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Abstract  
 

This thesis introduces a numerical model for describing damage processes and 
fracture in a severely strain-hardened aluminum alloy. The macroscopic 
phenomenology and fracture mechanisms of sheet-metal specimens as well as thin-
walled structures have been studied experimentally and numerically for various 
loading conditions. The model’s essential feature is capturing different fracture 
mechanisms under various stress states. This has been accomplished by introducing 
a stress state dependent damage variable in the elasto-plastic constitutive behavior. 
A custom material model with nonlocal regularization has been implemented into 
commercial finite element software. The model has not only been applied to modeling 
uncracked and pre-cracked alloy specimens, but has also been put at test in a complex 
loading scenario occurring in a real world mechanical component. The model’s true 
predictive ability has been assessed thereby. The model predictions for various 
geometrical as well as loading scenarios are found to be in very good agreement with 
experimental findings. This has been accomplished even for fundamentally different 
damage and fracture processes without any changes of the material model. 
Furthermore, a simplified method for determination of material constants has been 
introduced that assists traditional inverse identification of parameters by artificial 
intelligence based on machine learning methods. All research findings together 
encourage the general use of the constitutive model for the design of aluminum and 
other sheet-metal structures.  

 

 

 

 

  



 

 
 

 

 

 

Zusammenfassung  
 

Diese Arbeit stellt ein numerisches Modell zur Beschreibung von 
Schädigungsprozessesen bis hin zum Bruch einer kaltverfestigten 
Aluminumlegierung vor. Die makroskopische Phänomenologie and die 
Bruchmechanismen von Blechproben sowie die dünnwandige Struktur wurden 
experimentell and numerisch für verschiedene Belastungsbedingungen untersucht. 
Das wesentliche Merkmal des Modells ist die Erfassung verschiedener 
Bruchmechanismen unter verschiedenen Spannungszuständen. Dies wurde durch 
die Einführung einer spannungszustandsabhängigen Schadensvariable in das elasto-
plastische Konstitutivgesetz des Materials erreicht. Ein benutzerdefiniertes 
Materialmodell mit einer nichtlokalen Regularisierung wurde in kommerzielle 
Finite-Elemente-Software implementiert. Das Modell wurde nicht nur zur 
Modellierung von ungerissenen and vorgerissenen Proben angewendet, sondern 
auch für komplexere Belastungsszenarien getestet, wie sie in realen mechanischen 
Komponenten auftreten. Die Vorhersagen des Modells stimmen für alle untersuchten 
Szenarien sehr gut mit den experimentellen Ergebnissen überein. Dies wurde auch 
bei grundlegend unterschiedlichen Schadens- and Bruchprozessen ohne Änderung 
des Materialmodells erreicht. Darüber hinaus wurde eine vereinfachte Methode zur 
Bestimmung von Materialkonstanten eingeführt, welche die traditionelle inverse 
Identifizierung von Parametern durch künstliche Intelligenz auf Basis der Methoden 
des maschinellen Lernens unterstützt. Die präsentierten Forschungsergebnisse 
bestätigen die allgemeine Anwendbarkeit des konstitutiven Modells für das Design 
von Aluminum- and anderen Blechstrukturen. 
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Chapter 1 

 

 Introduction 
 

luminum structures have shown their great potential for widespread 
applications, from large landmark buildings (e.g. all of the Empire State 

Building’s basic structures), over car bodies to tiny microelectronic components (e.g. 
microchips and capacitors). Today there is an increasing trend of making use of 
aluminum for vehicle structure design to minimize the weight while maximizing 
structural stiffness. Finally, with rapid development of the microelectronics industry, 
commercial off-the-shelf engineering aluminum alloys have become a standard in the 
production of electronic components. 

Ductility and favorable strength to weight ratio featuring aluminum alloys are central 
to designing safe and reliable components. Premature failures and excessive 
deformations are unwanted scenarios that disrupt the functionality and safety of the 
components. In preventing their catastrophic failures computational mechanics with 
its existing and emerging methods plays a central role. A constant quest for reliable 
material models that can predict large deformations, ductile damage over the 
structure’s life cycle and finally structural failure has given rise to worldwide efforts 
over the past decade to benchmark the computational methods available. Three 
Sandia Fracture Challenges (Boyce et al. 2014; Boyce et al. 2016; Kramer et al. 2019) 
have been launched by Sandia National Laboratories1, inviting the research groups to 
report the numerical predictions of deformation and damage in specimens of novel 
geometries without knowing the experimental outcome. While some results were 
more encouraging than others, they underscored the need for more sophisticated, yet 
useable models for real world applications, leaving the ductile fracture predictions 
challenging.  

                                                      
1 Sandia National Laboratories research group is a Federally Funded Research and 
Development Center (FFRDC). It operates as a contractor for the U.S. Department of 
Energy’s National Nuclear Security Administration (NNSA) and supports numerous federal, 
state, and local government agencies, companies, and organizations.  

A
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STATE-OF-THE-ART 

From a micromechanical point of view, ductile fracture comprises void 
generation, growth and coalescence to a macrocrack. The cylindrical void growth 
model (McClintock 1968b), the spherical void growth model (Rice and Tracey 1969), 
damage mechanics (Lemaitre 1985), porous plasticity (Gurson 1977; Tvergaard and 
Needleman 1984), fracture criterions like e.g. (Johnson and Cook 1985) all belong to 
the class of macroscopic models developed to describe the ductile fracture of metals. 
The fundamental mechanisms of ductile fracture are rather well understood (see e.g. 
the reviews of (Pineau et al. 2016; Benzerga et al. 2016; Besson 2009)). A detailed 
overview of different modeling approaches is given in Chapter 2. However, the 
choice of the material model to simulate ductile fracture in a metal structure is not 
straightforward due to the variety of the modeling approaches available.  

This work is concerned with the macroscopic aspect of fracture relying on the 
equivalent strain to fracture, i.e. the local maximum of the equivalent plastic strain 
just before the final failure (the instant of the material separation), referred to as the 
fracture strain in the continuation. Ductile fracture criteria based on fracture strain 
measurements attracted great attention by researchers both in distant (McClintock 
1968b; Rice and Tracey 1969; Hancock and Mackenzie 1976; Johnson and Cook 1985) 
and in more recent (Bao and Wierzbicki 2004; Bao and Wierzbicki 2005; Dunand and 
Mohr 2010; Roth and Mohr 2018) past. They provided ample evidence that the 
fracture strain of the material is not constant but rather a complex function of the local 
stress state evolution. This concept will be termed hereinafter the local fracture strain 
concept.  

To establish a fracture model for an uncracked structure, one can define a measure of 
the material damage D on the basis of the above (stress state dependent) local fracture 
strain concept. (Fischer et al. 1995) and (Gänser et al. 2000) referred to as damage 
indicator, as the damage is used to indicate the onset of a local crack in a structure. 
The damage indicator does not influence the material’s elastic-plastic behavior and 
thereby belongs to a so-called uncoupled damage concept. As much as this is 
computationally efficient, it is not sufficient for describing the damaging process. This 
requires more sophisticated approaches such as e.g. porous plasticity (Gurson 1977) 
or Lemaitre’s damage mechanics (Lemaitre 1985). These models are termed coupled 
damage concepts as they allow for strain softening due to damage in the elasto-plastic 
constitutive description of the material. They, however, require higher computational 
effort and more complex numerical implementation. 

As to the real world demands, the trend is clear. The industry seeks computational 
models that save time and costs to stay ahead of the competition. Design decision 
have to be made faster than ever. Consequently, rather simple models are preferred 
over more complicated and time-consuming models. For these reasons, uncoupled 
damage concepts are extensively used in applied mechanics so far (Bao and 
Wierzbicki 2004; Dunand and Mohr 2010; Khan and Liu 2012; Roth and Mohr 2016; 
Lou et al. 2017; Deole et al. 2018; Ha et al. 2018; McDonald et al. 2019). This work aims 



CHAPTER 1 Introduction       17 
 

 
 

at complementing the current standards in FE modeling of ductile materials, taking 
into account both state-of-the-art theoretical knowledge and industrial requirements. 

 

OBJECTIVES, APPROACHES AND NOVEL ASPECTS 

The objective of the thesis is to model the damaging process and fracture of a 
severely strain-hardened aluminum alloy prone to necking and strain localization at 
extremely small deformations. In doing so, it is essential to capture different material 
behaviors under different regimes, i.e. to describe different fracture mechanisms 
under various stress states. The numerical model has to ensure: 

 a tight correspondence of material model constants with experimentally 
measurable quantities to minimize the freedom in adjusting the model 
parameters, 

 physics-based model formulation along with using as few parameters as 
possible, 

 mesh independent finite element simulation of a ductile fracture, 
 applicability for practical purposes and 
 as simple as possible calibration from independent experiments. 

These aspects have already been elaborated in the literature individually, yet a single 
unified model that considers all of them is still missing. In order to meet the above 
objective, the fracture strain concept is selected among other modeling approaches 
because, on the one hand, it is simple enough to be easily calibrated as it relies on an 
experimentally measurable quantity (the strain). On the other hand, it is complex 
enough to capture the stress state dependency of the fracture process.  

However, in contrast to the former approaches from the literature, the present work 
reports the measured local fracture strains together with their associated length scale, 
that is, the length scale over which the experimental strains are averaged. This allows 
to consider the length scale in the computational model and implement a 
regularization that is a function of the length scale associated with directly 
measurable quantity, which is attempted here for the first time.  

Furthermore, the local fracture strain theory is applied here as a fully coupled concept 
in a damage mechanics framework, as opposed to the common practice of applying 
the fracture strain theory as an uncoupled damage concept.  

Eventually, an attempt is made to develop a computational framework that simplifies 
finding the material constants of the presented damage and fracture model. The 
experimental data of one single specimen is used together with machine learning 
methods to find a set of material constants applicable not only to the calibration 
specimen but also to other specimens covering various stress states.  

The material model is implemented into commercial finite element software and 
applied to aluminum structures experiencing a variety of failure mechanisms. All of 
them are computed using one and the same unique material parameter set.  
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Chapter 2 introduces a generally applicable damage-plasticity model fulfilling all of 
the requirements above. The governing equations of the coupled damage concept 
based on local fracture strain are given and the model calibration from basic ductile 
fracture experiments is presented.  

Chapter 3 demonstrates the theory from Chapter 2 by application to a complex 
engineering structure and reports experimentally validated numerical predictions of 
the fracture initiation. 

Chapter 4 assesses the fundamental generality of the theory on a pre-cracked 
structure by comparing experimentally observed and numerically calculated crack 
propagation paths. 

Chapter 5 simplifies the determination of the material model parameters by assisting 
the calibration procedure with machine learning methods. 

The approaches used in this work are based on continuum mechanics and comprise 
finite element (FE) modeling, classical plasticity theory and the principles of 
continuum damage mechanics. The following sections of Chapter 1 summarize the 
continuum mechanics background needed in this work for the finite element 
formulation of a structural engineering problem.  

 

 

1.1 Continuum mechanics foundations 

The basic equations of continuum mechanics are threefold. Firstly, kinematic 
relations describe the deformation and motion of a body. They relate the strain to 
displacement. Secondly, balance equations  describe the force equilibrium in the 
system. Thirdly, the stress is related to a kinematic quantity (e.g. strain) through 
constitutive equations . Here, a concise overview of the continuum mechanical 
foundation is presented as the basis for a finite element analysis of a ductile fracture 
within a continuum approach. Further details on continuum mechanics topics 
relevant to this thesis can be looked up in the literature, e.g. (Lemaitre and Chaboche 
1990; Bonet and Wood 1997; Wriggers 2008; Mase et al. 2010).  

 

KINEMATIC EQUATIONS 

Consider a continuous body 𝐵 occupying a domain Ω in a three-dimensional 
Euclidean space. For time 𝑡 = 0 the material point 𝑃 has an initial position 𝑿 (the 
position vector in the initial configuration). For time 𝑡 > 0 the body 𝐵 takes another 
configuration, see Fig. 1.1. The motion of the point 𝑃 can be explained by mapping  𝒙 = 𝜒 (𝑿, 𝑡). (1.1)  

The displacement vector is given by  
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𝒖 = 𝒙 − 𝑿. (1.2)  

 

 

Fig. 1.1. Motion of body B: initial (𝑡 = 0) and current configuration (𝑡 > 0), 
transformation of a line element. 

 

Consider now a line element in the body 𝐵 defined by vector 𝒅𝑿, see Fig. 1.1. To 
mathematically describe the deformation process on a local level, a tensor 𝑭 is 
introduced. It relates the tangent vectors of initial (𝑿) and current configuration (𝒙) to 
each other, i.e., it maps a material line element of the initial configuration 𝒅𝑿 to a line 
element 𝒅𝒙 of the current configuration 𝒙: 𝒅𝒙 = 𝑭 𝒅𝑿 (1.3)  

where the structure of the Eq. (1.3) already suggests that 𝑭 represents a gradient, 𝑭 = 𝒙𝑿 . (1.4)  

and hence it is called deformation gradient. The same can be written in terms of the 
displacement (Eq. 1.2.) as 𝑭 = 𝑰 + 𝒖𝑿 . (1.5)  

where 𝑰 is the identity matrix. The deformation gradient 𝑭 contains the information 
about the volume change, the rotation and the shape change of a deformable body. 
The volume change is determined by  = 𝑑𝑒𝑡 𝑭 . (1.6) 

 

with 𝑉 and 𝑉  denoting current and original volume. The rotation and shape change 
contained in the deformation gradient 𝑭 can be separated by applying the right polar 
decomposition theorem, 𝑭 = 𝑹 𝑼 . (1.7)  

where 𝑅 is the rotation matrix (𝑹 𝑹 = 𝑰) and 𝑼 is the right stretch (shape change) 
matrix. Once the matrix 𝑼 is known, a logarithmic or Hencky strain measure is 
defined, 
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𝜺 = 𝑙𝑛 𝑼 . (1.8)  

with 𝜺 being the Hencky strain tensor. 

To explain the change of length of a line element, another strain measure, i.e. Green-
Lagrange strain tensor 𝑬  formulated in the initial configuration is introduced, 𝑬 = (𝑭 𝑭 − 𝑰) = (𝑪 − 𝑰). (1.9)  

where 𝑪 = 𝑭 𝑭 is the right Cauchy-Green tensor. The left Cauchy-Green tensor 𝑩 =𝑭 𝑭  is used in the Almansi strain tensor, the strain measure formulated in the current 
configuration, 𝒆 = (𝑰 − 𝑭 𝑭 ) = (𝑰 − 𝑩 ). (1.10)  

Because the plastic behavior of a ductile material is history-dependent, a time-
dependence of the deformation 𝜒 (𝑿, 𝑡) has to be considered. Therefore, we need time 
derivatives of the kinematic quantities. The first and second derivatives with respect 
to time define the velocity and acceleration of a material point in regard to the 
reference configuration, respectively: 𝒗(𝑿, 𝑡) =  (𝑿, ). (1.11)  

𝒂(𝑿, 𝑡) =  (𝑿, ) =  (𝑿, ). (1.12) 
 

 

BALANCE EQUATIONS  

During the deformation process, conservation laws for mass, momentum, angular 
momentum etc. must be fulfilled. Therefore, the change of mass in a system has to be 
zero (�̇� = 0). This means that the mass of an infinitesimally small element in initial 
and current configuration must be equal. If 𝜌 and 𝜌  denote the densities in initial and 
current conditions, respectively, the mass balance is given by  𝜌 𝑑𝑉 = 𝜌  𝑑𝑉 , (1.13)  

or by the rate form of mass continuity,  + 𝛁 ∙ (𝜌𝒗) = 0, (1.14)  

where 𝒗 is the velocity field. The balance of linear momentum can be stated as 𝛁 ∙ 𝛔 + ρ 𝐛 = ρ 𝒗, (1.15)  

where b stands for the body force density per unit mass. 𝛔 is the Cauchy stress tensor. ρ b describes the volume forces, such as gravitational force, acting on a body 𝐵. ρ 𝒗 
defines the inertial forces. They are negligible for quasi-static problems. The local 
balance of angular momentum demands the Cauchy stress tensor σ to be symmetric, 
i.e. 
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𝛔 = 𝝈 . (1.16)  

The conservation of energy known as the first law of thermodynamics says that the 
change of total energy 𝐸 equals to the sum of the mechanical power 𝑃 of all external 
loads and the heat supply 𝑄, �̇� = 𝑃 + 𝑄. (1.17)  

The first law of thermodynamics can be recast in a local form, ρ �̇� = 𝛔 ∶ 𝐝 + ρ r − 𝛁 ∙ 𝐪, (1.18)  

where 𝑢 is the specific internal energy, 𝐝 is the velocity gradient (𝛔 ∶ 𝐝 is known as a 
specific stress power), 𝑟 is the internal heat source and 𝒒 is the heat flux vector. In 
finite element modeling, it is good practice to verify the validity of the solution by 
checking the energy balance.  

 

CONSTITUTIVE EQUATIONS 

Constitutive theories describe the material’s response (macroscopic or microscopic) 
to applied loads and are theoretically sound only if they obey the thermodynamic 
principles, the conservation of energy and the positivity of the entropy rate.  

Aluminum, the material studied here, depicts a nonlinear behavior and can be 
described by the assumption of an elasto-plastic behavior. The model presented in 
this thesis is restricted to rate-independent plasticity theory for the case of isotropic 
hardening of a metal. Fig. 1.2. illustrates the elasto-plastic constitutive behavior. The 
material responds elastically up to the point A. The plastic deformation occurs once 
the stress has reached the flow stress 𝜎  in the point A and the stress does not increase 
linearly any further, but follows a hardening law. In the point B, a material instability 
occurs and entails necking and/or shear bands. The region B-C characterizes a 
decrease of the flow stress related to geometrical (necking) and possible material 
(softening) effects.  

 

Fig. 1.2. An illustrative representation of the elasto-plastic material behavior. 
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In a small strain framework elasto-plastic constitutive theories start with 
decomposing the total strain 𝜺 additively into an elastic 𝜺𝒆𝒍 and a plastic strain 𝜺𝒑𝒍, 𝜺 = 𝜺𝒆𝒍 + 𝜺𝒑𝒍. (1.19)  

For arbitrary loading paths, the incremental strain is decomposed into elastic and 
plastic strain increments, 𝒅𝜺 = 𝒅𝜺𝒆𝒍 + 𝒅𝜺𝒑𝒍. (1.20)  

As the elastic deformations in the aluminum structure studied (see Chapter 3) are 
rather small compared to the plastic deformations, the elastic strain part is not of 
special interest in this thesis. The classical Hooke’s law in its simplest form for the 
isotropic case is sufficient and adopted here to relate the stresses and strains in the 
elastic regime,   𝝈 = 𝑪 ∶ 𝜺𝒆𝒍, (1.21)  

where 𝑪 is the stiffness tensor.  

On the other hand, the plastic deformation is of a particular interest here. The 
essential characteristics of a plasticity model are represented by three sets of 
equations. First, the borderline between elastic and plastic behavior is defined by a 
yield criterion. Second, a flow rule  describes the increment of the plastic strain from 
the load increment. And third, the evolution of the yield criterion with plastic strain 
is given by a hardening rule .  

The stress at which yielding initiates is determined by the yield criterion, a scalar 
function of the stress tensor 𝝈 and a set of material (scalar and tensor) internal 
variables κ,  𝑓(𝝈, κ) = 0. (1.22)  

A general representation (Eq. 1.22) of the specific yield criterion defines a surface in 
the stress space. 

Elastic deformation is the result of the stress states within the yield surface. The 
yielding starts once the stress state has reached the yield surface and further loads 
cause the plastic deformation. Generally, three cases have to be distinguished, 𝑓(𝝈, κ) < 0, (1.23)  𝑓(𝝈, κ) = 0 and 𝑓̇(𝝈, κ) < 0, (1.24)  𝑓(𝝈, κ) = 0 and 𝑓̇(𝝈, κ) = 0, (1.25)  

which define the conditions for elastic behavior (Eq. 1.23), elastic unloading (Eq. 1.24) 
and plastic flow (Eq. 1.25). 

Stress states outside of the yield surface do not exist. The plastic strain and the yield 
surface evolve, maintaining the stresses either in or on the yield surface. In this work, 
the classical von Mises idealization of the yield surface is adopted. 
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The plastic strain evolution is given by the flow rule, 𝒅𝜺𝒑𝒍 = 𝑑𝜆 𝜕𝑄𝜕𝝈 (1.26) 
 

with 𝑑𝜆 as the magnitude of the plastic strain increment and 𝑄 is the plastic potential. 
If the plastic potential 𝑄 is identical to the yield surface given by (Eq. 1.22.), i.e. 𝒅𝜺𝒑𝒍 = 𝑑𝜆 𝜕𝑓(𝝈, κ)𝜕𝝈  (1.27) 

 

the plastic strain increment is normal to the yield surface. This is called an associative 
flow rule, frequently used for metals. The result is a plastic strain increment 
proportional to the stress increment. For soils and granular materials where internal 
friction sliding leads to plastic deformation, non-associative flow rules are used 
instead.  

Furthermore, a hardening rule determines the change of the yield criterion upon 
loading. As the material further deforms plastically, the yield stress evolves, in other 
words the yield surface moves, grows or shrinks. In this work, an isotropic hardening 
rule of the form 𝐹(𝝈) − 𝜎 (κ) = 0, (1.28)  

is adopted, where 𝐹(𝝈) is a scalar function of the stress and 𝜎 (κ) stands for the yield 
stress. Thus the yield surface evolves uniformly. This hardening type gives good 
results for structures under monotonic loading, as it is the case in the present work. 
When the equivalent plastic strain is taken for the hardening variable (κ = 𝜀 ), the 
hardening is referred to as strain hardening.   

An essential output quantity specific to the constitutive model of plasticity that will 
be required for the definition of damage is a path-dependent plastic strain 
accumulated over the deformation history, 𝜀 = ∫ 𝑑𝜆, (1.29)  

termed hereinafter as the accumulated equivalent plastic strain. 

 

 

1.2 Characterization of the stress state 

Ductile fracture is frequently preceded by large plastic deformations, and 
considerable stress and strain gradients develop around the fracture point. Multiaxial 
stress states must be determined accurately on the local level. To this end the stress 
tensor 𝝈 is decomposed into its hydrostatic (spherical) and deviatoric part, see Fig. 
1.3.  
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Fig. 1.3. Decomposition of the stress tensor. Adapted from (Öchsner 2016).  
 

Decomposition of the stress tensor 𝝈 separates the hydrostatic stress tensor 𝝈𝒐 
characterizing a pure volume change and deviatoric stress tensor 𝒔 describing a pure 
shape change, which can be written as 𝜎 𝜎 𝜎𝜎 𝜎 𝜎𝜎 𝜎 𝜎 = 𝜎 0 00 𝜎 00 0 𝜎 + 𝑠 𝑠 𝑠𝑠 𝑠 𝑠𝑠 𝑠 𝑠 . (1.30) 

Assuming an isotropic material, a material model can be formulated using a related 
set of quantities (𝑝, 𝑞, 𝑟) defined in terms of the first invariant 𝐼  of the stress tensor 𝝈, 
the second 𝐽  and third invariant 𝐽  of the deviatoric tensor 𝒔, 𝑝 = 𝐼 =  𝑡𝑟 (𝝈). (1.31)  𝑞 = 3 𝐽  (1.32)  

𝑟 = 3  𝐽 /
. (1.33)  

where 𝑝 is the mean stress2 and 𝑞 is the Von Mises equivalent stress3. The 
dimensionless hydrostatic pressure 𝜂 defined by 𝜂 = 𝑝𝑞 (1.34) 

 

is referred to as the stress triaxiality, an extensively used parameter in the literature 
on ductile fracture.  

The space of principal stresses can be visualized in a Cartesian coordinate system (𝜎 , 𝜎 , 𝜎 ) or a cylindrical coordinate system called Haigh-Westergaard stress space (𝜉, 𝜌, 𝜃):  𝜉 = √  𝐼 . (1.35)  𝜌 = 2 𝐽  (1.36)  

                                                      
2 The mean stress is denoted by 𝜎  in the executive parts (Chapter 2, 3, 4 and 5).  
3 Von Mises equivalent stress is also called effective stress in the literature. It is denoted by 𝜎  the executive parts (Chapter 2, 3, 4 and 5).  
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cos(3𝜃) = √   / . (1.37)  

as shown in Fig. 1.4. The angular coordinate 𝜃 is a stress angle termed Lode angle 
(Lode 1926). The range of the Lode angle is 0 ≤ 𝜃 ≤ 𝜋/3. The value cos(3𝜃) is called 
Lode angle parameter. The relation of the Lode angle 𝜃 to the normalized third 
invariant 𝐽  (see (Malvern 1969)) is given by  cos(3𝜃) = =  . (1.38) 

 

 

Fig. 1.4. The space of principal stresses: Cartesian coordinate system (𝜎 , 𝜎 , 𝜎 ) and 
cylindrical coordinate system (𝜉, 𝜌, 𝜃). 

 

Isotropic material properties are invariant to a rotation of the coordinate system. The 
stress state at a material point can be uniquely characterized either by three principal 
stresses (𝜎 , 𝜎 , 𝜎 ) or, on the other hand, by three stress tensor invariants (𝐼 , 𝐽  and 𝐽 ) i.e. their ratios formulated as dimensionless parameters 𝜂 and 𝜃 (Eq. 1.34 and Eq. 
1.38.).  

(Bai 2008) gave the transformation equations from the stress-based form i.e. Cartesian 
coordinate system of principal stresses (𝜎 , 𝜎 , 𝜎 ) to the spherical coordinate system 
in the mixed strain and stress invariants space (𝜀 , 𝜂, 𝜃). 𝜀  denotes the equivalent 
plastic strain. The transformation equations are given by 𝜎 = 𝑝 + 𝑠 = 𝑝 + 𝜎 cos 𝜃 = 1 + 𝑝 , (1.39) 

𝜎 = 𝑝 + 𝑠 = 𝑝 + 𝜎 cos 𝜋 − 𝜃 = 1 + 𝑝, (1.40) 
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𝜎 = 𝑝 + 𝑠 = 𝑝 +. 𝜎 cos 𝜋 − 𝜃 = 1 + 𝑝, (1.41) 

where 𝑠 , 𝑠 , 𝑠  are deviatoric principal stresses expressed in terms of the equivalent 
stress 𝜎  and Lode angle 𝜃. The relation of the equivalent stress 𝜎  to the equivalent 
strain 𝜀  is defined by the strain hardening function.  

A normalized Lode angle parameter �̅� in the range of −1 ≤ �̅� ≤ 1 can be defined by 
transformation of the Eq. (1.38) to the normalized space and reads �̅� = 1 − . (1.42)  

The above definition of the Lode angle parameter (Eq. 1.42) from (Bai 2008) will be 
adopted in this work. A physical interpretation of the parameter �̅� is that it describes 
how far the material’s stress state is from a pure shear stress state. Therefore, �̅� = 0 
represents generalized shear, �̅� = 1 axisymmetric tension and �̅� = −1 axisymmetric 
compression. 

All stress directions can thus be described by the dimensionless parameters stress 
triaxiality 𝜂 (Eq. 1.34.) and Lode angle  �̅� (Eq. 1.42.). They will be used in this thesis to 
characterize the stress states and to define a stress state dependent fracture strain 
function referred to as the fracture locus.  

 

 

1.3 Continuum Damage Mechanics  

Generally, the concept of ductile damage studies the development of microvoids and 
pores caused by large plastic deformations. Fig 1.5. shows an engineering stress-strain 
diagram of a ductile aluminum alloy. The first region characterized by a uniaxial 
stress state and uniform strain can be very well described by damage-free plasticity 
theory. On the other hand, the highlighted region where a multiaxial stress state 
develops often calls for the consideration of material weakening due to microvoids 
induced by large plastic strains. It is emphasized that this region, characterized by 
multiaxial stress states, is of particular interest in this research. The first region having 
uniformly distributed strain is found to be extremely short (see Chapter 2), as 
opposed to the typical engineering alloys whose representative example is shown in 
Fig. 1.5.  
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Fig. 1.5. Typical engineering stress-strain curve of a ductile aluminum alloy 
(AlMgSi0.5). The region of multiaxial stress upon elasto-plastic deformation is 

highlighted. Adapted from (Öchsner 2016). 
 

There are two different general definitions of damage, both based on a scalar damage 
variable. The Lemaitre damage concept (Lemaitre 1985, 1986; Krajcinovic and 
Lemaitre 1987; Lemaitre and Desmorat 2005) defines a surface damage variable, 
whereas the Gurson damage models (Gurson 1977; Tvergaard and Needleman 1984; 
Nahshon and Hutchinson 2008) introduce the void volume fraction as the governing 
quantity 

Consider a uniaxial tensile specimen whose representative volume element (RVE) is 
shown in Fig. 1.6. The initial, undeformed (undamaged) specimen is shown in Fig. 
1.6. on the left hand side, whereas the deformed (damaged) specimen is illustrated on 
the right hand side. The specimen’s total cross-sectional area is represented by 𝐴. Let 𝐴  be the area of all the voids and microcracks in the cross-sectional area 𝐴. The 
effective area that resists the applied load is 𝐴 . Now the surface damage variable can 
be defined in terms of these quantities, 𝐷 = ∑ 𝐴 ,𝐴 = 𝐴𝐴 = 𝐴 − 𝐴𝐴  (1.43) 

 

where 𝐷 is in the range of 0 ≤ 𝐷 ≤ 1. The state 𝐷 = 0 represents the undamaged 
material and 𝐷 = 1 characterizes the specimen’s failure. An alternative description of 
ductile damage can be defined using the void volume fraction i.e. porosity 𝑓. Let 𝑉 
denote the total volume of the RVE, 𝑉  the volume of all the voids in the RVE and 𝑉  
the effective volume. Then the void volume fraction is given by  𝑓 = ∑ 𝑉 ,𝑉 = 𝑉𝑉 = 𝑉 − 𝑉𝑉  (1.44) 
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Fig. 1.6. Schematic representation of an undeformed (undamaged) and deformed 
(damaged) tensile specimen. Adapted from (Öchsner 2016).  

 

A scalar description of damage implies the hypothesis of isotropy, i.e. the same 
distribution of defects in all directions. If the effective area is used to determine the 
stresses, the concept of effective stress says that the nominal stress 𝝈 is modified by 
the damage variable 𝐷 and the effective stress is 𝝈 = 𝝈1 − 𝐷 . (1.45) 

 

Furthermore, the hypothesis of strain equivalence says that the strain of the damaged 
material can be represented by the strain of the initial material, 𝜺 = 𝛆. (1.46)  

Following the above effective stress concept, Hooke’s law can be recast as 𝝈 = (1 − 𝐷) 𝐸 𝜺 (1.47)  

where 𝐸 is the elastic modulus of the undamaged material. Furthermore, adaptations 
of the plasticity theory are required to consider the damage effect. The modified yield 
condition reads  𝑓(𝝈)1 − 𝐷 − 𝜎 (κ) = 0. (1.48) 

 

In damage mechanics, an additional equation describing the evolution of the damage 
variable is needed. The increment of the damage variable 𝑑𝐷 in the conventional 
Lemaitre model has been developed on a thermodynamic basis and reads 

𝑑𝐷 = 𝑑𝜆1 − 𝐷 − 𝑌𝑟  (1.49) 
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where 𝑟 and 𝑠 are model parameters. 𝑌 is referred to as the damage energy release 
rate. While the influence of one stress state parameter (stress triaxiality) is hidden in 𝑌, the other essential stress state parameter (Lode angle parameter) is not considered. 
Therefore, in this work, a different damage evolution law will be adopted. A 
definition as simple as the linear damage accumulation rule is sufficient to capture all 
the stress state effects in the damaging process, 𝑑𝐷 = 𝑑𝜀𝜀 (𝜂, �̅�)  (1.50) 

 

insofar as the function 𝜀  describing the fracture locus of the material incorporates the 
dependency on both stress triaxiality 𝜂 and Lode angle parameter �̅�. (Fischer et al. 
1995; Gänser et al. 2000) referred to D in Eq. (1.50) as damage indicator because it 
merely indicates the onset of fracture but has no influence on the plastic flow, as 
opposed to what will be presented in this thesis.  

Without any length scale definition in this damage theory, the concept remains 
restricted to applications to structures where failure is more likely to appear in zones 
with moderate stress and strain gradients, as already elucidated by (Fischer et al. 
1995). To close this gap and be applicable to components where the failure occurs e.g. 
due to strain localization mechanisms common for sheet-metal structures, a length 
scale associated with an experimentally observable quantity will be introduced in 
Chapter 2. 

 

 

1.4 Finite element discretization    

A continuum having a defined boundary is hereinafter referred to as a domain. To 
solve a real world engineering problem composed of a complex domain subjected to 
defined boundary conditions, the Finite Element Method (FEM) is employed to find 
an approximate solution. The domain is decomposed into a finite number of 
subdomains i.e. finite elements. For every element, unknown field variables are 
expressed is terms of the assumed approximate functions i.e. interpolation functions. 
These interpolation functions are formulated by means of the values of the field 
variables for specific points called nodes.  

Within the scope of this work, finite element simulations are performed in ANSYS 
Mechanical APDL4. A custom material model has been implemented to consider the 
damage (Eq. 1.50.) in the elasto-plastic constitutive equations. Large strain theory as 
it will be an issue in the aluminum structures is considered by means of updated 
Lagrangian algorithm.  

 

                                                      
4 APDL stands for Ansys Parametric Design Language and is the programming language 
used in ANSYS software. 
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CHOICE OF AN ELEMENT TYPE AND DENSITY  

Typically, thin-walled structures are modelled by shell elements in many industrial 
settings because of their computational efficiency and robustness. Shell element 
solutions are suitable for modeling large deformation problems unless the fracture 
i.e. the necking through-the-thickness direction occurs. Therefore, fully three-
dimensional mechanical fields are computed in this thesis using fine solid element 
discretization. In particular, eight node solid elements (SOLID185, (ANSYS 
Documentation)) having linear shape functions are used for 3D modeling of thin solid 
structures, see Fig. 1.7. 3D solid element solutions ensure capturing the high ductile 
fracture dependency on the three-dimensional and multiaxial local stress state 
developing in the structure. The fracture mechanism preceded by localized necking 
can be thereby described more accurately in a finite element analysis.  

The element density in the region where the localization is expected has to be fine 
enough to capture this mechanism. The largest applicable element size in the zone of 
localization is imposed by the experimentally observed strain localization on the 
tested specimens. Specifically in this work, the resolution of the Digital Image 
Correlation (DIC) strain measurements dictates the largest finite element size able to 
capture all local effects observed. A length scale 𝑙 will be introduced on the basis of 
an experimentally measurable quantity, that is, the width of the localization band 
captured by DIC. All finite element models are in the zone of expected localization 
discretized by fine finite element sizes smaller than the length scale parameter 𝑙. 
Another essential role of the length scale 𝑙 is to prevent an excessive strain localization 
in the finite element model induced by the material softening present in the elasto-
plastic constitutive equations. This is accomplished by employing a nonlocal 
regularization, as discussed in detail in Chapter 2.  

 

 

Fig. 1.7. Eight node solid element (SOLID185 from (ANSYS Documentation)) with 
associated nodes and local normalized coordinate system (𝑠, 𝑡, 𝑟). 
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SOLVING A NONLINEAR STRUCTURAL ANALYSIS 

The algorithm mostly applied for nonlinear finite element problems is the Newton-
Raphson method which can be briefly articulated as follows (for details, see e.g. 
(Wriggers 2008)). 

Let 𝐾 be the coefficient matrix that is a function of unknown nodal. For a static 
structural analysis, the discretization by finite elements yields a set of simultaneous 
equations  𝐾(𝑋) 𝑢 = 𝐹 , (1.51)  

where vector 𝐹  contains the applied loads. As the plasticity includes path-dependent 
nonlinearities, the solution requires an incremental analysis to capture the loading 
path correctly. This means that the final load 𝐹  is applied in increments, see Fig. 1.8. 
The Newton-Raphson method solves the equations iteratively in every step5 (Bathe 
1996):  𝐾 ,  ∆𝑢 = 𝐹 − 𝐹 ,  (1.52)  ∆𝑢 =  𝑢 +  ∆𝑢  (1.53)  

where 𝐾 ,  is the Jacobian (tangent) matrix for time step 𝑛, the index 𝑖 refers to the 
current equilibrium iteration and 𝐹 ,  represents the restoring loads i.e. element 
internal loads computed from the current stress state. The general procedure can be 
summarized as follows: 

 Assumption of 𝑢 . This is typically the converged solution of the previous step 
(for the first step, 𝑢 = 0), 

 Computation of updated tangent matrix 𝐾 ,  and the restoring load 𝐹 , , 
 Determination of  ∆𝑢  from the Eq. (1.52), 
 Calculate the Eq. (1.53) for the next approximation and 
 Proceed up to the point when convergence is achieved.  

 

Fig. 1.8. Incremental Newton-Raphson method. 
                                                      
5 This process is referred to as the incremental Newton-Raphson procedure. 
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STABILITY PROBLEMS 

Using the full  ∆𝑢  in the Eq. (1.53) may lead to solution instabilities in particular 
situations, e.g. when the load step increment is still too large. Therefore, a line search 
algorithm will be applied to improve the Newton-Raphson solution and ensure 
stability. The line search method scales the solution by a scalar value referred to as 
the line search parameter 𝑠. With this Eq. (1.53) is modified and then reads ∆𝑢 =  𝑢 + 𝑠 ∆𝑢 . (1.54)  

The value of 𝑠 falls within the range 0.05 ≤ 𝑠 ≤ 1.0 and is determined by 
minimisation of the energy of the system (Wriggers 2008; ANSYS Documentation).  

Further convergence difficulties arise when the structure becomes unstable. In 
general, an instable response of structures is either related to multiple solutions for a 
certain load or to the loss of stiffness (e.g. induced by damage). The analysed 
structures in this thesis are subjected to either large displacement- or force-based 
loads until they fail. Further numerical stabilization of an unstable problem will be 
required in force-based computations where the structure becomes unstable due to 
large displacements resulting from small load increments prior to failure.  

This instability problem can be addressed from different perspectives, i.e.:  

 computation of a static as a “slow dynamic” analysis, 
 applying displacements instead of forces, if possible, 
 Riks method6 (Riks 1979) and 
 a nonlinear stabilization by applying an artificial damping. 

Computing a static analysis as a “slow dynamic” analysis allows to use dynamic 
effects (damping) to prevent the divergence of the Newton-Raphson algorithm. 
However, this is rather complicated way for solving instability problems. The type of 
the finite element analysis has to be changed, an appropriate time-integration has to 
be used and a proper damping factor should be applied.  

A displacement-based simulation could not be performed for all structures analysed 
in this thesis. In particular, a thin-wall component exposed to internal pressure 
(discussed in Chapter 3) could not be analysed by applying displacement boundary 
conditions. This is because the displacements in the experiments could be measured 
accurately only for particular points, but not for the complete geometry. On the other 
hand, the pressure applied in the experiments is well known and therefore the 
boundary conditions in the finite element analysis could be accurately represented by 
applying the pressure in the finite element model as well.   

The convergence of the Newton-Raphson method can be expected only within the 
region highlighted in Fig. 1.9., that is, up to the maximum of the load deflection curve. 
If there is no a unique solution for every load level, as it is the case for the load level  𝐹  in Fig. 1.9., the Newton-Raphson method cannot reach the solution. This region 
with critical behavior of the structure has to be known and overcame in the limit load 

                                                      
6 ANSYS Documentation refers to this method as the Arc-length method. 
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calculations. Due to this demand, a more general path-following solution methods 
were developed (Wriggers 2008).  

 

Fig. 1.9. Incremental Newton-Raphson method with highlighted convergence 
region. 

 

The Riks method (Riks 1979) was developed first and it is a path-following solution 
method used for overcoming the global instability particularly when the force-based 
simulation is performed. This method can follow an arbitrary nonlinear solution path. 
Therefore, it can detect a part of the global force-displacement curve with negative 
slope, as depicted in Fig. 1.9. Nevertheless, the tracing of the load displacement 
response as complex as the path shown in Fig. 1.9. (after the highlighted region) will 
not be required here. Only the load displacement histories where the load level after 
reaching the maximum drops continuously will be computed.  

Eventually, the nonlinear stabilization turned out to be the most efficient method of 
solving instability problems for specific structural analyses performed in this thesis. 
An artificial dashpot element is introduced in addition to every element node. In this 
way, one can add a numerical viscous damping to the nodes. In particular, the 
stabilization viscous forces 𝐹  of the form 𝑭𝒗 = 𝑑  𝑴 𝒗𝒗 (1.55)  

are calculated and added to the global balance equations. In the Eq. (1.55) 𝑑  is the 
damping factor, 𝑴 is an artificial mass matrix computed using unit density and 𝒗𝒗 is 
the vector of nodal (pseudo) velocity. The nodal velocity 𝒗𝒗 vector is calculated as the 
ratio of the displacement increment ∆𝒖 to the time increment ∆𝑡, 𝒗𝒗 = ∆𝒖∆𝑡 . (1.56) 

 



CHAPTER 1 Introduction       34 
 

 
 

Any affected node having a large displacement increment ∆𝒖 will cause a large 
damping force that, in turn, stabilizes7 the node by reducing the displacement. As to 
the nodes that are stable, the stabilization forces are small in relation to the physical 
forces and therefore these artificial elements have a negligible effect on the results. 
This can be verified in the numerical model by comparing the stabilization energy to 
the element’s potential energy.  

The stabilization i.e. viscous forces 𝑭𝒗 are calculated using the damping factor 𝑑  
based on the specified energy dissipation ratio. To circumvent the divergence of the 
solution, the specified value has to be large enough, yet small enough to prevent an 
excessive artificial stiffness of the system. At first one should specify the value as 
small as 1.0e-4 and, if necessary, increase it gradually.

                                                      
7 Stabilization method can be activated in ANSYS using the command “stabilize”. 



 

 

 

 

 

Chapter 2 

 

 Coupled damage variable based on 
fracture locus: Modeling and calibration8 
 

 

 continuum ductile damage and failure model coupled with metal 
plasticity is presented, with the focus on capturing different failure 

mechanisms and prediction of the strain localization. The onset of diffuse necking 
and local thinning is observed in the early stage of experiment and it is caused by the 
very low strain hardening capability of the material under study. Uniaxial tensile tests 
have been performed on notched and shear samples, specifically designed to cover 
different stress states by varying both the notch radius and orientation with respect 
to the sample axis. The experiments have revealed strain localization caused by 
material softening. The latter is modelled by a coupled damage accumulation rule 
whose magnitude is dictated by the actual stress state and strain to fracture. Since the 
numerical model relies on the fracture strain determined by digital image correlation 
(DIC), which is dependent on the length scale imposed by the resolution of the DIC 
grid, an experimentally resolved length scale parameter 𝑙 is introduced by nonlocal 
regularization of the material flow, based on large-deformation gradient theory. 
Apart from its common role of ensuring mesh independency, the length scale 
parameter obtains a new additional role: it makes the fracture locus calibration 
procedure robust under changes induced by different spatial averaging of the 
experimental fracture strain. The measured width of the strain localization equals to 
the regularization length scale parameter 𝑙 used in finite element (FE) simulations, 
thereby ensuring tight correspondence of physical reality and numerical model on 
the basis of a measurable quantity. As a result, the nonlocal regularization term 
prevents the strain in the numerical model to localise to a higher extent than 
experimentally observed. Eventually, the fracture locus has been constructed as a 
function of stress triaxiality ratio and Lode angle parameter. The FE-modeling 

                                                      
8 This chapter has been published in International Journal of Plasticity as an open access 
article (https://www.sciencedirect.com/science/article/pii/S0749641919305406).  
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methodology is calibrated by force-displacement curves and surface strain profiles 
prior to failure, obtained by DIC for a subset of sample geometries. The predictive 
capability of the proposed methodology is demonstrated by computing and 
comparing FE results to another experimentally characterized sample, not used in 
calibration procedure, i.e. dog-bone specimen. It undergoes a complicated loading 
path different from the paths used in the calibration procedure. It has been shown 
that regularization of strains and metal plasticity model supplemented by a damage 
variable are indispensable for an overall agreement of experimental and numerical 
results. The unique numerical model formulation has proven capable of capturing 
strongly different ductile failure modes, which are experimentally observed and 
further discussed. 

 

2.1 Introduction and motivation 

Although modeling damage evolution and ductile fracture are mature fields of 
research, many details remain to be tackled for reliable predictions for complex 
geometries and loading scenarios. One of the challenges that have yet to be solved is 
the assembly of a unified numerical model capable of predicting the different 
behaviors of ductile materials under different regimes, i.e. various failure modes. 
Metal alloys have many real world applications ranging from large lightweight 
structures, over car bodies to tiny electronic components. In production and over the 
product life cycle, the material endures complex loading histories and combined 
tension-compression and shear loadings. Recently, research efforts covering all the 
full loading complexity have been undertaken (Torki 2019; Scales et al. 2019). The 
prediction of the material behavior under real loading conditions, not only modeling 
the behavior of tested samples under laboratory conditions, is still a challenging task, 
since the loading paths in the experiment and application differ significantly.  

 

2.1.1 Literature overview  

The state-of-the-art of ductile damage and failure modeling comprises concepts 
summarized in Table 2.1 and briefly reviewed below. The term coupled model means 
that all material parameters depend on a damage variable D calculated by means of 
the respective model in Table 2.1. By contrast, in the uncoupled model the damage 
parameter D is calculated to predict the fracture initiation, but it does not feed back 
to the elastic-plastic behavior of the material. 
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Table 2.1. Summary of selected ductile fracture models representing typical 
modeling approaches  

Model and reference Background   Stress state 
dependency 

Type of 
approach 

Fracture criterion 
(Freudenthal 1950) 

Fracture indicator based on the 
total plastic work   

None Uncoupled 

Rice & Tracey criterion  
(Rice and Tracey 1969) 

Two dimensional fracture locus: 
equivalent strain to fracture strain 
as a function of stress triaxiality  

Stress 
triaxiality  

Uncoupled  

Johnson-Cook criterion  
(Johnson and Cook 1985) 

Fracture strain as a function of 
strain rate, temperature and stress 
triaxiality 

Stress 
triaxiality 

Uncoupled 

Lemaitre continuous 
damage mechanics 
(CDM) model 
(Lemaitre 1985) 

Based on continuum damage 
variable, effective stress concept 
and thermodynamics 

Stress 
triaxiality  

Coupled 

Gurson-Tvergaard-
Needleman (GTN) 
(Gurson 1977; Tvergaard 
and Needleman 1984) 

Void nucleation and growth, the 
void volume fraction is the 
damage parameter  

Stress 
triaxiality 

Coupled 

Shear modified Gurson 
model 
(Nahshon and 
Hutchinson 2008) 

Added contribution to void 
damage growth that does not 
vanish when the mean stress 𝜎 = 0 

Stress 
triaxiality, 
Lode angle  

Coupled 

Damage fracture model: 
crack initiation and 
propagation   
(Xue 2006; Xue and 
Wierzbicki 2007)  

Damage accumulation induced by 
the plastic deformation and 
weakening factor introducing 
damage-related material 
softening  

Stress 
triaxiality,  
Lode angle  

Coupled 

Bai and Wierzbicki’s 
model with pressure and 
Lode dependence   
(Bai 2008; Bai and 
Wierzbicki 2008) 

Three dimensional fracture locus 
combined with isotropic 
hardening dependent on 
hydrostatic pressure and Lode 
angle  

Stress 
triaxiality, 
Lode angle  

Uncoupled 

GISSMO model 
(Neukamm et al. 2009; 
Haufe et al. 2010; Basaran 
et al. 2010) 

Damage coupled to the stress 
tensor according to Lemaitre 
concept after the limit strain of 
diffuse necking; fading exponent 
reduces mesh-size effect 

Stress 
triaxiality, 
Lode angle 

Coupled, 
regularized 

 

The concept of using uncoupled fracture indicators to predict ductile fracture goes 
back to 1950s when a criterion based on the total plastic work was proposed by 
(Freudenthal 1950). Many other different indicators have been proposed since then, 
on the basis of equivalent plastic strain (Datsko 1966), on the geometry of defects (Rice 
and Tracey 1969), on the void growth mechanism driven by principal stresses 
(Cockcroft and Latham 1968), among others. Pioneering works on the subject of the 
effect of the defects geometry on ductile damage was undertaken by (McClintock 
1968a) and (Rice and Tracey 1969). It has been experimentally proven that nucleation 
and growth of voids accompanying large plastic flow causes a degradation of 
elasticity and introduces softening effect influenced by stress triaxiality (McClintock 
1968a; Rice and Tracey 1969; Hancock and Mackenzie 1976). The material ductility 
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was characterized by the equivalent plastic strain to fracture  𝜀  and the stress 
triaxiality 𝜂 (Bridgman 1952; McClintock 1968a; Rice and Tracey 1969; Johnson and 
Cook 1985), usually referred to as two dimensional fracture locus  𝜀 = 𝑓(𝜂).  

Coupled modeling concepts come with the advantage of relating damage evolution 
with mechanical properties. A softening mechanism is present in micromechanical 
model formulations (Rice and Tracey 1969; Gurson 1977; Tvergaard and Needleman 
1984; Nahshon and Hutchinson 2008; Tutyshkin et al. 2014; Brünig et al. 2017; Reddi 
et al. 2019). They are based on micro void growth, representing the ductile fracture 
process from a physical point of view. Another coupled approach is based on the 
widely accepted concept of damage mechanics, where a damage parameter D is 
included in the material law (Lemaitre and Chaboche 1990; Lemaitre 1985; Lemaitre 
and Chaboche 1990). Here an effective stress tensor 𝜎 is modified by applying 𝜎/(1 −𝐷), representing the loss of load carrying cross-sectional area as a consequence of 
damage. A description of damage accumulation in a phenomenological way has been 
proposed by (Xue 2006) and (Xue and Wierzbicki 2007), where a power law damage 
rule is proposed and the weakening factor related to damage describes the material 
deterioration, with the aim of predicting crack initiation and propagation. However, 
the lack of experimentally based material parameters and complex numerical 
implementation often overshadow the advantages of coupled models. Hence applied 
numerical modeling for practical purposes often reaches again for uncoupled models.  

Eventually, after studies showing that besides the stress triaxiality the Lode angle 
parameter related to the third invariant of the deviatoric stress tensor also has an 
important effect on ductile fracture (Zhang et al. 2000; Kim et al. 2004; Gao et al. 2010; 
Barsoum and Faleskog 2011) and experimental evidences (Bao and Wierzbicki 2004; 
Dunand and Mohr 2010; Bai and Wierzbicki 2008; Zhang et al. 2000), the uncoupled 
fracture criteria are developed whose heart is a three dimensional (3D) fracture locus  𝜀 = 𝑓(𝜂, 𝜃), i.e. the surface constructed in stress-strain space, in other words a 
function that returns the strain to fracture 𝜀  given the stress triaxiality 𝜂, and the 
Lode angle parameter 𝜃. The concept of the incremental damage accumulation rule 
(Fischer et al. 1995) is employed to define the onset of fracture and enables to capture 
strongly nonlinear strain paths. The material strength unaffected by damage and 
difficulties in detecting the “onset of fracture” from experiment can be listed as main 
shortcomings of the uncoupled approach. Nevertheless, the simplicity of the 
numerical implementation, taking into account stress and strain history and 
calibration of material parameters from experiments have made fracture initiation 
models widely used, among others (Dunand and Mohr 2010; Khan and Liu 2012; Roth 
and Mohr 2016; Wang and Qu 2018; Roth and Mohr 2018). The GISSMO model 
(Generalised Incremental Stress State dependent damage MOdel) couples damage 
based on a 3D fracture locus to the local stress tensor. It has been developed at 
Daimler and DYNAmore (Neukamm et al. 2009; Haufe et al. 2010) for the prediction 
of failure in metal sheets.  

Today there is a wide range of constitutive models available for modeling physical 
mechanisms that precede ductile fracture. (Malcher et al. 2012) assessed the well-
established coupled damage constitutive models, Gurson-Tvergaard-Needleman 
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(GTN) model proposed by (Gurson 1977) and modified by (Tvergaard and 
Needleman 1984), as well as Lemaitre’s damage concept (Lemaitre 1985), together 
with new model of metal plasticity proposed by (Bai and Wierzbicki 2008). (Malcher 
et al. 2012) concluded that, under combined loading, all models should be improved 
and further studied to enhance their prediction reliability. The contribution of (Li et 
al. 2011) also discussed the performance of an uncoupled ductile fracture indicator 
and two coupled damage models: the GTN model and Lemaitre’s model. The authors 
closed with the conclusion that there is no concept that performs well both in the high 
and the low triaxiality regime. More recent reviews of ductile fracture models (Pineau 
et al. 2016; Benzerga et al. 2016) cover the latest advances of extended 
micromechanical Gurson models dealing with fracture mechanisms at both high and 
low triaxiality.  

 

2.1.2 Motivation 

The study of the previous references motivated the present contribution and the 
development of a generally applicable modeling concept under high and low 
triaxiality and combined loading. A three dimensional fracture locus will be therefore 
constructed and embedded into a coupled damage mechanics framework, instead of 
relying on plasticity unaffected by damage. The assumption of damage-free plasticity 
combined with classical von Mises idealization of the yield surface renders uncoupled 
fracture locus models incapable of predicting failure by shear band formation and 
other plastic instabilities in general 3D models. Strain localization, or loss of ellipticity 
occurs when the acoustic tensor becomes singular (Rudnicki and Rice 1975). For 
material undergoing associative plastic flow, this condition is not met unless strain 
softening is taken into account in the constitutive description. This means that for the 
materials whose plastic flow is strongly affected by ductile damage (nucleation and 
growth of voids caused by plastic deformation), damage-free plasticity cannot give 
good predictions for the force-displacement response and strain distribution.  

Furthermore, the models based on a 3D fracture locus rely on the measurements of 
the fracture strain. The strain field is commonly characterized experimentally, e.g. by 
DIC techniques and computed numerically, e.g. by means of the finite element (FE) 
method (Beese et al. 2010; Dunand and Mohr 2010) to get access to the loading path, 
i.e. evolution of the stress triaxiality, Lode angle parameter and the equivalent plastic 
strain. Although the calibration strategy seems to be well-established, the so-
determined strains will depend on a length scale dictated by the resolution of the DIC 
grid, which will hereinafter be termed experimentally resolved length scale. From the 
strain field just before the final failure (the instant of the material separation), the local 
maximum of the equivalent plastic strain will be identified and henceforth be termed 
resolved fracture strain. It is obviously length scale dependent. The dependency of 
the fracture strain on the experimentally resolved length scale and the importance of 
its incorporation into numerical models remains understated in the literature. To the 
best of the authors’ knowledge, none of the models in the literature that rely on the 
fracture strain measurements takes into account the experimentally resolved length 
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scale in its numerical formulation. In Gurson type as well as Lemaitre damage type 
models, the failure energy depends on the element size in the FE model. The GISSMO 
model (Neukamm et al. 2009; Haufe et al. 2010; Basaran et al. 2010) does rely on 
damage and regularization, where a fading exponent is introduced solely to avoid 
mesh dependency and is therefore a function of an element size. However, we suggest 
to introduce the regularization as a function of the length scale over which the 
experimental strains are averaged in the determination of the fracture strain. The 
present work focuses on the fact that the gage length for strain measurements must 
correspond to the width of the localization band. In this way, the measured strain at 
fracture is the actual average strain occurring in the fracture initiation zone, i.e., the 
localization band.  

The fracture locus is calibrated using finite element (FE) models that allow extracting 
the evolution of the stress triaxiality and Lode angle parameter as a function of the 
plastic strain. The simulations are only meaningful if the FE models are mesh 
independent even across the models for the multiple specimens needed for 
calibrating the fracture locus. Frequently in the literature the element size is chosen 
such that it is suitable for the particular specimen type and loading scenario to be 
modelled, e.g. just in shear specimens smaller element size is used in the zone of the 
expected shear band, whereas larger elements are used for other calibration 
specimens, e.g. (Qian et al. 2015)). In our work, we want to avoid having to adjust the 
mesh size to the individual type of specimen to be modelled. This makes our model 
mesh insensitive and thus ensures its general applicability to real geometries (even 
when a non-uniform mesh is required) and real loading scenarios different from the 
calibration experiments.  

Gurson models are identified either using force-displacement data by optimization 
methods (Springmann and Kuna 2005) and Artificial Neural Networks (ANN) 
(Marouani and Aguir 2011), or using full-field displacement measurements serving 
as input for ANN (Abbassi et al. 2013). Similarly, an inverse analysis approach is also 
employed to identify the parameters of Lemaitre’s damage model (Roux and 
Bouchard 2010; Bouchard et al. 2011). The complexity of the calibration procedure for 
the proposed model is kept low since the freedom in adjusting the damage model 
parameters is minimised due to experimentally measurable quantities. DIC strain 
measurements determine the fracture locus and impose the regularization length 
parameter to match the localization length scale. Only 1 parameter remains to be 
optimized from FE simulations to match the force-displacement response, as shown 
in the sections below.  

This work presents a ductile damage model based on the 3D fracture locus, coupled 
to plasticity, relying on the fracture strain determined by DIC. The main novelty lies 
in the fact that the experimentally resolved length scale is taken into account by 
introducing a length scale parameter into the material law. This is done via nonlocal 
regularization of the material flow based on large-deformation gradient theory 
(Anand et al. 2012). It is emphasized that in addition to its common role of ensuring 
mesh independency, the length scale parameter obtains an entirely new, additional 
role: it makes the fracture locus calibration procedure robust under variation of the 
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spatial averaging of the experimental strain. The nonlocal regularization term 
produces an additional hardening contribution only in the region where the strain of 
the FE model tends to localise to a higher extent than experimentally observed. This 
solves two issues: the mesh size dependency of the numerical model and the influence 
of the resolution of the imaging technique on the measured fracture strain. 

Modeling progressive material damage and failure is accomplished by 
supplementing the fracture locus model with: 

 a damage variable, D, that accounts for the influence of the current stress state 
via the corresponding fracture locus in the damage accumulation rule. The 
damage variable D is a scalar quantity under the assumption of isotropic 
damage, accumulated by the plastic strain increment 𝑑𝜀  weighted over the 
current value of the function  𝜀 = 𝑓(𝜂, 𝜃), thus defining the three dimensional 
fracture locus;  

 a non-local variable, 𝑒 , that represents a weighted average of the equivalent 
plastic strain 𝜀  over the specified strain distribution function defined by the 
experimentally resolved length scale parameter 𝑙. An additional term in the 
numerical model based on large deformation gradient theory regularizes the 
strain fields in the finite element model.  

We propose modeling strain softening linked to damage evolution dependent on the 
current stress state along the strain path. This methodology establishes the relation 
between the damage and the measurable quantity, i.e. the strain. To constitute such a 
relationship it is required to use accumulated damage as a failure criterion, as the 
damage is an internal auxiliary quantity that is not directly measurable.  

Towards the goal of developing a numerical model by, instead of changing, 
complementing the current standards in FE modeling of ductile materials, the 
existing theories for ductile fracture locus (Lou and Huh 2013), damage mechanics 
(Lemaitre 1985) and regularization (Anand et al. 2012) are embedded into a unifying 
approach capable of fulfilling the expectations from a generally applicable damage 
model, i.e.:  

 capturing a broad range of triaxialities and various failure modes dominated 
by void growth and coalescence under tension and shear, 

 applicability for real world applications, 
 mesh independence, 
 calibration of material parameters from independent experiments covering 

various stress states, 
 a minimum number of fit parameters and 
 a physical foundation of the model. 

While individual aspects of the damage mechanical phenomena listed above have 
already been extensively treated in the literature mentioned above, to the authors’ 
knowledge there is no model that combines all concepts in a single unified approach. 
This will be attempted for the first time in the following sections.  
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The model performance will be assessed on the investigated aluminum alloy AA1050. 
Prestraining by the extrusion process renders the material much less ductile (see Fig. 
2.4). In prestrained specimens, the onset of necking and strain localization occurs at 
very low local strains in the critical regions of tested tensile specimens. The material 
data is, therefore, extracted from post-necking region. The instant of the first 
detectable localization is not well identifiable. Therefore, we aim to model the 
progress of localization up to the point just before final failure. The localization stage 
prior to fracture cannot be reproduced by damage-free plasticity.  

 

2.2 Towards a fully coupled damage plasticity model: governing 
equations  

We begin our presentation with preliminaries of the incremental damage concept, 
where an increment of the plastic strain contributes to the damage increment 
weighted by the current value of a memory function 𝑓 which represents the stress 
state influence on the damaging process.  𝑓 is dependent on  the stress triaxiality and 
the Lode angle parameter defined by (2) and (4), respectively. Subsequently, we 
propose and elucidate the model for progressive material deterioration: a stress state 
dependent damage variable coupled to metal plasticity. Furthermore, a continuum 
damage and failure model for a ductile metal is presented. Finally, it is shown how 
the proposed concept is used for the prediction of both, experimental force-
displacement curve and strain field distribution prior to failure. It is emphasized that 
the mechanical behavior is modelled within a continuum mechanics framework, 
attempting to retain the minimal number of parameters to be calibrated.   

 

2.2.1 Incremental damage concept 

Assuming that damage accumulates somewhere in the continuum prior to failure, a 
damage indicator 𝐷 is employed as a field variable to quantify it. Generally speaking, 
any uncoupled failure criterion based on a simple damage theory can be described by 
the relation ∫ 𝑓 (𝜂, �̅�) 𝑑𝜀 = 𝐷, (2.1) 

with 𝐷 as a damage parameter and a function 𝑓 (𝜂, �̅�) incorporating the stress state 
dependency of an underlying damage process. An increment of the equivalent plastic 
strain contributing to the accumulation of damage 𝐷 is denoted as 𝑑𝜀 , whereas 𝜀  is 
the fracture strain prior to structural failure. 𝜀  is given by the evolution path of  stress 
triaxiality 𝜂 and the Lode angle parameter �̅� and herein will be defined as a maximum 
local equivalent plastic strain just before the structural failure. The void growth under 
hydrostatic tension, in the ductile fracture process, is defined by the stress triaxiality 
ratio.   𝜂 = =   , (2.2) 
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where 𝜎  is the averaged stress i.e. hydrostatic stress, and 𝜎  is the equivalent von 
Mises stress. The same can be rewritten using the first invariant 𝐼  of the stress tensor 
and second invariant 𝐽  of the stress deviator. The deviatoric stress tensor controls the 
void shape change in the ductile fracture process and can be characterised by the Lode 
angle (Lode 1926; Zhang et al. 2000, 2000): 𝜃 = 1 − arccos √  /  , (2.3) 

where 𝐽  is the third deviatoric invariant (-𝜋/6 ≤ 𝜃 ≤ 𝜋/6). Transformation of the 
equation (3) to the normalized space defines the normalized Lode angle parameter 
(Bai and Wierzbicki 2008) that is in the range of -1 ≤ �̅� ≤ 1 and reads: �̅� = 1 −  . (2.4) 

The normalized Lode angle can be interpreted as a parameter describing how far the 
material is from a pure shear stress state. �̅� = 0 designates generalized shear, whereas �̅� = 1 represents axisymmetric tension and �̅� = −1 axisymmetric compression.  

The integral expression in Eq. (2.1) for ductile damage 𝐷 has a range of [0, 1]. 𝐷 = 0 
corresponds to the undamaged state. It is assumed that damage initiates with the 
onset of plastic material flow. Therefore, an explicit damage initiation criterion is not 
required. It is emphasized that we are not assuming fracture initiation and softening 
only in the post-initiation range (like e.g. (Li and Wierzbicki 2010)) because it is not 
aimed to simulate crack propagation, rather damaging of an uncracked ductile solid. 
Once 𝐷 = 1 is reached final failure occurs, i.e. the material is separated. The 
assumption of a stress-state independent critical value of damage holds, since the 
critical and maximum value of the damage parameter is 𝐷 = 1 for the entire stress-
state domain. 

The increment of the damage indicator 𝑑𝐷 has the form of a linear damage 
accumulation rule:  𝑑𝐷 = ( , )  , (2.5) 

where  an increment of the equivalent plastic strain 𝑑𝜀  is weighted by the reciprocal 
return value of the function 𝜀 (𝜂, �̅�) describing the locus of all possible loading paths 
until fracture. The form of the function 𝜀 (𝜂, �̅�) is nonlinear and describes the 
dependency of the strain to fracture on the stress-state. The chosen ductile fracture 
model should be calibrated from a series of uniaxial tension tests on designed notched 
and shear samples with various notch radii and orientations in relation to the sample 
axis.  

The concept of uncoupled fracture locus is straightforward as long as the loading is 
proportional. For loading paths with both stress triaxiality and Lode angle parameter 
held constant, integration of Eq. (2.5) returns 𝐷 = 𝜀𝜀 (𝜂, �̅�)  (2.6) 
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and the shape of the fracture strain function 𝜀 (𝜂, �̅�) can be determined by mechanical 
testing of various sample geometries, covering different stress-states and attempting 
to maintain proportional loading conditions. Experimental determination of the local 
strains prior to failure accompanied by numerical simulations of tested samples in 
order to get access to strain histories is the basis for the construction of a fracture locus 
surface. Once the fracture locus is defined, the damage accumulation rule (Eq. 2.5) 
can be employed to predict the instant and the location of fracture initiation for non-
proportional loading paths and complex geometries.  

 

2.2.2 Coupling a cumulative strain damage to elasticity and plasticity  

In the framework of Continuum Damage Mechanics (CDM), the initiation and 
growth of microvoids and microcracks caused by large plastic deformations in metals 
is called “ductile plastic damage” (Lemaitre 1985). CDM models of ductile damage 
are derived on the basis of a continuum damage variable, the effective stress concept 
and thermodynamics (Lemaitre 1985; Lemaitre and Chaboche 1990; Lemaitre 1996). 
Associated to the strain equivalence hypothesis, the stress tensor is modified by 
damage and the effective stress tensor is defined, representing the loss of load 
carrying cross-sectional area as a consequence of damage. The damage strain energy 
release rate is associated to the damage variable D.  

Ductile plastic damage is usually accompanied by material softening and possibly by 
strain localization, e.g. localized necking. To model such an event in a computational 
study, the constitutive law must take into account softening of the material. Instead 
of using definitions of damage and subsequently material softening using the volume 
fraction of voids, where the critical void ratio is often considered as a calibration 
constant, we establish the relation between internal damage with an observable 
quantity, the strain, because it is directly measurable for any sample geometry (and 
thus for various stress states developing in the samples) even in the presence of 
localised necking. Direct stress measurements are not possible and there are no 
analytical stress corrections due to necking for arbitrary sample geometry.  

We reject the conventional simplifying assumption of the uncoupled damage theory 
described by Eq. (2.1) and state that the damage indicator does affect the plastic 
material flow in an isotropic manner. The magnitude of accumulated damage 
depends on the level of plastic deformation required to initiate ductile failure under 
the current loading path. Therefore, the damage scalar quantity 𝐷 is calculated as an 
integral of the plastic strain increments at current stress-state conditions with respect 
to the defined fracture envelope 𝜀 (𝜂, �̅�), as described by Eq. (2.2). 

Accumulated damage manifests in loss of stiffness and decrease of both the material 
strength and remaining ductility, i.e. the material’s capacity to consume plastic work 
until material separation. Following the principles of widely accepted damage 
mechanics (Lemaitre and Chaboche 1990), a coupling of elasticity and plastic internal 
variables with the scalar isotropic damage variable is obtained. The yield condition is 
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𝜙 = 𝜎 − (1 − 𝐷) 𝜎 ≥ 0, (2.7) 

where 𝜎  is the yield strength of the undamaged material, whose evolution with 
plastic strain is described by the function 𝜎 = 𝜎 𝜀 . (2.8) 𝜎  is the effective stress of the damaged material, where the decrease of the material 
strength is described by a weakening factor defined as a linear function of the damage 
variable,  𝜎 = (1 − 𝐷) 𝜎 , (2.9) 

with the equivalent stress 𝜎  modified by the ductile plastic damage 𝐷. Under the 
hypothesis of the strain equivalence (Lemaitre 1985), the strain behavior of damaged 
and undamaged material is represented by the same constitutive equations. 
Consequently, by replacing 𝐷 with the definition of damage according to Eq. (2.2), 
the stress-strain relation of the damaged material can be written as 𝜎 = 1 − 𝑑𝜀𝜀 (𝜂, �̅�)  𝜎 𝜀  (2.10) 

stating that the weakening phenomenon of the material is driven by strain induced 
damage. The damage increment depends on the strain increment weighted over the 
fracture strain, which itself is a function of the current stress state. Once the rate of 
the damaging effect prevails over the effect of the rate of hardening, the material 
enters the softening regime.  

The above statement is depicted in Fig. 2.1. The dashed line represents the 
undamaged material response described by Eq. (2.8). Three differently colored full 
lines show the true stress-strain curves of the material undergoing different loading 
paths. The blue (dotted) line corresponds to the blue (dark) domain of the fracture 
locus at high stress triaxiality. The strain required to enter the softening regime and 
finally to reach fracture is low here. On the other hand, the green  (dashed) line 
conforms to the nearly zero stress triaxiality domain of the fracture locus. In the low 
stress triaxiality region the material may sustain larger deformations, because the 
level of material ductility is the highest in this regime, as most experiments and 
models suggest. Under shear deformations with low hydrostatic tension, instead of 
void growth mechanism, elongation and rotation of voids and their interaction causes 
ductile failure (Tvergaard 2009, 2012). The cyan (dash-dotted) stress-strain curve 
represents the domain with intermediate values of stress triaxiality. Therefore, the 
strain required to enter the softening regime is related to the capability of deforming 
plastically under a certain loading path before reaching the fracture strain.   
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Fig. 2.1. Coupled damage variable for three different loading paths: weakening of 
the material driven by strain induced damage (schematic representation of Eq. 2.10). 

The inset shows the fracture locus 𝜀  in the space of stress triaxiality 𝜂 and Lode 
angle parameter �̅�. 

 

The amount of strain required to reach fracture depends on the calibrated shape of 
the fracture locus, the loading path and the corresponding stress states it was running 
through. For instance, in the regime of low stress triaxialities, for ideal constant 
loading paths the strain required to reach fracture is higher compared to the strain 
required in the high triaxiality domain. The influence of damage, represented by (1 − 𝐷), is in general a non-linear function of the applied strain, except for the ideal 
case of a constant strain-history path, i.e. only if there is no change of stress triaxiality 
and Lode angle parameter during loading. This is possible just in special cases (Bao 
and Wierzbicki 2004; Brünig et al. 2008; Gao et al. 2010; Driemeier et al. 2010; Dunand 
and Mohr 2011; Roth and Mohr 2016, 2018).  

Isotropic degradation of elasticity is assumed to follow the same rate as the decrease 
of the material strength, 𝐸 = (1 − 𝐷 ) 𝐸, (2.11) 

where 𝐸 is Young’s modulus of undamaged elasticity, and 𝐸 is the effective modulus 
of damaged elasticity. The damage quantity 𝐷  is referred to as the stiffness damage 
and it is not necessarily identical to the ductile damage 𝐷 from the Eq. (2.9). A power 
law relation 𝐷 = 𝐷  is adopted in the work of (Xue and Wierzbicki 2007), with a 
material constant 𝛽 ≥ 1. In the present research, following (Xue 2006), stiffness and 
ductile damage, 𝐷  and 𝐷, respectively, are assumed to be equal.  
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2.2.3 Regularization term  

Computation of the material softening induced strain localization (Rice 1976; 
Rudnicki and Rice 1975; Rice 1976) and shear band formation (Hutchinson and 
Tvergaard 1981) gives rise to loss of ellipticity and mesh-dependent solutions as 
discussed from different perspectives (Tvergaard et al. 1981; St. Pietruszczak and 
Mróz 1981; Belytschko et al. 1986)(Needleman 1988). The dissipated energy decreases 
as the mesh is refined (Li and Du X. 2010). Furthermore, incremental damage 
accumulation employs a function 𝜀 = 𝑓 ( 𝜂, �̅� ), where the calculated fracture strains 
correspond to a certain length scale. Whether DIC is utilized to track the plastic flow 
and the development of localized strain during tensile test, or some other technique, 
the detected local fracture strain 𝜀  will depend on the resolved length scale. 
Therefore, taking into account the influence of the length scale is indispensable. 
Consequently, a resolved length scale has to be included into the material model not 
only to regularize the mesh size dependency, but also to justify the use of the fracture 
strains for model calibration purposes. 

To this purpose, we introduce an additional term in our model formulation based on 
large deformation gradient theory for elastic-plastic materials. Regularization of 
numerical simulations with strain softening materials has been proposed by (Anand 
et al. 2012). In addition to the equivalent plastic strain 𝜀 , the authors have introduced 
a non-local variable 𝑒 , representing a weighted average of the equivalent plastic 
strain 𝜀 : 

𝑒 (𝒙) = ∫  (𝒚∶𝒙)  (𝒚) ∫  (𝒚∶𝒙)  . (2.12) 

The equivalent plastic strain 𝜀  is averaged and weighted over a Gaussian 
distribution of the form  𝜓 (𝒚 ∶ 𝒙) = ( ) / exp − |𝒚 𝒙| , (2.13) 

with the length scale 𝑙 as a measure of the material volume contributing to the 
nonlocality of the variable 𝑒 . After mathematical manipulations, the authors (Anand 
et al. 2012) arrived at the Helmholtz-type partial differential equation for 𝑒 , 𝑒 − 𝑙 ∆𝑒 = 𝜀  (2.14) 

and an implicit gradient theory is established based on a nonlocal yield criterion. The 
conventional hardening function 𝜎 𝜀  is modified in an additive manner: 𝜎 = 1 − ∫ ( , )  𝜎 𝜀 + 𝐿 𝜀 − 𝑒 , (2.15) 

becoming then a function of both equivalent plastic strain 𝜀  and nonlocal plastic 
strain 𝑒 . The contribution of the additional term 𝐿 𝜀 − 𝑒  is positive in the center 
of a strain localization where the rate of strain accumulation is the highest and 𝜀  has 
the highest value, while it is negative on the edges of the areas of localized strain. This 
allows to control the width of the strain localization band. The length scale 𝑙 should 
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be determined from experimental observations (e.g. the width of a shear band from 
DIC). It prevents localization of the plastic flow in the numerical simulations. For an 
adequate amount of gradient regularisation, the value of 𝐿 should be calibrated using 
experimental results of tension tests, in a way that both global load-deformation 
response and local strain distribution are well described.   

 

2.3 Ductile fracture experiments and model calibration  

The proposed numerical model requires the following experimental data to be 
identified: 

 plasticity parameters, e.g. yield stress and hardening exponent, describing 
the undamaged material response, 

 fracture locus parameters, defining the shape of the fracture locus and 
 regularization parameters, accounting for the resolved length scale. 

The foregoing damage plasticity FE model has been implemented in the ANSYS 
Mechanical environment by means of APDL (ANSYS Parametric Design Language) 
coding.  

The macroscopic mechanical response of the sheet material is characterized by a series 
of tensile tests. The DIC technique is utilized to track the development of local strains 
on the sample surface during tensile test, enabling us to observe diffuse necking and 
shear banding until final rupture occurs. Scanning Electron Microscope (SEM) 
observations of the sample fracture surface provide an insight into the typical 
mechanisms causing the fracture of a ductile material – void growth and coalescence 
dominated by hydrostatic tension and shear failure due to elongation and interaction 
of voids, as presented below (Fig. 2.11).   

 

2.3.1 Material and experiments  

Miniature tensile test samples are extracted from the bottom of the aluminum cans 
(A1050) by wire electrical discharge machining of a wire diameter of 0.35 mm. The 
cans are manufactured by an impact extrusion process, with the bottom diameter 
d=30 mm and the bottom thickness t=0.56 mm. Three types of sample geometries are 
specifically designed to cover different stress-states, as shown in Fig. 2.2: notched 
samples (R=1.00 mm, R=0.25 mm), shear samples (𝛼=45°, 𝛼=0°) and dog-bone 
samples (gauge width x length = 2.00 x 5.00 mm). Tested tension samples will 
hereafter be referred according to the list of abbreviations given by Table 2.2.  
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Notched tension Shear tension Conventional “dog-bone” 

 
                                             

                    R = 1.0, R=0.25 

  
 

 
  

      𝛼=45°, 𝛼=0°  
*Measures in [mm] 

Fig. 2.2. Tension test samples of aluminum alloy AA1050 designed to capture 
various stress states. 

 

Table 2.2. List of abbreviations  
Abbreviation Explanation 

notchR025 Notched tension specimen with radius of the notch 
R=0.25 mm 

notchR1 Notched tension specimen with radius of the notch 
R=1.00 mm 

shear0 Shear tension specimen with angle 𝛼=0° (see Fig. 2.2) 
shear45 Shear tension specimen with angle 𝛼=45° (see Fig. 2.2) 

dog-bone Conventional dog-bone tension specimen  
EXP Experimental result  
SIM Simulation result   

 

Tensile testing is performed by a Bond-tester (Sigma Condor from XYZ-Tec) with a 
crosshead stroke resolution of 0.03 µm and a sample holder specifically designed for 
clamping miniature specimens. It is intended to keep the strain rate of the same order 
at the gauge section level for all tested samples. For this purpose, the tests were 
conducted using a fixed cross head speed depending on the sample geometry. The 
dog-bone sample is loaded at 400 µm/s and this is taken as a reference testing 
velocity. The average strain rate of the specific sample is estimated from a preliminary 
FEM analysis and a correction factor is applied to the reference testing velocity. The 
notched samples are then loaded at 10 µm/s and the shear samples at 70 µm/s, since 
the strains in the notched and the shear samples evolve faster compared to the strain 
in the dog-bone sample. The recorded force displacement curves are summarized in 
Fig. 2.6. 



CHAPTER 2 Coupled damage variable based on fracture locus      50 
Modeling and calibration 

 

 
 

For the investigation of possible plastic anisotropy of the material, dog-bone samples 
are cut out in different orientations with respect to the direction of material flow 
during the extrusion process (𝛽=0°, 𝛽=45°, 𝛽=90°). Evidently, the anisotropic 
properties turned out to be insignificant, see Fig. 2.3. To investigate the potential 
strain rate dependency of the characterized material, tensile tests on additional 
notched (R=4.00 mm) samples and shear (with angle 𝛼=15°) samples were performed 
for different strain rates. These tension tests were conducted with varying velocities 
from 4 to 1000 µm/s for notched and from 15 to 700 µm/s for shear sample, both 
revealing that the dependency on the strain rate is negligible. Since both the 
anisotropy and strain rate investigations showed only minor significance, they are 
not considered any further in this work.  

 

Fig. 2.3. Force-displacement curves of extruded AA1050 in three different 
orientations with respect to the extrusion flow: 0°, 45°, 90°. 

 

The surface displacement is measured with planar Digital Image Correlation (DIC) 
using the software VEDDAC7. The natural surface pattern of the sample turned out 
to provide enough features for a 2D DIC analysis, thus no additional speckle pattern 
has been applied to the specimen surface. The images are acquired using a digital 
camera (microDACstandard, 1624x1234 pixel) at frame rate of 14 pictures/s. The 
camera is positioned in front of the sample surface, ensuring that the field of view 
covers the whole sample gage region. DIC measurements of strain accumulation are 
done gradually with increasing spatial resolution: 10 pixels, 6 pixels, 3 pixels. 1 pixel 
corresponds to the distance of 0.012 mm between measurement points. Naturally, the 
smaller the pixel distance between the measurement points, the higher is the 
computed equivalent strain. The finest possible resolution with 3 pixels between 
measurement points is considered as relevant for the determination of fracture 
strains, because it gives the best achievable result with the available experimental 
setup and software. It is emphasized that these strains are valid for the resolved 
length scale, which will be taken into account in the numerical model. The 
distribution of the DIC strain fields on the specimen surface is shown in Fig. 2.5.   
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To demonstrate the influence of prestraining induced by the manufacturing process, 
one dog-bone sample is directly cut out from the aluminum can and tested, whereas 
the second one is subjected to heat treatment after cutting. The used heat treatment 
profile consists of three sections: (1) a warm-up phase from 25°C to 415°C with a ramp 
time of 2h, (2) a heat treatment phase at 415°C with a dwell time of 2h, and (3) a post 
heat treatment phase from 415°C to 250°C with a ramp time of 5h. Tensile testing of 
both prestrained and annealed samples are performed with a velocity of 400 µm/s. 
Fig. 2.4 shows the structural response of strain-hardened and annealed aluminum: 
the strain-hardened sample shows higher yield strength and reduced ductility. By 
contrast, the annealed sample has lower yield strength and can sustain remarkably 
larger strains, as expected. It is emphasized that the goal of the present research is the 
characterization and modeling of the strain-hardened aluminum (see Fig. 2.4, red 
curve).  

 

Fig. 2.4. Force-displacement curve of AA1050: annealed and work-hardened dog-
bone sample. 

 

Fig. 2.4 also demonstrates the onset of necking at a very early stage for strain-
hardened aluminum. This indicates a very low remaining hardening capability of the 
material. Almost instantaneously after the elastic zone, necking starts in the annealed 
sample, see label “1” in Fig. 2.4. The identification of the hardening function 𝜎 𝜀  
from uniaxial tension experiments is straightforward as long as the material subject 
to testing can sustain large strains before necking, i.e. necking is postponed by the 
material’s hardening capability (Hill 1952; H. W. Swift 1952). It is well known fact that 
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the standard tensile test only allows to identify the hardening behavior up to the point 
of necking (Coppieters et al. 2011). However, in the present research, a large 
hardening region without necking, suitable for identification of the plasticity law, was 
not observed, making the modeling task more challenging. The experimental 
evidences show that all sample geometries show the same behavior of necking at 
extremely low strains because the material is initially strain hardened to a great extent 
due to the extrusion process. This causes early necking and abrupt strain 
concentration observed from tensile tests, as demonstrated in the following. 
Therefore, all material parameters related to damage will be inversely determined 
from the post-necking behavior of the specimen.   

 

2.3.2 Computational models  

The modeling has been performed in two stages. First the undamaged mechanical 
response of tension samples must be considered using a suitable damage-free 
plasticity model. Then the damage parameters are to be identified through an 
experimental-numerical analysis of ductile fracture experiments, yielding the 
physically more meaningful, damaged mechanical response of a proposed coupled 
damage-plasticity law, which combines the theories of (Lemaitre 1985), (Lou and Huh 
2013) and (Anand et al. 2012). 

 

2.3.2.1 Plasticity model     

Classical 𝐽  plasticity is used to model the plastic flow of the undamaged material 
matrix of aluminum AA1050. Von Mises idealization of the yield surface is adopted, 
because of the material’s negligible plastic flow anisotropy, confirmed by mechanical 
tests in different orientations with respect to extrusion flow. Voce’s isotropic 
hardening law is chosen to model the stress-strain relation of the undamaged material 
matrix: 𝜎 𝜀 = 𝜎 + 𝑅 𝜀 + 𝑅 1 − 𝑒   (2.16) 

where the parameters 𝜎 , 𝑅  and 𝑏 are determined from the pre-necking behavior 
with uniform strain in uniaxial tension. Due to the reduced hardening capability 
introduced by prestraining, there are uncertainties regarding to calibration of 
parameter 𝑅 , controlling the slope of the hardening curve at the large strains. Based 
on the hypothesis of a very low remaining hardening potential, a non-hardening 
model with 𝑅 = 0 is assumed and eventually verified by comparing the 
experimental and simulated mechanical response of tension specimens at the end of 
the calibration procedure. Due to this straightforward application of the non-
hardening model by setting parameter 𝑅  to zero, the Voce law was chosen. The 
remaining Voce parameters {𝜎 , 𝑅 , 𝑏} determining the initial yield stress, 𝜎 , the 
difference between the saturation and the initial yield stress, 𝑅 , and hardening 
parameter governing the rate of saturation, 𝑏, can be determined from the material 
behavior before necking of the uniaxial tensile specimen.  
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2.3.2.2 Ductile fracture model  

A combined experimental-numerical analysis is carried out in order to determine the 
form of the fracture locus. Firstly, the experimental strain to fracture 𝜀 ,  is 
determined from tensile tests.  Secondly, preliminary FE simulations of all tensile tests 
are performed, mainly serving the purpose of extracting the loading paths to fracture. 

To determine the fracture strain, the onset of fracture must be identified. This can be 
done based on the first detectable discontinuity in the measured surface displacement 
field (Dunand and Mohr 2010). However, our experiments did not show such a clear 
discontinuity and no sudden drop in the load displacement curve was observed. 
Therefore, we define the fracture strain 𝜀  as the maximum local equivalent plastic 
strain just before the instant of the final failure of the specimen, as shown in Fig. 2.5. 
Before reaching the final failure, no macrocrack is observed.  

 

Fig. 2.5. Ductile fracture experiments: force-displacement curves and DIC equivalent 
strains. The instant prior to failure ( ) determines the instant of the onset of 

fracture 
 

The planar strains 𝜀  and 𝜀  are computed by DIC software. Assuming volume 
conservation, the third strain component in thickness direction 𝜀  is calculated. 
Finally, the total equivalent strain to fracture is obtained (shear strain components 𝛾  
and 𝛾  are neglected): 𝜀 , =  𝜀 + 𝜀 + 𝜀 + 3 𝛾  . (2.17) 

All experiments are simulated using Voce’s plasticity model. Only one-half of each 
tensile sample is modelled by introducing appropriate symmetry boundary 
conditions in xy-plane. 8-node solid elements with 0.043 mm element size are used 
for all finite element models, with 7 elements in thickness direction. In displacement-
controlled FE simulations, the measured planar DIC displacements are applied at the 
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top and the bottom boundaries of the FE model of the sample. Since the coordinates 
of the DIC measurement points generally do not coincide with the nodal coordinates 
of the FE model, displacements from DIC are mapped to the FE mesh by linear 
interpolation  (ANSYS Documentation). 

Conventionally, it is assumed that the location of the highest equivalent plastic strain 
coincides with the location of the onset of fracture (Dunand and Mohr 2010). 
Therefore, the most highly strained integration point is normally chosen for 
extracting the strain histories, i.e. the evolution of equivalent plastic strain as a 
function of stress triaxialities and Lode angle parameters. This assumption holds in 
our particular case of notched- tension samples in the center of the sample gauge 
region where two critical factors, i.e., the fastest rate of plastic strain accumulation 
and high triaxiality, appear simultaneously. However, the most critical stress state 
with regard to ductile fracture initiation is the plane strain tension, which comes from 
the general form of the ductile fracture locus and its plane strain valley (see Fig. 2.8). 
Therefore, regarding the shear fracture specimens, fracture might initiate at the free 
boundaries, not necessarily in the specimen’s gauge section. The reason is the 
particularly rapid increase of the damage indicator due to the increase of stress 
triaxiality from initially 1/3 to higher values in the plane strain valley. The stress 
triaxiality might drift to higher values at the free boundary if the tensile stresses 
prevail in the respective zone, whereas the specimen’s centre remains essentially in 
the shear stress state with both stress triaxiality and Lode angle parameter ~ 0. The 
lower the strain hardening capability, the lower is the risk of reaching a critical state 
at the free boundary (Roth and Mohr 2018). Nevertheless, even if the fracture does 
actually initiate at the free boundary, the information gained from the tested sample 
can still be used by extracting the loading path of that particular material point which 
first reaches the critical damage 𝐷 = 1. This defines the location of ductile fracture 
initiation. It will, henceforth, in the work be referred to as the critical point.  

Eventually, the critical loading paths, i.e., the loading path at the critical point, for 
calibration of the ductile fracture locus are extracted (see Fig. 2.6) not only based on 
the assumption of the maximum equivalent plastic strain, but also taking into account 
the stress state evolution. Note that a sharper notch (R=0.25 mm) does not induce 
significantly higher triaxiality and lower fracture strain, compared to a larger notch 
(R=1.00 mm) (see Fig. 2.5). As a matter of fact, the fracture strains of the respective 
samples are approximately equal.  This agrees with the work of (Mirone and Corallo 
2010) who found that, at the local scale, the common assumption that a sharp notch 
leads to high triaxiality and low fracture strain may not always apply; generally it 
applies in the context of neck-averaged quantities, like the logarithmic strain and true 
stress. However, from a local viewpoint, if the notch is sharp enough so that the 
fracture initiates on the outer specimen surface, the local fracture strain may be larger 
than the current logarithmic fracture strain (Mirone and Corallo 2010).  
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(a) (b) 
Fig. 2.6. Critical loading paths: history of the equivalent plastic strain vs. stress 
triaxiality (a) and Lode angle parameter (b) extracted from FEM simulations of 

ductile fracture experiments at the critical point. 
 

Using the loading paths at the critical material point in tension specimens, the 
parameters of the ductile fracture model proposed by (Lou and Huh 2013) and 
modified by (Lou et al. 2014), are determined. The model was first introduced in its 
original form by (Lou et al. 2012). The choice of the model was guided not only by the 
ability of describing the dependence of the fracture strain on the current stress state 
with sufficient accuracy, but also by the objective of keeping the number of material 
parameters at minimum. (Gänser H.P. et al. 2001) have shown that as long as damage 
accumulation is proportional to the accumulated plastic strain and the stress 
triaxiality ratio, different models give very similar results. Therefore, the 
mathematical description of the employed ductile fracture model seems to be of 
minor importance. The model of Lou considers a damage accumulation induced by 
nucleation, growth and coalescence of voids. The nucleation of voids is assumed to 
be proportional to the equivalent plastic strain 𝜀 , the void growth is modelled by a 
function of the stress triaxiality 𝜂, and shear coalescence of voids is described by a 
function of the Lode parameter 𝐿 ≅ −�̅�. Based on the latter model (Lou and Huh 
2013), the fracture locus of a AA1050 aluminum alloy can be described by: 𝜀 (�̅�, 𝜂) = 𝑐2 �̅� + 3 〈1 + 3𝜂〉2       〈𝑥〉 = 𝑥     𝑤ℎ𝑒𝑛 𝑥 ≥  00      𝑤ℎ𝑒𝑛 𝑥 <  0 

(2.18) 

where the parameters {𝑐 , 𝑐 , 𝑐 } are to be identified. The material constant 𝑐  
modulates the effect of the normalized maximum shear stress on shear coalescence of 
voids. The curvature and with it the Lode angle dependency of the constructed 
fracture locus rise with 𝑐  (Lou and Huh 2013). The material constant 𝑐  models the 
effect of the stress triaxiality on void growth. With increasing 𝑐 , the influence of the 
stress triaxiality is magnified on the equivalent plastic strain to fracture (Lou and Huh 
2013). The material constant 𝑐  represents the magnitude of the fracture locus and has 
no influence on its final shape. Since the critical loading paths are non-linear, an initial 
guess of the fracture model parameters {𝑐 , 𝑐 , 𝑐 } is estimated based on the measured 
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DIC strain, the averaged values of stress triaxiality  𝜂  as well as Lode angle 
parameter  �̅� :  𝜂 = 1𝜀 𝜂 𝜀  𝑑𝜀  (2.19) 

 

 �̅� = 1𝜀  �̅� 𝜀  𝑑𝜀  (2.20) 
 

The final set of fracture model parameters is obtained by evaluating the integral 
expression for the non-linear loading path (see Eq. 2.2). The parameters {𝑐 , 𝑐 , 𝑐 } are 
found by means of least-squares optimization of  {(𝑐 , 𝑐 , 𝑐 )} = (𝑐 , 𝑐 , 𝑐 )| ∑ (𝐷 (𝑐 , 𝑐 , 𝑐 ) − 1) → 𝑚𝑖𝑛 , (2.21) 

with  𝐷 = 𝑑𝜀𝜀 (𝜂, �̅�) = 1      𝑓𝑜𝑟    𝜀 = 𝜀 ,  (2.22) 

being the damage indicator for each sample geometry i.  𝑁  denotes the number of tensile samples used for the calibration of the ductile 
fracture model. The so-determined fracture locus of the extruded aluminum AA1050 
is shown in Fig. 2.7.  

 

 

Fig. 2.7. Identified fracture loci of AA1050. Parameters of the ductile fracture model 
proposed by (Lou and Huh 2013): 𝑐 =2.082, 𝑐 =0.557, 𝑐 =2.423. The figure shows a 
fracture locus (surface) together with both loading paths (lines) and fracture strains 

used for calibration ( ). 
 

2.3.2.3 Length scale  

The smallest identifiable length scale is around one pixel. SEM images of the fracture 
surface reveal the width of the failure site, i.e. the width of the localised strain band. 
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In our specific case the estimated width of the failure site area is 0.2 mm, whereas the 
resolved length scale is 3 pixels = 0.037 mm.   

The DIC strain distribution corresponding to the tested sample that exhibits the most 
extreme localization and, therefore, has the narrowest strain band is chosen for a 
representative profile to determine the length scale 𝑙. The equivalent strain profile 𝜀(𝑥) is extracted from the planar DIC strains of the shear0 sample along a horizontal 
line in the center of the specimen, as shown in Fig. 2.8. The strain distribution function 𝜀(𝑥) may be approximated by a one-dimensional Gaussian function: 𝜀(𝑥) = 𝜀 √ 𝑒 ( )

 . (2.23) 

 

(a) (b) 
Fig. 2.8. Representative strain profile for determination of experimentally resolved 
length scale: (a) planar distribution of the equivalent plastic strain determined by 

Digital Image Correlation and (b) approximation of the central strain profile by Eq. 
2.23 with 𝑙=0.195 mm and 𝜀 =1. 

 

The parameter 𝑙 is determined by fitting the one-dimensional function 𝜀(𝑥) (see Eq. 
2.23) to the measurement points of the representative DIC strain profile 
(𝑙 = 0.195 mm). The parameter controlling the amount of regularization (see Eq. 2.11), 𝐿, has been found iteratively by comparison of the simulated with the experimental 
force-displacement response of the representative shear0 sample (Fig. 2.9).  
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Fig. 2.9. Calibration process of the parameter L controlling the amount of 
regularization: the iterative fitting procedure by comparing experimental and 

simulated force-displacement curves. The length scale parameter 𝑙 is fixed (𝑙 = 0.195 
mm). 

 

2.4 Results and discussion  

Table 2.3 summarizes the identified damage-plasticity model parameters for the 
extruded aluminum alloy AA1050. Finite element simulations of ductile fracture 
experiments are performed to validate the predictive power of the coupled damage 
parameter concept also in extreme cases, i.e., ductile fracture at high triaxiality and 
shear fracture at low triaxiality.  

Table 2.3. Material parameters used for modeling aluminum alloy AA1050  
Plasticity model 𝜎  [MPa] 

120.895 
𝑅  [MPa] 

0.000 
𝑅  [MPa] 

34.499 
𝑏 [-] 

851.118 
Ductile fracture 
model  

𝑐  [-] 
2.082 

𝑐  [-] 
0.557 

𝑐  [-] 
2.423 

 

Regularization 
parameters 

𝑙 [mm] 
0.195 

𝐿 [MPa] 
167.125 

  

Elastic 
parameters 

𝐸 [MPa] 
70 000 

𝜈 [-] 
0.33 

  

 

The numerically obtained global force-displacement curves computed by the coupled 
damage model are compared with experimentally recorded ones in Fig. 2.10. It can 
be seen that the overall agreement of the load responses obtained by the coupled 
damage indicator with experimental data is satisfactory. The material responds 
markedly different under different regimes and the coupled damage indicator can 
capture it due to its incremental definition accounting for the stress evolution. In 
terms of the load response, (Li et al. 2011) have reported a greater discrepancy 
between the finite element simulation and the experiment when the sample geometry 
approaches the shear0 type. Here, a good agreement of the force-displacement curves 
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for the shear0 sample is achieved thanks to the coupled damage model and the 
implemented regularization method. The contribution of the regularization effect is 
extremely important in the regime where the tensile test sample exhibits strong 
localization of the plastic flow. Note that the shear0 sample shows the best agreement 
because the respective sample was used in the calibration process of the 
regularization parameter L, see Fig. 9. The identified value of parameter L was 
purposely adopted and applied for all other samples, with the intention of having a 
unique parameter set. This, in turn, is the reason why the deviation for the other 
samples is slightly larger, see Fig. 10. A closer look at the main ductile fracture 
mechanisms predicted by the coupled damage indicator is further discussed in the 
following subchapters.  

 

Fig. 2.10. Experimental vs. numerically predicted force-displacement curves of 
various tests: The FEM simulations use a coupled damage model. 

 

Fig. 2.11 shows SEM micrographs of the fracture surfaces of broken tension specimens 
and give an insight into the micromechanics of the underlying ductile damage 
process. The interplay between tensile stress and shear stress determines the 
dominating fracture mode. This competition between tensile and shear stress can be 
evaluated by the stress triaxiality value 𝜂. Ductile failure due to void growth and 
coalescence (Fig. 2.11a) occurs at high triaxiality values (𝜂>0.3) where positive 
hydrostatic stress dominantes. Ductile failure due to the elongation of voids and 
coalescence (Fig. 2.11b) is governed by shear stress and occurs at low triaxiality values 
(𝜂<0.3). The combination of these two modes (Fig. 2.11c) is accompanied by a 
pronounced shift of the stress state during deformation: the stress triaxiality drifts 
from initial uniaxial tension (𝜂=1/3) to very high values (𝜂>0.5). The latter strain path 
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corresponds to conventional dog-bone specimens where the development of a diffuse 
neck promotes the increase of triaxiality.  

 

(a) (b) (c) 
Fig. 2.11. Scanning Electron Microscope (SEM) micrographs of various ductile 
fracture mechanisms: (a) ductile failure due to void growth and coalescence 

observed at the failure site of the notched specimen R025, (b) shear dominant failure 
and sheared voids at the failure site of the shear specimen 0°, (c) mixed mode 

failure: combination of ductile and shear failure observed at the failure site of a dog-
bone sample. 

 

2.4.1 Shear tension samples   

The shear fracture surface of a shear0 sample reveals very little necking of the gage 
section in thickness direction (see Fig. 2.12a). It is the Poisson effect that causes 
thinning of the material in the respective zone. However, due to the specific sample 
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geometry, there exists a zone of zero thickness change. The material’s cross-sectional 
area does not decrease by a greater proportion than the material strain-hardens, thus 
preventing the prominent necking instability. Therefore, in this sample one can more 
easily distinguish between the material- and geometry-related effects on the load 
response. An FE simulation in uncoupled mode is unable to reproduce the force-
displacement curves from the experiment (see Fig. 2.12b). Based on the better 
agreement of the experiment with the numerical result in coupled mode, one can 
draw the conclusion that the effect of damage plays a significant role when the 
material undergoes very large deformations. Note that no explicit damage initiation 
criterion is used in the material model. Fig. 2.13a shows the comparison of 
experimentally and numerically obtained distributions of the equivalent plastic strain 
of the shear0 sample surface. Fig. 2.13b shows that the coupled damage indicator 
successfully predicts the instant of the fracture initiation. Both the equivalent plastic 
strain and the damage parameter are plotted at the instant of maximum applicable 
load prior to failure. The location of the fracture initiation, where the damage 
parameter reaches unity first, tends to be on the free boundary rather than the gauge 
section. Because a sharp notch appears during loading, the triaxiality increases (Fig. 
2.6) close to the free boundary, i.e., structural failure initiates at this location.  

 

 

  

                                     (a)                          (b) 

Fig. 2.12. Shear sample: (a) fracture surface and (b) force-displacement curves of 
coupled and uncoupled damage model compared with experiment, where the inset 

shows FE mesh. 
 

The surface strain field determined experimentally by Digital Image Correlation 
(DIC) is compared with the numerical results in Fig. 2.13a. The distribution of the 
damage parameter displayed in Fig. 2.13b implies that fracture initiates on the free 
boundary of the gauge section. For the calibration of the fracture locus it is actually 
desirable to use the fracture strain for the stress state developing at the specimen 
center, where the stress state varies less in comparison to the free surface. 
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Nevertheless, calibration of the fracture locus by means of an integration procedure, 
as shown in chapter 2.3.2.2., allows to capture the nonlinear stress state evolution. In 
this way, the experimentally determined fracture strain still can be used, although the 
fracture has not initiated in the specimen center. An increased risk of fracture 
initiation at the free boundary as compared to the central area is due to higher 
triaxiality and as a consequence a fast increase of damage. Consequently, the critical 
location of fracture initiation does not conform with the location of maximum plastic 
strain. When closely looking at the evolution of mechanical fields in the shear 
specimen (Fig. 2.6), one concludes that the damage evolution accelerates with 
increasing triaxiality and slows down with increasing Lode angle. Thus, the increase 
of the Lode angle parameter partially compensates the effect from the increase of 
stress triaxiality. This explains the fact that the shear specimen has the largest fracture 
strain among all investigated specimens. Recent laminographic observations show 
that voids even form in a material subjected to pure shear loading (Roth et al. 2018), 
thus supporting the modeling assumptions of the present coupled damage 
framework.  

 

 

(a) 
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(b) 

Fig. 2.13. Shear tension sample: (a) Equivalent plastic strain (specimen surface): 
Digital Image Correlation (DIC) vs. simulated distribution of the equivalent plastic 

strain and (b) plot of damage with the critical element reaching damage D=1 
(specimen center), distribution of stress triaxiality and Lode angle parameter.  

 

2.4.2 Notched tension samples 

From a macroscopic point of view, a pronounced diffuse necking accompanies the 
deformation of the notchR1 specimen, as shown in Fig. 2.14a. The rate of necking in 
the direction perpendicular to the sample surface progresses fast and, therefore, 
boundary conditions have an important effect on the overall mechanical response in 
this regime. Micromechanically, the failure mechanism of the notched tension 
specimen is dominated by void growth (McClintock 1968; Rice and Tracey 1969; 
Hancock and Mackenzie 1976). Hydrostatic tension, i.e. an extreme increase of the 
triaxiality is the main driving factor leading to failure. Fig. 2.14b compares numerical 
predictions of a coupled and an uncoupled model with experimental data. Evidently 
the geometrical effect, i.e. the decrease of the cross section due to necking, does not 
sufficiently account for the declining force-displacement curve. In addition, material 
softening due to damage must be taken into account. 

 

 

 

(a)       (b) 
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Fig. 2.14. Notched tension sample: (a) fracture surface and (b) force-displacement 
curves of coupled and uncoupled damage model compared with experiment. The 

inset shows the FE mesh. 
 

Fig. 2.15a compares experimentally measured, DIC, with numerically computed, 
FEM, strain fields. The fracture strain of the notched tension sample is much lower 
(𝜀 = 0.6) compared to the shear0  sample (𝜀 = 2.5). Prior to ductile failure, extreme 
plastic localization occurs. Fig. 2.15b shows that in this case fracture indeed initiates 
at the location of maximum strain. The highest strain rate develops in the specimen 
center, where also the stress triaxiality increases rapidly (>0.7) and the Lode angle 
parameter approaches 0. The shape of the calibrated fracture locus (Fig. 2.7) suggests 
that the combination of the high triaxiality and Lode angle parameter close to 0 
indicates the most critical stress state domain. Plastic strain in the notchR025 sample 
develops exactly at the location with these critical stress state conditions. 
Accordingly, the critical location of fracture initiation coincides with the location of 
maximum plastic strain. 

 

(a) 

 

(b) 

Fig. 2.15. Notched tension sample: (a) Equivalent plastic strain (specimen surface): 
experimentally measured (DIC) vs. simulated distribution of plastic strain, (b) 
damage parameter at the critical element reaching damage D=1, distribution of 

stress triaxiality and Lode angle parameter.  
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2.4.3 Conventional “dog-bone” tension test   

It is emphasised that only shear and notched tension tests are used for the calibration 
of the damage model. The experimental data of conventional dog-bone specimens is 
excluded from material parameter calibration and serves mainly the purpose of 
validation of the present model. Thus the predictive capability of the model is 
demonstrated for a specimen shape and a loading path that has not been used for the 
calibration procedure (Fig. 2.16).  

 

Fig. 2.16. Loading path of the dog-bone tension specimen: history of the equivalent 
plastic strain as a function of stress triaxiality and Lode angle parameter. 

 

Fig. 2.17a shows two types of instabilities of failure in the dog-bone tension test. 
Macromechanisms referred to as diffuse and localized necking are bifurcations types 
preceding the failure of a dog-bone tension test. Fig. 2.17b shows that shear band 
formation commences soon after initial plastic yielding. The agreement of the 
simulated force-displacement curve using a coupled model with the experimentally 
measured curve is generally quite satisfactory, even though the model slightly 
overpredicts the damage influence at low strains and underpredicts it at high strains. 
One reason is that the parameters are not re-adjusted to this specific specimen. Instead 
the set of parameters calibrated from notched and shear tension tests is applied also 
for the dog-bone specimen. The uncoupled model does not perform equally well, 
because it can only reproduce the purely geometrical necking effect but does not 
account for the material softening.  
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                                 (a)                                                                               (b) 

Fig. 2.17. Dog-bone tension test: (a) fracture surface and (b) force-displacement 
curves of coupled and uncoupled model compared with an experiment. 

 

Fig. 2.18a shows the equivalent plastic strains on the surface of a dog-bone tension 
test. Both diffuse and localized necking are predicted well by the numerical model. 
Fig. 2.18b indicates the fracture initiation in the center of a shear band. Both rapid 
increase of the strain rate and stress state conditions are determining the fracture 
initiation in the center of plastic localization. Increasing stress triaxiality (>1) and 
decreasing the Lode angle parameter (close to 0) drift the damage parameter to the 
most critical plane strain valley.  

 

 

(a) 
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(b) 

Fig. 2.18. Dog-bone tension test: (a) Equivalent plastic strain (specimen surface): 
experimental Digital Image Correlation (DIC) vs. simulated using coupled damage 

model and (b) plot of damage with the critical element reaching damage D=1, 
distribution of stress triaxiality and Lode angle parameter (specimen center). 

 

Mesh independence of the 3D numerical model is achieved with the help of the strain 
regularization method introduced by (Anand et al. 2012). The numerical results for a 
coarse mesh and a 3x finer mesh are highlighted in Fig. 2.19. The first column shows 
the standard equivalent plastic strain 𝜀 , while the second column represents a 
“smeared” plastic strain 𝑒 , weighted over a Gaussian approximation function, see 
Eq. (2.12). The third column depicts the contribution of the regularization term (𝜀 −𝑒 ) in the constitutive law. A positive contribution in the center of strain localization 
and a negative one at the edges are neutralizing the width of the localization band. 
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Fig. 2.19. Regularization of shear bands using large-deformation gradient theory 
proposed by (Anand et al. 2012). Standard equivalent plastic strain 𝜀 ; nonlocal 

plastic strain 𝑒  representing a weighted average of 𝜀  neutralizing the width of the 
band by the difference of 𝜀  and 𝑒  having a positive contribution in the center of 

strain localization and negative one at the edges (specimen surface). 
 

2.5 Conclusions 

A damage variable based on the fracture locus has been embedded into coupled metal 
plasticity. The predictive capability of the coupled and uncoupled damage model has 
been assessed.  The analysis of the numerical results leads to the following 
conclusions: 

1. Despite their obvious shortcomings uncoupled damage models are still in 
frequent use in the literature. It is thus worthwhile mentioning that uncoupled 
damage models provide only non-conservative predictions whereas the 
presented coupled damage model based on the fracture locus concept results 
in much more reliable predictions of the softened material response, as has 
been quantified in this work. This supports the conclusions of (Driemeier et 
al. 2015) who illustrated the need of going back to coupled models, especially 
when a ductile material undergoes large deformations with significant 
changes in the microstructure in terms of void evolution.  
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2. The metal plasticity model coupled with a damage variable based on the 
fracture locus is capable of capturing various loading paths and ductile failure 
modes, namely ductile fracture at both high and low triaxialities. This is 
because the influence of the damage variable on the hardening behavior 
results in a true stress-strain curve dependent on the history of the stress 
triaxiality and Lode angle parameter. The importance of the strong stress-state 
effect on the plastic behavior of isotropic metallic materials has already been 
elucidated in the literature (Gao et al. 2011).  
 

3. Besides stress triaxiality, the effect of the Lode angle parameter on ductile 
fracture, although less intuitive, is proven to be equally important as an 
accelerating factor leading to structural failure. This is due to a drift of the 
stress state in the direction of the plane strain valley of the fracture surface 
(fracture locus). Capturing all these stress state effects on the damaging 
process is possible by the coupled ductile fracture locus model presented in 
this work using the least number of parameters possible. Specifically, 3 
parameters of the fracture locus are fixed from experiments, as well as the 
length scale 𝑙. Only 1 regularization parameter L is to be optimized from 
simulations. (Driemeier et al. 2015) argue that the material model should 
perform well using as few parameters as possible, having a physical meaning.  
 

4. The calibration of the ductile fracture mode should account for the non-
proportionality of the loading path. It is then able to cover the different 
material behavior under different regimes by a unique numerical model 
formulation by coupled damage variable. Finding the final set of the fracture 
locus parameters by the presented optimization procedure, where damage D 
is evaluated by integration of every single strain path, for every optimization 
step, is an advanced method of calibrating the fracture locus. In this way, the 
non-linear loading paths are taken into account. A simple approximation of 
strain-averaged triaxiality and Lode angles recognised as inappropriate to 
define a fracture locus (Basu and Benzerga 2015; Thomas et al. 2016) thus can 
be avoided.  
 

5. The strain regularization introducing the experimentally resolved fracture 
strain is indispensable for a good overall agreement of experiment and 
simulation. The presented model considers the length scale over which the 
experimental strains are averaged while determining the fracture strain by 
imaging techniques.  In contrast to the former approaches from the literature, 
the present work focuses on the fact that the gage length for strain 
measurements must correspond to the width of the localization band. In this 
way, the measured strain at fracture is the actual average strain occurring in 
the fracture initiation zone, i.e., the localization band. This measured width of 
the strain localization equals to the regularisation length scale parameter 𝑙 
used in finite element simulations, thereby ensuring tight correspondence of 
physical reality and numerical model on the basis of a measurable length. 
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The presented generally applicable damage model is of high practical use for more 
reliable failure predictions and design of structural parts made of metal alloys in 
general (e.g. aerospace, automotive and electronics community) thanks to the more 
robust model calibration.  Changes induced by different spatial averaging of the 
experimental fracture strain, dependent on the resolution of the applied imaging 
technique, are possible now to be incorporated in the numerical model via the 
introduced experimentally resolved length scale.  More precisely, the model predicts 
the fracture initiation (damage D=1) in a structure independent of the scale of the 
experimentally determined fracture strain.  
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Chapter 3 

 

 Coupled damage variable based on 
fracture locus: Prediction of ductile 
failure in a complex structure9 
 

 

his article focuses on predicting the instant of failure in a real scale 
component of complex geometry and loading using a ductile damage 

model calibrated exclusively on small-scale laboratory specimens of relatively simple 
shape. The ductile behavior of a strain hardened aluminum alloy AA1050, formed 
into a thin-walled component, is modelled by a coupled ductile fracture locus model 
presented in a recent study (Baltic et al. 2020a). The component is exposed to high 
internal pressure and has a safety vent designed for safe pressure handling. The 
extensive plastic deformation in the safety vent leads to localised ductile failure 
occurring at a limit load. The pertaining material parameters were calibrated solely 
from basic ductile fracture experiments in the preceding work (Baltic et al. 2020a), 
where the bottom section of the thin-walled component was machined into notched 
and shear samples to characterize different states of stress and to construct a well-
defined fracture locus. Although the calibrated material model relies on the local 
fracture strain measurements, it involves a regularization as a function of the length 
scale defined as a width of the observed localization band from Digital Image 
Correlation (DIC) analysis. In the current study the calibration on small-scale 
specimens is complemented by a large-scale specimen to determine the length scale 
correction crucial for capturing the correct width of the localization band in the 
analysed structure. This is necessary because the failure initiation zones of the 
calibration specimens and the real size structure, i.e. their gauge lengths where the 
localization band appears, vastly differ in size. Finite element (FE) model results are 

                                                      
9 This chapter has been published in International Journal of Solids and Structures as an 
open access article 
(https://www.sciencedirect.com/science/article/pii/S0020768320304042).  
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compared to measurements of the deformation of the aluminum component under 
pressure and maximum load prior to failure. The numerical and experimental results 
show an excellent agreement and consistent fracture predictions for various mesh 
discretizations.  

 

3.1 Introduction and motivation 

Ductile damage and failure modeling is essential for a broad spectrum of metallic 
materials’ applications, ranging from large lightweight structures over car bodies to 
tiny electronic components. Increasing the efficiency of structures, whether in the 
sense of weight reduction or higher load resistance while maintaining given safety 
requirements, is a constant demand nowadays. Optimizing structures by numerical 
means calls for reliable, yet simple-to-use material models to be useable for 
simulating real world applications.  

The reviews of (Pineau et al. 2016; Benzerga et al. 2016; Besson 2009) witness the 
substantial work and progress made in the field of ductile damage and failure 
modeling. There are many different aspects of the theory comprising state-of-the-art 
models, however, all of them have one and the same ultimate goal – a reliable 
prediction of failure in real structures and thereby a high practical use for design 
solutions to guarantee the quality and safety of structures. The latest Sandia Fracture 
Challenge (Kramer et al. 2019) assessed different ductile failure modeling approaches 
of 21 research teams in an additively manufactured steel structure containing through 
holes and internal cavities. 12 of them employed local damage as a fracture modeling 
method and most of them predicted the correct fracture process, though only 2 teams 
were able to calculate a global force-displacement behavior within the experimental 
bounds. Despite the encouraging results of sophisticated stress state dependent 
damage models, the complexity of the calibration procedure often hinders their 
industrial application, e.g. in the aerospace, automotive and electronics communities. 
Many details remain to be tackled for reliable predictions of damage in complex 
geometries and for complex loading scenarios, particularly in the sense of assuring a 
tight correspondence of material model constants with experimentally measurable 
quantities, along with using as few parameters as possible. Simulations of 
engineering structures call for simple model calibration procedures with limited 
freedom in adjusting material constants.   

The literature reports on a large number of methodologies combining experimental 
and numerical approaches adopting an inverse characterization of the constitutive 
model, e.g. by using local displacement and strain fields (Kajberg and Lindkvist 2004; 
Kim et al. 2013), global force-displacement curve (Springmann and Kuna 2005; Tardif 
and Kyriakides 2012), or force-average axial strain curve (Knysh and Korkolis 2017), 
among others. However, the material behavior of specimens under laboratory 
conditions typically differs to a great extent from a component’s behavior under real 
loading scenarios. (Zribi et al. 2013) determined the constitutive parameters of 2 
tubular materials from tension tests and tube bulge tests. The authors reported an 
excellent agreement of the experimental bulge response with numerical results using 
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material parameters inversely identified from bulge tests. On the other hand, the 
numerical simulations using parameters obtained from a tensile test showed 
somewhat smaller deformations i.e. a harder response than measured. 

Predictions of ductile fracture location and deformation under given load are also 
elaborated in the literature. For example, (Qian et al. 2015) predicted the fracture 
location in ball punch deformation specimens by employing the Johnson-Cook 
fracture model calibrated from a set of differently shaped tension specimens. (Abbassi 
et al. 2013) reported a good qualitative correlation between the numerically predicted 
and the experimentally determined damage location after cracking in an elliptical 
bulge test. In their study the Gurson-Tveergard-Needleman (GTN) model was 
calibrated using full-field displacement measurements of a notched specimen serving 
as input for Artificial Neural Networks (ANN). (Cao et al. 2015) compared six models 
of three ductile damage approaches for fracture modeling in cold forming processes, 
namely uncoupled phenomenological models (Bai and Wierzbicki 2008), coupled 
phenomenological models (Lemaitre 1986; Xue 2006; Cao et al. 2014) and 
micromechanical models (Tvergaard and Needleman 1984; Xue 2008). The authors 
reported on accurate results in terms of maximum damage location, whereas only the 
GTN model showed satisfactory results for the instant of fracture. Local damage 
models demand an enrichment by regularization methods, using e.g. nonlocal 
approaches like (Engelen et al. 2003; Anand et al. 2012) or micromorphic approaches 
(Forest 2009; Aslan et al. 2011). The latter was recently successfully applied to strain 
localization phenomena in a ductile single crystal (Ling et al. 2018).  Nonlocal 
formulations average certain state variables around every single integration point, 
thereby spreading the strain evolution in every integration point to the surrounding 
domain. The size of this domain is to be defined by a characteristic length scale. 
Introducing nonlocality by gradient-based methods (e.g. (Anand et al. 2012) offers the 
great advantage of simple implementing a nonlocal variable as a nodal variable in the 
finite element framework. On the other hand, micromorphic theories make use of 
derivatives of displacement field and introduce additional degrees of freedom 
representing the microstructure’s deformation and rotation. As additional degrees of 
freedom are related to classical mechanical variables on a constitutive level, this 
method is numerically efficient.  

This article focuses on the prediction of the instant of fracture in a real scale 
component of complex geometry under multiaxial loading. The ductile behavior of a 
strain hardened aluminum alloy AA-1050, extrusion formed into a thin-walled 
component is modelled by means of a coupled ductile fracture locus model (Baltic et 
al. 2020a, 2020b). The model belongs to the group of fracture initiation models widely 
used in applied mechanics (Bao and Wierzbicki 2004; Dunand and Mohr 2010; Khan 
and Liu 2012; Roth and Mohr 2016; Lou et al. 2017; Deole et al. 2018; Ha et al. 2018; 
McDonald et al. 2019), though in an uncoupled manner. The component is exposed 
to high internal pressure and has a rupture point on the bottom section designed for 
safe pressure handling, termed hereinafter a safety vent. The main mechanisms 
triggering component failure due to rupture of the safety vent are large deformation, 
diffuse necking, and strain localization in the form of a shear band, along with ductile 
material damage. The pertaining material parameters were calibrated in the 
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preceding work (Baltic et al. 2020a) exclusively from ductile fracture experiments 
conducted on various specimens designed to cover a wide range of stress states. The 
calibration specimens experienced various loading paths covering the domain of the 
particular loading path occurring in the real structure. This ensures calibration of the 
material model independent of the real loading scenario occurring in the aluminum 
component.  

The material’s constitutive equations reflect a physically based description of the 
damage process dependent on the loading path to fracture. The model relies on local 
fracture strain measurements; however, it involves a regularization as a function of 
the length scale over which the experimental strains are averaged for determining the 
fracture strain, termed herein experimentally resolved length scale. The mesh 
independence of the numerical model is thereby ensured, guaranteeing thus correct 
fracture predictions in complex structures across different and arbitrary mesh 
discretizations. It is worthwhile mentioning that, apart from eliminating mesh 
dependency, the length scale makes the fracture locus calibration robust under 
variation of the spatial averaging of the experimentally measured strain field. More 
precisely, the changes induced by different spatial averaging of the experimental 
fracture strain, imposed by the resolution of the applied imaging technique (e.g. 
Digital Image Correlation, DIC), are incorporated in the model via the regularization 
term. In the preceding work (Baltic et al. 2020a), we adopted an experimentally 
resolved length scale equal to the width of the localization band observed by DIC. 
The gauge length for strain measurements thus corresponds to the width of the 
localization band and the reported fracture strain is the actual average strain 
occurring in the fracture initiation zone, i.e the localization band.  

In contrast to classical approaches from literature, where an inverse analysis is used 
to find the model parameters for a specific loading scenario, the present work focuses 
on predicting the failure scenario in a real-life structure by means of a stress-state 
dependent damage model established solely from calibration specimens. It is the aim 
of this work to assure the model predictability for a diversity of design solutions 
concerning the safe pressure handling in the component. The changes of the key 
geometric characteristics may induce significant changes of the evolution of the 
stress-state under loading which must be captured by the model. Moreover, an 
attempt is made to adapt the experimentally resolved length scale to capture the 
width of the localization band in the real size component consistently, as its gauge 
length size where the failure initiates deviates markedly from the gauge length size 
of the laboratory specimens. To this end, the calibration procedure from original 
small-scale specimens is complemented by large-scale dogbone specimens, whose 
dimensions are twice the ones of the small-scale dogbone specimen. The width of the 
localization band for small- and large-scale specimen is analysed by DIC, hence 
enabling a simple length scale correction which is numerically confirmed afterwards.  
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3.2 Computational model: calibration from laboratory specimens 

To characterise the material the aluminum thin-walled structure is made of, a 
geometrically simplified design was used, see Fig. 3.1a. The respective design does 
not have a safety vent; a detailed geometry of the weakened point that serves 
explicitly for controlling the maximum tolerable load prior to failure in the actual 
design is omitted for the sake of extracting the material characterisation specimens. 
Potential deformation-induced anisotropy of the structure’s wall due to the extrusion 
forming process, as observed for tubular materials (Korkolis and Kyriakides 2008a, 
2008b, 2009, 2011a, 2011b; Tardif and Kyriakides 2012; Ha et al. 2018), is not tackled 
in this study. The focus is entirely on the bottom section of the component, since this 
is the region of interest where the safety vent is located in the actual design, as it will 
be shown in the later sections. Therefore, the tension specimens are machined from 
the bottom part of 0.55 mm thickness. Specimen geometries include dogbone as well 
as various notched and shear specimens as shown in Fig. 3.1b.  

To the reader’s convenience the coupled ductile fracture locus model employed in the 
sequel will briefly be summarized in the following section. For more details about the 
pertaining ductile fracture experiments the reader is referred to (Baltic et al. 2020a).  

 
(a) 

 

 
(b) 

 
Fig. 3.1. Material characterisation: specimens cut out from a thin-walled aluminum 

component. (a) geometry of the structural component, (b) specimen geometries 
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machined from the bottom part of 0.55 mm thickness: dogbone, notched and shear 
tension specimens. 

 

3.2.1 Coupled ductile fracture locus: governing equations  

(Baltic et al. 2020a) embedded the existing theories for ductile fracture locus (Lou and 
Huh 2013), damage mechanics (Lemaitre 1985) and regularization (Anand et al. 2012) 
into a unifying approach and proposed to model strain softening linked to damage 
evolution dependent on the current stress state along the strain path. The equivalent 
stress of the damaged material is defined as 𝜎 = 1 − ∫ ( , )  𝜎 𝜀 + 𝐿 𝜀 − 𝑒 , (3.1) 

where 

 a linear damage accumulation rule, ∫ ( , ) = 𝐷, is employed to quantify 

the ductile damage 𝐷 assumed to accumulate somewhere in the continuum 
prior to failure. 𝑑𝜀  denotes the differential increment of the equivalent plastic 
strain 𝜀 . Once the fracture strain prior to structural failure 𝜀  is reached, 𝐷 
equals to 1, making it the critical failure limit.  

 a three dimensional fracture locus  𝜀 (𝜂, 𝜃) defines a surface constructed in 
stress-strain space. It is a function that returns the fracture strain 𝜀  at constant 
stress triaxiality 𝜂 and Lode angle parameter �̅�. The stress triaxiality 𝜂 is 
defined as a ratio of the hydrostatic stress 𝜎  to the equivalent von Mises 
stress 𝜎 , i.e. 𝜂 =  .   (3.2) 

 For the Lode angle parameter, a definition according to (Bai and Wierzbicki 
2008) is adopted who transformed the Lode angle 𝜃 (Lode 1926; Zhang et al. 
2000, 2000) to the normalized space and defined a Lode angle parameter �̅�,    

1  ≤  �̅� = 1 −  ≤  1.  (3.3) 

 a weakening factor defined as a linear function of the damage variable, 1 − ∫ 𝑑𝐷 , affects the plastic flow of the undamaged material, 𝜎 𝜀 ; 
 a regularization term, 𝐿 𝜀 − 𝑒 , modifies a conventional hardening function 𝜎 𝜀  in an additive manner and regularizes the strain fields in the finite 

element model by a non-local variable, 𝑒 . It represents a weighted average of 
the equivalent plastic strain 𝜀  over the specified strain distribution function 
(Eq. 3.7 and Eq. 3.8 below). The parameter 𝐿 should be calibrated to produce 
an adequate amount of regularization.  

Potential anisotropic plastic flow was investigated by mechanical experiments in 
three different orientations (0°, 45°, 90°) with respect to the direction of material flow 
in the course of the extrusion (Fig. 3.2a). It was expected to find a prominent direction 
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dependency, however, it turned out that anisotropic properties have only a minor 
significance. The force displacement curves resulting from tensile tests in different 
orientations evidently show planar isotropy of the material (Fig. 3.2b). Further 
evaluation of the slope of the plastic width strain (the strain in the specimen width 
direction) versus plastic thickness strain (the strain in specimen out-of-plane 
direction) curve is shown in Fig. 3.2c on the example of dogbone 0° specimen under 
the assumption of volume conservation. This also shows a minor direction 
dependence, as the Lankford coefficient was found to be 0.95. For Hill’s anisotropic 
quadratic yield function (Hill 1948), the case of isotropic plastic flow is recovered for 
the Lankford ratios equal to 1. This error of 5% in the initial yield surface was 
acceptable in the context of the present work, as the main objective is to achieve 
accurate predictions in the final stage, i.e. at the point of fracture. Therefore, we 
refrain from considering anisotropic yield functions (discussed in e.g.(Barlat et al. 
2005) )  any further in this work, unlike e.g. (Kuwabara et al. 2005; Giagmouris et al. 
2010; Chen et al. 2018a; Chen et al. 2018b); (Chen et al. 2018b) where the structure’s 
thin wall material is characterized.  

Although more general descriptions of matrix yielding (e.g. (Hershey 1954) and 
(Hosford 1972)) might be more suitable for materials with face centred cubic lattice 
such as aluminum (Soare 2016), classical von Mises idealization of the yield surface 
was adopted in the context of the present work. The reason is that for the structural 
application concerned, an accurate prediction of the final point of fracture is 
particularly important, as already elucidated above.  

Therefore, the plastic flow of the undamaged material matrix is modelled by classical 𝐽  plasticity. The stress-strain relation of the undamaged material matrix is assumed 
to follow Voce’s isotropic hardening law, 𝜎 𝜀 = 𝜎 + 𝑅 𝜀 + 𝑅 1 − 𝑒   (3.4) 

where the material constants {𝜎 , 𝑅 , 𝑅 , 𝑏} are to be identified from the material 
behavior before necking of the uniaxial tensile specimen.  

 

 
(a) 
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(b) 

 

                       
(c) 

 
Fig. 3.2. Experimental characterization of flow anisotropy: (a) dogbone specimens 
machined in different orientations with respect to extrusion flow from the bottom 

section, (b) force displacement curves of differently oriented dogbone specimens, (c) 
plastic width strain versus plastic thickness strain curve. 

 

The material enters the softening regime once the rate of the damaging effect is more 
dominant than the rate of hardening, as depicted in Fig. 3.3. The black solid line shows 
the plastic flow of the undamaged material, 𝜎 𝜀 . Three other lines show the true 
stress-strain curves of the material undergoing different loading paths. The blue 
(dotted) line corresponds to the blue (dark) domain of the fracture locus at high stress 
triaxiality, where the strain required to enter the softening regime and finally to reach 
fracture is low. The green (dashed) line conforms to the nearly zero stress triaxiality 
domain of the fracture locus, where the material may sustain larger deformations 
because the level of material ductility is the highest in this regime, as most 
experiments and models suggest. Under shear deformations with low hydrostatic 
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tension, instead of a void growth mechanism elongation and rotation of voids and 
their interaction causes ductile failure (Tvergaard 2009, 2012). In between these 
extremes there is the cyan (dash-dotted) stress-strain curve representing the domain 
with intermediate values of stress triaxiality. The strain required to enter the softening 
regime is thus related to the capability of deforming plastically under a certain 
loading path before reaching the fracture strain. Fig. 3.3 also shows isotropic 
degradation of elasticity, assumed to follow the same rate as the decrease of the 
material strength, 𝐸 = (1 − 𝐷 ) 𝐸, (3.5) 

where 𝐸 is Young’s modulus of undamaged elasticity, and 𝐸 is the effective modulus 
of damaged elasticity. The damage quantity 𝐷 , representing a decrease of the 
material stiffness from a macroscopic point of view (Lemaitre 1985), is referred to as 
the stiffness damage to distinguish it from the definition of ductile damage employed 
in Eq. (3.1), where damage 𝐷 is associated with void nucleation, growth and 
coalescence from the microscopic point of view (McClintock 1968b; Rice and Tracey 
1969). In this work, stiffness and ductile damage, 𝐷  and 𝐷, are assumed to be equal, 
likewise in (Xue 2006).  

 

Fig. 3.3. Coupled damage variable for three different loading paths (Baltic et al. 
2020a): weakening of the material driven by strain induced damage (schematic 

representation of Eq. 3.1). The inset shows the fracture locus 𝜀  in the space of stress 
triaxiality 𝜂 and Lode angle parameter �̅�. 

 

The underlying linear damage accumulation rule hypothesis is a simple form of 
mapping all possible fracture surfaces obtained from different strain paths onto a 
single fracture locus given by (Lou and Huh 2013), 𝜀 (�̅�, 𝜂) = 𝑐2 �̅� + 3 〈1 + 3𝜂〉2       〈𝑥〉 = 𝑥     𝑤ℎ𝑒𝑛 𝑥 ≥  00      𝑤ℎ𝑒𝑛 𝑥 <  0 

(3.6) 
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where the material constants {𝑐 , 𝑐 , 𝑐 } are to be found. 𝑐  and 𝑐  modulate the stress 
state dependency of underlying damage process, whereas 𝑐  represents the 
magnitude of the fracture locus and has no influence on its final shape. The fracture 
strain, 𝜀 , is herein defined as a maximum local equivalent plastic strain just before 
structural failure.  

The additional regularization term, 𝐿 𝜀 − 𝑒 , based on large deformation gradient 
theory for elastic-plastic materials (Anand et al. 2012), is introduced to ensure mesh 
independency and robustness of the model calibration. When Digital Image 
Correlation (DIC) is utilized to track the plastic flow and the development of localized 
strain during tensile test, the so-determined local fracture strain will depend on a 
length scale dictated by the resolution of the DIC grid, in the introduction already 
referred to as experimentally resolved length scale. The regularization of numerical 
simulations of strain softening materials proposed by (Anand et al. 2012) is achieved 
by introducing a non-local variable 𝑒 , representing a weighted average of the 
equivalent plastic strain 𝜀 : 

𝑒 (𝒙) = ∫  (𝒚∶𝒙)  (𝒚) ∫  (𝒚∶𝒙)  . (3.7) 

The equivalent plastic strain 𝜀  is averaged and weighted over a Gaussian 
distribution of the form  𝜓 (𝒚 ∶ 𝒙) = ( ) / exp − |𝒚 𝒙| , (3.8) 

with the length scale parameter 𝑙 as a measure of the material volume contributing to 
the nonlocality of the variable 𝑒 . After mathematical manipulations, the authors 
(Anand et al. 2012) arrived at the Helmholtz-type partial differential equation for 𝑒 , 𝑒 − 𝑙 ∆𝑒 = 𝜀  (3.9) 

and an implicit gradient theory is established based on a nonlocal yield criterion. The 
conventional hardening function 𝜎 𝜀  is modified in an additive manner, as shown 
above in Eq. (3.1). The contribution of the additional term 𝐿 𝜀 − 𝑒  is positive in 
the center of a strain localization where the rate of strain accumulation is the highest 
and 𝜀  has the highest value, while it is negative on the edges of the areas of localized 
strain. This allows to control the width of the strain localization band in the numerical 
model. 

The set of basic ductile fracture experiments conducted on the designed tension 
specimens (Fig. 3.1) allowed to identify the following model parameters (as shown in 
Table 3.1): 

 plasticity parameters of Voce’s isotropic hardening law given by Eq. (3.4), 
 ductile fracture locus parameters of the model proposed by (Lou and Huh 

2013), determining the surface  𝜀 = 𝑓(𝜂, �̅�) given by Eq. (3.6) and  
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 regularization parameter 𝐿 (Eq. 3.1) of the method proposed by (Anand et al. 
2012) and length scale parameter 𝑙 accounting for the experimentally resolved 
length scale (Eq. 3.8). 

For details about the calibration procedure the reader is referred to (Baltic et al. 2020a). 
For completeness, the experimentally and numerically obtained global force-
displacement curves of the calibration specimens computed by the calibrated set of 
parameters (Table 3.1) are provided in Fig. 3.4. Note that at the point of structural 
failure the overall force is nonzero, as there is still some remaining load carrying area 
while other elements have already reached the damage value of 1 and therefore lost 
their load carrying capacity. This is in accordance with the experiments, as the tensile 
specimen fails suddenly without time-resolvable crack propagation because the 
amount of elastically stored energy is sufficient to induce an unstable crack growth 
as soon as the crack is initialized. 

 

Table 3.1. Material parameters used for modeling the aluminum alloy AA1050 
(Baltic et al. 2020a) 

Plasticity model 𝜎  [MPa] 
120.895 

𝑅  [MPa] 
0.000 

𝑅  [MPa] 
34.499 

𝑏 [-] 
851.118 

Ductile fracture 
model  

𝑐  [-] 
2.082 

𝑐  [-] 
0.557 

𝑐  [-] 
2.423 

 

Regularization 
parameters 

𝑙 [mm] 
0.195 

𝐿 [MPa] 
167.125 

  

Elastic 
parameters 

𝐸 [MPa] 
70 000 

𝜈 [-] 
0.33 

  

 

 

Fig. 3.4. Experimental vs. numerically predicted force-displacement curves of basic 
ductile fracture experiments and DIC equivalent strains (Baltic et al. 2020a): tensile 
tests of specimens undergoing various stress states. The star ( ) marks the instant 

prior to failure. 
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The so-composed numerical model is the basis for the prediction of ductile failure in 
a complex structure. Before doing so, the length scale correction of the employed 
regularization method must be addressed to ensure a proper prediction at length 
scales different from that of the laboratory specimens. Therefore, the calibration on 
the small-scale tests is completed by a calibration on an additional large-scale 
experiment as described in the following sections.  

 

3.2.2 Length-scale correction via large-scale model 

The numerical model relies on the fracture strain measurements done by Digital 
Image Correlation (DIC) analysis. The implemented regularization method 
distributes the strains of the finite element model over a width defined by the length 
scale parameter, 𝑙. This width is purposely set equal to the width of the localization 
band as resolved by the DIC analysis, 𝑙 = 0.195 mm, so that the gauge length for the 
local fracture strain measurements corresponds to the width of the localization band 
observed by DIC. 

The so-determined length scale parameter 𝑙 is calibrated for the localization band 
observed by DIC analysis in small-scale tests of miniature tension specimens (Fig. 
3.1). Additionally, a large-scale specimen, i.e., a two times larger dogbone compared 
to the miniature dogbone specimen, is tested to determine the length-scale correction 
necessary for the re-scaled model. On the basis of geometrical similarity in the plane 
of shearing, we presume that the ratio of the length scale 𝑙 to the corresponding gauge 
width 𝑤 is proportional to the ratio of the scaled length scale 𝑙  to the corresponding 
scaled gauge width 𝑤 : 𝑙𝑤 = 𝑙𝑤  (3.10) 

The miniature dogbone specimen has a gauge width of 𝑤 = 2 mm, whereas the gauge 
width of the larger dogbone is 𝑤 = 4 mm. The unknown length scale 𝑙  to be applied 
in the re-scaled model is then determined by Eq. (3.10). To verify the above hypothesis 
(Eq. 3.10), the finite element predictions are validated by tests on dogbone specimens 
of different sizes. The fracture strains of both specimens are determined by a DIC 
analysis conducted with the same resolution of the DIC grid, i.e., 3 pixels (0.037 mm).   

Fig. 3.5 shows the comparison of the experimental and numerically predicted force-
displacement responses of a miniature dogbone specimen and a twice larger dogbone 
specimen. The insets show the DIC strains compared to the finite element model 
strain distributions. A very good agreement of experimental and predicted data is 
observed, thus supporting the adopted simple length-scale correction given by Eq. 
(3.10).  
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Fig. 3.5. Experimentally vs. numerically predicted force-displacement responses of a 
miniature dogbone specimen and a twice larger dogbone specimen. The star ( ) 

marks the instant prior to failure. For the miniature dogbone the length scale 
parameter is 𝑙 = 0.195 mm; for the larger dogbone the length scale parameter is 𝑙 =0.390 mm. 
 

3.3 Application to a complex structure exposed to multiaxial 
loading 

Unlike the simplified design of the thin-walled component used for material 
characterization (Fig. 3.1), the actual structure design has a rupture point in the 
middle of the bottom part as a safety feature in the mechanical system. Fig. 3.6 shows 
the details of the safety vent both from the outside perspective and a cross section 
view, taken from stereo microscopic observations. The right hand-side of the figure 
shows the corresponding views of the finite element model. Over the product life 
cycle, the structure endures growing internal pressure. A multiaxial stress state 
develops within the critical safety vent zone.  The maximal endurable internal 
pressure will henceforth be termed the burst pressure.  
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Fig. 3.6. Geometrical details of the analysed structure: outside and cross section 
views of the thin-walled aluminum component 

 

3.3.1 Boundary conditions and loading of the mechanical system  

The structural component is modelled with geometric 1/6-symmetry, as shown in 
Fig. 3.7a, to reduce the computational costs. Symmetry boundary conditions are 
specified on the cross-section surfaces (Fig. 3.7b), thus generating the constraints for 
displacement DOFs in the normal direction of the cross-section planes. The structure 
is fixed on the top of the wall (Fig. 3.7b), whereas the pressure is applied to all interior 
surfaces of the structure (Fig. 3.7b).  

 
(a) 
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(b) 

 
Fig. 3.7. Simulation model of the analysed mechanical system: (a) outside and cross 
section views, (b) 3D view with indicated boundary conditions: symmetry planes (

), displacement in Y-direction set to zero on the top surface ( ), pressure on the 
interior surfaces ( ). The inset shows the gauge width 𝑤  where the shear band 

forms. 
 

3.3.2 Finite element model   

The vent region represents a failure site and therefore the respective zone of interest 
must be discretized with high resolution. As it can be seen from the cross section 
views in Fig. 3.6, the geometrical dimensions of the safety vent are significantly 
smaller in size compared to the rest of the structural dimensions. Particularly the 
thickness of the vent detail, indicated as 𝑤  in Fig. 3.7b, is remarkably small. In fact, 
the thickness of the vent detail, 𝑤 = 0.15 mm, is the gauge length in the plane where 
the shear band forms prior to component failure and leads to a length scale parameter 
of 𝑙 = 0.015 mm after applying the length scale correction (Eq. 3.10). Hence, the 
length scale of 𝑙 = 0.015 mm represents the expected width of the strain localization 
band forming in the safety vent, imposing thus a minimal finite element size in the 
vent zone. Note that the corrected length scale 𝑙  deviates ~10 orders of magnitude 
from the original length scale 𝑙 determined from the calibration specimen, assuring 
thus that the regularization method distributes the strains of the numerical model 
across a realistic width. 

The remaining parts of the structure are discretized by a coarser finite element mesh 
to keep the total number of elements within computationally manageable bounds, as 
shown in Fig. 3.8. The boundary between the fine mesh in the vent zone and the 
coarse mesh is placed far enough away from the vent in order to not affect the zone 
where plasticity and damage develop. The two regions with dissimilar mesh patterns 
are bound together by appropriate tie constraints. The complete structure is modelled 
by linear solid elements with full integration, used rather than shell elements because 
of the high ductile failure dependency on the three-dimensional and multiaxial local 
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stress state developing inside the structure. As a matter of fact, the mechanism of 
fracture preceded by localised necking, as revealed by the material characterization 
experiments, can be captured more accurately by solid elements.  

 

Fig. 3.8. Finite element model of the thin-walled structure: non-conformal mesh in 
the safety vent region 

 

The mechanical system is loaded by a pressure 𝑃 in small pressure increments, ∆𝑃 =0.01 MPa, in a static simulation performed under ANSYS Mechanical. The pressure 𝑃 keeps increasing monotonically until the damage variable 𝐷 reaches the value 𝐷 =1 in the first critical element, indicating that the burst pressure has been reached.  

A large displacement increment is observed for small load increments ∆𝑃 after 
reaching the critical pressure of 𝑃 = 1.5 MPa in the finite element simulation, i.e. at 
the onset of failure. This instability problem is known to pose convergence difficulties 
in implicit FE computations and requires numerical stabilization by artificial 
damping as well as enhancing the Newton-Raphson solution method by a line search 
algorithm (ANSYS Documentation). Therefore, a dashpot element was added at each 
node of a solid element, but only after reaching the critical pressure 𝑃. The accuracy 
of the numerical result was checked by comparing the stabilization energy to the total 
potential energy; the stabilization energy was found to be much less than the potential 
energy, i.e. within an acceptable tolerance of 1%.  

 

3.4 Results and discussion  

The FE results are compared to the measurements in terms of the burst pressure and 
the deformation under pressure prior to failure in Fig. 3.9. The evaluation point for 
determining the displacement both in the FE model and the experiment is the centre 
point on the bottom section indicated in Fig. 3.9b.  Both the numerical and the 
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experimental results for the burst pressure show an increasing trend of the limit load 
with increasing membrane thickness. The reported values of the burst pressure show 
an excellent agreement with experimental data (Fig. 3.9a), confirming that the instant 
of failure has successfully been predicted. The simulations, however, generally 
slightly underpredict the displacement of the centre point in the bottom section (see 
the inset in Fig. 3.9b) for all investigated membrane thicknesses. The deviations of the 
numerically predicted maximum deformation prior to failure from the 
experimentally determined one may not necessarily be attributable to model 
inaccuracies but may also be due to the fact that deformation measurements in the 
midst of bursting are difficult to perform and thus known to be unreliable. By 
contrast, it is comparatively easy to measure the burst pressure, which will thus be 
used as a criterion for validating the numerical model. For comparison, the numerical 
results without non-local regularization are also shown in Fig. 3.9. and point to the 
underestimated predicted burst pressure for lower maximal deformation prior to 
failure. This was expected, as the strain-induced damage accumulates faster because 
the excessive strain localization is not prevented in this case. In addition, it is worth 
mentioning that a weak- or no-coupling significantly underestimate the structure’s 
response, which was shown in a comparative study.  

A close-up view of the failure site of the aluminum structure after testing under 
pressure is shown in Fig. 3.10. The micrographs captured by Scanning Electron 
Microscopy (SEM) show the shear lips on the fracture surface, see Fig. 3.10a. Contour 
lines of the stress triaxiality plot and Lode angle parameter are visualized in Fig. 
3.10b. The contours are pointing to the high triaxiality in the failure zone (0.80) and 
Lode angle parameter close to 0.  

 

 
 

(a) 
 

(b) 
Fig. 3.9. Experimental vs. numerically predicted results for thin-walled aluminum 

component: (a) burst pressure for a variety of membrane thicknesses and (b) 
deformation prior to failure. 
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(b) 

 
Fig. 3.10. Overview of the fracture surface of the failed aluminum component after 

testing: (a) Scanning Electron Microscopy (SEM) micrographs show a ductile 
fracture mechanism in the structure, revealing a sheared fracture surface; the 
centrepiece is broken out. (b) overlap of the stress triaxiality and Lode angle 

parameter contour lines from the simulation. 
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The comparison of the failure mechanism predicted by the numerical model and the 
mechanism documented by SEM is shown in Fig. 3.11. The damage plot indicates the 
location of the initiation of failure at the outer corner of the vent detail, marked as 
“damaged region” in Fig. 3.11. Detail C in the same figure depicts the distribution of 
stress triaxiality and the Lode angle parameter in the failed part. It can be seen that 
the highest value of stress triaxiality is concentrated near the outer corner, explaining 
thus the location of the maximal damage (D=1) as well. Simultaneously, the Lode 
angle parameter is close to 0 in the respective region, thereby accelerating the damage 
accumulation. 

 

 

Fig. 3.11. Comparison of the failure mechanism predicted by the numerical model 
with the SEM documentation of the failed component: plot of damage as well as 
distributions of stress triaxiality and Lode angle parameter in the damaged zone. 

 

The localization takes the form of a band of one tenth the band width observed in the 
calibration specimens. Note that the applied length scale correction allows to control 
the plastic strain localization in the FE model, convoluted by a Gaussian function of 
a width given by the variance 𝒍𝟐 (Eq. 3.8). The regularization method ensures thus the 
localization phenomena to be captured correctly in structures whose gauge lengths, 
i.e. the failure initiation zone, markedly differ in size, merely by adjusting the length 
scale parameter 𝑙 determining the width of the localization band. The predicted 
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localization band in the failure zone (vent) for various mesh discretizations of the FE 
model is shown in Fig. 3.12. Three numerical models with different element sizes 
were set up; all of them have finite element sizes smaller than the length scale 
parameter 𝑙 =   0.015 mm. The simulated distributions of the localised plastic strain 
agree well for different mesh resolutions, thus showing virtually no mesh 
dependency.  

Ideally, for establishing an accurate value for the local fracture strain in a calibration 
specimen, the DIC strain measurements would have to approach to grain-level 
measurements, as highlighted by (Scales et al. 2016; Scales et al. 2019). However, it 
must be ensured that the experimentally observed strain localization is actually 
resolved by the finite element (FE) model discretization with reasonable 
computational costs. This will generally be an issue in real engineering structures 
where the damage zone is expected to be small compared to the component’s 
dimensions. Hence, optimally the DIC resolution does not have to be overly fine but 
should be sufficient to pick up the local effects. As shown in Fig. 3.9a, the numerical 
prediction of the instant of fracture will still be correct, if and only if the 
experimentally resolved length scale by DIC is included in the model, which in this 
work is done via the parameter 𝑙. As a matter of fact, for materials undergoing large 
plastic deformation exaggerated DIC resolution could lead to extremely high local 
strains. Capturing them in a FE model would call for an excessively small element 
size, making the computation of a real world structure overly expensive.  
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Fig. 3.12. The localization band in the structure for various 3 mesh discretizations of 
the FE model: plot of the equivalent plastic strain 𝜺𝒑. 

 

3.5 Summary and conclusion  

We presented an application of the coupled ductile fracture locus model calibrated 
from miscellaneous ductile fracture experiments to a real scale aluminum component 
exposed to multiaxial loading. Not only the failure location prediction, but also the 
prediction of the instant of failure is in very good agreement with the experimental 
findings. The failure at the maximum endurable pressure of the structure is 
determined in the simulation as the point where the damage variable reaches the 
critical value D = 1. It is emphasized that both qualitatively and quantitatively correct 
failure predictions are reported in this work. 

The main original contributions of the presented work are: 

1. Experimentally validated, accurate failure predictions of the limit load, i.e. 
the burst pressure of the safety vent of an aluminum component, are 
achieved without inverse calibration for one specific loading scenario 
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occurring in the analysed structure. It is emphasized that the model 
performed well even in the case of an intricate geometry experiencing 
stress states ranging from plane-stress to plane-strain dominance where a 
competition between a tensile- and shear-dominated fracture mode is 
expected. 

 
2. The model’s true predictive ability was put at test in a scenario unknown 

a priori. The material constants were determined independent of the 
loading conditions in the real component. This guarantees the model 
reliability also for varying component designs having different 
distributions of the stress state parameters (stress triaxiality and Lode 
angle parameter). This provokes a different damage accumulation history 
tracked along the entire loading path by the presented model.  

 
3. The presented model allows to use an arbitrary mesh for a complex 

structural geometry as long as the element size is small enough to capture 
the local effects. The distribution of localised plastic strain in the FE model 
virtually does not change for different mesh discretizations, confirming 
the reliability of the regularization method. The width of the localization 
band is realistically captured for failure zones vastly different in size, 
highlighting thus the importance of the simple length scale correction 
proposed for structures differing orders of magnitude from calibration 
specimens.  

 
4. Realistic representation of the analysed engineering problem 

demonstrates the efficacy of the employed modeling approach. The 
presented stress state dependent and regularized damage model is 
simple-to-use and applicable to real world complex structural parts.  

The model finds its application in attaining any given design target of the analysed 
component because it will perform reliably for arbitrarily modified geometrical 
designs. It is of a great use for achieving challenging goals that conflict each other, 
like reaching simultaneously both the lower burst pressure and a reduction of 
maximum deformation.  
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Chapter 4 

 

 Ductile crack formation modeling in pre-
cracked solids using coupled fracture 
locus theory10 
 

 

uctile fracture locus models are extensively used in applied mechanics to 
predict the initiation of failure thanks to the ease of numerical 

implementation and simple calibration from experiments. The coupled fracture locus 
theory (Baltic et al. 2020a) has proven capable of predicting ductile failure of 
uncracked specimens experiencing various loading paths. Here, an attempt is made 
to investigate its potential to model complicated failure modes in pre-cracked 
structures. To verify the generality of the concept relying on the local stress state 
dependent fracture strain, the material model from (Baltic et al. 2020a) is adopted 
without any recalibration. A tensile test specimen with a side notch and a pre-crack 
is fabricated from an off-the-shelf engineering aluminum alloy. Mechanical testing 
revealed two dissimilar failure patterns whose ambiguity is elaborated in the 
numerical study. The coupled fracture locus theory combined with the local damage 
/ element deletion approach is adopted as a local failure modeling method. The 
model features the stress-state dependent softening process resulting in a true stress-
strain response dependent on the history of the stress triaxiality and Lode angle 
parameter. The numerical results show failure process predictions that are in 
accordance with experimentally observed failure modes in terms of the failure paths 
and the global force-displacement response. Fundamentally different failure 
processes, i.e. the mechanisms of strain localization and classical crack propagation, 
have been rather well captured. These results suggest high predictive capabilities of 
the method employed, which captures well the stress-state dependent damaging 
process governing the development of the failure mode. 

                                                      
10 This chapter has been submitted for publication in a peer-reviewed journal. 
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4.1 Introduction 

The local damage and element deletion method as a ductile fracture modeling 
method has already been extensively treated in the literature and the latest Sandia 
Fracture Challenge (Kramer et al. 2019), but also predecessors (Boyce et al. 2014; 
Boyce et al. 2016), witness its success. In the latest computational challenge, where 
researchers were invited to predict crack initiation and propagation in an additively 
manufactured steel structure without knowing the experimental outcome, more than 
half of the participating groups employed the local damage approach. In fact, many 
of them identified the correct crack path in the analysed structure. Although the 
predictions of the crack pattern were encouraging, only a minority was able to 
calculate a global force-displacement response within the experimental bounds.  

Damage modeling to predict the ductile failure can be used either in the framework 
of in a coupled or uncoupled concept, depending on whether the damage parameter 
influences the elastic-plastic behavior of the material or not. Most of the research 
efforts into ductile failure that follow the coupled concept and local damage use 
micromechanically based Gurson-like models (Gurson 1977; Tvergaard and 
Needleman 1984; Nahshon and Hutchinson 2008). Although more realistic, coupled 
concepts are somewhat impractical to use in engineering problems because of the 
rather complex material parameter determination. Applied mechanics, therefore, 
often reaches for uncoupled concepts because of the ease of numerical 
implementation and simple calibration from experiments, see e.g. (Bao and 
Wierzbicki 2004; Teng et al. 2008; Dunand and Mohr 2010; Khan and Liu 2012; Roth 
and Mohr 2016; Lou et al. 2017; Pack et al. 2018; Deole et al. 2018; McDonald et al. 
2019). These uncoupled failure criteria, whose heart is a fracture locus that quantifies 
the dependency of ductile failure on the stress state (Bao and Wierzbicki 2004), have 
found increasing interest and application (Teng and Wierzbicki 2006; Mohr and 
Treitler 2008; Bai and Wierzbicki 2015; Pack and Mohr 2017; Ha et al. 2018). To 
circumvent a sudden deletion of a finite element, a partially coupled approach was 
developed (Li and Wierzbicki 2010; Beese et al. 2010; Paredes et al. 2016), where the 
damage-induced softening was introduced only in the post-initiation range.  

Recently, the fracture locus theory was applied as a fully coupled concept in a damage 
mechanics framework (Baltic et al. 2020a, 2020b), keeping however the advantages of 
the uncoupled fracture locus models. The model features the stress-state dependent 
damaging process resulting in a true stress-strain response dependent on the history 
of the state variables. The plastic responses of tension samples experiencing a wide 
range of stress states were predicted with only very few model parameters. The 
model relies on the measured local failure strains; however, it involves a 
regularization as a function of the length scale over which the experimental strains 
are averaged for determining the fracture strain. Apart from ensuring mesh 
independency, the length scale, determined from experiments as the width of the 
shear band observed by Digital Image Correlation (DIC), makes the fracture locus 
calibration robust under variation of the spatial averaging of the experimental strain. 
Simulation results showed successful fracture initiation predictions in uncracked 
specimens undergoing various stress state evolutions. 
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In this work, the coupled fracture locus theory is used to model the failure evolution 
in a pre-cracked structure. A tensile test specimen with a side notch and a pre-crack 
is designed to initiate failure in a sheet metal with a thickness of 0.55 mm. The 
specimen is fabricated from an engineering component made of a commercial 
aluminum alloy. Mechanical tensile testing together with DIC analysis revealed two 
different crack patterns. A computational model of the tension experiment is built-up 
and studied using the coupled ductile fracture locus model (Baltic et al. 2020a), where 
the stress-state dependent damaging process rules the failure path. The competition 
between two failure patterns, with and without dominating strain localization, is 
numerically analysed and further discussed.  

 

4.2 Experiments  

 

4.2.1 Material, specimen design and testing  

An aluminum alloy AA-1050 is chosen for the present study, belonging to the class of 
wrought commercial alloys. A broad spectrum of applications of this alloy ranges from 
large lightweight structures over car bodies to tiny electronic components.  

All specimens are extracted by electrical discharge cutting (wire diameter of 0.25 mm) 
from a structural component made from 0.55 mm thick sheet. Side-notched tensile 
specimens are therefore machined and a pre-crack is initiated by cyclic loading with 
a stress ratio of R = 0.1. All specimens are 12 mm wide and feature a side notch radius 
of 0.25 mm. The exact specimen dimensions are given in Fig. 4.1. The lengths of the 
pre-cracks finally introduced into the individual specimens (𝒂𝟎) are measured using 
a digital microscope (Shuttle Pix P400R), as shown in Fig. 4.2. The mean value of the 
measured pre-crack lengths is about 3.00 mm. In Fig. 4.2, a specimen is exemplary 
shown after the cyclic loading to initiate the pre-crack, where the two pictures present 
two different resolutions. 



CHAPTER 4 Ductile crack formation modeling in pre-cracked solids     96 
using coupled fracture locus theory 

 

 
 

 

Fig. 4.1. Geometrical details of the pre-cracked specimen. The hatched areas of the 
specimen indicate the clamping regions. 

 

 

Fig. 4.2. Digital microscope image of the final specimen geometry showing the 
introduced pre-crack (close-up). 

 

Tensile testing is carried out on a Bond-tester (Sigma Condor from XYZ-Tec) with a 
crosshead stroke resolution of 0.03 µm and a sample holder particularly designed for 
clamping miniature specimens. All experiments are performed under displacement 
control at a constant crosshead velocity of 0.1 µm/s. During the experiment, about 
1300 pictures are taken my means of a digital camera (microDACstandard, 1624 x 
1234 pixel) positioned in front of the sample surface ensuring that the field of view 
covers the whole specimen. Using these photographs, the DIC analysis is conducted 
as well using the software VEDDAC7 (from Chemnitzer Werkstoffmechanik GmbH). 
As the natural surface pattern turned out to give enough features for DIC analysis, no 
additional speckle pattern was applied to the specimen’s front face. The results of the 
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DIC analysis of the specimen’s front face are used to apply the exact displacement 
histories in the simulation on the specimen boundary.  

 

4.2.2 Experimental results  

Three out of the four tested pre-cracked specimens exhibited a slanted failure path B 
as exemplarily displayed for one of the three in Fig. 4.3b, while the fourth exhibited 
an essentially straight failure path A as shown in Fig. 4.3a. In comparison to the 
specimen exhibiting the horizontal evolution (type A, Fig. 4.3a), the specimens 
undergoing the failure behavior of type B  showed a higher peak force and more 
delayed force drop (see Fig. 4.3b). The force-displacement history of the specimen 
exhibiting failure behavior of type A (Fig. 4.3a) has a different, more complex profile.  

Although a pre-crack had been introduced, the main mechanisms triggering the 
specimen’s failure following the failure path B are diffuse necking and localization of 
the strain into a shear band, along with material ductile damage. Once the strain is 
extremely localised, the failure occurs simultaneously along the entire zone of 
localization, i.e. the material is suddenly separated, under unstable crack growth. The 
same mechanisms initiated the failure of uncracked specimens studied in (Baltic et al. 
2020a). By contrast, the failure process in the specimen exhibiting the failure path of 
a type A features observable crack growth, i.e. the material separates gradually 
starting from the pre-crack and following the line of final failure as the deformation 
progresses.   

 
(a) 



CHAPTER 4 Ductile crack formation modeling in pre-cracked solids     98 
using coupled fracture locus theory 

 

 
 

 
(b) 

 
Fig. 4.3. Experimental results for tensile specimens with a side notch and a pre-
crack: (a) force-displacement curve and DIC analysis of a specimen exhibiting a 

failure path of type A and (b) a specimen exhibiting a failure path of type B. 
 

 

4.3 Computational model   

 

4.3.1 Finite element model of the pre-cracked specimen  

Finite element simulations of the experiments shown in Fig. 4.3 are performed using 
the ANSYS Mechanical simulation software. Full-integration 8-node 3D solid element 
(SOLID185 element type of the ANSYS element library (ANSYS Documentation)) are 
used to discretize the specimen, shown in Fig. 4.4. The mesh area represents the non-
hatched area shown in Fig. 4.1.  

Only one half of the specimen geometry is modelled, exploiting the symmetry of the 
specimen geometry in the through-the-thickness direction (z-direction, see Fig. 4.4). 
To represent a pre-crack in the model, the finite elements along the length of the 
measured pre-crack are detached, i.e. corresponding nodes are separated as shown in 
Fig. 4.4. Ahead of the pre-crack, all finite elements are fully connected. The mesh of 
the finite element model is designed such that the elements in the specimen center 
and around the pre-crack feature the same element size. Thus, the respective region 
is discretized by a uniform mesh of 0.09 mm element size. Approaching the upper 
and lower boundaries of the specimen, the element size is slightly coarsened to reduce 
the number of elements in the model. The same mesh pattern is swept through the 
specimen thickness. The displacement history measured by DIC is imposed onto the 
upper and lower specimen boundaries, respectively. In the symmetry plane, a normal 
displacement of zero (in z-direction) is imposed. 
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Fig. 4.4. Finite element model of the pre-cracked specimen. The finite elements along 
the marked (dashed) line are separated in y-direction to model the pre-crack. One 

half of the model is shown due to the symmetry in z-direction. 
 

 

4.3.2 Constitutive model  

The coupled ductile fracture locus theory as presented in (Baltic et al. 2020a) is 
employed to model the response of the pre-cracked specimens. This approach of 
modeling ductile failure links strain softening to damage evolution dependent on the 
current stress state along the complete strain path. The equivalent stress of the 
damaged material is defined by the Eq. (4.1):  𝜎 = 1 − ∫ ( , )  𝜎 𝜀 + 𝐿 𝜀 − 𝑒 , (4.1) 

where a fracture locus 𝜀 (𝜂, �̅�) quantifies the dependency of the fracture strain 𝜀  on 
the stress state, i.e. on the evolution of the stress triaxiality 𝜂 and Lode angle 
parameter �̅�. The stress triaxiality 𝜂 is defined as the ratio of the hydrostatic stress 𝜎  
and the equivalent von Mises stress 𝜎 , i.e.  𝜂 =  .    (4.2)  

For the Lode angle parameter, a definition according to (Bai and Wierzbicki 2008) is 
adopted who transformed the Lode angle 𝜃 (Lode 1926; Zhang et al. 2000, 2000) to the 
normalized space; this Lode angle parameter �̅� is defined as 

 1  ≤  �̅� = 1 −  ≤  1.   (4.3) 

A conventional hardening function 𝜎 𝜀  has been modified in an additive manner 
by a nonlocal regularization term 𝐿 𝜀 − 𝑒 , where 𝜀  and 𝑒  are equivalent plastic 
strain and nonlocal plastic strain, respectively. The parameter 𝐿 determines an 
adequate amount of regularization such that both force-displacement response and 
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local strain distribution are well described. A stress-state dependent damaging 
process rules the predicted crack path insofar as the damage variable,  𝐷 = ∫ ( , ) ,    (4.4) 

is fully coupled to the plastic material flow and element stiffness. Once the 
accumulated damage in some point of the structure, i.e., in a finite element during the 
simulation, reaches the critical value 𝐷 = 1, the element is eliminated from the 
stiffness matrix, while the total finite element analysis continues.  

It is emphasized that the nonlocality introduced by variable 𝑒  prevents the strain 
induced damage 𝐷 to localise in a region of zero volume, that is, a size of a finite 
element for a discretized computational model. The 𝑒  represents a weighted average 
of the equivalent plastic strain 𝜀 , 

𝑒 (𝑥) = ∫  ( ∶ )  ( ) ∫  ( ∶ )  . (4.5) 

and the strain in the FE model is convoluted by a Gaussian function of a width given 
by the variance 𝑙 , 𝜓 (𝑦 ∶ 𝑥) = ( ) / exp − | | . (4.6) 

(Baltic et al. 2020a) determined the parameter 𝑙 from experiments as equal to the 
width of the strain localization observed by DIC and therefore referred to it as an 
experimentally resolved length scale. In this way, the implemented regularization of the 
damage model represents a function of the length scale over which the experimental 
strains are averaged for determining the fracture strain, crucial for model calibration. 
In general, to provide an unambiguous fracture strain, the fracture locus must be 
reported always together with its associated length scale.  

In the context of the present study, the length scale 𝑙 may be viewed as a link between 
two correlated theories, damage and fracture mechanics, as elucidated in (Mazars and 
Pijaudier-Cabot 1996). The definition of 𝑙 as a finite, nonzero quantity ensures that the 
dissipated energy, necessary to form a crack, does not vanish. Thus, the damage 
model predicts a non-zero energy dissipated at fracture, as also assumed in fracture 
mechanics. The value of 𝑙 and all the other material parameters in the present 
investigation are adopted from the preceding work (Baltic et al. 2020a) without any 
change, to verify the generality of the stress state dependent fracture strain concept. 

 

4.4 Numerical results  

Although the interpretation of the experiments might suggest that, statistically, the 
crack path B is more likely to be observed and thus a more conservative solution in 
terms of the fracture strain to nominally the same problem than the crack path A, we 
examine and consider the causation by numerical analyses. Potential uncertainties 
regarding deviations from the nominal geometry have already been considered in the 
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model because the specimens’ geometries were measured and the length of the 
introduced pre-crack was documented by digital microscopy. Material 
inhomogeneities are disregarded because all the specimens were extracted from the 
same material and Scanning Electron Microscopy (SEM) and Energy Dispersive X-
ray (EDX) analysis confirmed the uniformity of the material texture. In probing the 
problem further, the test setup is thus considered as the main suspected determinant 
for the preferred failure path. 

The simulation of the pre-cracked specimen are therefore performed under different 
boundary conditions to examine the influence of the load alignment and verify if the 
assumption of the perfect clamping of the specimen is justified. It was suspected that 
the potential uncertainties of the test setup might determine whether the failure 
follows one path (A) or another (B). Fig. 4.5 shows numerically predicted failure paths 
after imposing the displacement history measured by DIC on the specimen 
boundaries for specimens A and B, exhibiting failure paths A and B, respectively. 
Note that the lengthier pre-crack (𝑎  = 3.535 mm) distinguishes the geometry of the 
specimen A from specimen B (𝑎  = 2.434 mm). In addition, a simulation of an ideally 
clamped specimen with a fixed lower boundary is performed. The results shown in 
Fig. 4.5 suggest that the experimental imperfections impose different loading 
conditions onto the sample and thus trigger different crack paths. In the numerical 
experiment conducted on specimen A, the applied boundary conditions from DIC 
allowed a slight rotation of the specimen. Therefore, the failure propagates 
horizontally at the beginning and only in the final stages of the experiment, shortly 
before the collapse, the specimen starts kinking due to shear band formation. Based 
on this numerical study, it becomes apparent that minor sliding of the sample through 
the clamping allowed an additional rotational degree of freedom and resulted in 
failure evolution of a type B.  

Comparing the numerical results for the sample B having the DIC-measured 
displacement history applied on the boundaries, with the results of an ideally 
clamped sample B having the lower boundary fixed, one can observe that the 
predicted failure evolution are in accordance with each other (Fig. 4.5). This type of 
loading imposed causes a clear formation of the strain into a shear band just in front 
of the introduced pre-crack.  
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Fig. 4.5. Numerical study of the response of the pre-cracked specimen under 
different boundary conditions (BC): numerically predicted failure path for applied 
DIC-measured displacement history (BC-DIC) compared to a model of an ideally 
clamped specimen with fixed lower specimen boundary (BC-fixed); for samples A 

and B. 
 

The performed experiments are nevertheless very valuable for the examination of the 
numerical model’s performance because in any case the comparison between the 
numerical and experimental results allows to assess the model’s true predictive 
capabilities across different failure events. Fig. 4.6 compares calculated force-
displacement curves from the finite element simulation with experimentally 
determined data points. It is highlighted that the data obtained from these 
experiments are in no way included in the model calibration. The deviation of the 
calculated force-displacement curve for the sample A is attributed to the adopted 
material parameters and the length scale 𝑙 from (Baltic et al. 2020a) without any 
further adjustments. Note that the overall force at failure is higher for sample B than 
for sample A, because there is still significant cross-sectional area carrying the applied 
load, before the sample B fails suddenly without time-resolvable crack propagation. 
This is because the stored elastic energy is high enough to provoke an unstable crack 
growth as soon as the crack is initiated. On the contrary, the remaining load carrying 
area for specimen A is significantly reduced.  

These rather satisfactory numerical predictions are attributed to the material model’s 
main feature, i.e., the stress-state dependent damaging (softening) process that takes 
into account the history of the stress state variables (stress triaxiality and Lode angle 
parameter). Consequently, the damaging process controls the failure path in the 
numerical model. The evolution of the stress state variables (stress triaxiality and 
Lode angle parameter) upon straining is visualised in Fig. 4.6c and Fig. 4.6d for 
specimens A and B, respectively, for three stages marked in the force-displacement 
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curves of Fig. 4.6a and Fig. 4.6b. Stage 3 stands for the instant prior to the specimens’ 
full separation, i.e. final failure. Looking closely at the evolution of these mechanical 
fields in sample A (Fig. 4.6c), it becomes apparent that a particularly rapid increase of 
damage 𝑫 is caused by the high stress triaxiality in front of the pre-crack and a Lode 
angle parameter close to zero. This combination of the stress state parameters 
represents the most critical valley of the fracture locus, where the material has the 
lowest ductility (the shape of the adopted fracture locus can be found in (Baltic et al. 
2020a)). On the other hand, the Lode angle parameter in the zone of strain localization 
of the specimen B (Fig. 4.6d) is close to 1, meaning that it interferes with high stress 
triaxiality, which nevertheless dominates and determines the failure path. 
Furthermore, the non-zero damage (D > 0.3) in stage 3 along the area of the specimens 
A and B exhibiting some retained load carrying capacity (Fig. 4.6c and Fig. 4.6d) 
implies that a material change on the local level is imperative to capture correct 
mechanical response of the analysed specimens.  

 

 
 

(a) 

 
 

(b) 
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(c) 

  

(d) 

Fig. 4.6. Comparison of experimentally recorded (EXP) and numerically calculated 
(FEM) force-displacement curves for (a) sample A and (b) sample B; the insets show 
the equivalent strains recorded by Digital Image Correlation (DIC) and calculated 
numerically (FEM). Visualisation of the numerically computed evolution of stress 

triaxiality, Lode angle parameter and damage in sample A (c) and sample B (d); the 
plots show the fields in the center plane of the sample. 
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4.5 Summary and conclusion 

The goal of this computational study was to benchmark the predictive capabilities of 
the coupled fracture locus theory on tensile experiments of pre-cracked specimens. 
The fundamental generality of the concept relying on the local stress state dependent 
fracture strain is assessed insofar as the damage model established on uncracked 
specimens is adopted without any adjustments. The mechanisms of strain localization 
along with material damage and classical crack propagation have been successfully 
predicted. Fundamentally different failure processes under marginally different 
loading conditions have been thus rather well captured for nominally the same 
problem, which implies that the failure processes can be well described knowing 
merely the fracture locus of the material together with its associated length scale. 

These results suggest that the already established regularized damage model that 
relies on fracture strain measurements even leads to reasonable failure predictions for 
a pre-cracked structure, in fact without knowing the experimental outcome before. It 
is emphasized that the fracture strains must be reported in conjunction with their 
associated length scale, that is, the length over which the experimental strains are 
averaged.  The present study demonstrates that the so-established damage model 
yields realistic results even for a classical crack propagation problem.  
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Chapter 5  

 

 Machine learning assisted calibration of a 
ductile fracture locus model11 
 

 

hile several different specimen geometries are typically required to 
calibrate a ductile fracture locus model, this article presents for the first 

time a calibration methodology that uses one single specimen geometry. This is 
accomplished by a computational framework that combines finite element modeling 
(FEM) and artificial neural network (ANN). The ANN is trained using merely the 
numerical experiments on a shear tension specimen, where combinations of the 
model parameters are used to generate the training database. The local displacement 
fields and global force-displacement histories are extracted throughout the complete 
numerical experiment and passed to the ANN. Therefore, the influence of the local 
stress state on the evolution of the local deformation is implicitly taken into account. 
The trained ANN is verified by evaluating its predictability of material parameters of 
FE simulations unseen in the training stage. The experimental data obtained from the 
shear tensile test using Digital Image Correlation is introduced to the trained ANN to 
identify the parameter set that predicts the real mechanical response of the shear 
specimen. Three different ANN architectures with distinguished input 
representations are studied. It turns out that all of them can acceptably describe the 
experimental behavior of not only the calibration specimen but also the specimens 
not used for training the model.  

  

                                                      
11 This chapter has been published in Materials & Design as an open access article 
(https://www.sciencedirect.com/science/article/pii/S026412752100157X?via%3Dihub). 

W
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5.1 Introduction 

Ductile damage and fracture modeling is essential for a broad spectrum of metal 
alloys applications, ranging from large lightweight structures over car bodies to tiny 
electronic components. Although sophisticated stress state dependent damage 
models have been proposed in the literature, the complexity of the calibration 
procedure often hinders their application in the aerospace, automotive and 
electronics communities.  

For its simplicity and ease of implementation, uncoupled fracture initiation models 
are convenient for industrial purposes and widely used in applied mechanics, among 
others (Bao and Wierzbicki 2004; Dunand and Mohr 2010; Khan and Liu 2012; Roth 
and Mohr 2016; Lou et al. 2017; Deole et al. 2018; Ha et al. 2018; McDonald et al. 2019; 
Cheng et al. 2017; Jang et al. 2020). Their heart is a fracture locus that quantifies the 
dependency of ductile fracture on the stress and strain states (Bao and Wierzbicki 
2004). (Baltic et al. 2020a) took a step further and embedded the fracture locus concept 
into a coupled damage mechanics framework. Either used in uncoupled or coupled 
mode, ductile fracture models require knowledge of the strain to fracture as a function 
of the stress state for proportional loading for their straightforward calibration. An 
ideal case of a constant strain-history path is possible to achieve just in special cases 
(Roth and Mohr 2016, 2018). As imposing constant proportional loadings up to failure 
over the complete stress state domain is extremely difficult, if not impossible, 
determination of the actual fracture locus from experimental measurements becomes 
questionable.  

In addition to the experimental challenges mentioned above, there are uncertainties 
related to the finite element (FE) simulations which are indispensable for extracting 
the evolution of mechanical fields in a material point, i.e. the progress of the stress 
triaxiality and Lode angle parameter upon straining. Each experiment has to be 
studied by FE analysis to identify the stress and strain fields. (Dunand and Mohr 
2010) demonstrated that spatial and time discretization errors might greatly affect the 
evolution of both equivalent plastic strain and stress triaxiality. Furthermore, the 
location of the onset of fracture in the computational model is frequently assumed to 
coincide with the location of the highest equivalent plastic strain. However, because 
of the stress state effects, the most strained element does not necessarily have to reach 
the critical damage value first which defines the instant of the onset of fracture in a 
FE model. Furthermore, the analysis of the mechanical fields discussed beforehand 
often relies on damage-free plasticity, although there is ample evidence that coupled 
damage plasticity models provide more realistic results in structural computations.  

In this work, a machine learning supported calibration of a ductile fracture locus 
model is investigated in an attempt to overcome the above challenges in experimental 
and computational mechanics. Several studies already testify the great potential of 
artificial neural network (ANN) systems for material parameter identification. For 
instance, (Abbassi et al. 2013) followed the ANN based identification strategy to 
calibrate the parameters of the Gurson-Tvergaard-Needleman (GTN) model (Gurson 
1977; Tvergaard and Needleman 1984) by using the X and Y displacements of the 
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specimen’s middle point. (Abendroth and Kuna 2003, 2006) employed the load-
displacement curve of a small punch test to train the ANN and find the damage and 
fracture properties modelled by the GTN model as well. (Aguir and Marouani 2010; 
Marouani and Aguir 2011) used an ANN to find the parameters of the GTN model 
employed in sheet metal blanking simulations. More recently, (Sun et al. 2020) also 
used the information from the load-displacement curve for ANN training to 
determine the damage parameters of the shear modified GTN model (Nahshon and 
Hutchinson 2008).  

We present a computational framework for the determination of material constants 
by a machine learning method that integrates finite element (FE) simulations with 
ANN, similar in purpose but significantly different from the previous works in the 
following aspects: 

 training data selection: the data passed from FE to ANN model consists of (i) 
the images of a complete local displacement field and (ii) the values of global 
force-displacement curve. Both (i) and (ii) data are extracted throughout the 
complete numerical experiment; 

 material model employed: a machine learning supported calibration of a 
ductile fracture locus model  will be attempted for the first time in the 
following sections. 

The main advantage of the proposed calibration strategy stems particularly from the 
above specific training data selection. While using only one single calibration 
specimen, the presented approach allows to make use of all information accessible in 
the experiment, i.e. the local deformation influenced by the stress state and the 
damage state. In particular, assisting the calibration of a specific fracture locus model 
by ANN allows to circumvent extracting and averaging the evolution of stress state 
variables in a material point from numerical models of various calibration specimens. 
Therefore, no assumptions regarding the choice of an element for extracting the 
loading paths need to be adopted any longer.  

The framework features (1) training of the ANN merely from numerical experiments, 
(2) examination of the ANN model’s quality by assessing the predictability of material 
parameters used in FE simulations unseen in the training stage, (3) feeding the 
experimental data to the trained ANN to find the set of parameters that models the 
behavior of real experiment and  (4) validation on different sample geometries not 
used for the training.  

The goal of the present study is to find a robust set of parameters that accurately 
models the mechanical behavior and the instant of fracture of the analysed ductile 
material. We limit our attention to the parameters of the  coupled damage model 
based on the fracture locus introduced in the preceding work (Baltic et al. 2020a). 
Instead of performing a series of ductile fracture experiments on various sample 
geometries to characterize the macroscopic mechanical response of the investigated 
alloy, a single sample geometry is analysed numerically by FE simulations. A shear 
tension specimen is modelled to study the sensitivity of the numerical response to 
parameter variations selected by a three level full factorial experimental design. The 
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data extracted from the FE models that are passed to the ANN will be referred to as 
a training database. The ANNs used here belong to the class of convolutional neural 
networks (CNN), which are chosen because of their pattern recognition capability. 
In particular, CNNs are able to exploit translation and scale invariance, making 
them generally more data efficient for most pattern recognition tasks. The ANN key 
features include one dimensional (1D) and three dimensional (3D) convolution 
layers with subsequent max pooling, and, in addition, two regularization 
approaches applied together to mitigate the overfitting of the parameters to be 
estimated.  

 

5.2 Constitutive model: governing equations 

The coupled ductile fracture locus model employed in the sequel is briefly 
summarized below to the reader’s convenience. Details on the model formulation can 
be found in (Baltic et al. 2020a). Since the fundamental mechanisms of ductile fracture 
are rather well understood, cf., e.g., the review articles (Pineau et al. 2016; Benzerga 
et al. 2016), the constitutive equations are preserved to keep the physical foundation 
of the model. The function equations are thus predetermined, and the ANN is used 
for determining the constants of this given function.  

 

5.2.1 Coupled ductile fracture locus model 

The unified approach introduced in (Baltic et al. 2020a) comprises the theories for 
ductile fracture locus (Lou and Huh 2013), damage mechanics (Lemaitre 1985) and 
regularization (Anand et al. 2012). The model proposes modeling strain softening 
linked to damage evolution dependent on the current stress state along the strain 
path. The equivalent stress required for yielding of the damaged material matrix is 
described by 𝜎 = 1 − ∫ ( , )  𝜎 𝜀 + 𝐿 𝜀 − 𝑒 , (5.1) 

where a three-dimensional fracture locus  𝜀 (𝜂, �̅�) defines a function that returns the 
fracture strain 𝜀  at a general multiaxial stress state given by the stress triaxiality 𝜂 

and the Lode angle parameter �̅�. A linear damage accumulation rule, ( , ) , where 𝑑𝜀  denotes the differential increment of the equivalent plastic strain 𝜀 , quantifies 
the local ductile damage 𝐷 assumed to accumulate at each point in the continuum 
prior to failure. A softening factor is defined as a linear function of the damage 
variable, 1 − ∫ 𝑑𝐷 , to capture the stress state effects on the plastic flow, 𝜎 𝜀 . An 
additional regularization term, 𝐿 𝜀 − 𝑒 , modifies a conventional hardening 
function 𝜎 𝜀  in an additive manner. Note that the regularization is applied to the 
current yield strength and not to the initial undamaged one. The variable 𝑒  
represents a weighted average of the equivalent plastic strain 𝜀  over a specified 
strain distribution function 𝑓 that follows a Gaussian distribution. The implemented 



CHAPTER 5 Machine learning assisted calibration of a     110 
                                                                                            ductile fracture locus model    

 

 
 

regularization distributes the strains of the FE model over a width defined by a length 
scale parameter 𝑙 contained in the strain distribution function 𝑓. As the influence of 
the softening and regularization terms interfere, the parameter 𝐿 should be calibrated 
to produce an adequate amount of regularization.  

The linear damage accumulation rule is a simple form of mapping all possible fracture 
surfaces obtained from different strain paths onto a single fracture locus given by 
(Lou and Huh 2013), 𝜀 (�̅�, 𝜂) = 𝑐2 �̅� + 3 〈1 + 3𝜂〉2       〈𝑥〉 = 𝑥     𝑤ℎ𝑒𝑛 𝑥 ≥  00      𝑤ℎ𝑒𝑛 𝑥 <  0 

(5.2) 

where the material constants {𝑐 , 𝑐 , 𝑐 } should be determined. 𝑐  and 𝑐  model the 
stress state dependency of the underlying damage process, whereas 𝑐  represents the 
magnitude of the fracture locus without influencing its final shape. The fracture 
strain, 𝜀 , is herein defined as the maximum local equivalent plastic strain just before 
structural failure.  

 

5.2.2 Unknowns for the ANN model 

The three parameters {𝑐 , 𝑐 , 𝑐 } of the fracture locus defined by (Eq. 5.2) are to be 
found from a shear tension experiment. As 𝑐  reflects the influence of the Lode angle 
parameter, �̅�, whose variation in the shear tension experiment (see subchapter 3.1.) is 
expected to be minimal, it cannot be determined properly from this experiment. 
Accordingly, 𝑐  will be fixed in the following to 𝑐  = 2.082, the value found in (Baltic 
et al. 2020a). Thereby we restrict ourselves to only two unknowns {𝑐 , 𝑐 }. Given that 𝑐  modulates the dependency of the fracture strain on stress triaxiality, whose effect 
is predominant, 𝑐  is subject to ANN identification together with 𝑐 , which controls 
the overall magnitude of the fracture strain. The regularization parameter 𝐿 
controlling the effect of added (artificial) hardening is to be identified by ANN as well 
because it has a strong impact on the strain localization. For the latter purpose, the 
complete strain distribution is accessible to the ANN in the form of the full surface 
displacement field evolution that is fed into the model. 

Accordingly we proceed with 3 unknown parameters to be identified by ANN, i.e. {𝑐 , 𝑐 , 𝐿}. The fracture locus and regularization parameters of the material model 
employed in the sequel are summarized in Table 5.1. The remaining model 
parameters, i.e. elasticity as well as plasticity parameters defining the hardening 
function 𝜎 𝜀  (see Eq. 5.1), are taken from (Baltic et al. 2020a).  
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Table 5.1. Material parameters to be identified by the ANN  
Ductile fracture 
locus parameters 

𝑐  [-] 
2.082* 

𝑐  [-] 
? 

𝑐  [-] 
? 

Regularization 
parameters 

𝑙 [mm] 
0.195** 

𝐿 [MPa] 
? 

 

* 𝑐  is fixed and omitted from the ANN; cf. the main text for a detailed discussion. 
**The length scale 𝑙 is determined from experiments as the width of the shear band 
observed by Digital Image Correlation (Baltic et al. 2020a). 
 

5.3 Computational framework for material parameter 
identification 

 

5.3.1 Finite element model of the shear tension experiment 

The finite element model of the shear specimen comprises one-half of the specimen 
geometry, as appropriate symmetry conditions in xy-plane are applied (see Fig. 5.1). 
The model is discretized by 8-node solid elements (ANSYS Element Library 
SOLID185) with an element length of about 0.043 mm and 7 elements over the 
thickness. The model’s total thickness is 0.28 mm, which equals one half of the 
thickness of the real specimen machined from sheet material. The displacement 
history measured  experimentally is applied to the upper boundary of the model and 
the simulations are carried out using the FE code ANSYS Mechanical APDL (ANSYS 
Documentation). The choice of the parameter sets of the material model employed is 
further discussed in the following subchapter.  

In particular, this specimen was selected among the others (notched tension and dog-
bone) because a closer look at the evolution of mechanical fields in the shear specimen 
reveals that at least one stress state parameter, i.e. the Lode angle, remains constant 
for the most part of the strain path (Baltic et al. 2020a). The stress triaxiality increases 
from low (0.00) over moderate (0.25) to high values (0.60); a detailed analysis of the 
discussed loading path can be found in (Baltic et al. 2020a). Being able to omit the 
influence of the Lode angle (and skip the determination of 𝑐 ) , and having a large 
range of stress triaxiality and total fracture strain values for determining 𝑐  and 𝑐 , is 
expected to facilitate the learning process of the ANN.  
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Fig. 5.1. Finite element model of the shear tension specimen 
 

5.3.2 Training database 

The sensitivity of the numerical response to material model parameter variations is 
studied following a three level full factorial experimental design. The relationships 
between parameters {𝑐 , 𝑐 , 𝐿}  are explored through finite element analysis of 27 
models in total, representing 27 different positions in parameter space, arranged on a 
rectilinear grid, with 12 middle-edge positions (nodes), 12 corner nodes and 3 centre 
nodes, as shown schematically in Fig. 5.2. Although there are somewhat more 
efficient designs like e.g. (Box and Behnken 1960) requiring fewer simulation runs 
than the full factorial one, the later was selected particularly because it covers just 
about every possible parameter combination. The ANN model is thereby supplied 
with high quality data. Yet, a reasonable parameter range has to be chosen to ensure 
that the actual parameter values for modeling the experimental behavior lie within 
the limits of the training data. For every parameter, three levels are used, (i) the low 
value, (ii) the middle value and (iii) the high parameter value (Table 5.2).  

The selected range has to ensure that the domain of design space where the actual 
experiment falls is captured. Here, the choice of the design space was guided by the 
preceding work (Baltic et al. 2020a). Starting from the values found in the referred 
work, the design variables are varied systematically and iteratively to obtain the 
training database well-distributed around the actual experiment, see Fig. 5.3. 
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Fig. 5.2. Design of numerical experiments following the three level full factorial:  
3-variable system with 3 levels  (0 = low value, 1 = middle value, 2 = high value)  

arranged on the middle edge nodes (  ), corner edge nodes (  ) and centre nodes ( 
 ). 

 

Table 5.2. ANN training database developed following a three level full factorial design  

Numerical 
experiment 

Ductile damage model parameters 
Fracture locus Regularization 𝑐  [-] 𝑐  [-] 𝐿 [MPa] 

Model #1 0.3 2.2 160.0 
Model #2 0.5 2.2 160.0 
Model #3 0.8 2.2 160.0 
Model #4 0.3 2.2 180.0 
Model #5 0.5 2.2 180.0 
Model #6 0.8 2.2 180.0 
Model #7 0.3 2.2 210.0 
Model #8 0.5 2.2 210.0 
Model #9 0.8 2.2 210.0 

Model #10 0.3 2.5 160.0 
Model #11 0.5 2.5 160.0 
Model #12 0.8 2.5 160.0 
Model #13 0.3 2.5 180.0 
Model #14 0.5 2.5 180.0 
Model #15 0.8 2.5 180.0 
Model #16 0.3 2.5 210.0 
Model #17 0.5 2.5 210.0 
Model #18 0.8 2.5 210.0 
Model #19 0.3 2.8 160.0 
Model #20 0.5 2.8 160.0 
Model #21 0.8 2.8 160.0 
Model #22 0.3 2.8 180.0 
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Model #23 0.5 2.8 180.0 
Model #24 0.8 2.8 180.0 
Model #25 0.3 2.8 210.0 
Model #26 0.5 2.8 210.0 
Model #27 0.8 2.8 210.0 

 

Postprocessing of the finite element simulations allows extracting the numerical 
results in terms of (a) images of the surface displacement fields in X and Y direction 
and (b) force values for the applied displacement. The extraction of both local (a) and 
global (b) data is done throughout the complete numerical experiment in equally 
spaced time increments, Δ𝑡. In this way, the information about the stress state 
evolution is taken into account. Local displacement field images are extracted from 
the nodes positioned in the zone of interest where the plastic strain develops, see Fig. 
5.3a. Every single force value extracted at a specific time 𝑡 (Fig. 5.3b) is assigned to 
the corresponding displacement image (Fig. 5.3a). The database constructed thereby 
is passed from the FE to the ANN model, whose architecture will be discussed in the 
next subchapter. 

 

 
(a) 
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(b) 
 

Fig. 5.3. Passing the training database from FE to ANN throughout the complete 
numerical experiment: (a) images of the local displacement field in X and Y 

direction (UX and UY) for every time step t, (b) global force-displacement curve 
values for every time step t. 

 

The quality of the trained ANN model will be verified using the numerical 
experiments not contained in the training database, referred to as FE test cases. This 
verification is performed on FE test cases whose parameters are chosen to lie inside 
the design space shown in Fig. 5.2. The original design space is divided into 8 cubes 
as indicated by dashed blue lines in Fig. 2. The first set of parameter combinations is 
selected such that it covers the middle nodes of each of the 8 cubes (Table 5.3). The 
second set of parameters is selected following the Latin hypercube sampling, i.e. the 
points inside each of the 8 cubes are chosen randomly (Table 5.4).  

 

Table 5.3. FE test cases covering the middle points of each of the 8 cubes 

Numerical 
experiment 

Ductile damage model parameters 
Fracture locus Regularization 𝒄𝟐 [-] 𝒄𝟑 [-] 𝑳 [MPa] 

FEM test #1 0.40 2.35 170.00 
FEM test #2 0.65 2.35 170.00 
FEM test #3 0.40 2.35 195.00 
FEM test #4 0.65 2.35 195.00 
FEM test #5 0.40 2.65 170.00 
FEM test #6 0.65 2.65 170.00 
FEM test #7 0.40 2.65 195.00 
FEM test #8 0.65 2.65 195.00 
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Table 5.4. FE test cases selected according to the Latin hypercube sampling 

Numerical 
experiment 

Ductile damage model parameters 
Fracture locus Regularization 𝑐  [-] 𝑐  [-] 𝐿 [MPa] 

FEM test #9 0.32 2.43 161.63 
FEM test #10 0.78 2.29 171.10 
FEM test #11 0.50 2.48 184.81 
FEM test #12 0.70 2.38 197.30 
FEM test #13 0.31 2.50 170.33 
FEM test #14 0.52 2.62 177.54 
FEM test #15 0.43 2.52 200.76 
FEM test #16 0.54 2.57 191.62 

 

 

5.3.3 Artificial Neural Network (ANN) models  

 

5.3.3.1 Model architectures and the building blocks 

Three ANN structures are constructed and investigated based on the way the input 
information is processed to estimate the material parameters, see Fig. 5.4. In the 
architecture A the local displacement field images are used to estimate the material 
parameters {𝑐 , 𝑐 } while the parameter {𝐿} is estimated by using only the information 
inherent in the global force-displacement profile.  For the architecture B, the opposite 
of architecture A is imposed, i.e. the parameters {𝑐 , 𝑐 } are learned from the force-
displacement profile while {L} is estimated from the displacement field images. For 
the architecture C all information, i.e. the features of the local displacement field 
images and the global force-displacement curves are used together to estimate the 
parameters {𝑐 , 𝑐 , 𝐿}.   

 

Fig. 5.4. Different ANN architectures studied: models A, B and C. 
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Since the input data for the ANNs contain images, we employ convolutional neural 
networks (CNN) because of their performance for translation invariant pattern 
recognition (in our case, the pattern to be recognized and characterized is the local 
strain concentration pattern). CNNs are capable of extracting high-level features 
hidden in the input data through their convolution layers and nonlinear activation 
functions. The convolutional layers are particularly suitable to exploit translation 
invariance in the input space. Therefore, all ANN architectures contain a convolution 
layer as a first layer for processing the input information. Furthermore, three-
dimensional (3D) convolution layers are employed because the local displacement 
field images contain two space dimensions and one time dimension. The 3D 
convolution layers are capable of extracting features from both the spatial and 
temporal dimensions, which are necessary for capturing the motion information 
encoded in multiple adjacent frames (herein, those are data extractions on the force-
displacement (FD) curve trajectory). One-dimensional convolutions are also applied 
on the FD history, which is a sequence of data in time. Similar to 3D convolutions, 1D 
convolutions are capable of extracting features from sequences of fixed length and 
mapping their internal features. The building blocks of the model structures shown 
in Fig. 5.4 are briefly described in the following.  

In all models, after a 3D convolution layer a max pooling layer is added, which 
extracts the points with the largest value in the analysed local domain. Max pooling 
is a linear operation which reduces the dimension of the features extracted by a 3D 
convolution and also may prevent overfitting to a certain extent. At the other side, on 
the FD branch, after a 1D convolution no pooling layer is added because it is not 
necessary due to the small feature dimension. Afterwards, a flattening layer is applied 
to convert the feature data of the convolution layers into a single long feature vector. 
The structure and hierarchy of the selected layers in the CNN network follows a 
routine practice. For an in-depth discussion of the CNN networks, the reader is 
referred to (Stewart 2018; Kuo 2016).  

The training data are comprised of 27 FE models, see Table 5.2. Considering the size 
of the ANN networks, the optimization problem is very much prone to overfitting, 
which will result in deteriorated validation or test qualities. Therefore, two 
regularization approaches are considered and applied together to mitigate 
overfitting. The first one is an additive zero-centered Gaussian noise layer, with 
standard deviation of 0.05, which is positioned after the convolutional layers and can 
be regarded as random data augmentation. The effect of the Gaussian noise on the 
performance of CNNs has not been investigated systematically in the literature. 
However, it turned out to be very useful in achieving more generalizable trained 
models thereby even increasing the stability of the training stage. The other 
regularizer is applied through penalties on all layer kernels during optimization. For 
the latter, we apply an L2 regularization penalty with a regularization factor of 0.01. 
The penalty of the L2 regularizer is computed as 
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𝑐𝑜𝑠𝑡 = 𝑙2 ∗ 𝑤  (5.3) 

where 𝑤 is a vector of layer weights and 𝑙2 = 0.01 is the regularization factor. This 
penalty prevents the weights of a network to grow very large and therefore helps to 
minimize overfitting of the training data. After a noise layer, fully connected (FC) 
layers are inserted in an inverted pyramidal stack (larger layers up and smaller layers 
at the bottom) to emphasize the importance of the information at higher levels (see 
Fig. 5.5 for detail information about the layer sizes). Note that in model C a 
concatenation layer is needed to merge two sources of extracted features to be 
forwarded to the next FC layers. The max pooling, Gaussian noise, flattening and 
concatenation layers have no training parameters. Therefore, the model architectures 
A, B and C are not only similar in structure but also very close in size, i.e. models A 
and B have 286,816 training parameters while model C has 286,751 (see Fig. 5.5).   

In Fig. 5.5 the first dimension (None) corresponds to the batch size, which for the 
training data is equal to 27 and for verification data is equal to 16. For the 3D and 1D 
CNN, filter sizes of (3,3,2) and 2 are chosen, respectively. This selection was based on 
the sparse random exploration of a huge hyperparameter space. The sufficiency of 
the kernel size 3*3 is proven (see Baltic et al. 2021, Appendix). The spatial kernel size 
of 3*3 is a frequent choice as it adds more benefits like weight sharing and lowering 
the computational costs while taking into account information from the neighbouring 
pixels. The odd size of the filter (in spatial dimensions) is also beneficial because of 
the symmetry, i.e. all the previous layer pixels are symmetrical around the output 
pixel. Therefore, distortions typical for even sized kernels are avoided.  

Note that these model structures do not have a large depth and width but still contain 
the main building blocks necessary for effective extraction of high-dimensional 
features from a small set of training examples. Usually, more CNN layers can 
potentially improve the accuracy of the ANN models. However, this depends on the 
choice of the architecture (deep or shallow) and depth and width of the training data 
set, as it has been explored in (Basha et al. 2019). According to (Basha et al. 2019),  for 
the training datasets of size 27, a shallow model with more FC layers is the optimal 
choice for better performance. Indeed, we found that adding more CNN layers does 
not provide extra benefits while increasing computational costs. Here, the considered 
one CNN layer serves as a smart feature extractor both in space and time. Finding the 
optimum model architecture is not trivial. However, in the context of this work, the 
selected architecture designs perform well enough to demonstrate the applicability of 
the presented approach.  
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(c) 

Fig. 5.5. Model summary of different ANN architectures: (a) model A, (b) model B, 
(c) model C. 

 

5.3.3.2 Data preparation  

Scale and distribution of the input and output data are very important for training 
the neural networks. Different scales may cause difficulties in training and modeling 
of the problem. This is because large input values may result in a model with 
extremely large neuron weights, thereby causing unstable learning and poor 
performance during generalization. Very large and different scales of output 
variables also often result in exploding gradients leading to a failing learning process 
or low model performance. Moreover, scaled training data always reduce the training 
time and lower the probability to fall into local minima.  
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In this work, the inputs (displacement field images and global FD curve) and outputs 
(material parameters) are normalized to the range of [0,1] with the linear 
transformation 𝑋 = , (5.4) 

where 𝑋 and 𝑋  are the original and transformed data, respectively, and 𝑋  and 𝑋  correspond to the minimum and maximum value of 𝑋 in the training data. The 
same minimum and maximum is used for normalization of the verification and 
experimental data.   

 

5.3.3.3 Activation functions 

In neural networks the nonlinearity to the output of a neuron is introduced via an 
activation function. The five most widely used activation functions are Sigmoid, 
Tanh, ReLU, Softplus and Gaussian. It is not trivial a priori which activation function 
works best for a given data set and problem. Sigmoid and Tanh are saturated non-
linear activation functions and are widely used in traditional ANN models. They are 
given by Eq. (5.5) and Eq. (5.6), respectively: 𝑓(𝑥) = 11 + 𝑒  (5.5) 

𝑓(𝑥) = 𝑒 − 𝑒𝑒 + 𝑒  (5.6) 

As it is clear, the outputs of the Sigmoid are in the range (0,1) while the outputs of 
Tanh are in the range (-1,1). When the training data are scaled, there will be no 
problems with saturation which happens with large input values. For all layers in 
ANN structures in Fig. 5.4 Tanh is used except for the output layer, where Sigmoid 
activation is applied. Application of Sigmoid on the neurons of the last output layers 
imposes positivity of the material parameters {𝑐 , 𝑐 , 𝐿}. Furthermore, even though 
the input data are scaled to (0,1) we find that Tanh is a better choice for the upper 
layers of the ANNs in Fig. 5.4: since the output of Tanh lies in the range (-1,1), the 
mean for the hidden layer is 0 or very close to it, which helps making the learning for 
next layer easier. Moreover, the Tanh activation function has larger derivatives 
compared to the Sigmoid, thereby making it more relevant for the gradient descent 
based optimization used in the error back propagation training algorithm. Although 
ReLU activation functions are nowadays very popular because they overcome 
vanishing gradients issues, in this work, since the considered ANN models are small, 
i.e. there are not so many hidden layers, the ReLU functions are not applied on the 
hidden layers. 
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5.3.3.4 Network optimization 

The optimization of the training parameters of the ANN models is done by 
minimizing the sum of squared errors (SSE) of the estimated parameters {𝑐 , 𝑐 , 𝐿} for 
all training examples. The SSE is defined as 

𝑆𝑆𝐸 =  (𝑐 − 𝑐 ) + (𝑐 − 𝑐 ) + (𝐿 − 𝐿 ) , (5.7) 

where {𝑐′ , 𝑐′ , 𝐿′} are the network output and {𝑐 , 𝑐 , 𝐿} are the true target parameters. 
Once the networks are fed by all training examples, the accumulated error is back-
propagated to update the network weights and biases. The TensorFlow® software 
framework is used to train and optimize the networks (Abadi et al. 2015). With 
TensorFlow built-in operations back propagation based optimization can be done 
without the necessity to write complex program code. The Adam optimiser with a 
learning rate of 0.001 is used (Kingma and Ba 2014). 

Every ANN model (A, B and C) is optimized 10 times with random initialization of 
its network parameters and maximum epoch number of 4000. We found this epoch 
number to be sufficient for the convergence of the optimization while still preventing 
the model to overfit the training data due to applied regularization approaches 
described in section 3.3.1. Then the average of 10 optimized model outputs is taken 
and considered as the final parameter estimate. With this strategy, we believe the 
prediction of material parameters is more accurate and robust for a highly nonlinear 
inverse problem as considered in this work. 

 

5.3.4 Feeding the experimental data to the trained ANN 

The results of the tensile test conducted on the shear specimen are provided to the 
trained ANN in the same format as the training database. Displacement field images 
in X and Y directions are generated from the DIC-measured displacement history 
(Fig. 5.6a). The force values measured during tensile testing are extracted over 
specified time increments Δt (Fig. 5.6b). For every single force value, the 
corresponding displacement image is provided. The experimental data extracted in 
this way is fed to the trained ANN model to find the set of parameters {𝑐 , 𝑐 , 𝐿} that 
models best the behavior of a real shear tension specimen.  

When postprocessing the experimental data, different data arrangements have been 
generated in order to investigate potential effects of the ANN predictions. The 
influence of spatial discretization has been assessed by extracting the displacement 
images in different resolutions, Δp, defined as a distance between two nodes of the 
FE mesh for which the data has been provided. Fine and 2x coarser resolution have 
been considered, Δp=0.0625 mm and Δp=0.125 mm, respectively. The impact of the 
time discretization, i.e. the time step increment Δt, has been examined as well. Finer 
and coarser time discretizations have been investigated, i.e. Δt=0.02 and Δt=0.05. 
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(a) 

 

 
 

(b) 
 

Fig. 5.6. Application of the trained ANN model: feeding the experimental data of the 
shear tension specimen into the trained ANN. (a) local displacement fields obtained 

from DIC analysis and (b) global force-displacement curve. 
 

Delivering the displacement images using two different resolutions Δp has not shown 
any effect on the training quality. Therefore, the coarser resolution has been accepted 
(0.125 mm) for faster processing. On the other hand, the time discretization, i.e. the 
number of time steps for which the force displacement curve data is extracted and 
displacement images are attached, has turned out to have some impact on the training 
quality. Thus, more time steps, i.e. a smaller time step increment Δt (0.02) has been 
adopted.  
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5.4 Results and discussion 

Before application on the real shear experiment, the quality of all three ANN 
architectures has been examined on four generated FE test cases unseen in the 
training stage. Numerical results (displacement field images and FD profiles) of those 
FE test cases are fed into the trained ANN models to estimate the material parameters 
used originally in the simulation (listed in Table 5.3. and Table 5.4.). The predicted 
parameters delivered by different ANN models are fed back to the FE simulation. The 
final model verification is based on the correct reproduction of the displacement field 
and FD history in the simulation with the estimated material parameters rather than 
merely judging the relative values of the estimated material parameters. This is 
because, due to the non-uniqueness of this highly nonlinear inverse problem, 
different parameter combinations may produce the same FD profile. Therefore, the 
prediction quality of the studied ANN model architectures for the FE test cases is 
shown in Fig. 5.7 by comparing the resulting FD profiles. Fig. 5.7a shows the 
predictions of the FE test cases covering the middle nodes of each of the 8 cubes. We 
observe that all ANN models studied (A, B and C) estimate sets of material 
parameters that reproduce the behavior of most of the test cases with satisfactory 
accuracy.  Obviously, these three ANN architectures perform very similarly. Model 
B is slightly off for test case 1 though. For test case 6, all three architectures have 
similar deviation in displacement to fracture.  Fig. 5.7b shows the predictions of the 
FE test cases designed according to Latin hypercube sampling. The performance of 
all different ANN architectures studies is similar again for all FE test cases, with the 
exemption of the FE test case 13 and 14, where the ANN model B results in a 
somewhat larger deviation compared to ANN architectures A and C. In the light of 
these results it is difficult to assess the preferred model architecture. Considering the 
complex material model exhibiting features such as material softening, all three 
models provide satisfactory results. 
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(b) 
 

Fig. 5.7. Verification of the ANN models: results of the FE model predictions (FEM) 
for numerical test cases (FE test case) using parameter sets determined by different 

ANN architectures (ANN_A, ANN_B, ANN_C); the inserted numbers (1 - 8) on 
each individual graph represent the number of the FE test case; (a) results for the FE 

models covering the middle nodes of each of the 8 cubes; (b) results for the FE 
models designed according to the Latin hypercube sampling. 

 

For better evaluation of the network outputs, Fig. 5.8 shows comparative statistics in 
box plots for the outcomes of 10 independent optimized ANN models on the 
verification dataset. Box plots visualize the distribution of numerical data and 
skewness through displaying the data quartiles, averages, medians and ranges. In 
Fig. 5.8, the whiskers, i.e. upper and lower vertical lines with the horizontal cap 
include the total range of the estimates, marking the minimum and maximum of the 
data. The lower and upper sides of the box correspond to the first and third quartiles, 
respectively; the dashed line in the box corresponds to the median of the data, 
whereas the average of the estimates is represented as a solid line.  We observe that 
the overall ranges of the outcomes of all models overlap most of the time. Comparing 
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the median of each box for a given validation model of three ANN models, all 
architectures give results very close to each other, which reflects the fact that the 
models are very similar in terms of prediction quality. From the interquartile range, 
all models estimate the parameter 𝑐  in a somewhat more robust way than 𝑐 . 
Furthermore, for 𝑐  the median and average of outcomes coincide or are very close, 
which reflects the Gaussian distribution of the estimates. The true values, which were 
input for the FE generated test data are shown as green dotted lines.  

 

 

(a) 
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(b) 

Fig. 5.8. Comparative statistics of different ANN network outputs on verification 
data. (a) FE models covering the middle nodes of each of the 8 cubes; (b) FE models 

designed according to the Latin hypercube sampling. The box plots show the 
statistics obtained by 10 independent optimization outcomes of the ANN and the 
green dotted lines show the true value, used in the FE model to generate the test 

data, for comparison. 
 

Finally, comparing the true values of the material parameters of the verification 
models reported in Table 5.3, we observe that, although the interquartile range of the 
box plots rarely overlaps with the true values, the predicted parameters still produce 
the same numerical response (as shown in Fig. 5.7). Judging by the sensitivity 
analysis, small variations of the model parameters do not substantially change the FD 
curve and the displacement field. This inverse problem of estimating the material 
parameters is highly nonlinear, steep and complex, see Eq. (5.2). Therefore, it is 
possible to obtain different material parameters resulting in a comparable FD history 
and displacement field. Therefore, it is difficult to select the best model based on these 
verification models and exploratory data analysis. In fact, the results suggest that all 
models perform very similarly on the verification models with very small marginal 
differences.  

However, the final validation of the ANN models has to be done on a real-world 
experiment. To this end, the data extracted from an experimental force-displacement 
curve and experimental displacement field images are fed into the trained ANN 
models. The predicted material parameter sets, averaged over the outcome of 10 
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independent optimized models, are shown in Table 5.5. Interestingly, we observe that 
models A and B predict the same parameters 𝑐  and 𝑐 , unlike the prediction of 
parameter 𝐿 which shows a considerable difference. For comparison, Table 5.5 also 
shows the parameters formerly found by a classical experimental-numerical 
approach (Baltic et al. 2020a). Considering the complete set of parameters (𝑐 , 𝑐  and 𝐿), it becomes apparent that only the ANN model A provides comparable set of 
parameters. The box plot of the outcomes is shown in 5.9. We observe that model B 
has a lower scatter in predicting the parameters. Again, it is difficult to select the 
model which performs best. 

 

Table 5.5. Identified material parameters after feeding the experimental data of the shear 
tension specimen into ANN 

ANN architecture 
Ductile damage model parameters 

Fracture locus Regularization 𝑐  [-] 𝑐  [-] 𝐿 [MPa] 
ANN_A 0.4967915 2.7909071 164.575690 
ANN_B 0.4620881 2.7928969 209.217671 
ANN_C 0.3201537 2.6564574 208.712200 

Experimental-
numerical approach 

from (Baltic et al. 
2020a) 

0.5570000 2.4230000 167.125000 

 

 

Fig. 5.9. Comparative statistics of different ANN network outputs on the 
experimental data. 

 

The validation of the model prediction against experimental data is shown in Fig. 
5.10. The parameter set provided by the ANN model A successfully predicts the force-
displacement response recorded experimentally, yet with the fracture point predicted 
somewhat earlier than measured. On the other hand, the parameter set of the ANN 
model B predicts harder response than the experimental one. The last ANN 
architecture studied, C, leads to the most conservative prediction of fracture. These 
results reflect the high nonlinearity of the inverse problem and show that a small 
change in one parameter may result in a significantly different force-displacement 
response. Comparing the evolution of local mechanical fields in the experiment and 
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simulation Fig. 5.11, one can conclude that the progress of the strain upon loading is 
also well captured. This is expected because the information about the complete 
evolution of the local strain distribution has been accessible to the ANN in the training 
stage in the form of the full surface displacement field history that is fed into the 
ANN.   

 

Fig. 5.10. Validation of the ANN model: FE model predictions of the experimental 
force displacement curves using material parameters determined by different ANN 

architectures (ANN_A, ANN_B, ANN_C). 
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Fig. 5.11. Comparison of local equivalent total strain distributions documented 
experimentally using Digital Image Correlation (DIC) and calculated numerically 

(FEM) at three stages (1, 2 and 3). The FE simulation (FEM) shows the results using 
the set of parameters predicted by ANN model architecture A. 

 

For a more general assessment of the parameter sets predicted by the ANN 
architectures studied, the parameters are validated for various samples not used in 
the training stage. The specimens specifically designed to cover various stress states 
in (Baltic et al. 2020a) are used for validation. Specimen geometries include notched 
samples (R=1.00 mm, R=0.25 mm), dogbone specimen (gauge width x length = 2.00 x 
5.00 mm) and shear specimen (𝛼 = 45°) (shear specimen with 𝛼 = 0° was used to 
generate the training database). Fig. 5.12 shows the force-displacement histories 
calculated for these specimens by the set of material parameters obtained from ANN 
architectures A, B and C. In Fig. 5.12, the specimens are referred to according to the 
list of abbreviations given in Table 5.6. While the numerical results are mainly 
following the experimental data, a somewhat larger deviation for one particular 
geometry (shear45) is attributed to excessive stress triaxiality influence stemming 
from overestimated 𝑐  value. Nevertheless, considering that this prediction quality is 
achieved using only one single specimen for the complete calibration process, the 
overall agreement for all specimens is satisfactory.   

 

 

Fig. 5.12. Comparison of numerically predicted force-displacement curves using the 
set of parameters given by ANN model A for multiple geometries covering various 

stress states. The experimental data is taken from (Baltic et al. 2020a). 
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Table 5.6. List of abbreviations  
Abbreviation Explanation 

notchR025 Notched tension specimen with radius of the notch 
R=0.25 mm 

notchR1 Notched tension specimen with radius of the notch 
R=1.00 mm 

shear0 Shear tension specimen with angle 𝛼=0° (see (Baltic et al. 
2020a)) 

shear45 Shear tension specimen with angle 𝛼=45° (see (Baltic et 
al. 2020a)) 

dogbone Conventional dogbone tension specimen  
EXP Experimental result  
SIM Simulation result   

 
 

5.5 Summary and conclusion 

ANN assisted fracture locus calibration has been studied in this work for the first time 
as a promising alternative to the experimental-numerical calibration strategy 
followed in e.g. (Baltic et al. 2020a). The article demonstrates the procedure of 
including the evolution of both local and global features, i.e. displacement images 
and force-displacement curve of the material observed in the experiment, into the 
training of the neural network. Application of artificial intelligence using a so-trained 
neural network provides accurate predictions of ductile fracture on the local and 
global levels, as the reported results suggest. The new methodology allows extracting 
the model parameters from a single sample geometry as opposed to the many sample 
geometries typically required to establish a ductile fracture locus. The original 
contributions of the presented work are twofold, stemming from the ductile fracture 
modeling and machine learning aspects:  

 The computational framework developed supports the determination of the 
ductile fracture locus in such a way that the knowledge of a relevant loading 
path in the course of deformation is no longer mandatory for model 
calibration, i.e. the calibration does not rely on the strategy of averaging the 
stress state variables along the loading path any longer. Since it was found 
that the fracture locus for proportional loadings differs substantially from the 
one for nonproportional ones (Benzerga et al. 2012; Basu and Benzerga 2015), 
bypassing the averaging of the fracture paths appears as a great improvement, 
particularly in view of the application to prestrained materials prone to strain 
localization, where proportional loadings are impossible to achieve in the 
experiment. Furthermore, the ambiguity of the choice of a critical element to 
be selected in the numerical model for the extraction of the respective loading 
path is thereby also circumvented.  

 The verification results of differently structured artificial neural networks 
suggest that, no matter which of these three ANN structures is chosen, it is 
possible to estimate realistic material parameters. Nevertheless, the preference 
is given to the physics informed partitioning of the ANN architecture over 
brute force application of ANNs. It is suggested to include prior physical 
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knowledge regarding the material model concerned, particularly when large 
training data sets are not available and experimental data is limited, as it is 
usually the case in material modeling. This work has shown that despite 
limited data and thus small size of the ANN, it is possible to calibrate the 
material parameters and achieve realistic results in structural computations. 

Our observations suggest that a single sample geometry is sufficient to extract the 
constants determining the material’s hardening or rather softening law.  It is essential 
that the sample experiences a variety of different stress states in different positions 
upon plastic deformation. Key to success is found to be in making use of this valuable 
information in the model calibration. Further research should provide a more general 
proof involving different sample geometries and different materials. This work is a 
first step towards a fully automatic material parameter determination from simple 
tensile tests, using the evolution of local and global features as an input. 
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Chapter 6 

 

Summary 
 

 modeling strategy to describe the damage and fracture of a thin-walled 
structure made of a ductile material was developed in this thesis. Various 

fracture mechanisms were well explained by a unique damage plasticity model. Key 
to success in modeling different material responses under different regimes was 
found to be the local fracture strain theory i.e. a three-dimensional fracture locus with 
its associated length scale, coupled to metal plasticity. Following the physical aspects 
of a ductile fracture process, the model featuring a stress state dependent damaging 
process was proposed, resulting in a true stress-strain response dependent on the 
history of the stress state variables. A new definition of a length scale with a clear 
physical meaning was introduced and considered in the numerical model, ensuring 
thus the fracture predictions to be independent of the scale of the experimentally 
determined fracture strain.  

The modeling approach was first validated on uncracked structures where the aim 
was to predict the onset of fracture. Different plastic responses of tension samples 
experiencing a wide range of stress states were captured by modeling the softening 
process dependent on the loading path to fracture. Furthermore, a numerical analysis 
of the failure scenario in a real world structure was performed whose instant of failure 
was successfully predicted by the material model calibrated independently of the 
loading conditions occurring in the component.  

The concept was further examined on pre-cracked structures aiming to predict the 
experimentally observed crack propagation. As this could also be accomplished 
without any adjustments of the model calibrated for uncracked specimens, there is 
some fundamental generality of the concept relying on the local stress state 
dependent fracture strain. This is, however, valid only if the fracture strains are 
considered together with their associated length scale, i.e. the length over which the 
experimental strains are averaged.  

Furthermore, a step forward in determining the model parameters was taken by 
taking advantage of a machine learning algorithm as a promising alternative to 
classical inverse methods. This facilitates the practical usage of the model and 
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broadens the range of applications. Generally, the work paves the way for modeling 
demanding strain-hardened materials and sheet-metal structures exposed to complex 
loading histories.   
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 Appendices 
 
APPENDIX A 

Implementation of nonlocal regularization according to (Anand et al. 2012) in 
ANSYS Mechanical APDL 

 
/com, define first the length scale leng in (mm) 
leng=0.195  !mm 
PI=3.141592654 
esel,all  
*get,nelems,elem,,count 
 
!loop elems 
*del,loop_elems  
*dim,loop_elems,array,nelems 
 
csys,0 
wpcsys,,0 
cmsel,s,middle_elems 
*vget,loop_elems(1),elem,1,esel,1 
 
csys,0 
esel,all 
*del,x_list 
*del,y_list 
*del,z_list 
*dim,x_list,array,nelems 
*dim,y_list,array,nelems 
*dim,z_list,array,nelems 
 
*vget,x_list(1),elem,1,cent,x 
*vget,y_list(1),elem,1,cent,y 
*vget,z_list(1),elem,1,cent,z 
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*del,el_volumes 
*dim,el_volumes,array,nelems 
esel,all  
*do,nelem,1,nelems 
    *get,elem_volu,elem,nelem,volu 
    el_volumes(nelem)=elem_volu 
*enddo  
 
esel,all 
etable,plstrain,eppl,eqv 
*del,pl_strains 
*dim,pl_strains,array,nelems 
*vget,pl_strains,elem,1,etab,plstrain 
 
con1=-1/(2*leng**2) 
con2=1/((2*PI)**(3/2)*leng**3) 
*del,cons1 
*del,cons2 
*dim,cons1,array,nelems 
*dim,cons2,array,nelems 
*do,i,1,nelems 
    cons1(i)=con1 
    cons2(i)=con2 
*enddo  
 
*del,ep_elem 
*dim,ep_elem,array,nelems  
 
*do,nelem,1,nelems  
 
check_elem=loop_elems(nelem) 
 
*if,check_elem,eq,1,then 
 
*del,vecX0 
*dim,vecX0,array,nelems 
*del,vecY0 
*dim,vecY0,array,nelems 
*del,vecZ0 
*dim,vecZ0,array,nelems 
 
*vfill,vecX0(1),ramp,x_list(nelem,1),0 
*vfill,vecY0(1),ramp,y_list(nelem,1),0 
*vfill,vecZ0(1),ramp,z_list(nelem,1),0 
 
!loop over locations in array parameter 
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*voper,diffX,vecX0(1),sub,x_list(1) 
*voper,diffY,vecY0(1),sub,y_list(1) 
*voper,diffZ,vecZ0(1),sub,z_list(1) 
*voper,vec_sqX,diffX,mult,diffX 
*voper,vec_sqY,diffY,mult,diffY 
*voper,vec_sqZ,diffZ,mult,diffZ 
 
*voper,lab1,vec_sqX,add,vec_sqY 
*voper,lab2,lab1,add,vec_sqZ 
*voper,lab3,lab2,mult,cons1 
*vfun,lab4,exp,lab3 
*voper,npsi,cons2,mult,lab4 
 
*voper,npsi_epsPL,npsi,mult,pl_strains 
*voper,psi,npsi,mult,el_volumes 
 
*voper,psi_epsPL,npsi_epsPL,mult,el_volumes 
*vscfun,sum1,sum,psi_epsPL 
*vscfun,sum2,sum,psi 
 
ep_el=sum1/sum2 
ep_elem(nelem)=ep_el  
 
*endif  
  
*enddo  
 
 
ep_scale=1 
esel,all 
etable,ep,eppl,eqv 
*vput,ep_elem(1),elem,1,etab,ep 
*if,ep_scale,ne,1,then 

sadd,dep,plstrain,ep,,-1*ep_scale 
*endif 
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APPENDIX B 

Implementation of stress triaxiality, Lode angle parameter and ductile fracture locus 
model according to (Lou and Huh 2013) in ANSYS Mechanical APDL 

 

/com, define model constants c1, c2, c3 
c1=2.081504124 
c2=0.55650812 
c3=2.423085375 
 
esel,all 
*get,num_e,elem,0,count 
 
PI=3.141592654 
etable,sigma1,s,1 
etable,sigma2,s,2 
etable,sigma3,s,3 
   
sadd,lab1,sigma1,sigma2 
sadd,lab2,lab1,sigma3  
smult,meanstress,lab2,,1/3 
   
etable,hydro,nl,hpres    !store hydrostatic stress  
etable,seqv,s,eqv    !store equivalent stress 
sexp,inv_seqv,seqv,,-1 
smult,TRIAX1,hydro,inv_seqv  
  
sadd,dev1,sigma1,hydro,1,-1  !principal deviatoric stress 
sadd,dev2,sigma2,hydro,1,-1 
sadd,dev3,sigma3,hydro,1,-1 
sexp,d_dev1,dev1,,2   
sexp,d_dev2,dev2,,2 
sexp,d_dev3,dev3,,2 
sadd,sum1,d_dev1,d_dev2    
sadd,sum2,sum1,d_dev3 
sadd,J2,sum2,,1/2    !second deviatoric invariant 
 
smult,lab1,J2,,3 
*del,fun_1 
*dim,fun_1,array,num_e      
*vget,fun_1(1),elem,1,etab,lab1 !store data to array 
*del,fun_2 
*dim,fun_2,array,num_e 
*vfun,fun_2(1),sqrt,fun_1(1)  !perform a function on a single 
array parameter 
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etable,vonmises,s,1 
*vput,fun_2(1),elem,1,etab,vonmises 
  
sexp,inv_mises,vonmises,,-1    !store the inverse of SEQV  
smult,TRIAX,meanstress,inv_mises   !multiply the hydrostatic 
stress by the inverse of SEQV  
  
smult,J3_step1,dev1,dev2 
smult,J3,J3_step1,dev3    !third deviatoric invariant 
 
!formula with von mises 
sexp,inv_seqv_3,seqv,,-3 
smult,final,J3,inv_seqv_3,27/2,1 
!formula with J2 for checking  
!sexp,invJ2_3/2,J2,,-3/2 
!smult,final,J3,invJ2_3/2,3*(SQRT(3))/2,1 
  
*del,fun_1 
*dim,fun_1,array,num_e      
*vget,fun_1(1),elem,1,etab,final  !store data to array 
*del,fun_2 
*dim,fun_2,array,num_e 
*vfun,fun_2(1),asin,fun_1(1)   !perform a function on a 
single array parameter 
etable,fun_asin,s,1 
*vput,fun_2(1),elem,1,etab,fun_asin  !save back to etable 
sadd,lode_rad,fun_asin,,-1/3 
sadd,lode_deg,lode_rad,,180/PI 
sadd,reference,lode_rad,,,,PI/6  !shifting the reference for 
normalized Lode angle in shear=0 
sadd,NORMLODE,reference,,-6/PI,,1   
  
sexp,lab1,NORMLODE,,2 
sadd,lab2,lab1,,,,3 
*del,fun_3  
*dim,fun_3,array,num_e  
*vget,fun_3(1),elem,1,etab,lab2  
*del,fun_4  
*dim,fun_4,array,num_e 
*vfun,fun_4(1),sqrt,fun_3(1) 
etable,lab3,s,1 
*vput,fun_4(1),elem,1,etab,lab3   
sexp,lab4,lab3,,-1 
smult,lab5,lab4,,2 
sexp,lab6,lab5,,c1 
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sadd,lab7,TRIAX,,3,,1 
!cut of x value  
*del,etriax1 
*dim,etriax1,array,num_e  
*vget,etriax1(1),elem,1,etab,lab7 
*del,etriax  
*dim,etriax,array,num_e 
*do,numele,1,num_e 
    current_triax=etriax1(numele) 
    *if,current_triax,ge,0,then 
    new_triax=current_triax 
    *else 
    new_triax=0 
    *endif 
 etriax(numele)=new_triax 
*enddo 
  
etable,lab77,s,1 
*vput,etriax(1),elem,1,etab,lab77 
  
smult,lab8,lab77,,1/2 
sexp,lab9,lab8,,c2 
 
smult,lab10,lab6,lab9 
sexp,lab11,lab10,,-1 
smult,fracture_strain,lab11,,c3 
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APPENDIX C 

Solution algorithm in ANSYS Mechanical APDL for coupled elasto-plastic analysis 
with calculation of strain-based damage variable  

 

/solu  
antype,static                
nlgeom,on     !include large-deflection effects 
outres,all,all  
nsubst,1,1000,1 
neqit,1000 
lnsrch,on 
ncnv,2 
!terminate the analysis, but not the program execution, if the 
solution fails to converge  
 
total_time=1 
time_inc=total_time/num_steps 
 
flagstrain=0 
flagkill=0 
flagendstep=0 
 
esel,all  
*get,nelems,elem,,count  
*del,tot_D 
*dim,tot_D,array,nelems 
*del,tot_eps 
*dim,tot_eps,array,nelems 
 
*get,twall_before_solve,active,0,time,wall 
  
*do,step_no,1,num_steps 
 csys,15 !local CS system fits to the CS of DIC  
  
 time,step_no*time_inc 
 current_time=step_no/num_steps 
  
 !apply real DIC displacement to top nodes  
 cmsel,s,top_nodes 
 current_node=0 
 *do,i,1,n_top_nodes  
 current_node=ndnext(current_node) 
 current_locX=nx(current_node) 
 Xdispl_DIC%i%=(top_nodes_X(current_locX,current_time)) 
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 Ydispl_DIC%i%=-(top_nodes_Y(current_locX,current_time)) 
 d,current_node,ux,Xdispl_DIC%i% 
 d,current_node,uy,Ydispl_DIC%i% 
 *enddo  
 !apply real DIC displacement to down nodes  
 cmsel,s,down_nodes  
 current_node=0 
 *do,i,1,n_down_nodes  
 current_node=ndnext(current_node) 
 current_locX=nx(current_node) 
 Xdispl_DIC%i%=(bottom_nodes_X(current_locX,current_time)) 
 Ydispl_DIC%i%=-(bottom_nodes_Y(current_locX,current_time)) 
 d,current_node,ux,Xdispl_DIC%i% 
 d,current_node,uy,Ydispl_DIC%i% 
 *enddo  
 
 allsel 
 solve 
 finish 
 
 *get,convergence_ind,active,0,solu,cnvg  
 *if,convergence_ind,eq,0,then 
  *get,n_lstep,active,0,solu,ncmls 
  end_step=n_lstep 
 *endif  
 *if,convergence_ind,eq,0,exit  
  
 /post1  
 set,step_no 
 esel,all  
 etable,plstrain,nl,epeq   !eqv.pl strain   
   
 esel,s,etab,plstrain,,0 
 esel,inve 
 cm,selems,elem  
 *get,num_selems,elem,0,count 
  
 *del,selems 
 *dim,selems,array,nelems 
 
 cmsel,s,selems 
 *vget,selems(1),elem,1,esel,1 
  
 *del,epeq_strain 
 *dim,epeq_strain,array,nelems  
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 *vmask,selems(1) 
 *vget,epeq_strain(1),elem,1,etab,plstrain  
 *vscfun,maxstrain,max,epeq_strain(1) 
  
 !store the load step when yield condition is fullfilled 
 *if,maxstrain,gt,0,and,flagstrain,eq,0,then   
  *get,pl_step,active,0,set,lstp     
  flagstrain=1  
 *endif  
 
 *if,flagstrain,eq,1,then 
 esel,all  
  
 !increment of the equivalent strain  
 *if,step_no,eq,pl_step,then 
 etable,dE,nl,epeq  
 *else  !step_no > pl_step  
 set,step_no-1 
 etable,pl_prev,nl,epeq  
 sadd,dE,plstrain,pl_prev,1,-1 
 *endif  
  
 set,step_no  
 *del,dE 
 *dim,dE,array,nelems      
 *vget,dE(1),elem,1,etab,dE 
  
 !compute the fracture_strain for current stress state  
 /input,LOUmodel,inp  
 sexp,inv_fstrain,fracture_strain,,-1 
 *del,fracture_strain 
 *dim,fracture_strain,array,nelems 
 *vget,fracture_strain(1),elem,1,etab,fracture_strain 
  
 smult,dD,dE,inv_fstrain  
 *del,dD 
 *dim,dD,array,nelems  
 *vget,dD(1),elem,1,etab,dD  

!damage for current step, always overwritten 
 
 *voper,tot_D(1),tot_D(1),add,dD(1) 
 etable,tot_D,s,1 
 *vput,tot_D(1),elem,1,etab,tot_D 
 *vscfun,maxD,max,tot_D(1) 
 
 !save the number of final step when D=1 is reached  
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 *if,maxD,ge,1,and,flagendstep,eq,0,then   
  *get,end_step,active,0,set,lstp   
  flagendstep=1  
 *endif  
  
 *if,maxD,ge,1,exit  
 !exits the current do loop if condition is fullfilled  
  
 esel,all  
 !checking the strains 
 *voper,tot_eps(1),tot_eps(1),add,dE(1) 
 etable,tot_eps,s,1 
 *vput,tot_eps(1),elem,1,etab,tot_eps  
 
 *del,current_EPS 
 *dim,current_EPS,array,nelems  
 
 *vget,current_EPS(1),elem,1,etab,tot_eps 
 *vscfun,maxEPS,max,current_EPS(1) 
 *vscfun,maxEPSelem,lmax,current_EPS(1) 
 
 !select the elemens with damage increment > 0 
 esel,s,etab,dD,,0     
 esel,inve  
 cm,delems,elem  
 *get,num_delems,elem,0,count 
  
 *del,delems 
 *dim,delems,array,nelems 
 cmsel,s,delems 
 *vget,delems(1),elem,1,esel,1 
  
 *del,current_D 
 *dim,current_D,array,nelems  
  
 *vmask,delems(1) 
 *vget,current_D(1),elem,1,etab,tot_D  
 *vscfun,maxD,max,current_D(1) 
 *vscfun,maxDelem,lmax,current_D(1) 
  
 esel,s,etab,tot_D,1 
 *get,num_kill_elems,elem,0,count 
 *if,num_kill_elems,gt,0,then 
 cm,elems-to-kill,elem      
 *endif  
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 !load step when first elems are killed 
 *if,num_kill_elems,gt,0,and,flagkill,eq,0,then   
  *get,kill_step,active,0,set,lstp 
  flagkill=1  
 *endif 
  
 allsel  
 cmwrite,elemcomps,txt 
  
 esel,all  
  
 !undamaged material response according to Voce hardening 
 esel,all 
 etable,plstrain,nl,epeq  
 smult,lab1,plstrain,,-b0  
 *del,fun1 
 *dim,fun1,array,nelems 
 *vget,fun1(1),elem,1,etab,lab1 
 *del,fun2 
 *dim,fun2,array,nelems 
 *vfun,fun2(1),exp,fun1(1) 
 etable,lab2,s,1 
 *vput,fun2(1),elem,1,etab,lab2  
 sadd,lab3,lab2,,-1,,1 
 *if,R0,eq,0,then 
 sadd,voce,lab3,,Rinf,,sig0 
 *else 
 sadd,voce,plstrain,lab3,R0,Rinf,sig0 
 *endif  
   
 /input,anand_regularization,inp 
  
 *del,current_voce 
 *dim,current_voce,array,nelems  
 *vmask,delems(1) 
 *vget,current_voce(1),elem,1,etab,voce  
  
 *del,current_dep 
 *dim,current_dep,array,nelems  
 *vmask,delems(1) 
 *vget,current_dep(1),elem,1,etab,dep  
  
 parsav,all  
 finish 
      
 /solu  
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 antype,,rest  
 parres,new  
 /input,elemcomps,txt 
  
 *if,num_delems,gt,0,then 
  
 cmsel,s,delems  
 current_elem=0 
 *do,ii,1,num_delems 
   
  current_elem=elnext(current_elem) 
   
  Dfun=1-current_D(current_elem) 
  sigma_voce=current_voce(current_elem) 
  eps_ep=current_dep(current_elem) 
   
  newyield=max(Dfun*(sigma_voce+L_parm*eps_ep),0.1*sig0)  
  newmodulus=max(Dfun*young_modulus,0.1*young_modulus) 
 
  mp,ex,%ii%+10,newmodulus    
  mp,nuxy,%ii%+10,nu 
  tb,biso,%ii%+10  
  tbdata,1,newyield,0  
  mpchg,%ii%+10,current_elem 
   
 *enddo  
 *endif 
  
 *if,num_kill_elems,gt,0,then 
  cmsel,s,elems-to-kill,elem  
  cm,killed_elems%step_no%,elem  
  cmwrite,killed_elems%step_no%,txt  
  ekill,all    
 *endif  
 
 *else 
 /solu 
 antype,,rest  
 *endif 
*enddo  
 
*get,twall_after_solve,active,0,time,wall 
 
solution_time=twall_after_solve-twall_before_solve 


