor und können durch Dichtetrennung in ein möglicherweise verkaufsfähiges Konzentrat angereichert werden.

Die verschiedenen Untersuchungsmethoden zeigen, dass Messungen mit portablen RFA-Geräten im Gelände für eine schnelle Charakterisierung nützlich sind. Allerdings gibt es große Abweichungen zu Laboranalysen. Aus dem genannten Grund sollte die portable RFA immer in Kombination mit weiteren Untersuchungen verwendet werden. Eine Kombination aus mehreren Analysemethoden erweist sich als sehr angebracht, da sich durch das Glühen von Probenmaterial, welches zur Herstellung von Schmelzpillen notwendig ist, Elemente (u.a. Pb) verflüchtigen.

Die automatisierte Mineralogie durch SmartPI[™] ist nützlich zur quantitativen Bestimmung der Wert- und Gangartminerale. Aufgrund der Messbedingungen und Messmethode müssen die Ergebnisse jedoch überprüft werden. Für das Bleiberger Haldenmaterial ist die Verknüpfung der mineralogischen Untersuchungen durch das Programm SmartPI[™] mit den chemischen Analysen von RFA und pRFA vielversprechend.

9. Literaturverzeichnis

- Cerny, I. (1989). Die karbonatgebundenen Blei-Zink-Lagerstätten des alpinen und außeralpinen Mesozoikums: Die Bedeutung ihrer Geologie, Stratigraphie und Faziesgebundenheit für Prospektion und Bewertung. *Arch. f. Lagerst.forsch. Geol. B.-A.* (11) 5–125.
- Clarke, F. W. & Washington, H. S. (1924). The Composition of the Earth's Crust. *Professional Paper* (127).
- Enzfelder, W. (1972). Geschichte des Blei-Zinkerzbergbaues Bleiberg. Veröffentl. Naturhist. Museum (6) 3–6.
- Hasler, R. (2020). Bad Bleiberg Typlokalität für Wulfenit (Gelbbleierz). *extraLapis* (58) 12–19.
- Helfert, M. & Ramminger, B. (2012). Neue Perspektiven für geochmeische Untersuchungen von neolithischen Steingeräten: Ein Methodenvergleich zwischen portabler energiedispersiver Röntgenfluoreszenzanalyse (P-ED-RFA) und wellenlängendispersiver Röntgenfluoreszenzanalyse (WD-RFA) am Beispiel von bandkeramischen Dechselklingen aus Diemarden (Südniedersachsen). Hamburg University Press, Hamburg.
- Henjes-Kunst, E. (2014). The Pb-Zn deposits in the Drau Range (Eastern Alps, Austria/Slovenia): A multi-analytical research approach for investigation of the oreforming mechanisms [PhD Thesis]. Montanuniversität, Leoben.
- Henjes-Kunst, E., Boyce, A. J., Melcher, F. & Raith, J. G. (2013). High-resoultion sulfur isotope and trace element measurements of sphalerites from the Pb-Zn deposits of the Drau Range (Eastern Alps, Austria/Slovenia). In *12th SGA Biennial Meeting, Uppsala Sweden*.
- Henjes-Kunst, E., Raith, J. G. & Boyce, A. J. (2017). Micro-scale sulfur isotope and chemical variations in sphalerite from the Bleiberg Pb-Zn deposit, Eastern Alps, Austria. *Ore Geology Reviews* (90) 52–62. https://doi.org/10.1016/j.oregeorev.2017.10.020
- Höfer, H. (1871). Die Mineralien Kärntens. *Jb. Naturhist. Landesmus. Kärnten* (10) 1– 84.

- Holler, H. (Hrsg.). (1936). Die Tektonik der Bleiberger Lagerstätte [Sonderheft]. *Carinthia II* (7), 82, Klagenfurt.
- Jedlicka, K. (1983). Haldenerzgewinnung und -verarbeitung beim Bergbau Bleiberg/Kreuth der Bleiberger Bergwerksunion AG. *Berg- und Hüttenm. Monatsheft*, *128* (12) 477–483.
- Kanaki, F. (1972). Die Minerale Bleibergs (Kärnten). Carinthia II, 162./82. Jg. 7-84.
- Kucha, H., Schroll, E., Raith, J. G. & Halas, S. (2010). Microbial sphalerite formation in carbonate-hosted Zn-Pb ores, Bleiberg, Austria: micro- to nanotextural and sulfur isotope evidence. *Econocmic Geology* (105) 1005–1023.
- Kucha, H., Schroll, E. & Stumpfl, E. (2005). Fossil sulphate-reducing bacteria in the Bleiberg lead-zinc deposit, Austria. *Mineralium Deposita* (40) 123–126.
- Leach, D. L. & Sangster, D. F. (1993). Mississippi Valley type lead-zinc-deposits. In R. V. Kirkham, W. D. Sinclair, R. I. Thorpe & J. M. Duke (Hrsg.), *Mineral Deposit Modeling. Mineral Deposit Modeling:* Geological Association of Canada Special Paper (40) 289–314.
- Leach, D. L., Sangster, D. F., Kelley, K. D., Large, R. R., Garven, G. & Allen, C. R. (2005). Sediment-hosted lead-zinc deposits: 100th Anniversary Volume. Society of Economic Geologists (100th Anniversary Volume) 561–607.
- Lohmeier, S., Lottermose, B. G., Schirmer, T. & Gallhofer, D. (2021). Copper Slag as a potential source of critical elements - A case study from Tsumeb, Namibia. *J. South. Afr. Inst. Min. Metall.* (121) 129–142.
- Malvern Panalytical Ltd. (Hrsg.). (2021). *WROXI: Für die Analyse der Zusammensetzung einer Vielzahl von Oxiden*: https://www.malvernpanalytical.com/de/products/category/calibration-standards/elementalanalysisbyxrayfluorescence/wroxi
- Mondillo, N., Lupone, F., Boni, M., Joachimski, M., Balassone, G., Angelis, M. de, Zanin, S. & Granitzio, F. (2020). From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy). *Mineralium Deposita* (55) 953–970.
- Neubauer, F., Genser, J. & Handler, R. (1999). The Eastern Alps: Result of a twostage collision process. *Mitt. Österr. Geol. Ges.* (92) 117–134.
- Niedermayr, G., Brandstätter, F., Moser, B. & Postl, W. (1987). Neue Mineralfunde aus Österreich XXXVI. *Carinthia II*, 177 (97) 287.
- Niedermayr, G., Brandstätter, F., Moser, B. & Postl, W. (1988). Neue Mineralfunde aus Österreich XXXVII. *Carinthia II*, *178* (98) 184–186.

- Onuk, P. (2018). High-tech metal potential of sphalerite from eastern alpine lead-zinc deposits and development of a matrix-matched sphalerite (ZnS) calibration material (MUL-ZnS-1) for calibration of in situ trace element measurements by laser ablation inductively coupled plasma mass spetrometry (LA-ICP-MS) [PhD Thesis].
 Montanuniversität, Leoben.
- Paradis, S., Hannigan, P. & Dewing, K. (2007). Mississippi Valley-Type Lead-Zinc Deposits (MVT). *Mineral Deposits of Canada* (5).
- Puttner, M. (1997). Chromatit-Kristalle auf Bleiberger Wulfenit ein natürliches Vorkommen von CaCrO4. *Carinthia II*, *107* (187) 61–65.
- Rantitsch, G. (2001). Thermal history of the Drau Range (Eastern Alps). *Schweizer Mineral. Petrol. Mitt.* (81) 181–196.
- Reichert, J. & Borg, G. (2008). Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits. *Ore Geology Reviews* (33) 134–151.
- Reichl, C. & Schatz, M. (2021). World Mining Data 2021 (36. Aufl.). BMLRT, Wien.
- Sawkins, F. J. (1984). *Metal Deposits in Relation to Plate Tectonics*. Springer, Berlin Heidelberg New York.
- Scherer, J. (1979). *Staatsprüfungsarbeit: Blei-Zink-Haldenbeprobung Bleiberger Sonnenseite*, Leoben. Prospektion, Lagerstättenerschließung und Mineralwirtschaft.
- Schmid, S. M., Fügenschuh, B., Kissling, E. & Schuster, R. (2004). Tectonic map and overall architecture of the Alpine orogen. *Eclogae Geologicae Helvetiae*, 97 (1) 93–117. https://doi.org/10.1007/s00015-004-1113-x
- Schmidt, T., Blau, J. & Kàzmér, M. (1991). Large-scale strike-slip displacement of the Large-scale strike-slip displacement of the Drauzug and the Transdanubian Mountains in early Alpine history: Evidence from permo-mesozoic facies belts. *Tectonophysics* (200) 213–232.
- Schroll, E. (1951). *Detailbericht über die Zn-Haldenuntersuchung*, Bleiberg. Geol. Abt. d. BBU.
- Schroll, E. (1952). *Bericht über die Mo-Haldenuntersuchung*, Bleiberg. Geol. Abt. d. BBU.
- Schroll, E. (1984). Mineralisation der Blei-Zink-Lagerstätte Bleiberg-Kreuth (Kärnten). *Der Aufschluss* (35) 339–350.

- Schroll, E. (2006). Neues zur Genese der Blei-Zink-Lagerstätte Bleiberg. *Carinthia II* (196) 483–500.
- Schroll, E. (2008). Blei-Zink-Lagerstätte Bleiberg: Die Geschichte ihrer Erforschung. Carinthia II, Naturwissenschaftliche Beiträge zur Heimatkunde Kärntens Sonderheft: Bd. 62. Naturwiss. Verein für Kärnten, Klagenfurt.
- Schroll, E., Köppel, V. & Cerny, I. (2006). Pb and Sr isotope and geochemical data from the Pb–Zn deposit Bleiberg (Austria): constraints on the age of mineralization. *Mineralogy and Petrology* (86) 129–156.
- Schroll, E. & Rantitsch, G. (2005). Sulfur isotope patterns in the Bleiberg deposit (Eastern Alps) and their implications for genetically affiliated lead-zinc deposits. *Mineralogy and Petrology* (84) 1–18.
- Schulz, O. & Schroll, E. (1977). Die Pb-Zn-Lagerstätte Bleiberg-Kreuth. *Verh. Geol. B.-A.*, *1977* (3) 375–386.
- Schuster, R., Kurz, W., Krenn, K. & Fritz, H. (2013). Introduction to the Geology of the Eastern Alps. *Berichte der Geol. B.-A.* (99) 121–133.
- Schuster, R. & Stüwe, K. (2010). Die Geologie der Alpen im Zeitraffer. *Mitt. naturw. Verein Stmk.* (140) 5–21.
- Smithson, J. (1803). A Chemical Analysis of some Calamines. *Phil. Trans. Royal Soc, London* 12–24.
- Southam, G. & Saunders, J. A. (2005). The geomicrobiology of ore deposits. *Econocmic Geology* (100) 1067–1084.
- Swapp, S. (26. Mai 2017). *Scanning Electron Microscopy (SEM)*. Zuletzt geprüft am 03.10.2021: https://serc.carleton.edu/18401
- Wirth, K. & Barth, A. (21. Januar 2020). X-Ray Fluorescence (XRF). Zuletzt geprüft am 03.10.2021: https://serc.carleton.edu/18398
- Wulfen, F. X. von. (1785). Abhandlung vom Kärnthnerischen Bleyspathe. J.P.
 Krauss, Wien. * [Neudruck: Xavier Wulfen's Treatise on Carinthian Lead Spars.
 The Mineralogical Record, Tucson 1997].
- Zeloth, T. (2004). Zwischen Staat und Markt: Geschichte der Bleiberger Bergwerks Union und ihrer Vorläuferbetriebe. Das Kärntner Landesarchiv: Bd. 29. Verl. des Kärntner Landesarchivs, Klagenfurt.

Anhang A: Übersicht der Probenahmepunkte – Halde Matthäus (Maßstab 1:1000)

Tabelle 13: Bezeichnung und Koordinaten der Probenahmepunkte de	er Matthäus-Halde vom 28.05.2021 darge-
stellt im Koordinatensystem MGI / Austria GK Ce	entral (EPSG: 31255).

ID	Longitude	Latitude	Höhe
210528_H1	28165.934	165688.445	1115.469
210528_H2	28164.489	165675.450	1108.260
210528_H3	28162.845	165662.204	1101.128
210528_H4	28163.556	165648.785	1094.688
210528_H5	28168.535	165636.139	1088.053
210528_H6	28172.280	165625.411	1081.257
210528_H7	28182.280	165653.312	1094.657
210528_H8	28181.387	165663.813	1100.592
210528_H9	28181.423	165675.215	1107.866
210528_H10	28180.476	165687.995	1117.159
210528_H11	28190.244	165689.580	1117.431
210528_H12	28208.719	165684.992	1116.223
210528_H13	28207.486	165674.942	1109.978
210528_H14	28204.666	165663.460	1104.264
210528_H15	28193.734	165665.572	1100.723
210528_H16	28200.921	165654.598	1098.793
210528_H17	28193.387	165633.034	1086.065
210528_H18	28170.618	165718.560	1120.999

Abbildung 40: Probenahmepunkte der Matthäus-Halde vom 28.05.2021.

Abbildung 41: Probenahmepunkte mit Schreitbagger auf der Matthäus-Halde aus dem Jahr 2019 (Maßstab 1:500).

Anhang B: pRFA/RFA

Anhang B1: Ergebnisse der Messung mit pRFA

Tabelle 14: Farbkodierung der Messergebnisse mit pRFA.im Gelände, zugehörig zu Tabelle 15.

Messung direkt auf Probe im offenen Sack - ungewaschen
Messung auf einzelnem Stein - ungewaschen
Messung auf einzelnem Stein - gewaschen + getrocknet
Messung auf Probe durch Plastiksack - ungewaschen
Messung direkt auf Probe - ungewaschen

Nr.	Ва	Ba Error	Cd	Cd Error	Ag	Ag Error	Bal	Bal Error	Мо	Mo Error
H1	326,23	73,0	51,1	8,9	46,3	17,3	662643,8	19047,5	931,5	15,2
H2	273,64	99,7	31,7	11,8	58,6	24,0	670105,4	31009,2	871,1	18,2
H3	0	170,1	0,0	18,3	58,0	20,9	765415,9	25969,2	949,8	18,5
H4	204,65	61,5	19,9	7,2	34,7	14,9	700847,5	16582,4	360,9	7,9
H4	361,87	72,9	18,6	8,3	64,9	17,6	541248,6	18711,1	24,6	3,2
H5	265,1	82,1	0,0	16,9	62,5	19,5	655799,6	23001,6	2809,8	43,6
H5	335,47	74,0	0,0	16,9	53,5	17,9	496546,0	19316,7	0,0	5,8
H6	359,4	72,6	0,0	15,0	63,9	17,5	541575,5	19595,5	234,1	5,9
H6	363,61	74,8	0,0	15,3	80,0	18,2	443352,0	22147,9	0,0	5,9
H7	301,85	86,5	26,2	9,9	48,0	20,3	656744,7	24179,9	1310,5	23,1
H7	316,12	74,7	0,0	15,3	55,9	18,1	528168,4	20801,8	20,2	3,3
H8	192,28	63,5	18,4	7,4	35,1	15,3	659104,1	15933,6	237,3	6,3
H8	147,72	60,6	20,6	7,3	58,8	15,4	739126,9	23364,3	29,7	3,9
H9	420,64	86,2	43,6	10,1	57,9	20,0	697958,7	17723,2	110,6	5,5
H9	294,42	75,9	0,0	15,8	41,4	18,3	451183,6	22019,3	0,0	5,8
H10	569,85	125,9	120,2	16,7	0,0	56,6	686172,6	29793,4	2673,9	59,0
H10	572,72	92,8	120,3	12,5	0,0	41,3	773576,9	19556,9	1832,0	35,9
H11	667,19	74,8	80,7	9,5	0,0	33,8	707694,3	17785,3	641,3	12,0
H11	295,12	69,9	0,0	14,6	52,8	16,9	582825,8	18019,9	9,0	2,9
H11	421,84	84,5	55,3	10,4	76,5	20,4	699490,5	19587,3	143,2	5,1
H12	1247,57	104,4	144,9	13,6	78,9	22,3	593033,7	23716,2	982,9	21,5
H13	358,82	84,0	140,0	12,3	59,5	19,9	683343,5	18029,6	262,2	7,5
H14	368,85	76,6	20,8	8,7	56,0	18,3	654135,8	21314,4	798,7	13,7
H15	580,23	85,5	0,0	18,9	53,5	19,9	626783,1	20920,1	246,5	6,7
H15	453,44	77,0	0,0	17,1	48,4	18,2	515197,9	21924,7	20,7	3,3
H15	1885,37	104,9	126,6	12,4	42,0	20,8	667126,2	19118,8	447,6	10,6
H16	357,79	90,0	41,5	10,7	0,0	42,5	607729,6	25919,5	1032,2	18,5
H17	458,71	75,0	143,1	10,9	90,8	18,1	705560,8	16988,8	443,1	8,7
H18	424,11	79,3	0,0	16,0	100,0	19,5	707461,5	17687,9	0,0	4,3
Н13 _в	662,56	92,8	373,4	17,7	100,6	21,3	623428,8	22418,5	649,2	14,9
H _{MP}	596,55	88,5	68,5	10,8	76,6	20,6	637613,1	22709,2	741,4	14,3
H _{MP}	519,9	87,9	145,2	12,5	46,6	20,1	680212,4	21723,6	913,5	17,7
H _{MP}	382,15	82,9	227,8	13,7	73,9	19,8	584007,1	20943,2	19,0	3,7
L1	385,82	65,1	40,7	7,8	43,0	15,5	660918,0	15825,9	0,0	5,4
L2	812,85	67,4	27,7	7,4	40,6	15,3	704550,8	14120,2	32,8	3,1
L3	1261,24	71,8	0,0	14,1	0,0	30,8	778921,4	12795,9	28,3	3,0

Tabelle 15: Werte der mit pRFA gemessenen Proben im Feld mit 120 s Messzeit, angegeben in ppm.

Nr.	Nb	Nb Error	Zr	Zr Error	Y	Y Error	Sr	Sr Error	Rb	Rb Error
H1	0,0	5,1	25,7	3,0	73,2	5,5	91,2	3,8	30,8	2,7
H2	0,0	6,7	6,9	3,4	31,3	5,9	80,4	4,5	20,7	2,9
H3	9,2	3,3	9,5	3,4	29,5	5,5	99,2	4,7	15,7	2,6
H4	6,7	2,6	0,0	5,4	12,6	3,3	120,8	4,3	11,8	1,8
H4	0,0	4,5	0,0	3,8	0,0	3,7	123,3	4,1	5,9	1,3
H5	0,0	6,5	7,5	3,2	48,1	7,2	85,7	4,1	25,5	3,1
H5	4,8	2,3	0,0	3,6	7,1	1,9	104,5	3,7	5,7	1,3
H6	5,8	2,4	0,0	4,8	8,6	3,0	106,5	3,8	10,6	1,7
H6	0,0	4,6	0,0	4,6	5,7	2,0	107,6	3,8	4,7	1,3
H7	0,0	6,3	16,3	3,3	50,2	7,5	80,5	4,2	25,5	3,2
H7	0,0	4,8	0,0	4,7	4,6	2,0	98,9	3,8	5,4	1,3
H8	0,0	5,0	0,0	5,2	16,9	4,0	95,6	3,8	12,2	1,9
H8	5,8	2,7	0,0	5,8	7,0	2,4	110,1	4,5	5,0	1,5
H9	0,0	5,3	34,8	3,8	93,1	8,9	72,4	4,2	34,8	3,8
H9	5,6	2,4	0,0	4,2	0,0	3,6	91,3	3,6	4,8	1,3
H10	0,0	8,9	36,0	5,5	156,7	15,0	95,3	6,3	49,9	6,0
H10	0,0	8,2	45,6	4,7	143,4	12,2	83,6	5,1	53,1	5,0
H11	0,0	4,3	9,9	2,9	65,9	5,6	95,0	4,0	19,8	2,5
H11	0,0	4,5	0,0	4,6	5,9	2,0	96,1	3,5	5,7	1,3
H11	0,0	3,8	0,0	4,0	17,4	3,3	78,6	3,5	8,5	1,6
H12	0,0	6,6	37,9	4,5	119,1	11,4	96,4	5,4	38,0	4,7
H13	0,0	4,7	14,8	3,2	58,8	6,4	77,7	4,0	16,9	2,8
H14	0,0	4,3	0,0	5,2	27,3	4,4	74,5	3,5	13,6	2,1
H15	0,0	5,4	0,0	5,7	23,4	4,6	127,2	4,6	12,6	2,1
H15	0,0	4,8	0,0	4,1	15,9	3,0	128,0	4,3	8,8	1,6
H15	0,0	5,2	14,8	3,4	93,1	7,7	112,7	4,9	24,1	3,1
H16	0,0	5,9	0,0	5,9	36,1	5,5	88,8	4,2	17,9	2,5
H17	0,0	3,6	0,0	3,7	27,3	3,9	84,3	3,5	11,1	1,8
H18	0,0	3,3	0,0	3,5	0,0	2,3	89,2	3,5	4,0	1,1
H13 _B	0,0	6,0	25,3	4,0	118,1	10,8	86,4	4,9	31,2	4,3
H _{MP}	0,0	4,7	8,6	3,1	56,2	6,4	95,1	4,3	19,6	2,8
H _{MP}	0,0	5,7	15,3	3,4	64,5	7,9	81,6	4,3	24,6	3,3
H _{MP}	0,0	4,5	8,3	2,9	61,8	5,4	73,2	3,8	12,2	2,3
L1	0,0	4,3	15,9	2,3	17,4	2,3	48,8	2,5	15,8	1,6
L2	4,6	2,2	35,7	2,7	36,2	3,4	90,0	3,2	25,4	2,0
L3	0,0	4,2	34,6	2,7	29,1	2,8	99,8	3,3	20,9	1,8

Nr.	As	As Error	Au	Au Error	Pb	Pb Error	Zn	Zn Error	Cu	Cu Error
H1	0,0	118,1	0,0	64,4	8480,9	115,5	3164,9	58,3	34,5	13,8
H2	0,0	141,0	0,0	76,3	6989,2	124,0	1969,7	54,8	0,0	37,4
H3	0,0	131,0	0,0	72,3	6381,6	109,1	1161,7	38,7	59,1	19,9
H4	281,2	38,7	0,0	47,0	2884,8	50,1	10674,9	147,5	36,8	14,5
H4	40,0	15,3	36,9	16,3	469,7	15,6	11652,3	153,9	26,6	13,1
H5	0,0	173,9	0,0	89,0	15048,6	210,6	2695,9	56,5	0,0	29,2
H5	43,1	15,7	0,0	30,0	505,8	16,0	145,3	11,6	0,0	23,7
H6	234,3	35,7	0,0	43,8	2695,4	45,5	1545,6	36,8	0,0	25,1
H6	63,1	16,6	0,0	31,2	536,3	16,8	137,4	11,7	0,0	24,4
H7	0,0	177,2	0,0	91,7	15190,1	219,1	6429,7	107,6	0,0	30,2
H7	45,9	16,1	0,0	31,0	473,4	16,3	556,7	22,2	0,0	25,9
H8	353,8	49,8	0,0	56,9	5023,6	75,8	4487,2	75,6	0,0	26,7
H8	77,0	21,6	0,0	42,3	679,4	22,2	941,2	32,8	0,0	32,8
H9	0,0	195,5	0,0	100,5	18375,4	271,2	21415,0	292,3	0,0	34,2
H9	31,7	13,8	0,0	30,9	357,5	13,8	1090,4	31,0	0,0	24,9
H10	0,0	314,0	0,0	157,4	32738,0	596,8	13449,1	251,5	0,0	44,7
H10	0,0	253,5	0,0	128,9	29136,4	446,4	13921,4	212,1	0,0	36,9
H11	0,0	122,5	0,0	66,1	8126,9	116,1	5341,0	87,6	0,0	27,2
H11	91,3	18,8	41,5	17,1	746,2	19,5	9992,2	131,3	31,6	12,7
H11	0,0	71,9	0,0	43,8	2546,7	46,4	1355,6	36,4	0,0	27,7
H12	0,0	245,0	139,8	62,6	25438,8	411,2	25911,0	392,1	0,0	37,9
H13	0,0	144,6	0,0	78,3	9741,9	148,1	15860,5	224,3	0,0	33,1
H14	0,0	105,7	0,0	58,7	5725,0	85,7	1057,9	31,2	0,0	26,9
H15	267,3	55,6	0,0	61,2	5908,3	90,2	7382,7	113,8	0,0	28,6
H15	180,7	33,0	0,0	43,2	2150,6	40,2	4570,1	76,8	0,0	26,1
H15	0,0	169,6	0,0	87,2	13391,5	198,8	15742,7	223,9	0,0	33,3
H16	0,0	130,7	0,0	73,1	7526,3	118,5	2233,2	53,0	0,0	31,3
H17	0,0	88,4	0,0	50,7	4386,9	66,3	3929,1	67,3	0,0	26,3
H18	0,0	23,3	0,0	31,3	257,7	11,7	981,1	29,3	38,7	14,3
Н13 _в	0,0	234,7	0,0	120,8	25479,7	389,8	16995,7	257,8	0,0	34,7
H _{MP}	0,0	147,4	0,0	77,6	10624,8	157,1	15847,0	222,9	0,0	31,9
H _{MP}	0,0	182,4	0,0	96,5	15784,3	233,4	17544,1	249,8	0,0	32,4
H _{MP}	0,0	112,7	80,8	32,6	6245,7	100,7	29579,2	383,8	0,0	33,6
L1	0,0	38,6	0,0	31,0	1024,1	22,4	12398,0	147,8	70,6	13,4
L2	0,0	71,3	0,0	44,4	3618,0	51,7	7348,4	95,7	57,8	12,7
L3	0,0	53,6	0,0	34,7	2118,0	34,9	6328,6	85,1	31,6	11,8

Nr.	Ni	Ni Error	Fe	Fe Error	Mn	Mn Error	Cr	Cr Error	v	V Error
H1	0,0	60,4	11310,4	199,2	128,6	59,0	48,8	18,4	0,0	60,1
H2	0,0	81,5	9867,1	233,4	0,0	137,3	0,0	42,9	0,0	58,7
H3	0,0	76,5	6000,6	166,4	0,0	125,0	0,0	37,8	0,0	46,1
H4	0,0	59,8	5509,5	130,9	0,0	103,2	0,0	35,9	0,0	48,3
H4	0,0	55,3	1919,3	72,4	0,0	76,7	0,0	42,9	0,0	55,0
H5	0,0	67,5	5529,0	139,5	0,0	112,6	45,7	20,1	91,7	29,5
H5	0,0	56,8	550,2	43,0	0,0	76,1	0,0	47,2	0,0	52,9
H6	0,0	57,8	2236,6	79,6	0,0	85,2	0,0	43,6	0,0	56,1
H6	0,0	59,6	533,2	43,1	0,0	72,2	0,0	46,1	0,0	49,9
H7	0,0	62,9	12507,1	234,5	146,3	65,7	54,4	21,7	65,3	31,4
H7	0,0	59,7	1432,4	67,4	0,0	71,9	0,0	46,4	0,0	51,7
H8	0,0	58,5	7913,9	162,5	0,0	92,9	0,0	39,4	0,0	60,8
H8	0,0	76,6	2061,0	90,7	0,0	93,3	0,0	31,3	0,0	36,9
H9	0,0	64,9	23206,0	343,5	164,7	65,8	45,3	20,3	0,0	62,7
H9	0,0	59,9	1301,1	63,2	0,0	78,3	0,0	49,3	0,0	53,5
H10	0,0	93,1	18199,7	379,7	0,0	156,5	0,0	43,2	0,0	70,0
H10	0,0	74,9	15442,6	277,4	0,0	133,5	89,5	26,1	0,0	74,8
H11	0,0	61,7	11339,9	206,7	0,0	106,9	0,0	37,3	0,0	58,7
H11	0,0	54,7	3068,4	89,4	0,0	87,5	0,0	39,8	0,0	50,4
H11	0,0	63,8	3354,4	104,4	0,0	87,7	0,0	37,4	0,0	49,6
H12	0,0	77,8	23649,0	396,3	294,5	76,6	0,0	44,2	0,0	78,9
H13	0,0	68,3	18751,5	301,3	0,0	112,1	0,0	40,6	0,0	62,2
H14	0,0	64,0	4149,4	115,5	0,0	91,0	0,0	40,9	0,0	51,2
H15	0,0	59,9	7361,2	160,9	0,0	108,4	0,0	50,8	0,0	129,5
H15	0,0	59,6	3553,6	103,6	0,0	84,6	0,0	53,4	0,0	139,9
H15	0,0	70,6	12732,9	234,1	0,0	121,9	0,0	47,0	0,0	114,3
H16	0,0	71,0	7437,6	176,0	0,0	105,3	0,0	44,6	0,0	69,2
H17	81,4	31,2	4789,7	119,4	0,0	93,2	0,0	34,4	0,0	43,9
H18	0,0	62,3	1879,8	75,7	0,0	83,5	0,0	34,1	0,0	40,4
Н13 _в	0,0	75,2	18167,1	317,8	0,0	114,0	48,1	19,2	0,0	55,4
H _{MP}	0,0	63,6	10990,9	209,8	0,0	112,8	48,5	19,8	70,1	32,6
H_{MP}	0,0	66,1	12878,1	236,7	0,0	107,2	0,0	39,2	0,0	60,1
H _{MP}	0,0	67,0	9369,3	185,3	0,0	89,8	0,0	40,3	0,0	49,3
L1	0,0	51,1	20416,2	260,8	0,0	99,1	56,5	17,5	0,0	52,2
L2	0,0	51,6	16796,8	227,2	0,0	98,3	45,0	17,3	0,0	71,8
L3	0,0	50,5	12438,8	186,6	0,0	91,0	28,5	12,9	0,0	53,2

Nr.	Ti	Ti Error	Са	Ca Error	К	K Error	CI	CI Error	S	S Error
H1	1184,4	69,7	220723,4	1851,2	7720,3	266,1	488,2	49,0	0,0	19055,7
H2	759,8	63,2	218234,4	2352,0	3645,4	232,1	1157,4	93,8	33115,3	15610,6
H3	373,4	45,4	166463,5	1786,1	1694,9	182,2	1155,4	93,7	38832,5	13699,6
H4	561,0	51,6	240852,6	1928,3	2118,1	189,3	661,8	52,4	1294,7	297,3
H4	387,1	57,0	365204,2	2607,4	647,6	210,6	459,1	42,0	1364,6	103,4
H5	582,9	59,7	249221,6	2308,5	2306,2	205,9	577,5	55,1	0,0	26755,2
H5	110,3	49,5	422446,8	2998,4	0,0	427,4	458,2	41,6	2756,8	122,2
H6	319,0	56,3	364719,1	2651,9	722,8	206,7	382,9	45,2	1084,7	280,2
H6	0,0	92,0	425817,3	3093,5	0,0	423,1	392,7	43,4	3126,9	130,9
H7	858,3	67,7	228521,6	2184,5	2749,0	222,1	576,4	58,9	0,0	26613,5
H7	235,0	50,0	389968,4	2956,8	0,0	417,1	554,6	46,6	1090,2	109,2
H8	400,8	64,3	297222,3	2283,2	1967,0	207,6	479,5	44,1	813,9	254,1
H8	108,3	34,5	239862,1	2229,6	935,2	168,8	829,6	74,3	720,9	167,7
H9	1035,0	72,1	172489,0	1592,2	4822,2	242,7	628,4	54,3	0,0	670,6
H9	150,4	51,2	418218,1	3074,6	707,3	216,7	382,8	43,2	1299,5	104,5
H10	765,2	77,0	182081,1	2373,7	3731,2	237,9	1023,8	91,8	0,0	34958,8
H10	755,9	78,9	141963,6	1535,4	2921,8	215,5	538,4	68,3	0,0	18407,2
H11	530,5	61,9	224769,6	1925,2	2729,3	203,5	601,4	53,4	0,0	18679,3
H11	267,8	50,9	272363,4	2013,1	1726,0	198,3	482,7	46,1	1779,2	122,1
H11	238,1	49,7	270522,8	2214,3	1181,7	180,1	603,7	57,7	800,1	303,3
H12	596,3	86,3	255558,9	2595,7	2369,5	227,8	472,2	54,7	0,0	22882,1
H13	679,4	66,9	233032,1	1996,3	2731,3	222,5	641,6	54,4	958,2	339,7
H14	185,9	48,1	296069,2	2462,7	561,8	188,9	544,1	51,8	0,0	21547,0
H15	421,1	143,3	294572,1	2347,5	2048,4	215,6	581,3	55,4	1438,5	339,3
H15	0,0	307,1	366822,6	2737,3	1464,7	221,7	388,6	47,2	2220,3	319,0
H15	666,2	126,4	240242,4	2093,6	2632,4	225,1	646,4	56,1	1156,6	353,1
H16	284,6	69,9	309613,8	2798,0	1523,4	208,5	584,9	60,5	0,0	23237,5
H17	236,5	43,0	249592,5	1961,8	1172,7	175,7	553,8	50,0	964,1	284,5
H18	206,3	40,3	269777,3	2152,2	999,8	174,0	514,1	50,8	0,0	207,5
Н13 _в	324,6	58,3	270313,6	2682,8	1079,5	202,3	525,5	53,5	0,0	25421,9
H _{MP}	527,5	68,3	271768,3	2424,5	1937,3	208,3	567,9	56,4	0,0	24002,9
H _{MP}	476,7	63,5	229018,1	2157,5	1756,9	199,1	678,4	58,9	0,0	23150,2
H _{MP}	137,5	47,5	313978,3	2469,6	394,7	194,1	518,3	48,6	614,1	281,1
L1	570,6	58,7	186362,6	1373,0	4745,0	221,0	366,4	40,2	8466,8	349,8
L2	1509,7	84,3	156667,5	1203,9	5501,0	224,0	376,5	40,7	2481,1	273,0
L3	891,9	61,9	140120,2	1091,3	4101,5	181,8	467,0	42,3	1621,9	227,3

Nr.	AI	AI Error	Ρ	P Error	Si	Si Error	Mg	Mg Error	Notizen				
H1	21348,7	2576,8	0,0	715,2	48230,1	1521,1	0,0	30398,7	erdig, Organik händisch entfernt				
H2	11144,3	3672,5	0,0	1203,2	40927,0	2164,4	0,0	51075,0	große Stücke (<feingut)< th=""></feingut)<>				
H3	0,0	5604,1	0,0	1060,6	10546,9	1493,2	0,0	43091,5	große Stücke (<feingut)< th=""></feingut)<>				
H4	9634,6	2256,9	0,0	149,6	24200,0	1075,7	0,0	31685,9	große Stücke (<feingut)< th=""></feingut)<>				
H4	16484,3	2583,6	551,5	66,7	19646,0	855,7	39924,4	17842,1	große Stücke (<feingut)< th=""></feingut)<>				
H5	12719,1	2427,6	0,0	996,6	26295,7	1340,1	0,0	34699,3	große Stücke (<feingut)< th=""></feingut)<>				
H5	19401,4	2758,7	600,2	66,5	16028,3	777,2	40544,3	18433,1	große Stücke (<feingut)< th=""></feingut)<>				
H6	15406,7	2656,5	553,9	69,7	14280,3	786,9	54028,4	18796,9	große Stücke (<feingut), dreck<="" th="" wenig=""></feingut),>				
H6	21124,9	3183,0	686,2	69,4	9392,7	672,7	94931,1	21312,3	große Stücke (<feingut)< th=""></feingut)<>				
H7	13806,1	2652,3	0,0	998,4	27952,8	1420,9	0,0	37594,3	wenig Sand, >Grobkies, >feucht wenig Sand, >Grobkies				
H7	12972,0	2714,5	505,5	70,6	11229,7	764,1	52817,2	20185,0	wenig Sand, >Grobkies				
H8	8906,7	2069,4	222,0	65,1	13072,0	794,1	0,0	30609,7	große Stücke (<feingut)< th=""></feingut)<>				
H8	0,0	5495,4	0,0	204,4	11053,4	1108,7	0,0	45890,1	große Stücke (<feingut)< th=""></feingut)<>				
H9	17938,0	2704,3	0,0	161,3	40755,0	1336,5	0,0	32931,9	große Stücke (<feingut), dicke="" kruste<="" th=""></feingut),>				
H9	26064,4	3356,3	612,1	68,9	17182,5	830,4	81739,8	20856,7	große Stücke (<feingut)< th=""></feingut)<>				
H10	0,0	6282,2	0,0	1316,4	21139,3	1724,8	0,0	45315,5	>erdig, Organik, inkl. grobes Material				
H10	0,0	4087,1	0,0	684,6	2230,5	830,6	0,0	33172,1	>erdig, Organik, inkl. grobes Material				
H11	6982,7	2002,4	0,0	699,1	18403,8	1084,1	0,0	28618,8	große Stücke, Grobsand-Grobkies				
H11	17842,7	2664,6	540,0	86,4	84793,4	1633,5	0,0	33608,4	große Stücke, Grobsand-Grobkies				
H11	7895,5	2409,7	0,0	155,9	11774,3	919,2	0,0	37974,1	auf Feingut (Sand-Feinkies) messen				
H12	18868,5	2859,6	0,0	848,6	27241,8	1285,1	0,0	37715,5	~erdiges Material, Sand-Feinkies				
H13	10213,5	2485,4	0,0	158,2	23346,5	1104,6	0,0	34322,3	~erdiges Material, Sand-Feinkies				
H14	5304,7	2104,8	0,0	809,5	10162,5	979,9	0,0	35131,5	Kies-Sand, hoher Kiesanteil				
H15	16333,9	2885,3	397,5	82,5	18893,4	1010,9	0,0	39619,3	>große Stücke, Sand-Kies, freucht				
H15	17453,4	3034,5	596,0	75,9	12187,5	795,2	72972,1	21024,2	>große Stücke, Sand-Kies				
H15	14519,3	2691,1	0,0	159,7	28546,0	1178,1	0,0	36020,6	>große Stücke, Sand-Kies, freucht				
H16	10492,7	2845,5	0,0	878,1	17238,4	1233,6	0,0	43955,8	Kies-Sand, >Sand bzw. Feinkies				
H17	7676,1	2102,5	0,0	137,1	12215,8	837,7	0,0	32824,8	Kies-Sand, hoher Kiesanteil				
H18	7096,1	2182,2	0,0	142,9	10726,6	842,8	0,0	34371,9	Kies-Sand, >Sand-/Feinkiesl, Organik				
Н13 _в	14080,1	2450,0	0,0	939,9	17470,0	1149,8	0,0	33162,5	Bohrung mit Auger, sandig, <1kg				
H _{MP}	18014,6	2721,1	0,0	895,6	21050,9	1227,6	0,0	35219,2	Mischprobe Schreitbagger, Sand-Kies				
H _{MP}	10275,6	2347,9	0,0	862,4	16518,8	1141,6	0,0	34194,1	Mischprobe Schreitbagger, Stein				
H _{MP}	14134,9	2732,6	516,2	73,9	10274,2	767,3	0,0	39968,6	Mischprobe Schreitbagger, PbS sichtb.				
L1	18264,8	2355,1	308,4	71,4	38816,1	1107,0	47024,5	14776,4	Bohrung mit Auger, >feucht				
L2	21340,3	2311,8	318,8	70,8	51797,3	1271,8	26784,3	12952,9	Bohrung mit Auger, grobkörnig, >feucht				
L3	11544,3	1853,5	202,0	68,6	39597,0	1197,0	0,0	24101,6	Bohrung mit Auger, relativ trocken				

Y Error	6,0	5,6	3,8	3,5	4,3	2,6	18,1	4,6	10,9	8,3	4,6	18,6	9,6	17,0	9,0	5,8	5,8	5,2	1,8	8,7	2,9	3,3	3,6
≻	96,0	77,1	42,1	34,9	56,1	16,8	377,8	59,6	231,4	151,6	62,6	374,6	180,3	358,3	174,6	90,8	92,6	76,7	6,3	170,1	30,7	39,0	45,8
Zr Error	3,3	3,1	2,8	5,5	2,9	5,3	5,5	3,0	3,9	3,5	2,9	6,0	3,8	5,4	3,8	3,1	3,1	3,0	4,9	3,7	2,8	3,1	3,2
Zr	27,2	11,6	6,0	< LOD	9,2	< LOD	43,3	11,6	24,7	20,9	10,6	38,5	25,8	43,2	19,9	15,9	14,2	14,1	< LOD	21,3	30,9	40,5	38,6
Nb Error	3,0	3,2	2,8	2,7	2,9	2,5	8,0	2,9	5,8	5,3	5,7	9,4	5,8	8,2	7,9	5,4	6,3	5,9	2,4	6,3	2,4	2,5	2,5
q	6,3	9,3	8,3	6,1	10,2	8,8	< LOD	6,8	< LOD	< LOD	< LOD	< LOD	< LOD	8,4	< LOD	5,0	9,1	9,2					
Mo Error	16,0	24,0	13,0	9,2	14,1	4,6	10,4	10,1	4,1	13,4	16,5	51,3	12,8	28,4	75,3	8,8	29,4	22,1	6,0	45,7	3,1	3,3	3,9
Mo	933,6	1490,4	757,6	451,0	826,9	114,7	305,8	502,1	26,9	661,3	1005,3	2237,9	563,8	1261,2	4745,4	391,0	1924,9	1406,7	< LOD	2831,8	14,1	28,0	70.5
Bal Error	26229,3	26072,8	24718,5	24000,3	25936,8	23442,1	26037,6	25687,5	24839,0	27751,5	25011,8	33773,0	28658,9	31458,2	26562,9	24462,5	26135,2	24431,7	22012,7	26116,8	18362,4	19985,0	19349,3
Bal	403074,9	436170,5	411921,2	387443,1	379506,5	398842,4	389560,6	381193,8	393844,7	365442,0	402770,4	516988,2	380186,2	392251,8	399813,8	399390,8	370471,8	419770,8	427166,8	412794,3	627095,3	600120,6	567386,9
Ag Error	38,3	39,5	36,6	37,5	37,0	36,0	23,3	36,5	41,2	40,0	37,3	55,9	42,2	46,9	20,3	38,7	38,5	37,9	35,4	40,6	33,8	32,6	33,4
Ag	< LOD	48,7	< LOD	46,8	< LOD	< LOD	< LOD	< LOD															
Cd Error	9,8	10,1	9,4	11,5	9,7	9,1	13,1	10,3	10,6	11,4	10,3	17,4	13,3	15,9	10,5	10,6	10,2	10,1	15,8	10,9	8,8	8,8	8,5
Cd	40,6	36,2	40,3	129,3	47,3	31,7	86,7	62,2	41,2	88,5	73,0	161,8	150,0	192,0	49,8	74,5	49,9	60,7	< LOD	66,8	48,0	41,3	31,2
Ba Error	80,7	166,3	152,6	155,8	154,7	149,9	102,2	158,6	88,0	86,6	78,4	185,3	89,6	105,8	85,7	85,8	162,4	79,6	147,1	87,0	73,0	75,4	94,6
Ba	235,7	< LOD	402,3	< LOD	208,2	360,5	162,7	4421,4	197,8	667,3	248,9	741,2	< LOD	198,1	< LOD	356,0	464,5	631,7	2607,4				
R.	H1_P	H2_P	H3_P	Н4 Г	H2_P	Ч [_] Р	H7_P	Ч 8Н	ч_ вн	H10_P	H11_P	H12_P	H13_P	H13 _B _P	H14_P	H15_P	H16_P	H17_P	H18_P	H _{MP} _P	С1_Р	L2_P	L3 Р

Tabelle 16: Werte der mit pRFA gemessenen Proben an ungeglühten Pulverproben mit 120 s Messzeit, angegeben in ppm.

Ni Error	66,6	69,9	62,9	66,2	67,3	62,4	83,8	67,8	73,7	70,3	65,4	91,6	75,1	88,4	79,6	68,1	43,8	43,2	38,4	49,3	34,9	36,5	37,2
īZ	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	456,3	485,1	452,7	578,2	360,7	401,2	456,5
Cu Error	29,5	30,3	27,2	29,0	28,9	26,0	38,0	29,5	32,8	31,7	28,0	48,8	35,5	42,6	33,1	30,2	31,2	29,9	28,1	33,9	15,8	14,9	14,8
C	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	79,4	45,2	49,3
Zn Error	37,5	17,4	13,8	64,2	19,3	16,0	75,6	58,2	36,8	137,3	24,8	506,2	276,3	361,0	25,8	91,8	24,6	25,0	17,9	72,7	187,4	110,5	88,3
Zn	1377,4	272,6	178,2	3282,9	382,5	275,3	3249,1	2768,1	1164,6	8576,2	646,3	28248,4	18607,3	21661,5	561,2	5343,2	600,2	638,6	374,0	3534,2	14935,1	7771,2	5857,6
Pb Error	116,7	98,1	49,5	43,0	60,3	26,9	717,7	70,6	308,0	199,4	69,0	687,6	246,0	620,4	213,1	103,0	103,1	88,3	10,9	207,1	29,4	37,3	46,4
Pp	7911,4	6221,7	2748,8	2211,9	3549,6	1138,6	44162,8	4242,7	21147,2	13578,0	4212,9	36611,2	16023,8	36423,6	14056,7	6745,7	6733,1	5668,5	226,3	13836,1	1393,2	2017,1	2784,4
Au Error	66,4	63,0	47,6	45,9	52,7	37,1	80,6	56,0	53,9	86,8	53,3	170,0	50,3	155,3	93,4	63,9	62,3	59,0	31,4	90'9	37,3	40,4	44,7
Au	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	163,2	< LOD	143,8	< LOD	< LOD	< LOD	120,5	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
As Error	120,1	110,1	70,4	64,1	80,6	44,4	327,2	89,7	208,5	164,8	87,8	335,7	187,8	310,3	174,1	113,2	113,7	102,3	19,9	169,8	48,5	57,4	65,6
As	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
Rb Error	2,6	2,4	1,8	1,7	1,9	1,5	6,1	2,1	4,0	3,2	2,0	6,5	3,7	6,0	3,4	2,4	2,4	2,2	1,3	3,4	1,9	2,0	2,0
Ъ	19,3	13,7	8,3	8,1	10,9	7,3	48,7	12,3	30,5	26,3	9,4	50,4	26,4	46,3	23,5	16,4	16,1	12,3	5,8	27,0	17,9	21,4	20,2
Sr Error	4,5	4,6	4,4	4,4	4,4	4,3	7,7	4,4	5,2	5,0	4,4	8,4	5,0	6,8	5,2	4,7	4,4	4,3	3,9	5,1	3,0	3,6	4,8
Ś	118,8	119,6	123,3	124,1	120,7	124,9	172,9	116,4	116,8	122,4	119,8	174,5	104,2	127,8	121,8	125,1	110,0	108,5	110,6	121,7	63,3	97,1	166,4
Ľ.	Н Р	H2_P	H3_P	H4 P	H5_P	H6_P	H7_P	Н8_ Р	d_0H	H10_P	H11_P	H12_P	H13_P	H13 _{B_} P	H14_P	H15_P	H16_P	H17_P	H18_P	H _{MP} P	L1_P	L2_P	L3_P

Cl Error	48,0	49,9	45,4	43,7	45,6	42,3	50,2	44,7	46,4	46,6	45,2	71,9	49,1	57,3	46,2	45,0	44,8	44,6	40,4	46,1	43,0	48,7	45,2
ū	368,5	431,0	335,7	355,3	305,4	263,9	392,8	307,6	371,7	317,1	351,7	722,0	397,8	381,4	323,3	360,3	303,8	355,8	285,4	338,6	333,5	404,3	393,7
K Error	264,1	434,6	439,3	220,5	220,3	437,4	478,7	224,7	463,7	227,5	445,9	246,9	467,3	245,3	453,7	227,9	217,5	220,6	216,7	228,6	244,4	232,9	226,8
×	3437,8	< LOD	< LOD	492,5	543,3	< LOD	< LOD	727,4	< LOD	746,9	< LOD	1081,8	< LOD	624,6	< LOD	691,8	654,8	472,9	653,1	844,5	5464,5	4725,2	3951,5
Ca Error	3384,4	3593,3	3482,6	3498,6	3554,0	3419,9	4212,9	3639,8	3727,0	3753,3	3567,8	4271,6	3704,7	4318,6	3914,3	3443,4	3631,1	3569,4	3192,4	3804,6	1633,4	1902,1	1986,0
Ca	422192,7	436905,0	449525,1	460865,6	455019,5	459520,5	441243,9	460589,7	453074,7	447215,9	455846,4	351640,3	419919,8	402774,1	440021,8	450164,8	451789,6	453035,8	439248,2	440146,2	214071,1	250881,2	266542,5
Ti Error	68,7	100,1	96,9	94,5	104,8	100,1	132,1	111,6	106,4	63,2	103,3	306,9	126,7	160,8	106,1	155,1	108,0	109,2	93,4	63,1	71,3	80,6	120,1
Ħ	330,4	< LOD	134,7	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	138,9	722,1	828,9	1116,4							
V Error	66,7	55,5	53,2	54,4	56,5	53,5	61,9	59,3	57,5	65,4	58,1	142,8	65,7	80,4	59,2	77,2	58,3	58,6	51,2	66,8	63,4	71,4	106,2
>	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD													
Cr Error	49,5	50,9	50,5	51,9	51,5	51,8	55,1	51,6	54,3	53,5	52,3	62,9	53,4	55,7	52,5	51,4	29,3	28,1	26,7	30,7	20,6	21,5	24,1
స	< LOD	< LOD	< LOD	146,8	134,1	139,1	203,7	161,4	153,1	161,1													
Mn Error	97,8	93,5	85,4	92,3	84,2	74,8	107,6	85,5	99,4	92,5	87,9	151,2	105,7	123,0	102,0	92,3	97,7	96,7	80,7	112,5	104,4	105,0	112,4
R	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD													
Fe Error	115,2	60,8	49,1	47,4	54,9	44,3	86,1	80,4	121,0	105,8	57,5	334,0	215,8	247,4	108,6	88,0	75,2	84,7	45,3	129,7	281,6	205,8	201,8
е	3881,7	924,0	623,2	544,6	813,6	514,5	1480,8	1883,3	3735,2	3092,5	903,8	14715,8	10196,3	10616,1	2909,8	2279,1	1581,2	2106,0	597,1	4284,5	20445,5	12334,6	12032,6
Ľ.	H P	H2_P	H3_P	H4_P	H2_P	Не_Р	H7_P	Н8_ Р	d_6H	H10_P	H11_P	H12_P	H13_P	H13 _{B_} P	H14_P	H15_P	H16_P	H17_P	H18_P	H _{MP_} P	L1_P	L2_P	L3_P

Mg Error	23143,5	23372,7	22635,3	23094,3	23709,8	22773,8	24403,2	23465,6	23591,7	24346,0	22749,7	54244,6	24901,8	25454,7	22967,2	23553,2	23413,8	21908,8	21269,2	22675,5	17327,5	18738,7	18007,8
Mg	100737,0	83193,5	98857,7	113745,4	116151,9	112116,1	88807,5	111713,4	97378,8	120266,0	99978,7	< LOD	115593,4	97729,1	105541,7	106484,6	122438,2	80964,5	102736,8	86928,5	49609,7	53748,2	63351,6
Si Error	1065,9	852,1	733,5	577,1	874,8	587,3	642,5	747,1	591,9	799,6	701,6	1243,6	885,2	1043,5	866,1	600,8	838,4	734,4	597,2	837,0	1194,6	1320,5	1305,3
<u>م</u> :	21090,2	9136,6	6906,7	5499,2	13229,9	5883,5	5917,8	7168,6	5002,8	6282,7	4915,7	9775,1	8423,5	9320,9	9012,3	5463,3	10938,4	6408,6	6761,6	7925,9	39862,7	42390,4	47888,9
P Error	324,6	319,3	266,7	67,7	278,1	65,3	74,0	281,3	70,4	350,7	283,5	1172,9	385,7	1002,6	375,9	68,9	305,4	289,1	63,6	360,2	153,0	83,1	77,9
٩	864,1	830,2	865,4	749,4	907,0	621,2	605,3	901,6	663,3	864,7	963,2	< LOD	890,9	< LOD <	773,5	641,0	849,3	887,3	598,9	751,4	< LOD	411,4	463,4
Al Error	3699,6	3389,6	3334,4	3468,0	3605,5	3280,1	3592,7	3442,7	3473,1	3752,7	3320,7	3503,7	3619,2	3837,9	3227,7	3418,1	3629,3	3247,9	3124,5	3201,6	2554,5	2960,1	2976,6
R	26524,1	19785,8	20919,6	23348,5	23425,9	19782,1	21851,4	21196,6	21731,4	25598,5	20455,6	13670,2	21167,8	24004,6	17523,3	20220,4	25192,0	21294,3	20455,9	18037,7	15229,4	19270,5	22464,1
S Error	17156,9	16883,2	13978,5	198,1	14569,8	187,6	376,5	14777,7	291,8	18664,0	14881,5	31661,2	20586,0	27249,5	20111,7	236,5	16131,4	15249,6	89,2	19239,6	392,3	316,7	263,9
S	< LOD	< LOD	< LOD	1168,9	< LOD	1035,6	1808,7	< LOD	1712,9	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	1333,0	< LOD	< LOD	691,0	< LOD	9854,8	4025,2	2368,7
۲. ۲	H1_P	H2_P	H3_P	H4 P	H5_P	H6_P	H7_P	H8_P	Ч_ Н	H10_P	H11_P	H12_P	H13_P	H13 _B _P	H14_P	H15_P	H16_P	H17_P	H18_P	H _{MP} P	L1_P	L2_P	L3_P

Anhang B2: Ergebnisse der Messung mit RFA

Tabelle 17: Einwaagen,	Glüh- und Schmelztemperatur sowie ermittelter Glühverlust der Proben der Matthäus- (H	I)
	und Leininger-Halde (L)	

Probenbe- zeichnung	MTiegel	MTiegel+Probe, getrocknet	Glühtempe- ratur	nach Glühen MTiegel+Probe, geglüht	roi/goi	M Schmelzmittel	MProbe,SP	Schmelztem- peratur	Bemerkung
[-]	[g]	[g]	[°C]	[g]	[Gew%]	[g]	[g]	[°C]	[-]
H1	14,5580	20,3300	1050	17,9428	41,3583	7,9997	0,9998	1050	nach Glühen: Probe versintert am Boden
H2	14,0882	20,3608	1050	17,7330	41,8933	8,0000	1,0005	1050	ovalförmig nach 1. Schmelzen
H3	13,8636	18,3549	1050	16,4335	42,7805	8,0001	1,0003	1050	ovalförmig nach 1. Schmelzen
H4	13,7441	19,6782	1050	17,1118	43,2483	7,9998	0,9999	1050	nach Glühen sehr hart
H5	13,9505	19,6660	1050	17,2823	41,7059	7,9995	0,9998	1050	ovalförmig nach 1. Schmelzen
H6	14,3357	19,9289	1050	17,5193	43,0809	7,9995	1,0001	1050	
H7	14,5978	21,5954	1050	18,8119	39,7779	7,9998	1,0003	1200	nach Glühen: Probe versintert am Boden
H8	13,8086	19,4921	1050	17,0589	42,8116	8,0002	1,0005	1200	
H9	14,6518	21,3856	1050	18,5861	41,5739	8,0004	0,9997	1200	nach Glühen: Probe versintert am Boden
H10	15,4042	21,3553	1050	18,8414	42,2426	8,0004	1,0003	1200	
H11	13,4700	18,8935	1050	16,5489	43,2304	7,9997	1,0004	1200	
H12	13,8482	18,4348	1050	16,6778	38,3072	8,0001	1,0004	1200	
H13	13,9698	18,7203	1050	16,7506	41,4630	7,9995	0,9998	1200	
H13 _{Boh-} rung	12,3432	16,7587	1050	14,9892	40,0747	8,0003	1,0000	1200	Bohrung mittels Auger
H14	14,4949	19,0063	1050	17,1258	41,6833	8,0000	1,0004	1200	
H15	14,3719	18,7099	1050	16,8407	43,0890	8,0001	1,0003	1200	
H16	14,7207	19,3906	1050	17,4200	42,1979	8,0003	1,0005	1200	
H17	13,7959	19,4626	1050	17,0405	42,7427	7,9999	0,9996	1200	
H18	12,2934	16,8906	1050	14,8797	43,7418	7,9999	1,0002	1200	
H _{MP,SB}	13,8284	18,3868	1050	16,4817	41,7932	8,0002	1,0003	1200	Mischprobe Schreit- bagger
L1	14,8091	18,8274	1050	17,4059	35,3757	8,0002	0,9996	1200	
L2	14,7221	18,6326	1050	17,1281	38,4733	7,9998	1,0005	1200	
L3	14,0224	18,1384	1050	16,5820	37,8134	8,0004	0,9997	1200	

H12	3.32	0.03	1.09	2.46	0.07	0.98	46.95	0.39	0.02	0.37	0.40	SWN>	0.01	<nwg< th=""><th>SWN></th><th>0.54</th><th>0.21</th><th><nwg< th=""><th>3.96</th><th>0.82</th><th>0.02</th><th>0.32</th><th>61.95</th><th>38.31</th><th>100.26</th></nwg<></th></nwg<>	SWN>	0.54	0.21	<nwg< th=""><th>3.96</th><th>0.82</th><th>0.02</th><th>0.32</th><th>61.95</th><th>38.31</th><th>100.26</th></nwg<>	3.96	0.82	0.02	0.32	61.95	38.31	100.26
H11	0.70	<nwg< td=""><td>0.07</td><td>0.12</td><td>0.03</td><td>0.45</td><td>54.14</td><td><nwg< td=""><td><nwg< td=""><td>0.31</td><td>0.03</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>SWNS</td><td>0.00</td><td>0.19</td><td>SWN></td><td>0.08</td><td>0.09</td><td>0.01</td><td>0.12</td><td>56.34</td><td>43.23</td><td>99.57</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0.07	0.12	0.03	0.45	54.14	<nwg< td=""><td><nwg< td=""><td>0.31</td><td>0.03</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>SWNS</td><td>0.00</td><td>0.19</td><td>SWN></td><td>0.08</td><td>0.09</td><td>0.01</td><td>0.12</td><td>56.34</td><td>43.23</td><td>99.57</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>0.31</td><td>0.03</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>SWNS</td><td>0.00</td><td>0.19</td><td>SWN></td><td>0.08</td><td>0.09</td><td>0.01</td><td>0.12</td><td>56.34</td><td>43.23</td><td>99.57</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0.31	0.03	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>SWNS</td><td>0.00</td><td>0.19</td><td>SWN></td><td>0.08</td><td>0.09</td><td>0.01</td><td>0.12</td><td>56.34</td><td>43.23</td><td>99.57</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>SWNS</td><td>0.00</td><td>0.19</td><td>SWN></td><td>0.08</td><td>0.09</td><td>0.01</td><td>0.12</td><td>56.34</td><td>43.23</td><td>99.57</td></nwg<></td></nwg<>	<nwg< td=""><td>SWNS</td><td>0.00</td><td>0.19</td><td>SWN></td><td>0.08</td><td>0.09</td><td>0.01</td><td>0.12</td><td>56.34</td><td>43.23</td><td>99.57</td></nwg<>	SWNS	0.00	0.19	SWN>	0.08	0.09	0.01	0.12	56.34	43.23	99.57
H10	0.89	<nwg< th=""><th>0.26</th><th>0.44</th><th>0.04</th><th>0.46</th><th>53.48</th><th><nwg< th=""><th><nwg< th=""><th>0.32</th><th>0.19</th><th><nwg< th=""><th>0.00</th><th><nwg< th=""><th><nwg< th=""><th>0.03</th><th>0.19</th><th><nwg< th=""><th>1.01</th><th>0.31</th><th>0.01</th><th>0.08</th><th>57.71</th><th>42.24</th><th>99.95</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.26	0.44	0.04	0.46	53.48	<nwg< th=""><th><nwg< th=""><th>0.32</th><th>0.19</th><th><nwg< th=""><th>0.00</th><th><nwg< th=""><th><nwg< th=""><th>0.03</th><th>0.19</th><th><nwg< th=""><th>1.01</th><th>0.31</th><th>0.01</th><th>0.08</th><th>57.71</th><th>42.24</th><th>99.95</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.32</th><th>0.19</th><th><nwg< th=""><th>0.00</th><th><nwg< th=""><th><nwg< th=""><th>0.03</th><th>0.19</th><th><nwg< th=""><th>1.01</th><th>0.31</th><th>0.01</th><th>0.08</th><th>57.71</th><th>42.24</th><th>99.95</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.32	0.19	<nwg< th=""><th>0.00</th><th><nwg< th=""><th><nwg< th=""><th>0.03</th><th>0.19</th><th><nwg< th=""><th>1.01</th><th>0.31</th><th>0.01</th><th>0.08</th><th>57.71</th><th>42.24</th><th>99.95</th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.00	<nwg< th=""><th><nwg< th=""><th>0.03</th><th>0.19</th><th><nwg< th=""><th>1.01</th><th>0.31</th><th>0.01</th><th>0.08</th><th>57.71</th><th>42.24</th><th>99.95</th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.03</th><th>0.19</th><th><nwg< th=""><th>1.01</th><th>0.31</th><th>0.01</th><th>0.08</th><th>57.71</th><th>42.24</th><th>99.95</th></nwg<></th></nwg<>	0.03	0.19	<nwg< th=""><th>1.01</th><th>0.31</th><th>0.01</th><th>0.08</th><th>57.71</th><th>42.24</th><th>99.95</th></nwg<>	1.01	0.31	0.01	0.08	57.71	42.24	99.95
6H	0.58	<nwg< th=""><th>0.09</th><th>0.61</th><th>0.04</th><th>0.43</th><th>54.48</th><th><nwg< th=""><th><nwg< th=""><th>0.33</th><th>0.66</th><th><nwg< th=""><th>0.00</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.16</th><th>0.53</th><th>0.01</th><th>0.00</th><th>58.11</th><th>41.57</th><th><u>99.69</u></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.09	0.61	0.04	0.43	54.48	<nwg< th=""><th><nwg< th=""><th>0.33</th><th>0.66</th><th><nwg< th=""><th>0.00</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.16</th><th>0.53</th><th>0.01</th><th>0.00</th><th>58.11</th><th>41.57</th><th><u>99.69</u></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.33</th><th>0.66</th><th><nwg< th=""><th>0.00</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.16</th><th>0.53</th><th>0.01</th><th>0.00</th><th>58.11</th><th>41.57</th><th><u>99.69</u></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.33	0.66	<nwg< th=""><th>0.00</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.16</th><th>0.53</th><th>0.01</th><th>0.00</th><th>58.11</th><th>41.57</th><th><u>99.69</u></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.00	<nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.16</th><th>0.53</th><th>0.01</th><th>0.00</th><th>58.11</th><th>41.57</th><th><u>99.69</u></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.16</th><th>0.53</th><th>0.01</th><th>0.00</th><th>58.11</th><th>41.57</th><th><u>99.69</u></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.16</th><th>0.53</th><th>0.01</th><th>0.00</th><th>58.11</th><th>41.57</th><th><u>99.69</u></th></nwg<></th></nwg<>	0.19	<nwg< th=""><th>0.16</th><th>0.53</th><th>0.01</th><th>0.00</th><th>58.11</th><th>41.57</th><th><u>99.69</u></th></nwg<>	0.16	0.53	0.01	0.00	58.11	41.57	<u>99.69</u>
H8	1.03	<nwg< th=""><th>0.14</th><th>0.27</th><th>0.03</th><th>0.42</th><th>53.64</th><th><nwg< th=""><th><nwg< th=""><th>0.31</th><th>0.03</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.00</th><th>0.19</th><th><nwg< th=""><th>0.30</th><th>0.15</th><th>0.01</th><th>0.06</th><th>56.58</th><th>42.81</th><th>99.39</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.14	0.27	0.03	0.42	53.64	<nwg< th=""><th><nwg< th=""><th>0.31</th><th>0.03</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.00</th><th>0.19</th><th><nwg< th=""><th>0.30</th><th>0.15</th><th>0.01</th><th>0.06</th><th>56.58</th><th>42.81</th><th>99.39</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.31</th><th>0.03</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.00</th><th>0.19</th><th><nwg< th=""><th>0.30</th><th>0.15</th><th>0.01</th><th>0.06</th><th>56.58</th><th>42.81</th><th>99.39</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.31	0.03	<nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.00</th><th>0.19</th><th><nwg< th=""><th>0.30</th><th>0.15</th><th>0.01</th><th>0.06</th><th>56.58</th><th>42.81</th><th>99.39</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.00</th><th>0.19</th><th><nwg< th=""><th>0.30</th><th>0.15</th><th>0.01</th><th>0.06</th><th>56.58</th><th>42.81</th><th>99.39</th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th><nwg< th=""><th>0.00</th><th>0.19</th><th><nwg< th=""><th>0.30</th><th>0.15</th><th>0.01</th><th>0.06</th><th>56.58</th><th>42.81</th><th>99.39</th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.00</th><th>0.19</th><th><nwg< th=""><th>0.30</th><th>0.15</th><th>0.01</th><th>0.06</th><th>56.58</th><th>42.81</th><th>99.39</th></nwg<></th></nwg<>	0.00	0.19	<nwg< th=""><th>0.30</th><th>0.15</th><th>0.01</th><th>0.06</th><th>56.58</th><th>42.81</th><th>99.39</th></nwg<>	0.30	0.15	0.01	0.06	56.58	42.81	99.39
H7	1.57	<nwg< th=""><th>0.21</th><th>0.28</th><th>0.03</th><th>0.65</th><th>53.15</th><th><nwg< th=""><th><nwg< th=""><th>0.33</th><th>1.12</th><th><nwg< th=""><th>0.00</th><th><nwg< th=""><th><nwg< th=""><th>0.03</th><th>0.20</th><th><nwg< th=""><th>0.40</th><th>1.18</th><th>0.01</th><th>0.03</th><th>59.20</th><th>39.78</th><th>98,98</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.21	0.28	0.03	0.65	53.15	<nwg< th=""><th><nwg< th=""><th>0.33</th><th>1.12</th><th><nwg< th=""><th>0.00</th><th><nwg< th=""><th><nwg< th=""><th>0.03</th><th>0.20</th><th><nwg< th=""><th>0.40</th><th>1.18</th><th>0.01</th><th>0.03</th><th>59.20</th><th>39.78</th><th>98,98</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.33</th><th>1.12</th><th><nwg< th=""><th>0.00</th><th><nwg< th=""><th><nwg< th=""><th>0.03</th><th>0.20</th><th><nwg< th=""><th>0.40</th><th>1.18</th><th>0.01</th><th>0.03</th><th>59.20</th><th>39.78</th><th>98,98</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.33	1.12	<nwg< th=""><th>0.00</th><th><nwg< th=""><th><nwg< th=""><th>0.03</th><th>0.20</th><th><nwg< th=""><th>0.40</th><th>1.18</th><th>0.01</th><th>0.03</th><th>59.20</th><th>39.78</th><th>98,98</th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.00	<nwg< th=""><th><nwg< th=""><th>0.03</th><th>0.20</th><th><nwg< th=""><th>0.40</th><th>1.18</th><th>0.01</th><th>0.03</th><th>59.20</th><th>39.78</th><th>98,98</th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.03</th><th>0.20</th><th><nwg< th=""><th>0.40</th><th>1.18</th><th>0.01</th><th>0.03</th><th>59.20</th><th>39.78</th><th>98,98</th></nwg<></th></nwg<>	0.03	0.20	<nwg< th=""><th>0.40</th><th>1.18</th><th>0.01</th><th>0.03</th><th>59.20</th><th>39.78</th><th>98,98</th></nwg<>	0.40	1.18	0.01	0.03	59.20	39.78	98,98
НG	0.92	<nwg< th=""><th>0.02</th><th>0.06</th><th>0.02</th><th>0.40</th><th>53.50</th><th><nwg< th=""><th>SWN></th><th>0.31</th><th>0.02</th><th>SWN></th><th><nwg< th=""><th><nwg< th=""><th>SWN></th><th>SWN></th><th>0.19</th><th>SWN></th><th>0.03</th><th>0.12</th><th>0.01</th><th>0.01</th><th>55.61</th><th>43.08</th><th>98,69</th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.02	0.06	0.02	0.40	53.50	<nwg< th=""><th>SWN></th><th>0.31</th><th>0.02</th><th>SWN></th><th><nwg< th=""><th><nwg< th=""><th>SWN></th><th>SWN></th><th>0.19</th><th>SWN></th><th>0.03</th><th>0.12</th><th>0.01</th><th>0.01</th><th>55.61</th><th>43.08</th><th>98,69</th></nwg<></th></nwg<></th></nwg<>	SWN>	0.31	0.02	SWN>	<nwg< th=""><th><nwg< th=""><th>SWN></th><th>SWN></th><th>0.19</th><th>SWN></th><th>0.03</th><th>0.12</th><th>0.01</th><th>0.01</th><th>55.61</th><th>43.08</th><th>98,69</th></nwg<></th></nwg<>	<nwg< th=""><th>SWN></th><th>SWN></th><th>0.19</th><th>SWN></th><th>0.03</th><th>0.12</th><th>0.01</th><th>0.01</th><th>55.61</th><th>43.08</th><th>98,69</th></nwg<>	SWN>	SWN>	0.19	SWN>	0.03	0.12	0.01	0.01	55.61	43.08	98,69
H5	3.58	<nwg< th=""><th>0.09</th><th>0.10</th><th>0.03</th><th>0.38</th><th>52.27</th><th><nwg< th=""><th><nwg< th=""><th>0.32</th><th>0.02</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.04</th><th>0.33</th><th>0.01</th><th>0.09</th><th>57.47</th><th>41.71</th><th>99.18</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.09	0.10	0.03	0.38	52.27	<nwg< th=""><th><nwg< th=""><th>0.32</th><th>0.02</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.04</th><th>0.33</th><th>0.01</th><th>0.09</th><th>57.47</th><th>41.71</th><th>99.18</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.32</th><th>0.02</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.04</th><th>0.33</th><th>0.01</th><th>0.09</th><th>57.47</th><th>41.71</th><th>99.18</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.32	0.02	<nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.04</th><th>0.33</th><th>0.01</th><th>0.09</th><th>57.47</th><th>41.71</th><th>99.18</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.04</th><th>0.33</th><th>0.01</th><th>0.09</th><th>57.47</th><th>41.71</th><th>99.18</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.04</th><th>0.33</th><th>0.01</th><th>0.09</th><th>57.47</th><th>41.71</th><th>99.18</th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.04</th><th>0.33</th><th>0.01</th><th>0.09</th><th>57.47</th><th>41.71</th><th>99.18</th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.04</th><th>0.33</th><th>0.01</th><th>0.09</th><th>57.47</th><th>41.71</th><th>99.18</th></nwg<></th></nwg<>	0.19	<nwg< th=""><th>0.04</th><th>0.33</th><th>0.01</th><th>0.09</th><th>57.47</th><th>41.71</th><th>99.18</th></nwg<>	0.04	0.33	0.01	0.09	57.47	41.71	99.18
H4	0.63	<nwg< th=""><th>0.07</th><th>0.07</th><th>0.04</th><th>0.42</th><th>53.63</th><th><nwg< th=""><th><nwg< th=""><th>0.31</th><th>0.02</th><th><nwg< th=""><th>00.0</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.38</th><th>0.07</th><th>0.01</th><th>0.05</th><th>55.88</th><th>43.25</th><th>99.13</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.07	0.07	0.04	0.42	53.63	<nwg< th=""><th><nwg< th=""><th>0.31</th><th>0.02</th><th><nwg< th=""><th>00.0</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.38</th><th>0.07</th><th>0.01</th><th>0.05</th><th>55.88</th><th>43.25</th><th>99.13</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.31</th><th>0.02</th><th><nwg< th=""><th>00.0</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.38</th><th>0.07</th><th>0.01</th><th>0.05</th><th>55.88</th><th>43.25</th><th>99.13</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.31	0.02	<nwg< th=""><th>00.0</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.38</th><th>0.07</th><th>0.01</th><th>0.05</th><th>55.88</th><th>43.25</th><th>99.13</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	00.0	<nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.38</th><th>0.07</th><th>0.01</th><th>0.05</th><th>55.88</th><th>43.25</th><th>99.13</th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.38</th><th>0.07</th><th>0.01</th><th>0.05</th><th>55.88</th><th>43.25</th><th>99.13</th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.38</th><th>0.07</th><th>0.01</th><th>0.05</th><th>55.88</th><th>43.25</th><th>99.13</th></nwg<></th></nwg<>	0.19	<nwg< th=""><th>0.38</th><th>0.07</th><th>0.01</th><th>0.05</th><th>55.88</th><th>43.25</th><th>99.13</th></nwg<>	0.38	0.07	0.01	0.05	55.88	43.25	99.13
H3	1.24	<nwg< th=""><th>0.10</th><th>0.09</th><th>0.04</th><th>0.40</th><th>53.61</th><th><nwg< th=""><th><nwg< th=""><th>0.31</th><th>0.02</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.02</th><th>0.13</th><th>0.01</th><th>0.09</th><th>56.26</th><th>42.78</th><th>99.04</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.10	0.09	0.04	0.40	53.61	<nwg< th=""><th><nwg< th=""><th>0.31</th><th>0.02</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.02</th><th>0.13</th><th>0.01</th><th>0.09</th><th>56.26</th><th>42.78</th><th>99.04</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.31</th><th>0.02</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.02</th><th>0.13</th><th>0.01</th><th>0.09</th><th>56.26</th><th>42.78</th><th>99.04</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.31	0.02	<nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.02</th><th>0.13</th><th>0.01</th><th>0.09</th><th>56.26</th><th>42.78</th><th>99.04</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.02</th><th>0.13</th><th>0.01</th><th>0.09</th><th>56.26</th><th>42.78</th><th>99.04</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.02</th><th>0.13</th><th>0.01</th><th>0.09</th><th>56.26</th><th>42.78</th><th>99.04</th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.02</th><th>0.13</th><th>0.01</th><th>0.09</th><th>56.26</th><th>42.78</th><th>99.04</th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.02</th><th>0.13</th><th>0.01</th><th>0.09</th><th>56.26</th><th>42.78</th><th>99.04</th></nwg<></th></nwg<>	0.19	<nwg< th=""><th>0.02</th><th>0.13</th><th>0.01</th><th>0.09</th><th>56.26</th><th>42.78</th><th>99.04</th></nwg<>	0.02	0.13	0.01	0.09	56.26	42.78	99.04
H2	2.66	<nwg< th=""><th>0.16</th><th>0.13</th><th>0.03</th><th>0.49</th><th>52.34</th><th><nwg< th=""><th><nwg< th=""><th>0.32</th><th>0.03</th><th><nwg< th=""><th>00.0</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.03</th><th>0.31</th><th>0.01</th><th>0.21</th><th>56.91</th><th>41.89</th><th>98.80</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.16	0.13	0.03	0.49	52.34	<nwg< th=""><th><nwg< th=""><th>0.32</th><th>0.03</th><th><nwg< th=""><th>00.0</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.03</th><th>0.31</th><th>0.01</th><th>0.21</th><th>56.91</th><th>41.89</th><th>98.80</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.32</th><th>0.03</th><th><nwg< th=""><th>00.0</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.03</th><th>0.31</th><th>0.01</th><th>0.21</th><th>56.91</th><th>41.89</th><th>98.80</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.32	0.03	<nwg< th=""><th>00.0</th><th><nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.03</th><th>0.31</th><th>0.01</th><th>0.21</th><th>56.91</th><th>41.89</th><th>98.80</th></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	00.0	<nwg< th=""><th><nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.03</th><th>0.31</th><th>0.01</th><th>0.21</th><th>56.91</th><th>41.89</th><th>98.80</th></nwg<></th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th><nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.03</th><th>0.31</th><th>0.01</th><th>0.21</th><th>56.91</th><th>41.89</th><th>98.80</th></nwg<></th></nwg<></th></nwg<>	<nwg< th=""><th>0.19</th><th><nwg< th=""><th>0.03</th><th>0.31</th><th>0.01</th><th>0.21</th><th>56.91</th><th>41.89</th><th>98.80</th></nwg<></th></nwg<>	0.19	<nwg< th=""><th>0.03</th><th>0.31</th><th>0.01</th><th>0.21</th><th>56.91</th><th>41.89</th><th>98.80</th></nwg<>	0.03	0.31	0.01	0.21	56.91	41.89	98.80
Н	3.29	0.04	1.03	0.56	0.05	0.85	50.92	<nwg< th=""><th>0.11</th><th>0.33</th><th>0.09</th><th><nwg< th=""><th>00.0</th><th><nwg< th=""><th><nwg< th=""><th>0.00</th><th>0.20</th><th>0.00</th><th>0.16</th><th>0.24</th><th>0.01</th><th>0.13</th><th>57.99</th><th>41.36</th><th>99.35</th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0.11	0.33	0.09	<nwg< th=""><th>00.0</th><th><nwg< th=""><th><nwg< th=""><th>0.00</th><th>0.20</th><th>0.00</th><th>0.16</th><th>0.24</th><th>0.01</th><th>0.13</th><th>57.99</th><th>41.36</th><th>99.35</th></nwg<></th></nwg<></th></nwg<>	00.0	<nwg< th=""><th><nwg< th=""><th>0.00</th><th>0.20</th><th>0.00</th><th>0.16</th><th>0.24</th><th>0.01</th><th>0.13</th><th>57.99</th><th>41.36</th><th>99.35</th></nwg<></th></nwg<>	<nwg< th=""><th>0.00</th><th>0.20</th><th>0.00</th><th>0.16</th><th>0.24</th><th>0.01</th><th>0.13</th><th>57.99</th><th>41.36</th><th>99.35</th></nwg<>	0.00	0.20	0.00	0.16	0.24	0.01	0.13	57.99	41.36	99.35
	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	SiO_2		Al_2O_3	Fe_2O_3	Mn ₃ O ₄	MgO	CaO	Na_2O	K ₂ O	P_2O_5	SO_3	V_2O_5	Cr_2O_3	SrO	ZrO_2	BaO	NïO	CuO	ZnO	PbO	HfO_2	MoO ₃	Summe	LOI	Sum + LOI

Tabelle 18: Auswertung der Schmelzpillen mit WROXI-Kalibration.

L3	10,67	0,18	2,67	1,81	0,07	12,46	31,57	<nwg< th=""><th>0,29</th><th>0,39</th><th>0,66</th><th><nwg< th=""><th>00'0</th><th><nwg< th=""><th><nwg< th=""><th>0,30</th><th>0,21</th><th>00'0</th><th>0,69</th><th>0,19</th><th>0,01</th><th>0,01</th><th>62,19</th><th>37,81</th><th>100,00</th></nwg<></th></nwg<></th></nwg<></th></nwg<>	0,29	0,39	0,66	<nwg< th=""><th>00'0</th><th><nwg< th=""><th><nwg< th=""><th>0,30</th><th>0,21</th><th>00'0</th><th>0,69</th><th>0,19</th><th>0,01</th><th>0,01</th><th>62,19</th><th>37,81</th><th>100,00</th></nwg<></th></nwg<></th></nwg<>	00'0	<nwg< th=""><th><nwg< th=""><th>0,30</th><th>0,21</th><th>00'0</th><th>0,69</th><th>0,19</th><th>0,01</th><th>0,01</th><th>62,19</th><th>37,81</th><th>100,00</th></nwg<></th></nwg<>	<nwg< th=""><th>0,30</th><th>0,21</th><th>00'0</th><th>0,69</th><th>0,19</th><th>0,01</th><th>0,01</th><th>62,19</th><th>37,81</th><th>100,00</th></nwg<>	0,30	0,21	00'0	0,69	0,19	0,01	0,01	62,19	37,81	100,00
Г3	8,98	0,12	2,15	1,81	0,06	15,56	29,61	SWN>	0,33	0,37	1,61	<nwg< td=""><td>0,00</td><td><nwg< td=""><td>SWN</td><td>0,07</td><td>0,21</td><td>0,00</td><td>0,84</td><td>0,11</td><td>0,01</td><td>0,00</td><td>61,85</td><td>38,47</td><td>100,32</td></nwg<></td></nwg<>	0,00	<nwg< td=""><td>SWN</td><td>0,07</td><td>0,21</td><td>0,00</td><td>0,84</td><td>0,11</td><td>0,01</td><td>0,00</td><td>61,85</td><td>38,47</td><td>100,32</td></nwg<>	SWN	0,07	0,21	0,00	0,84	0,11	0,01	0,00	61,85	38,47	100,32
5	8,16	0,09	2,00	3,37	0,07	16,55	27,02	<nwg< td=""><td>0,31</td><td>0,38</td><td>4,18</td><td><nwg< td=""><td>0,00</td><td><nwg< td=""><td><nwg< td=""><td>0,03</td><td>0,22</td><td>0,00</td><td>1,72</td><td>0,10</td><td>0,01</td><td>0,00</td><td>64,21</td><td>35,38</td><td>99,59</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0,31	0,38	4,18	<nwg< td=""><td>0,00</td><td><nwg< td=""><td><nwg< td=""><td>0,03</td><td>0,22</td><td>0,00</td><td>1,72</td><td>0,10</td><td>0,01</td><td>0,00</td><td>64,21</td><td>35,38</td><td>99,59</td></nwg<></td></nwg<></td></nwg<>	0,00	<nwg< td=""><td><nwg< td=""><td>0,03</td><td>0,22</td><td>0,00</td><td>1,72</td><td>0,10</td><td>0,01</td><td>0,00</td><td>64,21</td><td>35,38</td><td>99,59</td></nwg<></td></nwg<>	<nwg< td=""><td>0,03</td><td>0,22</td><td>0,00</td><td>1,72</td><td>0,10</td><td>0,01</td><td>0,00</td><td>64,21</td><td>35,38</td><td>99,59</td></nwg<>	0,03	0,22	0,00	1,72	0,10	0,01	0,00	64,21	35,38	99,59
H _{MP}	1,83	0,00	0,27	0,64	0,04	0,51	52,93	SWN>	SWN>	0,33	0,07	SWN>	0,00	SWN>	SWN>	0,02	0,19	SWN>	0,44	0,29	0,01	0,37	57,94	41,79	99,74
H18	0,90	<nwg< td=""><td>0,13</td><td>0,08</td><td>0,03</td><td>2,39</td><td>51,44</td><td><nwg< td=""><td><nwg< td=""><td>0,30</td><td>0,03</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,05</td><td>0,02</td><td>0,01</td><td>0,00</td><td>55,58</td><td>43,74</td><td>99,32</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0,13	0,08	0,03	2,39	51,44	<nwg< td=""><td><nwg< td=""><td>0,30</td><td>0,03</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,05</td><td>0,02</td><td>0,01</td><td>0,00</td><td>55,58</td><td>43,74</td><td>99,32</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>0,30</td><td>0,03</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,05</td><td>0,02</td><td>0,01</td><td>0,00</td><td>55,58</td><td>43,74</td><td>99,32</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0,30	0,03	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,05</td><td>0,02</td><td>0,01</td><td>0,00</td><td>55,58</td><td>43,74</td><td>99,32</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,05</td><td>0,02</td><td>0,01</td><td>0,00</td><td>55,58</td><td>43,74</td><td>99,32</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,05</td><td>0,02</td><td>0,01</td><td>0,00</td><td>55,58</td><td>43,74</td><td>99,32</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,05</td><td>0,02</td><td>0,01</td><td>0,00</td><td>55,58</td><td>43,74</td><td>99,32</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,05</td><td>0,02</td><td>0,01</td><td>0,00</td><td>55,58</td><td>43,74</td><td>99,32</td></nwg<></td></nwg<>	0,19	<nwg< td=""><td>0,05</td><td>0,02</td><td>0,01</td><td>0,00</td><td>55,58</td><td>43,74</td><td>99,32</td></nwg<>	0,05	0,02	0,01	0,00	55,58	43,74	99,32
H17	1,36	<nwg< td=""><td>0,09</td><td>0,31</td><td>0,04</td><td>0,50</td><td>53,87</td><td><nwg< td=""><td><nwg< td=""><td>0,31</td><td>0,04</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,01</td><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,11</td><td>0,01</td><td>0,18</td><td>57,09</td><td>42,74</td><td>99,83</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0,09	0,31	0,04	0,50	53,87	<nwg< td=""><td><nwg< td=""><td>0,31</td><td>0,04</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,01</td><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,11</td><td>0,01</td><td>0,18</td><td>57,09</td><td>42,74</td><td>99,83</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>0,31</td><td>0,04</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,01</td><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,11</td><td>0,01</td><td>0,18</td><td>57,09</td><td>42,74</td><td>99,83</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0,31	0,04	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,01</td><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,11</td><td>0,01</td><td>0,18</td><td>57,09</td><td>42,74</td><td>99,83</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,01</td><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,11</td><td>0,01</td><td>0,18</td><td>57,09</td><td>42,74</td><td>99,83</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>0,01</td><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,11</td><td>0,01</td><td>0,18</td><td>57,09</td><td>42,74</td><td>99,83</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>0,01</td><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,11</td><td>0,01</td><td>0,18</td><td>57,09</td><td>42,74</td><td>99,83</td></nwg<></td></nwg<>	0,01	0,19	<nwg< td=""><td>0,08</td><td>0,11</td><td>0,01</td><td>0,18</td><td>57,09</td><td>42,74</td><td>99,83</td></nwg<>	0,08	0,11	0,01	0,18	57,09	42,74	99,83
H16	2,66	<nwg< td=""><td>0,08</td><td>0,22</td><td>0,03</td><td>0,59</td><td>52,80</td><td><nwg< td=""><td><nwg< td=""><td>0,32</td><td>0,04</td><td><nwg< td=""><td>00'0</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,15</td><td>0,01</td><td>0,22</td><td>57,40</td><td>42,20</td><td>99,60</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0,08	0,22	0,03	0,59	52,80	<nwg< td=""><td><nwg< td=""><td>0,32</td><td>0,04</td><td><nwg< td=""><td>00'0</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,15</td><td>0,01</td><td>0,22</td><td>57,40</td><td>42,20</td><td>99,60</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>0,32</td><td>0,04</td><td><nwg< td=""><td>00'0</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,15</td><td>0,01</td><td>0,22</td><td>57,40</td><td>42,20</td><td>99,60</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0,32	0,04	<nwg< td=""><td>00'0</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,15</td><td>0,01</td><td>0,22</td><td>57,40</td><td>42,20</td><td>99,60</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	00'0	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,15</td><td>0,01</td><td>0,22</td><td>57,40</td><td>42,20</td><td>99,60</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,15</td><td>0,01</td><td>0,22</td><td>57,40</td><td>42,20</td><td>99,60</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>0,19</td><td><nwg< td=""><td>0,08</td><td>0,15</td><td>0,01</td><td>0,22</td><td>57,40</td><td>42,20</td><td>99,60</td></nwg<></td></nwg<>	0,19	<nwg< td=""><td>0,08</td><td>0,15</td><td>0,01</td><td>0,22</td><td>57,40</td><td>42,20</td><td>99,60</td></nwg<>	0,08	0,15	0,01	0,22	57,40	42,20	99,60
H15	0,80	<nwg< td=""><td>0,20</td><td>0,34</td><td>0,04</td><td>0,51</td><td>53,66</td><td><nwg< td=""><td><nwg< td=""><td>0,31</td><td>0,07</td><td><nwg< td=""><td>0,00</td><td><nwg< td=""><td><nwg< td=""><td>0,06</td><td>0,19</td><td><nwg< td=""><td>0,65</td><td>0,18</td><td>0,01</td><td>0,04</td><td>57,06</td><td>43,09</td><td>100,15</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0,20	0,34	0,04	0,51	53,66	<nwg< td=""><td><nwg< td=""><td>0,31</td><td>0,07</td><td><nwg< td=""><td>0,00</td><td><nwg< td=""><td><nwg< td=""><td>0,06</td><td>0,19</td><td><nwg< td=""><td>0,65</td><td>0,18</td><td>0,01</td><td>0,04</td><td>57,06</td><td>43,09</td><td>100,15</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>0,31</td><td>0,07</td><td><nwg< td=""><td>0,00</td><td><nwg< td=""><td><nwg< td=""><td>0,06</td><td>0,19</td><td><nwg< td=""><td>0,65</td><td>0,18</td><td>0,01</td><td>0,04</td><td>57,06</td><td>43,09</td><td>100,15</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0,31	0,07	<nwg< td=""><td>0,00</td><td><nwg< td=""><td><nwg< td=""><td>0,06</td><td>0,19</td><td><nwg< td=""><td>0,65</td><td>0,18</td><td>0,01</td><td>0,04</td><td>57,06</td><td>43,09</td><td>100,15</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0,00	<nwg< td=""><td><nwg< td=""><td>0,06</td><td>0,19</td><td><nwg< td=""><td>0,65</td><td>0,18</td><td>0,01</td><td>0,04</td><td>57,06</td><td>43,09</td><td>100,15</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>0,06</td><td>0,19</td><td><nwg< td=""><td>0,65</td><td>0,18</td><td>0,01</td><td>0,04</td><td>57,06</td><td>43,09</td><td>100,15</td></nwg<></td></nwg<>	0,06	0,19	<nwg< td=""><td>0,65</td><td>0,18</td><td>0,01</td><td>0,04</td><td>57,06</td><td>43,09</td><td>100,15</td></nwg<>	0,65	0,18	0,01	0,04	57,06	43,09	100,15
H14	2,19	SWN>	0,13	0,45	0,04	0,42	52,83	<nwg< td=""><td>SWN></td><td>0,33</td><td>0,03</td><td>SWN></td><td>00'0</td><td>SWN></td><td>SWN></td><td>00'0</td><td>0,19</td><td>SWN></td><td>0,07</td><td>0,30</td><td>0,01</td><td>0,59</td><td>57,59</td><td>41,68</td><td>99,27</td></nwg<>	SWN>	0,33	0,03	SWN>	00'0	SWN>	SWN>	00'0	0,19	SWN>	0,07	0,30	0,01	0,59	57,59	41,68	99,27
H13B	2,02	0,01	0,44	1,73	0,04	0,72	50,64	0,15	SWN>	0,35	0,14	SWN>	0,00	SWN>	SWN>	0,05	0,20	SWN>	2,78	0,66	0,01	0,17	60,12	40,07	100,19
H13	1,42	0,01	0,38	1,45	0,04	0,73	50,80	0,08	<nwg< td=""><td>0,33</td><td>0,07</td><td><nwg< td=""><td>00'0</td><td><nwg< td=""><td><nwg< td=""><td>0,00</td><td>0,20</td><td><nwg< td=""><td>2,40</td><td>0,41</td><td>0,01</td><td>0,07</td><td>58,40</td><td>41,46</td><td>99,87</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0,33	0,07	<nwg< td=""><td>00'0</td><td><nwg< td=""><td><nwg< td=""><td>0,00</td><td>0,20</td><td><nwg< td=""><td>2,40</td><td>0,41</td><td>0,01</td><td>0,07</td><td>58,40</td><td>41,46</td><td>99,87</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	00'0	<nwg< td=""><td><nwg< td=""><td>0,00</td><td>0,20</td><td><nwg< td=""><td>2,40</td><td>0,41</td><td>0,01</td><td>0,07</td><td>58,40</td><td>41,46</td><td>99,87</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>0,00</td><td>0,20</td><td><nwg< td=""><td>2,40</td><td>0,41</td><td>0,01</td><td>0,07</td><td>58,40</td><td>41,46</td><td>99,87</td></nwg<></td></nwg<>	0,00	0,20	<nwg< td=""><td>2,40</td><td>0,41</td><td>0,01</td><td>0,07</td><td>58,40</td><td>41,46</td><td>99,87</td></nwg<>	2,40	0,41	0,01	0,07	58,40	41,46	99,87
	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	SiO_2		AI_2O_3	Fe_2O_3	Mn_3O_4	MgO	CaO	Na_2O	K ₂ 0	P_2O_5	SO_3	V_2O_5	Cr_2O_3	SrO	ZrO ₂	BaO	NiO	CuO	ZnO	PbO	HfO_2	MoO ₃	Summe	LOI	Sum + LOI

H12	15540.5	192.3	5772.6	17190.9	497.7	5885.6	335554.4	2869.5	148.5	1615.4	1596.7	<pre>SWN></pre>	42.2	SWN>	<nwg< th=""><th>4860.3</th><th>1623.5</th><th>SWN></th><th>31800.3</th><th>7639.9</th><th>167.4</th><th>2125.6</th></nwg<>	4860.3	1623.5	SWN>	31800.3	7639.9	167.4	2125.6
H11	3287.8	SWN>	372.6	861.6	229.0	2735.3	386908.3	SWN>	<nwg< td=""><td>1350.2</td><td>109.2</td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>15.2</td><td>1493.9</td><td>SWN></td><td>615.7</td><td>832.7</td><td>81.8</td><td>809.6</td></nwg<>	1350.2	109.2	SWN>	SWN>	SWN>	SWN>	15.2	1493.9	SWN>	615.7	832.7	81.8	809.6
H10	4165.8	<nwg< td=""><td>1366.4</td><td>3046.0</td><td>257.9</td><td>2755.1</td><td>382222.6</td><td><nwg< td=""><td><nwg< td=""><td>1391.4</td><td>775.2</td><td><nwg< td=""><td>7.9</td><td><nwg< td=""><td><nwg< td=""><td>227.5</td><td>1515.4</td><td><nwg< td=""><td>8129.7</td><td>2906.1</td><td>88.2</td><td>542.7</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1366.4	3046.0	257.9	2755.1	382222.6	<nwg< td=""><td><nwg< td=""><td>1391.4</td><td>775.2</td><td><nwg< td=""><td>7.9</td><td><nwg< td=""><td><nwg< td=""><td>227.5</td><td>1515.4</td><td><nwg< td=""><td>8129.7</td><td>2906.1</td><td>88.2</td><td>542.7</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1391.4</td><td>775.2</td><td><nwg< td=""><td>7.9</td><td><nwg< td=""><td><nwg< td=""><td>227.5</td><td>1515.4</td><td><nwg< td=""><td>8129.7</td><td>2906.1</td><td>88.2</td><td>542.7</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1391.4	775.2	<nwg< td=""><td>7.9</td><td><nwg< td=""><td><nwg< td=""><td>227.5</td><td>1515.4</td><td><nwg< td=""><td>8129.7</td><td>2906.1</td><td>88.2</td><td>542.7</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	7.9	<nwg< td=""><td><nwg< td=""><td>227.5</td><td>1515.4</td><td><nwg< td=""><td>8129.7</td><td>2906.1</td><td>88.2</td><td>542.7</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>227.5</td><td>1515.4</td><td><nwg< td=""><td>8129.7</td><td>2906.1</td><td>88.2</td><td>542.7</td></nwg<></td></nwg<>	227.5	1515.4	<nwg< td=""><td>8129.7</td><td>2906.1</td><td>88.2</td><td>542.7</td></nwg<>	8129.7	2906.1	88.2	542.7
6H	2711.9	<nwg< td=""><td>491.7</td><td>4270.4</td><td>294.6</td><td>2589.7</td><td>389370.8</td><td><nwg< td=""><td><nwg< td=""><td>1427.9</td><td>2640.4</td><td>SWNS</td><td>4.0</td><td><nwg< td=""><td><nwg< td=""><td>SWNS</td><td>1528.4</td><td><nwg< td=""><td>1258.0</td><td>4903.1</td><td>79.3</td><td>11.7</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	491.7	4270.4	294.6	2589.7	389370.8	<nwg< td=""><td><nwg< td=""><td>1427.9</td><td>2640.4</td><td>SWNS</td><td>4.0</td><td><nwg< td=""><td><nwg< td=""><td>SWNS</td><td>1528.4</td><td><nwg< td=""><td>1258.0</td><td>4903.1</td><td>79.3</td><td>11.7</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1427.9</td><td>2640.4</td><td>SWNS</td><td>4.0</td><td><nwg< td=""><td><nwg< td=""><td>SWNS</td><td>1528.4</td><td><nwg< td=""><td>1258.0</td><td>4903.1</td><td>79.3</td><td>11.7</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1427.9	2640.4	SWNS	4.0	<nwg< td=""><td><nwg< td=""><td>SWNS</td><td>1528.4</td><td><nwg< td=""><td>1258.0</td><td>4903.1</td><td>79.3</td><td>11.7</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>SWNS</td><td>1528.4</td><td><nwg< td=""><td>1258.0</td><td>4903.1</td><td>79.3</td><td>11.7</td></nwg<></td></nwg<>	SWNS	1528.4	<nwg< td=""><td>1258.0</td><td>4903.1</td><td>79.3</td><td>11.7</td></nwg<>	1258.0	4903.1	79.3	11.7
Н8 Н	4819.8	<nwg< td=""><td>756.7</td><td>1900.0</td><td>189.5</td><td>2534.8</td><td>383328.8</td><td><nwg< td=""><td><nwg< td=""><td>1362.7</td><td>105.4</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0.0</td><td>1509.4</td><td><nwg< td=""><td>2430.5</td><td>1406.9</td><td>82.4</td><td>377.3</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	756.7	1900.0	189.5	2534.8	383328.8	<nwg< td=""><td><nwg< td=""><td>1362.7</td><td>105.4</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0.0</td><td>1509.4</td><td><nwg< td=""><td>2430.5</td><td>1406.9</td><td>82.4</td><td>377.3</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1362.7</td><td>105.4</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0.0</td><td>1509.4</td><td><nwg< td=""><td>2430.5</td><td>1406.9</td><td>82.4</td><td>377.3</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1362.7	105.4	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0.0</td><td>1509.4</td><td><nwg< td=""><td>2430.5</td><td>1406.9</td><td>82.4</td><td>377.3</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>0.0</td><td>1509.4</td><td><nwg< td=""><td>2430.5</td><td>1406.9</td><td>82.4</td><td>377.3</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>0.0</td><td>1509.4</td><td><nwg< td=""><td>2430.5</td><td>1406.9</td><td>82.4</td><td>377.3</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>0.0</td><td>1509.4</td><td><nwg< td=""><td>2430.5</td><td>1406.9</td><td>82.4</td><td>377.3</td></nwg<></td></nwg<>	0.0	1509.4	<nwg< td=""><td>2430.5</td><td>1406.9</td><td>82.4</td><td>377.3</td></nwg<>	2430.5	1406.9	82.4	377.3
H7	7321.8	<nwg< td=""><td>1121.9</td><td>1967.1</td><td>238.6</td><td>3944.0</td><td>379883.8</td><td><nwg< td=""><td><nwg< td=""><td>1429.7</td><td>4468.4</td><td><nwg< td=""><td>8.2</td><td><nwg< td=""><td><nwg< td=""><td>242.6</td><td>1580.1</td><td><nwg< td=""><td>3193.2</td><td>10957.4</td><td>112.3</td><td>228.8</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1121.9	1967.1	238.6	3944.0	379883.8	<nwg< td=""><td><nwg< td=""><td>1429.7</td><td>4468.4</td><td><nwg< td=""><td>8.2</td><td><nwg< td=""><td><nwg< td=""><td>242.6</td><td>1580.1</td><td><nwg< td=""><td>3193.2</td><td>10957.4</td><td>112.3</td><td>228.8</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1429.7</td><td>4468.4</td><td><nwg< td=""><td>8.2</td><td><nwg< td=""><td><nwg< td=""><td>242.6</td><td>1580.1</td><td><nwg< td=""><td>3193.2</td><td>10957.4</td><td>112.3</td><td>228.8</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1429.7	4468.4	<nwg< td=""><td>8.2</td><td><nwg< td=""><td><nwg< td=""><td>242.6</td><td>1580.1</td><td><nwg< td=""><td>3193.2</td><td>10957.4</td><td>112.3</td><td>228.8</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	8.2	<nwg< td=""><td><nwg< td=""><td>242.6</td><td>1580.1</td><td><nwg< td=""><td>3193.2</td><td>10957.4</td><td>112.3</td><td>228.8</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>242.6</td><td>1580.1</td><td><nwg< td=""><td>3193.2</td><td>10957.4</td><td>112.3</td><td>228.8</td></nwg<></td></nwg<>	242.6	1580.1	<nwg< td=""><td>3193.2</td><td>10957.4</td><td>112.3</td><td>228.8</td></nwg<>	3193.2	10957.4	112.3	228.8
9H	4288.9	<nwg< td=""><td>105.4</td><td>453.8</td><td>168.1</td><td>2430.2</td><td>382370.3</td><td><nwg< td=""><td><nwg< td=""><td>1338.9</td><td>68.4</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1488.9</td><td><nwg< td=""><td>260.7</td><td>1077.9</td><td>77.2</td><td>87.2</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	105.4	453.8	168.1	2430.2	382370.3	<nwg< td=""><td><nwg< td=""><td>1338.9</td><td>68.4</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1488.9</td><td><nwg< td=""><td>260.7</td><td>1077.9</td><td>77.2</td><td>87.2</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1338.9</td><td>68.4</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1488.9</td><td><nwg< td=""><td>260.7</td><td>1077.9</td><td>77.2</td><td>87.2</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1338.9	68.4	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1488.9</td><td><nwg< td=""><td>260.7</td><td>1077.9</td><td>77.2</td><td>87.2</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1488.9</td><td><nwg< td=""><td>260.7</td><td>1077.9</td><td>77.2</td><td>87.2</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1488.9</td><td><nwg< td=""><td>260.7</td><td>1077.9</td><td>77.2</td><td>87.2</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>1488.9</td><td><nwg< td=""><td>260.7</td><td>1077.9</td><td>77.2</td><td>87.2</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1488.9</td><td><nwg< td=""><td>260.7</td><td>1077.9</td><td>77.2</td><td>87.2</td></nwg<></td></nwg<>	1488.9	<nwg< td=""><td>260.7</td><td>1077.9</td><td>77.2</td><td>87.2</td></nwg<>	260.7	1077.9	77.2	87.2
H5	16728.0	<nwg< td=""><td>493.6</td><td>721.7</td><td>226.7</td><td>2302.6</td><td>373596.5</td><td><nwg< td=""><td><nwg< td=""><td>1389.0</td><td>84.1</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1529.5</td><td><nwg< td=""><td>360.6</td><td>3030.5</td><td>74.1</td><td>625.5</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	493.6	721.7	226.7	2302.6	373596.5	<nwg< td=""><td><nwg< td=""><td>1389.0</td><td>84.1</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1529.5</td><td><nwg< td=""><td>360.6</td><td>3030.5</td><td>74.1</td><td>625.5</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1389.0</td><td>84.1</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1529.5</td><td><nwg< td=""><td>360.6</td><td>3030.5</td><td>74.1</td><td>625.5</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1389.0	84.1	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1529.5</td><td><nwg< td=""><td>360.6</td><td>3030.5</td><td>74.1</td><td>625.5</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1529.5</td><td><nwg< td=""><td>360.6</td><td>3030.5</td><td>74.1</td><td>625.5</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1529.5</td><td><nwg< td=""><td>360.6</td><td>3030.5</td><td>74.1</td><td>625.5</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>1529.5</td><td><nwg< td=""><td>360.6</td><td>3030.5</td><td>74.1</td><td>625.5</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1529.5</td><td><nwg< td=""><td>360.6</td><td>3030.5</td><td>74.1</td><td>625.5</td></nwg<></td></nwg<>	1529.5	<nwg< td=""><td>360.6</td><td>3030.5</td><td>74.1</td><td>625.5</td></nwg<>	360.6	3030.5	74.1	625.5
H4	2941.9	<nwg< td=""><td>378.4</td><td>456.5</td><td>257.5</td><td>2512.0</td><td>383277.4</td><td><nwg< td=""><td><nwg< td=""><td>1339.9</td><td>97.8</td><td><nwg< td=""><td>0.0</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1484.5</td><td><nwg< td=""><td>3059.4</td><td>658.5</td><td>72.2</td><td>348.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	378.4	456.5	257.5	2512.0	383277.4	<nwg< td=""><td><nwg< td=""><td>1339.9</td><td>97.8</td><td><nwg< td=""><td>0.0</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1484.5</td><td><nwg< td=""><td>3059.4</td><td>658.5</td><td>72.2</td><td>348.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1339.9</td><td>97.8</td><td><nwg< td=""><td>0.0</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1484.5</td><td><nwg< td=""><td>3059.4</td><td>658.5</td><td>72.2</td><td>348.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1339.9	97.8	<nwg< td=""><td>0.0</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1484.5</td><td><nwg< td=""><td>3059.4</td><td>658.5</td><td>72.2</td><td>348.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	0.0	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1484.5</td><td><nwg< td=""><td>3059.4</td><td>658.5</td><td>72.2</td><td>348.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>1484.5</td><td><nwg< td=""><td>3059.4</td><td>658.5</td><td>72.2</td><td>348.0</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1484.5</td><td><nwg< td=""><td>3059.4</td><td>658.5</td><td>72.2</td><td>348.0</td></nwg<></td></nwg<>	1484.5	<nwg< td=""><td>3059.4</td><td>658.5</td><td>72.2</td><td>348.0</td></nwg<>	3059.4	658.5	72.2	348.0
H3	5812.0	<nwg< td=""><td>523.9</td><td>596.3</td><td>263.8</td><td>2432.7</td><td>383120.6</td><td><nwg< td=""><td><nwg< td=""><td>1360.9</td><td>91.7</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1501.3</td><td><nwg< td=""><td>193.1</td><td>1221.7</td><td>82.5</td><td>614.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	523.9	596.3	263.8	2432.7	383120.6	<nwg< td=""><td><nwg< td=""><td>1360.9</td><td>91.7</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1501.3</td><td><nwg< td=""><td>193.1</td><td>1221.7</td><td>82.5</td><td>614.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1360.9</td><td>91.7</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1501.3</td><td><nwg< td=""><td>193.1</td><td>1221.7</td><td>82.5</td><td>614.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1360.9	91.7	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1501.3</td><td><nwg< td=""><td>193.1</td><td>1221.7</td><td>82.5</td><td>614.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1501.3</td><td><nwg< td=""><td>193.1</td><td>1221.7</td><td>82.5</td><td>614.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1501.3</td><td><nwg< td=""><td>193.1</td><td>1221.7</td><td>82.5</td><td>614.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>1501.3</td><td><nwg< td=""><td>193.1</td><td>1221.7</td><td>82.5</td><td>614.0</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1501.3</td><td><nwg< td=""><td>193.1</td><td>1221.7</td><td>82.5</td><td>614.0</td></nwg<></td></nwg<>	1501.3	<nwg< td=""><td>193.1</td><td>1221.7</td><td>82.5</td><td>614.0</td></nwg<>	193.1	1221.7	82.5	614.0
H2	12442.5	<nwg< td=""><td>839.5</td><td>898.2</td><td>238.6</td><td>2950.4</td><td>374085.6</td><td><nwg< td=""><td><nwg< td=""><td>1394.7</td><td>102.4</td><td><nwg< td=""><td>7.9</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1520.0</td><td><nwg< td=""><td>252.1</td><td>2880.5</td><td>73.9</td><td>1367.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	839.5	898.2	238.6	2950.4	374085.6	<nwg< td=""><td><nwg< td=""><td>1394.7</td><td>102.4</td><td><nwg< td=""><td>7.9</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1520.0</td><td><nwg< td=""><td>252.1</td><td>2880.5</td><td>73.9</td><td>1367.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1394.7</td><td>102.4</td><td><nwg< td=""><td>7.9</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1520.0</td><td><nwg< td=""><td>252.1</td><td>2880.5</td><td>73.9</td><td>1367.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1394.7	102.4	<nwg< td=""><td>7.9</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1520.0</td><td><nwg< td=""><td>252.1</td><td>2880.5</td><td>73.9</td><td>1367.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	7.9	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1520.0</td><td><nwg< td=""><td>252.1</td><td>2880.5</td><td>73.9</td><td>1367.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>1520.0</td><td><nwg< td=""><td>252.1</td><td>2880.5</td><td>73.9</td><td>1367.0</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1520.0</td><td><nwg< td=""><td>252.1</td><td>2880.5</td><td>73.9</td><td>1367.0</td></nwg<></td></nwg<>	1520.0	<nwg< td=""><td>252.1</td><td>2880.5</td><td>73.9</td><td>1367.0</td></nwg<>	252.1	2880.5	73.9	1367.0
£	15361.3	214.4	5443.6	3908.8	333.7	5156.0	363917.4	<nwg< td=""><td>900.6</td><td>1438.3</td><td>357.1</td><td><nwg< td=""><td>4.0</td><td><nwg< td=""><td><nwg< td=""><td>36.7</td><td>1538.6</td><td>0.0</td><td>1286.2</td><td>2193.9</td><td>74.6</td><td>859.8</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	900.6	1438.3	357.1	<nwg< td=""><td>4.0</td><td><nwg< td=""><td><nwg< td=""><td>36.7</td><td>1538.6</td><td>0.0</td><td>1286.2</td><td>2193.9</td><td>74.6</td><td>859.8</td></nwg<></td></nwg<></td></nwg<>	4.0	<nwg< td=""><td><nwg< td=""><td>36.7</td><td>1538.6</td><td>0.0</td><td>1286.2</td><td>2193.9</td><td>74.6</td><td>859.8</td></nwg<></td></nwg<>	<nwg< td=""><td>36.7</td><td>1538.6</td><td>0.0</td><td>1286.2</td><td>2193.9</td><td>74.6</td><td>859.8</td></nwg<>	36.7	1538.6	0.0	1286.2	2193.9	74.6	859.8
	mqq	mqq	mqq	mqq	mqq	mqq	mqq	mqq	mqq	mqq	mdd	mqq	mqq	mqq	mdd	mqq	mqq	mqq	mqq	mqq	mqq	шdd
	N	Ë	A	Ъ	Mn	Mg	Ca	Na	¥	٩	S	>	Ċ	Ś	Zr	Ba	īZ	Cu	Zn	Ъb	Ŧ	Mo

L3	49875.4	1095.9	14125.7	12661.5	492.7	75156.0	225644.7	<nwg< th=""><th>2390.2</th><th>1701.6</th><th>2660.9</th><th><nwg< th=""><th>8.5</th><th><nwg< th=""><th><nwg< th=""><th>2689.0</th><th>1641.4</th><th>24.8</th><th>5560.6</th><th>1731.9</th><th>79.1</th><th>49.7</th></nwg<></th></nwg<></th></nwg<></th></nwg<>	2390.2	1701.6	2660.9	<nwg< th=""><th>8.5</th><th><nwg< th=""><th><nwg< th=""><th>2689.0</th><th>1641.4</th><th>24.8</th><th>5560.6</th><th>1731.9</th><th>79.1</th><th>49.7</th></nwg<></th></nwg<></th></nwg<>	8.5	<nwg< th=""><th><nwg< th=""><th>2689.0</th><th>1641.4</th><th>24.8</th><th>5560.6</th><th>1731.9</th><th>79.1</th><th>49.7</th></nwg<></th></nwg<>	<nwg< th=""><th>2689.0</th><th>1641.4</th><th>24.8</th><th>5560.6</th><th>1731.9</th><th>79.1</th><th>49.7</th></nwg<>	2689.0	1641.4	24.8	5560.6	1731.9	79.1	49.7
L2	41960.6	715.5	11403.4	12682.0	456.5	93837.6	211614.9	<nwg< td=""><td>2717.3</td><td>1605.7</td><td>6455.9</td><td><nwg< td=""><td>8.4</td><td><nwg< td=""><td><nwg< td=""><td>633.4</td><td>1619.1</td><td>19.7</td><td>6772.0</td><td>1045.2</td><td>73.0</td><td>12.3</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	2717.3	1605.7	6455.9	<nwg< td=""><td>8.4</td><td><nwg< td=""><td><nwg< td=""><td>633.4</td><td>1619.1</td><td>19.7</td><td>6772.0</td><td>1045.2</td><td>73.0</td><td>12.3</td></nwg<></td></nwg<></td></nwg<>	8.4	<nwg< td=""><td><nwg< td=""><td>633.4</td><td>1619.1</td><td>19.7</td><td>6772.0</td><td>1045.2</td><td>73.0</td><td>12.3</td></nwg<></td></nwg<>	<nwg< td=""><td>633.4</td><td>1619.1</td><td>19.7</td><td>6772.0</td><td>1045.2</td><td>73.0</td><td>12.3</td></nwg<>	633.4	1619.1	19.7	6772.0	1045.2	73.0	12.3
5	38125.3	557.8	10578.6	23553.9	498.1	99793.5	193129.9	<nwg< td=""><td>2601.9</td><td>1644.2</td><td>16764.5</td><td><nwg< td=""><td>13.3</td><td><nwg< td=""><td><nwg< td=""><td>289.3</td><td>1705.7</td><td>36.1</td><td>13789.8</td><td>893.9</td><td>82.2</td><td>21.5</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	2601.9	1644.2	16764.5	<nwg< td=""><td>13.3</td><td><nwg< td=""><td><nwg< td=""><td>289.3</td><td>1705.7</td><td>36.1</td><td>13789.8</td><td>893.9</td><td>82.2</td><td>21.5</td></nwg<></td></nwg<></td></nwg<>	13.3	<nwg< td=""><td><nwg< td=""><td>289.3</td><td>1705.7</td><td>36.1</td><td>13789.8</td><td>893.9</td><td>82.2</td><td>21.5</td></nwg<></td></nwg<>	<nwg< td=""><td>289.3</td><td>1705.7</td><td>36.1</td><td>13789.8</td><td>893.9</td><td>82.2</td><td>21.5</td></nwg<>	289.3	1705.7	36.1	13789.8	893.9	82.2	21.5
Н	8562.4	3.5	1435.5	4470.1	289.3	3085.4	378262.1	<nwg< td=""><td>SWN></td><td>1425.1</td><td>284.5</td><td><nwg< td=""><td>11.9</td><td><nwg< td=""><td><nwg< td=""><td>156.3</td><td>1527.2</td><td><nwg< td=""><td>3511.9</td><td>2717.9</td><td>83.9</td><td>2467.1</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	SWN>	1425.1	284.5	<nwg< td=""><td>11.9</td><td><nwg< td=""><td><nwg< td=""><td>156.3</td><td>1527.2</td><td><nwg< td=""><td>3511.9</td><td>2717.9</td><td>83.9</td><td>2467.1</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	11.9	<nwg< td=""><td><nwg< td=""><td>156.3</td><td>1527.2</td><td><nwg< td=""><td>3511.9</td><td>2717.9</td><td>83.9</td><td>2467.1</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>156.3</td><td>1527.2</td><td><nwg< td=""><td>3511.9</td><td>2717.9</td><td>83.9</td><td>2467.1</td></nwg<></td></nwg<>	156.3	1527.2	<nwg< td=""><td>3511.9</td><td>2717.9</td><td>83.9</td><td>2467.1</td></nwg<>	3511.9	2717.9	83.9	2467.1
H18	4220.7	<nwg< td=""><td>675.9</td><td>594.2</td><td>198.6</td><td>14442.3</td><td>367669.2</td><td>SWN</td><td>SWN></td><td>1330.7</td><td>126.2</td><td>SWNS</td><td><pre>SWN></pre></td><td><nwg< td=""><td><pre>SWNS</pre></td><td>SWN></td><td>1480.5</td><td>SWN></td><td>361.6</td><td>167.1</td><td>71.6</td><td>7.5</td></nwg<></td></nwg<>	675.9	594.2	198.6	14442.3	367669.2	SWN	SWN>	1330.7	126.2	SWNS	<pre>SWN></pre>	<nwg< td=""><td><pre>SWNS</pre></td><td>SWN></td><td>1480.5</td><td>SWN></td><td>361.6</td><td>167.1</td><td>71.6</td><td>7.5</td></nwg<>	<pre>SWNS</pre>	SWN>	1480.5	SWN>	361.6	167.1	71.6	7.5
H17	6372.5	<nwg< td=""><td>454.5</td><td>2202.6</td><td>264.0</td><td>3007.4</td><td>384981.9</td><td><nwg< td=""><td>SWN></td><td>1366.8</td><td>144.5</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>51.3</td><td>1497.8</td><td>SWN></td><td>634.8</td><td>1063.1</td><td>68.0</td><td>1171.5</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	454.5	2202.6	264.0	3007.4	384981.9	<nwg< td=""><td>SWN></td><td>1366.8</td><td>144.5</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>51.3</td><td>1497.8</td><td>SWN></td><td>634.8</td><td>1063.1</td><td>68.0</td><td>1171.5</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	SWN>	1366.8	144.5	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>51.3</td><td>1497.8</td><td>SWN></td><td>634.8</td><td>1063.1</td><td>68.0</td><td>1171.5</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>51.3</td><td>1497.8</td><td>SWN></td><td>634.8</td><td>1063.1</td><td>68.0</td><td>1171.5</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>51.3</td><td>1497.8</td><td>SWN></td><td>634.8</td><td>1063.1</td><td>68.0</td><td>1171.5</td></nwg<></td></nwg<>	<nwg< td=""><td>51.3</td><td>1497.8</td><td>SWN></td><td>634.8</td><td>1063.1</td><td>68.0</td><td>1171.5</td></nwg<>	51.3	1497.8	SWN>	634.8	1063.1	68.0	1171.5
H16	12426.0	SWN>	437.5	1560.5	241.5	3579.8	377375.2	SWN>	SWN>	1384.9	157.5	SWN>	7.9	SWN>	SWN>	SWN>	1521.1	SWN>	603.7	1427.3	63.7	1475.4
H15	3735.0	<nwg< td=""><td>1054.2</td><td>2400.3</td><td>262.4</td><td>3102.5</td><td>383471.1</td><td><nwg< td=""><td><nwg< td=""><td>1368.5</td><td>282.7</td><td><nwg< td=""><td>7.8</td><td><nwg< td=""><td><nwg< td=""><td>519.7</td><td>1497.7</td><td><nwg< td=""><td>5244.4</td><td>1632.5</td><td>77.2</td><td>292.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1054.2	2400.3	262.4	3102.5	383471.1	<nwg< td=""><td><nwg< td=""><td>1368.5</td><td>282.7</td><td><nwg< td=""><td>7.8</td><td><nwg< td=""><td><nwg< td=""><td>519.7</td><td>1497.7</td><td><nwg< td=""><td>5244.4</td><td>1632.5</td><td>77.2</td><td>292.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1368.5</td><td>282.7</td><td><nwg< td=""><td>7.8</td><td><nwg< td=""><td><nwg< td=""><td>519.7</td><td>1497.7</td><td><nwg< td=""><td>5244.4</td><td>1632.5</td><td>77.2</td><td>292.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1368.5	282.7	<nwg< td=""><td>7.8</td><td><nwg< td=""><td><nwg< td=""><td>519.7</td><td>1497.7</td><td><nwg< td=""><td>5244.4</td><td>1632.5</td><td>77.2</td><td>292.0</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	7.8	<nwg< td=""><td><nwg< td=""><td>519.7</td><td>1497.7</td><td><nwg< td=""><td>5244.4</td><td>1632.5</td><td>77.2</td><td>292.0</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>519.7</td><td>1497.7</td><td><nwg< td=""><td>5244.4</td><td>1632.5</td><td>77.2</td><td>292.0</td></nwg<></td></nwg<>	519.7	1497.7	<nwg< td=""><td>5244.4</td><td>1632.5</td><td>77.2</td><td>292.0</td></nwg<>	5244.4	1632.5	77.2	292.0
H14	10249.5	<nwg< td=""><td>663.6</td><td>3148.9</td><td>281.4</td><td>2560.2</td><td>377600.8</td><td><nwg< td=""><td><nwg< td=""><td>1427.8</td><td>121.5</td><td><nwg< td=""><td>12.0</td><td><nwg< td=""><td><nwg< td=""><td>0.0</td><td>1530.1</td><td><nwg< td=""><td>566.9</td><td>2771.8</td><td>79.1</td><td>3929.2</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	663.6	3148.9	281.4	2560.2	377600.8	<nwg< td=""><td><nwg< td=""><td>1427.8</td><td>121.5</td><td><nwg< td=""><td>12.0</td><td><nwg< td=""><td><nwg< td=""><td>0.0</td><td>1530.1</td><td><nwg< td=""><td>566.9</td><td>2771.8</td><td>79.1</td><td>3929.2</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1427.8</td><td>121.5</td><td><nwg< td=""><td>12.0</td><td><nwg< td=""><td><nwg< td=""><td>0.0</td><td>1530.1</td><td><nwg< td=""><td>566.9</td><td>2771.8</td><td>79.1</td><td>3929.2</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1427.8	121.5	<nwg< td=""><td>12.0</td><td><nwg< td=""><td><nwg< td=""><td>0.0</td><td>1530.1</td><td><nwg< td=""><td>566.9</td><td>2771.8</td><td>79.1</td><td>3929.2</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	12.0	<nwg< td=""><td><nwg< td=""><td>0.0</td><td>1530.1</td><td><nwg< td=""><td>566.9</td><td>2771.8</td><td>79.1</td><td>3929.2</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>0.0</td><td>1530.1</td><td><nwg< td=""><td>566.9</td><td>2771.8</td><td>79.1</td><td>3929.2</td></nwg<></td></nwg<>	0.0	1530.1	<nwg< td=""><td>566.9</td><td>2771.8</td><td>79.1</td><td>3929.2</td></nwg<>	566.9	2771.8	79.1	3929.2
H13B	9425.8	35.9	2312.0	12129.8	315.1	4322.0	361955.1	1138.0	<nwg< td=""><td>1514.2</td><td>559.4</td><td><nwg< td=""><td>24.6</td><td><nwg< td=""><td><nwg< td=""><td>466.7</td><td>1572.3</td><td><nwg< td=""><td>22353.3</td><td>6091.5</td><td>127.0</td><td>1138.2</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1514.2	559.4	<nwg< td=""><td>24.6</td><td><nwg< td=""><td><nwg< td=""><td>466.7</td><td>1572.3</td><td><nwg< td=""><td>22353.3</td><td>6091.5</td><td>127.0</td><td>1138.2</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	24.6	<nwg< td=""><td><nwg< td=""><td>466.7</td><td>1572.3</td><td><nwg< td=""><td>22353.3</td><td>6091.5</td><td>127.0</td><td>1138.2</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>466.7</td><td>1572.3</td><td><nwg< td=""><td>22353.3</td><td>6091.5</td><td>127.0</td><td>1138.2</td></nwg<></td></nwg<>	466.7	1572.3	<nwg< td=""><td>22353.3</td><td>6091.5</td><td>127.0</td><td>1138.2</td></nwg<>	22353.3	6091.5	127.0	1138.2
H13	6638.1	52.6	1992.0	10137.4	290.9	4412.5	363045.7	594.9	SWN>	1461.3	262.7	SWNS	12.0	<nwg< td=""><td><pre>SWNS</pre></td><td>36.7</td><td>1545.0</td><td>SWN></td><td>19286.5</td><td>3798.4</td><td>119.1</td><td>491.5</td></nwg<>	<pre>SWNS</pre>	36.7	1545.0	SWN>	19286.5	3798.4	119.1	491.5
	mqq	mqq	mqq	mdd	mqq	mqq	mqq	mdd	mqq	mdd	mqq	mdd	mdd	mdd	mdd	mqq	mqq	mqq	mqq	mqq	mqq	mqq
	<u>ی</u>	F	A	Ъе	Mn	Mg	Са	Na	×	٩	S	>	ŗ	Sr	Zr	Ba	Ż	Cu	Zn	Ъb	Ť	Mo

Tabelle 19: Nachweisgrenzen (NWG) der WROXI-Kalibration.

[mdd]	86	51	91	95	97	59	66	164	44	n.a.	24	36	31	246	81	73	n.a.	14	ω	13	48	49
WROXI	SiO_2	TIO ₂	Al_2O3	Fe_2O3	Mn ₃ O ₄	MgO	CaO	Na_2O	K ₂ 0	P_2O_5	SO ₃	V_2O_5	Cr_2O_3	SrO	ZrO_2	BaO	NiO	CnO	ZnO	PbO	HfO_2	MoO ₃

Anhang B3: Verteilung von Elementgehalten – Halde

Matthäus

Abbildung 42: Mo-Gehalte der Matthäus-Halde mit Unterteilung der Ordinate in 500-ppm-Schritten, Messung an der Halde mit pRFA, am Pulver mit pRFA und an der Schmelzpille mit RFA.

Abbildung 43: Pb-Gehalte der Matthäus-Halde mit Unterteilung der Ordinate in 5.000-ppm-Schritten, Messung an der Halde mit pRFA, am Pulver mit pRFA und an der Schmelzpille mit RFA.

Abbildung 44: Zn-Gehalte der Matthäus-Halde mit Unterteilung der Ordinate in 5.000-ppm-Schritten, Messung an der Halde mit pRFA, am Pulver mit pRFA und an der Schmelzpille mit RFA.

Abbildung 45: Si-Gehalte der Matthäus-Halde mit Unterteilung der Ordinate in 5.000-ppm-Schritten, Messung an der Halde mit pRFA, am Pulver mit pRFA und an der Schmelzpille mit RFA.

Abbildung 46: Al-Gehalte der Matthäus-Halde mit Unterteilung der Ordinate in 5.000-ppm-Schritten, Messung an der Halde mit pRFA, am Pulver mit pRFA und an der Schmelzpille mit RFA.

Abbildung 47: Mg-Gehalte der Matthäus-Halde mit Unterteilung der Ordinate in 50.000-ppm-Schritten, Messung an der Halde mit pRFA, am Pulver mit pRFA und an der Schmelzpille mit RFA.

Abbildung 48: Ca-Gehalte der Matthäus-Halde mit Unterteilung der Ordinate in 100.000-ppm-Schritten, Messung an der Halde mit pRFA, am Pulver mit pRFA und an der Schmelzpille mit RFA.

Abbildung 49: P-Gehalte der Matthäus-Halde mit Unterteilung der Ordinate in 500-ppm-Schritten, Messung an der Halde mit pRFA, am Pulver mit pRFA und an der Schmelzpille mit RFA.

Abbildung 50: S-Gehalte der Matthäus-Halde mit Unterteilung der Ordinate in 5.000-ppm-Schritten, Messung an der Halde mit pRFA, am Pulver mit pRFA und an der Schmelzpille mit RFA.

Abbildung 51: Ba-Gehalte der Matthäus-Halde mit Unterteilung der Ordinate in 500-ppm-Schritten, Messung an der Halde mit pRFA, am Pulver mit pRFA und an der Schmelzpille mit RFA.

Anhang B4: Trendliniendiagramme

Abbildung 52: Trendliniendiagramme von Zn (a-c) und Si (d-f) anhand der Messwerte von ungeglühtem Pulver (pRFA), Halde (pRFA) und Schmelzpille (RFA).

Abbildung 53: Trendliniendiagramme von AI (a-c) und Fe (d-f) anhand der Messwerte von ungeglühtem Pulver (pRFA), Halde (pRFA) und Schmelzpille (RFA).

Abbildung 54: Trendliniendiagramme von Mg (a-c) und Ca (d-f) anhand der Messwerte von ungeglühtem Pulver (pRFA), Halde (pRFA) und Schmelzpille (RFA).

Abbildung 55: Trendliniendiagramme von P (a-c) und S (d-f) anhand der Messwerte von ungeglühtem Pulver (pRFA), Halde (pRFA) und Schmelzpille (RFA).

Abbildung 56: Trendliniendiagramme von Ba (a-c) anhand der Messwerte von ungeglühtem Pulver (pRFA), Halde (pRFA) und Schmelzpille (RFA).

Ti Schmelzpille [ppm]	214	SWN>	SWN>	SWN>	SWN>	192	53	SWN>	SWN>	SWN>	<nwg< th=""><th>SWN></th></nwg<>	SWN>						
Ti Pulver [ppm]	330	SWN>	9WN>	SWN>	SWN>	9WN>	SWN>	SWN>	SWN>	135	9WN>	SWN>	9MN>	SWN>	SWN>	SWN>	<nwg< td=""><td>SWN></td></nwg<>	SWN>
Ti Halde [ppm]	1184	760	373	561	583	319	858	401	1035	765	238	596	679	186	666	285	237	206
Si Schmelzpille [ppm]	15361	12443	5812	2942	16728	4289	7322	4820	2712	4166	3288	15541	6638	10250	3735	12426	6373	4221
Si Pulver [ppm]	21090	9137	6907	5499	13230	5884	5918	7169	5003	6283	4916	9775	8423	9012	5463	10938	6409	6762
Si Halde [ppm]	48230	40927	10547	24200	26296	14280	27953	13072	40755	21139	11774	27242	23346	10163	28546	17238	12216	10727
Zn Schmelzpille [ppm]	1286	252	193	3059	361	261	3193	2431	1258	8130	616	31800	19286	567	5244	604	635	362
Zn Pulver [ppm]	1377	273	178	3283	382	275	3249	2768	1165	8576	646	28248	18607	561	5343	600	639	374
Zn Halde [ppm]	3165	1970	1162	10675	2696	1546	6430	4487	21415	13449	1356	25911	15861	1058	15743	2233	3929	981
Pb Schmelzpille [ppm]	2194	2880	1222	659	3030	1078	10957	1407	4903	2906	833	7640	3798	2772	1632	1427	1063	167
Pb Pulver [ppm]	7911	6222	2749	2212	3550	1139	44163	4243	21147	13578	4213	36611	16024	14057	6746	6733	5668	226
Pb Halde [ppm]	8481	6989	6382	2885	15049	2695	15190	5024	18375	32738	2547	25439	9742	5725	13392	7526	4387	258
Mo Schmelzpille [ppm]	860	1367	614	348	625	87	229	377	12	543	810	2126	492	3929	292	1475	1171	7
Mo Pulver [ppm]	934	1490	758	451	827	115	306	502	27	661	1005	2238	564	4745	391	1925	1407	9WN>
Mo Halde [ppm]	932	871	950	361	2810	234	1310	237	111	2674	143	983	262	799	448	1032	443	9WN>
ID	Ħ	업	또	H4	H5	9H	H7	В Н	бН	H10	H11	H12	H13	H14	H15	H16	H17	H18

Ca Schmelzpille [ppm]	363917,4	374085,6	383120,6	383277,4	373596,5	382370,3	379883,8	383328,8	389370,8	382222,6	386908,3	335554,4	363045,7	377600,8	383471,1	377375,2	384981,9	367669,2
Ca Pulver [ppm]	422193	436905	449525	460866	455020	459521	441244	460590	453075	447216	455846	351640	419920	440022	450165	451790	453036	439248
Ca Halde [ppm]	220723	218234	166464	240853	249222	364719	228522	297222	172489	182081	270523	255559	233032	296069	240242	309614	249592	269777
Mg Schmelzpille [ppm]	5156	2950	2433	2512	2303	2430	3944	2535	2590	2755	2735	5886	4413	2560	3103	3580	3007	14442
Mg Pulver [ppm]	100737	83194	98858	113745	116152	112116	88808	111713	97379	120266	67666	9WN>	115593	105542	106485	122438	80965	102737
Mg Halde [ppm]	SWN>	SWN>	SWN>	SWN>	SWN>	54028	SWN>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>									
Mn Schmelzpille [ppm]	333,7	238,6	263,8	257,5	226,7	168,1	238,6	189,5	294,6	257,9	229,0	497,7	290,9	281,4	262,4	241,5	264,0	198,6
Mn Pulver [ppm]	9WN>	SWN>	9WN>	9WN>	9WN>	<nwg< td=""><td>SWN></td></nwg<>	SWN>											
Mn Halde [ppm]	129	9WN>	SWN>	9WN>	9WN>	SWN>	146	9WN>	165	9WN>	9WN>	294	SWN>	9WN>	9WN>	SWN>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
Fe Schmelzpille [ppm]	3909	898	596	456	722	454	1967	1900	4270	3046	862	17191	10137	3149	2400	1561	2203	594
Fe Pulver [ppm]	3882	924	623	545	814	514	1481	1883	3735	3093	904	14716	10196	2910	2279	1581	2106	597
Fe Halde [ppm]	11310	9867	6001	5509	5529	2237	12507	7914	23206	18200	3354	23649	18752	4149	12733	7438	4790	1880
Al Schmelzpille [ppm]	5444	840	524	378	494	105	1122	757	492	1366	373	5773	1992	664	1054	437	455	676
Al Pulver [ppm]	26524	19786	20920	23348	23426	19782	21851	21197	21731	25599	20456	13670	21168	17523	20220	25192	21294	20456
Al Halde [ppm]	21349	11144	SWN>	9635	12719	15407	13806	8907	17938	SWN>	7896	18868	10213	5305	14519	10493	7676	7096
ID	Ħ	업	Ĥ	H	£5	9H	H7	8H	бH	H10	H11	H12	H13	H14	H15	H16	H17	H18

V Schmelzpille [ppm]	SWN>	<nwg< th=""><th>SWN></th><th>9WN></th><th><nwg< th=""><th>9WN></th><th><nwg< th=""><th>9WN></th><th>SWN></th><th>9WN></th><th>SWN></th><th>9WN></th><th>SWN></th><th>9WN></th><th>SWN></th><th>9WN></th><th><nwg< th=""><th><nwg< th=""></nwg<></th></nwg<></th></nwg<></th></nwg<></th></nwg<>	SWN>	9WN>	<nwg< th=""><th>9WN></th><th><nwg< th=""><th>9WN></th><th>SWN></th><th>9WN></th><th>SWN></th><th>9WN></th><th>SWN></th><th>9WN></th><th>SWN></th><th>9WN></th><th><nwg< th=""><th><nwg< th=""></nwg<></th></nwg<></th></nwg<></th></nwg<>	9WN>	<nwg< th=""><th>9WN></th><th>SWN></th><th>9WN></th><th>SWN></th><th>9WN></th><th>SWN></th><th>9WN></th><th>SWN></th><th>9WN></th><th><nwg< th=""><th><nwg< th=""></nwg<></th></nwg<></th></nwg<>	9WN>	SWN>	9WN>	SWN>	9WN>	SWN>	9WN>	SWN>	9WN>	<nwg< th=""><th><nwg< th=""></nwg<></th></nwg<>	<nwg< th=""></nwg<>
V Pulver [ppm]	9WN>	9WN>	9WN>	9WN>	<nwg< td=""><td>SWN></td><td>9WN></td><td>SWN></td><td>9WN></td><td>9WN></td><td>9WN></td><td>SWN></td><td><pre>SWN></pre></td><td>9WN></td><td>SWN></td><td>9WN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	SWN>	9WN>	SWN>	9WN>	9WN>	9WN>	SWN>	<pre>SWN></pre>	9WN>	SWN>	9WN>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
V Halde [ppm]	SWN>	SWN>	SWN>	SWN>	92	SWN>	65	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	<nwg< td=""></nwg<>
S Schmelzpille [ppm]	357	102	92	98	84	68	4468	105	2640	775	109	1597	263	121	283	157	145	126
S Pulver [ppm]	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1169</td><td><nwg< td=""><td>1036</td><td>1809</td><td><nwg< td=""><td>1713</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1333</td><td><nwg< td=""><td><nwg< td=""><td>691</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>1169</td><td><nwg< td=""><td>1036</td><td>1809</td><td><nwg< td=""><td>1713</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1333</td><td><nwg< td=""><td><nwg< td=""><td>691</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1169</td><td><nwg< td=""><td>1036</td><td>1809</td><td><nwg< td=""><td>1713</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1333</td><td><nwg< td=""><td><nwg< td=""><td>691</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1169	<nwg< td=""><td>1036</td><td>1809</td><td><nwg< td=""><td>1713</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1333</td><td><nwg< td=""><td><nwg< td=""><td>691</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1036	1809	<nwg< td=""><td>1713</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1333</td><td><nwg< td=""><td><nwg< td=""><td>691</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	1713	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1333</td><td><nwg< td=""><td><nwg< td=""><td>691</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1333</td><td><nwg< td=""><td><nwg< td=""><td>691</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>1333</td><td><nwg< td=""><td><nwg< td=""><td>691</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>1333</td><td><nwg< td=""><td><nwg< td=""><td>691</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>1333</td><td><nwg< td=""><td><nwg< td=""><td>691</td></nwg<></td></nwg<></td></nwg<>	1333	<nwg< td=""><td><nwg< td=""><td>691</td></nwg<></td></nwg<>	<nwg< td=""><td>691</td></nwg<>	691
S Halde [ppm]	<nwg< td=""><td>33115</td><td>38832</td><td>1295</td><td><nwg></nwg></td><td>1085</td><td><nwg< td=""><td>814</td><td><nwg< td=""><td><nwg< td=""><td>800</td><td><nwg< td=""><td>958</td><td><nwg< td=""><td>1157</td><td><nwg< td=""><td>964</td><td><nwg></nwg></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	33115	38832	1295	<nwg></nwg>	1085	<nwg< td=""><td>814</td><td><nwg< td=""><td><nwg< td=""><td>800</td><td><nwg< td=""><td>958</td><td><nwg< td=""><td>1157</td><td><nwg< td=""><td>964</td><td><nwg></nwg></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	814	<nwg< td=""><td><nwg< td=""><td>800</td><td><nwg< td=""><td>958</td><td><nwg< td=""><td>1157</td><td><nwg< td=""><td>964</td><td><nwg></nwg></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>800</td><td><nwg< td=""><td>958</td><td><nwg< td=""><td>1157</td><td><nwg< td=""><td>964</td><td><nwg></nwg></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	800	<nwg< td=""><td>958</td><td><nwg< td=""><td>1157</td><td><nwg< td=""><td>964</td><td><nwg></nwg></td></nwg<></td></nwg<></td></nwg<>	958	<nwg< td=""><td>1157</td><td><nwg< td=""><td>964</td><td><nwg></nwg></td></nwg<></td></nwg<>	1157	<nwg< td=""><td>964</td><td><nwg></nwg></td></nwg<>	964	<nwg></nwg>
P Schmelzpille [ppm]	1438	1395	1361	1340	1389	1339	1430	1363	1428	1391	1350	1615	1461	1428	1369	1385	1367	1331
P Pulver [ppm]	864	830	865	749	907	621	605	902	663	865	963	<pre>SWN></pre>	891	774	641	849	887	599
P Halde [ppm]	<nwg< td=""><td><pre>SWN></pre></td><td><pre>SWN></pre></td><td>SWN></td><td><nwg< td=""><td>554</td><td>SWN></td><td>222</td><td>SWN></td><td>SWN></td><td><pre>SWN></pre></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<pre>SWN></pre>	<pre>SWN></pre>	SWN>	<nwg< td=""><td>554</td><td>SWN></td><td>222</td><td>SWN></td><td>SWN></td><td><pre>SWN></pre></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	554	SWN>	222	SWN>	SWN>	<pre>SWN></pre>	SWN>	<nwg< td=""><td><nwg< td=""><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	SWN>	SWN>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
K Schmelzpille [ppm]	901	<pre>SWN></pre>	<pre>SWN></pre>	SWN>	<nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td><pre>SWN></pre></td><td>149</td><td><nwg< td=""><td><nwg< td=""><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	SWN>	SWN>	SWN>	SWN>	SWN>	<pre>SWN></pre>	149	<nwg< td=""><td><nwg< td=""><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	SWN>	SWN>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
K Pulver [ppm]	3438	SWN>	SWN>	493	543	SWN>	SWN>	727	SWN>	747	SWN>	1082	SWN>	SWN>	692	655	473	653
K Halde [ppm]	7720	3645	1695	2118	2306	723	2749	1967	4822	3731	1182	2369	2731	562	2632	1523	1173	1000
Na Schmelzpille [ppm]	9WN>	9WN>	9WN>	9WN>	<nwg< td=""><td>9WN></td><td>9WN></td><td>9WN></td><td>9WN></td><td>9WN></td><td>9WN></td><td>2870</td><td>595</td><td>9WN></td><td>SWN></td><td>9WN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	9WN>	9WN>	9WN>	9WN>	9WN>	9WN>	2870	595	9WN>	SWN>	9WN>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
Na Pulver [ppm]	SWN>	SWN>	SWN>	9WN>	<nwg< td=""><td>SWN></td><td>9WN></td><td>SWN></td><td>9WN></td><td>9WN></td><td>SWN></td><td>9WN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>9WN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	SWN>	9WN>	SWN>	9WN>	9WN>	SWN>	9WN>	SWN>	SWN>	SWN>	9WN>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
Na Halde [ppm]	<nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td><pre>SWN></pre></td><td>SWN></td><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	SWN>	SWN>	SWN>	<nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td><pre>SWN></pre></td><td>SWN></td><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	<nwg< td=""><td><pre>SWN></pre></td><td>SWN></td><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	<pre>SWN></pre>	SWN>	<pre>SWN></pre>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
ID	Ħ	업	H3	H4	H5	9H	H7	8H	6H	H10	H11	H12	H13	H14	H15	H16	H17	H18

Ni Schmelzpille [ppm]	1539	1520	1501	1485	1529	1489	1580	1509	1528	1515	1494	1623	1545	1530	1498	1521	1498	1480
Ni Pulver [ppm]	SWN>	SWN>	SWN>	SWN>	<nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	<nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	SWN>	SWN>	SWN>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
Ni Halde [ppm]	<nwg< td=""><td>SWN></td><td><nwg< td=""><td>SWN></td><td><nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td>SWN></td><td><nwg< td=""><td>SWN></td><td><nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	SWN>	<nwg< td=""><td>SWN></td><td><nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td>SWN></td><td><nwg< td=""><td>SWN></td><td><nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	SWN>	<nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td>SWN></td><td><nwg< td=""><td>SWN></td><td><nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	SWN>	SWN>	SWN>	<nwg< td=""><td>SWN></td><td><nwg< td=""><td>SWN></td><td><nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	SWN>	<nwg< td=""><td>SWN></td><td><nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<>	SWN>	<nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	SWN>	SWN>	SWN>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
Ba Schmelzpille [ppm]	37	9WN>	SWN>	9WN>	<nwg< td=""><td>SWN></td><td>243</td><td>SWN></td><td>SWN></td><td>228</td><td>15</td><td>4860</td><td>37</td><td>9WN></td><td>520</td><td>SWN></td><td>51</td><td><nwg< td=""></nwg<></td></nwg<>	SWN>	243	SWN>	SWN>	228	15	4860	37	9WN>	520	SWN>	51	<nwg< td=""></nwg<>
Ba Pulver [ppm]	236	9WN>	SWN>	9WN>	<nwg< td=""><td>SWN></td><td>402</td><td>SWN></td><td>208</td><td>360</td><td>163</td><td>4421</td><td>198</td><td>249</td><td>741</td><td>9WN></td><td>198</td><td><nwg< td=""></nwg<></td></nwg<>	SWN>	402	SWN>	208	360	163	4421	198	249	741	9WN>	198	<nwg< td=""></nwg<>
Ba Halde [ppm]	326	274	SWN>	205	265	359	302	192	421	570	422	1248	359	369	1885	358	459	424
Zr Schmelzpille [ppm]	<nwg <<="" td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg></nwg></td><td>SWN></td><td><pre>SWN></pre></td><td>SWN></td><td><nwg <<="" td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg></td></nwg<></td></nwg<></td></nwg<></td></nwg>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg></nwg></td><td>SWN></td><td><pre>SWN></pre></td><td>SWN></td><td><nwg <<="" td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg></nwg></td><td>SWN></td><td><pre>SWN></pre></td><td>SWN></td><td><nwg <<="" td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg></nwg></td><td>SWN></td><td><pre>SWN></pre></td><td>SWN></td><td><nwg <<="" td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg></td></nwg<>	<nwg></nwg>	SWN>	<pre>SWN></pre>	SWN>	<nwg <<="" td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg>	<pre>SWN></pre>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><pre>SWN></pre></td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<>	<pre>SWN></pre>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
Zr Pulver [ppm]	27	12	9	<nwg< td=""><td>6</td><td>SWN></td><td>43</td><td>12</td><td>25</td><td>21</td><td>11</td><td>38</td><td>26</td><td>20</td><td>16</td><td>14</td><td>14</td><td><nwg< td=""></nwg<></td></nwg<>	6	SWN>	43	12	25	21	11	38	26	20	16	14	14	<nwg< td=""></nwg<>
Zr Halde [ppm]	26	7	0	<nwg< td=""><td>7</td><td>SWN></td><td>16</td><td>SWN></td><td>35</td><td>36</td><td><nwg< td=""><td>38</td><td>15</td><td><nwg< td=""><td>15</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	7	SWN>	16	SWN>	35	36	<nwg< td=""><td>38</td><td>15</td><td><nwg< td=""><td>15</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	38	15	<nwg< td=""><td>15</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<>	15	<nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
Sr Schmelzpille [ppm]	SWN>	SWN>	<pre>SWN></pre>	SWN>	<nwg< td=""><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td><pre>SWN></pre></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	SWN>	SWN>	SWN>	SWN>	SWN>	<pre>SWN></pre>	SWN>	<nwg< td=""><td><nwg< td=""><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>SWN></td><td>SWN></td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	SWN>	SWN>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
Sr Pulver [ppm]	119	120	123	124	121	125	173	116	117	122	120	174	104	122	125	110	109	111
Sr Halde [ppm]	91	80	66	121	86	106	81	96	72	95	79	96	78	74	113	89	84	89
Cr Schmelzpille [ppm]	4	ω	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>SWN></td><td>ω</td><td>SWN></td><td>4</td><td>ω</td><td><nwg< td=""><td>42</td><td>12</td><td>12</td><td>ω</td><td>ω</td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>SWN></td><td>ω</td><td>SWN></td><td>4</td><td>ω</td><td><nwg< td=""><td>42</td><td>12</td><td>12</td><td>ω</td><td>ω</td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>SWN></td><td>ω</td><td>SWN></td><td>4</td><td>ω</td><td><nwg< td=""><td>42</td><td>12</td><td>12</td><td>ω</td><td>ω</td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<>	SWN>	ω	SWN>	4	ω	<nwg< td=""><td>42</td><td>12</td><td>12</td><td>ω</td><td>ω</td><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	42	12	12	ω	ω	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
Cr Pulver [ppm]	<nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<></td></nwg<>	<nwg< td=""><td>147</td><td>134</td><td>139</td></nwg<>	147	134	139
Cr Halde [ppm]	49	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td>46</td><td>SWN></td><td>54</td><td>SWN></td><td>45</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td>46</td><td>SWN></td><td>54</td><td>SWN></td><td>45</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td>46</td><td>SWN></td><td>54</td><td>SWN></td><td>45</td><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	46	SWN>	54	SWN>	45	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
ID	Ŧ	먺	H3	H4	H5	H6	H7	8H	6H	H10	H11	H12	H13	H14	H15	H16	H17	H18

Hf Schmelzpille [ppm]	75	74	82	72	74	77	112	82	79	88	82	167	119	79	77	64	68	72
Hf Pulver [ppm]	9WN>	SWN>	9WN>	SWN>	SWN>	SWN>	9WN>	9WN>	SWN>	SWN>	SWN>	9WN>	SWN>	SWN>	SWN>	SWN>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
Hf Halde [ppm]	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
Cu Schmelzpille [ppm]	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	SWN>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>
Cu Pulver [ppm]	9WN>	SWN>	SWN>	SWN>	SWN>	SWN>	9WN>	SWN>	SWN>	<nwg< td=""><td><nwg< td=""><td><nwg< td=""></nwg<></td></nwg<></td></nwg<>	<nwg< td=""><td><nwg< td=""></nwg<></td></nwg<>	<nwg< td=""></nwg<>						
Cu Halde [ppm]	34	<nwg< td=""><td>59</td><td>37</td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td>SWN></td><td><nwg< td=""><td>SWN></td><td>SWN></td><td><nwg< td=""><td>39</td></nwg<></td></nwg<></td></nwg<>	59	37	SWN>	<nwg< td=""><td>SWN></td><td>SWN></td><td><nwg< td=""><td>39</td></nwg<></td></nwg<>	SWN>	SWN>	<nwg< td=""><td>39</td></nwg<>	39								
ID	Ŧ	업	Ĥ	¥	H5	Я	Η7	幋	бH	H10	H11	H12	H13	H14	H15	H16	H17	H18

Abbildung 57: Trendliniendiagramme im Vergleich von geglühtem und ungeglühtem Pulver.

ppm.
eben in
angeg
pRFA,
mit
gemessen
lverproben,
Pu
ungeglühten
pun
ihten
ər gegli
en de
erenze
Diff
21:1
Tabelle

Nr.	Ba	Ba Error	рО	Cd Error	Aq	Ag Error	Bal	Bal Error	Mo	Mo Error	qN	Nb Error	Zr	Zr Error	≻	Y Error
H2_geglüht	0	188	54	12	0	44	191257	33382	3163	53	24	4	20	4	64	9
H2_ungeglüht	0	166	36	10	0	40	436171	26073	1490	24	6	ო	12	З	77	9
Differenz	0	22	17	2	0	5			1672	29	15	-	8	-	-13	0
H6_geglüht	0	185	43	12	0	44	142598	33115	235	80	21	с	13	4	30	4
H6_ungeglüht	0	150	32	6	0	36	398842	23442	115	5	6	с	0	5	17	З
Differenz	0	35	12	ი	0	ω			121	e	12	-	13	-2	13	-
H7_geglüht	307	104	66	14	0	47	190547	38069	603	15	0	8	28	5	212	1
H7_ungeglüht	402	102	87	13	49	23	389561	26038	306	10	0	ω	43	9	378	18
Differenz	-95	2	12	-	-49	23			297	4	0	0	-16	-	-166	-7
H12_geglüht	6149	201	265	19	0	53	263879	36792	5109	66	0	10	28	5	154	10
H12_ungeglüht	4421	185	162	17	0	56	516988	33773	2238	51	0	6	38	9	375	19
Differenz	1727	15	103	-	0	မှ			2871	47	0	0	-10	<u>-</u>	-220	6-
H13B_geglüht	596	108	242	18	0	48	194534	37113	2758	52	0	6	25	2	128	ω
H13B_ungeglüht	667	106	192	16	0	47	392252	31458	1261	28	0	ω	43	5	358	17
Differenz	-71	2	50	2	0	-			1497	23	0	0	-18	.	-230	6-
		-		-		-		-								
Nr.	Ś	Sr Error	ď	Rb Error	As	As Error	Au	Au Error	Pb	Pb Error	Zu	Zn Error	ŋ	Cu Error	ī	Ni Error
H2_geglüht	177	2	16	ო	0	110	0	70	4439	87	406	24	0	39	0	92
H2_ungeglüht	120	5	14	2	0	110	0	63	6222	98	273	17	0	30	0	70
Differenz	57	2	2	0	0	0	0	7	-1783	-11	133	7	0	∞	0	22
H6_geglüht	190	7	6	2	0	99	0	53	1624	41	424	24	0	38	0	85
H6_ungeglüht	125	4	7	7	0	44	0	37	1139	27	275	16	0	26	0	62
Differenz	65	2	-	~	0	21	0	16	485	14	149	∞	0	12	0	23
H7_geglüht	249	8	32	4	0	205	0	107	15424	262	4947	106	0	41	0	06
H7_ungeglüht	173	ω	49	9	0	327	163	81	44163	718	3249	76	0	38	0	84
Differenz	76	~	-17	-2	0	-122	-163	26	-28739	-455	1698	31	0	ი	0	7
H12_geglüht	283	10	22	4	0	182	0	105	10112	198	43744	730	0	51	0	98
H12_ungeglüht	174	ω	50	7	0	336	0	170	36611	688	28248	506	0	49	0	92
Differenz	108	-	-29	က္	0	-153	0	-65	-26499	-490	15495	224	0	2	0	7
H13B_geglüht	172	7	17	e	0	162	0	94	8462	160	31729	514	0	48	0	95
H13B_ungeglüht	128	7	46	9	0	310	0	155	36424	620	21662	361	0	43	0	88
Differenz	44	0	-29	က္	0	-149	0	-61	-27962	-461	10067	153	0	9	0	9

Nr.	ъ	Fe Error	Mn	Mn Error	ວັ	Cr Error	>	V Error	Ē	Ti Error	Ca	Ca Error	×	K Error	л С	CI Error
H2_geglüht	1436	86	0	120	0	75	0	89	0	163	606005	5547	1056	245	1252	57
H2_ungeglüht	924	61	0	93	0	51	0	56	0	100	436905	3593	0	435	431	50
Differenz	512	25	0	27	0	24	0	34	0	63	169100	1954	1056	-189	821	7
H6 geglüht	200	62	0	100	0	79	0	85	0	155	625291	5555	0	513	1353	57
H6_ungeglüht	514	44	0	75	0	52	0	54	0	100	459521	3420	0	437	264	42
Differenz	185	17	0	25	0	27	0	31	0	54	165771	2135	0	75	1089	15
H7_geglüht	2167	105	0	124	0	76	0	98	0	191	595293	5943	623	268	1403	64
H7_ungeglüht	1481	86	0	108	0	55	0	68	0	132	441244	4213	0	479	393	50
Differenz	686	19	0	16	0	21	0	30	0	59	154049	1730	623	-211	1010	14
H12_geglüht	20423	412	177	85	0	82	0	224	0	489	491128	5072	0	524	1188	65
H12_ungeglüht	14716	334	0	151	0	63	0	143	0	307	351640	4272	1082	247	722	72
Differenz	5708	78	177	-66	0	19	0	81	0	182	139487	800	-1082	277	466	-7
H13B_geglüht	15977	333	0	142	0	75	0	110	0	221	531135	5104	0	521	1270	65
H13B_ungeglüht	10616	247	0	123	0	56	0	80	0	161	402774	4319	625	245	381	57
Differenz	5361	85	0	19	0	19	0	29	0	60	128361	785	-625	276	889	7
Nr.	თ	S Error	ব	A Error	٩	P Error	Si	Si Error	Mg	Mg Error						
H2_geglüht	0	18336	35029	4988	766	346	8919	858	143979	30342						
H2_ungeglüht	0	16883	19786	3390	830	319	9137	852	83194	23373						
Differenz	0	1453	15243	1598	-65	27	-218	9	60786	6970						
H6_geglüht	0	437	35321	5244	877	74	5591	611	186162	32451						
H6_ungeglüht	1036	188	19782	3280	621	65	5884	587	112116	22774						
Differenz	-1036	249	15539	1964	256	8	-292	24	74046	9677						
H7_geglüht	0	27234	35305	5355	0	1027	6571	1013	141318	32856						
H7_ungeglüht	1809	376	21851	3593	605	74	5918	642	88808	24403						
Differenz	-1809	26857	13454	1762	-605	953	653	370	52510	8453						
H12_geglüht	0	25851	33349	5006	0	696	17101	1196	99435	31328						
H12_ungeglüht	0	31661	13670	3504	0	1173	9775	1244	0	54245						
Differenz	0	-5810	19679	1502	0	-204	7326	-47	99435	-22917						
H13B_geglüht	0	22155	31757	5217	884	416	10947	1008	164747	33160						
H13B_ungeglüht	0	27249	24005	3838	0	1003	9321	1044	97729	25455						
Differenz	0	-5094	7753	1379	884	-586	1626	-35	67018	7705						

Anhang C: REM

Anhang C1: Klassifikation SmartPI[™]

		Ele	emente			
Bleiberg Test	t	0	riginal	SmartP	I EDS Classi	fication
Mineral	chemische Formel	Element	Massen- anteil [%]	Element	Min [%]	Max [%]
Kupfer	Cu	Cu	100	As		1
				Cu	90	100
				0		1
				S		1
Gold	Au	Au	100	Al		1
				Au	80	100
				Ca		1
				Mg		1
				Мо		1
				Si		1
				Ti		1
				V		1
				Zn		1
Silber	Ag	Ag	100	Ag	80	100
				Al		1
				Ca		5
				Мо		1
				Si		1
				Ti		1
				V		1
				Zn		1
Elektrum	(Au,Ag)	Aq	15,44	Ag	5	50
		Au	84,56	Al		1
			,	Au	50	95
				Са		1
				Ma		1
				Mo		1
				Si		1
				V		1

Tabelle 22: EDS-Klassifikation der Elemente.

Beiberg Test Idention of prime Galenit PbS Pb Rase of prime Plenen Min (%) Max (%) Galenit PbS Pb Rase of prime Plenen Min (%) Max (%) Galenit PbS Pb Rase of prime Plenen Rase of prime Rase of prime Galenit PbS Pb Rase of prime Plenen Rase of prime Rase of prime Galenit Pb Rase of prime Plenen Rase of prime Rase of prime Galenit Parte Rase of prime Rase of prime Rase of prime Rase of prime Galenit Carree Rase of prime Rase of prime Rase of prime Rase of prime Galenit Carree Rase of prime Rase of prime Rase of prime Rase of prime Galenit Carree Rase of prime Rase of prime Rase of prime Rase of prime Galenit Farree Rase of prime Rase of prime Rase of prime Rase of prime Galenit Farree Rase of prime Rase of prime Rase of prime Rase of prime Galenit Farree <td< th=""><th></th><th></th><th>S</th><th>ulfide</th><th></th><th></th><th></th></td<>			S	ulfide			
Mineral FormalElement antentionMax (%)Max (%)GalenitPbPb86.6A3GalenitPbSPb87.0A3FormalS31.34O0100FormalS31.34O03FormalFormalFormalSS100FormalFormalFormalS1003Sphalerit(Zn,Fe)SFormalS33.72Formal3Sphalerit(Zn,Fe)SFormalS33.72Formal3Sphalerit(Zn,Fe)SFormalSS33SphaleritSSSS33SphaleritSSSS33SphaleritSSSS33SphaleritSSSSS3SphaleritSSSSS3SphaleritSSSSSSSphaleritSSSSSSSphaleritSSSSSSSphaleritSSSSSSSphaleritSSSSSSSphaleritSSSSSSSphaleritSSSSSSSphaleritSSSSSS <tr< th=""><th>Bleiberg Test</th><th></th><th>0</th><th>riginal</th><th>SmartF</th><th>PI EDS Classi</th><th>fication</th></tr<>	Bleiberg Test		0	riginal	SmartF	PI EDS Classi	fication
GalenitPbSPb86.6AlAlAlAlS13.4O1010S13.4O33Pb70Si33CAA33SAA33Sphalerit(Zn,Fe)SFe14.68Al33Sphalerit(Zn,Fe)SFe14.68Al33Sphalerit(Zn,Fe)SFe14.68Al33Sphalerit(Zn,Fe)SFe14.68Al33Sphalerit(Zn,Fe)SFe46.55S15SiS33,72Fe3535PyritFeS2Fe46.55Al11SS53,45Fe3555OS55O3555PyritFeS2Fe46.55Al11MolybdänitMoS2Mo59,94Mo45MolybdänitMoS2Mo59,94Mo45MolybdänitMoS2Cu79,85Al11ChalkosinCu ₂ SCu79,85Al13ChalkosinCu ₂ SCu34,63Al33ChalkopyritCuFeS2Cu34,63Al33ChalkopyritCuFeS2Cu34,63Al33ChalkopyritCuFeS2Cu34,63Al33ChalkopyritFe20405CuFeS2Cu<	Mineral	chemische Formel	Element	Massen- anteil [%]	Element	Min [%]	Max [%]
S13,4O10Pb70SiSi70SiSi33Pb701ShaleritCn,Fe)SFe14.68S33,72Fe20ShaleritS33,72FeShaleritS33,72FeShaleritS33,72FeShaleritS33,72FeShaleritS33,72FeShaleritS33,72FeShaleritS33,73FeShaleritFeS2Fe46,55PyritFeS2Fe46,55SS53,45Fe35SS53,45Fe35SS53,45Fe35SS40,06O10SMo59,94Mo45MolybdänitMoS2Mo59,94MolybdänitCu_SCu79,85S20,15A1ChalkosinCu_SCu70SiCuSi1ChalkopyritCuFeS2Cu34,63Fe30,43Cu21Fe30,43Ca3SiFe30,43SiSi33,43SiSi33,43SiSi33,43SiSi33,33SiFe30,33SiSiSiSiSiSi </td <td>Galenit</td> <td>PbS</td> <td>Pb</td> <td>86,6</td> <td>Al</td> <td></td> <td>3</td>	Galenit	PbS	Pb	86,6	Al		3
Pb70Image: Simple set of the set o			S	13,4	0		10
SineSi					Pb	70	
v v v i v i					Si		3
Sphalerit(Zn,Fe)SFe14.68AI1Sphalerit(Zn,Fe)SFe14.68AI					V		1
Sphalerit(Zn,Fe)SFe14,68Al(I)33SS33,72Fe(I)20ZnS1,50S(I)45TTS1,50S33PyritFeS2Fe46,55Al(I)PyritFeS2Fe46,55Al(I)SS55,54G(I)11TSS55,54G(I)(I)PyritFeS2Fe46,55Al(I)GSS53,45Fe36,55(I)(I)GSS53,45Fe36,55(I)(I)GSSSS44,55(I)(I)GGIIIIIIIIIIIIIIMolybdänitMoS2Mo59,94Mo4590MolybdänitMoS2Mo59,94Mo4590GS40,06OIIIIIIMolybdänitMoS2Mo59,94Mo4590GS40,06OIIIIIIIIIMolybdänitMoS2Cu79,85AlIIIIIIMolybdänitMoS2CuS20,16AsIIIGSCuS20,16AsIIIIIIMolybdänitGIIIIIIIIIIIIIIIIIIGGIIIIIII <t< td=""><td></td><td></td><td></td><td></td><td>Zn</td><td></td><td>1</td></t<>					Zn		1
S33,72Fe20ZnZn51,59S1545CISiI33PyritFeS2Fe46,55AIIS53,45Fe33555PyritFeS2Fe46,55AIIIS53,45Fe33555PyritFeS2Fe46,55AIIIIS53,45Fe3555IIIIIIIIISS3,45Fe355515III	Sphalerit	(Zn,Fe)S	Fe	14,68	AI		3
Image in the section of the sectio			S	33,72	Fe		20
Image Image Si Image Si Image Si Image Si Image Si Image Si S			Zn	51,59	S	15	45
Image: section of the section of th					Si		3
PyritFeS2Fe446,55AI3585PyritFeS2Fe446,55AI11S53,45Fe3555IIIIOI55IIIIPbI1IIIS45665IISiI1IIISiI1MolybdänitMoS2Mo59,94Mo45900MolybdänitMoS2Mo59,94Mo45900MolybdänitMoS2Mo59,94Mo45900MolybdänitMoS2Mo59,94Mo45900MolybdänitMoS2Mo59,94Mo45900MolybdänitMoS2Mo59,94Mo45900MolybdänitMoS2Mo59,94Mo45900MolybdänitMoS2Mo59,94Mo45900MolybdänitMoS2Mo59,94Mo45900MolybdänitMoS2Mo59,94Mo45900MolybdänitMoS2Mo59,94Mo45900MolybdänitMoS2MoS0S03030MoMoS2MoMoS0S03030MoMoMoMoMoMo3030MoMo					V		1
PyritFeS2Fe446,55AII11S53,45Fe3555IIIOI55IIIS4565IIIS4565IIIS4565IIIS4565IIIS1111MolybdänitMoS2Mo59,94Mo45900IS400010551055IIIS40001055IIIS40001055IIIII10551055IIIIII10551055IIIIII10551055IIIIII1010101010IIIIIII10					Zn	35	85
r S 53,45 Fe 35 55 $r r r r r r r r r<$	Pyrit	FeS ₂	Fe	46,55	Al		1
Image: second			S	53.45	Fe	35	55
Image: matrix stress of the stress					0		5
Image: series of the					Pb		1
Nolybdänit MoS2 Mo Si I I Molybdänit MoS2 Mo 59,94 Mo 445 90 Molybdänit MoS2 Mo 59,94 Mo 445 90 Image: Sind Sind Sind Sind Sind Sind Sind Sind					S	45	65
MolybdänitMoS2MoS9,94Mo44590MolybdänitS40,06O10S40,06O10S10SS40,06OImage: S1S10ChalkosinCu2SCu79,85AlCu2SCu79,85Al11ChalkosinS20,15As11Image: S20,15As11Image: SCu79,85Al11Image: S20,15As11Image: S20,15As11Image: S20,15As11Image: S20,15As11Image: SS20,15As11Image: SS20,15As11Image: SS20,15As11Image: SS20,15As11Image: SS30,15S30Image: SImage: SS1030Image: SImage: SSS11Image: SImage: SImage: SImage: S11Image: SImage: S<					Si		1
Molybdänit MoS2 Mo 59,94 Mo 445 90 S 40,06 O 10 10 S 40,06 O 10 55 Image: S 10 S 10 55 Chalkosin Cu2S Cu 79,85 Al 33 Chalkosin Cu2S Cu 79,85 As 11 Chalkosin S 20,15 As 11 Image: S S 20,15 As 11 Image: S S 20,15 As 11 Image: S Image: S S 10 30 Image: S Image: S S 10 31 Image: S Image: S Image: S Image: S 33 Image: S					Zn		1
Normal S $40,06$ O 10 Image: S $40,06$ O 10 Image: S 10 S 10 Image: S 10 S 10 Image: S 10 V 11 Image: Cu_2S Cu $79,85$ AI 33 Image: S $20,15$ As 11 30 Image: S 10 10 10 30 Image: S 10 10 10 30 Image: S 10 10 10 10 Image: S 10 10 10 10 Image: S 10 10 10 10 Image: S 10	Molybdänit	MoS ₂	Мо	59,94	Мо	45	90
Image: Constraint of the second se			S	40.06	0		10
Chalkosin Cu_2S Cu 79,85 Al Chalkosin Cu_2S Cu 79,85 Al			-	,	S	10	55
Chalkosin Cu $_2$ S Cu 79,85 Al S 20,15 As Cu T S 20,15 As Cu T Cu T Cu T Cu T Cu T Cu T Cu T Cu T Cu T Cu S 10 Cu T S S 10 Cu S S Chalkopyrit CuFeS2 Cu 34,63 Al Chalkopyrit CuFeS2 Cu 34,63 Al S 33,4,94 Cu Cu S S S					V		1
Charlosin Cu Fe Image: Charlosine for the constraint of the cons	Chalkosin	Cuis	Cu	70.85	Δ1	-	3
S20, 13 RS RS RS RS Image: Relation of the second of the se	Charlosin	Cu ₂ O	Cu S	79,00			1
Cu 70 90 Image: Cu Fe 1 Image: Fe Image: Sime Sime Sime Sime Sime Sime Sime Sime			3	20,15	AS Cu	70	00
FeFeFeFeFeImage: Image in the sector of the					Cu To	70	90
Image: Second					re c	10	20
Image: Signer stress Signer stres Signer stress S					S Si	10	30
ChalkopyritCuFeS2Cu $34,63$ Al1ChalkopyritCuFeS2Cu $34,63$ Al3Fe $30,43$ Ca5CuS $34,94$ Cu24CuS $34,94$ Cu24CuS $34,94$ Cu24CuS $34,94$ Cu24CuS $34,94$ Cu24CuS $34,94$ Cu24CuS $34,94$ Cu24CuSS20440CuSS20CuSiSi31CuInternational SinterSinternational Sinter1CuInternational SinterSinternational Sinter1CuInternational SinterInternational Sinter1CuInternational SinterInternational Sinter1CuInternational SinterInternational Sinter1CuInternational SinterInternational Sinter1CuInternational SinterInternational SinterInternational SinterCuInternational SinterInternational SinterInternation						_	3
Chalkopyrit CuFeS2 Cu 334,63 Al 33 Matrix Fe 30,43 Ca 55 Matrix S 34,94 Cu 24 50 Matrix S 34,94 Cu 24 50 Matrix S 34,94 Cu 24 50 Matrix S S 20 45 33 34 34 34 34 34 34 34 34 34					V 		
Chalkopyrit CuFeS2 Cu 34,63 Al 33 Image: CuFeS2 Fe 30,43 Ca 55 Image: CuFeS2 Fe 30,43 Ca 55 Image: CuFeS2 S 34,94 Cu 24 50 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 Fe 20 40 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 40 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 40 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 40 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 40 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 40 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 40 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 1m Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2 Image: CuFeS2					Zn		1
Fe 30,43 Ca 5 S 34,94 Cu 24 50 Fe 20 40 40 40 S S S 20 45 Si Si Si 33 31 Cu Image: Simple	Chalkopyrit	CuFeS ₂	Cu	34,63	Al		3
S 34,94 Cu 24 50 Image: S Fe 20 40 Image: S S 20 45 Image: S Si 20 45 Image: S Si 3 3 Image: S Image: S Image: S 1 Image: S Image: S Image: S 1			Fe	30,43	Ca		5
Fe 20 40 Image: Sign state			S	34,94	Cu	24	50
S 20 45 Si Si 3 V 1 1 Zn 1 1					Fe	20	40
Si 3 V 1 Zn 1					S	20	45
V 1 Zn 1					Si	1	3
Zn 1					V	1	1
					Zn		1

Tabelle	23:	EDS-Klassifikation	der	Sulfide.
---------	-----	--------------------	-----	----------

Tabelle 24: EDS-Klassifikation de	er Halogenide.
-----------------------------------	----------------

	Halogenide									
Bleiberg Tes	t	0	Original		SmartPI EDS Classification					
Mineral	chemische Formel	Element	Massen- anteil [%]	Element	Min [%]	Max [%]				
Fluorit	CaF ₂	Ca	51,33	Ca	35	90				
		F	48,67	F	10	65				
				0		15				
				V		1				

Tabelle 25: EDS-Klassifikation	der Oxide und Hydroxide
--------------------------------	-------------------------

		Oxide und	l Hydroxide				
Bleiberg Tes	t	Ori	ginal	SmartP	I EDS Classi	fication	
Mineral	chemische Formel	Element	Massen- anteil [%]	Element	Min [%]	Max [%]	
Quarz	SiO ₂	0	53,25	AI		3	
		Si	46,75	Ca		3	
				Mg		5	
				0	16		
				Si	35		
				V		1	
Limonit	FeO(OH) · nH₂O	Fe	52,26	AI		3	
		0	44,91	Fe	40		
		Н	2,83	Мо		1	
				0	10		
				S		5	
				Si		10	
				V		1	
				Zn		1	
Mo/Pb-Limor	nit		÷	Al		10	
				Fe	40		
				Mn		5	
				Мо	1		
				0	10		
				S		5	
				Si		10	
				V		1	
Zn-Limonit	·			AI		10	
				Fe	40		
				Мо		1	
				0	10		
				S		5	
				Si		10	
				V		1	
				Zn	1		

Rutil Imenit Fitanomagnetit Coronadit	TiO ₂	0	40,07	AI		5
		Ti	59,93	0	25	55
				Si		5
				Ti	45	80
llmenit	Fe ²⁺ TiO ₃	Fe	36,81	Ca		5
		0	31,64	Fe	25	50
		Ti	31,55	0	20	45
				Ti	20	45
Titanomagnetit	Fe ²⁺ (Fe ³⁺ ,Ti) ₂ O ₄	Fe	61,36	Fe	50	85
		0	28,13	0	10	40
		Ti	10,52	Ti	1	20
				V		1
Coronadit	Pb(Mn ⁴⁺ ₆ Mn ³⁺ ₂)O ₁₆	Mn	48,69	Mn	15	
		Pb	22,95	Мо	5	
		0	28,36	0	20	
				S		3
				Si		5
				Ti		1
				V		1
				Zn		3

Tabelle 26: EDS-Klassifikation der Karbonate.

		Kar	bonate				
Bleiberg Test	t	Or	riginal	SmartP	I EDS Classi	fication	
Mineral	chemische Formel	Element	Massen- anteil [%]	Element	Min [%]	Max [%]	
Kalzit	CaCO ₃	С	12,00	AI		6	
		Ca	40,04	Ca	24	80	
		0	47,96	Fe		6	
				Mg		8	
				Mn		5	
				0	10	76	
				S		1	
				Si		10	
				Ti		1	
				V		1	
				Zn		1	
Dolomit	CaMg(CO ₃) ₂	С	13,03	AI		8	
		Ca	21,73	Ca	10	45	
		Mg	13,18	Fe		6	
		0	52,06	Mg	6	32	
				Мо		1	
				0	20	65	
				S		1	
				Si		10	
				Zn		1	

Magnesit	MgCO ₃	С	14,25	Са		10
		Mg	28,83	Fe		5
		0	56,93	Mg	15	60
				Мо		1
				0	35	80
Cerussit	PbCO ₃	С	4,49	AI		5
		0	17,96	Мо		1
		Pb	77,54	0	4	
				Pb	50	
				S		5
				Si		6
				V		1
				Zn		1
Smithsonit	ZnCO ₃	С	9,58	AI		1
		0	38,27	Са		10
		Zn	52 15	Мо		6
		211	02,10	0	10	
				S		5
				Si		1
				V		1
				Zn	30	
zinkhaltiger Ka	zinkhaltiger Kalzit/Dolomit			AI		10
				Са	10	50
				Mg		20
				Мо		5
				0	20	50
				Р		5
				S		5
				Si		15
				7.	1	1
Ankorit	$C_{2}(\Gamma_{2}^{2+}M_{2}M_{2})$	C	11.64	Zn	I	40
Antein		0	46 51	Ca	10	30
	(003)2	Ma	3,53	Fe	6	30
		Ca	19,42	Mg		15
		Mn	2,66	Mn		10
		Fe	16,23	Мо		1
				0	10	60
				Pb		5
				S		3
				Si		5
				 7n		1
				∣∠n		5

	Sulfate und Molybdate								
Bleiberg Test	1	0	riginal	SmartPl	EDS Classi	fication			
Mineral Chemische Formel		Element	Massen- anteil [%]	Element	Min [%]	Max [%]			
Anhydrit	CaSO₄	Са	29,44	Al		3			
		S	23,55	Са	15	45			
		0	47,01	K		1			
				Mg		3			
				Na		1			
				0	25	70			
				S	15	40			
				Si		1			
Baryt	BaSO ₄	Ba	58,84	AI		5			
		0	27,42	Ва	30				
		S	13,74	0	5				
				S	5				
				Si		5			
				V		1			
				Zn		15			
Anglesit	PbSO₄	Pb	68.32	Aa		1			
		S	10.57	Al		3			
		0	21.1	Au		1			
				Ba		1			
				Са		15			
				Cu		1			
				Fo		1			
				Fo		5			
						5			
				Ma		3			
						25			
				0	10				
				P		1			
				Pb	40				
				3	5				
				SI		3			
				Ti		1			
				V		1			
				Zn		1			
Wulfenit	PbMoO ₄	Мо	26,13	AI		3			
		0	17,43	Fe		10			
		Ph	56.44	Mn		3			
				Mo	5				
				0	5				
				Pb	10				
				s S		5			
				Si		<u> </u>			
				V		1			
				7n		1			
				<u> </u> ۲۱۱					

Tabelle	27:	EDS-Kla	assifikation	der	Sulfate	und	Molybdate	<u>,</u>

	Phosphate und Vanadate									
Bleiberg Test		Ori	ginal	SmartPI EDS Classification						
Mineral	chemische Formel	Element	Massen- anteil [%]	Element	Min [%]	Max [%]				
Apatit	(Ca) ₅ (PO ₄) ₃ (F,Cl)	Ca	15,98	Al		3				
		CI	1,54	Ca	8	22				
		F	1,65	CI		6				
		0	26,33	F		6				
		Р	10,10	Fe		5				
				Mg		1				
				Мо		1				
				0	20	40				
				Р	6	18				
				Si		3				
				Ti		1				
Vanadinit	Pb ₅ (VO ₄) ₃ Cl	0	13,56	CI		6				
		Pb	73,15	0	6	20				
		V	10,79	Pb	30					
		CI	2,5	V	5	25				

Tabelle 28: EDS-Klassifikation der Phosphate und Vanadate.

Tabelle 29: EDS-Klassifikation der Silikate und Germanate.

	Silikate und Germanate									
Bleiberg Test		Or	iginal	SmartP	I EDS Classi	fication				
Mineral	chemische Formel	Element	Massen- anteil [%]	Element	Min [%]	Max [%]				
Albit	NaAlSi ₃ O ₈	AI	10,29	AI	5	18				
		Na	8,77	Ca		3				
		0	48,81	К		5				
		Si	32,13	Na	3	18				
				0	35	58				
				Si	20	40				
Chlorit	(Fe,Mg,Al,Zn) ₆	AI	6,46	AI	2	30				
	(Si,Al) ₄ O ₁₀ (OH) ₈	Fe	30,08	Ca		2				
		Mg	6,55	Fe	2	30				
		0	43,09	K		2				
		Si	12,61	Mg	1	30				
				Na		10				
				0	20	60				
				Si	5	30				
				Zn		10				
Titanit	CaTiSiO ₅	Ca	20,44	Al		1				
		0	40,81	Ca	15	25				
		Si	14,33	F		3				
		Ti	24,42	0	20	50				
				Si	9	19				
				Ti	16	32				
				Zn		1				

Zirkon	ZrSiO ₄	0	34,91	Са		10
		Si	15,32	Mg		1
		Zr	49,77	0	10	45
				Si	7	25
				V		1
				Zn		1
				Zr	40	65
Hemimorphit	Zn₄Si₂O7(OH)2·	0	33,21	AI		1
	H₂O	Si	11,66	Ca		10
		Zn	54,3	0	10	
				Si	3	20
				V		1
				Zn	35	
Fraipontit	(Zn,Al) ₃ (Si,Al) ₂ O	н	1.09	AI	3	30
	5(OH) ₄	0	38,81	Ca		15
		Al	9,09	Mg		3
		Si	11,35	0	20	50
		Zn	39,66	Si	3	40
				Ti		1
				Zn	10	50
Glimmer-Grupp	e			AI	8	
				Са		5
				Fe		30
				К	3	
				Mg		15
				0	20	
				Si	15	-
				 		5
				Z[] Zr		10
						I

Anhang C2: Ergebnisse SmartPI[™]

EDS Classification	0- 30µm	30- 65µm	65- 125µm	125- 250µm	250- 500µm	500- 1000 μm	1000- 2000 μm	>2000 µm	Total	Total %
Quarz	15	125	3	0	0	0	0	0	143	1,58
Dolomit	103	260	52	6	0	0	0	2	423	4,66
Kalzit	272	1082	237	49	9	3	1	23	1676	18,47
Chalkopyrit	0	4	0	0	0	0	0	0	4	0,04
Sphalerit	0	0	0	1	0	0	0	0	1	0,01
Limonit	3	16	6	2	0	0	0	0	27	0,30
Smithsonit	3	9	3	1	0	0	0	0	16	0,18
Cerussit	2	7	2	0	0	1	0	0	12	0,13
Wulfenit	1	6	3	0	1	0	0	0	11	0,12
Hemimorphit	36	197	78	30	6	1	1	0	349	3,85
Galenit	1	1	2	2	0	0	0	0	6	0,07
Fluorit	1	20	8	0	0	0	0	0	29	0,32
Anhydrit	1	0	0	0	0	0	0	0	1	0,01
Fraipontit	2	7	4	0	0	0	0	0	13	0,14
Epidot	0	8	1	0	0	0	0	0	9	0,10
Vanadinit	1	0	1	0	0	0	0	0	2	0,02
zinkhaltiger Kalzit/										
Dolomit	12	123	41	5	0	0	0	1	182	2,01
Mo/Pb-Limonit	0	0	1	0	0	0	0	0	1	0,01
Glimmer-Gruppe	0	4	1	0	0	0	0	0	5	0,06
Ankerit	0	4	0	0	0	0	0	0	4	0,04
Anglesit	0	2	1	3	0	0	0	0	6	0,07
Zn-Limonit	0	6	0	1	0	0	0	0	7	0,08
Not Analysed	4321	419	0	0	0	0	0	0	4740	52,25
Not Classified	118	553	95	11	3	2	2	0	784	8,64
Unclassified	101	392	99	19	7	1	0	2	621	6,85
Total	4993	3245	638	130	26	8	4	28	9072	100,00

Tabelle 30: Anzahl an gemessenen Partikeln des Anschliffes Math6.3-4 mit Zuordnung zu Partikelgröße und EDS-Klassifikation, sowie prozentueller Anteil zur Gesamtprobe.

EDS	0-	30-	65-	125-	250-	500-	1000-	>2000	Total	Total
Classification	30µm	65µm	125µm	250µm	500µm	1000 um	2000 um	μm	Iotai	%
Pvrit	2	0	0	0	0	0	0	0	2	0.01
Quarz	262	289	103	50	0	0	0	0	704	4,38
Albit	11	4	0	0	0	0	0	0	15	0,09
Dolomit	54	15	2	0	0	0	0	0	71	0,44
Chlorit	6	2	0	0	0	0	0	0	8	0,05
Kalzit	5587	2195	325	63	13	17	14	24	8238	51,24
Chalkopyrit	3	0	0	0	0	0	0	0	3	0,02
Sphalerit	3	0	0	0	0	0	0	0	3	0,02
Magnesit	5	2	0	0	0	0	0	0	7	0,04
Baryt	2	0	0	0	0	0	0	0	2	0,01
Limonit	189	77	9	4	0	0	1	0	280	1,74
Smithsonit	55	31	10	2	1	1	0	0	100	0,62
Cerussit	19	3	1	0	0	0	0	0	23	0,14
Wulfenit	9	9	0	0	0	1	0	0	19	0,12
Hemimorphit	11	2	2	0	0	0	0	0	15	0,09
Galenit	1	0	1	0	0	0	0	0	2	0,01
Fluorit	3	0	0	0	0	0	0	0	3	0,02
Anhydrit	3	1	0	0	0	0	0	0	4	0,02
Fraipontit	631	345	79	14	0	1	2	1	1073	6,67
Epidot	9	13	3	0	0	0	0	0	25	0,16
Vanadinit	1	0	0	0	0	0	0	0	1	0,01
zinkhaltiger Kalzit/										
Dolomit	208	120	35	8	1	1	0	0	373	2,32
Mo/Pb-Limonit	13	3	1	1	0	0	0	0	18	0,11
Glimmer-Gruppe	49	16	4	1	0	0	0	0	70	0,44
Ankerit	12	11	0	0	0	0	0	0	23	0,14
Anglesit	20	2	2	2	0	0	0	0	26	0,16
Zn-Limonit	376	267	50	7	1	0	0	0	701	4,36
Coronadit	9	1	2	0	0	0	0	0	12	0,07
Not Analysed	1579	4	0	0	0	0	0	0	1583	9,85
Not Classified	721	147	11	1	0	0	0	0	880	5,47
Unclassified	1262	436	83	8	3	1	0	1	1794	11,16
Total	11115	3995	723	161	19	22	17	26	16078	100,00

Tabelle 31: Anzahl an gemessenen Partikeln des Anschliffes Math4-2 mit Zuordnung zu Partikelgröße und EDS-Klassifikation, sowie prozentueller Anteil zur Gesamtprobe.

EDS Classification	0- 30µm	30- 65µm	65- 125µm	125- 250µm	250- 500µm	500- 1000 μm	1000- 2000 μm	>2000 µm	Total	Total %
Pyrit	1	0	0	0	0	0	0	0	1	0,00
Quarz	665	690	163	49	6	1	0	1	1575	4,83
Albit	2	0	0	0	0	0	0	0	2	0,01
Dolomit	465	179	26	16	4	1	3	2	696	2,13
Chlorit	4	2	0	0	0	0	0	0	6	0,02
Kalzit	12344	3049	629	215	68	37	95	71	16508	50,62
Rutil	1	0	0	0	0	0	0	0	1	0,00
Zirkon	0	1	0	0	0	0	0	0	1	0,00
Chalkopyrit	15	1	0	0	0	0	0	0	16	0,05
Sphalerit	1	0	0	0	0	0	0	0	1	0,00
Silber	2	0	0	0	0	0	0	0	2	0,01
Magnesit	2	1	0	0	0	0	0	0	3	0,01
Limonit	614	143	30	10	5	2	3	0	807	2,47
Smithsonit	988	316	70	15	4	0	1	1	1395	4,28
Cerussit	284	78	15	9	1	0	0	0	387	1,19
Wulfenit	111	28	7	1	0	0	0	0	147	0,45
Hemimorphit	121	45	15	3	1	0	0	0	185	0,57
Galenit	43	11	0	0	0	0	0	0	54	0,17
Fluorit	149	60	19	3	2	0	0	0	233	0,71
Anhydrit	4	0	0	0	0	0	0	0	4	0,01
Fraipontit	597	193	36	9	4	1	1	0	841	2,58
Epidot	27	4	0	0	0	0	0	0	31	0,10
Vanadinit	4	3	0	0	0	0	0	0	7	0,02
zinkhaltiger Kalzit/										
Dolomit	439	106	10	5	1	1	0	0	562	1,72
Mo/Pb-Limonit	66	20	5	2	0	0	0	0	93	0,29
Glimmer-Gruppe	40	10	3	0	0	0	0	0	53	0,16
Ankerit	27	1	1	0	0	0	0	0	29	0,09
Anglesit	58	25	12	12	0	0	0	0	107	0,33
Zn-Limonit	429	142	16	2	0	0	1	0	590	1,81
Coronadit	9	3	0	0	0	0	0	0	12	0,04
Not Analysed	3341	1	0	0	0	0	0	0	3342	10,25
Not Classified	1186	159	17	4	0	1	0	0	1367	4,19
Unclassified	2861	583	69	28	6	4	0	2	3553	10,90
Total	24900	5854	1143	383	102	48	104	77	32611	100,00

Tabelle 32: Anzahl an gemessenen Partikeln des Anschliffes Math2-1 mit Zuordnung zu Partikelgröße und EDS-Klassifikation, sowie prozentueller Anteil zur Gesamtprobe.

	0-	30-	65-	125-	250-	500-	1000-		Total
EDS Classification	30um	65um	125um	250um	500um	1000	2000	Total	- 0.cu
	Copin	00µ11	120µ11	200µm	ooopin	μm	μm		
Pyrit	1	0	0	0	0	0	0	1	0,00
Quarz	660	508	117	13	0	0	0	1298	2,85
Albit	8	3	0	0	0	0	0	11	0,02
Dolomit	766	178	44	17	3	4	2	1014	2,23
Chlorit	12	6	1	0	0	0	0	19	0,04
Kalzit	20421	3038	579	240	186	481	223	25168	55,35
Titanomagnetit	2	0	0	0	0	0	0	2	0,00
Chalkopyrit	1	0	0	0	0	0	0	1	0,00
Sphalerit	3	1	0	0	0	0	0	4	0,01
Kupfer	1	0	0	0	0	0	0	1	0,00
Magnesit	6	1	0	0	0	0	0	7	0,02
Limonit	1314	337	56	15	5	2	0	1729	3,80
Smithsonit	1374	392	102	41	9	3	1	1922	4,23
Cerussit	407	133	33	28	11	3	1	616	1,35
Wulfenit	107	26	9	4	1	0	0	147	0,32
Hemimorphit	84	21	4	1	1	1	1	113	0,25
Galenit	51	30	3	2	1	3	0	90	0,20
Fluorit	1	0	0	0	0	0	0	1	0,00
Anhydrit	2	0	0	0	0	0	0	2	0,00
Fraipontit	892	241	38	8	7	4	0	1190	2,62
Epidot	64	9	0	0	0	0	0	73	0,16
Vanadinit	11	4	1	0	0	0	0	16	0,04
zinkhaltiger Kalzit/									
Dolomit	977	201	30	10	3	2	1	1224	2,69
Mo/Pb-Limonit	132	47	14	0	5	3	0	201	0,44
Glimmer-Gruppe	453	128	16	7	4	2	1	611	1,34
Ankerit	78	8	2	0	0	0	0	88	0,19
Anglesit	94	20	9	3	4	0	0	130	0,29
Zn-Limonit	1951	537	95	22	8	1	1	2615	5,75
Coronadit	20	1	0	0	0	0	0	21	0,05
Not Analysed	476	3	0	0	0	0	0	479	1,05
Not Classified	1237	126	9	0	2	0	0	1374	3,02
Unclassified	4550	638	73	20	13	8	1	5303	11,66
Total	36156	6637	1235	431	263	517	232	45471	100,00

Tabelle 33: Anzahl an gemessenen Partikeln des Anschliffes Math1-0.5 mit Zuordnung zu Partikelgröße undEDS-Klassifikation, sowie prozentueller Anteil zur Gesamtprobe.

EDS Classification	0- 20um	30-	65- 125um	125-	250-	500- 1000	1000- 2000	Total	Total
	σομπ	οομπ	125µm	250µm	500µm	μm	μm		70
Quarz	162	91	40	7	6	3	0	309	0,89
Albit	4	0	0	0	0	0	0	4	0,01
Dolomit	271	87	31	9	30	9	0	437	1,26
Chlorit	10	2	0	0	0	0	0	12	0,03
Kalzit	10735	2520	686	545	1290	943	20	16739	48,27
Titanomagnetit	1	0	0	0	0	0	0	1	0,00
Chalkopyrit	4	1	0	0	0	0	0	5	0,01
Sphalerit	1	0	0	0	0	0	0	1	0,00
Magnesit	6	0	0	0	0	0	0	6	0,02
Baryt	19	3	3	2	1	1	0	29	0,08
Limonit	1149	312	54	21	17	7	0	1560	4,50
Smithsonit	1132	365	87	43	27	4	0	1658	4,78
Cerussit	401	156	52	32	23	7	0	671	1,93
Wulfenit	109	33	10	11	2	1	0	166	0,48
Hemimorphit	206	51	17	11	11	5	0	301	0,87
Galenit	59	25	8	7	3	0	0	102	0,29
Anhydrit	4	0	0	0	0	0	0	4	0,01
Fraipontit	679	192	32	14	10	4	0	931	2,68
Epidot	111	13	1	0	0	0	0	125	0,36
Vanadinit	21	4	0	0	0	0	0	25	0,07
zinkhaltiger Kalzit/									
Dolomit	781	195	27	17	17	2	0	1039	3,00
Mo/Pb-Limonit	180	41	12	8	9	1	0	251	0,72
Glimmer-Gruppe	76	23	3	1	3	0	0	106	0,31
Ankerit	80	7	0	0	0	0	0	87	0,25
Anglesit	71	20	9	7	2	2	0	111	0,32
Zn-Limonit	1221	369	87	33	12	6	0	1728	4,98
Coronadit	17	4	1	0	0	0	0	22	0,06
Not Analysed	280	1	0	0	0	0	0	281	0,81
Not Classified	2107	208	9	9	4	1	0	2338	6,74
Unclassified	4522	850	124	39	62	33	1	5631	16,24
Total	24419	5573	1293	816	1529	1029	21	34680	100,00

Tabelle 34: Anzahl an gemessenen Partikeln des Anschliffes Math0.5-0.3 mit Zuordnung zu Partikelgröße undEDS-Klassifikation, sowie prozentueller Anteil zur Gesamtprobe.

	0-	30-	65-	125-	250-	500-		Total
EDS Classification	30µm	65µm	125µm	250µm	500µm	1000	lotal	%
						μm	740	
Quarz	300	180	115	134	14	0	743	1,09
Albit	12	7	0	0	0	0	19	0,03
Dolomit	2303	884	372	390	58	0	4007	5,89
Chlorit	64	16	10	4	0	0	94	0,14
Kalzit	20870	5457	2954	4912	2159	56	36408	53,48
Rutil	1	0	0	0	0	0	1	0,00
Ilmenit	0	2	0	0	0	0	2	0,00
Titanomagnetit	3	0	0	0	0	0	3	0,00
Sphalerit	5	0	0	0	0	0	5	0,01
Baryt	287	76	24	18	4	0	409	0,60
Limonit	1490	338	98	72	28	0	2026	2,98
Smithsonit	1233	421	201	197	61	1	2114	3,11
Cerussit	1106	348	189	175	50	0	1868	2,74
Wulfenit	219	40	14	10	3	0	286	0,42
Hemimorphit	183	44	31	37	15	0	310	0,46
Galenit	183	64	25	28	7	1	308	0,45
Fluorit	37	13	0	5	0	0	55	0,08
Anhydrit	2	0	0	0	0	0	2	0,00
Fraipontit	1349	357	84	77	18	0	1885	2,77
Epidot	154	17	2	2	0	0	175	0,26
Vanadinit	24	5	0	0	0	0	29	0,04
zinkhaltiger Kalzit/ Dolomit	1158	261	55	28	15	0	1517	2,23
Mo/Pb-Limonit	226	88	27	24	6	0	371	0,54
Glimmer-Gruppe	209	71	37	34	7	0	358	0.53
Ankerit	73	16	1	0	0	0	90	0,13
Anglesit	178	47	24	28	7	0	284	0,42
Zn-Limonit	1755	565	200	148	39	0	2707	3,98
Coronadit	15	3	0	2	0	0	20	0.03
Not Analysed	864	5	0	0	0	0	869	1.28
Not Classified	2435	214	12	9	3	0	2673	3.93
Unclassified	6840	1107	235	194	65	3	8444	12.40
Total	43578	10646	4710	6528	2559	61	68082	100.00
	10010	10010		0020	2000	51	3000L	,

Tabelle 35: Anzahl an gemessenen Partikeln des Anschliffes Math0.3-0.1 mit Zuordnung zu Partikelgröße undEDS-Klassifikation, sowie prozentueller Anteil zur Gesamtprobe.

	0-	30-	65-	125-	250-	-	Total
EDS Classification	30µm	65µm	125µm	250µm	500µm	lotal	%
Quarz	112	117	54	4	0	287	1.62
Albit	12	10	3	0	0	25	0,14
Dolomit	268	221	72	11	0	572	3,23
Chlorit	32	28	8	1	0	69	0,39
Kalzit	5724	2906	912	119	2	9663	54,55
Rutil	4	3	0	0	0	7	0,04
Ilmenit	1	0	0	0	0	1	0,01
Titanomagnetit	0	1	0	0	0	1	0,01
Chalkopyrit	6	0	0	0	0	6	0,03
Sphalerit	1	0	0	0	0	1	0,01
Magnesit	1	1	0	0	0	2	0,01
Baryt	45	16	8	1	0	70	0,40
Limonit	200	59	14	2	0	275	1,55
Smithsonit	180	96	19	1	0	296	1,67
Cerussit	596	345	119	11	0	1071	6,05
Wulfenit	143	41	9	0	0	193	1,09
Hemimorphit	29	15	3	0	0	47	0,27
Galenit	39	32	8	1	0	80	0,45
Fluorit	9	10	1	0	0	20	0,11
Anhydrit	2	0	0	0	0	2	0,01
Fraipontit	345	121	32	5	0	503	2,84
Epidot	148	51	3	1	0	203	1,15
Vanadinit	8	0	0	0	0	8	0,05
zinkhaltiger Kalzit/ Dolomit	223	107	35	10	1	376	2,12
Mo/Pb-Limonit	19	15	5	0	0	39	0,22
Glimmer-Gruppe	244	143	48	6	0	441	2,49
Ankerit	31	6	1	0	0	38	0,21
Anglesit	146	52	21	3	0	222	1,25
Zn-Limonit	220	98	21	1	0	340	1,92
Coronadit	3	6	0	0	0	9	0,05
Not Analysed	272	1	0	0	0	273	1,54
Not Classified	96	19	2	0	1	118	0,67
Unclassified	1736	567	124	28	0	2455	13,86
Total	10895	5087	1522	205	4	17713	100,00

Tabelle 36: Anzahl an gemessenen Partikeln des Anschliffes Math<0.1 mit Zuordnung zu Partikelgröße und EDS-Klassifikation, sowie prozentueller Anteil zur Gesamtprobe.

EDS Classification	0- 30µm	30- 65µm	65- 125µm	125- 250µm	250- 500µm	500- 1000 μm	1000- 2000 μm	>2000 µm	Total	Total %
Quarz	152	103	24	4	1	. 3	. 0	0	287	0,92
Albit	4	0	0	0	0	0	0	0	4	0,01
Dolomit	368	142	45	10	4	3	2	0	574	1,84
Chlorit	4	1	0	0	0	0	0	0	5	0,02
Kalzit	9312	2952	518	192	108	184	103	1	13370	42,85
Rutil	1	0	0	0	0	0	0	0	1	0,00
Titanomagnetit	0	1	0	0	0	0	0	0	1	0,00
Chalkopyrit	3	0	0	0	0	0	0	0	3	0,01
Sphalerit	24	18	7	1	0	0	0	0	50	0,16
Magnesit	7	2	1	0	0	0	0	0	10	0,03
Baryt	196	55	15	10	5	7	5	0	293	0,94
Limonit	340	93	19	3	2	5	1	0	463	1,48
Smithsonit	1325	478	128	43	18	12	1	0	2005	6,43
Cerussit	70	24	17	6	0	0	0	0	117	0,38
Wulfenit	11	3	0	0	0	0	0	0	14	0,04
Hemimorphit	590	161	33	20	4	8	3	0	819	2,63
Galenit	14	3	1	0	0	0	0	0	18	0,06
Fluorit	1493	618	137	59	15	9	0	0	2331	7,47
Anhydrit	3	1	0	0	0	0	0	0	4	0,01
Fraipontit	291	80	14	5	2	4	1	0	397	1,27
Epidot	19	6	0	0	0	0	0	0	25	0,08
zinkhaltiger Kalzit/	810	307	70	30	5	10	1	0	12/2	3 08
Dolomit	010	507	13	50	5	10	'	0	1242	5,50
Mo/Pb-Limonit	18	8	2	1	0	1	0	0	30	0,10
Glimmer-Gruppe	65	30	6	3	1	0	1	0	106	0,34
Ankerit	10	4	0	0	0	0	0	0	14	0,04
Anglesit	12	2	0	0	1	0	0	0	15	0,05
Zn-Limonit	140	50	9	4	0	0	0	0	203	0,65
Coronadit	1	0	0	0	0	0	0	0	1	0,00
Not Analysed	3798	3	0	0	0	0	0	0	3801	12,18
Not Classified	1396	232	13	3	0	2	0	0	1646	5,28
Unclassified	2481	719	95	25	14	8	8	0	3350	10,74
Total	22958	6096	1163	419	180	256	126	1	31199	100,00

Tabelle 37: Anzahl an gemessenen Partikeln des Anschliffes Glück1-0.5 mit Zuordnung zu Partikelgröße undEDS-Klassifikation, sowie prozentueller Anteil zur Gesamtprobe.
	0-	30-	65- 125um	125- 250um	250- 500um	500-	1000-		Total %
EDS Classification	30um	65um				1000	2000	Total	
	Copin	oopin	120µ11	200µ111	000µm	μm	μm		
Pyrit	1	0	0	0	0	0	0	1	0,00
Quarz	166	105	18	8	6	2	0	305	0,62
Albit	7	5	0	0	0	1	0	13	0,03
Dolomit	347	121	32	18	20	8	0	546	1,12
Chlorit	6	1	0	0	0	0	0	7	0,01
Kalzit	13848	3614	767	378	569	395	1	19572	40,02
Rutil	0	1	0	0	0	0	0	1	0,00
Titanomagnetit	0	1	0	0	0	0	0	1	0,00
Chalkopyrit	1	0	0	0	0	0	0	1	0,00
Sphalerit	20	6	5	0	0	0	0	31	0,06
Magnesit	2	2	0	0	0	0	0	4	0,01
Baryt	1221	232	67	50	90	55	2	1717	3,51
Limonit	283	83	18	2	2	1	0	389	0,80
Smithsonit	3216	1075	307	132	66	18	0	4814	9,84
Cerussit	216	77	36	23	6	1	0	359	0,73
Wulfenit	40	5	1	0	1	1	0	48	0,10
Hemimorphit	636	232	70	38	41	15	1	1033	2,11
Galenit	26	8	2	1	0	1	0	38	0,08
Fluorit	5596	1855	322	102	68	12	0	7955	16,26
Anhydrit	2	0	0	0	0	0	0	2	0,00
Fraipontit	898	217	41	16	22	8	0	1202	2,46
Epidot	20	4	0	0	0	0	0	24	0,05
Vanadinit	5	3	0	0	0	0	0	8	0,02
zinkhaltiger Kalzit/	1000	604	110	40	27	10		0747	F 60
Dolomit	1923	621	110	40	31	10	0	2/4/	5,62
Mo/Pb-Limonit	41	8	1	0	0	1	0	51	0,10
Glimmer-Gruppe	56	27	6	3	2	2	0	96	0,20
Ankerit	22	2	0	0	0	0	0	24	0,05
Anglesit	20	5	1	2	0	2	0	30	0,06
Zn-Limonit	156	40	4	3	4	0	0	207	0,42
Coronadit	9	1	0	0	0	0	0	10	0,02
Not Analysed	368	3	0	0	0	0	0	371	0,76
Not Classified	1297	162	13	3	1	0	0	1476	3,02
Unclassified	4509	1041	163	50	41	22	0	5826	11,91
Total	34958	9557	1984	875	976	555	4	48909	100,00

Tabelle 38: Anzahl an gemessenen Partikeln des Anschliffes Glück0.5-0.3 mit Zuordnung zu Partikelgröße undEDS-Klassifikation, sowie prozentueller Anteil zur Gesamtprobe.

EDS Classification	0-	30-	65-	125- 250µm	250- 500um	500-	1000-		Total %
	30um	65um	125um			1000	2000	Total	
	oopin	oopin	120µ11		ooopin	μm	μm		
Pyrit	1	0	0	0	0	0	0	1	0,00
Quarz	391	236	64	55	11	1	0	758	0,88
Albit	7	1	0	0	0	0	0	8	0,01
Dolomit	870	322	125	148	63	1	0	1529	1,78
Chlorit	18	6	1	0	0	0	0	25	0,03
Apatit	1	0	0	0	0	0	0	1	0,00
Kalzit	25059	6676	1876	2032	1246	46	1	36936	42,91
Chalkopyrit	6	0	0	0	0	0	0	6	0,01
Sphalerit	236	69	10	7	2	0	0	324	0,38
Magnesit	4	0	0	0	0	0	0	4	0,00
Baryt	4208	931	393	697	521	28	0	6778	7,87
Limonit	354	80	25	17	4	0	0	480	0,56
Smithsonit	7249	2161	677	399	132	1	0	10619	12,34
Cerussit	504	182	77	48	26	0	0	837	0,97
Wulfenit	114	30	14	5	6	0	0	169	0,20
Hemimorphit	1364	478	158	152	93	0	0	2245	2,61
Galenit	44	15	11	16	4	1	0	91	0,11
Fluorit	2864	1315	632	768	358	0	0	5937	6,90
Anhydrit	4	3	0	0	0	0	0	7	0,01
Fraipontit	1595	340	72	60	48	2	0	2117	2,46
Epidot	59	10	1	0	0	0	0	70	0,08
Vanadinit	7	2	1	0	0	0	0	10	0,01
zinkhaltiger Kalzit/ Dolomit	3153	866	230	110	45	2	0	4406	5,12
Mo/Pb-Limonit	100	26	6	3	0	0	0	135	0,16
Glimmer-Gruppe	171	67	41	33	20	0	0	332	0,39
Ankerit	27	2	0	0	0	0	0	29	0,03
Anglesit	54	18	14	8	4	1	0	99	0,12
Zn-Limonit	269	97	18	4	2	0	0	390	0,45
Coronadit	11	1	1	0	0	0	0	13	0,02
Not Analysed	697	4	0	0	0	0	0	701	0,81
Not Classified	1710	178	19	9	1	0	0	1917	2,23
Unclassified	7091	1438	317	186	77	3	0	9112	10,58
Total	58242	15554	4783	4757	2663	86	1	86086	100,00

Tabelle 39: Anzahl an gemessenen Partikeln des Anschliffes Glück0.3-0.1 mit Zuordnung zu Partikelgröße undEDS-Klassifikation, sowie prozentueller Anteil zur Gesamtprobe.

EDS Classification	0- 30µm	30- 65µm	65- 125µm	125- 250µm	250- 500µm	500- 1000 μm	1000- 2000 μm	>2000 µm	Total	Total %
Quarz	15	61	15	2	0	0	0	0	93	1,66
Albit	0	0	1	0	0	0	0	0	1	0,02
Dolomit	16	167	86	33	12	0	5	2	321	5,72
Chlorit	0	1	1	0	0	0	0	0	2	0,04
Kalzit	88	719	260	69	24	13	21	40	1234	22,01
Baryt	0	10	0	0	0	0	0	0	10	0,18
Limonit	3	50	22	4	2	0	0	0	81	1,44
Smithsonit	0	2	0	0	0	0	0	0	2	0,04
Cerussit	3	28	5	3	1	0	0	0	40	0,71
Wulfenit	0	8	0	0	0	0	0	0	8	0,14
Hemimorphit	0	0	1	0	0	0	0	0	1	0,02
Galenit	0	4	1	0	2	0	1	1	9	0,16
Fluorit	1	1	0	0	0	0	0	0	2	0,04
Fraipontit	0	5	2	0	0	0	0	0	7	0,12
Epidot	1	9	5	3	0	0	0	0	18	0,32
zinkhaltiger Kalzit/ Dolomit	1	8	6	0	0	0	0	0	15	0,27
Mo/Pb-Limonit	1	2	1	0	1	0	0	0	5	0,09
Glimmer-Gruppe	19	160	76	23	13	2	3	2	298	5,31
Ankerit	0	2	0	0	0	0	0	0	2	0,04
Anglesit	0	2	0	0	0	0	0	0	2	0,04
Zn-Limonit	0	7	5	0	0	0	0	0	12	0,21
Not Analysed	2310	243	0	0	0	0	0	0	2553	45 <i>,</i> 53
Not Classified	21	234	42	13	5	0	1	0	316	5,64
Unclassified	42	340	134	41	14	1	2	1	575	10,26
Total	2521	2063	663	191	74	16	33	46	5607	100,00

Tabelle 40: Anzahl an gemessenen Partikeln des Anschliffes Altst4-1 mit Zuordnung zu Partikelgröße und EDS-Klassifikation, sowie prozentueller Anteil zur Gesamtprobe.

EDS Classification	0- 30µm	30- 65µm	65- 125µm	125- 250µm	250- 500µm	500- 1000 μm	1000- 2000 μm	>2000 µm	Total	Total %
Pyrit	38	12	4	1	0	0	0	0	55	0,15
Quarz	250	109	15	6	1	3	0	0	384	1,01
Albit	8	3	2	0	0	0	0	0	13	0,03
Dolomit	1615	597	96	39	18	45	15	0	2425	6,40
Chlorit	36	15	1	0	1	0	0	0	53	0,14
Kalzit	7093	2234	381	156	93	268	163	1	10389	27,40
Rutil	2	0	0	0	0	0	0	0	2	0,01
Zirkon	1	0	0	0	0	0	0	0	1	0,00
Titanomagnetit	1	0	0	0	0	0	0	0	1	0,00
Chalkopyrit	1	0	0	0	0	0	0	0	1	0,00
Sphalerit	57	16	11	2	0	0	0	0	86	0,23
Magnesit	3	0	0	0	0	0	0	0	3	0,01
Baryt	313	108	36	18	9	2	1	0	487	1,28
Limonit	229	55	6	2	0	1	0	0	293	0,77
Smithsonit	141	53	22	12	3	3	1	0	235	0,62
Cerussit	46	8	8	1	0	1	0	0	64	0,17
Wulfenit	8	1	1	0	0	0	0	0	10	0,03
Hemimorphit	25	12	1	0	0	0	0	0	38	0,10
Galenit	3	0	0	1	0	0	0	0	4	0,01
Fluorit	44	14	1	0	0	0	0	0	59	0,16
Anhydrit	1	0	0	0	0	0	0	0	1	0,00
Fraipontit	101	25	1	0	0	0	0	0	127	0,33
Epidot	284	115	9	1	0	1	0	0	410	1,08
Vanadinit	1	2	0	0	0	0	0	0	3	0,01
zinkhaltiger Kalzit/ Dolomit	199	72	16	3	0	0	0	0	290	0,76
Mo/Pb-Limonit	10	1	0	0	0	0	0	0	11	0,03
Glimmer-Gruppe	2966	1148	190	69	13	30	23	0	4439	11,71
Ankerit	11	4	0	0	0	0	0	0	15	0,04
Anglesit	4	2	0	1	0	0	0	0	7	0,02
Zn-Limonit	213	74	9	7	4	2	0	0	309	0,81
Not Analysed	6821	8	0	0	0	0	0	0	6829	18,01
Not Classified	2157	444	36	7	0	0	0	0	2644	6,97
Unclassified	5883	2059	220	42	12	9	3	1	8229	21,70
Total	28565	7191	1066	368	154	365	206	2	37917	100,00

Tabelle 41: Anzahl an gemessenen Partikeln des Anschliffes Altst1-0.5 mit Zuordnung zu Partikelgröße und EDS-Klassifikation, sowie prozentueller Anteil zur Gesamtprobe.

Anhang C3: Ergebnisse REM – Vergleich mit Smart-

PI™

Abbildung 58: Albit

Abbildung 59: Baryt

Abbildung 60: Fluorit in Dolomit

Abbildung 61: Muskovit (Glimmer-Gruppe)

Abbildung 62: (Fe-)Chlorit

Abbildung 63: Fraipontit

Abbildung 64: Titanit

Abbildung 65: Titanomagnetit

Abbildung 66: Rutil

Abbildung 67: "Vanadinit" bzw. Descloizit

Abbildung 68: Coronadit

Abbildung 69: Mo/(Pb)-Limonit

Abbildung 70: Zn-Limonit

Abbildung 71: Hemimorphit (1) mit Einschlüssen von Dolomit (2), daneben Pyrit (3) und Sphalerit (4).

Abbildung 72: Smithsonit

Abbildung 73: Zirkon

Tabelle 42: Zusammensetzung der gemessenen Minerale in Anhang C3.