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Kurzfassung

Bei der Umformung metallischer Proben hat deren Temperatur maßgeblichen Einfluss auf den
Umformprozess und die sich einstellenden Eigenschaften. Die Probentemperatur im Werkzeug
kann jedoch kaum direkt durch physische Sensoren gemessen werden, was auch deren Regelung
erschwert.

Sensorlose Temperaturregelung mithilfe virtueller Sensoren ist eine Lösung für dieses Problem
und zusätzlich aufgrund der geringen Kosten und einfachen Anpassung sehr attraktiv für Umform-
prozesse. Die zur Modellierung eines virtuellen Sensors benötigten Input-Output-Daten stehen zu-
dem oft bereits aus Finite-Elemente Simulationen zur Verfügung. Diese weisen insbesondere mit
variablen Zeitinkrementen große Kosten- und Zeitersparnisse gegenüber realen, mit Experimenten
verbundenen Messungen auf.

Das Ziel dieser Masterarbeit ist es, eine sensorlose Temperaturregelung für einen speziellen Um-
formprozess zu entwickeln, welche auf einem virtuellen Sensor zur Abschätzung der Probentem-
peratur basieren soll und so die Notwendigkeit einer direkten, physischen Messung eliminiert. Der
virtuelle Sensor soll durch ein dynamisches Modell verwirklicht werden. Zur Modellierung stehen
Input-Output Temperaturdaten mit ungleichmäßigen Sampling-Intervallen aus Finite-Elemente
Simulationen der Probe zur Verfügung, zur Validierung gleichmäßige abgetaste Messdaten.

Die zentralen Forschungsfragen sind die Modellierung von Systemen auf Basis von Input-Output-
Daten mit variablen Sampling-Intervallen und die Entwicklung einer geeigneten sensorlosen
Regelung der Probentemperatur für einen Umform-Prüfstand. Um diese zu erfüllen, wurde eine
Methodik zur Modellbildung aus der Literatur abgeleitet und eine Methode zur Systemidentifika-
tion mit Global Least Squares numerisch realisiert und angewandt. Als Regler wurden PID und
Model Predictive Control evaluiert, die Umsetzung erfolgte mittels PID-Regelung. Die Ergebnisse
wurden simuliert und experimentell validiert.

Eine sensorlose Temperatursteuerung wurde erfolgreich an dem Equal Channel Angular Press-
ing (ECAP) Prüfstand am Lehrstuhl für Umformtechnik der Montanuniversität Leoben zur An-
wendung gebracht. Der Einsatz der Systemidentifikation mit Global Least Squares hat sich bei
Modellen in Zustandsraumdarstellung mit definierter Struktur sowohl für Input-Output-Daten mit
gleichmäßigen als auch ungleichmäßigen Abtastintervallen bewährt. Mithilfe der entwickelten
Steuerung konnte die Aufheizzeit am Prüfstand auf 30% der im Betrieb ohne Steuerung benötigten
Zeit reduziert werden. Eine finale, konstant bleibende Sollwertabweichung von kleiner 1% wurde
ebenfalls durch die Steuerung ermöglicht, wogegen im Betrieb ohne Steuerung die Probentemper-
atur nur für 100 - 150 s konstant gehalten werden konnte und mit weitaus größeren Abweichungen
zu rechnen war.
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Abstract

In metal forming, the specimen temperature has a decisive influence on the forming process and
the resulting material properties. However, the specimen temperature within the tool can scarcely
be measured directly by physical sensors, which also makes temperature control difficult.

Sensorless temperature control by means of virtual sensors is a solution to this problem and also
very attractive for forming processes due to its low cost and possibilities of easy adaptation. The
input-output data required for modelling a virtual sensor are also often already available from sim-
ulations in Finite Element Analysis software. These provide great cost and time savings compared
to measurements conducted on real experiments, especially if variable time increments are used in
the simulation.

The goal of this thesis is to develop a sensorless temperature control system for a special forming
process, which is to be based on a virtual sensor to estimate the specimen temperature and thus
eliminate the need for a direct, physical measurement. The virtual sensor is to be implemented
using a dynamic model. Input-output temperature data with uneven sampling intervals from finite
element simulations of the specimen are available for modelling, and uniformly sampled measure-
ment data for validation.

The central research questions include the modelling of systems on the basis of input-output data
with variable sampling intervals and the development of a suitable sensorless control system of
the specimen temperature for the test bed. In order to fulfil these, a methodology for model con-
struction was derived from literature and the global least squares system identification method was
numerically implemented and applied. PID and model predictive control were evaluated for the
control system and the implementation was carried out using a PID controller. The results were
simulated and validated experimentally.

A sensorless temperature open-loop control system was successfully implemented at the Equal
Channel Angular Pressing (ECAP) test bed at the Chair of Metal Forming at the Montanuniversität
Leoben. The use of the global least squares system identification method for parameter estimation
has proven suitable for models in state-space representation with a defined structure by utilising
input-output data with uniform as well as non-uniform sampling intervals. As a result of the de-
veloped control system, the heating-up time on the test bed could be reduced to 30% of the time
required in operation without the control system. A final, constant set point deviation of less than
1% was also made possible by the control system, whereas in operation without the control system
the specimen temperature could only be kept constant for 100 - 150 s and much larger set point
deviations were to be expected.
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Chapter 1

Introduction

This chapter highlights the motivation for this thesis and gives an overview of the topics covered as
well as their state of the art. The goals of this work are defined and its structure briefly explained.

1.1 Motivation

The control of specimen temperature plays a major role in the Equal Channel Angular Pressing
(ECAP) test bed. High specimen temperatures generated by an array of heating elements enable
forming experiments with high-tensile alloys by increasing material ductility, as at room temper-
ature, the specimen would tear or the required forming forces would exceed the limits of the test
bed. In addition, the availability of precise temperature control allows the investigation into op-
timal process parameters. However, the placement of a physical sensor within the specimen for
in-process temperature measurement necessary for control is not feasible.

A sensorless control approach requires a virtual sensor, which is based on suitable dynamic models
derived from observed system behaviour. As the installation of an internal temperature sensor
damages the specimen and prevents the conduction of the process, conventional measurement is
a unsustainable approach of system observation. Equivalent information to measurement can be
gained by means of Finite Element Analysis (FEA), in which a specific simulation is conducted
for each experimental setup in regards to specimen material, temperature and geometry. However,
the generation of simulation data for one experiment configuration takes several hours if fixed time
increments are used in the FEA simulation. In contrast, utilizing variable time intervals allows a
full simulation of the Equal Channel Angular Pressing process well within sixty minutes.

The motivation of this thesis is to create a specimen temperature control system for the ECAP test
bed which avoids the unfeasible use of physical sensors and is highly adaptable to changing experi-
ment configurations. This sensorless control is based on a dynamic model acting as a virtual sensor.
Non-uniformly spaced FEA simulation data is used for modelling to allow model adaptation to a
wide range of experiment configurations with minimal time and cost of data collection.

1
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1.2 Literature Review

Virtual Sensors and Sensorless Control

Technological progress, decreasing sensor unit costs and increased connectivity increase the spread
and complexity of the Internet of Things (IoT) and cyber-physical systems (CPS) [1, p. 315]. The
data captured and fed to the connected information system is either directly observed by a physical
sensor or indirectly derived by virtual sensors which fuse data from one or more physical sensors
[1, p. 315].

The use of physical sensors is usually subject to a number of limitations, which was studied in-
depth in [2]. First of all, applying sensors is cost-intensive, especially as their numbers increase [1,
p. 317]. Purchasing the sensors and maintaining them creates costs as well as their physical process
integration, which at the same time increases the complexity and the operating cost of the system
[3, p. 1]. Another limitation of physical sensors is the fact that due to spatial or environmental con-
ditions, their use is not feasible in some situations and in many industrial processes, some process
outputs required for monitoring and control cannot be measured by a sensor at all [4, p. 1714, 1,
p. 317]. Reasons are access requirements for measurement and maintenance, disturbances on the
process by the sensor or harshness of the environment [5, p. 2801, 3, p. 2]. Physical sensors also
require frequent, offline calibration to ensure accurate measurements, which is often unpractical
[3, pp. 1–2, 6, p. 3560]. They can be prone to failure during calibration due to many factors as well
as be subject to miscalibration, in both of which they need to be repaired or replaced [3, pp. 1–2, 6,
p. 3560]. At last, sensor signals can be noisy and interfere with each other as well as lose accuracy
over time due to a multitude of reasons [1, p. 317].

Due to those limitations and especially because some process parameters cannot be measured at all,
soft sensors became widely popular over the last three decades [5, p. 2801]. A soft sensor, or virtual
sensor, is a means to estimate process parameters in miscellaneous applications if a physical sensor
is either unavailable or unsuitable to directly measure the sought parameters [5, p. 2801]. These
sensors are often used in real-time process monitoring and diagnostics, modelling and control, as
well as for detecting or estimating faults [5, p. 2801]. According to [7, p. 2], they can be divided into
two categories. First, model-based virtual sensors are often implemented through system modelling
and data validation and use available measurements for calculations. Second, data-driven virtual
sensors use historical measurement data or detailed estimation for their calculations [7, p. 2]. In
either case, dynamic models often play an integral part in virtual sensing as they enable the indirect
determination of quantities that are not directly measurable [8, p. 3]. For the purpose of creating a
virtual sensor, model and modelling method should be as simple as possible to achieve the desired
performance, robustness and realise the model maintenance with minimum time and cost [2, p. 17].
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The advantages of virtual sensors include the lower cost of software compared to hardware for
initial investment and maintenance [1, p. 317]. They are a valid alternative if spatial conditions
or a hostile environment do not allow for a physical sensor and may compensate the resulting
delay or inaccuracy of a physical sensor in a sub-optimal spot as well as reduce signal noise [1,
p. 317]. Drifts due to wear or pollution in physical sensors leading to inaccuracy over time can be
recognised or compensated and finally, virtual sensors can be redesigned as required and are thus
more flexible in comparison to mechanically installed physical sensors [1, p. 317].

Virtual or soft sensors and corresponding sensorless control techniques have found applications
in many fields and industries [5, p. 2801]. The need for virtual sensing of temperature inspired
many solutions: A sensorless temperature measurement technique based on an artificial neural net-
work for the purpose of predicting temperature otherwise unfeasible to measure in battery cells is
proposed in [6]. As the measurement of the temperature of slabs in reheating furnaces is equally
difficult, but important for process parameter monitoring, reference [9] addresses a soft sensor as
a means to slab temperature estimation. The soft sensing of die melt temperature in polymer ex-
trusion processes, in which physical sensors cannot be placed, with data-based dynamic models is
the focus of [5], while reference [10] addresses sensorless temperature estimation to realise a ther-
mal management system for lithium-ion battery cells in contrast to an external temperature sensor
placed on the battery case surface. A similar approach for monitoring greenhouse temperature is
found in [7]. Finally, reference [11] introduces a method of estimating the amount of heat inflow
without using a heat flow sensor. Special interest in sensorless control can be found in electric drive
technologies. An overview of the expanding application of sensorless AC motor drives and control
strategies is given in [12]. For wind technologies, sensorless control approaches were developed in
[13] and [14], which utilise sensorless control to eliminate the direct measurement of wind speed.

System Identification in Non-Uniformly Sampled Systems

Uniform and single-rate sampling of variables has been a standard assumption in system identi-
fication, which implies that sensors are delivering measurements synchronously and at the same
constant rate [15, p. 314]. However, it is often difficult to obtain equidistant sampled data for sys-
tem identification purposes, especially in areas where measurement can not be controlled or uni-
form sampling is practically impossible [15, p. 13]. This is further elaborated in [15, p. 314]: Data
sampled in non-uniform intervals occurs often if it is recorded by means of manual sampling or
if the process involves time-consuming, unprojectable laboratory analysis. Another reason can be
missing elements in measurement data, which are commonly caused by sensor breakdowns, off-
range measurements, data-acquisition failures, blackouts or transmission interruption. In robust
data analysis, outliers are often discarded or treated as missing, leading to missing values even
when a uniform sampling rate is utilised [15, p. 314]. According to [16, p. 1], non-uniform sam-
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pling becomes more interesting and beneficial with low activity signals like temperature, pressure
or speech, which are characterised by evolving smoothly or sporadically. These signals remain
constant most of the time and then vary significantly during a short period of time. As uniform
sampling takes samples even without signal changes, many redundant and useless samples are
recorded, especially if the Shannon theorem is utilised, resulting in an artificial increase in the
computational load [16, p. 1].

Per definition, non-uniform data consists of data sets in which input and output signals are sampled
at irregular intervals, while the time instants of the sampling are the same, meaning that the data
is available at synchronous points [15, p. 324]. For these non-uniformly sampled data systems, a
discrete-time linear, time-invariant model is not applicable due to the violation of the assumption
of a uniformly sampled environment required for the existence of a corresponding discrete-time
model [15, p. 13]. In contrast, continuous-time identification methods can handle the uneven sam-
pling problem provided that appropriate numerical methods are applied [15, pp. 314–315]. This
is because the coefficients of continuous-time models are assumed to be independent of the sam-
pling rate [15, p. 13]. Although interpolation between available sampled data is a commonly used
approach for identification purposes, the utilised interpolations are generally univariate and ignore
the multivariate dynamic behaviour of the process [17, p. 2]. This can result in sub-optimal models
as well as untrustworthy predictions [17, p. 2].

In the field of continuous-time system identification, miscellaneous methods utilising non-uniformly
sampled data have been proposed. Based on autoregressive models, estimating continuous time
models from irregularly observed discrete-time data was the focus of [18] and [19]. Maximum
likelihood and expectation maximisation approaches were proposed in [17] for the identification
of chemical processes with irregularly sampled outputs as well as in [20], where an expectation
maximisation algorithm to identify continuous-time state-space models from non-uniformly fast-
sampled data is presented. The maximum likelihood method was also used to identify continuous
time state-space models from non-uniform, but small sampling periods in [20]. There is also a
selection of specialised approaches available. In [21], the unique reconstruction of a continuous-
time system from its non-uniformly sampled discrete-time model is discussed. An algorithm for
identifying low-order models based noisy, non-uniformly sampled data and a-priori information is
presented in reference [22]. The development of a lifted state-space model and its transformation
into a discrete transfer function is presented in [23], in which the parameter estimation is conducted
using an auxiliary-model-based recursive least-squares algorithm. Finally, reference [24] made use
of the simplified refined instrumental variable method, which allows the numerical simulation and
solution in the MATLAB™Continuous-Time System Identification toolbox by iteratively using an
auxiliary model.
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1.3 Goals

The main goal of this thesis is to develop a sensorless control system to regulate the temperature
of the test specimen within the Equal Channel Angular Pressing test bed at the Chair of Metal
Forming at the Montanuniversität Leoben. To that end, the following objectives are to be achieved:

1. Research and utilisation of procedures and methods to derive dynamic models of the sys-
tems required for the sensorless specimen temperature control system and application of the
global least squares system identification method for model parameter estimation based on
non-uniformly sampled input-output data.

2. Investigation into different controller types as well as the design and simulation of a control
system able to regulate the specimen temperature in a way that satisfies the requirements of the
Chair of Metal Forming.

3. Implementation of the proposed sensorless control system at the Equal Channel Angular Press-
ing test bed and experimental validation of the simulation results.

1.4 Thesis Overview

Chapter 2 provides a detailed description of the Equal Channel Angular Pressing test bed and
its elements as well as experiment requirements and procedure, for which the sensorless control
system is developed. In Chapter 3, dynamic systems, models for dynamic systems as well as their
characteristics, representations and mathematical descriptions are introduced. The construction of
models of dynamic systems as well as procedures of model parameter estimation are the focus of
Chapter 4. In Chapter 5, PID and model predictive control are introduced as control strategies for
the specimen temperature control. Chapter 6 includes the derivation of suitable models and control
design for the test bed as well as the implementation and experimental validation of the control
system. Finally, Chapter 7 provides a summary of the results, the scientific contributions of this
thesis and an outlook on future work.



Chapter 2

Process Description

This chapter gives an overview of the test bed concerned in this thesis as well as experiment
specifications and requirements for the sensorless control approach.

2.1 The Equal Channel Angular Pressing (ECAP) Test Bed

The Equal Channel Angular Pressing (ECAP) test bed, shown in Figure 2.1, is used to manufacture
ultra fine grained (UFG) material using a modified equal channel angular pressing process. The test
specimen is pressed around the corner in a tool consisting of two intersecting channels (Figure 2.2).
In this setup the specimen is mainly subject to simple shear, not to be confused with pure shear,
during the forming process. The shape of the test specimen does not change when pressed through

Fig. 2.1: Equal channel angular pressing test bed
©2021 Chair of Metal Forming

Fig. 2.2: Specimen in forming tool after angular
pressing ©2021 Chair of Metal Forming

the tool due to its geometry. This means that individual samples can pass several times through
the tool. There is an accumulation of strains, and due to the simple shear, cell blocks are formed
from dislocations. Because of the different slip planes and the predetermined shear direction, the

6
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difference in orientation between the cell blocks increases. Given a sufficiently high deformation,
i.e. a high enough number of passes of a specimen through the tool, an ultra fine grained (UFG)
material structure is formed. The resulting ultra fine grained structures have average grain sizes
d in the range of d = 100nm to d = 1000nm, resulting in a major influence on the mechanical,
physical and chemical properties of the material. The greatest benefit of the ultra fine grained
material however is the increase of strength of the material. Pure metals achieve an improvement in
strength of up to 800 %, while alloys achieve values of up to 50 % in improvement when compared
to their coarse-grained counterparts. As the flow stress is heavily dependent on the temperature,
this process is only possible for difficult to form alloys by utilising the test bed’s heating system. By
heating the specimen, the necessary force can be reduced. The increased temperature also improves
the the ductility of the material. Some alloys that the Chair of Metal Forming wants to investigate
cannot even be processed at the test bed at room temperature, because they begin to crack during
the forming process, making a heating system necessary. In addition to those two major factors,
the heating system allows for the investigation of ideal process parameters.

2.2 Overview of the Specimen Heating System

The specimen heating system consists of six heating elements surrounding the specimen (Figure
2.3, Pos. 1) and can be separated into two halves. Three heating elements are placed on the upper
side of the specimen receiver, the remaining elements on the lower side, as shown in Figure 2.3.
The top half of the heating circuit is noticeably closer to the specimen than the bottom half. The
temperatures of the top middle heating element (Figure 2.3, Pos. 2) and the bottom middle heating
element (Figure 2.3, Position 3) can be accessed from the internal programmable logic controller
(PLC) of the test bed. The temperature of the four outer elements surrounding the middle elements
on the upper and lower half (Figure 2.3, Position 4) can only be modified manually.

Fig. 2.3: Half-section view of the metal forming system ©2021 Chair of Metal Forming
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2.3 Requirement Analysis

The goal of the temperature control system is to reach a homogeneous temperature throughout
the specimen. A different set temperature is required from the upper and lower half of the heating
system, due to the different distance to the specimen. The main elements to be controlled by the
internal controller are the middle heating elements and the upper and lower half, whereas the top
middle heating element should follow the set temperature of the bottom middle upper element
with a specified fixed temperature difference to keep a homogenous temperature throughout the
specimen. The four remaining heating elements are modified manually during the experiment by
the staff of the Chair of Metal Forming. The specimen should thus be seen as a thermal system
with a single input (temperature of one of the controllable heating elements) and a single output
(specimen temperature). Table 2.1 shows all test bed experiment requirements and specifications.

Table 2.1: Experiment requirements and specifications ©2021 Chair of Metal Forming

Requirement Value Comment

Specimen temperature
range for pressing

100 °C . . . 200 °C A maximum of up to 250 °C could be the
case in future experiments.

Specimen steady-state
temperature tolerance

±2.5% The main requirement for the modelling and
control is staying within the tolerance of the
set temperature in steady-state.

Specimen temperature
transient response

As quick as possible The specimen temperature should be
reached as quick as possible for maximum
productivity as well as the suppression of
temperature induced effects in the alloys.

Specimen material Aluminum alloys Different aluminum alloys are used, but all
of them have insignificant differences in
their thermal behaviour.

Maximum specimen
heating time

800 s The maximum available time for heating up
the specimen in the test bed.

Specimen pressing time 120 s Approximate length of the pressing process.

Specimen cooling No cooling available As there is no cooling system, attention
should be paid to a time and energy efficient
heating curve.

Disturbances None There are no external disturbances
influencing specimen temperature.

Maximum heating
element temperature

500 °C Heating element temperature should not
exceed 400 °C to prevent any damage.



Chapter 3

Dynamic Systems and Models

This chapter gives an introduction to dynamic systems, the methods and possibilities to represent
or describe them mathematically, their characteristics and the concept of models.

3.1 Introduction to Dynamic Systems

A system is defined as any collection of interacting elements, which exhibit cause-and-effect rela-
tionships between their variables [25, p. 1]. In dynamic systems, the variables are time-dependent,
which means that they depend either or both of the initial conditions of the system and its pre-
vious inputs [25, p. 2, 26, p. 1]. Many already studied relationships as well as newly discovered
phenomenons in technical and non-technical areas of scientific significance can be characterised
as dynamic systems [8, p. V]. According to Isermann et al. [27], the mutually effected entities in a
dynamic system can also be called processes. The further definition of a process is then a conver-
sion, transport or both, of material, energy or information as well as combinations of those. Also, it
can consist of multiple, independent sub-processes. The behaviour of a system is hence defined by
that of its processes [27, p. 1]. A system is often represented by a so-called black box, showing the
input and output variables, but no relationship between them yet [25, p. 4]. An example is shown in
Figure 3.1. Technical systems can be usually characterised by three different variables [28, p. 34]:

Fig. 3.1: Black box representation of a system
[25, p. 4]

Fig. 3.2: General system representation with
inputs, state variables and outputs [25, p. 5]

9
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• Input variables u

A system features one or several inputs, each representing a function of time [25, p. 5]. Some
typical examples for system inputs include a force applied to a mass, a voltage source powering
an electrical circuit and a heat source applied to a tank containing liquid [25, p. 5]. Inputs are
denoted by u1,u2, . . . ,um for a total number of m inputs.

• Output variables y

Outputs are system variables which are to be calculated or measured [25, p. 5]. Typical outputs
are the velocity of a mass, voltage across a resistor or the temperature of a liquid inside a tank
[25, p. 5]. Outputs are designated by y1,y2, . . . ,yp for a total number of p inputs. In a system,
there is always a cause-and-effect relationship between the outputs and the inputs [25, p. 5].

• State variables x

According to Close et al. [25], a system can also be described by a set of state variables that may
include one or more of the outputs (Figure 3.2). With knowledge of the state variables’ values
at any reference time t0 and knowledge of the inputs for all t ≥ t0, it is possible to determine the
outputs and state variables for all t ≥ t0. However, the state variables must be chosen in a way
that fulfils this condition. The state variables must also be independent, meaning that one state
variable cannot be represented as an algebraic function of the others [25, p. 5]. State variables
are denoted by x1(t),x2(t), . . . ,xn(t) for a total number of n state variables.

Systems with only one input variable and one output variable are called single-variable systems
or single-input, single-output (SISO) systems [29, p. 3]. Systems with several input variables and
one or more output variables are referred to as multi-variable systems or multiple-input, multiple-
output (MIMO) systems, if at least one output is dependent on multiple inputs [29, p. 3, 30, pp. 31–
32]. A system is also a multi-variable system, if it possesses only one input, but several outputs
[30, pp. 31–32].

3.2 System Identification and Modelling of Dynamic Systems

When interacting with a system, an observer usually needs an idea on how the output signals re-
late to the input signals. This assumed relationship between the variables is called a model of the
system [31, p. 6]. Although there are mental and graphical models available for easily comprehen-
sible relationships like driving a car, where the actions of the driver ensue a response of the car,
models that describe the relationships between the system variables as mathematical expressions
like differential or difference equations are usually required for more advanced applications [31,
p. 6]. These mathematical models, or simply models for short, represent a description of a system
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in terms of equations [25, p. 2]. They can be further characterised by the properties signifying the
type of differential or difference equation used [31, p. 6].

3.2.1 Construction of Models

There are two general routes available for creating a model of an observed dynamic system [31,
p. 7, 8, p. 5]. Firstly, there is the theoretical procedure, also known as theoretical modelling [27,
p. 3]. Here, the observed system is split up into subsystems with properties that are well understood
physically and can be described easily mathematically [8, p. 5]. The whole system is then created
by joining all the subsystems [31, p. 7]. The second route is the experimental procedure, which is
known as experimental analysis or identification [27, p. 3]. Here, input and output signals from the
system are recorded and analysed to derive a fitting model [31, p. 7].

3.2.2 Verification of Models

After creation, the process of making a model reliable, valid and accurate often proves difficult,
which is further elaborated by Ljung et al. [32]: Confidence in the model can only be obtained by
the process of verification or validation of the model in comparison to the real system, in which the
difference between model and system behaviour has to be analysed. A model is also characterised
by a specific domain of validity, corresponding to a predefined demanded accuracy and the limits
of system variables and parameters. As an example, the typical linearised model of a pendulum is
only valid for small angles [32, p. 17].

3.2.3 Purpose of Models

The construction a model of a dynamic system usually aims to provide a better understanding of
the cause-and-effect principle observed in the system [8, p. 4]. For this purpose, the best possi-
ble correspondence in relation to the actual system behaviour is sought, meaning that the model
should contain all essential properties of the observed system [8, p. 1]. However, the applications
of dynamic models are very diverse, as can be shown by examples in two relevant fields presented
in [8, pp. 2–3]:

• Models in control engineering

In control engineering, models of the controlled system are an integral part of all model-based
controller design methods (e.g. methods for designing optimal, predictive and adaptive con-
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trollers). The determination of state variables by means of an observer or a Kalman filter is also
based on the use of system models.

• Models in measurement technology

Dynamic models are often an integral part of intelligent or virtual sensors as they can enable
the indirect determination of quantities that are otherwise not directly measurable.

3.3 Classification of Models and Systems

Mathematical models derived for specific systems usually have varying characteristics, which de-
pend on the observed systems as well as on the used methods [32, p. 19]. In this section, the
definitions in respect to system also apply to models.

3.3.1 Linear and Nonlinear

The most general separation is between linear and nonlinear systems [8, p. 7]. In a dynamic system

y(t) = T [u(t)] , (3.1)

the link between the input u(t) and the output y(t) is represented by an operator T , so that for
every real input u(t) exist a real output y(t) [30, p. 22]. A system is then linear if and only if the
superposition principle

p

∑
i=1

ciyi(t) = T

[
m

∑
i=1

ciui(t)

]
(3.2)

applies to any linear combination of inputs ui(t) with real constants ci while using the operator T .
If the superposition principle is not fulfilled, then the system is nonlinear [30, pp. 23–24].

3.3.2 Time-Variant and Time-Invariant

Systems can be separated into the categories time-variant and time-invariant. If the system param-
eters are time-dependent, the model is called time-variant [28, p. 18]. If the system parameters
are constant regardless of the point in time, the system is called time-invariant [28, p. 18]. One
important case occurs if the system is time-invariant as well as linear: These types of system are
then called linear time-invariant (LTI) systems [28, p. 18]. Utilising the operator T from Equation
3.1, a time-invariant system can be expressed by
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y(t− t0) = T [u(t− t0)] , (3.3)

which shows that a time shift t0 of the input results in the same time shift of the output without
distorting it [30, p. 29].

3.3.3 Lumped and Distributed Parameters

Systems can be classified as lumped or distributed parameter systems, with definitions provided
by Ljung et al. [32] and Unbehauen [30]. A system can be thought of as composed by a finite
number of idealised individual elements. In that case, the events are described by a finite number
of changing variables and the corresponding systems are called systems with lumped parameters.
They are expressed by ordinary differential equations. If a system possesses an infinite number of
infinitely small individual elements, then it represents a system with distributed parameters. Such
systems are expressed mathematically by partial differential equations [30, p. 28, 32, p. 21].

3.3.4 Continuous Time and Discrete Time

In continuous time systems, every occurring signal is a continuous function of time, meaning that
every signal is assigned a unique value at each time value in an observed time interval [33, p. 101].
A system is called a discrete time system, if at least one discrete time signal occurs in the system,
a discrete time signal being produced when a signal is only measured (sampled) at certain time
points [33, p. 101]. Continuous time systems are often described by differential equations, while
discrete time systems are typically expressed by difference equations [32, p. 20]. The choice of
representing a model in either continuous time or discrete time domain usually depends on the
context and the use of the model, as described in [32]: If the model is created on basis of the
laws of nature, a time continuous representation is often easier due to the availability of suitable
mathematical expressions. For a model created based on measurement values, the discrete time
representation is the obvious choice as the data is available in discrete time form [32, p. 71].

Sampling

When a digital computer or controller is used for processing data, continuous measurements are
converted into digital form by an analogue-to-digital (A/D) converter which samples the signal, i.e.
measures it at specified time instances [34, p. 300]. The time interval between successive samples
is called the sampling period ∆ t, which corresponds to the sampling rate fs = 1/∆ t [34, p. 300].
In Figure 3.3, the value of y(t) is sampled at equal intervals of time ∆ t, so that y(t) is described
by a sampled signal y∗(t) shown in Figure 3.4 consisting of a series of impulses: [35, p. 2]
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y(0),y(∆ t),y(2∆ t),y(3∆ t), . . . ,y(k∆ t), . . . (3.4)

It can be seen from Equation 3.4 that by sampling only a limited description of the continuous
time function y(t) is retained [35, p. 2]. For instance, the value of y(t) between the sampling times
is not available, so a certain amount of information hast been lost in the process [35, p. 2]. While
the intermediate values of y(t) can be interpolated with reasonable accuracy for well-behaved
functions, it holds in general true that the shorter the sampling interval, the better correspondence
between continuous time and discrete time model is achieved [32, p. 75, 35, p. 2].

Fig. 3.3: Continuous signal y(t) and sampling
intervals ∆ t [34, p. 301]

Fig. 3.4: Resulting sampled signal y∗(t) [34,
p. 301]

After processing, a digital-to-analogue (D/A) converter is used for transforming a series of pulses
from the digital computer or controller back into a continuous signal [34, p. 300]. The D/A con-
verter usually also contains a zero-order hold (ZOH) to convert the digital signal into a staircase
function, i.e. the output signal from the zero-order hold is held constant for one sampling period
until the next sampling instant [34, p. 300].

Aliasing

The sampling rate must be fast enough to not lose significant process information. As an example
provided by [34], if a sinusoidal signal is sampled at a rate of 4/3 samples per period, the recon-
structed signal appears as a sinusoid with a much longer period than the original signal. This is
known as aliasing [34, p. 302]. According to the Shannon theorem, the oscillation of the highest
frequency must be sampled at least twice per period to recover the original signal, meaning the
sampling frequency must be at least twice the frequency of the sine wave [36, p. 30, 34, p. 302].
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Analogue and Digital Systems

It is important to note the difference between the concept of continuous time and analogue signals
as well as the difference between discrete time and digital signals, as they are often confused.
Definitions are provided by Lathi [37]: The terms analogue and digital qualify the nature of the
signal amplitude. While the amplitude of an analogue signal can take on any value in a continuous
range, the amplitude of a digital signal can only assume a finite number of values. In contrast, the
concepts of continuous time and discrete time qualify the nature of a signal along the time axis
[37, p. 78].

3.3.5 Order

A system described by an ordinary differential equation of order n is called a system or process of
order n and can be represented by

f (t) = a0 x+a1
dx
dt

+a2
d2x
dt2 + . . .+an

dnx
dtn (3.5)

[38, p. 29]. It is important to note that an ordinary differential equation of order n is equivalent to
a set of n first order ordinary differential equations [38, p. 29].

3.4 Description and Analysis in the Frequency Domain

In this section, the Laplace transform and its use in obtaining the response of dynamic systems
expressed by linear, time-invariant differential equations is presented [26, p. 247]. In addition, the
z-transform is introduced as a tool of discrete time system analysis [34, p. 307].

3.4.1 Laplace Transform

The Laplace transform is an elegant mathematical procedure for solving linear or linearised dif-
ferential equations and serves as a definite reversible correlation of an original function in time
domain and a corresponding function in in the domain of a complex variable [30, p. 51, 26, p. 247,
38, p. 29]. Its importance especially comes from the fact that it converts an ordinary differential
equation into an algebraic equation, which is much easier to handle and manipulate [26, p. 247].
In control engineering, the Laplace transform is used for the creation of simple continuous in-
put–output models, thus enabling the investigation of the influence of external variables on the
observed process [38, p. 29].
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Due to the superposition property of linear time-invariant systems, their response can be found by
breaking the input into several components and then summing up the system response from all the
separate parts [37, p. 330]. In frequency domain analysis, the input is broken up into exponentials
of the form est , where the parameter s is the complex frequency of the signal est [37, p. 330]. The
Laplace transform of a function f (t) to the complex function F(s) is then

L { f (t)}= F(s) =
∫

∞

0
f (t)e−stdt, (3.6)

while the inverse operation is called inverse Laplace transform and converts the complex function
F(s) into the time domain function f (t) [26, pp. 247–248],

L −1 {F(s)}= f (t). (3.7)

To compute the inverse Laplace transform of F(s), it is usually helpful to expand F(s) to a sum of
simple rational fractions and subject each of them separately to the inverse transform [38, p. 31].

3.4.2 z-Transform

The z-transform method of analysis of discrete time systems parallels the Laplace transform
method of analysis of continuous time systems, with some minor differences [37, p. 488]. Just
like the Laplace transform converts differential into algebraic equations, the z-transforms changes
difference equations into algebraic ones, thus simplifying their analysis [37, p. 488].

An ideal, periodic sampler converts a continuous signal f (t) into a discrete signal f ∗(t) at k equally
spaced intervals of time Ts. It is mathematically convenient to consider impulse sampling, where
f ∗(t) is the sampled signal formed by a series of impulses or Dirac delta functions based on the
value of f (t) at each sampling instant: [34, pp. 308–309, 33, p. 107]

f ∗(t) = f (t)
∞

∑
k=0

δ (t− kTs) =
∞

∑
k=0

f (kTs)δ (t− kTs) (3.8)

The application of the Laplace transform on Equation 3.8 yields [33, p. 107]

F∗(s) = L { f ∗(t)}=
∞

∑
k=0

f (kTs)e−kTss. (3.9)

In the next step, defining the z-transform variable as z := eT s and substituting it into Equation 3.9
results in the z-transform

Z { f (kTs)}= Fz(z) =
∞

∑
k=0

f (kTs)z−k (3.10)
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of f (k) [33, p. 109]. The inverse transformation is denoted by Z −1,

f ∗(t) = { f (kTs)}= Z −1{F(z)}. (3.11)

However, the conversion from z-transform F(z) to the continuous function f (t) is not unique, as
explained in [38]. As F(z) is the z-transform of the continuous function f ∗(t) obtained by a sam-
pler with period Ts and the zero-order holder of the function f (t). The resulting information loss
between two sampling instants prohibits the reconstruction of f (t). Nevertheless, there are sev-
eral methods available for obtaining { f (kTs)}. In addition to numerical computation, the residual
method, polynomial division or the expansion as a sum of rational fractions are valid options [38,
p. 383].

Approximated z-Transform

Although the determination of an exact z-transfer function for the discrete representation of a con-
tinuous system is only possible for a few forms of the input signal, a discrete system representation
also exists for an arbitrary input [33, p. 126]. These representations however can only apply ap-
proximately, which is why it is referred to as an approximated z-transfer function from as the result
of an approximated z- transformation [33, p. 126].

1. Euler approximation

By making use of the Euler method [33, p. 104], a difference equation describing the observed
continuous model is derived. This difference equation is then be easily subjected to z-transform
and results in [33, p. 127]

s≈ z−1
Tsz

. (3.12)

2. Tustin approximation

A more precise approximation is gained by series expansion of ln(z) in s = 1
T ln(z):

s =
2
Ts

[
z−1
z+1

+
1
3

(
z−1
z+1

)3

+
1
5

(
z−1
z+1

)5

+ . . .

]
(3.13)

By stopping after the first term of Equation 3.13, the Tustin-Formula

s≈ 2
Ts

z−1
z+1

(3.14)

is derived, which works well in calculating G(z) from G(s) for small values of Ts [33, p. 127].
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Forward and Backward Shift

As shown in [39], the z-transform creates a power series in z from a given sequence of numbers
f (k). For example, the z-transform of the series f (k) = (1,−1,1,−1, . . .) is

F(z) = 1− z−1 + z−2 + z−3 + . . . , (3.15)

which shows that z−1 signifies a time shift by one sampling interval. Thus, z−1 is denoted as
backward shift-operator while z is called forward shift-operator [39, pp. 501, 502].

3.5 Representation of Dynamic Systems and Models

Although system analysis may involve analytical or numerical methods, the entire system in ques-
tion must be available in some sort of convenient standard format [26, p. 115]. This section intro-
duces some of the most common formats.

3.5.1 Block Diagrams

One of the simplest depictions of a system are block diagrams, in which a system is represented by
one or several different block diagram models, where arrows between the blocks signify interaction
[32, p. 33]. They are logical decompositions of the functions within a system and showcase the
relationship between them [32, p. 33]. While they excel at the logical description of a system, they
usually neglect the physical aspects [32, p. 36]. As an example, Figure 3.5 showcases a simple
block diagram for a system in which the outflow of the tank depends on the inflow. Block diagram

Fig. 3.5: Simple block diagram of a tank [32, p.34]

models usually provide an important starting point when trying to build a mathematical model of
a system and they are particularly useful for structuring systems, especially if it contains many or
more complicated relationships [32, p. 36].
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3.5.2 Transfer Functions

With the transfer function of a system it is possible to directly calculate the system’s output with a
known input value [30, p. 71]. Figure 3.6 shows a dynamic model with a single input u and single
output y. If u(t) and y(t) are representing a linear continuous time-invariant system with lumped

Fig. 3.6: Input-output model [34, p. 54]

parameters, the system can be described by an ordinary differential equation

n

∑
i=0

ai
diy(t)

dt i =
m

∑
j=0

b j
d ju(t)

dt j , (3.16)

as long as dead-time is not considered [30, p. 71]. By setting all initial conditions to zero and
applying the Laplace transform on both sides, Equation 3.16 becomes

Y (s)
n

∑
i=0

aisi =U(s)
m

∑
j=0

b js j, (3.17)

which can be put as the ratio of the system output to its input, resulting in the transfer function

G(s) =
Y (s)
U(s)

=
b0 +b1s+ . . .+bmsm

a0 +a1s+ . . .+ansn . (3.18)

of the system. Numerator and denominator of G(s) are rational functions in s, whose coefficients
only depend on the structure and parameters of the system [30, p. 71]. In analogy to the transfer
function G(s) of continuous systems, the discrete transfer function

G(z) =
Y (z)
U(z)

=
b0 +b1z−1 + . . .+bmz−m

a0 +a1z−1 + . . .+anz−n (3.19)

is defined as the quotient of the z-transform of the output and input [39, p. 507, 34, p. 309].

A transfer function is called strictly proper if m < n [40, p. 1]. The system described by such a
transfer function is causal, meaning that the effect does not anticipate the cause [40, p. 1]. As all
physical systems are causal, systems with improper transfer functions are physically unattainable
[30, p. 71, 40, p. 1].
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3.5.3 State-Variable Equations

State variables are one of the standard methods of representing a system and a set of dynamic
variables of a system, which completely define all of its characteristics [26, p. 115]. The state of
a system is the vector of variables necessary for the description of the future behaviour of the
system, if the initial conditions of those variables are known [41, p. 12]. Thus, the state variables
are dynamic variables that add up to the state of the system [26, p. 115]. State variables are usually
denoted by x1,x2,x3, ...,xn where n is the total number of state variables directly corresponding to
the order of the system. The state variable equations are then a set of n differential equations

ẋ1 = f1(x1,x2, ...,xn,u1,u2, ...,um)

ẋ2 = f2(x1,x2, ...,xn,u1,u2, ...,um)

...

ẋn = fn(x1,x2, ...,xn,u1,u2, ...,um)

(3.20)

in which each is the first-order derivative ẋi of the corresponding state variable xi and m inputs [26,
p. 115]. The right-side functions fi can be linear or nonlinear, but they only depend on the input
variables or the state variables [26, p. 116].

3.5.4 State-Space Representation

In case that the mathematical equations describing the system model are linear, all right-side func-
tions fi in Equation 3.20 are linear. That means, that the resulting linear state-variable equations
can be rearranged into a convenient matrix-vector format, which is known as state-space repre-
sentation [26, pp. 116, 119]. In this form, the relationship between input and output signals and
also, potentially disturbance, is specified as a system of first order differential or difference equa-
tions [31, p. 93]. The fact that state-space representation allows for a more easily incorporation of
physical insights into a model makes it especially useful [31, p. 93].

The state-space representation describes a system of n-th order by n differential equations of first
order [28, p. 39]. For arbitrary systems with multiple outputs and inputs the universally valid state
space representation is given by the state equation

ẋ(t) =Ax(t) + Bu(t) (3.21)

and the output equation
y(t) =Cx(t) +Du(t) (3.22)
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[28, p. 41, 26, p. 119]. The state equation represents the system dynamics, meaning that A and B
contain the linear coefficients from the differential equations composing the mathematical model,
while the output equation is an algebraic linear mapping between state and input variables as well
as the outputs [26, p. 121]. The state and output equation consist of the following vector and matrix
definitions that are necessary to enable their complete and compact matrix-vector representation:
[26, p. 121, 28, p. 41]

• x(t) is the n×1 state vector composed of the n state variables xi,
• u(t) the r×1 input vector containing r input variables,
• y(t) the m×1 output vector consisting of m output variables,
• A the state or system matrix with dimensions of n×n,
• B the n× r input matrix,
• C the m×n output matrix and
• D the direct-link matrix.

The state space representation can be applied to discrete systems in the same way as to continuous
systems. Similar to how a linear differential equation of n-th order can be converted into a system of
n first order linear differential equations, a n-th order linear difference equation can be represented
as a system of n first order linear difference equations [33, p. 164]. In matrix notation, the state
space representation for a linear, time-invariant, discrete multivariate system therefore is given by
[33, p. 164]

x(k+1) =Ax(k) + Bu(k) (3.23)

y(k) =Cx(k) +Du(k). (3.24)

From Transfer Function to State-Space Representation and Controllable Canonical Form

For an n-th order system, n states have to be defined. This choice is ambiguous [42, p. 16]. The
deduction of the state representation from a transfer function of a linear, time-invariant system is
therefore of interest, as there exists a multitude of equivalent solutions [33, pp. 34–35]. Given an
arbitrary n-th order transfer function

G(s) =
Y (s)
U(s)

=
b0 +b1s+ ...+bn−1sn−1 +bnsn

a0 +a1s+ ...+an−1sn−1 +ansn (3.25)

of a linear single-input single-output system, which can be standardised in a form that the coeffi-
cient of the highest power an = 1, the procedure of transforming it into a the controllable canonical
form is shown by [33, pp. 22–25]. The transfer function shown in Equation 3.25 is the result of the
Laplace transform of a differential equation of the form
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dny
dtn +an−1

dn−1y
dtn−1 + . . .+a1ẏ+a0y = b0u+b1u̇+ . . .bn

dnu
dtn (3.26)

and in the special case that there are no derivatives of the input u

dny
dtn +an−1

dn−1y
dtn1

+ ...+ayẏ+a0y = b0u. (3.27)

By rearranging Equation 3.27 according to the highest derivative

dny
dtn = b0u−

(
an−1

dn−1y
dtn1

+ ...+ayẏ+a0y
)
, (3.28)

a corresponding block diagram shown in Figure 3.7 can be created. If the outputs of the integrators

Fig. 3.7: Block diagram of the controllable canonical form [42, p. 18, 33, p. 23]

shown in Figure 3.7 are chosen as the states, the state equations directly follow as

ẋ1 = x2

ẋ2 = x3

...

ẋn = u−a0x1−a1x2− ...−an−1xn

(3.29)

and the output of the block diagram is
y = b0 x1. (3.30)

Summing up all state variables xi to the state vector x, the state-space representation is given by



3.5 Representation of Dynamic Systems and Models 23

A=



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

... . . . ...
0 0 0 0 . . . 1
−a0 −a1 −a2 −a3 . . . −an−1,


(3.31) B =



0
0
0
...
0
1,


(3.32)

C =
[

b0 0 0 . . . 0,
]

(3.33) D = 0. (3.34)

The structure A is known as controllable canonical form, which offers the following advantages:
[33, p. 23, 42, p. 21]

• The numerator coefficients of the transfer function appear directly in C
• The denominator coefficients of the transfer function appear directly inA
• InA, only the n elements in the last line are dependent on the system
• The input matrixB is completely independent of the system properties

If this procedure is extended to an arbitrary case

y = b0 x1 +b1 ẋ1 + . . .bn
dnx1

dtn , (3.35)

in which there are derivatives of the input variable u and the first state variable x1 is chosen in a way
that results in Equation 3.35 for y, then the same structure of matrix A is achieved as in Equation
3.31 [33, p. 24]. This is shown by applying the Laplace transform to Equation 3.35, resulting in

Y (s) = X1(s) [b0 +b1s+ . . .+bnsn ] , (3.36)

which can in turn be substituted into Equation 3.25, yielding

X1(s)
U(s)

=
1

a0 +a1s+ . . .+an−1sn−1 + sn . (3.37)

This corresponds exactly to the special case with b0 = 1. The definition of state variables according
to Figure 3.7 is therefore directly applicable and the equations 3.28 are universally valid, i.e. A
andB are unchanged [33, p. 24]. Adding equation 3.35 to Figure 3.7, y for the arbitrary case is
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y = b0x1 +b1x2 + . . .+bn−1xn +bnẋn

= b0x1 +b1x2 + . . .+bn−1xn +bn[u−a0x1− . . .−an−1xn]

= (b0−bna0)x1 +(b1−bna1)x2 + . . .+(bn−1−bnan−1xn +bnu)

(3.38)

and in conclusion, for a single-input single-output system of n-th order

G(s) =
Y (s)
U(s)

=
b0 +b1s+ . . .+bn−1sn−1 +bnsn

a0 +a1s+ . . .+an−1sn−1 + sn , (3.39)

the state-space representation in controllable canonical form is given by: [33, p. 25]

A=



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

... . . . ...
0 0 0 0 . . . 1
−a0 −a1 −a2 −a3 . . . −an−1


(3.40) B =



0
0
0
...
0
1


(3.41)

C =
[
(b0−bna0) (b1−bna1) . . . (bn−1−bnan−1)

]
(3.42) D = bn (3.43)



Chapter 4

Model Construction and Parameter Estimation

This chapter introduces background and procedures to derive suitable models for existing systems.
Methods to identify parameters for determined model structures are also discussed.

4.1 Preliminaries

4.1.1 Modelling and System Identification Procedure

There are two paths available to derive mathematical models of dynamic systems, theoretical mod-
elling and experimental modelling, also termed system identification [27, pp. 1–2, 15, p. 1]. In the-
oretical modelling, the model is obtained by applying methods from calculus to equations derived
from physical laws and in many cases, simplifying assumptions is required to make the mathemat-
ical treatment of a system feasible [27, p. 3]. The characteristics of this approach are given by [43]
as follows. Major advantages of a full theoretical model are reliability and flexibility. However, a
lack of precise knowledge and required assumptions often undermine this approach. In addition,
pure theoretical modelling of systems is in many cases impossible or unattractive, due to their often
extremely complex nature [43, p. 361]. If sufficient experimental or operational data is available,
data-based system identification is an option [15, p. 1]. This approach is suited for any system
and typically results in relatively simple models that describe the system behaviour with accept-
able quality [15, p. 1]. According to [43], a data based model is guided by usefulness rather than
truthfulness. This means it is characterised by a reasonably good input–output relationship within a
certain range, without any exact or meaningful connection. Disadvantages include misleading con-
clusions from missing or faulty data and the fact that extensive validations are necessary for model
viability confirmation [43, p. 361]. Theoretical and experimental models often complement each
other, with knowledge passing from theoretical insights to the experimental results and the other
way around [27, p. 4]. The general system identification procedure for the derivation of data-based
models while incorporating available system knowledge is summed up in Table 4.1.

25
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Table 4.1: General system identification procedure [43, p. 361, 8, p. 56]

Procedure step Description

1. Determine modelling objectives Define the model purpose and its requirements.

2. Gather prior knowledge Collect theoretical understanding and information on
operating conditions, variable ranges and limits and
potential noise or disturbances.

3. Design experiment and gather data Specify any required input signals, measurement settings
and excite the system for the purpose of measuring
sufficiently informative data.

4. Determine a model set Define a general model structure in form of a arbitrary
transfer function, a set of differential equations etc. and
corresponding parameters.

5. Estimate model parameters After input and output measurement data is gathered,
identification takes place via parameter estimation.

5.1. Define a model structure Choose a specific model structure out of the defined
model set to estimate its parameters.

5.2. Define a quality criterion Specify an error or quality functional with which the
quality of the model output can be compared with the
actual system output.

5.3. Choose an estimation method Select an estimation method to determine the model
parameters in terms of the specified quality functional
and calculate the parameters.

5.4. Validate the model structure Test the model structure using verification procedures
and execute the parameter estimation again if necessary.

6. Validate the model Test if the final obtained model meets all requirements
on validation data not used in the model construction.

4.1.2 Continuous Time and Discrete Time System Identification

A known continuous time transfer function is required for many modelling and control design
methods [19, p. 1]. A situation encountered especially often is the identification of such a continu-
ous time model from discrete-time data, a problem for which two approaches exist [18, p. 709]:

1. Direct approach

Direct methods identify continuous time models directly from discrete time data [17, p. 2].
Discrete time approximations are used for signals and operators in the continuous time model,
resulting in an approximate continuous time model with corresponding parameters [18, p. 709].
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2. Indirect approach

Indirect methods first identify discrete time models and then convert them to equivalent con-
tinuous models [17, p. 2]. First, a continuous time model is transformed into an exact discrete-
time model used for identification and then, the desired parameters of the original model are
obtained by transferring the identified discrete time model back to continuous time [18, p. 709].

One disadvantage of the indirect approach is that parameter translation between continuous time
description and discrete time representation as well as vice versa is not trivial [18, p. 709]. There
is no undisputed algorithm for parameter transfer, as problems arise in the system zeros translation
from discrete time to continuous time [19, p. 1]. In addition, indirect approach methods often in-
clude enormous computational complexity and costly minimisation algorithms [18, p. 710]. Thus,
direct approach methods have attracted a lot of interest as of today [18, p. 709]. However, compared
to discrete time model identification, continuous model identification requires a differentiation of
input and output signals, which often enhances the signal noise due to the methods used [17, p. 2].

4.1.3 Well-Known Transfer Elements

A wide range of methods exists for determining the characteristics of a rational transfer function
with or without dead-time directly from the measured step response of the system [30, p. 307]. For
example, one of those is the method of Thal-Larsen [44], which utilises a third order delay model
with dead time [30, p. 307]. The main idea of all procedures lies in approximating a given transfer
function through combining simple and well-known transfer elements, of which a selected amount
are shown in Table 4.2 [8, p. 15].

Table 4.2: Important well-known transfer elements [30, pp. 107–108]

Transfer element Time domain
y(t) =

Transfer function
H(s) =

Proportional (P) KP u(t) KP

Integrating (I)
t
TI

u(t)
1

sTI

Differentiating (D) TDδ (t) sTD

First order delay (PT1) KR

(
1− e−

t
T

)
u(t)

KR

1+ sT

Second order delay (PT2) KR

(
1− T1

T1−T2
e−

t
T1 + T2

T1−T2
e−

t
T2

)
u(t)

KR

(1+ sT1)(1+ sT2)
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4.1.4 Experiment Design for Time Domain Analysis

Bohn and Unbehauen [8] suggest that due to the multitude of models and methods, there exists no
standard experimental procedure for system identification that provides guaranteed results. In any
case however, the sampling rate and measurement duration must be specified before performing
the measurements used for the identification. Also, appropriate input signals must be selected and
generated [8, p. 495].

Input Signal

A series of input signal considerations is presented by Isermann et al. [27]. Signals from normal
operation or special test signals can be utilised. Normal operation signals are suitable, if they excite
the process sufficiently in the range of the interesting dynamics. However, it is usually advanta-
geous to use artificial test signals, whose properties are exactly known and which can be specif-
ically tuned. In any case, the limitations of the process have to be considered, such as maximum
allowable change rate and amplitude of input and output, as well as the maximum measurement
time. The shape of the test signal is limited by the actuator, as it is the bottleneck for the maximum
speed of change and frequency of the input signal. Suitable test signals are defined by exciting the
interesting process eigenvalues continuously and strongly in relation to noise [27, pp. 565–566].
Regarding the shape of the signal, it is important to consider [27, p. 567]:

• The test signal height should be as large as possible.
• High frequencies are excited stronger, as the edge steepness increase.
• Medium to high frequency excitation increases when the pulse width decreases.
• The excitation of low frequencies increases with the broadness of the pulses.

Based on this considerations, pseudo-random binary signals and generalised random binary signals
are well suited for identification and parameter estimation purposes [27, p. 567].

Sampling Rate

For acquiring output data by measuring the values at a series of discrete time points, a suitable
sampling rate has to be defined. The maximum acceptable time interval between the measurement
points of the sampling frequency is given by the Shannon theorem [30, p. 300]. Other than that,
the choice of the sampling rate should mainly depend on: [27, p. 569]

• Application of the discrete time model

The sampling rate should be chosen according to that of the control algorithm, if the model is
subsequently used for digital controller design [27, p. 568].
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• Model fidelity

According to [27], the absolute values of estimated parameters change with the sampling time,
which is critical, as even small absolute errors in the parameters can have a significant impact
on the model. In addition, the resulting model order is reduced if the sample time is chosen too
large [27, pp. 568–569].

• Numerical problems

The result of a sample time chosen too small is a badly conditioned system of equations, as the
difference equations become nearly linearly depended for sampled data values [27, p. 569].

Measurement Time

The general upper limit of the measurement time is the moment in which drift phenomena occur
due to the limited state of stationariness of real systems [30, p. 300]. In addition, more considera-
tions are given in [8]. The quality of the identification results typically increases with the duration
of the measurement. This is because the influence of noise averages out more strongly as the
amount of recorded data increases and any systematic estimation error decreases with the amount
of measurement data used. The absolute lower limit of collected data should not fall below ten
measured data points per estimated parameter [8, p. 508].

4.2 Model Structure Determination

The start of every estimation problem is selecting an eligible model structure, i.e. a parameterised
set of candidate models, in which a suitable model is searched [45, p. 1]. In the case of linear
models

G(s) =
b0 +b1s+ . . .+bnsn

a0 +a1s+ . . .+ansn e−sTt , (4.1)

only the order of the model n and, if applicable, the existing dead time Tt have to be determined to
fully define its mathematical structure [8, pp. 60, 141, 554, 27, pp. 570, 571].

4.2.1 Incorporation of Prior Knowledge

Prior knowledge and physical insight about the system should be utilised when selecting the model
structure, as not to estimate already known information [45, p. 1]. The model structure denomi-
nation is usually colour-coded to indicate the usage of prior knowledge and shown in Table 4.3.
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Table 4.3: Model structures and prior knowledge [45, p. 1]

Term Description

White-box models The creation of a model can be entirely done from physical insight and
prior knowledge.

Grey-box models A limited amount of physical insight is available, but some parameters
have yet to be identified from observed data.

Black-box models Physical insight is neither available or cannot be utilised, but the chosen
model structure is characterised by good flexibility and has been
successfully used in the past.

4.2.2 A Priori Model Order Estimation

Finding or assuming the system order is usually the first step in the identification of linear system
parameters [46, p. 1]. In a priori model order estimation methods, a special data matrix is formed
with the measured input and output signals of the system to be identified for different model orders,
which offers the advantage of enabling an model order approximation before the actual parameter
estimation [8, p. 142].

Determinant Ratio Test (DTR)

The determinant ratio test (DTR) presented in [46] and [47] is based on using a data matrix to
determine the statistical dependency of the system input and output. It is assumed that the signal
noise is equal to zero. First, a 2n̂×1 vector

h(k, n̂) = [u(k−1) ,y(k−1) , . . . ,u(k− n̂) ,y(k− n̂)]T (4.2)

is created, in which n̂ denotes the estimated system order, is created from the sampled system input
and output signals [47, p. 91]. In the next steps, following [8], a 2n̂×2n̂ data matrix

H(n̂) =
1
N

n̂+N

∑
k=n̂+1

h(k, n̂)hT (k, n̂) (4.3)

is computed based on h and evaluated for different orders n̂ = 1,2, . . . , n̂max successively. If the
estimated order n̂ is greater than the actual order n of the system, then n̂−n columns ofH(n̂) turn
linear combinations of the remaining columns and the matrix becomes singular. However, due to
noise, this is not exactly the case and the determinant is therefore not exactly zero [8, p. 142]. If
the determinant ratio

DR(n̂) =
det H(n̂)

det H(n̂+1)
(4.4)
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is computed for the model orders n̂ and n̂+ 1, then the n̂ for which DR(n̂) shows a significant
increase compared to DR(n̂− 1) corresponds most precisely to the actual system order n [47, p.
92]. This behaviour can be observed easily in a logarithmic plot of the determinant ratios [46,
p. 728]. However, the results of the DTR should be viewed as a rough preliminary assessment of
the order and a model structure verification should be executed regardless [8, p. 142].

4.2.3 Assessment of Dead Time in the System

According to the description of dead time systems in Lunze [48], the value of the output y at the
time t depends on the value of the inputu that was a fixed time difference back, which is called
dead-time Tt . The rest of the system relationship applies, i.e. a pure dead time element shifts the
input variable without deforming it. Dead times typically occur when signals are transmitted with
a finite speed of propagation, as in the case of conveyor belts or pipelines [48, p. 118]. Dead time
can be observed directly in the response of a system to a given input, as shown in Figure 4.1.

Fig. 4.1: Response of a dead time system with proportional gain [48, p. 209]

4.2.4 Theoretical Derivation of Thermal Models

Usually, the physical properties of the system are responsible for the system order, namely its total
number of independent energy reservoirs [8, p. 141]. It is therefore often possible to at least ap-
proximately determine the model order by means of a theoretical system identification [47, p. 90].
Based on the remarks in [25], thermal systems are based on the laws of thermodynamics in which
the storage and flow of heat are involved. They are further generally distributed parameter sys-
tems and therefore described by partial rather than ordinary differential equations. However, by
focusing on lumped mathematical models resulting from making approximations where necessary,
linear ordinary differential equations capable of describing the dynamic behaviour sufficiently can
be obtained. The variables used for describing the behaviour of thermal systems are the tempera-
ture T and the heat flow rate q. In addition, for modelling and analysis purposes, the assumption
that all points in a body have the same temperature is sensible [25, p. 369]. The energy balance
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equation for an arbitrary open thermal system with a net rate of heat energy ξ̇ within its boundaries
is

ξ̇ = ∑ ḣin−∑ ḣout +∑qin−∑qout , (4.5)

in which ḣ is the rate of enthalpy, caused by mass transfer across the system boundaries [26,
p. 99]. Following the definitions of [26], in a closed system without mass transfer the rate of
enthalpy change over time is zero. Generally, heat transfer q can occur by conduction, convection
and radiation. The rate of heat transfer

q =
1
R

∆T (4.6)

for conduction and convection is approximately a linear function of the temperature difference ∆T ,
where R is the thermal resistance. If convection and radiation are neglected, the thermal resistance

R =
x

k A
(4.7)

for conduction depends only on the thickness of the material x, its thermal conductivity coefficient
k and the area normal to the heat flow A [26, p. 100]. The relation between the temperature change
in a physical body and the heat stored within it can be described by

ξ̇ =CṪS = McṪS, (4.8)

in which C is the thermal capacitance for a body with mass M and specific heat c [25, p. 370].

4.3 Model Parameter Estimation

After the model structure or set describing a specific system is chosen, the next step is to find
a particular estimate for the model parameters, which best fit the given data [41, p. 498]. The
parameters represent specific details or subsystems in the observed system and without accurate
knowledge, the numerical values usually have to be determined by statistical methods [32, p. 227].

4.3.1 Error-Based Approach

For an exemplary linear model represented by the transfer function

G(s,θ) =
b0 +b1s+b2s2

a0 +a1s+a2s2 , (4.9)

a parameter vector θ containing all parameters of the exemplary linear model can be given by
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θ =
[

a0 a1 a2 b0 b1 b2

]T
(4.10)

[41, p. 496]. Reference [41] then states that assuming that there exists a vector of parameters θ0 for
which the error e between model and system is zero, then θ0 denotes the true value of the system
parameters. If a function of e is defined as the cost function

J(θ) =
N

∑
k=1
eT (k,θ)e(k,θ) (4.11)

of θ, then the parameter vector θ̂ found in the minimum of J(θ) is the best estimate of θ0. However,
to determine a suitable approximation of parameters for a specific model, an idea of goodness of
fit is required. Therefore, as a measure for the error between model and process, there are three
methods available that have been studied extensively [41, pp. 498–499].

Equation Error

In the equation error approach as described in [41], the complete equations of motion are required.
The equation error is then defined as the model deviation from the actual data, as shown in Figure
4.2. A cost function based on the equation error eE is defined, which is then minimised to find the
best fit of parameters. For this method it is necessary to be able to measure all state variables as
well as state derivatives, which is often not realistic due to insufficient sensor systems [41, p. 499].

Fig. 4.2: Equation error block diagram [38, p. 421]

Output Error

In order to avoid knowing all the states and state derivatives, an output error based criterion can
be used [41, p. 500]. The principle of the procedure is shown in Figure 4.3 and is described as
follows in [41]. The estimated parameters are used in model to calculate the model output ym

as a function of θ , while the measured output is a function of the true parameter vector θ0. The
error eO is defined as the difference between the two output values and subject to minimisation
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to achieve the best fitting parameters θ̂ [41, p. 501]. As the output usually is a sensor-measured
quantity, the output error model allows the determination of an unbiased estimate of the system
parameters [49, p. 1]. Output errors also can be quantified with their physical quantity alongside
their corresponding quantified uncertainty [49, p. 1].

Prediction Error

The key idea in prediction error methods is to compute a model such that its prediction error
sequence is as small as possible [50, p. 2]. An output predictor is used instead of a simple model in
comparison to the output error approach, which will then predict the best possible output prediction
based on previous observations within the confines of known structures [41, pp. 501–502]. The
calculation of the prediction error eP is shown in Figure 4.4.

Fig. 4.3: Output error block diagram [41, p. 501] Fig. 4.4: Prediction error block diagram [41,
p. 502]

4.3.2 Estimation Theory for Model Parameters

After defining an error dependent on θ, a performance criterion is specified and used to find the
best estimate θ̂ of the true values θ0 [41, p. 502]. The performance criterion is typically chosen
based on computational difficulties, how hard it is to find θ̂ and how good of a fit the result is
[41, p. 502]. There are many different methods available and for the comparison of performance,
a reasonable criterion is necessary [51, p. 135].

Overview of Methods

Among the criteria most widely used are the least-squares estimate, the best linear unbiased esti-
mate and the maximum likelihood estimate [41, p. 502]. In sampled-data systems with uniformly
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spaced sampling intervals, methods traditionally used also include instrumental variable techniques
and subspace identification [17, p. 1]. Of these methods, the least squares method will be explained
in more detail because it represents the basis for the method proposed in Chapter 4.3.3.

Least Squares Estimation

This section follows the remarks of Åstrom [52]. For a model given by

yi = θ1φ1(xi)+θ2φ2(xi)+ . . .+θnφn(xi)+ ei, (4.12)

in which xi are known values, φi are known functions and θi are the unknown model parameters,
the parameter vector θ containing θ1,θ2, . . . ,θi is to be determined in a way that the error criterion

J(θ) =
N

∑
i=1

e2
i (4.13)

is minimised. For the purpose of minimising J(θ), Equation 4.12 is written by means of a vector
formalism:

y =


y1

y2
...
yi

 , Φ=


φ1(x1) . . . φn(x1)

φ1(x2) . . . φn(x2)
... . . . ...

φ1(xN) . . . φn(xN)

 , e=


e1

e2
...
ei

 , θ =


θ1

θ1
...

θ1

 (4.14)

By utilising this formalism, the model description and cost function can be written as

y =Φθ+e (4.15)

and

J(θ) =
1
2

N

∑
i=1

e2
i = e

Te (4.16)

respectively [52, p. 3]. To minimise the cost function, J(θ) is first expanded to

J(θ) = eTe

= (y−Φθ)T (y−Φθ)

= yTy−yTΦθ−θTΦTy+θTΦTΦTθ

(4.17)

and second, if ΦTΦ is regular, then it holds true that
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eTe=
(
θ−

(
ΦTΦ

)−1
ΦTy

)T
ΦTΦ

(
−
(
ΦTΦ

)−1
ΦTy

)
+yTy−yTΦ(ΦTΦ)−1ΦTy

≥ yTy−yTΦ(ΦTΦ)−1ΦT y,

(4.18)

in which case the equality occurs for

θ =
(
ΦTΦ

)−1
ΦTy, (4.19)

meaning that the vector of estimates θ̂ for the least squares method is [52, pp. 3–4, 27, p. 381]

θ̂ =
(
ΦTΦ

)−1
ΦTy. (4.20)

Weighted Least Squares

A more general method of least squares can be obtained if there is a different weighting for the
individual values, in which case the vector of estimates is

θ̂ =
(
ΦTWΦ

)−1
ΦTWy, (4.21)

where

W =


w11 0 . . . 0
0 w22 . . . 0
...

... . . . ...
0 0 . . . wNN

 (4.22)

represents a diagonal weighting matrix [27, p. 279].

4.3.3 Global Least Squares System Identification for State-Space Models

For the purpose of model parameter estimation in this thesis, a variable projection method for
system identification first proposed in [53] and later adapted in [49] for the identification of models
in state-space-representation called global least squares system identification is utilised. It provides
a best-fit of model parameters based on output error and noisy measurement data, without solving
the system of differential equations [49, p. 1]. The approach is characterized by the following
points:



4.3 Model Parameter Estimation 37

• The method utilises models in state-space representation, which have the advantage of being
nearer to the physical process compared to transfer functions, as the parameter vector corre-
sponds to the physical properties that characterise the system [38, p. 431].

• The estimated parameters will be unbiased if the real system is linear and the measurement
errors follow Gaussian distributions, meaning that the expected value will be identical to the
parameter being estimated [51, p. 136, 49, p. 1].

• If the measurement noise in the input-output data is assumed to be independent and identically
distributed, it can be handled conveniently by the proposed method [49, p. 4].

• It is possible to utilise non-uniformly sampled input-output data as well as uniformly sampled
data. In both cases, the result is the direct identification of the best fitting continuous time model
parameters from discrete time data.

Procedure

The method of global least squares system identification for states-space models proposed in [49]
is summed up in this section. A linear system of differential equations is given in state-space form
as

ẋ(t) =Ax(t)+Bu(t) (4.23)

and measurements ξ providing information about the system behaviour are provided by

ξ(t) =Hx(t)+Gu(t). (4.24)

Equation 4.23 can be discretised by transposition of the state matrix A and the input matrix B as
well as making use of an appropriate differentiation matrixD described in Appendix A.2, resulting
in

Ẋ =DX =XAT +UBT , (4.25)

in which the matrices Ẋ,X and U̇ are defined as

Ẋ =


ẋ1(t0) . . . ẋp(t0)
ẋ1(t1) . . . ẋp(t1)

... . . . ...
ẋ1(t f ) . . . ẋp(t f )

 , X =


x1(t0) . . . xp(t0)
x1(t1) . . . xp(t1)

... . . . ...
x1(t f ) . . . xp(t f )

 , U =


u1(t0) . . . up(t0)
u1(t1) . . . up(t1)

... . . . ...
u1(t f ) . . . up(t f )

 . (4.26)

The system of measurements ξ is discretised correspondingly. Equations 4.23 and 4.24 can be
written in vector form as
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(I⊗D)x= (A⊗In)x+(B⊗In)u (4.27)

and
ξ = (H⊗In)x+(G⊗In)u (4.28)

respectively, in which ⊗ denotes the Kronecker product (Appendix A.1). The definitions of x and
u for Equations 4.27 and 4.28 are given by

x=


x1

x2
...
xp

 with xk =


xk(t0)
xk(t1)

...
xk(t f )

and u=


u1

u2
...
up

 with uk =


uk(t0)
uk(t1)

...
uk(t f )

 . (4.29)

The matrix I is a p× p identity matrix, where p represents the order of the system, while In is a
n×n identity matrix for n data points provided by the input-output data:

I =


1 0 . . . 0

0 1 . . . ...
... . . . . . . 0
0 . . . 0 1

 , In =


1 0 . . . 0

0 1 . . . ...
... . . . . . . 0
0 . . . 0 1

 (4.30)

The matricesA,B,G andH all depend on the system parameters given as a vector Ψ , i.e.:

A=A(ψ), B =B(ψ), H =H(ψ), G=G(ψ) (4.31)

Considering a corruption of the measurements by covariant Gaussian nose, denoted by the covari-
ance matrix Λ and a vector δ containing independent and identically distributed Gaussian random
variables with a unit standard deviation leads to

ξ = (H⊗In)x+(G⊗In)u+Λ
1
2δ (4.32)

as the vector of measured states. Any estimate for the state of the system should minimise the cost
function

ε (x,Ψ) = ‖Λ−
1
2 ((H⊗In)x+(G⊗In)u−ξ)‖2

2, (4.33)

which is a nonlinear weighted least squares problem. The system in question is constrained by the
system of discretised differential equations

((I⊗D)− (A⊗In))x= (B⊗In)u. (4.34)
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By defining a discretised linear differential operator

L(ψ) = (I⊗D)− (A(ψ)⊗In) (4.35)

dependent on the system variables, Equation 4.34 can be written as

Lx= (B⊗In)u. (4.36)

The singular value decomposition (A.3) of L is

L=
pn

∑
j=1

σ ju jv
T
j (4.37)

and therefore, the particular generalised inverse of L, is given by

L− =
pn−p

∑
j=1

1
σ j
v ju

T
j . (4.38)

Thus, the the parametric solution for x is

x=L−(B⊗In)u+ Ṽ β, (4.39)

where
Ṽ =

[
vpn−p+1 . . .vpn−1vpn

]
(4.40)

is a basis for the approximate null space forL. The vector β contains a set of p arbitrary parameters
and substituting β into Equation 4.33 results in

ε(β,ψ) = ‖Λ−
1
2

(
(H⊗In)

(
L− (B⊗In)u+ Ṽ β

)
+(G⊗In)u−ξ

)
‖2

2, (4.41)

which means that the cost function is now a function of the system parameters Ψ and the arbitrary
parameters β [49, p. 3]. The arbitrary parameters should be determined in a way that the cost
function is minimised, which the definition

β =
(

Λ
− 1

2 (H⊗In)Ṽ
)+
Λ−

1
2
(
ξ− (H⊗In)L− (B⊗In)u− (G⊗In)u

)
(4.42)

fulfils. By substituting Equation 4.42 back into the cost function in Equation 4.41, the resulting
cost function

ε(ψ) = ‖PΛ−1/2 (((H⊗In)L− (B⊗In)− (G⊗In)
)
u−ξ

)
‖2

2 (4.43)
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is only dependent on the system parameters ψ. The projection matrix

P = I−Λ1/2(H⊗In)Ṽ
(
Λ1/2(H⊗In)Ṽ

)+
(4.44)

is a function of the unknown system parameters, which is why this procedure is known as the
variable projection method [49, pp. 2–3]. Summed up, the cost function for the identification pro-
cedure can be reduced to a function of the system parameters by taking advantage of the linearity
of the system of differential equations [49, p. 3]. Any nonlinear optimisation method is suited to
minimise the resulting cost function [49, p. 3].

4.4 Model Verification

4.4.1 Structure

Methods for model structure verification are used to determine the smallest possible model order
in a way that the essential system properties can be described with sufficient accuracy by the
corresponding mathematical model [8, p. 141].

Error Function Test

The error function test presented in [8] and [47] is based on the deviation between the calculated
output ŷ and the measured output y

ε(k,n) = y(k)− ŷ(k,n), (4.45)

for which a quadratic cost function

I(n) =
1
2

N

∑
k=n

ε
2(k,n) (4.46)

is calculated for different model orders n. The final and best estimated order of the model has
been reached, when the value of the cost function does not continue to decrease significantly after
raising the model order [8, pp. 144–145, 47, p. 94].
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4.4.2 Accuracy

The assess the model accuracy, the correspondence of the calculated output from the identified
model with the measured output is observed [8, p. 556]. This can be done graphically and visu-
ally as well as by utilising suitable error measures like the sum of the squared residuals and the
maximum and the minimum value of the residual [8, p. 556]. A basic statistical assessment for the
model can be done by computing the maximum error

S1 = max|ε(k)| (4.47)

and the average error

S2 =

√√√√ 1
N

N

∑
k=1

ε2(k) (4.48)

for N data points for the model and comparing it to a chosen threshold for both [31, p. 511].

4.4.3 Validity

After a suitable model structure and its parameters are identified, the last step is validating the
model. In the validation process, the model is confirmed to describe the system behaviour by test-
ing it on measurement data not used in the model construction [41, p. 481]. In addition, Ljung
[31] states that there is always a certain purpose for the model construction, for example, regu-
lator design, prediction, or simulation. Thus, the most important question of model validation in
practice is that if the best model found within the specified model structure is sufficient to serve its
purpose. The ultimate model validation therefore is the ability of the constructed model to resolve
the original problem statement. If utilising the obtained model solves the intended task, then the
model is valid, regardless of any other formal aspects [31, p. 509].



Chapter 5

Control Design

This chapter gives an introduction to control engineering as well as two suitable control strategies
for the sensorless control approach, PID control and model predictive control.

5.1 Introduction to Control Systems

A control system consists of subsystems and processes, congregated to obtain a desired output
within desired performance boundaries in reaction to a specified input [54, p. 2]. Thus, the sim-
plest form of a control system can be symbolised as in Figure 5.1. Control engineering is defined
as the science of automatically influencing dynamic processes in a specified and targeted manner
[55, p. 844]. Figure 5.2 shows the typical structure of a control circuit and the upcoming funda-

Fig. 5.1: Simple control system [54, p. 2]

mental explanation corresponds to the description found in [55]. The controlled variable y(t) is
supposed to exactly follow a specified trajectory and is measured and compared with the set value
w(t). The difference e(t) = w(t)−y(t) is called the control deviation. The controller computes the
manipulated variable u(t) from the control deviation e(t) in a way that the controlled variable y(t)
follows the set value w(t) in the best possible manner. The disturbance variable z(t) represents
disturbances on the process. The feedback of process variables is characteristic of a control loop
and in the case of the typical control circuit shown in Figure 5.2, the feedback variable is y(t). If
the disturbance z(t) causes a deviation of the controlled variable y(t) from the reference w(t), the
control deviation is unequal zero. This error can be regulated provided a suitable control element is
utilised. Even if the dynamic properties of the process are only known approximately, the control
deviation will be sufficiently small if a suitable control element is used [55, p. 844].

42
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Fig. 5.2: Typical structure of a control circuit [55, p. 844]

5.1.1 Control System Configurations and Components

Control systems can exist in different configurations. These can be considered to be the internal
architecture of the control system in Figure 5.1 [54, p. 6]. Two important configurations are:

• Closed-loop

Closed-loop control systems utilise a constant comparison of the actual and the required value
of the manipulated variable to maintain the value at the required or specified level [56, p. 83].
This is called feedback, which means that information from the output of the control system
is fed back to the input to the system, so that the input can be adapted to the actual system
requirements [56, p. 83]. A closed loop system is shown in Figure 5.2.

• Open-loop

An open-loop control system is characterized by its inability to counterbalance disturbances
adding to the controller output [54, p. 7]. If a manipulated variable is controlled by an initial
set value and no further adjustments to that value are made, the system is called an open-loop
control system [56, p. 83]. No information is fed back to allow a change in the set point for the
manipulated variable, no matter if the operating conditions change and appropriate adjustment
allowing for the adaptation to the disturbance would be required [56, p. 83]. An open-loop
control system is depicted in Figure 5.3.

Fig. 5.3: Open-loop control system [55, p. 844]
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Control System Components

It can be seen from the block schematic of the closed-loop system in Figure 5.2 that three basic
components are required in a closed-loop control circuit:

1. Process

The process is the system in which a variable is being controlled or influenced [56, p. 86]. It is
an arrangement of structures that are related to one another [57, p. 1620]. Part of the process is
usually also an actuator, which converts the manipulated variable to the power level required in
the output of the control system [55, p. 844, 57, p. 1623].

2. Controller

The controller in the circuit carries out the control function and consists of a control unit and an
actuator [57, p. 1622]. The controller provides an output signal to influence the system output
while receiving the error signal as input [56, p. 99]. How the controller reacts to changes in the
error signal is specified by the so-called control laws or control modes [56, p. 99].

3. Comparison element

The controlled variable is recorded by a measuring element, which feeds the data to the com-
parison element [57, p. 1622]. The comparison element is then used to compare the required
value of the controlled variable with the currently measured output value to compute an error
signal [56, p. 85]. If the output equals the required value, there is no error and no control action
is initiated; If not, the error signals is unequal zero and control action commences [56, p. 86].

In addition, there are two paths shown in Figure 5.2, which can be described according to [56].
The forward path leads from the error signal to the output. In the simplest case, the elements on
the forward path are the controller and the process. On the feedback path, a signal related to the
actual condition being achieved is fed back to modify the input signal to a process. Per definition,
feedback is negative when the signal fed back is subtracted from the input, thus negative feedback
is required to control a system [56, p. 87].

5.1.2 Characteristics and Design of Control Systems

The process by which the performance of a control system is first created or later adjusted is called
design [54, p. 9]. For example, if characteristics of the control system like its transient response and
steady-state error are found not to satisfy the required specifications, parameters can be adapted
or additional components added to improve said characteristics in the control design process [54,
p. 9]. For a controlled system showcased in Figure 5.2, the closed-loop transfer function for the set
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value in relation to the output value is defined as

S(s) =
Y (s)
W (s)

=
Gc(s)H(s)

1+Gc(s)H(s)
, (5.1)

if there are no disturbances [48, p. 360]. The response of this system S(s) to a set input highlighting
important control characteristics is then shown in Figure 5.4. According to [30], the rise time Tr

signifies the moment in which 90 % of the set value has been reached. Further, the maximum
overshoot emax occurring at the overshoot time Tmax is defined as the maximum control deviation
after the set value has been reached for the first time. e(t = ∞) is the lasting steady-state error.
Finally, the settling time Tε is the point in time from which on the control deviation is smaller than
a specified limit ε [30, p. 188].

Fig. 5.4: Control system response characteristics [48, p. 355]

The purpose of control systems is to ensure that the closed-loop circuit has desirable dynamic and
steady-state response characteristics [34, p. 200]. Ideally, the following criteria should be satisfied:

1. Stability

The closed-loop control system must be stable [34, p. 200]. That means, it has to react to
finite excitations from the set value or disturbances with a finite output signal [48, p. 354]. If
the control circuit is not excited, it has to return to its idle state as free movement y f ree and
transitional agitation ytrans are required to subside [48, p. 354]:

lim
t→∞

y f ree = 0, lim
t→∞

ytrans = 0 (5.2)

2. Steady-State Error

Any steady-state error for specified types of set values and disturbance signals should be elim-
inated, meaning that the controlled variable should asymptotically follow the set value [48,
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p. 354, 34, p. 200]:
lim
t→∞

(w(t)− y(t)) = 0 (5.3)

If the control circuit is stable and Equation 5.3 is fulfilled, the resulting control deviation van-
ishes when observed in terms of long periods of time [48, p. 355]:

e(t = ∞) = 0 (5.4)

3. Set Value Tracking

Good set value tracking includes rapid and smooth responses to input changes while excessive
control action is avoided [34, p. 200]. Typical characteristics for the dynamic behaviour are
the steepness, amount and time of the first overshoot or the settling time, which are shown in
Figure 5.4 [48, pp. 355–356].

4. Robustness

The control system should be insensitive to changes in process conditions and inaccuracies in
the process model, a property which is known as robustness [34, p. 200, 48, p. 358]. Often,
the controller is designed under consideration of stability, transient response and steady-state
characteristics, while a robustness assessment is performed afterwards [48, p. 358].

5.1.3 Digital Control Systems

In many modern control systems, the controller is a digital computer [54, p. 8]. The advantage of
using a computer is that many circuits can be controlled by the same computer and any adjustments
of the control parameters can be conducted by simple changes in software instead of hardware [54,
p. 8]. Compared to analogue control, information storage is easier, accuracy can be greater and
digital control circuits are less susceptible to noise [56, p. 95]. Following the remarks of [54] for

Fig. 5.5: Digital control [54, p. 709]

the purpose of explaining digital control systems, loops containing computers provide and process
digital signals consisting of a sequence of binary numbers. The signals r, e, f , and c shown in
Figure 5.5 can be either digital or analogue and when both signal types occur, a conversion from
one form to the other is necessary. If plant output c and system input r are analogue signals, then an
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analogue-to-digital converter is required before the digital computer. In case the plant requires an
analogue input f , a digital-to-analogue converter is compulsory [54, pp. 709–710]. The program
executed by a digital controller follows the listed steps below [56, p. 95]:

1. Import the set value and the current measured controlled variable value at the A/D port
2. Compute the error
3. Quantify the necessary controller output
4. Dispatch the controller output signal to the D/A port
5. Await the subsequent sampling point
6. Repeat the listed steps

5.2 PID Control

5.2.1 Introduction to PID Controllers

The PID controller is the most frequently implemented controller because of its simple configura-
tion and easy implementation [58, p. 1]. It provides three principal control actions: [41, p. 66]

• Proportional action (P) provides a change in the manipulated variable relative to the error signal
and is utilised to counter a large amount of error:

u(t) = Kp e(t) (5.5)

• Integral action (I) creates a signal proportional to the time integral of error and is used to reduce
the steady-state or offset error:

u(t) =
Kp

Ti

∫ t

0
e(τ)dτ (5.6)

• Derivative action (D) contributes a signal proportional to the derivative of the error with the
purpose of reducing maximum overshoot:

u(t) = Kp Td ė(t) (5.7)

All of these control actions are summed up to obtain a single control effort

Gc(s) =
U(s)
E(s)

= Kp (1+
1

Ti s
+Td s) = Kp +

Ki

s
+Tds, (5.8)

in which Kp is the proportional gain, Ti =
Kp
Ki

the integral time and Td =
Kd
Kp

the derivative time [30,
p. 124, 41, p. 66].
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5.2.2 PID Design and Tuning

Ziegler Nichols Tuning Method based on Critical Gain

The most popular tuning procedure is known as the Ziegler-Nichols rules [59] for tuning PID
controllers [58, p. 413, 30, p. 206]. These rules were empirically derived from extensive studies
of controller settings [30, p. 206]. Although there are more sophisticated methods available, the
results of Ziegler-Nicholas tuning still prove competitive [58, p. 414].

The process of tuning is documented in [30]. First, the controller present in the control loop is
initially switched to pure proportional control. The proportional gain Kp is then increased incre-
mentally from zero to a critical gain Kcr, at which the output first oscillates in a sustained manner.
Next, the corresponding critical period Pcr of the continuous oscillation is measured [30, p. 207].
Finally, the values of the parameters Kp, Ti and Td are set according to the Ziegler-Nichols rules
shown in Table 5.1. This method can not be applied if the output does not exhibit sustained oscil-
lations for any Kp [60, p. 570].

Table 5.1: Ziegler-Nichols rules for controller tuning based on critical gain [60, p. 571]

Controller Kp Ti Td

P 0.5 Kcr ∞ 0

PI 0.45 Kcr
1

1.2
Pcr 0

PID 0.6 Kcr 0.5 Pcr 0.125 Pcr

Direct Synthesis Method

In the direct synthesis method, the PID controller in a closed-loop control system is designed by
utilising an available process model and a desired closed-loop transfer function [34, p. 201]. The
calculation of the unknown PID controller Gc is done with

Gc =
1
G̃

(
(Y/Ysp)d

1− (Y/Ysp)d

)
, (5.9)

in which (Y/Ysp)d resembles the desired closed-loop transfer function and G̃ the known process
model [34, p. 201]. The tuning parameters are then determined by comparing Gc with the standard
form of the PID controller given by Equation 5.8.
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5.2.3 Cascade Control Systems

Cascade control is based on the utilisation of two controllers in one control system, in which
the first controller output signal is the set value of the second one [56, p. 289]. To achieve this
configuration, the feedback loop of one controller is placed inside the feedback loop of the other
one, as showcased in Figure 5.6. Multiple measurement variables can be used in contrast to a single
loop control circuit, but still, only one control variable is utilised [38, p. 266, 61, p. 392]. Utilising

Fig. 5.6: Cascade control system [61, p. 394]

the definitions of [61], the first controller Gc,1 is called primary or outer-loop controller, while the
second one is the secondary or inner-loop controller. If the inner loop dynamics are very fast, the
secondary controller is easy to tune. If the outer control loop reacts much slower in proportion,
the primary loop can be effectively tuned as if the response of the inner controller is instantaneous
[61, p. 394]. Due to this, cascade control is generally recommended for control of rather slow
processes, which are in turn controlled by a comparatively fast process [62, p. 606]. However,
cascade control results in increased complexity and the requirement of an additional measurement
device and controller [62, p. 607]. As a rule of thumb, the improved performance achieved by using
cascade control justifies the increased investment if the inner loop is at least three times faster than
the outer loop [62, p. 607].

Cascade control systems provide better control performance in comparison to single loop control
due to following reasons: [63, pp. 49, 50]

1. Disturbances acting on the input section of the process are already subject to control by the
inner control loop before they can influence the main controlled variable.

2. Due to the secondary feedback system, the parameter sensitivity in the inner process part is
reduced. As a result, in the initial design of the main controller only parameter changes in the
outer process need to be considered.
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3. The behaviour of the main control variable becomes less inert and therefore swifter, if the inner
control loop enables faster modes than those of the inner process.

Cascade Tuning

Tuning a cascade control system is done in two steps. First, the inner-loop controller Gc,2 is tuned
based on the secondary process Gp,2 [61, p. 464]. Then, the outer-loop controller Gc,1 is tuned
based on the resulting inner-loop closed-loop transfer function [61, p. 464]. Typical tuning methods
for PID cascade control systems include the Ziegler-Nichols method, relay auto-tuning, internal
model control and pole placement, while more sophisticated procedures make use of fuzzy logic,
artificial intelligence or genetic algorithms to identify the optimal PID settings [58, p. 1].

5.3 Model Predictive Control (MPC)

5.3.1 Introduction to Model Predictive Control

References [64, 38, 34] define model predictive control (MPC) as an umbrella term for algorithms,
which compute a sequence of adjustments of a manipulated variable over a future time horizon
by using a reasonably accurate dynamic linear or nonlinear model of the process to be controlled.
The future behaviour of the process is optimised by utilising a quadratic criterion subject to linear
or nonlinear constraints [64, p. 1, 38, p. 632, 34, p. 368]. In model predictive control, an output
variable is usually referred to as controlled variable (CV), an input variable as manipulated variable
(MV) and a measured disturbance as measured disturbance variable (DV) [34, p. 368].

The basic principle of MPC is shown in Figure 5.7 and explained in [61]. An optimisation problem
is solved at each time step k, in which a cost function based on the output predictions over a
prediction horizon of P time steps is minimised by a series of manipulated variables moves over
a control horizon of M moves. Only the first move is implemented. After the implementation of
uk, the outputs are measured at next time step. Since the measured output yk+1 will in general be
different from the model prediction, a correction of the model error is executed. Then again, a new
optimisation problem is solved over a prediction horizon of P steps by adjusting M control moves
[61, p. 681].

The underlying algorithmic principle can also be explained by the block diagram in Figure 5.8
and by utilising the remarks provided by [38]. At each time step k, the residual r(k) of the process
output y(k) and the model output prediction y∗(k) is computed based on past inputs. The trajec-
tories y∗(k) and r(k) are the predicted values of output and residual over the prediction horizon
and are calculated for y∗(k) and r(k). Finally, the corrected trajectory of the future output ŷ(k)
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Fig. 5.7: Principle of model predictive control [34, p. 370]

is calculated and compared with the reference yre f (k) for the calculation of the control deviation
e(k), which is then subjected to the chosen control law [38, p. 638].

Fig. 5.8: Block diagram of model predictive control [38, p. 638]

Model predictive control is an advanced control technique and the most popular method of choice
in process industries, especially for problems of multivariable, constrained or nonlinear nature, in
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which case the PID controller and its proven tuning methods lose their superb efficiency [61,
pp. 680–681, 65, p. 1252]. Also, if a model of the process to be controlled is available, then
advanced control strategies such as model predictive control which utilise said model should be
preferred to simple methods like PID control [65, p. 1252]. MPC offers several advantages: [34,
p. 368, 66, pp. 1–2]

• Constraints on inputs and outputs are systematically considered.
• The calculation of optimal set points coordinates the overall control calculations.
• Multivariable systems can easily be dealt with.
• MPC has intrinsic consideration of dead time.
• Feed forward control is included to compensate for measurable disturbances.

However, the benefits of model predictive control directly depend on the discrepancies between
the real process and the used model and therefore on the model quality [66, p. 2].

5.3.2 Optimisation Problem

The set points for the control calculations are computed from an economic optimisation based
on a linear steady-state model of the process [34, p. 369]. Optimisation targets usually include
minimising a cost function or maximising a profit function [34, p. 369]. The considerable number
of available MPC algorithms propose different cost functions for obtaining the control law and
they also differ in the type of approach for the chosen model as well as the numerical solution
path [30, p. 294, 66, pp. 18–19]. An overview across commercially used model predictive control
algorithms is given in [64]. However, as stated in [66], the common goal of all MPC approaches is
that the future output y on the considered horizon follows a determined reference signal w, while
the control effort ∆u necessary for doing so is penalised simultaneously. The general expression
for such an objective function is

J(N1,N2,M) =
N2

∑
j=N1

δ ( j)[ŷ(t + j | t)−w(t + j)]2 +
M

∑
j=1

λ ( j)[∆u(t + j−1)]2, (5.10)

in which N1 and N2 are the minimum and maximum prediction horizons, M is the control horizon
and the coefficients δ ( j) and λ ( j) are sequences that consider the future behaviour, usually repre-
sented by constant values or exponential sequences. The term ŷ(t + k | t) is the expected value of
y(t + k) with available information at instant time t [66, pp. 18–19]. To obtain the corresponding
values u(t + k | t), it is required to minimise the functional J of Equation 5.10 [66, p. 21]. For that
goal, the predicted output values ŷ(t +k | t) are computed as a function of past values of inputs and
outputs and future control signals by substituting the chosen model into the cost function, which
leads to an expression whose minimisation results in the desired values [66, p. 21].
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5.3.3 MPC Design and Tuning

A number of parameters must be specified in the design of a MPC system:

1. Sampling period TS and model horizon N

It is recommended in [34] to choose the sampling period TS and the model horizon N in a
manner that NTS = tset , where tset is the settling time for the open-loop response. This way, the
model reflects the full effect of an input variation over the time required to reach a steady state.
The model horizon N is typically chosen in a range of 30 6 N 6 120 [34, p. 384].

2. Control horizon M and prediction horizon P

Recommendations for the control and prediction horizon tuning are given by [34]. With an
increasing control horizon M, the controller tends to perform more aggressive actions and the
computational effort is increasing. Typical rules of thumb for the control horizon selection are
5 ≤ M ≤ 20 and N/3 < M < N/2. If required, a different value of M can be specified for
each input. The prediction horizon P is often chosen as P = N +M for the simple reason of
taking the full effect of the last manipulated variable move into account. A decreasing value of
P tends to result in a more aggressive controller. If the settling times of different outputs are
rather dissimilar, it is also possible to choose a different value of P for each output [34, p. 384].

3. Weighting matricesQ andR

In multivariable systems, the optimisation problem can be adapted through prioritising input
and output values with the help of weighting matrices [34, p. 384]. This results in

J(N1,N2,M) = (ŷ−w)TR(ŷ−w)+∆uTQ∆u, (5.11)

in which the output weighting matrices Q and R allow the output and input variables to be
weighted according to their relative importance[34, p. 384]. The variables are weighted indi-
vidually, whereas the most important variables are assigned the largest weights [34, p. 384].

4. Reference Trajectory yre f

The desired future output behaviour in a model predictive control application can be specified
as a set point, high and low limits, a reference trajectory or a funnel [34, p. 380]. The point of
using a reference trajectory is to enable a gradual transition to the desired set point [34, p. 385].
The reference trajectory can be specified in several different ways, for example, with a tuning
factor or by utilising the performance ratio concept, which makes use of the ratio of desired
closed-loop settling time to the open-loop settling time [34, p. 385].



Chapter 6

Implementation at the Equal Channel Angular
Pressing (ECAP) test bed

This chapter guides through the modelling process and control design involved in the creation of a
sensorless control system and presents the simulated and experimental results.

6.1 Model Construction

6.1.1 Approach

Models of the specimen and the heating elements are necessary for a sensorless specimen tem-
perature control strategy. The specimen model is required to accurately compute the specimen
temperature based on the heating element output. The heating element models are required for
control design, as they are characterised by a limited rate in output change that should be consid-
ered. It is assumed that as the six heating element utilised in the test bed are identically constructed
components of the same type and manufacturer, a model derived for one heating element will also
represent all others sufficiently. It is also assumed that the specimen model is a single-input single-
output (SISO) model where one of the two controllable heating elements serves as the input. This
assumption holds true, as the other controllable heating element is simply required to follow the
trajectory of the first with a specified fixed heating temperature difference for temperature homo-
geneity instead of having an independent influence on the specimen temperature, which would
make it a multiple-input single-output (MISO) model. The non-controllable heating elements are
to be treated as non-existent in the modelling process.

The modelling procedure for both components is adapted from the strategy outlined in Section
4.1.1. The resulting process is depicted in Figure 6.1. The method used for parameter estimation
in every case is the global least squares system identification approach described in Section 4.3.3,
which is why the choice of estimation method is not shown in Figure 6.1. Also, heating element
model and specimen model are subject to different quality criteria as a result of their separate
purpose; While the specimen model accuracy is important for the steady-state set temperature cri-

54



6.1 Model Construction 55

terion, the heating element model influences the optimal controller settings. However, the heating
element model should still be sufficiently accurate, as it would be cumbersome to deal with simu-
lated temperature curves that the real heating array at the test bed cannot follow.

Fig. 6.1: Model construction approach
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6.1.2 Experiment Design

Input Signal

The choice of the input signal for the purpose of generating input-output data for the identification
of models for specimen and heating elements is based on the following considerations:

• A stationary temperature response after a long time is sought, to be able to determine the
proportional gain as accurately as possible and observe occurrences of drift phenomena.

• A signal input as steep and high as possible should be utilized, however a heating element
temperature of 400 °C should not be exceeded.

• The excitation of the system with a step response is advantageous, as this type of feedback
allows the easy assessment of time delay and dead time behaviour.

• Heating up and cooling down behaviour of the specimen should be seen in the data, to be able
to prioritize one or the other should different models be required.

• Provoking a well-behaved system response plays a major role, as non-uniform sampling with
potentially high time intervals between recorded data points is utilised.

A response starting with an input step as steep as sensible and a cool down phase at the end of the
experiment was chosen to fulfil the aforementioned requirements. There are also no oscillations
of temperature expected by provoking the system in this way, therefore a well-behaved function
between the sampling points can be expected. As the range for the desired specimen temperature
in experiments is 100°C - 200°C, the experiment to generate the data for modelling was chosen at
the upper boundary of 200°C. This requires a steep heating element input and expectantly excites
all possible thermal effects as the whole temperature range is covered. The bottom middle heating
element was selected as the input actuator, as it has to provide the higher temperature out of the
two controllable heating elements. For the purpose of model validation, data of experiments at the
lower boundary of 100 °C were chosen to cover the whole experiment temperature range in the
modelling procedure.

Measurement Time and Sampling Rate

The measurement time was defined as 1000s, as the maximum duration of the heating up process
is 800s. In addition, the temperature of the specimen did not reach a stationary value even after a
FEA simulation over a time range of 3000s was conducted. This can be credited to the occurrence
of temperature drift phenomena. The sampling intervals could not be selected or altered and are
specified in Table 6.1 and 6.2.
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Output Data

Two sources of input-output data are provided for an experiment at a set specimen temperature of
100°C and 200°C respectively, i.e. a total amount of four data sets is available for the modelling.
In the first source, the input-output data is given by a FEA simulation of the test bed experiments.
This simulation is conducted with adaptive time intervals, which results in non-uniformly spaced
data in regard to the time intervals between the values, but enables a very time efficient FEA
computation. The characteristics of this data source are shown in Table 6.1. In the second source,
measurement data is generated by embedding a temperature sensor in the middle of the specimen.
The measurements were originally recorded for validation purposes of the FEA model and are
sampled uniformly. The characteristics of this source are defined in Table 6.2. As can be seen
in the plots of the two data sources in Figure 6.2 and 6.3, there are differences in the temperature
curves between the FEA simulation and the measurement data of the real process. This is especially
obvious in Figure 6.3. However, the FEA data is vouched for by the Chair of Metal Forming as
their main priority is achieving a homogenous and stationary constant temperature in the specimen.
Both FEA models fulfil this condition, so the deviations in the transient response play a negligible
role and the data is valid.

Table 6.1: Non-uniformly sampled FEA simulation data specification

FEA simulation data characteristics Experiment at 100 °C Experiment at 200 °C

Total data points 120 123
Total time range 0 . . . 962.6 s 0 . . . 986.0 s
Average time interval between data points 8 s 8 s
Minimum time interval between data points 1 s 1 s
Maximum time interval between data points 51.3 s 58.0 s
Initial system ambient temperature 35.25 °C 32.35 °C

Table 6.2: Uniformly sampled measurement data specifications

Measurement data characteristics Experiment at 100 °C Experiment at 200 °C

Total data points 2551 2625
Total time range 0 . . . 1020 s 0 . . . 1050 s
Time interval between data points 0.4 s 0.4 s
Initial system ambient temperature 35.20 °C 32.65 °C
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Fig. 6.2: Available data of the experiment at 100 °C

Fig. 6.3: Available data of the experiment at 200 °C
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6.1.3 Numerical Implementation of the Global Least Squares System
Identification

If it is assumed that the noise in the data provided by the temperature measurement sensors of
the test bed as well as the FEA simulation is independent and identically distributed, then the
covariance is defined by

Λ= σ
2I (6.1)

in a way that it multiplies the cost function by a constant and uniform factor (cf. [49, p. 4]) It can
therefore be omitted, which simplifies Equation 4.43 and Equation 4.44 to

ε(ψ) = ‖P
((
(H⊗In)L− (B⊗In)− (G⊗In)

)
u−ξ

)
‖2

2 (6.2)

and
P = I− (H⊗In) Ṽ

(
(H⊗In) Ṽ

)+
. (6.3)

respectively. Utilising the Equations 4.38, 4.35 and 6.3, the optimal model parameters are identified
by minimising the cost function specified in Equation 6.2. The numerical procedure to provide the
solution in the sense of the method of global least squares system identification was realised in
MATLAB™. A function model ss() was created that calculates the squared error as defined in
Equation 6.2. This function is shown in Listing 6.1. In it, the utilised state-space model is specified
in controllable canonical form, meaning that an = 1 for any model of order n. As strictly proper
transfer functions to describe causal, physical systems are utilised, the requirement bn = 0 holds
true for any model of order n. model ss() includes state-space models of order n = 1 to n = 3,
although higher order models can be added easily.

Listing 6.1: Function model ss.m to compute the squared error in the global least squares system
identification method in MATLAB™

1 function sqErr = model_ss(psi, specimen_temp, heating_temp, t, ...

D_matrix)

2 % Syntax:

3 % sqErr = modelss(psi, specimen_temp, heating_temp, t, D_matrix)

4 %

5 % Description:

6 % This function calculates the squared error for the parameters of

7 % a state-space model given by the psi compared to observed ...

system data based on global least squares system identification

8 %

9 % Inputs:
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10 % psi : Vector of parameter estimates

11 % specimen_temp : n x 1 array of the specimen temperature

12 % heating_temp : n x 1 array of the heating element temperature

13 % t : n x 1 array containing corresponding time ...

values to the specimen

14 % and heating element temperatures

15 % D_matrix : Numerical differentiation matrix

16 %

17 % Outputs:

18 % sqErr : Squared error based on the calculation of the

19 % parameter estimates in comparison to the ...

measurement data

20

21 order = 2; % Predefine the model order

22 n = length(t); % Calculate the number of data points

23 I = eye(order); % Create identity matrix of size order x order

24 In = eye(n); % Create identity matrix of size n x n

25

26 % Define the model parameters based on the given psi

27 % Define the state-space model in controllable canonical form

28 if order == 1

29 a0 = psi(1);

30 b0 = psi(2);

31 b1 = 0;

32

33 A = -a0;

34 B = 1;

35 C = b0 - b1*a0;

36 D = b1;

37 rankDef = 1;

38 elseif order == 2

39 a0 = psi(1);

40 a1 = psi(2);

41 b0 = psi(3);

42 b1 = psi(4);

43 b2 = 0;

44

45 A = [[0 1]; [-a0 -a1]];

46 B = [0 1]';

47 C = [b0 - b2*a0, b1 - b2*a1];

48 D = b2;

49 rankDef = 2;

50 elseif order == 3

51 a0 = psi(1);

52 a1 = psi(2);
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53 a2 = psi(3);

54 b0 = psi(4);

55 b1 = psi(5);

56 b2 = psi(6);

57 b3 = 0;

58

59 A = [[0 1 0]; [0 0 1]; [-a0 -a1 -a2]];

60 B = [0 0 1]';

61 C = [b0 - b3*a0, b1 - b3*a1, b2 - b3*a2];

62 D = b3;

63 rankDef = 3;

64 end

65

66 L = kron( I, D_matrix ) - kron( A, In ); % Calculate the linear ...

operator

67 [U,S,V] = svd( L ); % Compute the full SVD

68

69 % Set up the preliminaries for the parametric solution

70 Sp = diag( 1./diag( S( 1:order*n - rankDef, 1:order*n - rankDef ) ) );

71 L_minus = V( :, 1:order*n - rankDef ) * Sp * U( : ,1:order*n - ...

rankDef )'; % Calculate the particular generalized inverse of L

72 V_tilde = V( :, order*n - rankDef + 1:order*n ); % Calculate basis ...

for the null space in L

73

74 % H and G possess the corresponding structure to C and D

75 H = C;

76 G = D;

77

78 % Calculate the projection matrix

79 P = In - (kron(H, In) * V_tilde) * pinv(kron(H, In) * V_tilde) ;

80

81 % Evaluate the cost function

82 r = P * (kron(H, In) * L_minus * kron(B, In) - kron(G, In)) * ...

heating_temp - P * specimen_temp;

83

84 % Calculate the squared error

85 sqErr = norm( r, 2 )ˆ2;

To solve for the optimal model parameters, the function model ss() is then called by the non-
linear solver fminsearch(), which utilises the Nelder-Mead simplex algorithm. This is shown
in Listing 6.2. The function inputs are a vector of initial model parameters phi 0 for the search
as well as the temperature of the bottom middle heating element heating temperature, the
specimen specimen temperature and their common sampling instants t on an absolute time
axis. Both temperature data arrays were shifted to an initial system ambient temperature of 0°C by
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subtracting the original initial system ambient temperature from every data point. in the course of
data preprocessing. The required numerical differentiation matrix D matrix based on t is created
by the function diffColloc(), which is provided by the toolbox [67]. D matrix is a matrix
of first order derivates and is calculated based on the polynomial interpolation as described in Ap-
pendix A.2. The computation of D matrix is conducted outside of model ss.m to minimise
the time needed for each iteration of the function.

Listing 6.2: Exemplary code to perform the minimum search by utilising fminsearch() and
model ss() for a second order model in MATLAB™

1 % Define starting parameters for the minimum search

2 a0 = 9.091e-5;

3 a1 = 0.02776;

4 b0 = 6.558e-5;

5 b1 = 0.01278;

6

7 % Create a parameter vector

8 psi0 = [a0, a1, b0, b1];

9

10 % Calculate the numerical differentiation matrix

11 D_matrix = diffColloc(t);

12

13 % Set options for the solver

14 options = optimset('TolFun',1e-6, 'TolX', 1e-6, ...

'MaxFunEvals',800*length(psi0), 'MaxIter', 800*length(psi0));

15

16 % Search optimal parameters psiOpt and function value fVal by ...

utilising the Simplex method

17 [psiOpt, fVal] = fminsearch( @model_ss, psi0, options, ...

specimen_temperature, heating_temperature, t, D_matrix);

Several strategies were applied if a problem with the identified cost function minimum occurred,
e.g. if the found parameters led to a inappropriate model, or if no minimum was found by the
nonlinear solver in an acceptable time frame:

• Plot the cost function for models consisting of up to two parameters and to visually assess the
function minimum.

• Validate the physical parameter feasibility, e.g. if a parameter has to be positive or negative.
• Specify different starting values and magnitudes in the initial parameter vector and verifying if

the same solution is reached.
• Keeping some parameters in the model fixed and change others as opposed to try and find all

at the same time, to explore their influence on the cost function minimum.
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• Keep the parameters of a correctly identified lower model order fixed when raising the model
order and identify the additional higher order parameters, then optimize the lower order ones.

• Identify a model with uniformly sampled measurement data with standard methods and use its
parameters as starting values for the identification based on non-uniformly sampled data of the
corresponding experiment.

• Change the solver tolerances and number of maximum iterations.
• Conduct a cross-validation with the MATLAB™ System Identification Toolbox if applicable.

6.1.4 Specimen Model Structure and Candidates Definition

Specimen Model Dead Time Assessment

For the purpose of assessing whether a dead time term is required in the specimen model, the
FEA simulation data of both experiments at respectively 100 °C and 200 °C was evaluated. A
slight ascending slope of the specimen temperature can be recognised between the first rise of the
heating element temperature and the next sampling point, i.e. the smallest possible distance in time
available in the data in both cases. The temperature rise between those two sampling points has
been calculated and visualised in Figure 6.4 for the experiment at 100 °C and 200 °C respectively.
No time shift between input and output is observed. As a result, the dead time is assumed to be
zero and a dead time term is not required for the specimen model structure.

Fig. 6.4: Dead time assessment
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Model Order Estimation by Determinant Ratio Test

The two sets of available FEA simulation data are expected to be relatively free of noise and
therefore suited for the determinant ratio test, if the model to be identified is assumed to be linear.
The determinant ratio was consequently computed with the specimen temperature as output and
the temperature of the bottom middle heating element as input. Figure 6.5 shows that for both
simulations, the most significant change in the logarithmic plot of the determinant ratio is from
system order n = 1 to n = 2. From this result, the specimen model can be expected to be of order
n = 2.

Fig. 6.5: Determinant ratio test for simulation data

Model Order and Structure Estimation by Theoretical Modelling

Theoretical modelling of the specimen was performed by creating a simplified lumped parameter
model for the purpose of gaining further information about the required model order and structure.
In the test bed, the specimen can be assumed to be in direct contact with the receiver, and the re-
ceiver in direct contact with the heating elements. This means that in both cases the transfer of heat
takes place between two bodies with direct physical contact. Thus, the main mechanism of heat
transfer from the heating elements to the specimen is heat conduction and the other mechanisms
can be omitted. Based on this assumptions, a simplified model of the specimen containing all heat
transfers qi and thermal resistances Ri can be created. This is depicted in Figure 6.6, where qOUT

denotes the heat transfer out of the system, which is normal to all areas which are not subject to
heat transfer from the heating elements normal to their surface. On the other hand, qIN denotes
the heat transfer into the system stemming from the upper and lower heating circuits. The thermal
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resistances on the front and back are the same and thus denoted by RF , the side resistances by
RS. Although the area for the upper and lower thermal resistances of the specimen are the same,
they are separated here into RU and RL, due to the respective heating circuits having not the same
distance to the specimen which will probably result in unequal heat transfer from above and be-
low. To build a simple single-input single-output model by utilizing the temperature of the bottom

Fig. 6.6: Overview of the heat flows in the system

middle heating element as input and the homogenous, average specimen temperature in its middle
as output, only the lower half of the system is required for the modelling. This principle is visual-
ized in Figure 6.7. It can be seen that the heat flow emitted by the heating element passes through

Fig. 6.7: Lower half of the heating system

two systems on its way to the specimen temperature measuring point TSPEC: The receiver and the
specimen embedded within it. Although each of them represent a separate transfer function H1(s)
and H2(s), a summary transfer function can be formulated as H(s), which is depicted in Figure
6.8. The first step of deriving H(s) is taken by creating the thermal balance equation
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Fig. 6.8: Consolidated specimen model

CRṪR =
1

RIN,R
(THE,BM−TA)−

1
ROUT,R

(TR−TA), (6.4)

for the system H1 and separating TA as a constant term, leading to

CRṪR =
1

RIN,R
THE,BM−

1
ROUT,R

TR +TA

(
1

ROUT,R
− 1

RIN,R

)
, (6.5)

in which CR is the thermal capacitance of the receiver, TR and ṪR its temperature and correspond-
ing derivative, TA the initial system ambient temperature and THE,BM in heating temperature of the
bottom middle heating element. The variables RIN,R and ROUT,R represent the total thermal resis-
tances in the receiver for leaving or entering heat flows. A similar equation can be formulated for
the system H2 with

CSPECṪSPEC =
1

RIN,SPEC
(TR−TA)−

1
ROUT,SPEC

(TSPEC−TA). (6.6)

and by correspondingly separating TA,

CSPECṪSPEC =
1

RIN,SPEC
TR−

1
ROUT,SPEC

TSPEC +TA

(
1

ROUT,SPEC
− 1

RIN,SPEC

)
. (6.7)

In this case, the index SPEC signifies the thermal properties of the specimen. The initial system am-
bient temperature TA can be eliminated from both equations by setting it to zero. The model should
oscillate around an idle position of zero, and TA can be added later by means of superposition. The
thermal resistances and capacitances are constants which are subject to parameter estimation later.
Thus, they can simply be denoted by Ri and Ci from here on. Applying the Laplace transform on
Equation 6.5 and 6.7 yields

C1 s TR =
1

R1
THE,BM−

1
R2

TR (6.8)
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and
C2 s TSPEC =

1
R3

TR−
1

R4
TSPEC. (6.9)

The substitution of Equation 6.8 into 6.9 to eliminate TR then yields

C2 s TSPEC =

1
R1R3

C1s+
1

R2

THE,BM−
1

R4
TSPEC. (6.10)

The transfer function H(s) is then defined as the ratio of overall system output to input:

H(s) =
TSPEC

THE,BM
=

1
R1R3(

C1s+
1

R2

)(
C2s+

1
R4

) (6.11)

Simplifying all the constant terms in Equation 6.11 to arbitrary constants di results in

H(s) =
TSPEC

THE,BM
=

d1

d2s2 +d3s+d4
=

b0

a0 +a1s+a2s2 , (6.12)

which is a second order system. The expected model structure therefore is a linear model of second
order, which corresponds well with the result of determinant ratio test. Although the simplified
thermal differential equations suggest that b1 = b2 = 0, we will assume that b1 6= 0 and b2 = 0 for
a strictly proper transfer function until confirmed otherwise in the model structure validation.

Specimen Model Structure and Set

The a priori model order determination based on the determinant ratio test and the theoretical
modelling lead to the same result, which is a second order linear model. The requirement that the
model must be time-invariant holds true and as there is no dead time expected,

H(s) =
b0 +b1s+b2s2

a0 +a1s+a2s2 (6.13)

is the suggested model structure of the specimen. However, the adjacent model orders n = 1 and
n = 3 should also be investigated in the parameter estimation to verify the structure. The model
candidates for the specimen therefore are

H(s) =
{

b0 +b1s
a0 +a1s

,
b0 +b1s+b2s2

a0 +a1s+a2s2 ,
b0 +b1s+b2s2 +b3s3

a0 +a1s+a2s2 +a3s3

}
. (6.14)
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6.1.5 Heating Element Model Structure and Candidates Definition

The model for the heating element should emulate the combined behaviour of the internal con-
troller of the test bed and the heating actuator controlled by it as depicted in Figure 6.9.

Fig. 6.9: Consolidated heating element model Fig. 6.10: Assumed relationship between inter-
nal controller and heating element temperature

The relationship between the internal controller input and the heating element temperature is as-
sumed to possess a proportional gain of V = 1, as more information about the controller output is
not required. The temperature response is presumed to be the result of a step input by the internal
controller as shown in Figure 6.10. Using the approach of approximation by well-known transfer
elements due to the typical low-order delay form of the step response seen in Figure 6.10, a cor-
responding delay structure was chosen for modelling the heating element. Thus, the models to be
considered are a first order delay and the adjacent second order delay for verification purposes,
resulting in

G(s) =
{

V
(1+ τ1s)

,
V

(1+ τ1s)(1+ τ2s)

}
(6.15)

as the candidates for the heating element model. The range of input-output data for the parameter
identification of the heating element model is the first constant temperature step marked in Figure
6.9. While the heating element temperature representing the output is available in the provided
data sets, the controller step input is not, so it is simply generated.
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6.1.6 Model Parameter Estimation and Structure Verification

Parameter Estimation based on Non-Uniformly Sampled Data

First, the specimen model was identified by utilising the FEA simulation input-output data. The
transfer functions of first, second and third order of the model set were subjected to the global
least squares system identification process. The results are documented in Table 6.3. A visual
comparison of the computed model output and the FEA simulation data is given in Figure 6.11.
While there is a significant drop in the sum of squared error from n = 1 to n = 2, this is not the case
for n = 3. Therefore, n = 2 should represent the lowest sensible model order and suffice to create a
reasonably accurate specimen model. For the heating element, first order and second order delay

Table 6.3: Specimen models identified from FEA Simulation Data with 122 data points

n = 1 n = 2 n = 3

H(s) =
b0 +b1s
a0 +a1s

b0 +b1s+b2s2

a0 +a1s+a2s2
b0 +b1s+b2s2 +b3s2

a0 +a1s+a2s2 +a3s2

a0 0.0146 7.0375 ·10−6 7.0367 ·10−6

a1 1 0.0196 0.0199
a2 - 1 0.9994
a3 - - 1
b0 0.0102 7.0056 ·10−6 7.0058 ·10−6

b1 0 0.0124 0.0125
b2 - 0 -0.0116
b3 - - 0

1
2 ∑

N
k=n̂ ε2

y (k, n̂) 1278 187 212

models were subjected to parameter estimation on basis of the FEA simulation data. The outcome
is shown in Table 6.4 and in Figure 6.12. Although there is still a notable squared error drop from
n = 1 to n = 2, the small value of τ2 compared to τ1 suggests that this parameter can be omitted.
Thus, n = 1 is chosen until proven otherwise in the model accuracy evaluation.

Table 6.4: Heating element models identified from FEA simulation data with 74 data points

n = 1 n = 2

G(s) =
1

1+ τ1s
1

(1+ τ1s)(1+ τ2s)

τ1 12.56 11.53
τ2 - 1.03

1
2 ∑

N
k=n̂ ε2

y (k, n̂) 528 166
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Fig. 6.11: Specimen models of different order fitted to non-uniformly spaced FEA simulation data
at 200 °C experiment
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Fig. 6.12: Heating element models of different order fitted to non-uniformly spaced FEA simula-
tion data at 200 °C experiment
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Parameter Estimation based on Uniformly Sampled Data

For the purpose of comparing the results of the global least squares system identification performed
on non-uniformly and uniformly sampled data, the procedure was executed again for the same
model candidates, but this time the measurement data was utilised. For the specimen model, the
results are shown in Table 6.5. The computed model output in comparison to the measurement data
is depicted in Figure 6.13. There is a significant drop of the squared error sum from n = 1 to n = 2
and also from n = 2 to n = 3. However, as can be seen in Figure 6.3, the specimen temperature
curve from measurement and FEA simulation data differs, which might explain the suggestion
of a third order model as a better fit. As the squared error is summed over 2399 data points, the
error per individual data point is reasonably small already and the n = 2 curve shows an excellent
steady-state fit. Therefore, n = 2 is chosen for the specimen model and as the lowest sensible order
until proven otherwise by the resulting model accuracy. For the heating element model, the results

Table 6.5: Specimen models identified from measurement data with 2399 data points

n = 1 n = 2 n = 3

H(s) =
b0 +b1s
a0 +a1s

b0 +b1s+b2s2

a0 +a1s+a2s2
b0 +b1s+b2s2 +b3s2

a0 +a1s+a2s2 +a3s2

a0 0.01326 5.931 ·10−5 2.825 ·10−5

a1 1 0.02265 0.00709
a2 - 1 0.23460
a3 - - 1
b0 0.00907 4.318 ·10−5 2.015 ·10−5

b1 0 0.01120 0.00293
b2 - 0 -0.00812
b3 - - 0

1
2 ∑

N
k=n̂ ε2

y (k, n̂) 2.7269 ·104 3137 346

are shown in Table 6.6. There is no significant drop in the squared error sum between n = 1 and
n = 2. In addition, τ2 is negligibly small. Therefore, a model order of n = 1 should suffice.

Table 6.6: Heating element models identified from measurement data with 1439 data points

n = 1 n = 2

G(s) =
1

1+ τ1s
1

(1+ τ1s)(1+ τ2s)

τ1 11.06 10.64
τ2 - 2.92 ·10−10

1
2 ∑

N
k=n̂ ε2

y (k, n̂) 1124 783
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Fig. 6.13: Specimen models of different order fitted to uniformly sampled measurement data at
200 °C experiment
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Fig. 6.14: Heating element models of different order fitted to uniformly sampled measurement data
at 200 °C experiment
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Results of the Parameter Estimation and Structure Verification

Summing up, the model order and therefore structure for the specimen model was identified as
n = 2 and for the heating element as n = 1. Both are primarily the result of the computed summed
squared error and the principle of choosing the lowest sensible model order. In addition, the graph-
ical comparison between the model outputs and the real process was also considered. The priority
for the specimen model is a good fit in steady-state, while its dynamic response is secondary. How-
ever, a squared error criterion is not able to distinguish in which part of the response the largest
error occurs or if there are differing error magnitude trends along the observed trajectory. For ex-
ample, in Figure 6.13 it can be seen that the second order model provides at least the same or an
even better fit to the steady-state temperature zone than the third order model, although the sum
of squared error suggests otherwise. Therefore a visual assessment is absolutely sensible to assess
whether the model fits well in the zones that matter, as was also done in the FEA simulation of the
specimen temperature shown in Figure 6.3. When assessing the heating element model, the rela-
tive magnitudes of τ1 and τ2 also played a role in the model order decision, due to the polynomial
nature of the denominator of the second order delay.
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6.1.7 Model Accuracy Evaluation and Comparison

The accuracy of the identified models consisting of their order and parameters for the experiment
at 200 °C was computed by comparison of the model output with the corresponding measurement
or FEA simulation data. The results are summed up in Table 6.7. The steady-state error criterion

Table 6.7: Model accuracy for the experiment at 200 °C

Model Sampling type
Used data points

Maximum error
S1 = max|ε(k)|

Average error

S2 =
√

1
N ∑

N
k=1 ε2(k)

H(s) =
7.0056 ·10−6 +0.0124s

7.0375 ·10−6 +0.0196s+ s2
Non-uniform

122 4.676 K 1.754 K

H(s) =
4.318 ·10−5 +0.0112s

5.931 ·10−5 +0.02265s+ s2
Uniform

2399 3.078 K 1.617 K

G(s) =
1

1+12.56s
Non-uniform

74 4.940 K 3.779 K

G(s) =
1

1+11.06s
Uniform

1439 4.823 K 1.256 K

of ±2.5 % for the set specimen temperature equals ±5 K for the models at 200 °C. This is satis-
fied by both H(s) models for the maximum and average error not only in a steady state scenario,
but throughout the whole experiment length. Therefore the model order assumption holds true, as
the model accuracy is sufficient. However, it can also be seen that the models which were cre-
ated by identification from the uniformly sampled measurement data possess a superior accuracy.
The results of the identification procedure based on non-uniformly sampled data still prove very
interesting. Although only 5 % of the amount of data points were used compared to the uniform
sampling based identification, the resulting errors appear in very similar value range.

The heating element models are planned to be used only to enable convenient controller design in
the Simulink™ simulation, as they ensure that the possible controller output change rate is never
exceeded. Therefore, they are not subject to the error criteria. However, the error criteria of ±5 K
as well as the assumptions of Section 6.1.5 can be assessed in a simulation of the consolidated
model

S(s) = H(s)G(s) =
4.318 ·10−5 +0.0112s

5.931 ·10−5 +0.02265s+ s2

1
1+11.06s

(6.16)

to get an idea of the heating element accuracy influence for the later control design. The result of
this simulation is depicted in Figure 6.15. The error values are listed in Table 6.8, where it can be
seen that maximum error criterion does not hold true if the whole time frame is observed. This is
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due to a relatively large deviation in the beginning of the heating up process. After 40 s however,
the consolidated model satisfies both error criteria. Considering that the criterion of ±5 K is only
required for a steady-state scenario, the consolidated model and thus, the heating element model
and its identified order also proves sufficient for its purpose.

Fig. 6.15: Consolidated model simulation

Table 6.8: Consolidated model accuracy

Consolidated model
S(s)

Maximum error
S1 = max|ε(k)|

Average error

S2 =
√

1
N ∑

N
k=1 ε2(k)

Total time range 10.959 K 2.1051 K
t > 40s 3.3252 K 0.963 K

Result of the Model Accuracy Evaluation and Comparison

Both identified specimen as well as heating element models were found to satisfy the accuracy
criteria for their purpose. Therefore, no order or structure adjustment is required. However, the
models created from measurement data will be utilised throughout all further steps and the later
validation experiments on the test bed due to two reasons. First, they exhibit a superior accuracy,
which is a major factor due to the goal of achieving the best possible accuracy in the sensorless
control approach. Second, the FEA simulation data only describes the system adequately for a
predefined input and the resulting steady-state temperature. However, this might not hold true for
arbitrary input signals, which favours the measurement data for the model construction.
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6.1.8 Model Validation by Simulation

The model validation was conducted by utilising the identified models to compute the output of
the 100 °C data sets not used in modelling. The resulting accuracy for the validation data is shown
in Table 6.9. The results for the specimen model identified from FEA simulation data are depicted
in Figure 6.16, those for the model derived from measurement data in Figure 6.17. It can be seen
that the model output is slightly higher then the measurements in both cases. This is probably due
to process nonlinearities or thermal effects not considered in the modelling. The results for the
heating element model validation are shown in Figure 6.16 and Figure 6.17 for the identification
based on FEA simulation and measurement data respectively. Both provide an exceptional steady-
state fit to the validation data. The output of the model created from measurement data also follows
the trajectory excellently. In contrast, the model identified from the FEA simulation data deviates
from the trajectory by overshooting it. However, this behaviour can already be observed in the
model construction shown on the left side of Figure 6.16.

Table 6.9: Model accuracy for the validation data at 100 °C

Model Validation data
sampling type

Maximum error
S1 = max|ε(k)|

Average error

S2 =
√

1
N ∑

N
k=1 ε2(k)

H(s) =
7.0056 ·10−6 +0.0124s

7.0375 ·10−6 +0.0196s+ s2
Non-uniform 4.193 K 2.954 K

H(s) =
4.318 ·10−5 +0.0112s

5.931 ·10−5 +0.02265s+ s2
Uniform 3.108 K 1.644 K

G(s) =
1

1+12.56s
Non-uniform 6.249 K 1.267 K

G(s) =
1

1+11.06s
Uniform 4.160 K 0.609 K

The recommendation from the learnings of the validation is to create a separate specimen model
for each experiment temperature. This enables the best possible result, as the temperature shift
found using the specimen model derived for 200 °C on the 100 °C data sets also shifts the com-
puted steady-state temperature. When utilising the criterion of ±2.5 % at 100 °C, the maximum
specimen model error exceeds ±2.5 K in both derived models. Due to the shift-like nature of the
phenomenon, the specimen model structure and accuracy should not be the underlying issue, but
a rather different proportional gain at the lower temperature level. In contrast, the heating element
model has shown a perfectly adequate behaviour for the validation data set. It is therefore suggested
to utilise the same heating element model for all experiments regardless of their set temperature.
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Fig. 6.16: Validation of the FEA simulation data based specimen model

Fig. 6.17: Validation of the measurement data based specimen model
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Fig. 6.18: Validation of the FEA simulation data based heating element model

Fig. 6.19: Validation of the measurement data based heating element model
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6.2 Open-Loop Temperature Control

6.2.1 Concept

The temperature control at the test bed was realised via open-loop control in which a .csv-file
provides the required heating element set temperatures to the internal controller of the test bed.
This set up is shown in Figure 6.20. The .csv-file is generated by means of a closed-loop simulation

Fig. 6.20: Open-loop control principle for the test bed in Simulink™

in Simulink™ as depicted in Figure 6.21, in which the desired specimen temperature and heating
curve characteristics are designed by controller tuning. The .csv-file then provides the required
temperature trajectory for the two controllable heating elements to achieve the designed specimen
response. In Figure 6.21, the initial system ambient temperature is subtracted from the specimen
set value to shift the control starting point to zero as was done in the model construction. The
bottom middle heating element temperature serves as input to the specimen model. The top middle
heating element is not part of the simulation, but its set values are simply computed from the
bottom middle temperature trajectory by subtracting a set difference specified in Table 6.10 for
each data point in the .csv-file, whereas THE,BM is the bottom middle and THE,T M top middle
heating element temperature. The different temperatures are required for temperature homogeneity
in the specimen, the necessary divergence value is provided by the Chair of Metal Forming. The
sampling time in Simulink™ has to be set to Ts = 0.5s, which corresponds to the sampling time of
the internal controller. At the end of the simulation, the series of simulated set temperature values
for the bottom middle heating element as well as the consequential calculated set values for the
top middle heating element are exported as a .csv-file with their corresponding sampling instants.
This file can be imported at the test bed, as long as its structure follows the specifications shown
in Table 6.11. By utilising the generated files for the temperature control, separate models can be
used easily for each experiment. Therefore, the Simulink™ simulations and following validation
experiments at the test bed are done with the most accurate models available, which are those
created by identification from the measurement data. The specimen model used for experiments at
100 °C is
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Fig. 6.21: Closed-loop simulation structure in Simulink™

Table 6.10: Heating temperature differences for specimen temperature homogeneity

Set specimen temperature 100 °C 200 °C

Required temperature difference ∆T = THE,BM−THE,T M 15 K 20 K

Table 6.11: Structure of the .csv-file

Time [s] Heating temperature:
top, middle [°C]

Heating temperature:
bottom, middle [°C]

. . . . . . . . .
6.5 90.23 105.23
7.0 94.39 109.39
7.5 98.38 113.38
. . . . . . . . .

H100(s) =
0.01141s+7.790 ·10−5

s2 +0.02720s+11.28 ·10−5 , (6.17)

which was identified from the measurement data of the experiment at 100 °C by utilising the same
model structure as the already defined specimen model

H200(s) =
0.01120s+4.318 ·10−5

s2 +0.02265s+5.931 ·10−5 , (6.18)

for experiments at 200 °C from Section 6.1.7. The heating element model

G(s) =
1

1+11.06s
(6.19)

is also simply taken from Section 6.1.7 and the same for both experiment temperatures. The pro-
posed open-loop control concept offers the following advantages:

• Adjustment of the specimen temperature control is done easily and handily with the .csv-files.
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• The simulation in Simulink™ enables changes of controller parameters and models very effi-
ciently, which is a major factor due to the experimental environment.

• The compliance of process constraints can be examined before the real experiment in the
Simulink™ simulation, minimizing the risk of constraint transgressions at the test bed.

• No on-line calculations are performed, as it would be the case in closed-loop control, which is
an advantage if complicated models that require large computational effort are utilised.

6.2.2 Control Requirements

The Chair of Metal Forming has specified a tolerance of ±2.5% in the steady-state specimen
temperature. The heating up process should take no longer than 800s. Transient response charac-
teristics take no priority, although the heating process should be as fast as possible. As the four
outer heating elements have to be adjusted manually throughout the whole experiment, the time to
reach target temperature should be approximately 200s to give the staff enough time for adjust-
ments during the heating process. In addition, the heating temperature of each element should not
exceed 400 °C to prevent any damage. Control overshoot is undesirable, as the process of cooling
down takes a long time and the thermal energy spent on the overshoot is wasted.

6.2.3 Controller Choice

As the control design revolves around the controller, the choice of the controller type for the closed-
loop simulation should be made before taking further steps. A model predictive control approach as
depicted in Figure 6.22 was explored due to easily specifiable value and rate constraints for manip-
ulated variables, the effort minimisation in the algorithm to prevent overshoot, multivariable con-
trol and the simple definition of a set value trajectory. However, manipulated variable constraints

Fig. 6.22: Model predictive control closed-loop simulation in Simulink™

are not necessary because all temperatures are simulated and observed in Simulink™ before the
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program execution on the test bed anyway. Multivariable control and trajectory definition are also
not required. Although there are two heating elements to be controlled, the temperature of the top
middle heating element has to follow the reference temperature trajectory of the bottom middle
heating element with a specified temperature difference. This can be achieved better and much
easier by manually tuning a PID control loop as shown in Figure 6.23 for the desired trajectory
of the bottom middle heating element instead of utilising multivariable control. The correspond-
ing top middle heating temperature is then simply calculated from this trajectory. In addition, PID
control is much more approachable and easier to tune with little background knowledge of control
theory in comparison to model predictive control.

Fig. 6.23: PID control closed-loop simulation in Simulink™

The choice of controller therefore resulted in PID control, which is able to satisfy all specified
control requirements while being easy and intuitively to implement and tune at the same time.
Also, programmable PID control is already available at the internal PLC of the test bed, which
possibly enables a future transfer of the open-loop approach to closed-loop temperature control.

6.2.4 Tuning and Simulation

The closed-loop control of the specimen temperature was simulated in Simulink™ for the purpose
of controller tuning and the generation of the required .csv-file for open-loop control. The simula-
tion with a pure P-controller shows that the resulting model does not exhibit sustained oscillation
for any sensible proportional gain Kp, as can be seen in Figure 6.24. This means that the Ziegler-
Nichols tuning method from Section 5.2.2 is not applicable. An alternative tuning procedure is the
direct synthesis method, which is also described in Section 5.2.2. As there are the transfer functions
of the specimen and the heating element available, the consolidated transfer function
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Fig. 6.24: Different magnitudes of proportional gain Kp (Ki = Kd = 0)

Hres(s) = H200(s)G(s) =
1

1+11.06s
0.0112s+4.318 ·10−5

s2 +0.02265s+5.931 ·10−5

=
0.0112s+4.318 ·10−5

11.06s3 +1.251s2 +0.02331s+5.931 ·10−5

(6.20)

for the experiment at 200 °C can be calculated. Equation 6.20 can then expressed with arbitrary
parameters by

G̃(s) = Hres(s) =
b0 +b1s

a0 +a1s+a2s2 +a3s3 (6.21)

for the further mathematical transformations. For easy handling of the numerator dynamics of
Equation 6.21, the desired closed-loop transfer function is chosen as

α =

(
Y

Ysp

)
d
=

b0 +b1s
(λ s+1)2 . (6.22)

The second order delay in the denominator of α is utilised to ensure a strictly proper transfer
function and its dynamics can be easily adjusted with the constant λ . The required PID controller
Gc to achieve the desired closed-loop response is then computed by

Gc(s) =
1

G̃(s)

(
α

(1−α)

)
, (6.23)

in which
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(1−α) = 1− b0 +b1s
(λ s+1)2 =

(λ s+1)2− (b0 +b1s)
(λ s+1)2 . (6.24)

A substitution of Equation 6.24 into 6.23 then results in:

Gc(s) =
a0 +a1s+a2s2 +a3s3

b0 +b1s
b0 +b1s
(λ s+1)2

(λ s+1)2

(λ s+1)2− (b0 +b1s)

=
a0 +a1s+a2s2 +a3s3

(λ s+1)2− (b0 +b1s)
=

a0 +a1s+a2s2 +a3s3

λ 2s2 +(2λ −b1)s+(1−b0)

1
(2λ −b1)

1
(2λ −b1)

=
1

(2λ −b1)

a0 +a1s+a2s2 +a3s3

λ 2s2

(2λ −b1)
+ s+(1−b0)

=
1

(2λ −b1)

a0 +a1s+a2s2 +a3s3

s
1(

λ 2s
(2λ −b1)

+1+
1−b0

s

)

=
a0

(2λ −b1)

(
1+

a1

a0
s+

a2

a0
s2 +

a3

a0
s3
)

s
1(

λ 2s
(2λ −b1)

+1+
1−b0

s

)
a1

a0

a1

a0

=
a1

(2λ −b1)

(
1+

a1

a0
s+

a2

a0
s2 +

a3

a0
s3
)

a1

a0
s

1(
λ 2s

(2λ −b1)
+1+

1−b0

s

)

(6.25)

The standard transfer function of a PID controller is given by

Gc,PID(s) = Kp
τiτds2 + τis+1

τis
, (6.26)

which, when compared with Equation 6.25, results in

Kp =
a1

2λ −b1
, Ki =

Kp

τi
= Kp

a0

a1
, Kd = KpTd = Kp

a2

a1
(6.27)

for the PID controller settings, as derivates higher than two have to be omitted. After variation of
λ and simulation of the results, the direct synthesis tuning for the fastest possible achievement of
the set specimen temperature of 200 °C is shown in Figure 6.25 and the corresponding parameters
in Table 6.12. It can be seen that the identified controller settings lead to an unacceptably long
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time to reach the desired steady-state set temperature. In addition, Kd was not utilised, as its value
needed to make a noticeable difference in the control loop response would also cause an overshoot
exceeding the allowed heating element temperature of 400 °C.

Fig. 6.25: Simulation for λ = 1 ·10−4 with Kd = 0

Table 6.12: Direct synthesis tuning parameters

G̃(s) = Hres(s) = λ Kp Ki Kd

0.001013s+3.904 ·10−6

s3 +0.1131s2 +0.002108s+5.363 ·10−6 1 ·10−4 2.6350 0.0067 141.38

As the PID settings obtained by the direct synthesis method have proven unsatisfactory, the PID
controller is tuned experimentally. The control settings were chosen in a way that the set specimen
temperature is reached after 200 s, the specimen temperature stays within a ±2.5% of its set value
in steady-state and the heating elements do not exceed 400 °C. The resulting settings for the ex-
periments at 100 °C and 200 °C are summed up in Table 6.13. As Kd does not improve the control
system response without causing an unacceptable heating temperature overshoot, it was omitted.

Simulation Results utilising PID Control

The closed-loop simulation results for the experiment at 100 °C and 200 °C are shown in Figure
6.26 and 6.27 respectively. It can be seen in Table 6.14 that all specified requirements are fulfilled.
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Table 6.13: PID controller settings

Specimen set temperature Consolidated process model Kp Ki Kd

100 °C H100(s)G(s) 2.33 0.038 0
200 °C H200(s)G(s) 2.00 0.030 0

Although it does not influence the specimen model in the simulation, the temperature curve of the
top middle heating element is also shown in Figure 6.26 and 6.27. Its temperature was set to follow
that of the bottom middle heating element with a difference of 15 °C and 20 °C in the 100 °C and
200 °C experiment respectively, as that is required for a homogenous specimen temperature and
the data is necessary for the generation of the .csv-file.

Fig. 6.26: PID control simulation at 100 °C Fig. 6.27: PID control simulation at 200 °C

Table 6.14: Closed-loop simulation characteristics with PID control

Characteristic Experiment at 100 °C Experiment at 200 °C

Maximum overshoot emax 0.976 K 2.126 K
Time of max. overshoot Tmax 284.5 s 382.0 s

Rise time Tr (90%) 72.0 s 99.5 s
Settling time Tε (97.5%) 120.0 s 168.5 s

Steady-state error e(t = 1000s) 0.009 K 0.266 K
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Simulation Results utilising Model Predictive Control

Although the controller choice resulted in PID control, a closed-loop simulation based on the
model predictive control system shown in Figure 6.22 was conducted regardless. The utilised MPC
settings are documented in Table 6.15. The bottom middle heating temperature is the manipulated
variable, the specimen temperature is the measured output and TA is the initial system ambient
temperature. The specifications for prediction and control horizon differ for the two experiment
temperatures because the two different specimen models H100(s) and H200(s) are utilised. The

Table 6.15: MPC specifications

Set specimen temperature

100 °C 200 °C

Prediction horizon P 15 10
Control horizon M 1 2
Manipulated variable weight 0.01
Manipulated variable upper constraint (400°C−TA)

Manipulated variable lower constraint 0
Measured output weight 1
Sampling time TS 0.5 s

Fig. 6.28: MPC control simulation at 100 °C Fig. 6.29: MPC control simulation at 200 °C
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Table 6.16: Closed-loop simulation characteristics with model predictive control

Characteristic Experiment at 100 °C Experiment at 200 °C

Maximum overshoot emax 0.612 K 0.269 K
Time of max. overshoot Tmax 42.0 s 92.0 s

Rise time Tr (90%) 28.5 s 72.0 s
Settling time Tε (97.5%) 33.5 s 84.0 s

Steady-state error e(t = 1000s) 0 K 0 K

simulation results are depicted in Figure 6.28 and Figure 6.29 for 100 °C and 200 °C respectively
and are very promising, as can be deducted from the control characteristics documented in Table
6.16. In comparison to the closed-loop simulation with PID controller, the simulation utilising
model predictive control is characterised by a smaller maximum overshoot as well as a steady-
state control deviation of 0 K. If the need for extra time to enable manual adjustment of the outer
heating elements is ignored, the set specimen temperatures of 100 °C and 200 °C can be reached
in 33.5 s and 84.0 s within the temperature tolerance boundaries respectively.
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6.2.5 Control System Validation at the Test Bed

The results of the closed-loop simulations for 100 °C and 200 °C were exported as .csv-files and
imported to the test bed controller to validate the control system. The resulting measured tempera-
ture curves in comparison to the simulation results are shown in Figure 6.30 and 6.32 respectively.
Table 6.17 provides all relevant characteristics. It can be seen that the steady-state error criteria
is satisfied in both experiments and the measured heating element temperature curves follow the
simulated curves almost exactly. However, the transient response of the specimen temperature is

Table 6.17: Open-loop validation experiments characteristics

Characteristic Experiment at 100 °C Experiment at 200 °C

Maximum overshoot emax 1.2 K 0.3 K
Time of max. overshoot Tmax 238.4 s 409.6 s

Rise time Tr (90%) 63.2 s 114.4 s
Settling time Tε (97.5%) 93.2 s 216.0 s

Steady-state error e 0.5 K / t = 340 s −0.2 K / t = 560 s

slightly different to the simulation result in both experiments. A possible reason for this devia-
tion aside from model uncertainties and insufficient model accuracy can be found in the manually
controlled outer heating elements. In the data used for modelling, the outer heating element tem-
perature is consistently shifted by a fixed value from the controlled heating elements throughout
the whole process, as can be seen in Figure 6.31(a) and 6.33(a). This is not the case in the val-
idation experiments, where this constant temperature shift only starts to occur at approximately
70 s for the experiment at 100 °C (Figure 6.31(b)), and at approximately 200 s for 200 °C (Figure
6.31(b)). As the required consistent temperature shift is being achieved in the later stages of the
experiment, simulation and measurement results grow more consistent.

The four outer heating elements are functioning as unpredictable disturbances, as their output
depends on their simultaneous manual adjustment throughout the whole process and thus, the
skill of the operator. It is therefore expected that the outer heating element temperature curves are
different each time an experiment is performed. As a result, the transient response of the specimen
will likely be different in every experiment. In addition, the four manually controlled outer heating
elements also limit the heating up time, as a sensible amount of time is required for the manual
adjustments. This is a contradiction to the requirement of heating up as fast as possible.

For a statistical assessment of model parameters, accuracy and the influence of the outer heating
element temperature curves, more experiments are required. However, the goal of reaching and
holding a set specimen temperature within a defined time range and tolerance boundaries with
sensorless open-loop control has been successfully demonstrated by the validation experiments.
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Fig. 6.30: Validation experiment at 100 °C

(a) Data for model identification (b) Validation experiment

Fig. 6.31: Measurement data of all heating elements for experiment at 100 °C
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Fig. 6.32: Validation experiment at 200 °C

(a) Data for model identification (b) Validation experiment

Fig. 6.33: Measurement data of all heating elements for experiment at 200 °C
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6.3 Closed-Loop Temperature Control Concept

A closed-loop approach for specimen temperature control based on a PID controller cascade sys-
tem was proposed, but not implemented due to the preference and benefits of the open-loop control
system. A cascaded control system utilising PID controllers fits the situation at the test bed well,
as the heating elements react extremely fast to changes of the input in comparison to the specimen.
Also, since temperature sensors at the heating elements are available and a model is created for the
specimen, both feedback variables required for a control cascade are accessible by default.

Using the time-shift properties of the z-transform, a closed-loop temperature control can be realised
by transforming the specimen model into discrete time form. The discrete time transfer function
can then be executed as code on the Raspberry Pi™ installed at the test bed. The control structure
proposed for the closed-loop temperature control utilises the internal controller of the test bed and
is shown in Figure 6.34.

Fig. 6.34: Closed-loop control concept

Converting a transfer function to code is done exemplary for the model used for experiments at
200 °C by subjecting it to the Tustin approximation of Equation 3.14 with a sampling time Ts =

0.5s. Its corresponding approximate discrete time form

H(z) =
0.002787z2 +5.367 ·10−6z−0.00782

z2−1.989z+0.9887
(6.28)

is the result. Dividing this discrete time transfer function by the highest power of z yields

H(z) =
0.002787+5.367 ·10−6z−1−0.00782z−2

1−1.989z−1 +0.9887z−2 =
Out
In

, (6.29)
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in which all terms are available in the form of the backwards time shift z− j for j = 0,1,2, . . . ,n.
This result can then be implemented in Python™ code by computing the output y[i] for any
input u[i], whereas the time shift z− j refers to the value of the input u[i-j] or output u[i-j]
at a previous iteration according to the respective backward shift. The code is shown in Listing 6.3.
This was also validated using a Message Queue Telemetry Transport (MQTT) connection between
a PC acting as the controller and a Raspberry Pi™ functioning as the specimen model.

Listing 6.3: Discrete time model in form of Python™ code

1 ...

2 if i == 0:

3 ut_1 = 0;

4 yt_1 = 0;

5 ut_2 = 0;

6 yt_2 = 0;

7 elif i == 1:

8 ut_2 = 0;

9 yt_2 = 0;

10 ut_1 = u[i - 1]

11 yt_1 = y[i - 1]

12 else:

13 ut_1 = u[i - 1]

14 yt_1 = y[i - 1]

15 ut_2 = u[i - 2]

16 yt_2 = y[i - 2]

17

18 y[i] = 1.989*yt_1 - 0.9887*yt_2 + 0.002787*u[i] + ...

5.367*(10ˆ-6)*ut_1 - 0.00782*ut_2

19 ...



Chapter 7

Conclusions and Future Work

A sensorless temperature open-loop control system was successfully developed and implemented
at the Equal Channel Angular Pressing (ECAP) test bed at the Chair of Metal Forming at the
Montanuniversität Leoben. Models for the specimen and heating elements were identified success-
fully using the global least squares system identification method and it was shown that low-order
linear models are sufficient for a reasonably accurate specimen temperature prediction. The use
of the global least squares system identification method was proven suitable to estimate param-
eters for models in state-space representation for both input-output data with uniform as well as
non-uniform sampling intervals. The developed open-loop control system utilising a PID con-
troller is designed to satisfy accurate steady-set specimen temperature characteristics as well as
suitable transient response required for the test bed operator. This was confirmed by simulation
in Simulink™ and experimentally at the test bed. As a result, the heating-up time on the test bed
was reduced to 30 % of the time required in operation without the control system. A final, constant
set point deviation of less than 1 % was also made possible by the control, whereas in operation
without the control system the specimen temperature could only be kept constant for and much
larger set point deviations were to be expected.

For the Equal Channel Angular Pressing test bed, two considerations for future modifications are
given. First, the utilisation of model predictive control should be further evaluated. A MPC system
was designed in the process of choosing a suitable regulator for the closed-loop control simulation
in Section 6.2.3, due to its benefits of handling process and actuator constraints. The simulation
results look very promising due to their extremely fast settling time, minimal overshoot and steady-
state error of 0 K, but have not been validated at the test bed. Second, it was found that the manual
adjustment of the outer heating elements increases the time required for the heating up process.
While it is possible to reach a specimen temperature of 200 °C within 100 s with the right controller
settings, this was limited to 200 s in course of this thesis to provide the test bed operator with
enough time to follow the given temperature trajectory manually with the outer heating elements.
Retrofitting a connection to the controller should therefore be considered, to automate and speed
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up the process further, augment specimen temperature homogeneity and eliminate the disturbances
resulting from the manual control of the outer heating elements.

In conclusion, the scientific contributions and findings of this thesis are:

• The global least squares system identification method was proven viable for the direct estima-
tion of continuous time model parameters based on available non-uniformly sampled input-
output data. It achieved sufficient results in comparison to uniformly sampled data even with
only 5 % of the amount of data points of the latter available.

• Sensorless temperature control in metal forming was proven feasible in the case of the Equal
Channel Angular Pressing test bed by utilising a linear, low order dynamic model acting as a
virtual sensor for the specimen temperature in combination with an open-loop control system.

• For specific model quality requirements as in the case of the specimen model, which should
provide high steady-state accuracy while the dynamic response plays a secondary role, it was
found that a visual assessment provides information that some error criteria cannot. While
squared, average and maximum error give a good idea of the general model fit, they do not
provide any locational information of the error along the desired trajectory. A visual compar-
ison should therefore be used to complement those criteria, if the occurring error is subject to
different prioritisation depending on the section of the trajectory.

Finally, two major research questions for future work built on the findings in this thesis are raised:

• The issue of how model uncertainties translate between the measurement data, FEA simulation
and mathematical model and therefore, how well a dynamic model identified from FEA simu-
lation data represents the real process should be addressed in the future, to further explore the
viability of FEA simulation data for virtual sensor creation.

• An investigation into metrics or characteristics of non-uniformly and uniformly sampled input-
output data should be conducted with the goal of assessing and comparing their suitability for
the purpose of modelling and the resulting model quality.
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Appendix A

Mathematical Preliminaries

This appendix describes some fundamental mathematical concepts applied in this thesis as well as
any needed uncommon operations.

A.1 Kronecker Product

Kronecker multiplication is denoted by the symbol ⊗ and defined by

A⊗B =


a11 B . . . a1m B

... . . . ...
an1 B . . . anm B

 (A.1)

for any two matrices An×m and Bp×q [68, p. 95]. If A ∈ Rm n and B ∈ Rp q, then their respective
Kronecker product A⊗B is a m× n block matrix, whose (i, j) block is a p× q matrix ai j B. [69,
p. 27] An example is provided by [69, p. 27]:

C =

 a11 a12

a21 a22

a31 a32

⊗
 b11 b12 b13

b21 b22 b23

b31 b32 b33

 (A.2)
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C =



a11 b11 a11 b12 a11 b13 a12 b11 a12 b12 a12 b13

a11 b21 a11 b22 a11 b23 a12 b21 a12 b22 a12 b23

a11 b31 a11 b32 a11 b33 a12 b31 a12 b32 a12 b33

a21 b11 a21 b12 a21 b13 a22 b11 a22 b12 a22 b13

a21 b21 a21 b22 a21 b23 a22 b21 a22 b22 a22 b23

a21 b31 a21 b32 a21 b33 a22 b31 a22 b32 a22 b33

a31 b11 a31 b12 a31 b13 a32 b11 a32 b12 a32 b13

a31 b21 a31 b22 a31 b23 a32 b21 a32 b22 a32 b23

a31 b31 a31 b32 a31 b33 a32 b31 a32 b32 a32 b33



(A.3)
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A.2 Numerical Differentiation

With a sequence of n points of function values, the computation of a Lagrange interpolating poly-
nomial is possible as

g(x) = L1(x) f (x1)+L2(x) f (x2)+ . . .+Ln(x) f (xn) (A.4)

in which the Lagrange polynomials L j are defined by [70, p. 116, 71, p. 17]

L j(x) =
(x− x1) . . .(x− x j−1)(x− x j+1) . . .(x− xn)

(x j− x1) . . .(x j− x j−1)(x j− x j+1) . . .(x j− xn)
. (A.5)

For the goal of achieving a practical method for numerical differentiation, approximations to the
derivatives at given nodes, that means approximations for f ′(xk) for k = 1, . . . ,n can be made by
evaluating the derivate of the Lagrange polynomials at given points xk [71, p. 17]:

g′(xk) = L′1(xk) f (x1)+L′2(xk) f (x2)+ . . .+L′n(xk) f (xn) (A.6)

Evaluating at each point yields the matrix form
g′(x1)

g′(x2)
...

g′(xn)

=


L′1(x1) L′2(x1) . . . L′n(x1)

L′1(x2) L′2(x2) . . . L′n(x2)
...

... . . . ...
L′1(xn) L′2(xn) . . . L′n(xn)




f (x1)

f (x2)
...

f (xn)

 (A.7)

and consequently, the numerical differentiation matrix

D =


L′1(x1) L′2(x1) . . . L′n(x1)

L′1(x2) L′2(x2) . . . L′n(x2)
...

... . . . ...
L′1(xn) L′2(xn) . . . L′n(xn)

 . (A.8)

as a result [71, p. 17]. The concept of this matrix based numerical differentiation introduced in
[72] makes it possible to represent and compute the numerical differentiation of a discrete function
y = f (x) by [72, p. 3]

g′ =Dy. (A.9)
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A.3 Singular Value Decomposition

The Singular Value Decomposition is a procedure for numerically assessing matrix properties.
Three particularly important are the range, null space and rank, especially in the case of discretising
linear operators [71, p. 31]. An n×m matrixA can be factored as [68, p. 161]

A=USV T , (A.10)

in which the variables are: [68, pp. 161–162]

• U is an n×n orthogonal matrix,
• V is an m×m orthogonal matrix,
• and S is an n×m matrix with non-negative entries.

The elements on the diagonal of S are the singular values of A [68, p. 162, 73, p. 2]:

S =


S1

S2
. . .

Sn

 (A.11)

Inverses

The Singular Value Decomposition provides an easy method the compute the inverse of a matrix.
As U and V are orthogonal, their transposes are their inverses,

UTU =UUT = I (A.12)

and
V TV = V V T = I. (A.13)

If the inverse of a matrixA exists, it can then be computed easily by Singular Value Decomposition
as [73, p. 2]

A−1 = V S−1UT . (A.14)
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