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ABSTRACT  

 

The aim of the present work is to develop modeling strategies by means of advanced constitutive 

models and computational frameworks for describing the mechanical behavior of hyperelastic fiber-

reinforced materials undergoing finite deformations while being proposed for high efficiency and 

robustness in finite element application. A unified invariant-base model in terms of the general 

deformation invariants is proposed to account the contributions of the individual constituent 

materials, i.e. soft matrix and fibers, and particularly their matrix-fiber mechanical interactions. The 

present study represents an initial attempt to model matrix-fiber interface debonding in the context 

of pseudo-elasticity and, moreover, to characterize and computationally evaluate it. For this, inelastic 

phenomena such as discontinuous Mullins-type softening and permanent set as a result of the matrix 

damage, the fiber rupture, and the matrix-fiber interface debonding are modeled. The proposed 

elastic and inelastic constitutive models are successfully implemented into a finite element 

environment through a general user-defined interface to study a range of initial boundary value 

problems. 

Distinct and particular contributions of the matrix, the fibers, and the matrix-fiber mechanical 

interaction as well as their respective damage counterparts are characterized independently through 

performing a comprehensive set of cyclic tensile tests. The experimental observations indicate that 

fiber-reinforced soft composites exhibit rich complexities, such as nonlinearity, anisotropy, Mullins 

type softening, and permanent deformations. This work bridges the degradation of the mechanical 

properties to the microscopically visible matrix-fiber interface debonding for composites undergoing 

cyclic deformations. 

The conformability of the invariant-based constitutive model, implemented in the user-defined 

subroutine, is validated against the experimental data of composites with different material 
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anisotropy, indicating good qualitative agreements. Moreover, the pseudo-elastic model is verified 

by comparison to the cyclic tensile tests, showing a reasonable range of agreement. Finally, this study  

identifies a unique performance benefit in flexible composite laminates through evaluation of the 

load-coupling potentials once an external stimulus triggers extensional loadings. To this end, the 

exceptional, tunable flexibilities of the material are exploited to build up composite laminates with 

different ply thicknesses, stacking directions, constituent materials, and numbers of plies. A design 

space is then introduced and used to evaluate the capability of laminates for effective load-coupling 

behaviors.
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KURZFASSUNG   

 

Das Ziel der vorliegenden Arbeit ist die Entwicklung von Modellierungsstrategien mittels 

fortgeschrittener Konstitutivgesetze und rechentechnischen Gerüsten zur Beschreibung des 

mechanischen Verhaltens von hyperelastischen faserverstärkten Materialien, unter endlicher 

Verformung, mit hoher Effizienz und Robustheit in der Finite-Elemente-Anwendung. Es wird ein 

einheitliches invariantenbasiertes Modell in Form von allgemeinen Invarianten der Verformung 

vorgeschlagen, um die Beiträge der einzelnen vorkommenden Materialien, d.h. weiche Matrix und 

Fasern, und insbesondere ihre mechanischen Matrix-Faser Wechselwirkungen zu berücksichtigen. 

Die vorliegende Arbeit stellt einen ersten Versuch dar, das Matrix-Faser-Interface-Debonding, im 

Kontext der Pseudoelastizität, zu modellieren und darüber hinaus zu charakterisieren und 

rechnerisch zu bewerten. Dazu werden inelastische Phänomene wie diskontinuierliche Entfestigung 

nach Mullins und permanente Verfestigung, welche wahrscheinlich als Folge von Matrixschädigung, 

Faserbruch und der Matrix-Faser-Grenzflächenversagen auftreten, modelliert. Die vorgeschlagenen 

elastischen und inelastischen konstitutiven Modelle wurden über eine allgemeine benutzerdefinierte 

Schnittstelle erfolgreich in einer Finite-Elemente-Umgebung implementiert, um eine Reihe von 

Randwertproblemen zu untersuchen. 

Die jeweiligen Beiträge der Matrix, der Fasern und der mechanischen Wechselwirkung zwischen 

Matrix und Fasern sowie die jeweiligen Schädigungen werden unabhängig voneinander durch eine 

umfassende Anzahl an zyklischen Zugversuchen charakterisiert. Die experimentellen 

Beobachtungen zeigen, dass faserverstärkte weiche Verbundwerkstoffe eine große Komplexität 

aufweisen, wie z.B. Nichtlinearität, Anisotropie, Entfestigung nach Mullins und permanente 

Verformungen. Diese Arbeit stellt eine Verbindung zwischen der Degradation der mechanischen 

Eigenschaften und dem mikroskopisch sichtbaren Debonding der Matrix-Faser-Grenzfläche bei 

Verbundwerkstoffen unter zyklischer Verformung her. 
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Die Anpassungsfähigkeit des invariantenbasierten Konstitutivgesetzes, welches in der 

benutzerdefinierten Subroutine implementiert ist, wurde anhand der experimentellen Daten von 

Verbundwerkstoffen mit unterschiedlicher Materialanisotropie validiert und zeigt gute qualitative 

Übereinstimmungen. Darüber hinaus wird das pseudoelastische Modell durch den Vergleich mit den 

zyklischen Zugversuchen verifiziert, was eine akzeptable Bandbreite der Übereinstimmung zeigt. 

Schließlich identifiziert diese Studie einen besonderen Leistungsvorteil in flexiblen 

Verbundlaminaten durch die Auswertung der Lastkopplungspotentiale, sobald ein externer Stimulus 

Dehnungsbelastungen auslöst. Zu diesem Zweck werden die außergewöhnlichen, einstellbaren 

Steifigkeiten des Materials ausgenutzt, um Verbundlaminate mit unterschiedlichen Lagenstärken, 

Stapelrichtungen, konstituierenden Materialien und Lagenzahlen aufzubauen. Anschließend wird 

ein Designraum eingeführt und verwendet, um die Fähigkeit der Laminate für ein effektives 

Lastkopplungsverhalten zu bewerten. 
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  STATE OF THE ART AND MOTIVATION 

 

Past efforts in the study of classic composites were mostly devoted to harnessing fiber-reinforced 

composites’ extreme properties, such as their high tensile strength and low elongation. As 

reinforcements, glass, polyester, and carbon fibers have high tensile strength, and, within their 

operating limits, they show very little deformation. When they are embedded in a soft elastomer, it 

harnesses their key characteristics in an exceptionally flexible form, enabling the development of 

fiber-reinforced materials in soft applications. These applications include pressure-controlled 

robotic actuators [1–4] , soft wearable systems [5,6], morphing aircraft wings [7–10], artificial 

muscles [5,11,12], elastofluidics [13–15], aerospace applications [16–18], and energy-absorbing 

composite systems [7,19]. Some of these applications are shown in Fig. 1.  

 

 

Fig. 1. Some applications of soft reinforced materials: a) wearable robots [5]; b) biocompatible 

materials [20,21]; c) artificial muscles [22]; d) soft actuators [23]; and e) morphing wings [24]. 

 

Versatile material morphology and the resulting unique mechanical properties make soft fiber-

reinforced composites an interesting alternative for classical resin-based materials in load coupling 

applications. To investigate the potential of different material combinations aiming at maximized 

load coupling effects, several composite laminates considering different load cases and boundary 
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conditions can be studied using computational tools. However, development of computational tools 

for such composites is challenging becaues the high stiffness discrepancy between matrix and 

reinforcement will cause significant flexibility changes in some directions and extreme linear 

stiffness in others. Moreover, flexible composites are defined as materials consisting of at least two 

phases such as elastomeric matrix and fibers and a recognizable interphase or an interface with zero 

thickness. Thus, developing a large-strain anisotropic constitutive model in a commercial FE 

software considering the contributions of all material constituents and interphase/interface to the 

deformation is necessary. In this regard, available finite strain anisotropic models in the literature 

are comprehensively reviewed in the following, emphasizing their ability to account for contributions 

of all material constituents. 

Flexible fiber-reinforced materials, including biological organs and inorganic composites, are 

considered as hyperelastic continuums in the sense that it is assumed there exists a potential function 

� which represents the total stored energy of the continuum during the deformation. The majority 

of the works in the field of flexible fiber-reinforced materials take into account the potentials of the 

individual constituent materials, i.e. soft matrix and fibers, to model their constitutive behaviors. The 

papers by, for example [25–32] accounted the contributions of the matrix and fibers as constituent 

materials for modeling inorganic fiber-reinforced composites. In addition, the works by [33–37] are 

examples in which the contributions of the constituent materials are only considered for mechanical 

behavior modeling of soft biological tissues. The work presented by Holzapfel-Gasser-Ogden (HGO) 

[33] is the most used constitutive model for modeling fiber-reinforced hyperelastic materials. A few 

works considered the matrix-fiber mechanical interaction potential for constitutive modeling of 

flexible fiber-reinforced materials. The matrix-fiber interaction potential is introduced by [38] and 

[39] for modeling the mechanical behavior of human annulus fibrosus. Since then, the interaction 

potential is taken into account for modeling of the continuous cord-rubber composite [40], biological 

tissues [41], soft inorganic composites with continuous fibers [42], and dry fabrics [43]. Recently, 

[44] and [45] considered an interaction potential associated with coupling between dispersed 
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collagens and cross-links for modeling of soft tissues. In the existing models, a contribution of the 

stretch in fiber directions to the matrix-fiber interaction potential has been considered. In addition, 

only a few papers such as [40] and [41] studied the effects of including the matrix-fiber interaction 

potential in the overall behavior modeling of soft composites, which are limited to the model fitting 

using symmetric deformations.  

In this work, the matrix-fiber interaction mechanism is hypothesized to be a result of the fibers’ 

rotation and not of the fibers’ elongation. Accordingly, we aim to propose a model in a constitutive 

framework on the basis of an angular-base deformation invariant to exclude the contribution of fibers 

in the matrix-fiber interaction potential. A specific deformation invariant to capturing the effect of 

the rotation of fibers has not yet been employed for modeling the matrix-fiber interaction potential. 

In addition, very little is known about the relevance of this potential and the material constituents’ 

potentials in the mechanical behaviors of flexible composites. That is why a quantitative evaluation 

of the models considering the interaction potential has not yet been carried out and their respective 

experimental characterization has not been evaluated satisfactorily in the literature.  

Flexible composites are defined as materials consisting of at least two phases such as elastomeric 

matrix and fibers and a recognizable interphase [46,47] or an interface with zero thickness. The 

matrix-fiber interface/interphase, which is referred to as adhesion bond, guarantees the stress 

transfer from the soft matrix to stiff fiber and is the key factor of composite performance [46,48]. The 

chemically formed adhesion bonds influence directly the mechanical interactions between the matrix 

and the fibers so that weak adhesion bonds result in early matrix-fiber debonding [49] and therefore 

less contribution of the matrix-fiber mechanical interactions to the composite performance as a 

whole [50]. There are largely ignored aspects of hyperelastic, fiber-reinforced composites, one of the 

most important of which is inelastic behavior induced by microscopic damage in the individual 

material phases of a composite. This phenomenon is referred to in literature as Mullins-type 

softening and irreversible permanent strain. In fibrous materials, the matrix-fiber debonding is an 
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additional factor that intensifies inelastic behaviors. However, there is no clear understanding of how 

much of the damage in fiber-reinforced materials stems individually from the matrix, the fibers, and 

the matrix-fiber debonding. In addition, distinct contribution of the matrix-fiber debonding to the 

degradation of the mechanical properties of fiber-reinforced materials has not yet been addressed in 

the literature. Although the models of hyperelastic fiber-reinforced materials are developed within a 

decoupled representation assuming separated contributions of their individual constituents, 

however, determining their actual mechanical contributions is challenging, being reflected in the 

immense variety of the proposed models which are reviewed in this section. For instance, recently, 

[51] and [52] selectively removed the ground matrix by chemically treating tissues, tested the 

remaining noncollagenous matrix material, and found that including the damage for the 

noncollagenous matrix material in the decoupled-representation-based constitutive modeling—as 

considered in  [53], [54], [55], [56], [57], and [58]— did not change the results comparing to the case 

when damage is not considered for the noncollagenous matrix.  

The damage models developed to account for damage-induced inelastic phenomena can be roughly 

categorized into two groups: continuum damage mechanics (CDM) and models based on pseudo-

elasticity (for an overview of the pseudo-elasticity method, the reader is referred to [59] and [60]). In 

this section, the works supported these two approaches are comprehensively reviewed with an 

emphasis on their ability to account for the distinct and particular contributions of the matrix 

damage, the fiber rupture, and probably the matrix-fiber debonding, reproducing the inelastic 

behaviors such as Mullins type softening and permanent strain. The models attributed to a complete 

damage modeling of material failure due to the application of stress or strain exceeding the elastic 

limit of the material are not discussed here [61–65]. Continuum damage mechanics (CDM) models 

are on the basis of a hyperelastic strain-energy function wherein the damage is incorporated by a 

damage function with internal variables to account for the energy dissipated during loading-

unloading cycles [66,67]). In the works of [54], [56], [68,69], and [70] models were introduced within 

the framework of CDM for soft tissues considering separated contributions on Mullins-type softening 
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damage from matrix and fibers. The works presented in [71], [69], and [72] introduced a model for 

the description of stress-softening and permanent strain observed in the uniaxial cyclic extension of 

collagenous soft tissues suggesting that the damage occurs only in fibers. A similar approach is used 

by [73] and [74] with the difference that in addition to the collagen fibers they considered the damage 

from the elastin matrix as well. An alternative approach for modeling inelastic damage attributes in 

fiber-reinforced materials is based on pseudo-elasticity introduced by [75], in which the material is 

treated as elastic in loading while showing inelastic behavior in unloading. This approach is extended 

by [60] for modeling Mullins effect in filled rubbers and further developed by [59] for modeling the 

Mullins effect and permanent strain in particle-reinforced rubbers. The same approach is used in 

[76] to model the inelastic behavior of the brain as an isotropic material. In Ref. [77] a pseudo-elastic 

model is presented for soft tissues that incorporates stress softening in both the isotropic matrix and 

the fibers without considering the permanent strain. The work presented in Ref. [78] proposed a new 

model to describe Mullins-type softening in aortic layers when loaded beyond the physiological 

range. However, the permanent strain observed in the experimental results is not accounted therein. 

The work is extended in [79] accounting for the Mullins softening and the permanent strain in 

arterial tissues. The damage model assumes that the Mullins softening occurs only in collagen fibers 

while both matrix and fibers contribute simultaneously to the permanent strain. Recently, [80] 

studied the Mullins-type softening in short fiber, soft composites in the pseudo-elasticity framework 

considering damage for both matrix and fibers. However, the permanent strain is not accounted in 

the modeling, unlike the observations in the experiment. They assumed that the matrix-fiber 

debonding contributes to the matrix damage term due to void nucleation at the bonding sites and 

further evaluated their model against the cyclic uniaxial extension of specimens with fibers parallel 

to the loading direction.   

Based on the careful literature survey carried out in this work, the advantages and limitations of both 

continuum damage mechanics in connection with hyperelasticity and pseudo-elasticity models are 

listed. Both methods are able to model the separated contributions on damage from the matrix and 
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fibers, nevertheless, this alone is not enough. In hyperelasticity, a significant advantage of pseudo-

elasticity models relative to approaches based on continuum damage mechanics is that the material 

parameters can be obtained independently of damage parameters [78,81] thereby a change of damage 

variable does not alter the overall value of the strain energy [82]. A limitation of models developed 

based on continuum damage mechanics in regard to hyperelasticity, which has not been pointed out 

in the literature, is that one cannot distinguish the contribution of the stress softening from the 

permanent strain on damage, in that, both share the same damage parameters, while, pseudo-elastic 

models can do. Furthermore, the material calibration is found to be more complicated in CDM 

models than for the pseudo-elastic models [74]. Continuum damage mechanics is not satisfactory for 

reproducing the Mullins effect for materials showing a high reduction of stiffness due to inelastic 

dissipation (see, [57], [77,83–85]) a phenomenon that is common in elastomers. The inherent 

simplicity of the pseudo-elasticity approach makes it specifically suitable for computational 

implementation and practical applications [67,79]. Based on the literature reviewed, two valuable 

conclusions are made. (i) To the best of our knowledge, the inelastic damage attributes such as the 

Mullins-type softening and permanent strain as a result of the matrix-fiber debonding has not yet 

been modeled. It is reflected in the proposed models wherein the contributions of the matrix and the 

fibers have been only accounted, while the matrix-fiber debonding would be associated with a third 

material phase called ‘matrix-fiber interface/interphase’ neither matrix nor fibers. (ii) Pseudo-

elasticity is regarded as a method based on which the material and damage parameters can be 

obtained independently, nevertheless, employing a relevant constitutive model that enables to 

account distinct contributions of the material phases of the composite is pivotal with this approach.  
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   OBJECTIVES AND METHODS OVERVIEW 

 

Based on the literature reviewed, the hypothesis for this work is that the prediction of the elastic 

mechanical behaviors can be improved by adding the “matrix-fiber mechanical interaction” term to 

the constitutive models of hyperelastic fiber-reinforced materials. In addition, it is supposed that this 

term plays an important role in the damage behavior modeling of soft composites. This work is a first 

attempt to study these hypotheses and the research objectives to test them are listed as follows. 

• Proposing a constitutive framework for modeling hyperelastic materials in terms of not only the 

matrix and fibers but also the contributions of their interactions, i.e. the matrix-fiber mechanical 

interactions. The relevance of this term in constitutive modeling of hyperelastic composites is 

discussed.  

• Quantitative evaluating the proposed model via comparisons of the theory with experiments. In 

addition, the contributions of the material phases and the matrix-fiber mechanical interaction to 

the deformations are quantified.  

• Understanding of what is the underlying mechanism producing damage, i.e. Mullins type 

softening and permanent deformations, in hyperelastic fiber-reinforced materials through 

experimental observations. Furthermore, an initial attempt is made to model the matrix-fiber 

interface debonding in the context of pseudo-elasticity. 

• Are flexible composite laminates potential for load coupling applications such as extension-twist 

coupling. 

A brief overview of methods used in this dissertation is given first and then they are described in 

detail in the following paragraphs. A matrix-fiber-interaction constitutive model is presented and it 

is further developed to take into account the damage corresponding to the separated contributions 

of the matrix, fiber, and matrix-fiber interface debonding. Then, the model is implemented in a user-
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defined subroutine interface for the finite element applications. To verify the proposed model, it is 

calibrated against the experimental data. For this, a comprehensive set of experiments is performed 

on composites with different material anisotropy. Eventually, the potential of the flexible composite 

laminates for load-coupling applications is discussed using finite element simulations.  

In this dissertation, a homogenized anisotropic finite strain material model for fiber-reinforced 

elastomers with two fiber families is developed within a constitutive framework. The total strain-

energy density function is decomposed into three distinct contributions: matrix (Ψ�), fiber (Ψ�), 

and (mechanical) interactions (Ψ�) that is named the MFI model, after the first initials of the 

contributions’ names (see paper 1). The matrix-fiber interaction mechanism is a result of the fibers’ 

rotation and not of the fibers’ elongation. Accordingly, an angular-base deformation invariant, 

represented by ��
∗, is introduced to be employed by an exponential-polynomial function to form the 

matrix-fiber interaction potential (see paper 1). The proposed model is further developed in the 

context of pseudo-elasticity to take into account the inelastic phenomena such as discontinuous 

Mullins-type softening and residual strain due to matrix damage, fiber rupture, and matrix-fiber 

interface debonding. The pseudo-elastic model is based on hyperelastic strain energy functions with 

two damage variables for each of the matrix, the fibers, and the matrix-fiber mechanical interactions. 

The development of the inelastic model is presented in paper 3. 

The developed model is implemented in the user-defined subroutine UMAT for the purpose of finite 

element method (FEM) applications. For this, the total Cauchy stress tensor and the Pseudo-elasticity 

tensors (which are not elastic anymore) are developed and then they are decoupled into volumetric 

and isochoric parts. The consistent Jacobian matrix, i.e. DDSDDE variable in the UMAT user 

subroutine, corresponding to the Jaumann rate of the Kirchhoff stress tensor needed for the Abaqus 

is presented. The algorithmic stress and (pseudo-)elasticity tensors required for the finite element 

implementation of the pseudo-elastic model are also explained. A uniaxial tension test is carried out 

on a unit cube composed of one element to illustrate the performance of the model through finite 
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element implementation. The computational (FEM) and analytical solutions are then compared in 

order to illustrate the performance of the deveoped code. the FE-implementation of the elastic part 

of the model is elaborated in paper 2 while its inelastic part is the focus of paper 3.  

Comprehensive sets of experiments are carried out on matrix, fiber, and composites with different 

material anisotropy and aspect ratios. The first measurements include the uniaxial extension of the 

pure matrix, uniaxial tension of composites with the fiber orientationin [+0/-90] in the fiber 

direction, stress-stretch responses of composites with the preferred fiber orientations [+45/-45] and 

[+30/-60] under uniaxial extensions, digital image correlation (DIC) measurements of the strain 

fields for the composites [+45/-45] and [+30/-60] under tensile tests, the angle between deformed 

fibers of the composite [+45/-45] recorded via in situ tensile tests, and the wrinkling patterns (out-

of-plane deformations) of the uniaxially stretched samples [+45/-45] and [+30/-60] using 3D DIC 

method. The test methods are described in paper 2 in greater detail. The second measurements 

include cyclic tensile tests on pure matrix and the composites [+0/-90] (in fiber direction), [+45/-

45], and [+30/-60], the respective strain fields at loadings and unloadings (residual strain) recorded 

by the DIC method, and in situ tensile tests on composites with the preferred fiber orientation [+45/-

45] under microscopy to scan through the whole thickness of the samples enabling a full-field 

analysis of the matrix-fiber debonding. The second measurements are explained comprehensively in 

paper 3. 

Using the first measurements, the (hyper)elastic part of the model is calibrated within the developed 

constitutive framework as follows. The matrix potential Ψ� is simply calibrated against the uniaxial 

extension of the pure matrix. Keeping the material parameters of the matrix, the composites [+0/-

90] are subjected to uniaxial tests along the fiber direction to calibrate the material constants of the 

fibers potential Ψ�. The material parameters of the interaction potential Ψ� are then obtained within 

the developed constitutive framework via fitting the model into the symmetric uniaxial tensile tests 

on the samples [+45/-45]. The whole procedure for the calibration of  the elastic material model is 
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presented in paper 1. The second measurements are used to obtain the properties of the inelastic 

model. Before that, the (elastic) potentials of the matrix, the fibers, and the mechanical interaction 

are calibrated as explained above via the respective cyclic tensile tests but considering only the 

primary loading path. Keeping now the elastic material parameters, the inelastic model is fitted to 

the entire loading history for the cyclic loading-reloading stress-stretch responses of the samples 

[+45/-45]. For this purpose, the damage parameters are calibrated through inverse finite element 

modeling based on an FEM-model of the test samples using the optimization code LS-OPT employing 

the least-squares algorithm to minimize the discrepancy between the model results and entered 

experimental data. The calibration procedure of the inelastic model through the cyclic tentile tests is 

taken into account in paper 3. The elastic part of the model developed within the constitutive 

framework is now quantitatively evaluated through a comparison of the theory with the first 

measurements explained above considering the test results of the samples with the fiber orientation 

[+45/-45]. The comparisons include the stress-stretch responses, strain fields, and rotation of fibers. 

The conformability of the constitutive equation with experimental results is visualized in the first 

comparisons. For the strain fields, the principal stretches in loading direction and transverse to the 

loading are measured and compared to the theory. The rotation of fibers (in other words, the current 

angle between deformed fibers) is theoretically calculated via the angular-base invariant ��
∗ and is 

compared with the test results. The comparisons are analyzed in detail in paper 3. The (elastic) model 

so calibrated through the first measurements is then verified via the comparison of the finite element 

simulations with the tensile test results of the composites with the fiber orientation [+30/-60]. The 

relevance of the matrix-fiber interaction potential in constitutive modeling of hyperelastic 

composites is illustrated by three representative examples when its effect is neglected (when the 

interaction potential is neglected the MFI constitutive model is reduced to the Holzapfel-Gasser-

Ogden (HGO) model). They include uniaxial extension of single-layer plates with different material 

anisotropy, inflation-extension of a thin cylindrical tube, and load-coupling behaviors in composite 

laminates (see paper 1). Furthermore, the contributions of the matrix, fibers, and matrix-fiber 



OBJECTIVES AND METHODS OVERVIEW                                                                                                      12 
 

 

 

mechanical interaction to the total deformations are indicated using a set of finite element 

simulations on composites with the material anisotropy [+45/-45] and [+30/-60] under uniaxial 

extensions. It is carried out by showing the spatial distributions and quantitative measurements of 

the respective potentials. Note, that the material properties obtianed from the first measurements are 

used for these illustrations. The illustrations can be found in paper 2. To validate the predictions of 

the proposed inelastic damage model, the cyclic stress-stretch experimental responses of non-

symmetric deformations on the samples [+30/-60] are compared against the simulation results 

(FEM). The loading-reloading results are presented. The material parameters obtained from the 

second measurements are used for these simulations. Moreover, the local stretch maps (the 

maximum local stretches at loading and permanent stretches after unloading), captured via the DIC 

method, are compared with the FEM simulation results for the composites with the symmetric 

deformations (i.e. the samples with the preferred fiber orientation as [+45/-45]) during the cyclic 

tensile test. The validations of the inelastic model are elaborated in paper 3.  

Fig. 2 schematically shows the coupling of deformation modes such as end moment (M) and 

longitudinal (engineering) stress (	
) as well as end twist (Ω) in a composite laminate with the off-

axis plies subjected to a uniaxial deformation. The values of these parameters, which may be 

addressed herein as conflicting requirements for designing laminates exhibiting effective extension-

twist coupling behaviors, are individually evaluated. Effective load-coupling behaviors necessitate the 

laminate to possess unique properties, the most important of which are: high output values of the 

end moment, high end-twist capability, and low longitudinal stress, so as to minimize the actuation 

force required for stretching the laminates. During the extension-twist coupling behavior, the values 

of the parameters {Μ, Ω} are increasing; therefore, based on the definition above, they are not 

assumed to be conflicting requirements. On the other hand, an effective coupling behavior requires 

high torsional capability for low longitudinal stresses, which implies that the parameter set {	
 , Ω} 

is a conflicting requirement. The set {Μ, 	
} is also not suitable for load-coupling applications 

because the effective load-coupling behavior, as explained above, requires a high-end moment for 
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low longitudinal stress, while these two parameters are highly coupled to each other. Accordingly, a 

new term M/	
 is introduced here, which is called the decoupling ratio (see paper 4). The only 

parameter that remains is the end twist Ω, which is a desirable quantity for load coupling. 

Consequently, a design space represented by a diagram is considered in which its vertical axis denotes 

the decoupling ratio M/	
 , while its horizontal axis shows the degree of torsional flexibility through 

Ω. To see the introduced design space, the reader is referred to paper 4. In this work, effective load-

coupling behaviors are studied within this design space.    

 

 

Fig. 2. Extension-twist coupling of a composite laminate. 
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   STRUCTURE OF THE THESIS   

 

In this section, the publications during the Ph.D. study are listed and a brief description of them is 

presented. The contribution of the Ph.D. candidate to the publications is clarified (see Table 3.1) and 

a description of the works done by each co-author is presented.  

 

Table 3.1. The contributions of the Ph.D. candidate to the publications. 

 Paper 1 Paper 2 Paper 3 Paper 4 

Conceptualization 100% 100% 100% 80% 

Modeling & Simulation 100% 100% 80% 100% 

Experimental testing 60% 70% 100% 100% 

Data evaluation 100% 100% 100% 100% 

Writing - original draft 100% 90% 100% 100% 

Writing - review & editing - - - - 

 

 

 PAPER 1: The contribution of mechanical interactions to the constitutive modeling 

of fiber-reinforced elastomers 

 

M.R. Mansouri, P.F. Fuchs, J.C. Criscione, B. Schrittesser, J. Beter 

European Journal of Mechanics-A/Solids, 85 (2020) 104081 (IF: 4.220) 

doi: 10.1016/j.euromechsol.2020.104081. 

 

Description: 
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In this paper, we developed a Matrix-Fiber-Interaction (MFI) constitutive model and  an angular-

base deformation invariant is introduced. In addition, the importance of the matrix-fiber mechanical 

interaction in the constitutive modeling of fiber-reinforced hyperelastic materials is shown.    

Authorship contributions: 

P.F. Fuchs: Funding acquisition, Supervision, Writing - review & editing. J.C. Criscione: Writing- 

review & editing. B. Schrittesser: Supervision, Writing - review & editing. J. Beter: Experimental 

testing. 

 

PAPER 2: Quantifying matrix-fiber mechanical interactions in hyperelastic materials 

 

Mansouri M.R., Beter J., Fuchs P.F., Schrittesser B., Pinter G. 

International Journal of Mechanical Sciences, 95 (2021), p. 106268 (IF: 5.329) 

doi: 10.1016/j.ijmecsci.2021.106268 

 

Description: 

In this work, the MFI model developed within the introduced constitutive framework is 

quantitatively evaluated through a comparison of the theory with the experimental observations. 

Furthermore, the contributions of the material phases and matrix-fiber mechanical interaction to the 

deformations are quantified for composites with different material anisotropy using finite element 

simulations. 

 

Authorship contributions: 

J. Beter: Experimental testing, Writing - original draft. P.F. Fuchs: Funding acquisition, Supervision, 

Writing - review & editing. B. Schrittesser: Supervision, Writing - review & editing. G. Pinter: 

Writing - review & editing. 
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PAPER 3: Matrix-fiber interface debonding in soft composites: Modeling and 

microstructural evolutions 

 

Mansouri M.R., Fuchs P.F., Baghani M., Schuecker C. 

Composites Part B: Engineering (IF: 9.078) 

Under review: 19.10.2021 

 

Description: 

In this work, the contribution of the matrix-fiber interface debonding to the degradation of the 

mechanical properties is discussed. Based on the experimental outputs, we present a model 

covering almost the full phenomenology of hyperelastic fiber-reinforced materials, while 

being proposed for high efficiency and robustness in finite element application. In this work, 

the damage mechanisms are modeled in the context of pseudo-elasticity, with a focous on 

the matrix-fiber interface debonding, and the developed model is compared against cyclic 

tensie tests. This work indicates that fiber-reinforced soft composites exhibit rich complexities, such 

as nonlinearity, anisotropy, Mullins type softening, and permanent deformations. 

 

Authorship contributions: 

P.F. Fuchs: Funding acquisition, Supervision, Writing - review & editing. M. Baghani: Modeling & 

Simulation, Supervision, Writing - review & editing. C. Schuecker: Supervision, Writing - review & 

editing. 
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PAPER 4: Elastic load coupling with tailored elastomer composites 

 

Mansouri M.R., Fuchs P.F. 

Composites: Part C, 4 (2021), p. 100088. 

doi: 10.1016/j.jcomc.2020.100088. 

 

Description: 

This work addresses the potential of flexible composites for load-coupling applications such as 

extension-twist coupling. To this end, the conflicting design requirements such as decoupling ratio 

between deformation modes, i.e. extension and twist, and torsional flexibility are studied for 

laminates with different ply thicknesses, stacking directions, constituent materials, and numbers of 

plies. A design space is then introduced and used to evaluate the capability of laminates for effective 

load-coupling behaviors.  

 

Authorship contributions: 

P.F. Fuchs: Conceptualization, Funding acquisition, Supervision, Writing - review & 

editing. 
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 OVERAL CONCLUSION  

 

By introducing an angular-base deformation invariant, a Matrix-Fiber-Interaction (MFI) model is 

proposed in a constitutive framework for modeling hyperelastic materials in terms of not only the 

matrix and fibers but also the contributions of their interactions, i.e. the matrix-fiber mechanical 

interactions. The proposed model enables us to capture the mechanical behavior of fiber-reinforced 

elastomers with two fiber families and with different material anisotropy. It is shown by the 

comparison of experiments with finite element simulations for symmetric and non-symmetric 

deformation states. In order to show the relevance of the interaction potential in the constitutive 

modeling of fiber-reinforced elastomers, three representative examples are provided and all are 

modeled using the MFI and the HGO constitutive models. The results imply that the mechanical 

interaction potential affects substantially the constitutive behaviors. 

 
The proposed model developed within the constitutive framework is quantitatively evaluated using 

comparison of the theory with the experimental measurements. The measurements include the 

stress-stretch responses of composites with different material anisotropy under tensile tests, DIC 

measurements of strain fields in the loading and transverse to the loading directions, and the angle 

between deformed fibers (rotation of fibers). The results show good qualitative agreements in all 

comparisons. In addition, the contributions of the material phases and the matrix-fiber mechanical 

interaction to the uniaxial extensions of composites with different material anisotropy are quantified 

using finite element simulations. The spatial distributions and quantitative measurements of the 

respective potentials signify that the matrix-fiber mechanical interaction is the main mechanism 

contributing to the mechanical behavior of hyperelastic fiber-reinforced composites. 

 
In this work, the contribution of the microstructural evolution, as a result of the microscopically 

visible matrix-fiber interface debonding, to the degradation of the mechanical properties is discussed. 
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The results of the tensile cyclic tests on the pure matrix, fibers, and composites imply that the 

underlying mechanism producing the Mullins-type softening and permanent deformations can be 

attributed to the matrix-fiber interface debonding neither matrix nor fibers. It is supported by the 

matrix-fiber interface debonding observed using the micrographs captured during in situ tensile tests 

and is reflected in the residual deformations recorded through the stretch maps via digital image 

correlation after unloading. The information coming from the experiments is used as input 

parameters for damage modeling. We present a model covering almost the full phenomenology of 

hyperelastic fiber-reinforced materials, i.e. nonlinearity, anisotropy, Mullins type softening, and 

permanent deformations while being proposed for high efficiency and robustness in finite element 

application. The two latter are described by a phenomenological matrix-fiber damage potential, 

which delivers physically more meaningful behavior in a sense that the degradation of the mechanical 

properties is reported to be a result of the microscopic matrix-fiber interface debonding. The 

proposed model distinguishes between the contributions of the composite constituents on the elastic 

and the inelastic mechanical behaviors by means of applying the three following considerations. (i) 

Particular elastic and pseudo-elastic energy functions are primarily used enabling to distinguish 

between the respective contributions of the material constituents. (ii) Adopting pseudo-elasticity as 

damage framework, say, which allows us to obtain contributions on damage from any of the 

constituent materials independently of the elastic properties. (iii) The use of separate damage 

variables to distinguish between the inelastic mechanical behaviors such as the Mullins-type 

softening and the permanent strain. The model implemented in a user-defined subroutine is capable 

of reproducing the inelastic behaviors as a result of the matrix-fiber debonding for composites 

showing significant degradation in their mechanical properties.   

 
In this work, we have identified a unique performance benefit by evaluating the extension-twist 

coupling potentials in flexible reinforced composites. To exploit the tunable flexibilities of the 

composites for effective load-coupling behaviors, a set of conflicting requirements are evaluated. As 

a result, a design space is introduced through which the capability of a laminate can be evaluated for 
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load-coupling applications. In this space, the load-coupling potential of each laminate can be 

displayed by only one point on the referred diagram. It shows that, in general, providing a higher 

degree of decoupling between end moment and longitudinal stress gives rise to a much higher 

amount of flexibility, which is highly desirable for load-coupling applications. They could be used in 

products such as morphing systems, which are characterized by conflicting requirements like 

“exhibit low in-plane stiffness while maintaining large strain capability and exceptional flexibility.” 

 
The present study provides the following advancements to hyperelastic material research. It clarifies 

the role of the “matrix-fiber mechanical interaction” for modeling the elastic and inelastic behaviors 

of inorganic, flexible fiber-reinforced materials, yet remains to wait for biomaterials, particularly 

since recently there are many interests in figuring out the effects of coupling between the collagen 

fibers and extracellular matrix. By performing comprehensive tests combined with finite element 

simulation studies, guidelines are presented for properly characterizing the complicated behavior of 

flexible composites. Moreover, the potential of soft composite laminates for load-coupling 

applications is shown, which makes soft materials a candidate for new applications such as morphing 

aircraft wings, artificial muscles, and many other applications that are under investigation by other 

research groups. To have a direct impact on the advancement of science, the research outputs are 

published in international peer-reviewed journals, and further, they are disseminated in national and 

international conferences. 
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A B S T R A C T   

Hyperelastic fiber-reinforced materials are conventionally modeled based on the contributions of their constit-
uent materials. A unified invariant-base constitutive model, named Matrix-Fiber-Interaction (MFI) model, is 
proposed to take into account particularly the mechanical interaction contribution of the constituent materials in 
fiber-reinforced elastomers with two fiber families. Its high predictive capability for the modeling of the behavior 
of composites with different material anisotropy is verified by several experiments. This model along with its 
structurally based framework of material characterization allows measuring distinct contributions of the matrix, 
fiber, and mechanical interactions in the sense that the latter can be determined regardless of the functional form 
of the fiber potential. Therefore, in this paper, the MFI model implemented in a user-defined subroutine is used to 
highlight the importance of mechanical interaction potential. Using three representative examples: uniaxial 
extension of single-layer plates with different material anisotropy, inflation-extension of a thin cylindrical tube, 
and load-coupling behaviors in composite laminates, its effect is analyzed. The comparisons of experiments with 
simulation results underline the prediction quality improvement using the interaction potential in the modeling 
of single-layer composites. For the two latter deformations, the simulation results comparatively indicate the 
effect of mechanical interaction potential for the modeling of more complicated structures.   

1. Introduction 

Flexible fiber-reinforced materials, including biological organs and 
inorganic composites, are considered as hyperelastic continuums in the 
sense that it is assumed there exists a potential function Ψ which rep-
resents the total stored energy of the continuum during the deformation. 
The majority of the works in the field of flexible fiber-reinforced mate-
rials are taken into account the potentials of the individual constituent 
materials, i.e. soft matrix and fibers, to model their constitutive be-
haviors. The papers by, for example, Holzapfel and Gasser (2001), 
Milani and Nemes (2004), Merodio and Saccomandi (2006), Ren et al. 
(2011), Fereidoonnezhad et al. (2013), Chebbi et al. (2016), Liu et al. 
(2019), Connolly et al. (2019) accounted the contributions of the matrix 
and fibers as constituent materials for modeling inorganic 
fiber-reinforced composites. In addition to, the works by Holzapfel et al. 
(2000), Murphy (2013), Alhayani et al. (2014), Tricerri et al. (2016), 
Chaimoon and Chindaprasirt (2019) are examples in which the contri-
butions of the constituent materials are only considered for mechanical 
behavior modeling of soft biological tissues. Among others, 

Holzapfel-Gosser-Ogden (HGO) model (Holzapfel et al., 2000) provides 
a nice comparison between various relations for fibrous biological tis-
sues. This model is also used frequently for constitutive modeling of the 
inorganic materials. We make no attempt to list a large number of the 
works done in this subject. 

A few works considered the mechanical interaction potential for 
constitutive modeling of flexible fiber-reinforced materials. The inter-
action potential is introduced for the first time by Wagner and Lotz 
(2004) and Peng et al. (2006) for modeling the mechanical behavior of 
human annulus fibrosus. Since then, the interaction potential appears to 
be taken into account for modeling of cord-rubber composite (Peng 
et al., 2013), biological tissues (Guo et al., 2006), soft inorganic com-
posites (Gong et al., 2016), and dry fabrics (Gong et al., 2017). Recently, 
Melnik et al. (2018) and Holzapfel and Ogden (2019) considered an 
interaction potential associated with coupling between dispersed col-
lagens and cross-links for modeling of soft tissues. However, very little is 
known about the efficacy of including interaction potential in the 
constitutive behavior modeling of flexible fiber-reinforced materials. 

The main goal of the present study is to propose a unified invariant- 
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base constitutive model, so-called the MFI model, on the basis of 
extensional- and angular-base deformation invariants to take into ac-
count particularly the contribution of the mechanical interactions be-
tween constituent materials of the fiber-reinforced elastomers with two 
fiber families. It introduces a structurally based framework for charac-
terizing the mechanical interactions regardless of the functional form of 
the fiber potential. Therefore, during a specific deformation, the 
contribution of mechanical interactions can be obtained without being 
perturbed by other contributions. Moreover, we take advantage of this 
model and capabilities of existing commercial software for nonlinear 
analysis in order to highlight for the first time the importance of the 
mechanical interaction potential in constitutive modeling of fiber- 
reinforced elastomers. 

2. Model description 

2.1. Kinematics 

In this section, the notation and fundamental concepts of nonlinear 
continuum mechanics are outlined in order to describe the MFI consti-
tutive model, the elasticity tensors and corresponding Cauchy stresses. 
Consider a continuum body Br in the reference configuration of a ma-
terial body. It is supposed that any material point be labelled by its 
position vector X in Br. Let the body be deformed into the new config-
uration B so that the material point X takes up the position x. This 
motion is introduced by the mapping x = χ(X). The gradient of χ is 
defined by F(X) = Grad ​ x and referred to as the deformation gradient 
tensor that its determinant J = detF(X) > 0 is called the local volume 
ratio. In terms of F the right Cauchy-Green strain tensor is given by C =
FTF with the corresponding first and second invariants as 

I1 = tr C and I2 =
1

2

[

(trC)2 − tr
(

C2
)] (1) 

Consider two material line elements in a fiber-reinforced material 
initially aligned along the unit vectors defined as M = cos θ E1+ sin θ E2 
and N = cos θ E1 − sin θ E2, which are initially located in reference 
configuration, as shown in the right-hand side of Fig. 1. The parameter θ 

is half of the angle subtended by M and N. They are mapped to the 
spatial line elements m and n in the final configuration by deformation 
gradient F through the motion x = χ(X). During this deformation, the 
material line elements might experience a change of both the element 
length and the angle. Spencer (1984) introduced the pseudo-invariants 
for fiber-reinforced materials as follows, 

I4(M)=C : M ⊗ ​ M, I6(N)=C : N ⊗N, I8(M, ​ N)=C : M ⊗ ​ N
(2) 

The pseudo-invariants I4 and I6 capture information about the square 
of stretch in the fiber directions M and N, respectively. In the original 
work of Criscione and Hunter (2003), they introduced a scalar B that 
represents a change of the angle between equally deformed fibers. They 
found a relation between B , the angle between deformed fibers 
(denoted by ϕ), and the right-hand side of the relations in (2) as 

cos ϕ= C : M ⊗ ​ N
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C : M ⊗ ​ M
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C : N ⊗ ​ N
√ = B

2cos2 θ − B
−2sin2 θ

B
2cos2 θ + B

−2sin2 θ
(3) 

Upon replacing the relations (2) in (3), an angular-base invariant set 
in terms of the strain invariants as I*

8 = I8/
̅̅̅̅̅̅̅̅̅̅̅I4 ​ I6

√
= cos ϕ is considered 

here to take into account the current angle between deformed fibers. 

2.2. Modeling the mechanical interactions of the constituent materials 

The extensional-base invariants I4 and I6 as well as the angular-base 
invariant I*8 are employed by the fibers and mechanical interaction po-
tentials, respectively, to form the MFI constitutive model (after the first 
initials of the contributions’ names, i.e. Matrix-Fiber-Interaction) as 

Ψ(C, {M,N})=ΨM(I1)+ΨF(I4, ​ I6)+Ψ τ

(

I*
8

)

−1

2
q(I4 −1)−1

2
r(I6 −1)

{ І. ​ inextensible ​ fibers I4, ​ I6 = 1

ІІ. ​ extensible ​ fibers ​ q, r = 0

(4)  

with the respective deformation gradient 
F=Q f (5)  

where Q is a proper orthogonal tensor such that QTQ = I and detQ = 1. 
The scalar quantities q and r are fiber tensions as reactions associated 
with the inextensibility constraints I4 = 1 and I6 = 1, respectively. 
Adding the term 12 q(I4 −1) + 1

2 r(I6 −1) in Eq. (4) is relied on the fact that 
the mechanical interaction potential is a result of the rotation of fibers 
and not of the fibers’ elongation. This term provides a structurally based 
framework for characterization of the mechanical interaction properties 
so as to enable them to be found regardless of the functional form of 
fibers potential. This experimental framework will be further elaborated 
in upcoming works. It is emphasized that since the fibers are generally 

Fig. 1. Model geometry of the composite 
strips, left, with two fiber families M =
cos θ E1 + sin θ E2 and N = cos θ E1 −
sin θ E2, which are initially located in the 
reference configuration, right. The θ is half 
of the angle subtended by M and N. Under a 
uniaxial extension in the loading direction 
e1, they are mapped to the spatial line ele-
ments m and n in the final configuration 
with the angle ϕ between. For simplicity, a 
fixed coordinate system {e1, e2, e3} is here 
adopted for specifying the loading direction.   
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assumed to be extensible, this term is not considered for the computa-
tional implementation of the model, i.e. 

For an incompressible and thin composite, it is straightforward to 
find specific forms of the deformation gradients associated with the 
constraints І and ІІ, defined in Eq. (4), as FI = Q f*

ϕ and FII = Q f*
f , 

respectively (it is shown in detail in Appendix A). f*
ϕ represents specif-

ically change of the angle between fibers while f*
f accounts the elonga-

tion of the fibers. Accordingly, the constitutive model in Eq. (4) is 
specialized as 

Ψ I =ΨM(I1, ​ I2)+Ψ τ

(

I*
8

)

− 1

2
q(I4 − 1)− 1

2
r(I6 − 1), FI =Q f *

ϕ (6)  

Ψ II =ΨM(I1, ​ I2)+ΨF(I4, ​ I6), FII =Q f*
f (7) 

The relations (6) and (7) introduce a new framework for material 
characterization of the mechanical interaction properties and fibers, 
respectively, which will be discussed in detail in upcoming works. 

2.3. Energy functions 

In a fiber-reinforced elastomer, as mentioned by Holzapfel and 
Ogden (2009), it is convenient and customary to make no distinction 
between the directions M and −M (N and − N). Since ΨF = ΨF(C,M ⊗
M, N ⊗ ​ N), the fiber potential is an even function while Ψ τ =

Ψ τ(C,M ⊗ ​ N) is an odd function. Therefore, the interaction potential 
Ψ τ can depend on the sign of arbitrary directions. To ensure Ψ τ is in-
dependent of the sign of fiber directions and in order to predict a 
stress-free state in the un-deformed configuration, i.e. ∂Ψ/ ∂C = 0 when 
C = I, as well as the observation of the experimental trends, the 
angular-base set I*8 is employed by an exponential-polynomial function 
as follows to form the interaction potential, i.e. 

Ψ τ =
c1

2c2

[

exp
(

c2

(

I*
8 − cos(2θ)

)2)− 1
]

+ c3

(

I*
8 − cos(2θ)

)2 (8)  

where c1 and c3 are positive material parameters with the dimension of 
stress and c2 is a positive dimensionless parameter. The constant cos(2θ)
is the cosine of the angle between two line elements in fiber directions at 
un-deformed configuration. The polynomial term in the right-hand side 
of the relation (8) enhances greatly the accuracy of the material cali-
bration that is discussed in Section 3. The constitutive behavior of the 
constituent materials has been well established and is not critical here. 
So, the isotropic neo-Hookean model (Treloar, 1943) for matrix and the 
anisotropic model proposed by Holzapfel et al. (2000) are used, i.e. 

Ψ F =
k1

2k2

∑

i=4,6

[

exp
(

k2(Ii − 1)2
)

− 1
]

, ΨM = c10(I1 − 3) − p(J − 1) (9)  

where k1 and c10 are positive material parameters with the dimension of 

stress and k2 is a positive dimensionless material parameter. The scalar p 
serves as an indeterminate Lagrange multiplier which can be identified 
as hydrostatic pressure. 

2.4. Cauchy stress 

In the following, the decoupled forms σI and σII of the overall Cauchy 
stress tensors σ corresponding to the potentials (6), (7), and (4), 
respectively, are presented. A push-forward operation on the second 
Piola-Kirchhoff stress tensor S = 2∂Ψ(C, ​ {M,N})/∂C with F results in 
the Cauchy stress tensor σ defined as  

with b = FFT, m = FM, and n = FN with the components defined as   

The Cauchy stress tensors σI corresponding to the potential (6) can be 
determined as 

σI = − pI+ 2
∂Ψ I

∂I1

b+ ∂Ψ I

∂I*
8

(

m ⊗ n+n ⊗ m− I*
8(m ⊗ m+n ⊗ n)

)

− 1

2
q(m ​ ⊗ ​ m)− 1

2
r(n ​ ⊗ ​ n), FI =Q f*

ϕ

(12) 
The indeterminate terms q = q(m ⊗ m) and r = r(n ⊗ n) are iden-

tified as reaction stresses associated with the fibers inextensibility con-
straints, with the fiber tensions q and r. The term 1/2q + 1/2r simplifies 
the interaction calibration procedure and is not generally considered for 
computational implementation of the model. The same operation on Ψ II 
results in 

σII = − pI+ 2
∂Ψ II

∂I1

b+ 2
∂Ψ II

∂I4

(m ⊗ m)+ 2
∂Ψ II

∂I6

(n ⊗ n), FII =Q f*
f (13)  

3. Constitutive parameter identification 

Depending on the chosen coordinate system and complexity of the 
adopted deformation, the material calibration procedure can become 
straightforward or difficult. In this work, by adopting simple deforma-
tion states the components of the deformation gradient FI and FII, 

Table 1 
Material constants of the MFI model.  

Contribution c10,
MPa  

k1,
MPa  

k2, − c1,
MPa  

c2, − c3,
MPa  

Matrix 0.380      
Fiber  697.0 1.125e- 

11    
Interaction    0.0355 9.6790 1.3770  

σ = 2F
∂Ψ(C, ​ {M,N})

∂C
FT = − pI+ 2

∂ΨM

∂I1

b+ 2
∂ΨF

∂I4

(m ⊗ m)+ 2
∂ΨF

∂I6

(n ⊗ n)+ ∂Ψ τ

∂I*
8

(

m ⊗ n + n ⊗ m
̅̅̅̅̅̅̅

I4I6

√ − I*
8

(

m ⊗ m

I4

+n ⊗ n

I6

))

, F=Q f (10)   

{m}={FM}=

⎡

⎣

m1

m2

m3

⎤

⎦=

⎡

⎣

F11 cos θ + F12 sin θ

F21 cos θ + F22 sin θ

0

⎤

⎦, ​ {n}={FN}=

⎡

⎣

n1

n2

n3

⎤

⎦=

⎡

⎣

F11 cosθ − F12 sinθ

F21 cosθ − F22 sinθ

0

⎤

⎦ (11)   
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introduced in the previous section, can be easily determined. Upon 
obtaining their components, the constitutive equations (6) and (7) are 
rebuilt so as to reconstruct the Cauchy stresses defined in (12) and (13), 
respectively. 

Constituent materials: The material properties of the matrix can be 
found by performing uniaxial deformation (for more accurate results 
equi-biaxial tests can be performed optionally) on a pure matrix. For a 
detailed discussion on the constitutive modeling and experimental 
characterization of isotropic elastomers, the readers are referred to, for 
example, Mansouri and Darijani (2014) and Mansouri et al. (2017). 
Keeping the material parameters of the matrix, unidirectional compos-
ites are subjected to uniaxial tests along the fibers direction with a 
stretch of λ to calibrate the material constants of the fibers potential ΨF, 
i.e. k1 and k2. The Cauchy stress (13) with its corresponding deformation 
gradient FII = Q f*

f is used. For this specific deformation Q = I and the 
deformation gradient is simplified to FII = f*

f = diag[λ,λ−1/2,λ−1/2]. The 
material properties of the matrix and fibers are given in Table 1. 

Mechanical Interactions: Silicone/glass fiber composites with two 
fiber families, aligned in the M = cos α e1 + sin αe2 and N = cos βe1+
sin βe2 directions with α = β = − π/4, are subjected to uniaxial ex-
tensions in the loading direction e1 to evaluate the interaction proper-
ties. The model geometry of the composite strips with a dimension of a×
3l0 is shown in the left-hand side of Fig. 1, where l0 = a/ tan α and a is the 
width of the strips. The stress-stretch experimental results of this sym-
metric deformation are given in Fig. 2. A fixed coordinate system such as 
{e1, e2, e3} is adopted for specifying the loading direction. Bearing in 
mind that the interaction mechanism is activated due to the rotation of 
fibers and not of the fibers’ elongation, the kinematic constraint I with 
respective Cauchy stress σI defined in (12) is recalled wherein FI =
Q f*

ϕ. For this specific deformation Q = I and the deformation gradient 
is given by 

FI = f*
ϕ =

⎡

⎢

⎢

⎢

⎢

⎣

λ 0 0

0
̅̅̅̅̅̅̅̅̅̅̅̅̅

2 − λ2
√

0

0 0
1

λ
̅̅̅̅̅̅̅̅̅̅̅̅̅

2 − λ2
√

⎤

⎥

⎥

⎥

⎥

⎦

(14)  

where λ is the value of the uniaxial stretch in the loading direction E1. In 
order to obtain the unknown scalars of the Cauchy stress (12) with 
respect to its deformation gradient specified in the above equation, the 
stress-free boundary conditions are enforced. Using (σI)33 = 0 the scalar 
p = 2B33∂Ψ/∂I1 can be determined. The scalars q and r in the Cauchy 
stress (12) can be also found from (σI)22 = 0. Since both families of fi-
bers have the same contributions to the deformation, thus 

|q| = | ​ r| =
2 ∂Ψ I

∂I1
(b22 − b33) + ∂Ψ I

∂I*
8

(

2m2n2 − I*
8

(

m2
2 + n2

2

))

m2
2 + n2

2

(15) 

Replacing the values of the scalars p, q, and r in (12), the only non- 
zero component of the Cauchy stress can be determined as 

σI = 2
∂Ψ I

∂I1

(

b11 − b33 −(b22 − b33)
m2

1 + n2
1

m2
2 + n2

2

)

+ 2
∂Ψ I

∂I*
8

(

m1n1 −m2n2

m2
1 + n2

1

m2
2 + n2

2

)

(16)  

where I1 = tr(CI), I*8 = CI : M ⊗ ​ N. The values of mi, ni, and bij i,
jε ​ {1, 2, 3}, are calculated based on the deformation gradient defined in 
(14). Finally, replacing these values, the Cauchy stress (16) is simplified 
to 

σI = 2λ2
(

λ2 − 1
)

(

2μ

λ4(2 − λ2)2
+ c1exp

(

c2

(

λ2 − 1
)2
)

+ 2c3

)

(17) 

This explicit relation for the Cauchy stress in terms of λ, which is 
reconstructed within the introduced framework, is used for calibration 
of the mechanical interaction potential to the experimental results. To 
do this, the Cauchy stress (17), is fitted to the stress-stretch experimental 
results of the symmetric deformations provided in Fig. 2 using a non- 
linear least-squares optimization tool from Matlab. The unknown ma-
terial constants of the mechanical interaction potential obtained from 
the calibration procedure are provided in Table 1. 

4. Verification of the constitutive behavior 

The mechanical interaction potential (Ψ τ) so calibrated within the 

Fig. 2. Comparison of the experimental results of symmetric deformations (α =
− β = π/4) with finite element simulation results obtained using the MFI 

model for the uniaxial extensions in the e1 direction (The material properties 
provided in Table 1 are used for the simulations). Additionally, the MFI model 
is compared with the HGO model for the same deformation. 

Fig. 3. Comparison of the experimental results of non-symmetric deformations 
(α = π/6, β = − π/3) with finite element simulation results obtained using the 
MFI model for the uniaxial extensions in the e1 direction (The material prop-
erties provided in Table 1 are used for the simulations). Additionally, the MFI 
model is compared with the HGO model for the same deformation. 
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introduced framework of material characterization (refer to the previous 
section) and the calibrated constituent potentials (ΨM and ΨF) are now 
summed up to form the MFI constitutive model presented in Eq. (4). The 
MFI model is now verified against two symmetric and non-symmetric 
deformation states. In doing so, the model is first implemented in the 
FEM commercial program ABAQUS using a user-defined interface 
UMAT (the implementation of the model using decoupled forms of the 
Cauchy stress and elasticity tensors in an Eulerian description is dis-
cussed in the upcoming works). The material properties provided in 
Table 1 are used for the finite element simulations. The geometries are 
discretized with 3D reduced integration, eight-node linear solid ele-
ments with hybrid formulation (C3D8RH). To enforce the incompressi-
bility condition, a large value of the bulk modulus κ = 105 Pa is adopted. 
The model geometry and the boundary conditions used for the simula-
tions are initially the same as those used in the experiments. 

The stress-stretch experimental results provided in Fig. 2 are used as 
symmetric deformations (α = β = − π/4) for comparison of the model 
with finite element simulation results. The proposed model is further 
evaluated in Fig. 3 with comparison to non-symmetric deformation 
states. In this case, the composites with two fiber families, aligned in the 
M = cos α e1 + sin αe2 and N = cos βe1 + sin βe2 directions with α = π/

6 and β = − π/3, are subjected to uniaxial extensions in the loading 
direction e1. The results respective to both sates of the deformations 
demonstrate that the predicted responses of the model, so calibrated 
based on the introduced framework of the material characterization, are 
in good qualitative agreement with the experimentally observed me-
chanical behavior of the composites with different material anisotropy. 

Note that, the experimental data in Fig. 2 are used for calibration of 
the mechanical interaction contribution Ψ τ regardless of the fiber po-
tential ΨF through the proposed structurally based framework of the 
material characterization. The same data are used also for verification of 
the model against symmetric deformations. These two are different 
treatments in that the latter is conducted considering both the fibers and 
the mechanical interaction contributions while the former is done 
independently of the potential of the fibers. Although the fibers are too 
stiff, however, they have a considerable contribution to the deformation. 
That is, both the calibration of the model and its verification through the 
finite element simulation are independent even though the same 
experimental data are used for them. 

5. The importance of the mechanical interaction potential 

There is no any notable declaration on the modifying aspects of 
including the mechanical interaction potential in overall behavior 
modeling of the composites until now with exception of a few papers as 
Guo et al. (2006) and Peng et al. (2013), which are limited to the fitting 
procedure. As stated, the MFI model along with its structurally based 
framework of material characterization enables us to obtain distinct 
contributions of the matrix, fibers, and mechanical interactions. This 
allows us to highlight the contributions of respective potentials, espe-
cially the importance of the mechanical interaction potential, in the 
modeling of fiber-reinforced elastomers. Toward this end, in the 
following three representative examples are evaluated: simple uniaxial 
extension of single layer composites with different material anisotropy, 
inflation-extension of a cylindrical tube, and load-coupling behaviors in 
composite laminates with various layups. 

5.1. Uniaxial extension of single-layer composites 

In the first example, the importance of the mechanical interaction 
potential Ψ τ in behavior modeling of composite with different material 
anisotropy is shown by comparisons of the experimental results with 
finite element simulations. When the interaction potential is neglected 
the MFI constitutive model is reduced to the Holzapfel-Gasser-Ogden 
(HGO) model presented by Holzapfel et al. (2000). Fig. 4 compares 

the finite element results of the MFI and HGO models for composites 
with material anisotropy α = −β = π/4 subjected to the uniaxial 
extension tests. As it is evident, since the HGO model ignores the me-
chanical interaction contribution, it underestimates significantly the 
overall mechanical responses of the composites while the MFI consti-
tutive model predicts the test results accurately. This issue is general and 
can be extended to all models in which the very important contribution 
of the mechanical interaction is ignored. In order to show graphically 
the effect of Ψ τ for modeling of the latter symmetric deformation, the 
Cauchy stress distribution σ11 corresponding to a stretch of λ1 = 1.16 is 
illustrated in Fig. 4. The geometry and boundary conditions used for 
simulation is exactly similar to that is used initially by the experiment. 
The results show a significant difference in the spatial stress distribu-
tions made by the incorporation of the interaction potential. 

It should be mentioned that the HGO model is originally proposed for 
modeling the constitutive behavior of biological tissues. However, it is 
widely used by researchers to model fiber-reinforced inorganic mate-
rials, even more so now that it has been implemented in several finite 
element programs. Accordingly, in this work, the most cited constitutive 
model of fiber-reinforced elastomers, namely the HGO model, is used for 
comparative reasons. However, in this work, since the fibers are stiff 
(recall the material properties of the fibers provided in Table 1, where 
k1≫0 and k2 ≈ 0) an alternative quadratic function with respect to the 
invariants I4 and I6, rather than an exponential function as HGO, can 
also describe the mechanical behavior of the fibers, i.e. 

ΨF =
k1

2

∑

i=4,6

(Ii − 1)2 (18) 

In the case of non-symmetric deformation states, Fig. 3 compares the 
finite element results of the MFI and HGO models for composites with 
material anisotropy α = π/6, β = −π/3 subjected to uniaxial extension 

Fig. 4. Spatial distributions of the Cauchy stress σ11 using HGO and MFI models 
for a single layer fiber-reinforced elastomers with two fiber families as M =
cos α e1 + sin α e2 and N = cos β e1 + sin β e2 with material anisotropy α = −β =
π/4 subjected to a uniaxial stretch of λ1 = 1.26 in the e1 direction. The material 
properties provided in Table 1 are used for simulations 
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tests explained earlier. As it is evident, again, the HGO model un-
derestimates substantially the mechanical response of the composite 
while the MFI constitutive model predicts the test results accurately. For 
further illustrations, respective spatial distributions of the stress com-
ponents σ11, ​ σ12, and σ22 are depicted in Fig. 5 using MFI and HGO 
models. The same boundary conditions as in the experiment are used for 
all simulations so that all the nodes of the bottom face of the geometry 
are constrained and let the top face to be extended freely only in the 
loading direction e1 with a stretch of λ1 = 1.20 at the top face. The re-
sults signify considerable effects of the interaction potential in me-
chanical behavior modeling of non-symmetric deformation states. 

5.2. Inflation-extension of a cylindrical tube 

To further illustrate the influence of the mechanical interaction po-
tential in the overall constitutive behavior of fiber-reinforced elasto-
mers, we now consider a complicated deformation as for example 
inflation-extension of a thin-walled cylindrical tube with closed ends. 
The cylindrical tubes are popular structures in finite elasticity and are 
used frequently for evaluation of the mechanical behavior of soft ma-
terials under pressure loads (Horný et al., 2015; Masson et al., 2010; 
Topol et al., 2019; Zidi and Cheref, 2002). The cylindrical tube chosen in 

this work is subjected to internal pressure P and uniform axial force (due 
to the internal pressure) at the closed ends of the tube. The two fiber 
families are initially disposed symmetrically about the circumferential 
axis Θ with unit vectors M = cos α EΘ + sin α EZ and N = cos α EΘ −
sin α EZ, α > 0, that causes the tube to deform uniformly without 
twisting, shown in Fig. 6. This figure illustrates a section of a long cy-
lindrical tube with a material point initially located at a Cylindrical basis 
vector {R, Θ, ​ Z}. During the deformation, this point is mapped into 
{r,ϑ, z} by a motion with the deformation gradient F = diag[λr,λϑ,λz], i. 
e. 
r= λϑR, h = λrH, z = λzZ, ϑ = Θ (19)  

where λz, λϑ and λr are principal stretches in axial, circumferential, and 
radial directions. Here, r and h respectively denote middle radius and 
thickness with regard to deformed configuration, and H is the initial 
thickness of the tube. The invariants of the deformation are given by I1 =
λ2

r + λ2
ϑ + λ2

z , I2 = λ−2
r + λ−2

ϑ + λ−2
z , I4 = I6 = λ2

ϑcos2 α + λ2
z sin2 α and I8 =

λ2
ϑcos2 α − λ2

z sin2 α. For a thin-walled tube, the Cauchy stress in the 
thickness direction can be considered zero, i.e. σrr = 0. Hence, from (10) 
one obtains the value of the Lagrange multiplier as p = 2λ2

r ∂Ψ/∂I1. The 
circumferential and axial components of the Cauchy stress can be found 

Fig. 5. Finite element simulation of uniaxial extension of a composite with two fiber families as M = cos α e1 + sin α e2 and N = cos β e1 + sin β e2, α = π/ 6 and β =
− π/3, subjected to a stretch of λ1 = 1.20 in the loading direction e1. The effects of the interaction potential Ψ τ are illustrated by the comparison of the stress 

distributions obtained from simulation results using the MFI and HGO models, whereas the latter neglects interaction contributions. The material properties provided 
in Table 1 are used for simulations 

Fig. 6. Section of a long thin-walled cylindrical tube with two fiber families at un-deformed, left, and pressurized configurations, right.  
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by applying equilibrium states of a pressurized tube with internal 
pressure P as 

σϑϑ =
Pr

h
, σzz =

Pr

2h
or σϑϑ − 2σzz = 0 (20) 

Substituting kinematics (19) in (20) gives 

σϑϑ =
Рd

​ ε
λ2

ϑλz, σzz =
Рd

2ε
λ2

ϑλz (21)  

with the dimensionless denotations ε = H/R and Рd = P/ c10. The 
circumferential and axial components of the Cauchy stress can be also 
found from the constitutive equation (10), respectively, as 

σϑϑ = − p+ 2c10λ2
ϑ + 4

∂ΨF

∂I4

λ2
ϑcos2 α + 2

I4

∂Ψ τ

∂I*
8

(

1− I*
8

)

λ2
ϑcos2 α (22)  

σzz = − p+ 2c10λ2
z + 4

∂ΨF

∂I4

λ2
z sin2 α − 2

I4

∂Ψ τ

∂I*
8

(

1+ I*
8

)

λ2
z sin2 α (23) 

Note that herein, the deformation is homogeneous and hence the 
shear components of the stress are zero. From the incompressibility 
condition, one obtains λr = λ−1

ϑ λ−1
z . Substituting the values of p and λr in 

(22) and (23) gives σϑϑ and σzz as functions of both circumferential and 
axial stretches. To find numerically a relation between the stretches λϑ 

and λz the equilibrium function defined in Eq. (20)2 is solved by mini-
mizing the objective function of 〈σϑϑ − 2σzz〉

2. It is done for unknown λz 
with prescribed values of λϑ. Next, combining equations (21)–(23), one 
obtains relations that govern inflation load (Рd) to circumferential and 

axial directions (λϑ, λz). Inflation-extension behavior of the thin-walled 
cylindrical tube considering the MFI and HGO constitutive models is 
plotted in Fig. 7 using the material properties provided in Table 1 and 
considering ε = 0.1. In view of these results, one can claim the sub-
stantial weight of the mechanical interaction potential for behavior 
modeling of the pressurized thin-walled cylindrical tubes. 

5.3. Load-coupling behaviors 

The primary purpose of the mechanical characterization of the 
single-layer composites is designing composite laminates aiming at 
pronounced functionalities. Load coupling effects, e.g. extension-twist 
coupling, are among interesting functionalities offering a huge poten-
tial for completely new application concepts such as the field of elas-
tofluidics (Bishop-Moser, 2014; Felt et al., 2017; Felt and Remy, 2018). 
In this section, the importance of mechanical interaction potential is 
evaluated for modeling the load-coupling behaviors in fiber-reinforced 
composite laminates. To do this, a composite laminate with two layers 
and material anisotropy as [+ 45 − 45∕+ 30− 60] is subjected to a 
uniaxial displacement of d = 5 mm in the loading direction e1 applied on 
the front face as shown in Fig. 8. The material anisotropy of each layer is 
disposed about the direction e1. Each layer has the same model geometry 
with the dimension of 100 × 50 × 2 (mm×mm×mm) aligned with the 
axes e1, e2, and e3. All nodes of the front and back face of the geometry 
are fixed with the exception that the nodes of the front face are allowed 
to elongate and rotate along and about e1, respectively. During the 
extension of the composite, load coupling effects in the form of 

Fig. 7. Inflation-extension responses of a thin-walled cylindrical tube (α = π/4) using the MFI and HGO models. The weight of the mechanical interaction potential 
Ψ τ is featured showing its effects when neglected by comparison of constitutive responses of MFI and HGO models for different quantities. The material properties 
provided in Table 1 are used for simulations. 
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extension-twist deformations are observed in Fig. 8. In this figure, the 
load-coupling behaviors are modeled using the MFI and HGO constitu-
tive models and the corresponding spatial distributions of the stresses 
and strains are shown there. The results indicate that not only significant 
differences are observed in the stresses and strains distributions but also 
the mechanical interaction contribution highly affects the amount of 
twisting, which results in different final configurations. For a quantita-
tive evaluation of the interaction potential, the force-displacement and 
moment-displacement responses of the same laminate are provided in 
this figure. 

6. Conclusions 

A unified invariant-base constitutive model for hyperelastic fiber- 
reinforced elastomers with two fiber families considering the contribu-
tions of the matrix, fiber, and particularly the mechanical interactions, 
so-called the MFI model, is proposed. An extensional-base invariant set 
is used by the fibers’ potential and an angular-base invariant is 
employed by an exponential-polynomial function to form the mechan-
ical interaction potential. In an effort to find the mechanical interaction 
properties regardless of the fibers potential, a workless reaction term 
consistent with the kinematics of the mechanical interactions is added to 
the mechanical interaction potential. The above-mentioned adoptions 
introduce a structurally based framework for material characterization 
of such composites. The following features can be stated for the MFI 
model characterized within the introduced framework of material 
characterization:  

• Experimental advantage. The anisotropy can be characterized 
completely with the least number of required tests using simple 
uniaxial extension tests rather than complicated ones such as biaxial 
deformations.  

• Accuracy. The proposed model enables us to capture the mechanical 
behavior of fiber-reinforced elastomers with two fiber families and 

with different material anisotropy (see the previous section). It is 
shown by the comparison of experiments with finite element simu-
lations for symmetric and non-symmetric deformation states.  

• Utility. The mechanical interaction properties are obtained within 
the introduced framework by fitting the Cauchy stress (17) to the 
stress-stretch response of the symmetric deformations featured in 
Section 4. 

In order to show the importance of the mechanical interactions in 
constitutive modeling of fiber-reinforced elastomers, three representa-
tive examples are provided: uniaxial extension of single-layer compos-
ites with different material anisotropy, inflation-extension of a thin- 
walled cylindrical tube, and extension-twist coupling behaviors in 
composite laminates subjected to uniaxial extensions are all modeled 
using the MFI and HGO constitutive models. The results imply that the 
mechanical interaction potential affects substantially the constitutive 
behavior of the fiber-reinforced elastomers. This work contributes to the 
importance of the mechanical interaction for modeling of inorganic 
materials, yet remains to wait for biomaterials, particularly since 
recently Holzapfel and Ogden (2019) proposed a model accounting for 
coupling between the collagen fiber and cross-link directions in arterial 
walls. 
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Appendix A 

The free energy of fiber-reinforced elastomers must be unchanged if a deformed configuration by f occupying a region as Ω undergoes a rotation 
described by the proper orthogonal tensor Q such that QTQ = I and detQ = 1. The deformed region Ω relative to the deformation gradient f is rotated 
to the final configuration B, i.e. 
F=Q f (A.1) 

Since C = FTF = fTf = U2, the deformation gradients F and f share the same Lagrangian strain. 
Criscione and Hunter (2003) proposed three strain attributes in the basis of three scalars { αc, B , γ} for thin incompressible fiber-reinforced 

elastomers with two fiber families (For a detailed discussion, the authors are referred to the referenced paper). The scalar αc is area ratio of the 
fiber plane (E1 − E2) due to distortion keeping the fibers angle without change, B represents the change of the angle between fibers of the same 
stretch, and γ is a shear strain in the fiber plane that differentially changes the length of deformed elements yet does not perturb the angle. They 
introduced the following relations between the strain attributes and invariants of the deformation described earlier as 

̅̅̅̅̅̅̅

I4I6

√

= αc

(

B
2
c2 +B

−2
s2
) (A.2)  

̅̅̅̅

I4

√
̅̅̅̅

I6

√ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + γ2s2c2
√

− γsc
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + γ2s2c2
√

+ γsc
(A.3)  

wherein c = cos θ and s = sin θ. They factored f into modes of deformation corresponding to the three scalar strain attributes as follows: 
f = f αc

fB fγ (A.4) 
Upon setting the kinematics constraint I (recall Eq. (4)), i.e. I4 = I6 = 1, in Eqs. (A.2) and (A.3), and considering the relation (3)2, it is 

straightforward to show, respectively, that 
αc =

(

B
2
c2 + B

−2
s2
)−1

, γ = 0, B = g(ϕ) (A.5)  

where g shows a functional dependency of β to the current angle ϕ. The three relations in (A.5) show that, under constraint I, all the deformation 
scalars { αc, B , γ} are reduced to {B } and therefore, from B = g(ϕ), depend on ϕ. Now upon replacing the scalars of (A.5) in (A.4) it is found that the 
components of f can be given in terms of ϕ, i.e. f = f*

ϕ. Accordingly, under constraint I, the entire deformation field given by (A.1) is then defined 
specifically in terms of the change of the angle between fibers through f*

ϕ super-imposed by a rigid-body motion, Q , i.e. 
FI =Q f*

ϕ (A.6) 
The second kinematic constraint defined in Eq. (4) represents the case where the current angle between fibers, ϕ, is held constant while the 

elongation of the fibers is allowed. Hence, replacing the constraint ϕ = 2θ in (3)2 yields 

cos 2 θ= 1 − tan2 θ

1 + tan2 θ
= B

2cos2 θ − B
−2sin2 θ

B
2cos2 θ + B

−2sin2 θ
(A.7) 

Upon doing some algebra on the right-hand side of the equation, it is found that B = 1. With substitution into (A.2) and considering the equation 
(A.3), the three scalars can be written as 
αc =

̅̅̅̅̅̅̅

I4I6

√

, B = 1, γ = h(I4, I6) (A.8)  

where γ = h(I4, I6) shows functional dependency of γ to the extensional-base invariants I4 and I6. Bearing in mind that γ differentially changes the 
length of deformed elements yet does not perturb the angle and replacing the scalars defined in (A.8) into relation (A.4) it yields f = f*

f , where the 
components of f*

f have a functional dependency on the extensional-base invariants I4 and I6. For this case, the deformation gradient (A.1) is therefore 
defined as 
FII =Q f*

f (A.9)  
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a b s t r a c t 

Hyperelastic fiber-reinforced materials are commonly characterized and modeled in terms of the contributions 
of the constituent materials, while their matrix-fiber mechanical interactions have been received little attention. 
This work is an initial attempt to quantify the matrix-fiber mechanical interactions using a combined experi- 
mental, analytical, and simulation study. For the experiments, the local stretch maps are captured via digital 
image correlation during tensile tests on polydimethylsiloxane-glass fiber (PDMS-GF) and polyurethane-glass 
fiber (PUR-GF) composites with different aspect ratios and various material anisotropy. Moreover, in situ opti- 
cal measurements during mechanical loadings are carried out on transparent PDMS-GF composites to monitor 
the change of angle between deformed fibers, as the origin of the matrix-fiber interactions. The stress-stretch 
responses of all composite materials are then presented, showing different behaviors based on the sample aspect 
ratios for a specific material anisotropy. The analytical study is carried out within a constitutive framework by 
adapting a matrix-fiber-interaction model proposed for the modeling of mechanical interactions. The constitutive 
framework, including an angular-base invariant, a specific deformation gradient, and the stress-stretch behavior 
of the model, is compared against the experimental results. An FE-implementation using user-defined subroutines 
is presented, which allows us to perform a combined experimental and simulation study of the matrix-fiber me- 
chanical interactions. Finally, the underlying mechanism contributing to the mechanical behavior of hyperelastic 
fiber-reinforced materials is discussed via performing a couple of finite element analysis. 

1. Introduction 

A combination of soft elastomers with stiff fibers enables the build-up 
of a composite with more distinct direction-dependent properties [ 1 , 2 ] 
than the classical resin-based composite systems, which makes them 

an interesting option for load coupling applications. Hyperelastic fiber- 
reinforced materials are commonly characterized and modeled in terms 
of the contributions of the constituent materials, while their matrix-fiber 
mechanical interactions have been received little attention. The papers 
by, for example, [3–9] accounted the contributions of the matrix and 
fibers as constituent materials for modeling inorganic fiber-reinforced 
composites. Besides, the works by [10–14] , are examples in which the 
contributions of the constituent materials are considered for mechanical 
behavior modeling of soft biological tissues. We make no attempt to list 
a large number of the works done in this subject. 

The matrix-fiber interaction is introduced by [15] and [16] for mod- 
eling the mechanical behavior of human annulus fibrosus. Since then, it 
has been considered for modeling of a cord-rubber composite [17] , bi- 
ological tissues [18] , soft inorganic composites [ 19 , 20 ], and dry fabrics 
[21] . However, the experimental characterization, the analytical analy- 
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sis in a constitutive framework, and the finite element simulation of the 
matrix-fiber mechanical interactions have not yet been quantified satis- 
factorily in the literature, with exception of a few papers as [ 17 , 18 , 22 ], 
which are limited to the fitting procedure. Quantifying the mechanical 
interactions becomes more crucial especially if there exists a consider- 
able difference between the stiffness of the constituent materials. 

In this paper, the matrix-fiber mechanical interaction is experimen- 
tally studied for PDMS-GF and PUR-GF composites using digital image 
correlation to quantify the local stretch maps and in situ optical imaging 
at the length scale of the fibers to measure the angle change between 
deformed fibers, as a source of mechanical interactions. Moreover, the 
tensile stress-stretch responses of the composites with different aspect 
ratios and various material anisotropy are reported. The experimental 
results are analyzed analytically in a constitutive framework using a 
matrix-fiber-interaction model of fiber-reinforced materials. After finite 
element implementation of the model, for the reader interested in using 
it, the particular contributions of the material phases in the mechanical 
behavior of composites are quantified through performing a couple of 
finite element simulations. 
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Fig. 1. Change of fiber angle during deformation: (a) micro- 
graphs of an undeformed region with two fiber families shown 
by the directions M and N ; (b) schematic illustrations of the 
fiber directions after deformation, shown by m and n , where 
E 1 in the orthogonal coordinate system { E 1 , E 2 } is the bisec- 
tor of fibers at undeformed state. A fixed coordinate system 

such as { e 1 , e 2 } is applied for specifying the loading in the e 1 
direction. 

Table 1 
Test samples represented by the fiber orientations 
[ + 𝛼 − 𝛽] n , numbered by n, and the aspect ratio of 
𝜉 = l / a , where a and l denote width and length of the 
samples, respectively. 

Sample [ + 𝛼 − 𝛽] n a × l , mm × mm 𝜉 = l /a, - 

[ + 0 − 90] 30 × 90 3 

[ + 45 − 45] 1 40 × 80 2 

[ + 45 − 45] 2 30 × 90 3/tan 𝛼

[ + 45 − 45] 3 35 × 105 3/tan 𝛼

[ + 45 − 45] 4 40 × 120 3/tan 𝛼

[ + 30 − 60] 1 30 × 90 3 

[ + 30 − 60] 2 35 × 105 3 

[ + 30 − 60] 3 40 × 120 3 

[ + 30 − 60] 4 30 × 156 3/tan 𝛼

[ + 30 − 60] 5 40 × 208 3/tan 𝛼

2. Materials and methods 

Fiber-reinforced composites with polydimethylsiloxane (PDMS) and 
polyurethane (PUR) as two matrix and endless, twill woven E-glass 
fibers (GF) as reinforcement are manufactured using the vacuum as- 
sisted resin infusion (VARI) method with a vacuum pressure of 20 mbar. 
The commercial E-glass fibers purchased from CS Interglas AG are con- 
sidered with the classification EC9-69 × 5t0, an area weight of 220 g/m 2 

and a mean fiber diameter of approximately 10 μm. The PDMS used here 
is an addition-curing two-component system with a hardness of 35 Shore 
A, a density of 1.02 g/cm 3 and a viscosity in uncured state of 3500 mPas 
and pot life of about 90 min at room temperature while the polyurethane 
reveals a hardness of 50 Shore A with a density of 1.04 g/cm 3 and a vis- 
cosity of 250 mPas with a corresponding pot lifetime of about 25 min 
at room temperature. The elastomeric matrix materials are mixed and 
cured with the mixing ratio recommended by the suppliers and a curing 
time of 60 min at 70°C in an oven. 

In this work, the manufactured composites contain two fiber families 
in the form of woven fabrics (see Fig. 1 (a)) that are initially aligned in 
the M = cos 𝛼 e 1 + sin 𝛼e 2 and N = cos 𝛽e 1 + sin 𝛽e 2 directions, 𝛼 > 0 
and 𝛽 < 0, where a fixed coordinate system such as { e 1 , e 2 , e 3 } is applied 
for specifying the loading in the e 1 direction. Samples with a preferred 
fiber orientation represented by [ + 𝛼 − 𝛽], such as [ + 0 − 90], [ + 45 − 45], 
and [ + 30 − 60] are prepared to have a thickness of approximately 0.4 
mm. For the preparation of the two latter composites, various sample 
geometries defined by an aspect ratio of 𝜉 = l /a are considered, where a 
is the width and l denotes the length of samples between the clamps, re- 
spectively. All the PDMS-GF and PUR-GF composites are numbered by n, 
i.e. [ + 𝛼 − 𝛽] n , presented in Table 1 . Since characterizing the composites 
with the fiber orientation [ + 0 − 90] is not critical, only one setting with 
the specifications shown in Table 1 is considered for that. Tensile tests 
are performed on all samples and the average stress-stretch response 
of three samples cut through from the same sheet is reported for each 

setting (60 composite samples with 20 settings). Tests are carried out 
by the universal testing machine Z250 (Zwick Roell GmbH & Co. KG) 
at a quasi-static rate of 10 mm/min. To map the local stretches for all 
samples, 3D full-field, high-resolution images are captured via a digi- 
tal image correlation system (Aramis 4M, GOM GmbH, Braunschweig, 
Germany). 

In situ microscale tests are performed to monitor the current angle be- 
tween deformed fibers during loading experiments. The PDMS-GF sam- 
ples with fiber oreintation [ + 45 − 45] are placed in a custom-designed 
in situ tensile test device, while they are under an optical microscope 
(Alicona InfiniteFocusG5 Plus, Austria) with objective magnification of 
100x. Moreover, the distortion of the fibers at their intersections are cap- 
tured during stretching the composites, which is indicative of the fiber- 
fiber interactions. Both the change of fiber angle and the fiber-fiber in- 
teractions contribute to the mechanical interaction potential. The term 

‘matrix-fiber mechanical interaction’ is concisely referred to herein as 
both matrix-fiber and fiber-fiber mechanical interactions. 

3. Constitutive framework 

A matrix-fiber-interaction constitutive model is adopted here, by 
which the individual contributions of the matrix, the fibers, and the 
mechanical interactions can be obtained distinctly, see [19] . The model 
introduces a constitutive framework, based on which the contribution 
of the mechanical interaction potential can be determined indepen- 
dently of the fibers’ potential. The constitutive framework, including an 
angular-base invariant, a specialized deformation gradient, and stress- 
stretch constitutive relations, is explained in this section. 

3.1. A matrix-fiber-interaction model 

A unified, invariant-based model for hyperelastic fiber-reinforced 
elastomers with two fiber families proposed in [19] is described here. 
The model is decomposed into three contributions: matrix, fiber, and 
(mechanical) interactions and is named the MFI model [19] . The gen- 
eral form of the MFI strain-energy density function is defined as 

Ψ( 𝐂 , { 𝐌 , 𝐍 } ) = ΨM 

(
𝐼 1 
)
+ ΨF 

(
𝐼 4 , 𝐼 6 

)
+ Ψτ

(
𝐼 ∗ 
8 

)
− 

1 

2 
𝑞 
(
𝐼 4 − 1 

)
− 

1 

2 
𝑟 
(
𝐼 6 − 1 

)

{ 
I . inextensible f ibers 𝐼 4 , 𝐼 6 = 1 

II . extensible f ibers 𝑞, 𝑟 = 0 
(1) 

where the subscripts M, F, and 𝜏 denote matrix, fiber, and mechanical 
interaction contributions, respectively. In the equation above, I 1 = tr C , 
where C = F T F is the right Cauchy-Green strain tensor, and F is the 
deformation gradient. The extensional-based invariants with definitions 
I 4 ( M ) = C : M ⊗M and I 6 ( N ) = C : N ⊗N are employed by the fiber po- 
tential ΨF , where M = cos 𝜃E 1 + sin 𝜃E 2 and N = cos 𝜃E 1 − sin 𝜃E 2 are 
defined as preferred fiber directions in the undeformed configuration. 
According to [23] , the two invariants I 4 and I 6 have a clear kinematical 
interpretation since they define the square of the stretch in the direc- 
tions M and N , respectively. It is assumed that two fiber families do not 
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contribute to the deformation when they are compressed. Hence, the 
potentials reconstructed by them are assumed to be zero when I 4 < 1 
and I 6 < 1. This assumption is due to the fact that the soft nature of 
the matrix makes it rather impossible for the thin composite to bear in- 
plane compressible loads. The angle 𝜃 is half of the angle subtended by 
M and N in the undeformed configuration. A relation for the cosine of 
the current angle between deformed fibers is presented in [24] as the 
left-hand side of the following equation [19] 

cos 𝜑 = 
𝐂 ∶ 𝐌 ⊗ 𝐍 √

𝐂 ∶ 𝐌 ⊗𝐌 
√
𝐂 ∶ 𝐍 ⊗ 𝐍 

= 
𝐼 8 √
𝐼 4 𝐼 6 

= 𝐼 ∗ 
8 (2) 

Replacing the invariants I 4 , I 6 (defined above), and I 8 ( M , N ) = C : 
M ⊗N in the left-hand equation, an angular-base invariant such as the 
right-hand equation is considered in [19] . Because the interaction mech- 
anism of the constituent materials is a result of the fiber rotation, the 
angular-base invariant 𝐼 ∗ 

8 
= 𝐼 8 ∕ 

√
𝐼 4 𝐼 6 = cos 𝜑 is employed by the me- 

chanical interaction potential Ψ𝜏 . The scalar quantities q and r are fiber 
tensions as reactions associated with the inextensibility constraints pre- 
sented in Eq. (1) such as I 4 = 1 and I 6 = 1, respectively. The functional 
forms of the potentials in Eq. (1) are defined as [19] 

ΨM = 𝑐 10 
(
𝐼 1 − 3 

)
− 𝑝 ( 𝐽 − 1 ) , ΨF = 

𝑘 1 

2 

∑
𝑖 =4 , 6 

(
𝐼 𝑖 − 1 

)2 
(3) 

and 

Ψτ = 
𝑐 1 

2 𝑐 2 

[
exp 

(
𝑐 2 
(
𝐼 ∗ 
8 − cos ( 2 𝜃) 

)2 )
− 1 

]
+ 𝑐 3 

(
𝐼 ∗ 
8 − cos ( 2 𝜃) 

)2 
. (4) 

The constants c 10 , k 1 , c 1 , and c 3 are positive material parameters 
with the dimension of stress, while c 2 is a positive, dimensionless param- 
eter. The contribution of the mechanical interactions including matrix- 
fiber and fiber-fiber interactions are determined by the parameters ( c 1 , 
c 2 , c 3 ). The latter is originated from the distortion of fibers at their inter- 
sections while the former is a result of the angle change between fibers. 
They are experimentally shown in next sections (see Section 5.4 ). The 
scalar p serves as an indeterminate Lagrange multiplier that can be iden- 
tified as hydrostatic pressure. The constant cos (2 𝜃) is the cosine of the 
current angle between fibers in the undeformed configuration. For a rep- 
resentative region corresponding to the undeformed composite shown 
in Fig. 1 (a), the relations between ( 𝛼, 𝛽, 𝜃, 𝜑 ) are illustrated in Fig. 1 (b) 
(modified from [19] ). 

Remark 3.1. In addition to the quadratic function, the first term in po- 
tential (4) in the form of an exponential function is necessary for a better 
conformability of the constitutive model with experimental data of com- 
posites with various flexibilities. In the next sections (see Section 6 ) it 
is shown that generally, the quadratic or the exponential terms alone 
does not fit properly the experimental results of the flexible PDMS-GF 
composite while the latter is individually able to fit the stress-stretch 
responses of the PUR-GF composite with less flexibility. 

3.2. Material characterization framework 

When determining the material parameters of the mechanical in- 
teraction potential, the constraint (I) in Eq. (1) is considered, while, 
the constraint ( II ) is applied for obtaining the material constants of the 
fibers. For a composite with orthogonal fibers (i.e. 2 𝜃 = 𝜋/2) stretched 
in the E 1 direction, the constraint (I) gives the deformation gradient as 

𝐅 𝐼 = 

⎡ ⎢ ⎢ ⎢ ⎣ 

𝜆 0 0 

0 
√
2 − 𝜆2 0 

0 0 
1 

𝜆
√
2− 𝜆2 

⎤ ⎥ ⎥ ⎥ ⎦ 
(5) 

while the deformation gradient corresponding to the constraint ( II ) is 
simplified to F II = diag[ 𝜆, 𝜆− 1/2 , 𝜆− 1/2 ], where 𝜆 denotes the value of 
the stretch in the direction E 1 . 

Remark 3.2. It is noted that the angle 2 𝜃 can be varied depending 
on the woven fabric used as reinforcement. Therefore, the constitutive 

framework is also usable for composite that its fibers are not necessarily 
orthogonal at the undeformed state. For instance, for a composite with 
2 𝜃 = 𝜋/3 ( 𝜃 is half of the angle subtended by M and N ) stretched in the 
E 1 direction, Eq. (5) reads 

𝐅 𝐼 = 

⎡ ⎢ ⎢ ⎢ ⎣ 

𝜆 0 0 

0 
√
4 − 3 𝜆2 0 

0 0 
1 

𝜆
√
4−3 𝜆2 

⎤ ⎥ ⎥ ⎥ ⎦ 
(6) 

Considering the strain-energy in Eq. (1) with the predefined poten- 
tials in (3) and (4), the Cauchy stresses corresponding to the deformation 
gradients F I (recall Eq. (5) ) and F II can be obtained, respectively, as 

𝜎𝐼 = 2 𝜆2 
(
𝜆2 − 1 

){ 

2 𝜇

𝜆4 
(
2 − 𝜆2 

)2 + 𝑐 1 exp 
[
𝑐 2 
(
𝜆2 − 1 

)2 ]
+ 2 𝑐 3 

} 

(7) 

and 

𝜎𝐼𝐼 = 2 𝜇
(
𝜆2 − 𝜆−1 

)
+ 2 𝑘 1 𝜆

2 (𝜆2 − 1 
)

(8) 

The material properties of the mechanical interaction ( c 1 , c 2 , c 3 ) as 
well as the fiber constant ( k 1 ) can be determined independently through 
the Eqs. (7) and (8) , respectively, without needing inverse finite element 
simulations or analytical solutions. Before that, the constant of the ma- 
trix ( 𝜇) appeared in the two above equations should be obtained (for a 
detailed discussion on the constitutive modeling and experimental char- 
acterization of isotropic elastomers, the reader is referred to, for exam- 
ple, [25] and [26] and references therein). The angular-base invariant, 
the deformation gradient, and the constitutive relations presented in 
this section, i.e. ( 𝐼 ∗ 

8 
, F I , 𝜎I , 𝜎II ), form a constitutive framework, based 

on which the matrix-fiber mechanical interaction can be analytically 
quantified. 

4. Finite element modeling 

The material is treated as nearly incompressible; therefore, for the fi- 
nite element simulations, the MFI model is decomposed into volumetric 
and isochoric parts. Accordingly, the Cauchy stress and elasticity tensors 
should be decoupled into volumetric and isochoric parts in an Eulerian 
description, which are given in Appendix A for the reader interested in 
using the model. The model is implemented through a user-defined in- 
terface UMAT in the commercial nonlinear FE software Abaqus. For the 
algorithmic implementation, it is assumed that two fiber families do not 
contribute to the deformation when they are compressed. Hence, the po- 
tentials reconstructed by them are assumed to be zero when 𝐼 4 < 1 and 
𝐼 6 < 1 . The volumetric contribution U vol ( J ) is characterized by the bulk 
modulus 𝜅 > 0, which is independent of the deformation. This parameter 
is treated as a penalty parameter by using a large value of the bulk mod- 
ulus as 𝜅 = 10 5 MPa. For an approximation technique such as the finite 
element method, the tangent stiffness matrix 𝔻 , i.e. DDSDDE variable in 
Abaqus, becomes increasingly ill-conditioned for increasing 𝜅. For that 
case, the reduced integration method and hybrid finite element methods 
are used to weaken the penalty function. Hence, the geometries are dis- 
cretized with 3D reduced integration, eight-node linear solid elements 
with hybrid formulation (C3D8RH). Two representative examples are 
presented in Appendix A in order to illustrate the performance of the 
constitutive model through the finite element implementation by com- 
parison to the analytical solutions. The uniaxial extension and simple 
shear tests on a unit cube with dimension 1 × 1 × 1 mm 3 are carried 
out. For verification of the model performance, the computational (FEM) 
and analytical solutions associated with both examples are compared 

5. Experimental 

5.1. Enhanced interface properties 

A combination of a soft matrix with stiff fibers results in remarkable 
fiber-fiber and matrix-fiber mechanical interactions due to the chem- 
ically formed adhesion bonds at the interfaces so that weak adhesion 

3 
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Fig. 2. Enhanced interface properties using fiber bundle pull-out tests: (a) load-displacement curve with schematic test performance of the fiber bundle pull-out test; 
(b) optical analyses of the matrix before the test; (c) fiber bundle including an SEM picture after the testing. 

Fig. 3. 3D full-field, local stretch maps of 
samples with the fiber orientation [ + 45 − 45] 
shown for the PDMS-GF composites for the 
stretches 𝝀1 = (1.09, 1.14, 1.17, 1.2). 

bonds result in early matrix-fiber debonding [27] . Effective mechanical 
interaction is not achieved unless an enhanced bonding between the 
constituent materials of the composite is formed in advance. Hence, 
fiber bundle pull-out tests are conducted to investigate the interface 
properties between a bundle and the surrounding matrix (fiber debond 
techniques can be found in [ 28 , 29 ]). The first results revealed that the 
surface treatment on the bundle has a significant effect on the pull-out 
performance and further on the matrix-fiber bonding, shown in Fig. 2 . 

It can be seen that each surface modification reveals a clearly different 
load-displacement behavior depending on the tailored matrix-fiber ad- 
hesion. In this work, the optimal fiber surface treatment (functionaliza- 
tion 1, organosiliane-based treatment with vinyltriethoxysilane-groups) 
for the preparation of the composite samples is considered, which is es- 
sential for the pronounced strength of the matrix-fiber adhesion. The 
samples, so prepared, are expected to show their optimal performance 
in regard to the contribution of the mechanical interaction. 

4 
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Fig. 4. 3D full-field, local stretch maps of 
samples with the fiber orientation [ + 30 − 60] 
shown for the PDMS-GF composites for the 
stretches 𝝀1 = (1.09, 1.14, 1.17, 1.2). 

5.2. 3D full-field stretch analysis and sample geometry 

3D full-field, high-resolution images are captured via the DIC 
method. It is carried out for the samples presented in Table 1 during ten- 
sile tests on PDMS-GF and PUR-GF composites. The local stretch maps 
corresponding to the samples [ + 45 − 45] 1,2,3,4 and [ + 30 − 60] 1,2,3,4,5 are 
depicted respectively in Figs. 3 and 4 for the PDMS-GF composites, 
shown for the stretches 𝜆1 = (1.09, 1.14, 1.17, 1.2). Movies of stretch 
maps during tensile loadings are provided in supplementary materials 
[30] . Additional information is available upon request. Identical stretch 
maps are also observed for PUR-GF composites (not shown) and are pre- 
sented in the supplementary materials. 

In the literature, for the purpose of the material characterization 
using thin tensile samples, stress-free boundary conditions in both the 
transverse direction to the loading and through thickness are assumed, 
aiming at finding a relation between principal stretches. Similarly, in 
this work, the constitutive Eqs. (7) and (8) were determined by im- 
posing stress-free boundary conditions such as 𝜎22 = 0 and 𝜎33 = 0. 
The material characterization procedure necessitates finding a region by 
which a homogeneous stretch map can be identified and the condition 
𝜎22 = 0 is satisfied as well. Doing so enables us to determine the princi- 
pal stretches 𝜆1 and 𝜆2 in a large enough evaluation region so that, at a 

specific deformation, their values do not change a lot across the region. 
The local stretch maps shown in Figs. 3 and 4 indicate that this condi- 
tion is fulfilled by samples having an aspect ratio of 𝜉 = 3/tan 𝛼. This 
aspect ratio introduces a sample geometry as shown in Fig. 5 , which is 
featured by an ‘interest area’. This sample geometry provides a homoge- 
neous stretch map across the interest area. The interest area is defined 
in a way that none of the fibers inside this region are clamped in the 
fixture, and therefore no clamping effects have to be considered. The 
stretches in the loading direction e 1 are calculated based on changes in 
the length of the interest area. Accordingly, 𝜆1 = L /(a/tan 𝛼), where L 
is the length of the interest area in the deformed configuration, while 
a/tan 𝛼 denotes its undeformed length, shown in the figure. For samples 
with an aspect ratio other than 𝜉 = 3/tan 𝛼, a representative region for 
the interest area can not be identified, therefore the stretches are cal- 
culated based on changes in the length of the samples in the loading 
direction e 1 . 

5.3. Stress-stretch responses of tensile tests 

The average stress-stretch results of the PDMS-GF and PUR-GF com- 
posites corresponding to the samples tabulated in Table 1 are presented 
in Fig. 6 (a) and (b) and Fig. 6 (c) and (d), respectively. It is seen that for 
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Fig. 5. The sample geometry featured by an interest area and as- 
pect ratio of 𝜉 = 3/tan 𝛼 corresponding to a fiber-reinforced material 
with two fiber families initially aligned in M = cos 𝛼e 1 + sin 𝛼e 2 and 
N = cos 𝛽e 1 + sin 𝛽e 2 directions. 

Fig. 6. Experimental stress-stretch responses 
of samples: (a) and (b) PDMS-GF composites; 
(c) and (d) PUR-GF composites (the results of 
the two samples [ + 45 − 45] 4 and [ + 30 − 60] 4 
given respectively in the panel a and b are 
adapted from [19] ). 

a specific material anisotropy, regardless of the dimension of the sam- 
ples but the same aspect ratio, they show relatively similar mechanical 
responses. 

5.4. Microscale in situ optical characterization 

To monitor the local change of the fiber angle during stretching the 
composites, microscale in situ optical characterizations are conducted 
using the sample [ + 45 − 45] 4 . Unlike the opaque PUR-GF composites, 
the transparency of the PDMS-GF samples allows us to monitor opti- 
cally the change of fiber angle during loading experiments. The change 
of fiber angle is the origin of the mechanical interactions. It is quanti- 
fied for the finite orange region indicated in Fig. 7 (a) as the cosine of 
the current angle between deformed fibers denoted by cos 𝜑 . The results 
are shown in Fig. 7 (b) and optically illustrated in Fig. 7 (c) for specific 
stretches. It is noted that since a homogeneous stretch map for the blue 
region indicated in Fig. 7 (a) is already observed (see the stretch maps 
in Fig. 3 for the sample [ + 45 − 45] 4 ), therefore, a finite area chosen 
therein, such as the orange region, is almost representative of a bigger 
area. Further illustrations concerning the mechanical interactions can 

be referred to the distortion of fibers at their intersections. It is shown 
optically in Fig. 8 , which is representative of significant fiber-fiber in- 
teraction. 

5.5. Wrinkling of stretched samples 

The thin, flexible samples are prone to the formation of unwanted 
wrinkles when stretched. The presence of wrinkles affects directly the 
resultant driving force along the loading direction [ 31 , 32 ]. While it is 
a common phenomenon in stretched thin samples, however, it should 
be treated with caution. It is evaluated by visualizing the out-of-plane 
deformation maps taken via DIC. The wrinkling patterns at the mid- 
cross-section of a stretched composite are displayed exemplarily for the 
sample [ + 45 − 45] 1 in Fig. 9 (a). In general, the wrinkling is determined 
using the wrinkle wavelength as well as the amplitude of the wrinkles, 
see Fig. 9 (b), which both are related together [ 31 , 32 ]. The shape of 
the wrinkles for the composites [ + 45 − 45] 1 , [ + 45 − 45] 4 , [ + 30 − 60] 3 , 
and [ + 30 − 60] 4 are plotted in Fig. 9 (c), (d), (e), (f), respectively, for 
specific stretches. Note that the same wrinkling patterns are observed 
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Fig. 7. Microscale in situ optical characterization of the current angle 
between deformed fibers during loading experiments: (a) an orange re- 
gion representative of the blue area is chosen; (b) experimental results 
with respect to the current angle between deformed fibers determined 
for the orange region indicated in panel a; and (c) respective optical 
illustrations. 

Fig. 8. Fiber distortion at the region of the 
intersection of the fibers results in extensive 
fiber-fiber mechanical interaction. 

for the composites [ + 45 − 45] 2,3,4 and [ + 30 − 60] 4,5 , therefore, only one 
was shown for each. 

6. Results 

6.1. Correlation of analytical and experimental studies 

The analytical study on the mechanical interactions presented in a 
constitutive framework in Section 3 is further evaluated against the ex- 
perimental results in three stages as follows. Since the analytical solu- 
tions are obtained based on the samples with the material anisotropy 
as [ + 45 − 45], therefore, herein the experimental data of PDMS-GF and 
PUR-GF materials reported for the sample [ + 45 − 45] 4 are used for the 
three stages (except for the evaluation of the angle change between 
fibers where the data of PDMS-GF is only used, in that, the opacity of 
PUR-GF does not allow to monitor the change of fiber angle). 

(i) The principal stretches defined in the deformation gradient F I 
( Eq. (5) ) are compared with the stretch maps obtained via digital 
image correlaltion in the loading direction, denoted by 𝜆1 , and trans- 
verse to the loading, represented by 𝜆2 . The results are shown in 
Fig. 10 (a) and (b) for the PDMS-GF and PUR-GF materials, respec- 
tively. The stretch maps are reported based on the average stretches 
determined across the interest area (see Fig. 3 ). 

(ii) The angular-base deformation invariant denoted by 𝐼 ∗ 
8 
(recall 

Eq. (2) ) is plotted in Fig. 11 against the loading stretches 𝜆1 ≡ 𝜆. Con- 
sidering the constraint (I) and therefore 𝜃 = 𝜋/4 (see Section 3.2 ), 
they give the deformation gradient as F I , defined in Eq. (5) . For 
this specific deformation state, C I = F I 

T F I , M = cos ( 𝜋/4)( E 1 + E 2 ), 
N = cos ( 𝜋/4)( E 1 − E 2 ) and I 8 = C I : M ⊗N . Replacing now the former 

Table 2 
Material constants of the PDMS-GF composite (adapted from [19] ). 

Contribution 𝜇, MPa k 1 , MPa c 1 , MPa c 2 , − c 3 , MPa 

Matrix 0.380 

Fiber 697.0 

Interaction 0.0355 9.6790 1.3770 

relations into the latter equation yields I 8 = 𝜆2 − 1. In Section 3.1 , 
the angular-base invariant is defined as 𝐼 ∗ 

8 
= 𝐼 8 ∕ 

√
𝐼 4 𝐼 6 that consid- 

ering the constraint (I) , i.e. I 4 = I 6 = 1, it gives 𝐼 ∗ 
8 
= 𝐼 8 . Therefore, 

the angular-base invariant is simply defined as 𝐼 ∗ 
8 
= 𝜆2 − 1 ( 𝜆1 ≡ 𝜆) . 

Included in the figure are the test results corresponding to the cosine 
of the current angle between deformed fibers, i.e. cos 𝜑 , captured via 
the micrographs in Section 5.4 . 

(iii) Representative conformability of the constitutive equation 𝜎I 
( Eq. (7) ) with experimental results is visualized in Fig. 12 (a) and 
(b) for the PDMS-GF and PUR-GF composites, respectively, indicat- 
ing good qualitative agreements. It is carried out simply by fitting 
Eq. (7) to the respective stress-stretch responses of the composites, 
without needing the fibers’ properties. Before that, the material prop- 
erties of the PDMS and PUR matrix (i.e. 𝜇) are obtained using uniax- 
ial tensile tests. Keeping now the matrix parameter, the material con- 
stant of the fibers, i.e. k 1 , are determined simply by fitting Eq. (8) to 
the results of tensile tests on composites in their fiber directions. 
Since the two fiber families have the same contributions to the de- 
formation, therefore, they share an identical material constant. Upon 
fitting, the material parameters are given in Tables 2 and 3 for the 
PDMS-GF and PUR-GF composites, respectively. The data fitting is 
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Fig. 9. a) The illustrations of the wrinkling as out-of-plane displacement in the e 3 direction for the stretched samples recorded by the DIC. 

Fig. 10. Representative stretch maps recorded via DIC com- 
pared with the theory. 

Table 3 
Material constants of the PUR-GF composite. 

Contribution 𝜇, MPa k 1 , MPa c 1 , MPa c 2 , − c 3 , MPa 

Matrix 0.480 

Fiber 697.0 

Interaction 0.02180 12.990 3.7550 

performed using a non-linear least-squares optimization tool from 

Matlab to minimize the discrepancy between the model results and 
the experimental data via the function 

𝜒 = 
∑𝑘 

𝑖 =1 

‖‖‖𝜎
model 
𝑖 − 𝜎

experiment 
𝑖 

‖‖‖
2 
. (9) 

where n is the number of experimental points and 𝜎i are components of 
the respective stress vectors. It is noted that for a large number of ma- 
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Fig. 11. The current angle between deformed fibers determined by the theory 
( 𝐼 ∗ 

8 ) and in situ optical imaging represented by cos 𝜑 . 

Fig. 12. Plots showing the conformability of the constitutive framework with 
stress-stretch responses of the composites as well as the effet of the quadratic 
and the exponential terms of the constitutive model: (a) PDMS-GF samples; (b) 
PUR-GF composites. 

terial parameters the least-squares optimization can lead to problems of 
non-uniqueness associated with the sensitivity of the material param- 
eters to the initial starting point provided by the user [33] . Whereas 
the mechanical interaction potential with only three constants is fitted 
independently of the matrix and the fiber parameters, nevertheless, dif- 
ferent sets of initially-guessed interaction parameters are tested as these 
may lead to different fitting results. In all tests, considering physically- 
reasonable cases, the interaction parameters are nearly identical. 

Further illustrations in Fig. 12 show the effect of the exponential and 
the quadratic terms of Eq. (4) in the conformability of the constitutive 
model with the respective experimental data when neglected. It is gen- 
erally seen that the quadratic or the exponential terms alone does not 
fit properly the experimental results of the flexible PDMS-GF composite 
showing high nonlinearity, while, the latter is individually able to fit 
the stress-stretch responses of PUR-GF composites satisfactorily. There- 
fore, based on the nonlinearity degree of the stress-stretch responses of 
a certain composite, particular terms can be considered. 
Remark 6.1. Note that the theoretical results given in Fig. 12 are 

based on the contributions of the matrix and mechanical interaction po- 
tentials assuming inextensible fibers, i.e. ΨM + Ψτ − 

1 
2 
𝑞( 𝐼 4 − 1) − 

1 
2 
𝑟 ( 𝐼 6 − 

1) . While, for the purpose of the finite element simulations the contribu- 
tions of the fibers are involved, i.e. the constitutive equation is computed 
based on ΨM + ΨF + Ψ𝜏 . Therefore, the results computed by the fitting 
and from the finite element simulation should be distinguished. 

6.2. The importance of sample aspect ratio 

Whereas there are standards for characterizing the constituent ma- 
terials of a composite, the characterization of their mechanical interac- 
tions is not yet evaluated satisfactorily in the literature. In this section, 
the importance of the sample aspect ratio is illustrated by a combined 

Fig. 13. The importance of the sample aspect ratio is illustrated comparing 
the experimental and simulation stress-stretch results: (a) the sample [ + 45 − 
45] 1 with an aspect ratio of 𝝃 = 2; (b) the sample [ + 30 − 60] 3 with 𝝃 = 3. 
The transverse slippages at clamps are indicated by red arrows (the material 
parameters from Table 2 are used for the simulations). 
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Fig. 14. Contribution of the material phases shown for (a) 
sample [ + 45 − 45] 4 and (b) sample [ + 30 − 60] 4 , subjected to a 
stretch of 𝝀1 = 1.25. It is indicated by the spatial distribution 
and the quantitative measurement of the potentials associated 
with the matrix, fibers, mechanical interactions, and total en- 
ergy stored in the composites. 

experimental and simulation study on composites given in Table 1 with 
aspect ratios other than that is suggested by Fig. 5 as 𝜉 = 3/tan 𝛼. To end 
this, the stress-stretch responses of the PDMS-GF composites consider- 
ing the samples [ + 45 − 45] 1 with 𝜉 = 2 and [ + 30 − 60] 3 with 𝜉 = 3 are 
compared with the simulation results in Fig. 13 (a) and (b), respectively. 
It is noted that the samples [ + 30 − 60] 1,2,3 show similar mechanical re- 
sponses as depicted already in Fig. 6 (d), therefore, one of them is only 
chosen, say [ + 30 − 60] 3 . For the finite element simulations, the mate- 
rial properties of the PDMS-GF given in Table 2 are used. Although a 
new clamping system was designed to avoid slippage of the specimens 
in the loading direction e 1 , which applies the clamping forces on five 
different areas of samples, it is seen that however, the presence of the 
transverse slippage at clamps, shown by red arrows in Fig. 13 , causes 
substantial deviations between the results. The reason can be related 
to the inappropriate choice of the sample aspect ratio causing a high- 
stress field throughout the sample, which is continued to the clamping 
area. The matrix in the clamping area, because of its soft nature, cannot 
withstand high-stress values and therefore transverse slippages of the 
samples occur in the clamps. The results necessitate considering an ap- 
propriate aspect ratio when preparing the tensile samples, especially if 
there is a significant difference between the stiffness of the constituent 
materials. 

Remark 6.2. It is noted that, in addition to the transverse slippage of 
the specimen at clamps, the matrix-fiber slippage might be another rea- 
son for the substantial deviations between the experimental and simu- 
lation stress-stretch results shown in Fig. 13 . However, monitoring the 
local deformations via the micrographs (such as Fig. 7 ) and especially 

the stretch maps shown in Figs. 3 and 4 are not indicative of suspicious 
regions reflecting the matrix-fiber slippage. This issue is more likely to 
occur in dry woven structures. 

The importance of the sample aspect ratio is further discussed by the 
evaluation of the shape of wrinkling in stretched samples. The presence 
of wrinkles directly affects the resultant driving force along the loading 
direction [ 31 , 32 ], while, the latter is used in the material calibration 
procedure as input data. It is seen that in Fig. 9 the composites with 
the aspect ratio of 𝜉 = 3/tan 𝛼 show less wrinklings. It implies that the 
stress-stretch responses of the stretched samples with this aspect ratio 
are more reliable for the purpose of the material calibration. 

6.3. Contribution of material phases 

To understand how much is the individual contributions of the ma- 
terial phases in the mechanical behavior of fiber-reinforced materi- 
als, composites are simulated at a certain deformation. The results of 
previous sections indicate that the composites with an aspect ratio of 
𝜉 = 3/tan 𝛼, such as [ + 45 − 45] 2,3,4 and [ + 30 − 60] 4,5 , exhibit reliable 
mechanical responses —i.e. low wrinkling, a large area of homogenu- 
ous deformation, and conformability of the constitutive equation to the 
stress-stretch data. Accordingly, the PDMS-GF and PUR-GF materials 
considering the samples [ + 45 − 45] 4 and [ + 30 − 60] 4 are chosen and 
then simulated up to a stretch of 𝜆1 = 1.25. The spatial distributions 
of the stored energies associated with the matrix ( ΨM ), fibers ( ΨF ), and 
mechanical interactions ( Ψ𝜏 ) as well as the total strain-energy density 
( Ψ) are displayed in Fig. 14 . It is emphasized that the contributions of 
the three material phases are obtained independently of one another. It 
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Fig. 15. Finite element results associated with 
the potentials of the matrix-fiber mechanical 
interactions shown for PDMS-GF and PUR-GF 
composites during uniaxial tensions: (a) [ + 45 − 
45] 4 ; (b) [ + 30 − 60] 4 samples. 

provides a clear understanding of the features involved in the mechani- 
cal behavior. Moreover, how the potentials associated with the matrix- 
fiber mechanical interaction for PDMS-GF and PUR-GF composites are 
varied under tensile deformations are illustrated in Fig. 15 (a) and (b) 
for [ + 45 − 45] 4 and [ + 30 − 60] 4 samples, respectively. The quantitative 
measurements together with the spatial distributions of the respective 
potentials signify that the matrix-fiber mechanical interaction is the un- 
derlying mechanism contributing to the constitutive behavior of hyper- 
elastic fiber-reinforced composites. 

7. Conclusion 

In summary, a combined experimental, analytical, and simulation 
study is carried out to quantify the matrix-fiber mechanical interac- 
tions in hyperelastic fiber-reinforced materials. To end this, fiber bundle 
pull-out tests are perfomed considering different matrix-fiber interphase 
properties and then optimal fiber surface treatment for the preparation 
of the composite samples is considered. Since there does not exist stan- 
dards for characterization of matrix-fiber mechanical interactions, sev- 
eral samples with different aspect ratios and various material anisotropy 
are fabricated with soft, nearly incompressible matrix and endless, twill 
woven fabrics as reinforcement. For the purpose of characterizing the 
matrix-fiber mechanical interactions, local stretch maps of composites 
are captured via digital image correaltion during loading experiments. 
Moreover, the local change of angle between deformed fibers, as the 
origin of the mechanical interactions, is monitored using in situ optical 
imaging. The stress-stretch responses of all samples as well as the wrin- 
kling patterns of specific composites are reported. The analytical study is 
carried out within a constitutive framework specialized for the matrix- 
fiber mechanical interactions [19] . The framework including angular- 
base invariant, deformation gradient, and constitutive behavior is com- 
pared with the respective experimental results explained above, show- 
ing good qualitative agreements in all comparisons. The finite element 
implementation of the model is then presented for reader interested in 
using the model. A couple of combined experimental and simulation 
study is carried out to highlight the importance of the sample aspect 
ratio for the characterization of the matrix-fiber mechannical interac- 
tions. The finite element analysis of different composites signify that 
the underlying mechanism contributing to the mechanical response of 
fiber-reinforced elastomers is attributed to the matrix-fiber mechanical 
interactions. 
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Appendix A. Finite element implementation 

A.1. Decoupled form of the model 

For the computational implementation, the proposed model is 
treated as a nearly incompressible material. For nearly incompressible 
materials, the deformation gradient F and corresponding strain measure 
C are multiplicatively decomposed into volume-changing (volumetric) 
and volume-preserving (isochoric) parts as 𝐅 = 𝐽 1∕3 ̄𝐅 and 𝐂 = 𝐽 2∕3 ̄𝐂 , in 
which 𝐽 = det 𝐅 ( 𝐗 ) > 0 represents the local volume ratio at point X with 
det 𝐅̄ ≡ 1 . Because F is decoupled it is assumed that the total potential 
function Ψ defined in Eq. (1) (considering q , r = 0) can be described 
in terms of an energy contribution U vol ( J ) dependent only on J , i.e. a 
purely volumetric contribution, and a contribution Ψ̄0 ( 𝐂 , { 𝐌 , 𝐍 } ) from 

the isochoric deformation via 𝐂̄ . Thus, 

Ψ( 𝐂 , { 𝐌 , 𝐍 } ) = Ψ̄0 
(
𝐂 , { 𝐌 , 𝐍 } 

)
+ U vol ( 𝐽 ) (A.1) 

with isochoric potential function Ψ̄0 as 

Ψ̄0 
(
𝐂 , { 𝐌 , 𝐍 } 

)
= Ψ̄0 

M 

(
𝐼 1 , 𝐼 2 

)
+ Ψ̄0 

F 

(
𝐼 4 , 𝐼 6 

)
+ Ψ̄0 

τ

(
𝐼 ∗ 
8 

)
(A.2) 

where isochoric invariants are 𝐼 1 = 𝐽 −2∕3 𝐼 1 , 𝐼 2 = 𝐽 −4∕3 𝐼 2 , 𝐼 𝑖 = 𝐽 −2∕3 𝐼 𝑖 , 
i = 4, 6, 8, and 𝐼 ∗ 

8 
= 𝐼 ∗ 

8 
. 

The volumetric strain energy U vol is not critical here (as it is used as 
penalty function), and it is convenient to adopt the form of U vol as 

U vol ( 𝐽 ) = 
1 

4 
𝜅
(
𝐽 2 − 1 − 2 ln 𝐽 

)
(A.3) 
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where 𝜅 is the compressibility parameter with the dimension of the 
stress. 

A.2. Cauchy stress tensor 

The decoupled form of the Cauchy stress corresponding to Eq. (A.1) 
is obtained. First, the fictitious second Piola-Kirchhoff stress tensor 𝐒̄ 0 is 
defined by differentiating Eq. (A.2) with respect to 𝐂̄ ∕2 that reads 

𝐒̄ 0 = 2 
𝜕 ̄Ψ0 

𝜕 ̄𝐂 
= 2 

𝜕 ̄Ψ0 
M 

𝜕 ̄𝐼 1 
𝐈 + 2 

𝜕 ̄Ψ0 
F4 

𝜕 ̄𝐼 4 
( 𝐌 ⊗ 𝐌 ) + 2 

𝜕 ̄Ψ0 
F6 

𝜕 ̄𝐼 6 
( 𝐍 ⊗ 𝐍 ) 

+2 
𝜕 ̄Ψ0 

τ

𝜕 ̄𝐼 ∗ 
8 

⎛ 
⎜ ⎜ ⎜ ⎝ 

𝐌 ⊗ 𝐍 + 𝐍 ⊗ 𝐌 √ 

𝐼 4 𝐼 6 

− 𝐼 ∗ 
8 

( 
𝐌 ⊗ 𝐌 

𝐼 4 
+ 

𝐍 ⊗ 𝐍 

𝐼 6 

) ⎞ ⎟ ⎟ ⎟ ⎠ 
(A.4) 

in which the isochoric fiber potential Ψ̄0 
F is assumed to be the sum of the 

contributions of two fiber families, i.e. Ψ̄0 
F = Ψ̄0 

F4 
+ Ψ̄0 

F6 
. A push-forward 

operation on 𝐒̄ 0 with 𝐅̄ to the current configuration results in the ficti- 
tious Cauchy stress tensor 𝝈̄ defined as [34] 

𝝈̄0 = 𝐽 −1 ̄𝐅 𝐒̄ 0 𝐅̄ T (A.5) 

The Cauchy stress should be decomposed into a volumetric and iso- 
choric elastic response, i.e. 

𝝈 = 𝝈𝐢𝐬𝐨 + 𝝈𝐯𝐨𝐥 (A.6) 

The isochoric and volumetric parts of the Cauchy stress is then de- 
termined as 

𝝈𝐢𝐬𝐨 = ℙ ∶ 𝝈̄0 , 𝝈𝐯𝐨𝐥 = 𝒑 𝐈 (A.7) 

where ℙ = 𝕀 − 
1 
3 
𝐈 ⊗ 𝐈 is the symmetric fourth-order Eulerian project 

tensor [34] , and 𝕀 is a fourth-order unit tensor with the components 
( 𝕀 ) 𝑖𝑗𝑘𝑙 = 

1 
2 
( 𝛿𝑖𝑘 𝛿𝑗𝑙 + 𝛿𝑖𝑙 𝛿𝑗𝑘 ) . The constitutive equation for the hydrostatic 

pressure is given by p = 𝜕 U vol / 𝜕 J . Replacing the Eq. (A.4) in (A.5) and 
then using the relations in (A.7), the total Cauchy stress defined in Eq. 
(A.6) can be constructed. The total Cauchy stress 𝝈 is then implemented 
in the user-defined interface UMAT. 

A.3. Elasticity tensors 

The linearized principle of virtual work constituents the starting 
point for approximation techniques such as the finite element method. 
In this method, the linearized principle of virtual work should be for- 
mulated in the Eulerian description [35] . Its derivation requires the cal- 
culation of the spatial elasticity tensor c in the Eulerian description. In 
addition, a consistent Jacobian matrix, which is referred to DDSDDE 
variable in UMAT user material subroutine, is needed as 

𝔻 = 𝑐 + ℍ , ( ℍ ) 𝒊 𝒋 𝒌 𝒍 = 
1 

2 

(
𝝈𝒊 𝒌 𝜹𝒋 𝒍 + 𝝈𝒋 𝒍 𝜹𝒊 𝒌 + 𝝈𝒊 𝒍 𝜹𝒋 𝒌 + 𝝈𝒋 𝒌 𝜹𝒊 𝒍 

)
(A.8) 

The consistent Jacobian matrix 𝔻 has only 21 independent compo- 
nents at each strain state, i.e. 

𝔻 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑫 1111 𝑫 1122 𝑫 1133 

𝑫 1122 𝑫 2222 𝑫 2233 

𝑫 1133 𝑫 2233 𝑫 3333 

𝑫 1112 𝑫 1113 𝑫 1123 

𝑫 2212 𝑫 2213 𝑫 2223 

𝑫 3312 𝑫 3313 𝑫 3323 

𝑫 1112 𝑫 2212 𝑫 3312 

𝑫 1113 𝑫 2213 𝑫 3313 

𝑫 1123 𝑫 2223 𝑫 3323 

𝑫 12121 𝑫 1213 𝑫 1223 

𝑫 1213 𝑫 1313 𝑫 1323 

𝑫 1223 𝑫 1323 𝑫 2323 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(A.9) 

In the following the elasticity tensor c in the Eulerian description 
required for updating the DDSDDE is provided. For the purpose of com- 
putational implementation, it is more customary to decouple c into vol- 
umetric and isochoric elastic responses as 

𝑐 = 𝑐 iso + 𝑐 vol (A.10) 

In addition to, the fictitious elasticity tensor in the Lagrangian de- 
scription is needed that is defined as 

̄( ℂ ) 
0 
= 2 𝐽 −4∕3 

𝜕 ̄𝐒 0 

𝜕 ̄𝐂 
(A.11) 

The fictitious elasticity tensor in the Eulerian description 𝑐 0 can be 
found from a push-forward operation of ℂ̄ 0 with F , i.e. 

𝑐 0 = 2 𝐅 𝐅 
𝜕 ̄𝐒 0 

𝜕 ̄𝐂 
𝐅̄ 𝐓 ̄𝐅 𝐓 (A.12) 

Finally, with Eqs. (A.5), (A.7) 1 , and (A.12) the decoupled terms of 
the elasticity tensor c in the Eulerian description can be developed as 
[34] 

𝑐 iso = 𝐽 −1 ( ℙ ) ∶ 𝑐 
0 
∶ ( ℙ ) + 

2 

3 
tr 
(
𝝈
0 
)
( ℙ ) − 

2 

3 

(
𝐈 ⊗ 𝝈𝐢𝐬𝐨 + 𝝈𝐢𝐬𝐨 ⊗ 𝐈 

)
(A.13) 

and 

𝑐 vol = 

( 

𝑝 + 
𝜕𝑝 

𝜕𝐽 

) 

( 𝐈 ⊗ 𝐈 ) − 2 𝑝 ( 𝕀 ) (A.14) 

A.4. Verification 

In this section, two representative examples are presented in order 
to illustrate the performance of the constitutive model through finite 
element implementation. The uniaxial extension and simple shear tests 
on a unit cube with dimension 1 × 1 × 1 mm 3 are carried out. For 
verification of the model performance, the computational (FEM) and 
analytical solutions associated with both examples are compared. The 
model geometries are discretized with an 8-node hexahedral element 
(Abaqus element type C3D8). In the two aforementioned deformations, 
the cube consists of two families of fibers M and N that should be con- 
structed in Cartesian basis vectors ( e 1 , e 2 , e 3 ). 

In the first example, a unit cube composed of one element that con- 
sists of two families of fibers initially aligned along the unit vectors 
M = cos 𝛼 e 1 + sin 𝛼 e 2 and N = cos 𝛽 e 1 + sin 𝛽 e 2 , 𝛼 > 0, 𝛽 < 0, are 
subjected to uniaxial deformation, where its cross-section normal to e 3 
with loading direction aligned in e 1 are shown in Fig. A.1 . The defor- 
mation gradient in matrix form is given by F = diag[ 𝜆1 , 𝜆2 , 𝜆3 ]. The in- 
compressible counterpart of the Cauchy stress 𝝈̄0 (defined in Eq. (A.5)) 
is used for calculation of the stresses associated with the uniaxial de- 
formation. For the uniaxial extension test, it is taken that 𝜎33 = 0, by 
which the Lagrange multiplier p is calculated. In addition, the boundary 
condition shown in Fig. A.1 implies that 𝜎22 = 0 while it shows 𝜎11 is 
a non-zero component of the Cauchy stress. From the incompressibility 
condition, one obtains 𝜆3 = 𝜆−1 

1 
𝜆−1 
2 
. Substituting the calculated amounts 

of p and 𝜆3 into the governing equations of 𝜎11 and 𝜎22 and considering 
that 𝜎22 = 0 it leads to a system of nonlinear equations from which the 
relation between the stretches 𝜆1 and 𝜆2 can be found numerically. It is 
done using an Optimization package in Matlab. Then, with the experi- 
mental results taken from Table 2 , the uniaxial Cauchy stress 𝜎11 versus 
the stretch 𝜆1 is plotted in Fig. A.1 for a composite with 𝛼 = 30 and 
𝛽 = − 60. Also shown in the figure are the computational and analyti- 
cal solutions for the case in which the principal stretches 𝜆1 and 𝜆2 are 
evaluated. There are very good agreements between the computational 
(FEM) and analytical solutions. To evaluate a more general case, the 
Holzapfel-Gasser-Ogden (HGO) model [10] considering k 1 = k 2 is taken 
here for verification of the model, which is reduced to ΨF in Eq. (3) when 
k 2 ≈ 0, as 

ΨF = 
𝑘 1 

2 𝑘 2 

∑
𝑖 =4 , 6 

[
exp 

(
𝑘 2 
(
𝐼 𝑖 − 1 

)2 )
− 1 

]
(A.15) 

In the second example, as shown in Fig. A.2 , the same unit cube is 
subjected to a simple shear deformation. The bottom nodes of the cube 
are fixed and then a shear deformation 𝛾 along e 1 on the top nodes is 
applied. The deformation gradient is given by 

𝐅 = 

⎡ ⎢ ⎢ ⎣ 

1 𝛾 0 

0 1 0 

0 0 1 

⎤ ⎥ ⎥ ⎦ 
(A.16) 

One possibility to determine the Lagrange multiplier p is to set 
𝜎33 = 0. The non-zero components of the Cauchy stress, i.e. two nor- 
mal stresses 𝜎11 and 𝜎22 and the shear stress 𝜎12 , can be easily found 
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Fig. A.1. Comparison of the FEM results and 
the analytical solutions. The uniaxial extension 
of a unit cube in the e 1 direction containing 
the two fiber families M and N with 𝛼 = 30 and 
𝛽 = − 60. The solid line shows the undeformed 
and the dashed line shows the deformed con- 
figurations. 

Fig A.2. Comparison of the FEM results and 
the analytical solutions. The simple shear de- 
formation of a unit cube in the e 1 direction with 
the amount of 𝛾 containing the two fiber fami- 
lies M and N with 𝛼 = 30 and 𝛽 = − 60. The solid 
line shows the undeformed and the dashed line 
shows the deformed configurations. 

from the incompressible counterpart of the Cauchy stress 𝝈̄0 . Note that 
the shear stress 𝜎12 is independent of the p and the normal stress 𝜎22 
is independent of the matrix property. For the comparison, the analyti- 
cal results (solid line) and computational solutions obtained by FEM are 
plotted in Fig. A.2 for a composite with 𝛼 = 30 and 𝛽 = − 60. Again, a 
very good agreement is observed between the two solutions. 
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We acknowledge that the work submitted to the Composites Part B: Engineering 

contains 

 

 Novelty:  

- This work is an initial attempt to characterize the matrix-fiber interfacial 

debonding using optical microscopy in soft composites.  

- This work models matrix-fiber interfacial debonding based on the 

degradation of macroscopic mechanical properties.  

- This study bridges the degradation of macroscopic mechanical properties 

to the microscopically visible matrix–fiber interfacial debonding for 

cyclically deformed soft composites. 

 

 Significance for the research community 

- This work signifies that the underlying mechanism contributing to the 

degradation of the mechanical response of fiber-reinforced elastomers 

(i.e., Mullins softening, and permanent deformations) is attributed to the 

matrix-fiber interfacial debonding not matrix or fibers. It is supported by 

macroscopic and microscopic experimental observations. 

 

To the best of the authors’ knowledge, the above-mentioned aspects of soft 

composites have been noted for the first time by the submitted work.  

 
 
Yours Sincerely 

M.R. Mansouri 
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ABSTRACT 

It is apparent from the literature that the matrix–fiber mechanical interaction, as a result of interfacial 

adhesive bonds at the interface, significantly contribute to the macroscopic constitutive response of 

hyperelastic fiber-reinforced materials. This study bridges the degradation of macroscopic mechanical 

properties to the microscopically visible matrix–fiber interfacial debonding for cyclically deformed soft 

composites. The present work is an initial attempt to model matrix–fiber interfacial debonding in the 

context of pseudoelasticity by evaluating inelastic phenomena such as discontinuous Mullins softening and 

residual strain due to matrix damage, fiber rupture, and matrix–fiber interfacial debonding. The 

pseudoelastic model is based on hyperelastic strain energy functions consisting of two damage variables for 

each matrix, fiber, and matrix–fiber mechanical interaction. Each material and damage parameter is 

characterized independently by performing a comprehensive set of monotonic loading and cyclic tensile 

tests, respectively. Furthermore, finite element analysis is implemented using a user-defined subroutine, 

and the computationally calculated results are compared with the experimental data.  
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1. Introduction 

        Intriguing microscopic-defect-induced inelastic behaviors such as Mullins softening and irreversible 

permanent strain have not yet been investigated satisfactorily for individual composite phases in 

hyperelastic fiber-reinforced composites. In addition, debonding between constituent materials; that is, 

matrix–fiber interfacial/interphasal debonding, intensifies such inelastic behaviors of fibrous materials. 

However, there is no clear understanding of the extent to which damage in fiber-reinforced materials stems 

from the individual contributions of the matrix, fibers, and matrix–fiber debonding. In addition, the 

distinct contribution of matrix–fiber debonding to the degradation of the mechanical properties of fiber-

reinforced materials has not yet been satisfactorily addressed in the literature. Although the responses of 

various hyperelastic fiber-reinforced materials have been modeled using a decoupled representation by 

assuming separate contributions of individual constituents, determining the actual mechanical 

contributions of the individual constituents is challenging, as reflected in the immense variety of the 

proposed models. In addition to constitutive modeling, it is crucial to characterize individual material 

constituents because their individual contributions to the overall material response might be confounded. 

Therefore, as a starting point for elucidating the features involved in the overall material response, both the 

molecular topology of the individual constituents and their respective damage mechanisms must be 

investigated.  
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        Flexible composites consist of at least an elastomeric matrix, fibers, and a recognizable interphase [1,2] 

or a zero-thickness interface, as shown in Fig.1. The matrix–fiber interface/interphase, which is referred to 

as an adhesion bond, guarantees the stress transfer from the soft matrix to the stiff fiber and is the key factor 

determining the composite performance [1,3–5]. The chemically formed adhesion bonds directly influence 

the mechanical interactions between the matrix and the fibers such that weak adhesion bonds result in early 

matrix–fiber debonding [6] and, therefore, the matrix–fiber mechanical interactions contribute less to the 

overall composite performance [7,8].      

        Elastomers are another material phase featuring polymer chains, an entangled polymer-chain network, 

and covalent cross linkages and can be imagined as shown in Fig 1. Although the causes of physical damage 

in elastomers remain controversial, many studies have reported that under finite deformations, damage 

could be attributed to chain breakdown [9–12], covalent-crosslink breakage [13–15], and chain 

disentanglement [16]. In fiber-reinforced materials, a fiber usually consists of a bundle of filaments, as 

shown in Fig. 1. Although a single filament cannot bear high applied loads, a fiber bundle can. Because 

constituents often exhibit considerably different stiffnesses, flexible fiber-reinforced materials usually do 

not sufficiently deform in the fiber direction, and functionality (such as exceptional and multidirectional 

flexibilities, which are highly desirable for flexible fiber-reinforced composites [17]) is achieved when 

composites are loaded in directions different from the fiber orientation. Therefore, it is expected that within 

the operating limits of flexible composites, damage is more likely to occur in the soft matrix and/or at the 

matrix–fiber interface rather than among the fibers. Nevertheless, fiber-damage-induced inelastic behavior 

should be considered in constitutive modeling after its probability has been experimentally identified. 
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Fig. 1. Three phases of fiber-reinforced material: Molecular topologies of elastomer matrix, fiber bundle composed 

of single filaments, and matrix–fiber interface.     

 

        Damage models developed to account for damage-induced inelastic phenomena can be roughly 

categorized as continuum damage mechanics (CDM) and pseudoelasticity based. (For an overview of the 

pseudoelasticity method, please refer to [18] and [19].) Although CDM and pseudoelasticity approches are 

able to model the separate contributions of damage originating from the matrix, fibers, and interfaces, this 

alone is insufficient to model damage in hyperelastic fiber-reinforced materials. Compared to CDM-based 

models, pseudoelasticity ones can be formulated such that material parameters can be calibrated using the 

experimental data independently of damage parameters [20,21]. Unlike pseudoelastic models, CDM 

combined with hyperelasticity cannot distinguish the contribution of the stress softening and permanent 

strain to the damage in fiber-reinforced materials because both share the same damage parameters, which 

has not been previously pointed out in the literature. Furthermore, material calibration is more difficult 

using CDM models than using pseudoelastic ones [22], and CDM does not satisfactorily reproduce the 
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Mullins softening in hyperelastic materials showing highly reduced stiffness owing to inelastic dissipation 

[23], which is common in elastomers [24,25]. This issue has already been pointed out in [26–29]. Therefore, 

the works supporting pseudoelasticity approaches are reviewed here, emphasizing their ability to account 

for the distinct contributions of the matrix damage, fiber rupture, and matrix–fiber debonding by 

reproducing inelastic behaviors such as Mullins softening and permanent strain.  

      An alternative pseudoelasticity-based approach was introduced in Ref. [30] in which materials are 

treated as elastic during loading while showing inelastic behavior during unloading to model inelastic 

damage attributes in fiber-reinforced materials. This approach was extended by [19] to model the Mullins 

softening in filled rubbers and was further developed by [18] to model the Mullins softening and permanent 

strain in particle-reinforced rubbers. A pseudoelastic model for soft tissues was presented in [26] that 

incorporated stress softening in both the isotropic ground matrix and fibers without considering the 

permanent strain. A model was developed by [20] to describe Mullins softening in aortic layers loaded 

beyond the physiological range. However, the permanent strain observed in the experimental results was 

not considered. This work was extended by [31] to account for Mullins softening and permanent strain in 

arterial tissues. Their damage model assumed that Mullins softening occurred only in collagen fibers, while 

both the matrix and fibers contributed simultaneously to the permanent strain. Recently, the work 

presented in Ref. [32] studied Mullins softening in short fibers and soft composites within the 

pseudoelasticity framework by considering damage to both the matrix and fibers. However, unlike the 

experimental observations, the modeling did not account for permanent strain. They assumed that matrix–

fiber debonding contributed to the matrix damage term owing to void nucleation at bonding sites and 

further evaluated their model against the cyclic uniaxial extension of specimens in which fibers were 

oriented parallel to the loading direction. 
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        To the best of our knowledge, inelastic damage attributes such as Mullins softening and permanent 

strain as a result of the matrix-fiber debonding have not yet been modeled—as reflected in proposed models 

wherein the individual contributions of only the matrix and fibers have been determined, while matrix–

fiber debonding would be associated with a third material phase called the “matrix–fiber 

interface/interphase” (see Fig. 1) consisting of neither the matrix nor fibers. Furthermore, although 

pseudoelasticity is a method wherein material and damage parameters can be obtained independently, 

employing a relevant constitutive model that accounts for distinct contributions of composite material 

phases is pivotal with this approach. The present work aims to determine inelastic damage attributes due 

to matrix damage, fiber rupture, and matrix–fiber interfacial debonding in the context of the 

pseudoelasticity theory to elucidate the extent of the damage stemming from any of the particular material 

phases in fiber-reinforced elastomers 

 

2. Experimental 

2.1. Materials and methods 

        Fiber-reinforced composites consisting of a polydimethylsiloxane (PDMS) matrix and endless twill 

woven glass fiber (GF) reinforcement are manufactured using vacuum-assisted resin infusion (VARI) at 20 

mbar. The PDMS is an addition–curing two-component system exhibiting a hardness of 35 Shore A, a 

density of 1.02 g/cm3, a noncured viscosity of 3500 mPa∙s, and a pot life of approximately 90 min at room 

temperature. Two layers of woven fabric are placed in a mold and then exposed to a matrix flow. The 

impregnated composite is cured at 70 °C for 1 h in a temperature chamber. Composite samples with 

exhibiting an aspect ratio of � = 3/ tan 
 with two fiber families initially aligned in the � = cos 
 �� +
sin 
 �� and � = cos � �� + sin � �� directions, where 
 > 0 and � < 0, were considered. A fixed 
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coordinate system ���, ��, ��� is applied to specify the loading in the  �� direction. Then, composites 

exhibiting a preferred fiber orientation represented by �+
/−�!, such as [+45/−45] and [+30/−60], are 

prepared with a thickness of " = 0.4 %%. The aspect ratio of the samples is defined such that L =
3'/ tan 
 denoted the length of samples between the clamps, and ' is the width of the samples. Using this 

sample geometry, at least one end of each fiber is free (i.e., was not clamped in the fixture); therefore, no 

clamping effects had to be considered. The importance of the sample geometry is highlighted in a combined 

experimental and numerical study [8]. Composites exhibiting a fiber orientation of [+0/−90] are prepared 

in dimensions of 30 × 90 (a (mm) × L (mm)). The matrix material is manufactured according to the ISO 

37 standard with type 2 specimens. 

        Cyclic tensile tests are performed on the composites with preferred fiber orientations [+45/−45], 

[+30/−60], and [+0/−90] in the  �� direction. Stretches associated with the composites are recorded 

based on the machine crosshead displacement. Cyclic uniaxial tensile tests are also carried out on a pure 

matrix, and stretches are measured using the digital image correlation (DIC) method by monitoring two 

points with a 20 mm distance marked in the middle of the sample (For a detailed explanation of the 

characterization method of isotropic hyperelastic elastomers, please refer to [33]). All the tests are 

conducted at a crosshead velocity of 5 mm/min, where viscoelastic effects are negligible under standard 

atmospheric conditions. The tests are performed using a universal testing machine (Z250, ZwickRoell 

GmbH & Co. KG). The composites are clamped using a pneumatic grip at 6 bar. To capture the stretch 

deformation fields of the composite, 3D full-field high-resolution images are captured using the DIC 

method (with a DIC system consisting of a Mercury BLFY 050 camera and Mercury RT software, Czech 

Republic) for the composite prepared with fibers oriented at [+45/−45] during the cyclic tensile test in the 
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�� direction and for a spray pattern on the specimen surface suitable for the high elasticity of the matrix 

material. 

        In-situ optical microscale tests are performed on composites prepared with fibers oriented at 

[+45/−45], at approximately the length scale of the fibers, to understand the relationship between the 

macroscale observations and the microstructural damage evolutions. The samples are placed in a custom-

designed in-situ tensile test device and are stretched to 1.3 times their initial length while they are observed 

under an optical microscope (Alicona InfiniteFocusG5 Plus, Austria) equipped with a 100× magnification 

objective lens. The transparency of the PDMS matrix enabled the interior material structure to be clearly 

observed during deformation. Vertical Focus Probing Technology (VFPT) enables samples to be vertically 

scanned to provide images at different depths and 10-nm vertical resolution. Matrix–fiber debonding is 

characterized using the micrographs obtained by capturing images at five vertical sample depths.  

 

2.2. Cyclic stress–stretch responses 

         To assess the influence of the stress softening and accumulated residual strain on the stretch response, 

several series of loading–unloading–reloading tensile tests are conducted on fiber-reinforced elastomers at 

specific stretches. A displacement control protocol is employed for the cyclic tensile testing of the matrix, 

fibers, and composites prepared with fibers oriented at [+45/−45] and [+30/−60]. For the composites, 

cyclic unloading are conducted at 0.05 uniaxial stretch increments. The relevant cyclic stress–stretch results 

corresponding to the loading–unloading up to a stretch of ,� = 1.30 and ,� = 1.25 are provided in Fig. 

2(a) and (b) for the composites prepared with fibers oriented at [+45/−45] and [+30/−60], respectively. 

Note that Fig. 2 shows significant Mullins softening and irreversible residual stretch for the composites 
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exhibiting different material anisotropies, which both become more pronounced with increasing maximum 

stretch. The figure also indicates that the Mullins softening is not ideal because the unloading and reloading 

responses differ. This divergence of the unloading and reloading responses has been observed previously in 

other reinforced soft materials such as filled rubbers [34], fiber-reinforced elastomers [32,35,36], 

elastomeric nanocomposites [37], and fibrous tissues [20]. Ideally, the reloading and loading responses 

coincide [11].     

          The same protocol is applied to tests on pure matrix specimens for loading–unloading cycles up to a 

stretch of ,� = 1.30. The cyclic stress–stretch responses of the fibers are characterized using a composite 

prepared with fibers oriented at [+0/−90] and stretched at three evenly spaced intervals up to ,� = 1.015. 

The stress–stretch results corresponding to the last cycle are plotted in Fig. 3 for the matrix, fibers, and 

composites prepared with fibers oriented at [+45/−45] and [+30/−60]. Clearly, the pure matrix and the 

0/90 “fiber” specimen both exhibited negligible Mullins softening and permanent strain. Therefore, the 

damage accumulation in the composite cannot be attributed to the damage evolution in the matrix or fibers. 
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Fig. 2. Cyclic stress–stretch responses featuring Mullins softening and permanent strain of composites prepared with 

fibers oriented at (a) [+45/−45] and (b) [+30/−60] and subjected to tensile tests in /� direction. 

 

 

 

 

Fig. 3. Cyclic stress–stretch responses of matrix and fibers during cyclic tensile tests. Comparative experimental 

illustrations of highest damage accumulated during entire deformation history for matrix, fibers, and composites 

during cyclic tensile tests. 

 

2.3. In-situ microstructural characterizations 

        Micromechanical damage to hyperelastic fiber-reinforced materials remains unclear. According to the 

literature, damage evolution is due to the degradation of the mechanical constituents of fiber-reinforced 
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materials, as reflected in models wherein damage evolution is only attributed to constituent materials (i.e., 

matrix and fibers). Nevertheless, because mechanical property degradation indicates microstructural 

changes, the cyclic stress–stretch responses shown in Fig. 3 suggest that such changes are irrelevant for the 

matrix and fibers. Therefore, it seems reasonable to determine the damage evolution mechanism for other 

material phases of fiber-reinforced composites, the most relevant of which might be due to matrix–fiber 

interfacial debonding. However, there is a lack of experimental observations to bridge the gap between the 

degradation of the composite mechanical properties (quantified based on cyclic stress–stretch responses) 

and matrix–fiber interfacial debonding, which might be microscopically visible. 

        To bridge this gap, the probability of matrix–fiber interfacial debonding is first evaluated using in-situ 

optical microscopy. Therefore, different selected composite areas (see Fig. 4a, Fig. 5, and Fig. 6) exhibiting 

fibers oriented at [+45/−45] are chosen, and the specimens are then stretched to characterize the 

microstructure in situ. Simultaneously, local matrix–fiber debonding is captured by taking high-resolution 

images at five different vertical sample depths. As shown in Fig. 4b, the image includes the top outer surface 

of the sample (Z0), top of the first observed fiber (Z1), middle of the same fiber (Z2), top of the fiber in the 

second layer (Z3), and middle of the same fiber (Z4). The composite transparency allows the microscope to 

scan through the entire thickness of the samples, thereby enabling a full-field analysis of matrix–fiber 

debonding. The micrographs captured from different vertical sample depths are depicted in Fig. 4, Fig. 5, 

and Fig. 6  for the nondeformed sample and the counterparts deformed up to a stretch of ,� = 1.30.  
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Fig. 4. Matrix–fiber interfacial debonding illustrated for two families of fibers: (a) representative region in 

nondeformed sample; (b) vertical positions of fibers at different depths (c); micrograph of blue region shown in (a) 

at vertical depth of 01; (d) micrograph corresponding to panel (c) in deformed specimen, featuring local matrix–fiber 

debonding; and (e) disappearance of matrix–fiber debonding when sample is unloaded. (f) Micrograph of blue region 

in figure (a) shown for depth 0�, and (g) respective matrix–fiber debonding in deformed specimen.  
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Fig. 5. Chosen micrographs captured from different regions of nondeformed sample, shown in blue boxes (left); and 

corresponding images captured when sample is stretched up to 1.3 times its initial length, featuring local matrix–

fiber interfacial debonding indicated by red arrows (right).     

 

         The micrographs indicate different microstructural damage evolutions during deformation: (i) 

Continuous matrix–fiber debonding is observed in the vicinity of two families of fibers in Fig. 4(d) and (g), 

while corresponding nondeformed specimens are shown in Fig. 4(c) and (f), respectively. Notably, matrix–

fiber debonding is barely visible when the sample is unloaded (see Fig. 4(e)). Because the material is flexible, 

it tends to return to its initial state, while permanent matrix–fiber debonding remains. Therefore, in-situ 

tests are necessary to characterize matrix–fiber debonding in fiber-reinforced soft composites. Further 

illustrations of matrix–fiber interfacial debonding are provided in Fig. 5 as taken from different areas of the 

samples. (ii) Discontinuous matrix–fiber debonding is observed between the outer surface of the sample 

and the middle of the first observed fiber (i.e., Z0<Z<Z2), as shown in Fig. 6. Although this type of damage 

is special, it is frequently observed during optical imaging. Local pointwise matrix–fiber debonding starts 

  

  Z4 

Z4 
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in the top vicinity of the fibers and continues vertically up to the middle of the fiber while dispersing 

horizontally into the matrix. Because portions of the material appear to have been scraped away, we call this 

class of damage “carving,” which has not been observed previously. We chose to monitor top views (Z0) of 

three areas on the composite surface, as shown in Fig. 6(a). The corresponding local damage evolutions are 

apparent in Fig. 6(b) between the vertical depths Z0<Z<Z2. As shown in Fig. 6(c), the carving disappears 

and is barely visible in the middle of the fiber (Z2). Both microstructural evolutions, appearing as matrix–

fiber debonding, are reported herein as the underlying mechanism generating the Mullins softening and 

permanent strain observed in the typical stress–stretch responses of the fiber-reinforced composites (see 

Fig. 3).        
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Fig. 6. Pointwise matrix–fiber debonding shown for chosen regions of stretched sample: (a) micrographs taken from 

top view of surfaces of three regions; (b) representative pointwise matrix–fiber debonding corresponding to regions 

shown in panel (a) taken at vertical depth between top surface of sample (Z0) and middle of first observed fiber (Z2), 

as indicated by red arrows; and (c) disappearing, barely visible pointwise debonding observed in panel (b) at depth 

of Z2.        

  

2.4. 3D full-field stretch analysis  

        The significant Mullins softening and permanent strain observed in the cyclic deformations shown in 

Fig. 2 are indicative of damage evolutions in the material microstructure, which is locally observable. 

Because damage should manifest in the stretch maps on the outer surface of the samples, 3D full-field high-

resolution images are captured using the DIC method for the composite prepared with fibers oriented at 

[+45/−45] during the cyclic tensile test in the �� direction, as explained in Section 2.2. Because the 

deformation was symmetric, we monitored the blue region depicted in Fig. 7(a). Representative cyclic 

stress–stretch responses are shown in Fig. 7(b), indicating that for each cycle, the maximum stretch (,�, 

,�, ,2, ,3, ,4, ,��, ,��) and respective residual stretch (,�, ,1, ,5, ,6, ,�7, ,��, ,�1) were achieved. The 

local stretch maps corresponding to the stretch values are indicated in Fig. 7(c) and (d), showing 

inhomogeneous deformations at the maximum stretches and permanent strains after the specimens were 

unloaded, respectively. Movies of the stretch maps generated during the cyclic tensile tests are provided in 

the supplementary materials [38]. 
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          ,7 = 1     λ� = 1.05     ,� = 1.10    ,2 = 1.15    ,3 = 1.20    ,4 = 1.25   ,�� = 1.30  ,�� = 1.35 
                                                             

           
          ,7 = 1      ,� = 1.01    ,1 = 1.02    ,5 = 1.04    ,6 = 1.06    ,�7 = 1.09  ,�� = 1.12   ,�1 = 1.15 

Fig. 7. 3D full-field stretch maps captured by DIC for composite prepared with fibers oriented at [+45/−45] and 

subjected to cyclic tensile tests in /� direction: (a) nondeformed composite showing blue region used to monitor 

stretch maps; (b) representative stress–stretch plot generated for sample; (c) inhomogeneous stretch maps 

corresponding to highest stretches (shown in panel (b)) obtained during each cycle; (d) inhomogeneous evolution of 

damage reflected in residual stretches in unloaded composite.     

 

3. Modeling  

3.1. A matrix-fiber-interaction model based on general invariants    

        To model the elastic part of the deformation, a unified invariant-based constitutive model proposed by 

[39] and its continuum mechanical framework are described owing to some necessary changes in notation. 
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Consider continuum body  <= in the reference configuration of a material body. It is assumed that any 

material point is labeled by its position vector > in  <= . Let the body be deformed into a new configuration 

(<) such that material point > takes up position ?. This motion was introduced by mapping ? = @:>;. 

The gradient of @ is defined by A:>; = Grad ? and is referred to as the deformation gradient tensor, and 

its determinant E = det A:>; > 0 is called the local volume ratio. The right Cauchy–Green strain tensor 

is given by G = AHA with the corresponding first and second invariants as 

I� = tr G     and      I� = �
� �:trG;� − tr:G�;!. (1) 

     Let � = cos J K� + sin J  K� and � = cos J  K� − sin J  K� be unit vectors oriented in the 

directions of the fibers in the reference configurations, where  K� and  K� denote the Cartesian coordinate 

system. Parameter J is one-half the angle subtended by � and �, which are mapped to spatial line elements 

L and M in the deformed configuration by deformation gradient A through motion ? = N:>;. During this 

deformation, the material line elements might experience a change in both the element length and angle. 

The following invariants for fiber-reinforced materials were introduced [40]:  

I1:�; = G ∶ � ⨂ �,            I5:�; = G ∶ � ⨂ �,           I6:�,�; = G ∶ � ⨂ �. (2) 

     Pseudoinvariants I1 and I5 capture information about the square of the stretch in fiber directions � and 

�, respectively. In their original work, Ref. [41] introduced a scalar (ℬ) representing the change in the angle 

between equally deformed fibers and found the following relation between ℬ, the angle between the 

deformed fibers (denoted here by R), and the right-hand side of the relations defined in (2):  

cos R = G ∶ � ⨂ �
√G ∶ � ⨂ � √G ∶ � ⨂ � =ℬ� cos� J − ℬT� sin� J

ℬ� cos� J + ℬT� sin� J (3) 
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     By substituting the relations given in (2) into equation (3), [39] obtained an angular-based invariant 

expressed in terms of strain invariants I6∗ = I6 VI1 I5⁄ = cos R to consider the current angle between 

deformed fibers.  

     For computational implementation, the proposed model is treated as a nearly incompressible material. 

Hence, deformation gradient A and corresponding strain measure G are multiplicatively decomposed into 

volume-changing (volumetric) and volume-preserving (isochoric) parts as A = E� �⁄ A and G = E� �⁄ G, 

respectively. Because A is decoupled, it is assumed that the total potential function (Ψ) can be described in 

terms of an energy contribution (UZ[\:E;) dependent only on E; that is, a purely volumetric contribution, 

and contribution Ψ] 7:G,] ��,��; obtained from the isochoric deformation through Ĝ. Thus,   

Ψ:G, ��,��; = Ψ] 7:G,] ��,��; + UZ[\:E;. (4) 

Extensional-based invariants I1 and  I5 and angular-based invariant I6∗ are employed by the fibers’ and the 

matrix–fiber mechanical interactions’ potentials, respectively, to form a unified invariant-based Matrix–

Fiber–Interaction (MFI) model [42] wherein an isochoric potential function (Ψ] 7) is defined as follows: 

Ψ] 7:G,] ��,��; = Ψ]_7 :I�̅; + Ψ]a7:I1̅, I5̅; + Ψ]b7:I6̅∗;, (5) 

where Ψ]_7 , Ψ]a7, and Ψ]b7 introduce the isochoric potentials associated with the matrix, fibers, and matrix–

fiber mechanical interactions, respectively, and isochoric invariants I�̅ =  ET� �⁄ I�, Ic̅ =  ET� �⁄ Ic, d =
�4, 6, 8�, and I6̅∗ = I6∗.  

Remark 3.1. A so-called invariant (I6; = G ∶ � ⨂ � was introduced in [40] to model composites 

exhibiting two fiber families. This invariant appears to have attracted negligible attention until [43] 

introduced I6 as a “coupling” term to model fiber-reinforced nonlinear elastic solids. Since then, this 
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invariant has been an alternative used to constitutively model the contribution of matrix–fiber mechanical 

interactions (see, for example, [44–51]. 

 

3.2. Inelastic damage model 

        The pseudoelasticity approach enables us to distinguish between Mullins softening and permanent 

strain. Moreover, it allows distinct contributions from any constituent materials to both Mullins softening 

and permanent strain to be considered. In this work, two damage variables—and, therefore, two dissipation 

functions—corresponding to Mullins softening and permanent strain are assigned to each material phase 

including the matrix, two fiber families, and matrix–fiber interface. The pseudoelastic energy introduced 

by [18] for isotropic materials is accordingly modified for anisotropic ones to represent loading and 

unloading as follows:  

f:G,] ��,��, g, �;
= h ijgcΨc

7:G,] ��,��; + kc:gc;l
c m _,a,b

− �:1 − �c; nc:Ĝo, ��, ��; + pc:�c;!q, 
(6) 

where gc  and �c, d = �M, F, t� are variables used to capture the stress softening and permanent strain, 

respectively. Both variables depend on the previously achieved maximum strain [18]. In Eq. (6), kc:gc; 

and pc:�c; are dissipation functions that capture the energy dissipated in the material during loading–

unloading cycles and are associated with softening and permanent strain, respectively. Inelastic energy 

dissipations nc introduce permanent strain to the model, including the dependence on the maximum 

deformation to which the material had been subjected during the primary loading. It is defined as a function 

of the modified right Cauchy–Green tensor (Ĝo) obtained at the peak deformation of the loading history.  
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Remark 3.2.  Unlike in equation (6), all the previously developed pseudoelastic models reported in the 

literature use a single damage variable for all the material constituents to capture the permanent strain (see, 

for example, [31]), which limits the determination of particular contributions from any of the constituents 

to the overall material damage. 

        Like the elastic contribution, an anisotropic dissipation function (n) is assumed for the inelastic energy 

contribution and takes the same form as the decoupled elastic potential function introduced in equation 

(5). However, because n has different material parameters, it reflects anisotropy as follows:  

n:Ĝo , ��, ��; = n_ iI�̅oq + na iI1̅o, I5̅oq + nb iI6̅∗oq. (7) 

        Note that we considered the inelastic energy dissipation (n) as a function of Ĝ at the peak deformation 

of the loading history; that is, Ĝo = Ĝ and structural parameters � and �. Indeed, this function is only 

updated during unloading from the maximum deformation so that once the function is updated, its value 

remains constant during unloading and reloading. Therefore, from equations (1) and (2), the invariants 

given in equation (7) are defined as follows: 

I�̅o = trĜo,  I1̅o = Ĝo:�⨂�,  I5̅o = Ĝo: �⨂�,   I6̅o = Ĝo:�⨂�,   I6̅∗o = vw̅x
yvz̅xv{̅x

. (8) 

During loading, it is assumed that g = � = 1 and, therefore, kc:gc; = pc:�c; = 0, which reduces 

equation (6) to equation (5), and the general finite elasticity is recovered.  

        From [52], it follows that at equilibrium in the absence of body forces  

 |}:A, ~;|~ = 0     in    <= , (9) 

where }:A, ~; is the pseudoenergy function of the material, and ~ is a damage variable. It is now 

convenient to specialize in Eq. (6) to account for more than one additional variable as follows:  
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|f:G,] ��,��, g, �;
|g = 0,      |f:G,] ��,��, g, �;

|� = 0, (10) 

according to [18]. From equation (10), the pseudoelastic energy in equation (6) gives 

Ψc
7 + |kc|gc = 0,       nc − |pc|�c = 0.  (11) 

3.3. Cauchy stress  

        We now present the total Cauchy stress tensor (•) decomposed into volumetric and isochoric 

pseudoelastic (which is no longer elastic) responses as follows:  

• = •€•[ + •Z[\. (12) 

       The isochoric Cauchy stress associated with the pseudoelastic energy defined in Eq. (6) can be written 

as  

•€•[ = 2ET�A |f:G,] ��,��, g, �;
|G  AH. (13) 

        Replacing equation (6) in equation (13) with chain rules and the relations defined in equation (11) one 

can obtain 

•€•[ = h ‚gc•c7 − :1 − �c;•c€ƒ„
c m _,a,b

, (14) 

so that 

•€•[,c = gc•c7 − :1 − �c;•c€ƒ,     d =  M, F, τ (15) 

The volumetric part of the Cauchy stress is then determined as follows: 

•Z[\ = †‡. (16) 

The constitutive equation for the hydrostatic pressure is given by † = |UZ[\ |E⁄ .  
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3.4. Mullins softening and residual strain variables  

        Following [19], damage variables gc  and �c , d = �M, F, t� are respectively represented as follows:  

gc = 1 − 1
ĉ erf Š

1
%c

:Ψ]c‹Œ• − Ψ]c7;Ž, (17) 

and  

�c = 1
tanh :1; tanh •‘

 Ψ]c7Ψ]c‹Œ•’
“”•. (18) 

        To characterize the damage induced by the matrix, fibers, and matrix–fiber mechanical interaction, the 

minimum value of the damage function is determined as follows: 

gc‹€ƒ = 1 − 1
ĉ erf Š

1
%cΨ]c

‹Œ•Ž. (19) 

        The derivatives of the damage variables given in equations (17) and (18) with respect to Ψ]c7 are required 

to algorithmically implement the (pseudo)elasticity tensor, which read  

|gc|Ψ]c7 =
2

√– ĉ%c
exp ‘− Š 1%c

:Ψ]c‹Œ• − Ψ]c7;Ž
�’, (20) 

and 

|�c|Ψ]c7 =
™cΨ]c‹Œ• ‘  Ψ]c7Ψ]c‹Œ•’

“”T� 1
tanh :1; ‘1 − tanh� •‘  Ψ]c7Ψ]c‹Œ•’

“”•’. (21) 

 

3.5. Elasticity tensors  

        Here, we provide the (pseudo)elasticity tensor (š) in the Eulerian description required to update the 

consistent Jacobian matrix (›), i.e., the DDSDDE variable in ABAQUS. (Note that although the term 

“elasticity tensor” is used here in accordance with its literature definition, the elasticity tensor also contains 

inelastic contributions within the pseudoelasticity framework.) For the purpose of computational 
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implementation, it is more customary to decouple š into volumetric and isochoric elastic responses as 

follows: 

š = š€•[ + šZ[\. (22) 

Before š€•[ can be obtained, its counterpart must be found in the Lagrangian description as  

ℂ€•[ = |�f:G,] ��,��, g, �;
|G |G . (23) 

        Performing a ℂ€•[ push-forward operation with A gives š€•[ in the Eulerian description. Then, taking 

the derivative of equation (14) with respect to G and applying the chain rule to equation (13), one can obtain 

a relation for the isochoric part of the (pseudo)elasticity tensor in the Eulerian description as follows:  

š€•[ = h ‘•gcšc7 + |gc|Ψ]c7  :E•c
7 ⨂ E•c7;• + • |�c|Ψ]c7 ‚E•c

7 ⨂ E•c€ƒ„•’
c m _,a,•

. (24) 

       Note that when equation (14) is differentiated with respect to G, the term :1 − �c; |•c€ƒ |G⁄  appears 

and is always zero during loading and unloading (i.e., scalar :1 − �c; = 0 during loading and tensor 

|•c€ƒ |G⁄ = ž during unloading and reloading). Note that although the inelastic part of the 

pseudoelasticity tensor is always zero during loading, it is determined using equation (24) during unloading 

and reloading below the maximum deformation. 

      The description of tensor (22) is completed using the definition of the volumetric elasticity tensor as 

follows: 

šŸ ¡ = i† + ¢£
¢¤q :¥ ⨂ ¥; − 2†¦. (25) 

 

3.6. Energy functions 

The functional forms of the decoupled potentials shown in equation (5) are defined as follows:  
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Ψb = §¨
�§© �exp:ª�:I6∗ − cos:2J;;�; − 1 ! + ª�:I6∗ − cos:2J;;�, (26) 

as proposed by [39] to account for the contributions of the matrix–fiber mechanical interaction, and  

Ψ_ = «:I� − 3; − †:E − 1;,       Ψa = ¬¨
� ∑ :Ic − 1;�cm1,5 , (27) 

where a linear function with respect to invariant I� and a quadratic function with respect to invariants I1 

and I5 are considered for the matrix and fibers, respectively. Constants «, ®�, ª�, and ª� are positive 

material parameters for the stress dimension, and ª� is a positive dimensionless parameter. Scalar † serves 

as an indeterminate Lagrange multiplier that can be identified as the hydrostatic pressure. 

The functional form of the volumetric strain energy (UZ[\) is computed to check for convergence problems 

as follows: 

UZ[\:E; = 1
4 ¯:E� − 1 − 2lnE;, (28) 

where ¯ is the compressibility parameter with the dimension of the stress (see [53] for details).  

        Moreover, the decoupled forms of the functions in the inelastic energy dissipation (n) (recall Eq. (7)) 

are assumed to be the same as the previously described decoupled elastic potentials but with different 

material parameters. Thus,      

nb = §ẍ
�§©x Šexp ±ª�o iI6̅∗

o − cos:2J;q�² − 1 Ž + ª�o iI6̅∗o − cos:2J;q�, (29) 

and 

n_ = «o iI�̅o − 3q ,       na = ®�o2 h iIc̅o − 1q� ,
cm1,5

 (30) 

where «o , ®�o, ª�o, and ª�o are positive material parameters with the dimension of stress and ª�o is a positive 

dimensionless parameter. 
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4. Finite element implementation 

4.1. Algorithmic implementation  

        Here, the algorithmic stress and (pseudo)elasticity tensors required to implement the pseudoelastic 

model are explained within the user-defined UMAT subroutine in the commercial ABAQUS software. 

Consider discrete time step t ∈ �t“´�, t“!, where t“´� and t“  denote the current and previous time steps, 

respectively, and corresponding energies µΨ]c7“´�,  Ψ]c7“¶, d = �M, F, t�. If the current energy (Ψ]c7“´�) is 

greater than the corresponding energy at the previous time step (t“) then no damage occurs within the 

interval. Otherwise, it is assumed that damage evolution occurs; hence, the Mullins softening invariants 

(gc) and the residual strain invariants (�c) are updated. The corresponding algorithm is presented in 

Appendix A.  

        For 3D solid elements, the Jaumann rate of the Kirchhoff stress tensor is required in the ABAQUS user-

defined UMAT subroutine. Corresponding to this tensor is a fourth-order tensor represented by ›, which 

is a consistent Jacobian matrix referred to as the DDSDDE variable in the UMAT user material subroutine 

and is given by  

  › = š + ℍ,         :ℍ;c¸¬¡ = �
� ‚¹c¬~̧ ¡ + ¹̧ ¡~c¬ + ¹c¡~̧ ¬ + ¹̧ ¬~c¡„. (31) 

       Spatial tensor š always exhibits both minor symmetry :š;c¸¬¡ = :š;¸c¬¡ = :š;c¸¡¬  and major 

symmetry š = šº  or :š;c¸¬¡ = :š;¬¡c¸ . The same symmetries can be assumed for tensor ℍ. The algorithm 

for constructing the stress and (pseudo)elasticity tensors is presented in Appendix A. 
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5. Results 

5.1. Material and damage parameters 

        As discussed in Sections 2.2 and 2.3, the underlying mechanism producing the Mullins softening and 

permanent strain are attributed to matrix–fiber interfacial debonding and are modeled using the matrix–

fiber interaction potential described in Section 3.2. Therefore, the pseudoelastic energy introduced in 

equation (6) is reduced to  

f:G,] ��,��, g, �; = Ψ_
7 :Ĝ; + Ψa

7:G,] ��,��; + jgbΨb
7:G,] ��,��; + kb:gb;l −

�:1 − �b; nb:Ĝo, ��, ��; + pb:�b;!, 
(32) 

where the elastic energy functions defined in equations (26) and (27), the inelastic energy function (29), 

and the Mullins softening and residual stretch variables are given in equations (17) and (18), respectively. 

In equation (32), the inelastic Cauchy stress corresponding to Eq. (14) is therefore defined as follows: 

•€•[ = •_7 + •a7 + ‚gb•b7 − :1 − �b;•b€ƒ„. (33) 

        The stress function (•_7 ) in equation (33) corresponds to the elastic response of the matrix and is fitted 

to the experimental data given in Fig. 3. Thus, the fiber properties are obtained by fitting the stress function 

(•_7 + •a7) to the orange curve shown in Fig. 3 corresponding to the extension of composites in the fiber 

direction. Then, by retaining the matrix and fiber parameters (ª�7 and ®�, respectively), the elastic stress 

function corresponding to the matrix–fiber mechanical interactions (•b7) is fitted to the primary loading 

path presented in Fig. 2(a). Mechanical interaction parameters ª�, ª�, and ª� and the matrix and fiber 

parameters listed in Table 1 were thereby obtained independent of the damage parameters, which is an 

important advantage of the pseudoelasticity models described in [20,21].  
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Table 1. Material parameters obtained using inelastic model. 

Contribution      μ, MPa     k1, MPa     ª�, MPa      ª�, −     ª�, MPa 

 Matrix                0.40 

 Fiber                                  227.0         

 Matrix–fiber interaction                      0.02496    2.0364     0.8948 

 

        By retaining the elastic material parameters listed in Table 1, Eq. (33) is fitted to the entire loading 

history of the cyclic loading–reloading stress–stretch results given in Fig. 2(a). For this purpose, the damage 

parameters are calibrated through inverse finite element modeling based on an FEM-model of the test 

samples using the optimization code LS-OPT employing the least-squares algorithm to minimize the 

discrepancy between the model results and the experimental data by the function as follows: 

Δ =h ¼k‹̧[½¾\ − k½̧Œ¿Œ¼�“
¸m� , (34) 

where k¸  are the components of a force–displacement vector corresponding to the data points numbered 

by ™. The boundary conditions and specimen geometry used in the FEM simulations are shown in Fig. 8. 

One end of the sample was fixed and the other was extended while it was constrained to move transverse to 

the loading. The corresponding damage parameters are listed in Table 2. The fitting results are compared 

with the experimentally determined cyclic stress–stretch behavior of the material, as shown in Fig. 9. The 

proposed constitutive model appears to be able to reproduce the rich material complexities such as 

nonlinearity, anisotropy, Mullins softening, and permanent strain. Parameters ª�o, ª�o, ª�o, and ™•  

effectively controlled the anisotropic damage-inducing permanent strain. The Mullins-softening-induced 

damage evolution is controlled by •̂  and %•, where larger values indicate slower damage evolution. 
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Fig. 8. Boundary conditions and specimen geometry used for FEM simulations. 

 

Table 2. Damage parameters obtained using inelastic model. 

Contribution                          •̂, −     %• , MPa      ª�o , MPa      ª�o , −     ª�o , MPa      ™• , − 

Matrix–fiber debonding         1.02         0.18             0.455         0.50          0.05             8 

 

 

 
 

Fig. 9. Model fitting obtained for cyclic tensile tests of composite prepared with fibers oriented at [+45/−45].  
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        To validate the predictions of the proposed inelastic damage model, cyclic stress–stretch experimental 

responses obtained for asymmetric deformations (shown in Fig. 2(b)) are compared with the simulation 

(FEM) results obtained for the composite prepared with fibers oriented at [+30/−60] and subjected to 

tensile deformation in the �� direction to increase the stretch levels. The material and damage parameters 

listed in Table 1 and Table 2 are used. The loading–reloading results presented in Fig. 10 show reasonable 

agreement. Using exact elasticity tensors rather than approximate ones provided a robust computational 

framework that allowed simulations to quadratically converge very quickly near the solution point. 

 
 

Fig. 10. Verification of model performance by comparing FEM and experimental results obtained for composite 

prepared with fibers oriented at [+30/−60] and then subjected to cyclic uniaxial extensions in /� direction.  

 

         The local stretch maps captured using the DIC method (see Fig. 7) are compared with the FEM 

simulation results obtained for the composite prepared with fibers oriented at [+45/−45] during the cyclic 

tensile test in the �� direction, as explained in Section 2.4. Fig. 11(a) and (b) show the results corresponding 

to the maximum local stretches obtained at loading and the permanent stretches obtained after unloading, 

respectively. Overall, the FEM and experimental results agreed well, both qualitatively and quantitatively. 
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However, there is a slight discrepancy between the FEM and experimental results obtained near the 

clamping area, which can be explained by local clamping effects during testing. Although a clamping system 

had been designed by applying clamping forces to five areas of the samples to avoid specimen slippage in 

the loading direction, some minor transverse slippage clearly still occurred at the clamps. These effects 

were, of course, not included in the model because a detailed study of the clamping effects would have been 

beyond the scope of the present study.  
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Fig. 11. Comparison of FEM simulation results to full-field stretch maps captured by DIC for composite prepared 

with fibers oriented at [+45/−45] and then subjected to cyclic tensile tests in /� direction: (a) loading and (b) 

unloading exhibiting profound residual deformations. 

 

6. Discussion and conclusion  

6.1. Experimental 

        The experimental observations indicated that the fiber-reinforced soft composites exhibited complex 

properties such as nonlinearity, anisotropy, Mullins softening, and permanent strain. The contribution of 

the microstructural evolution to mechanical property degradation was discussed based on microscopically 

visible matrix–fiber interfacial debonding. The results of the cyclic tensile tests on the pure matrix, fibers, 

and composites implied that the underlying mechanism producing the Mullins softening and permanent 

deformations could be attributed to matrix–fiber interfacial debonding and not to the matrix or fibers. This 

finding was supported by matrix–fiber interfacial debonding observed in the micrographs captured during 

the in-situ tensile tests and was reflected in the residual deformations recorded in the stretch maps by digital 

image correlation after unloaded samples. In-situ optical micrographs indicated different microstructural 

evolutions: continuous matrix–fiber debonding along the fibers barely visible after unloading and 

discontinuous pointwise matrix–fiber debonding starting from the top vicinity of the fibers and continuing 

to the matrix. The information obtained from the experiments may serve as useful input parameters for 

modeling.  
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6.2. Modeling 

        We presented a model covering almost the entire phenomenology of hyperelastic fiber-reinforced 

materials; that is, nonlinearity, anisotropy, Mullins softening, and permanent deformations while being 

proposed for high efficiency and robustness in finite element application. Mullins softening and permanent 

deformations were described using a phenomenological matrix–fiber damage potential, which were 

physically more meaningful because mechanical properties degraded owing to microscopic matrix–fiber 

interfacial debonding. The distinct contributions of the individual composite constituents to the elastic and 

inelastic mechanical behaviors of cyclically loaded materials were elucidated based on the following key 

points. (i) Particular elastic and pseudoelastic energy functions were primarily used to distinguish between 

the respective contributions of the individual constituent materials. (ii) Pseudoelasticity was adopted as a 

damage framework to obtain damage contributions from any of the individual constituent materials 

independent of the elastic properties. (iii) Separate damage variables were used to distinguish between 

inelastic mechanical behaviors such as Mullins softening and permanent strain. The model implemented 

in a user-defined subroutine was capable of reproducing inelastic behaviors as a result of the matrix–fiber 

debonding resulted in considerably degraded mechanical properties. 
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Appendix A. Algorithmic implementation of inelastic damage model. 

Algorithm A.1. Computation of stress and elasticity tensors considering stress softening and permanent 

deformation in the context of pseudoelasticity, as implemented using UMAT user-defined interface in ABAQUS 

software.  

 Subroutine UMAT 

  (1)   Input: 

          deformation gradient A at each integration point (DFGRD1), properties (PROPS),           

          number of direct and shear stress components: (NDI) and (NSHR), respectively.        

  Start 

         compute µΨ] d0™+1,  Ψ] d0™¶, d = M, F, τ, corresponding to a specific time interval �t“´�, t“! 
  (2)  Update Mullins softening and residual strain variables 

 

    if   Ψ]c7“´� ≥  Ψ]c7“ then          :d = M, F, τ; 

         Ψ]c‹Œ•“´�=Ψ]c7“´�  →    Âc‹Œ• = Ψ]c‹Œ•“´�     and       Ĝo = Ĝ“´�         

         gc = 1,       �c = 1,      |gc |Ψ]c7⁄ = 0,       |�c |Ψ]c7⁄ = 0,        
       
    else  

          gc = 1 − �
=” erf j �Ã” ‚Âc‹Œ• −Ψ]c7“´�„l 

          �c = �
¿ŒƒÄ :�; tanh •±Å

] ”ÆÇÈ¨Â”ÉÊË²
“”• 

          I�̅o = trĜo, I1̅o = Ĝo: �⨂�, I5̅o = Ĝo: �⨂�, I6̅o = Ĝo:�⨂� 

          n“´�:Ĝo , ��,��; = ±n_ iI�̅oq + na iI1̅o , I5̅oq + nb iI6̅∗oq²“´� 

     end if 

  (3)  Update elastic and inelastic stresses  

    if   Ψ]c7“´� ≥  Ψ]c7“ then          :d = M, F, τ; 

          •€•[“´� = ∑ •c7“´�c m _,a,b  

          •“´� = :•€•[ + •Z[\;“´�      →      STRESS   

    else 

          •]c€ƒ“´� = 2 ET�A ¢o”ÇÈ¨¢Ĝx  AH 

          •c€ƒ“´� = ℙ ∶ •]c€ƒ“´�  
          •€•[“´� = ∑ ‚gc•c7“´� − :1 − �c; •c€ƒ“´�„c m _,a,b   

          •“´� = :•€•[ + •Z[\;“´�      →      STRESS   

    end if 

  (4)  Update (pseudo)elasticity tensor 

         compute fourth–order matrix ‚ℍ€ÍÎ\„“´� = �
� ‚σ€ÎδÍ\ + σÍ\δ€Î + σ€\δÍÎ + σÍÎδ€\„“´�          

         compute Eulerian description of fictitious tensor š“´�7 = 4 A ]A ] ¢©Å] ”ÆÇÈ¨¢G ¢G  ÂHÂH :d = M, F, τ; 
         š“´�7 = ∑ ±ET�ℙ ∶  šc7“´�: ℙ + �

� tr‚•]c7„“´� ℙ − �
� ‚‡ ⨂ •c7“´� + •c7“´�⨂ ‡„²cm_,a,b  

         compute š€•[“´� = ∑ ±Šgcšc7“´� + ¢Ñ”¢Å] ”Æ  ‚E•c7 ⨂ E•c7„“´�Ž + Š ¢Ò”¢Å] ”Æ ‚E•c7 ⨂ E•c€ƒ„“´�Ž²c m _,a,b  

         compute Eulerian description of (pseudo)elasticity tensor š“´� = :š€•[ + šZ[\;“´� 

         calculate tangent stiffness matrix, i.e.,  ›“´� = š“´� +ℍ“´�     →      DDSDDE  
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 End Subroutine UMAT 
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a b s t r a c t 

This study identifies a unique performance benefit in flexible composite laminates through evaluation of the load- 
coupling potentials once an external stimulus triggers extensional loadings. A combination of soft elastomers with 
stiff fibers can be used to develop a composite with distinct direction-dependent properties. Unique exponential 
flexibility changes in some directions and extreme linear stiffness in others are observed. These tunable mul- 
tidirectional flexibilities can be achieved at different flexibility ratios tailored to a wide range of applications, 
such as extension-twist coupling in composite laminates. To this end, the conflicting design requirements such 
as decoupling ratio between deformation modes, i.e. extension and twist, and torsional flexibility are studied for 
laminates with different ply thicknesses, stacking directions, constituent materials, and numbers of plies. A design 
space is then introduced and used to evaluate the capability of laminates for effective load-coupling behaviors. 
It is also demonstrated that significant differences in the (linear) stiffness of the constituent materials result in 
highly nonlinear mechanics in hyperelastic fiber-reinforced composites, mainly owing to the contributions of the 
matrix-fiber mechanical interaction. 

1. Introduction 

Hyperelastic fiber-reinforced materials are generally classified as ei- 
ther organic (including myocardium and arterial walls) or inorganic (in- 
cluding fiber-reinforced elastomers). From early history to the present, 
the highest functionalities have been assigned to healthy fibrous or- 
gans, while distinct functionalities —for example, load coupling behav- 
iors —have been supported through the build-up of inorganic, fiber- 
reinforced composites. Most works in the field of biomaterial mechan- 
ics have focused on the modeling and characterization of these mate- 
rials, while functionality is an additional consideration for designing 
inorganic fiber-reinforced composites. Past efforts in the study of clas- 
sic composites were mostly devoted to harnessing fiber-reinforced com- 
posites’ extreme properties, such as their high tensile strength and low 

elongation. As reinforcements, glass, polyester, and carbon fibers have 
a high tensile strength, and, within their operating limits, they show 

very little deformation. When they are embedded in a soft elastomer, 
it harnesses their key characteristics in an exceptionally flexible form, 
enabling the development of fiber-reinforced materials in soft applica- 
tions. These applications include pressure-controlled robotic actuators 
[1–4] , soft wearable systems [ 5 , 6 ], morphing aircraft wings [7–10] , ar- 
tificial muscles [ 5 , 11 , 12 ], elastofluidics [13–15] , aerospace applications 

∗ Corresponding author. 
E-mail address: mohammad.mansouri@pccl.at (M.R. Mansouri). 

[16–18] , and energy-absorbing composite systems [ 7 , 19 ]. Some of these 
applications are shown in Fig. 1 . 

The properties of fiber-reinforced composite laminates can be tai- 
lored with stacking sequence of layers and selection of appropriate ma- 
terials to produce a desired load-coupling behavior such as extension- 
twist coupling, which is a frequently encountered phenomenon in struc- 
tures [20] . This study identifies a unique performance benefit in flexible 
composite laminates through evaluation of the load-coupling potentials 
once an external stimulus triggers extensional loadings. To this end, the 
conflicting design requirements as decoupling ratio between deforma- 
tion modes, referred to herein as extension and twist in laminates, and 
torsional flexibility are studied. They could be used in products such as 
morphing systems, which are characterized by conflicting requirements 
like “exhibit low in-plane stiffness while maintaining large strain capa- 
bility and exceptional flexibility. ” In particular, material anisotropy is 
exploited in order to maximize the load-coupling potential of compos- 
ite laminates. Therefore, as a basis, the direction-dependent nonlinear 
material behavior of selected possible composites is characterized and 
modeled. These developed tools and methods pave the way for establish- 
ing a completely different view of these composites, offering immense 
potential for possible applications and the introduction of a new class 
of intelligent materials. 
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Fig. 1. Some applications of soft reinforced materials: a) wearable robots [5] ; b) biocompatible materials [ 21 , 22 ]; c) artificial muscles [23] ; d) soft actuators [24] ; 
and e) morphing wings [25] . 

Fig. 2. (a) Micrographs of an undeformed region with two fiber families shown by the directions M and N ; (b) fiber directions after deformation shown by m and 
n ; (c) schematic illustrations of the relation between fiber angle at undeformed and stretched configurations, where E 1 in the orthogonal coordinate system { E 1 , E 2 } 
is the bisector of fibers at undeformed state. A fixed coordinate system such as { e 1 , e 2 } is applied for specifying the loading in the e 1 direction. 

2. Experimental 

2.1. Materials and methods 

Hyperelastic single-lamella fiber-reinforced composites with con- 
stituents including polydimethylsiloxane (PDMS) as a matrix and end- 
less, twill woven glass fibers (GF) as reinforcement are manufactured. 
The glass fiber is provided from CS Interglas AG (Erbach, Germany) as 
E-type fibers with a standard industrial finish (FK144) and the classifi- 
cation EC9–69 × 5t0 with a twine thickness of about 68tex. The mean 
fiber diameter of a single filament is about 10 𝜇m and an area weight 
of 200g/m 2 . The PDMS used here is an addition-curing two-component 
system with a hardness of 35 Shore A, a density of 1.02 g/cm 3 and a 
viscosity in an uncured state of 3500 mPas and pot life of about 90 min 
at room temperature. The specimens are manufactured using vacuum 

assisted resin infusion (VARI) with a vacuum pressure of 20 mbar. The 
woven fabric is placed in a mold and then exposed to a matrix flow. 
After impregnation, the composite part is cured at 70 ◯C for 1 h in a 
temperature chamber. 

Samples contain two fiber families initially aligned in the preferred 
directions M = cos 𝜃E 1 + sin 𝜃E 2 and N = cos 𝜃E 1 − sin 𝜃E 2 , where the 
orthogonal coordinate system ( E 1 , E 2 ) is defined so that E 1 is the bisector 
of fibers at undeformed state and the angle 𝜃 represents half of the angle 
subtended by M and N in this system. For simplicity, a fixed coordinate 
system such as { e 1 , e 2 , e 3 } is adopted for specifying the loading in the 
e 1 direction so that the two fiber families in this system are defined as 
M = cos 𝛼 e 1 + sin 𝛼e 2 and N = cos 𝛽e 1 + sin 𝛽e 2 , 𝛼 > 0 and 𝛽 < 0. In this 
coordinate system, the 𝛼 and 𝛽 are angles associated respectively with 
the preferred fiber orientations M and N constructed with respect to the 

loading direction e 1 . The angle between deformed fibers is indicated by 
𝜙 in Fig. 2 (b). The relations between ( 𝛼, 𝛽, 𝜃, 𝜙) are illustrated in Fig. 2 . 

Samples with an aspect ratio of 𝜉 = 3/tan 𝛼 are prepared to have a 
thickness of approximately 0.4 mm, where l 0 = 3 a /tan 𝛼 is the length 
and a = 30mm denotes the width of the samples, respectively. The sam- 
ple geometry is defined such that, at least, one end of each featured 
fiber inside the evaluation area is free-ended, and therefore no clamp- 
ing effects have to be considered. Composites with a preferred fiber ori- 
entation defined by [ + 𝛼 − 𝛽], such as [ + 30 − 60] and [ + 45 − 45] 
are subjected to tensile tests in the e 1 direction. Composites with the 
fiber orientation [ + 0 − 90] are stretched in one of the fiber directions 
(both fibers have the same contributions to the deformation). For this 
fiber orientation, the sample aspect ratio is not critical and is adopted 
here as 𝜉 = 3 with l 0 = 90mm and a = 30mm. The pure matrix is also 
characterized using tensile tests on PDMS material (for a detailed dis- 
cussion on the constitutive modeling and experimental characterization 
of isotropic elastomers, the reader is referred to, for example, [26] and 
[27] and references therein). 

The average stress-stretch response of three samples cut through 
from the same sheet is reported for each setting. Tests are carried out 
by the universal testing machine Z250 (Zwick Roell GmbH & Co. KG) 
at a quasi-static rate of 10 mm/min. To map the local stretches of the 
samples, 3D full-field, high-resolution images are captured via a dig- 
ital image correlation (DIC) system (Mercury BLFY 050 camera with 
Mercury RT software, Czech Republic) including a spray pattern on the 
specimen surface suitable for the high elasticity of the matrix material. 
Within the deformation range applied on the composites, up to a strain 
of 30%, no delamination is observed on the sprayed patterns. In situ 
microscale tests are performed to show the evolution of the fiber angle 
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Fig. 3. Experimental stress-stretch results showing that the 
combination of a soft matrix with stiff fibers provides excep- 
tional, tunable flexibilities in soft composites. 

during loading experiments as well as the fiber distortions at their inter- 
sections, both contributing to the mechanical interaction. To this end, 
the transparent PDMS-GF samples with fiber orientation [ + 45 − 45] are 
placed in a custom-designed in situ tensile test device, while they are un- 
der an optical microscope (Alicona InfiniteFocusG5 Plus, Austria) with 
an objective magnification of 100x. 

2.2. Tunable flexibility and 3D full-field stretch analysis 

The average stress-stretch results of the PDMS-GF composites with 
the preferred fiber orientations as [ + 45 − 45] and [ + 30 − 60] are pre- 
sented in Fig. 3 . Included in this figure are the average stress-stretch 
responses of the matrix and the composite [ + 0 − 90]. The stretch 𝜆1 is 
calculated based on changes in the length of the samples in the loading 
direction e 1 . Accordingly, 𝜆1 = l / l 0 , where l is the length of the sample 
in the deformed configuration, while l 0 denotes its undeformed length. 
3D full-field, high-resolution images are captured via the DIC method. It 
is carried out for the samples with fiber orientations such as [ + 45 − 45] 
and [ + 30 − 60] during tensile tests on PDMS-GF composites. The cor- 
responding local stretch maps are depicted respectively in Fig. 4 (a) and 
(b) for specific stretches, showing inhomogeneous deformation fields in 
the composites. 

Fig. 3 indicates that the combination of a soft matrix with stiff fibers, 
having linear elastic behaviors within the operating limits of the compos- 
ite, enables us to build up composites with tunable exponential flexibili- 
ties. This unique flexibility, which changes exponentially in some direc- 
tions and shows extreme linear stiffness in other directions, is valuable 
in many potential applications, such as soft wearable robots, morphing 
aircraft, isolation mounts, and marine structures [ 1 , 2 , 5 , 28 ]. It should 
be mentioned that, in addition to orienting the fibers, one can tailor the 
properties of the constituent materials to achieve a much wider range 
of flexibility ratios. 

2.3. Physical meaning of mechanical interaction 

The fiber-reinforced materials are commonly modeled and charac- 
terized in terms of their constituent materials, while their matrix-fiber 
mechanical interaction has not yet been evaluated satisfactorily in the 
literature. It is noted that the term ‘matrix-fiber mechanical interaction’ 
is concisely referred to herein as both the fiber-fiber and the matrix- 
fiber mechanical interactions. The latter is a result of the angle change 
between deformed fibers, which trigger the shear interaction of the ma- 
trix/fiber interface, while the former manifests itself in the form of the 

distortion of the fibers at their intersections. The evolution of the fiber 
angle in a specific region of the sample [ + 45 − 45], wherein the fibers 
are free-ended and therefore they can rotate easily, are indicated in 
Fig. 5 (a) using the micrographs captured during the in situ tensile tests. 
Moreover, the fiber distortions at their intersections are illustrated in 
Fig. 5 (b) for three different regions. The micrographs are indicative of 
the angle change between deformed fibers and the significant amount 
of the fiber distortions at their intersections, which both contribute to 
the matrix-fiber mechanical interaction. 

3. Modeling and material parameters 

3.1. Constitutive model 

A unified invariant-base constitutive model, named Matrix-Fiber- 
Interaction (MFI) model, is employed to take into account particularly 
the matrix-fiber mechanical interaction in fiber-reinforced elastomers 
with two fiber families. The model is decomposed into three contribu- 
tions: matrix, fiber, and matrix-fiber mechanical interaction [29] . The 
general form of the MFI strain-energy density function is defined as 

Ψ( 𝐂 , { 𝐌 , 𝐍 } ) = ΨM 

(
𝐼 1 
)
+ ΨF 

(
𝐼 4 , 𝐼 6 

)
+ Ψτ

(
𝐼 ∗ 
8 

)
, (1) 

where the subscripts M, F, and 𝜏 denote the contributions of the matrix, 
the fiber, and the matrix-fiber mechanical interaction, respectively. In 
the equation above, I 1 = tr C , where C = F T F is the right Cauchy-Green 
strain tensor, and F is the deformation gradient. The extensional-based 
invariants with definitions I 4 ( M ) = C : M ⊗M and I 6 ( N ) = C : N ⊗N are 
employed by the fiber potential ΨF . 

In [30] a relation for the current angle between deformed fibers is 
presented as the left-hand side of the following equation 

cos 𝜑 = 
𝐂 ∶ 𝐌 ⊗ 𝐍 

√
𝐂 ∶ 𝐌 ⊗𝐌 

√
𝐂 ∶ 𝐍 ⊗ 𝐍 

= 
𝐼 8 

√
𝐼 4 𝐼 6 

= 𝐼 ∗ 
8 (2) 

An angular-base invariant is considered in [29] such as the right- 
hand equation by replacing the invariants I 4 , I 6 (defined above), and 
I 8 ( M , N ) = C : M ⊗N in Eq. (2) . Because the matrix-fiber mechanical in- 
teraction is a result of the fiber rotation, the angular-base invariant 𝐼 ∗ 

8 
is employed by the mechanical interaction potential Ψ𝜏 . The functional 
forms of the potentials in Eq. (1) are given by the neoHookean potential 
[31] for the matrix and a quadratic function for the fibers as 

ΨM = μ
(
𝐼 1 − 3 

)
− 𝑝 ( 𝐽 − 1 ) , ΨF = 

𝑘 1 

2 

∑

𝑖 =4 , 6 

(
𝐼 𝑖 − 1 

)2 
(3) 
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Fig. 4. 3D full-field stretch maps captured by 
DIC for composites subjected to the tensile tests 
in e 1 direction: (a) composite with fiber orien- 
tation [ + 45 − 45]; (b) composite with fiber ori- 
entation [ + 30 − 60]. 

Fig. 5. (a) Representative micrographs showing the evolution of the fiber angle during the deformation of the composite [ + 45 − 45]. (b) Distortions of the fibers 
at their intersections. 

and 

Ψτ = 
𝑐 1 

2 𝑐 2 

[
exp 

(
𝑐 2 
(
𝐼 ∗ 
8 − cos ( 2 𝜃) 

)2 )
− 1 

]
+ 𝑐 3 

(
𝐼 ∗ 
8 − cos ( 2 𝜃) 

)2 
. (4) 

The constants c 10 , k 1 , c 1 , and c 3 are positive material parameters 
with the dimension of stress, while c 2 is a positive, dimensionless pa- 
rameter. The scalar p serves as an indeterminate Lagrange multiplier 
that can be identified as hydrostatic pressure. The constant cos (2 𝜃) is 
the cosine of the current angle between fibers in the undeformed con- 
figuration. 

3.2. Finite element modeling 

The unified invariant-based MFI constitutive model is implemented 
in the FEM commercial program Abaqus using a user-defined interface, 
UMAT. The material is treated as nearly incompressible; therefore, for 
the finite element simulations, the model is decomposed into volumetric 
and isochoric parts. Accordingly, the Cauchy stress and elasticity tensors 
should be decoupled into volumetric and isochoric parts in an Eulerian 
description. The dimensions of the finite element models are 100 mm 

(length) × 20 mm (width) × 0.5 mm (thickness) for each ply. All the 
geometries are discretized with 3D reduced integration, eight-node lin- 
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Fig. 6. (a) Comparisons of the results obtained from the inverse finite element modeling (dash lines) and the tensile tests (solid lines) on composites with preferred 
fiber orientation [ + 45 − 45] in e 1 direction and [ + 0 − 90] in the fiber direction as well as the pure soft matrix. (b) Verification of the model performance via the 
comparison of the finite element results with experiments for composite with fiber orientation [ + 30 − 60] subjected to the uniaxial extensions in e 1 direction. 

ear solid elements with hybrid formulation (C3D8RH). Each layer of the 
composite laminates is discretized with a mesh size of 1 mm, and de- 
pending on the number of the plies the total number of elements varies. 
To see the effect of mesh refinement, three convergence tests are con- 
ducted adopting finer mesh sizes such as 1 mm, 0.9 mm, and 0.8 mm. It 
is figured out that additional mesh refinement does not affect the stress- 
stretch, moment, and twist angle results. To enforce the incompressibil- 
ity condition, we adopt a large value of the bulk modulus as 𝜅 = 10 5 

MPa. The model geometry and the boundary conditions used for the 
simulations are the same as those used initially in the experiments. 

3.3. Material parameters 

The material parameters are calibrated through inverse finite ele- 
ment modeling implemented in the optimization code LS-OPT employ- 
ing the least-squares algorithm to minimize the discrepancy between the 
model results and entered experimental data via the function 

Δ = 
∑𝑛 

𝑗=1 

‖‖‖
𝜙model 
𝑗 − 𝜙data 

𝑗 
‖‖‖
2 

(5) 

where 𝜑 j are the components of a force-displacement vector correspond- 
ing to the data points numbered by n . 

The material parameter of the matrix ( 𝜇) is obtained using the uni- 
axial tensile tests on the pure soft matrix (gray curve in Fig. 3 ). Then, 
keeping the matrix parameter, the material parameter of the fibers ( k 1 ) 
is determined using the results of the tensile tests on the composite with 
the preferred fiber orientation [ + 0 − 90] stretched in the fiber direction 
(orange curve in Fig. 3 ). Upon finding the material parameters of the 
matrix and fibers independently using the optimization code, the mate- 
rial properties of the interaction potential (i.e. c 1 , c 2 , c 3 ) are determined 
using the stress-stretch responses of the composite with the fiber orien- 
tation [ + 45 − 45] (blue curve in Fig. 3 ). It is carried out by the inverse 
finite element modeling and the results of all verifications are presented 
in Fig. 6 (a). In this figure, the solid lines represent the experimental 
data while the dash lines indicate the finite element results obtained 
by the optimization code. The material parameters of the matrix, the 
fibers, and the matrix-fiber mechanical interaction are listed in Table 1 . 
The behavior of the model for predicting the stress-stretch experimental 
responses of the non-symmetric deformations associated with the com- 
posite [ + 30 − 60] is illustrated in Fig. 6 (b). The boundary conditions 
for all simulations are those used initially by the experiments. Both plots 
indicate good qualitative agreements between the models and the test 
data. The model appears to be able to reproduce the rich complexities 
of the material, such as the nonlinearity and the anisotropy. 

Table 1 
Material properties of the PDMS-GF composite. 

Contribution 𝜇, MPa k 1 , MPa c 1 , MPa c 2 , − c 3 , MPa 

Matrix 0.40 

Fiber 227.0 

Interaction 0.02496 2.0364 0.8948 

4. Linear stiffness versus exponential flexibility 

As mentioned in the previous section, a combination of soft and stiff
materials with linear elastic properties results in composites showing 
a wide range of flexibility ratios, from extremely linear to exponential 
flexibilities. One explanation for the extremely linear properties of the 
composite is obviously related to the stiff fibers. However, to the best 
of the authors’ knowledge, little information exists on why a combi- 
nation of stiff fibers and a soft matrix with linear properties results in 
exponential flexibilities in fiber-reinforced composites. In order to ex- 
plain these differences, the features involved in the highly nonlinear 
mechanics of such composites are evaluated. To this end, the contribu- 
tions of the matrix, the fibers, and the newly introduced matrix-fiber 
mechanical interaction are evaluated during the uniaxial deformation 
of specific composites. The composites with the preferred fiber orienta- 
tions as [ + 45 − 45] and [ + 30 − 60], with mechanical behaviors given 
already in Fig. 3 and the material properties tabulated in Table 1 , are 
chosen here. The strain energy stored in the matrix ( ΨM ), in the fibers 
( ΨF ), and in the matrix-fiber mechanical interaction ( Ψ𝜏 ), as well as the 
total strain-energy density stored in the respective composites ( Ψ), are 
evaluated. The finite element results are provided in Fig. 7 (a) and (b) 
for composites with fiber orientations [ + 45 − 45] and [ + 30 − 60], re- 
spectively. In addition, the spatial distributions of the respective stored 
energies are depicted in the same figure for a stretch of 𝜆1 = 1.25. Al- 
though the constituent materials have linear mechanical behaviors (see 
Fig. 3 ), it is seen in both plots in Fig. 7 that the matrix and especially 
the fibers show nonlinear contributions in composites undergoing the 
specific deformations explained above. Nevertheless, as it is illustrated 
in these two figures, the mechanical interaction potential Ψ𝜏 contributes 
exponentially to the deformation, even more than the constituent ma- 
terials. It can now be stated that the highly nonlinear mechanics of the 
composites is mainly due to the contribution of the matrix-fiber mechan- 
ical interaction, namely, the feature involved in the unique exponential 
flexibility of the composites. 
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Fig. 7. Contributions of the constituent materials and matrix-fiber mechanical 
interaction to the exponential flexibility of the composites: (a) with preferred 
fiber orientation as [ + 45 − 45]; (b) with fiber orientation as [ + 30 − 60], sub- 
jected to uniaxial extensions in the e 1 direction. 

Note that, as it is apparent from Fig. 6 (a), the neoHookean and the 
fiber potentials presented in Eq. (3) stand close to the respective exper- 
imental results. Accordingly, it is expected that the contributions of the 
matrix, fibers, and mechanical interactions in the deformation of the 
composites presented in Fig. 7 have not been perturbed by each other. 

5. Load-coupling potentials 

The tunable flexibility of single-lamella composites discussed in pre- 
vious sections now can be exploited to exhibit beneficial load-coupling 
behaviors in fiber-reinforced laminates. Extension-twist coupling is one 
such characteristic. In this section, a set of conflicting requirements are 
addressed, based on which a design space is introduced to evaluate the 
effective load-coupling behaviors. The effect of structural variables on 
these parameters is then evaluated by performing a set of parametric 
studies. The possible extension-twist coupling potentials are then dis- 
cussed within the introduced design space. 

5.1. Conflicting requirements 

Based on the Classical Lamination Theory (CLT), the fundamental 
mechanism producing extension-twist coupling in laminated composites 
is a result of the in-plane extension-shear coupling associated with the 

off-axis plies [20] . In CLT, the relation between deformation modes (i.e., 
stresses and moments) with deformations (i.e., 𝜀 1 , 𝜀 2 ) are defined with 
[ A ], [ B ] and [ D ] matrices, which represent the in-plane, the coupling, 
and the flexural stiffness matrix of the laminate, respectively, that reads 

[ 
𝜎e 
M 

] 

= 

[ 
A 

B 

B 

D 

] [ 
𝜀 1 
𝜀 2 

] 

(6) 

Fig. 8 (a) schematically shows the coupling of deformation modes 
such as end moment ( M ) and longitudinal (engineering) stress ( 𝜎e ) as 
well as end twist ( Ω) in a composite laminate. These parameters, which 
may be addressed herein as conflicting requirements for designing lam- 
inates exhibiting effective extension-twist coupling behaviors, are in- 
dividually evaluated. Effective load-coupling behaviors necessitate the 
laminate to possess unique properties, the most important of which are: 
high output values of the end moment, high end-twist capability, and 
low longitudinal stress, so as to minimize the actuation force required 
for stretching the laminates. An application scenario that necessitates 
possessing these unique properties is morphing systems, wherein con- 
flicting requirements such as low in-plane stiffness while maintaining 
large strain capability and exceptional flexibility to achieve complex 
morphed shapes are highly desired. During a load-coupling process, the 
values of the parameters { M , Ω} are increasing; therefore, based on the 
definition above, they are not assumed to be conflicting requirements. 
On the other hand, an effective coupling behavior requires high torsional 
capability for low longitudinal stresses, which implies that the parame- 
ter set { 𝜎e , Ω} is a conflicting requirement. Admittedly, the same can be 
stated for the set { M , 𝜎e } in that these two parameters are highly cou- 
pled to each other, while it is not suitable for load-coupling applications. 
Accordingly, a new term M / 𝜎e is introduced here, which is called the de- 
coupling ratio. A higher degree of decoupling between end moment and 
longitudinal stress corresponds to the laminates showing more potential 
for load-coupling applications. The only parameter that remains is the 
torsional flexibility Ω, which is a desirable quantity for load coupling. 
Consequently, a design space represented by a diagram is considered in 
which its vertical axis denotes the decoupling ratio M / 𝜎e , while its hor- 
izontal axis shows the degree of torsional flexibility through Ω. In this 
work, effective load-coupling behaviors are studied within this design 
space. 

5.2. Parametric investigations 

Parametric studies are performed using the finite element analysis on 
2-, 3-, and 4-ply laminates with different ply thicknesses, stacking direc- 
tions, and constituent material properties to enhance the understanding 
of the relationship between end moment and longitudinal stress, as well 
as the relationship between the decoupling ratio M / 𝜎e and end twist Ω
during extension-twist deformations. The composite laminates are ob- 
tained by stacking a set of identical orthotropic plies where the ply fiber 
orientations are assumed to be [ + 15 − 5], [ + 30 − 60], [ + 45 − 45], 
[ + 60 − 30], and [ + 75 − 15] with respect to the loading direction e 1 , 
shown in Fig. 8 (b). As shown, the plies differ in terms of the preferred 
fiber orientations. The plies are numbered from 1 to 5; consequently, the 
stacking sequence of the composite lay-up shown in this figure reads 
[12,345]. As the fiber-dominated direction cannot accommodate any 
significant strain, the ply with the fiber orientation [ + 0 − 90] is not 
taken into account here. Lamella dimensions in the reference config- 
uration are 100 mm, 20 mm, and 0.5 mm for the length, width, and 
thickness, respectively, with an aspect ratio of 5. It should be noted that 
the aspect ratio should be chosen so that the two fiber families of each 
ply are not located in the two clamping areas at the ends of the strips. If 
they are, the free-ended fibers will not be able to rotate easily, and this 
will cause a fiber-stretching-dominated deformation to occur with no 
significant contribution toward the coupling of the deformation modes. 

Two series of simulations are performed on the laminates described 
above. In the first series, boundary conditions are set such that one end 
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Fig. 8. ( a) Extension-twist coupling of a composite laminate. (b) 
Composite lay-up with plies numbered from 1 to 5. An exemplary 
stacking sequence of plies [12,345] is shown. 

Fig. 9. Parametric investigations of the structural variables with respect to the results of displacement-control simulations for a specific displacement of 8 mm. 
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Fig. 10. An almost linear relationship between the decoupling ratio M / 𝜎e and 
the torsional flexibility represented by Ω with respect to the changes in the 
thickness of the plies and shear modulus of the matrix. 

of the laminate is fixed, while the opposite end is allowed to freely elon- 
gate and rotate along and about the e 1 direction, respectively. The val- 
ues of the longitudinal engineering stress ( 𝜎e = 𝜎/ 𝜆1 ) and end-twist ( Ω) 
are obtained from this particular boundary condition. In the second se- 
ries of simulations, the same boundary condition is applied, with the 
exception that the nodes on the face of the moving end are not allowed 
to rotate about the e 1 direction. Therefore, the values of the end moment 
( M ) are measured during the extension-twist coupling. All laminates are 
subjected to a uniaxial displacement of d = 8mm in the loading direc- 
tion, applied at the end face of the laminates. 

In Fig. 9 (a), with fixed values for both the ply thickness and the shear 
modulus of the matrix, the end moment M is plotted versus engineering 
longitudinal stress 𝜎e for a 2-ply laminate with different stacking se- 
quences. The effects of varying the ply thickness are shown in Fig. 9 (b) 
for a specific value of the shear modulus for the same laminate. More- 
over, considering now fixed values for ply thickness, the influence of 
shear modulus changes is depicted in Fig. 9 (c). Surprisingly, these three 
figures imply that the two parameters M and 𝜎e have linear relation- 
ships with respect to the changes in stacking sequence, ply thickness, 
and shear modulus of the matrix. The same findings are obtained for 3- 
and 4-ply laminates. In Fig. 9 (d), the results associated with a 3-ply lam- 
inate are provided; they show there exists a linear relationship between 
end moment and stress for given stacking sequences. Knowing now the 
linear relationship between M and 𝜎e , another set of parametric stud- 
ies is performed to understand the relationship between the decoupling 
ratio M / 𝜎e and end twist Ω with respect to the thickness and shear mod- 
ulus changes. The results shown in Fig. 10 follow almost linear increases 
in the decoupling ratio with an end twist for a 2-ply laminate. The same 
trends are observed for 3- and 4-ply laminates with respect to all possi- 
ble stacking sequences (not shown). 

5.3. Extension-twist coupling potentials 

Bearing in mind the discussion in the previous section concerning 
the existence of a linear relationship between M and 𝜎e as well as M / 𝜎e 
and Ω, the capability of a laminate for load-coupling applications can 
be now represented by only one point in the design space introduced in 
Section 5.1 . That is, a point on the referred diagram shows the potential 
of a specific laminate for simultaneous consideration of both extension- 
twist coupling and flexibility, both of which are highly desirable. 

The values of M / 𝜎e versus Ω are plotted in Fig. 11 (a), (b), and (c), for 
2-, 3-, and 4-ply laminates, respectively, subjected to the deformations 
described in the previous section. All possible stacking sequences are 
evaluated. The diagrams are plotted based on the maximum values of Ω
for all laminates (note that the decoupling ratio M / 𝜎e is constant during 
the deformation, see the previous section). A reference line as a deter- 
minative indicator is shown in all diagrams; it can be used to evaluate 
the load-coupling capability of a particular laminate. The reference line 
is adopted based on 4-ply laminates. A point close to and inclined to the 
end of this line shows a large amount of load-coupling potential with 

Fig. 11. Load-coupling potentials represented in a design space featuring a ref- 
erence line that can be used to evaluate the capability of the fiber-reinforced 
composite laminates for the extension-twist coupling behaviors shown for (a) 
2-ply, (b) 3-ply, and (c) 4-ply laminates with all possible stacking sequences. 
Its vertical axis denotes the decoupling ratio while the values of the torsional 
flexibility are aligned in the horizontal axis. 
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Fig. 11. Continued 

Fig 12. Comparison of the load-coupling potentials of 2-, 3-, and 4-ply lami- 
nates, considering all possible stacking sequences of the plies. 

simultaneous consideration of both extension-twist coupling and flexi- 
bility. It is generally observed that providing a higher degree of decou- 
pling between end moment and longitudinal stress gives rise to a much 
higher amount of flexibility. The points indicated by colored labels are 
associated with laminates showing a considerable amount of redirection 
of the forces, mainly due to the coupling between deformation modes. 
For instance, for a 3-ply laminate with the stacking sequence [345], see 
Fig. 11 (b), it follows that 𝜎laminate < 𝜎3 + 𝜎4 + 𝜎5 , which means the re- 

sultant stress in the laminate is less than the sum of the stresses in each 
of the respective plies obtained separately. 

For further comparisons, all the results are provided in a single di- 
agram in Fig 12 . Generally, an increase in the number of plies results 
in more load-coupling potentials. This diagram uncovers unique load- 
coupling potentials found in flexible composite laminates. These bene- 
fits can be gainfully exploited by designing composite laminates capable 
of supporting distinct functionalities in a controlled manner in new ap- 
plications. Applications such as morphing aircraft wings, artificial mus- 
cles, wearable systems, soft robotics, and marine structures, wherein 
the coupling between deformation modes and flexibility are highly de- 
sirable. 

Conclusion 

In this work, we have identified a unique performance benefit by 
evaluating the extension-twist coupling potentials in flexible reinforced 
composites. It is shown that a combination of soft elastomers with 
stiff fibers enables the build-up of composites with distinct direction- 
dependent properties, providing a wide range of tunable flexibility ra- 
tios, from extremely linear to highly exponential flexibilities. In order to 
explain these exponential flexibilities, the contributions of features that 
could possibly be involved in the highly nonlinear mechanics of such 
composites are evaluated. It is observed that, although the constituent 
materials have linear elastic mechanical behaviors (within the operating 
limits of the composite), they show nonlinear contributions in compos- 
ites undergoing specific deformations. Nevertheless, it is demonstrated 
that the mechanical interaction potential contributes exponentially to 
the deformations even more than constituent materials. It is concluded 
that the highly exponential flexibility of the composites is mainly due 
to the contribution of the matrix-fiber mechanical interactions. 

In order to exploit the tunable flexibility of fiber-reinforced compos- 
ites for effective load-coupling behaviors such as extension-twist cou- 
pling, a set of conflicting requirements are evaluated. As a result, a de- 
sign space is introduced through which the capability of a laminate can 
be evaluated for load-coupling applications. The design space is repre- 
sented by a diagram in which the vertical axis denotes the decoupling 
ratio M / 𝜎e and the horizontal axis shows the degree of torsional flexi- 
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bility through Ω. In this space, the load-coupling potential of each lam- 
inate can be displayed by only one point on the referred diagram. For 
this reason, a series of parametric studies are performed whereby lin- 
ear relations are obtained between end moment and longitudinal stress, 
as well as between the decoupling ratio and torsional flexibility. It is 
shown that these relations are independent of structural variables such 
as ply thickness, constituent material properties, stacking direction, and 
number of plies. The referred diagram shows that, in general, providing 
a higher degree of decoupling between end moment and longitudinal 
stress gives rise to a much higher amount of flexibility, which is highly 
desirable for load-coupling applications. 
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