
Chair of Mechanics

Master's Thesis

Investigating the possibility to solve the
Hamilton-Jacobi-Bellman Equation by the
Finite Element Method to enable feedback

control of nonlinear dynamical systems

Wolfgang Flachberger, BSc
August 2021

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen
Quellen und Hilfsmittel nicht benutzt, und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Ich erkläre, dass ich die Richtlinien des Senats der Montanuniversität Leoben zu "Gute
wissenschaftliche Praxis" gelesen, verstanden und befolgt habe.

Weiters erkläre ich, dass die elektronische und gedruckte Version der eingereichten
wissenschaftlichen Abschlussarbeit formal und inhaltlich identisch sind.

Datum 17.08.2021

Unterschrift Verfasser/in
Wolfgang Flachberger

Machbarkeitsstudie zur Anwendbarkeit der

Methode der Finiten Elemente auf die

Hamilton-Jacobi-Bellman Gleichung für Probleme

der Regelungstechnik

Kurzfassung

Obwohl die Theorie der Optimalen Steuerung bereits in den 50er Jahren entwickelt

wurde, beschränkt sich ihre Anwendung in der Regelungstechnik auf lineare dynamis-

che Systeme. Nach wie vor sind PID-Regler und LQ-Regler als Industriestandard

im Einsatz. Das ist vor allem auf deren einfache Implementierung und hohe Zu-

verlässigkeit zurückzuführen. Es existiert aber eine Vielzahl an Problemstellungen

der Robotik, Automatisierungstechnik und Mechatronik, bei welchen diese Methoden

aufgrund von nichtlinearem Systemverhalten nicht funktionieren. Um die Theorie

der Optimalen Steuerung für diesen allgemeinen Einsatz tauglich zu machen, muss

ihre Anwendung über eine Software generalisiert und vereinfacht werden. Es existiert

die Möglichkeit, Probleme der Optimalen Steuerung als mehrdimensionales Randw-

ertproblem zu formulieren. Das Ziel dieser Arbeit war es, im praktischen Versuch

herauszufinden, ob sich dieses Randwertproblem mittels FEM lösen lässt und ob die

Berechnung für beliebige Problemstellungen verallgemeinert und automatisiert wer-

den kann. Ausgangspunkt für die Berechnung war die Hamilton-Jacobi-Bellman Gle-

ichung. In den ersten Kapiteln wurden die mathematischen Konzepte der Theorie der

Optimalen Steuerung hergeleitet und erläutert. Danach wurden verschiedene Ansätze

zur Lösung der Hamilton-Jacobi-Bellman Gleichung mittels FEM vorgestellt. Eine

der größten Herausforderungen im Zuge der Arbeit war es, eine Finite Elemente Soft-

ware zu entwickeln, welche partielle Differentialgleichungen in beliebig dimensionalen

Räumen lösen kann. Indem das Problem in ein konvexes, eindeutig lösbares Varia-

tionsproblem überführt wurde, konnte ein zuverlässiges numerisches Lösungsverfahren

entwickelt werden. Die Resultate belegen, dass es tatsächlich möglich ist, mithilfe der

Finite Elemente Methode Feedback-Regelungen nichtlinearer dynamischer Systeme zu

ermöglichen. Der Autor ist überzeugt, dass solche Methoden zukünftig bedeutende

Akzente für die Weiterentwicklung von Forschungsgebieten wie Steuer- und Regelung-

stechnik, Robotik, Automatisierungstechnik und Künstlicher Intelligenz setzen wer-

den.

4

Investigating the possibility to solve the

Hamilton-Jacobi-Bellman Equation by the Finite

Element Method to enable feedback control of

nonlinear dynamical systems

Abstract

Even though Optimal Control Theory was developed in the 1950s its usage in feedback

control systems is restricted to linear dynamical systems. In General PID and LQR

controllers are still the state of the art which is due to their simple implementation and

reliability. There is, however, a wide range of problems in robotics and mechatronics

that exceed the ability of these practices due to nonlinear dynamical behaviour. To

make Optimal Control Theory feasible in these fields, its application has to be unified

and simplified within a software that can reliably solve these problems. It is possible to

formulate the Optimal Control Problem in such a way that a solution to the resulting

boundary value problem does not only reveal one optimal trajectory but a feedback

control law or strategy, as it is called in Game Theory. The PDE which could provide

the strategy is called Hamilton-Jacobi-Bellman Equation and it was the aim of this

thesis to find out whether or not it is possible to solve it via the Finite Element Method.

The first chapters were used to outline the applications of Optimal Control Theory

and to derive the needed mathematical concepts. Next, various ways to prepare a

problem formulation for the Finite Element Analysis were presented. One of the

major challenges of this thesis was to develop a Finite Element software that can

solve PDEs in a space with arbitrary dimension. Finally, a problem formulation

was developed that features a convex variational form with a unique solution which

promises reliable solvability by numerical methods. The results showed that it is fact

possible to generate feedback control laws for nonlinear dynamical systems by the

Finite Element Method. The author is convinced that the developed methods will

shape the future of fields such as control engineering, robotics, automation and AI.

5

Contents

1 Introduction 8

1.1 The Historic Development of Optimal Control 8

1.2 Problem Formulation . 8

1.2.1 Example: Efficient Landing of a Rocket 8

1.2.2 State and Control Space . 9

1.2.3 Reformulation as Optimal Control Problem 10

2 Optimal Control and Theoretical Mechanics 12

2.1 Review of the principles of Mechanics 12

2.1.1 The Principle of Virtual Work 12

2.1.2 d’Alembert’s Principle . 12

2.1.3 Lagrangian Mechanics and Hamilton’s Principle 13

2.1.4 The Canonical Form . 14

2.1.5 Hamilton-Jacobi Theory . 15

2.1.6 The Legendre Transformation 16

2.2 The Hamilton-Jacobi-Bellman Equation 16

2.3 Everything is stationary . 18

3 Motivation 20

3.1 Solving Optimal Control problems . 20

3.2 Optimal Control and Artificial Intelligence 20

3.3 Optimal Control and the Linear Quadratic Regulator 21

3.4 Advantages of the Finite Element Method in Optimal Control 25

4 Problem Modifications for the Finite Element Analysis 26

4.1 Linearity of the Control Hamiltonian 26

4.1.1 Bang-Bang-Control . 26

4.1.2 The Rocket example and another Lagrangian 27

4.1.3 A unified Solution for Engineering Problems 28

4.2 Problem Modifications . 29

4.2.1 Lagrange and Mayer Cost . 29

4.2.2 Example of a nonlinear Hamiltonian: Thrust-Vector Control . . 30

4.3 Piecewise Linearity of the Hamilton-Jacobi-Bellman Equation 31

4.3.1 Weighted Residual Methods for the HJB 31

4.4 A Ritz Approach for the HJB Equation 33

5 Coding a Finite Element Solver in n Dimensions 36

5.1 The Poisson Equation . 36

6

A FEM Approach for solving the HJB Equation

5.2 Dissection of the Code . 37

5.2.1 Treating multiple dimensions 37

5.2.2 Initialisation of the mesh . 38

5.2.3 The coincidence table . 39

5.2.4 The sympy Toolbox . 42

5.2.5 Interpolation-Functions . 42

5.2.6 Problem Formulation . 44

5.2.7 Variational Formulation . 45

5.2.8 ESM and ELV . 45

5.2.9 The Assembly . 47

5.2.10 Applying the Boundary Condition 49

6 Experiments and Results 53

6.1 The ARTOC Toolbox . 53

6.2 The Poisson Equation in four dimensions 55

6.3 Weighted Residual Methods for the piecewise linear HJB 57

6.3.1 Automated formulation of the HJB 57

6.3.2 Galerkin’s Method . 58

6.3.3 The Least Squares Method . 60

6.4 The Ritz Method . 62

6.5 A Splitting Method . 65

7 A new Approach 73

7.1 Convergence and Convexity . 73

7.2 The Linear Quadratic Regulator revisited 74

7.3 The Liouville Equation . 76

7.4 Experiment . 80

8 Conclusion 88

A Notation 89

B ARTOC Toolbox 90

C FEMCO Toolbox 95

List of Figures 98

Bibliography 100

Chapter 0 Wolfgang Flachberger 7

Chapter 1

Introduction

1.1 The Historic Development of Optimal Control

The theory of Optimal Control is a subject of applied mathematics that was devel-

oped in the 1950s and 60s to satisfy the high requirements of space travel. Before

the formalisms of Optimal Control were introduced, only special cases of dynamic

optimization problems could be solved by extensive mathematical effort. Optimal

Control enables the generalization of variational problems by making a distinction

between state and control variables. Thereby, a variety of different control problems

can be solved in a standardized manner. The formulation of the correct mathematical

problem for a specific task, however, often remains a challenge. The author of DIDO

refers to this as the problem of problems [Ros09]. In the following, an example on how

the process of finding the correct problem formulation may look like, is presented:

1.2 Problem Formulation

1.2.1 Example: Efficient Landing of a Rocket

A Rocket accelerates by thrusting out exhaust gasses in a certain direction. As a

result the rocket’s mass slowly decreases. The velocity of the exhaust gasses can be

assumed to be constant for chemical propulsions and shall be named w in the following

calculations. According to that the rocket equation for a constant gravitational field

reads:

mḧ = ṁw −mg (1.1)

Here, h and m are the current height and mass of the rocket, respectively. The rocket

can be controlled by acting on the thrust force −ṁw. It might be the objective of an

engineer to steer it from an initial height h(0) = h0 and initial velocity ḣ(0) = v0 to

the ground and land it safely and as fuel efficient as possible. Safely means in this

context that the velocity of the rocket has to be zero when it touches the ground. It

follows that the endpoint constraints h(tf) = 0 and ḣ(tf) = 0 have to be satisfied.

Note that tf denotes the finial time of the maneuver.

8

A FEM Approach for solving the HJB Equation

Figure 1.1: The rocket during a landing maneuver.

If the landing shall be fuel efficient we also require the rocket to lose as little mass as

possible. The change in mass during the maneuver can be calculated as follows:

∆m =

∫ tf

0

−ṁ(t) dt (1.2)

To sum up, the following optimization problem can be formulated:

min
h

∆m (1.3)

mḧ = ṁw −mg (1.4)

m(0) = m0 (1.5)

h(0) = h0 (1.6)

ḣ(0) = v0 (1.7)

h(tf) = 0 (1.8)

ḣ(tf) = 0 (1.9)

Or, in words: Find a function h(t) for which ∆m is minimized and for which the

ordinary differential equation (1.4) as well as the boundary conditions (1.5)-(1.9) are

satisfied. Note that the functions h(t) and m(t) are only linked by equation (1.4).

This problem can be declared as variational problem with ODE-constraints. To call

it an Optimal Control problem, state- and control-variables have to be introduced.

1.2.2 State and Control Space

The state vector x links the configuration of a dynamical system to a location in a

Euclidean state space. State variables, the components of the state vector, change

Chapter 1 Wolfgang Flachberger 9

A FEM Approach for solving the HJB Equation

steadily with time. Typical examples are canonical location and velocity variables.

Note that the state vector of a dynamical system can only occupy a certain feasi-

ble domain of the state space - there are usually invalid regions in the state space.

The control vector u assigns externally controlled quantities to a dynamical system.

Control variables are not required to change continuously with time and can switch

unsteadily. In mechanical systems there is often the possibility to control a force or

the acceleration of certain degrees of freedom. The control vector lives in a Euclidean

space that is constrained by the maximum and minimum magnitudes the control vari-

ables can obtain (e.g. in dependence of a motor that is used to control a system).

Constraints of the form a ≤ u(t) ≤ b are referred to as box-constraints and are common

in engineering.

1.2.3 Reformulation as Optimal Control Problem

As mentioned before, the engineer can control the rocket by acting on its thrust force

−ṁw. It is therefore reasonable to arrange the problem in such a way that the thrust

becomes a control variable:

u = −ṁw (1.10)

The control vector has in this case just one entry u. The state vector for the rocket

problem becomes:

x =

h
v
m

 (1.11)

The equations of motion can now be expressed in standard form:

ẋ = f(x, u) (1.12)

ḣ
v̇
ṁ

 =

v
u
m
− g

− u
w

 (1.13)

This formulation is common in engineering as it also makes it easy to solve the ODE

numerically (as it is now a first order ODE). Another feature of the standard form

is that the change of the state ẋ is now expressed explicitly as function of the state

space (and control variables). The dynamics can now be interpreted as a vector field

in the valid region of the state space, changing only with the control effort. This

feature can be utilized by means of variational calculus to derive necessary conditions

for optimality known as Pontryagin’s Principle. In addition to the dynamics, the

endpoint constraint function is introduced:

e : =

[

h(tf)
v(tf)

]

(1.14)

e = 0 (1.15)

With this constraint, only two of the three state variables are fixed at the end of

the maneuver. As the state m(tf) is free but sought to be maximal, the endpoint

10 Chapter 1 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

constraint defines in this case not an actual point in the state space but a straight

line. Every possible trajectory that is a solution to the problem ends somewhere on

this line. There are of course many examples where every solution will actually end

at a single point (when all state variables are specified at the end), but in general it

can only be stated that the trajectories end on a hypersurface [Bry75]. The problem

of the rocket can now be expressed in terms of the following framework for Optimal

Control Problems (as suggested by I. Michael Ross, the Author of [Ros09]):

min
u(t)∈U

J [x(·), u(·), tf] : =

∫ tf

t0

F (x(t), u(t)) dt+ E(x(tf)) (1.16)

ẋ(t) = f(x(t), u(t)) (1.17)

0 = e(x(tf)) (1.18)

x(t0) = x0 (1.19)

Here F denotes the running or Lagrangian cost function and E is the endpoint or

Mayer cost function [Ros09]. Note also that U denotes the control space. For the

problem of the efficient landing of the rocket a cost functional of Lagrangian type is

used (on the basis of equation (1.3)). Therefore, the Optimal Control problem reads:

min
u(t)

J [u(·)] =

∫ tf

0

u(t)

w
dt (1.20)

ḣ
v̇
ṁ

 =

v
u
m
− g

− u
w

 (1.21)

(0, 0) = (h(tf), v(tf)) (1.22)

(h(0), v(0),m(0)) = (h0, v0,m0) (1.23)

0 ≤ u(t) ≤ umax (1.24)

Chapter 1 Wolfgang Flachberger 11

Chapter 2

Optimal Control and Theoretical

Mechanics

2.1 Review of the principles of Mechanics

In this section the variational principles of mechanics are discussed. As shall be shown,

the mathematical concepts of variational calculus used to retrieve more fundamental

laws from simple Newtonian Mechanics are the very same that can be utilized to

optimize dynamical processes.

2.1.1 The Principle of Virtual Work

Although the first virtual Work principles date back for as long as antiquity [Red84]

modern mathematical formulations needed a proper definition of force and work and

had to await the discoveries of Newton to be made. The Principle of Virtual Work

states that a body is in equilibrium if the virtual work of all forces acting on the body

is zero upon a virtual displacement.

δW = 0 (2.1)

2.1.2 d’Alembert’s Principle

D’Alembert’s Principle follows from the idea that the inertial force, although non New-

tonian as it appears without a reactional force, can also perform work (and therefore

also virtual work).

(F −mr̈) · δr = 0 (2.2)

Here, r denotes an arbitrary position vector. Another discovery made by d’Alembert

was the fact that a virtual displacement δr is not entirely arbitrary as it has to be

consistent with geometric constraints:

δr =
∂r

∂q
· δq (2.3)

12

A FEM Approach for solving the HJB Equation

Here, q denotes the vector of the degrees of freedom of the system. Obviously, the

partial derivative takes the value zero if the corresponding force performs no work.

Therefore, it is enough to concentrate on active forces F (e) and neglect the others:

(F (e) −mr̈) · δr = 0 (2.4)

2.1.3 Lagrangian Mechanics and Hamilton’s Principle

Of course, because d’Alembert’s Principle is satisfied at any time, the following integral

has to vanish:

∫ tf

t0

(mr̈ − F (e)) · δr dt = 0 (2.5)

By performing integration by parts and substituting the condition for conservative

forces F (e) = −∇V , the equation can be expressed in terms of kinetic energy T and

potential energy V (see [Red84] for a detailed derivation).

δ

∫ tf

t0

(T − V) dt = 0 (2.6)

One might think of this as the weak formulation of Newtons Law for conservative

dynamical systems. Obviously, the equation requires the variation of the integral to

vanish. This condition is called stationary and means that the functional has to take

either the value of a local minimum, maximum or inflection. This functional is called

action and it is usually denoted by S. The integrand of the functional is termed the

Lagrangian.

S[q(·)] =

∫ tf

t0

(T − V) dt =

∫ tf

t0

L (q(t), q̇(t)) dt (2.7)

The equation the Lagrangian has to satisfy in order to make the functional stationary

is called Euler-Lagrange Equation. It can be derived by computing the first variation

or by taking the total derivative of the Lagrangian, which is more common in applied

mechanics:

δS =

∫ tf

t0

(

∂L

∂q
· δq +

∂L

∂q̇
· δq̇

)

dt (2.8)

Once again, we can use integration by parts to simplify the functional:

δS =

∫ tf

t0

(

∂L

∂q
−

d

dt

(

∂L

∂q̇

))

· δq dt (2.9)

As δq is completely arbitrary the only way for the functional to satisfy the station-

ary condition is that the term in brackets is equal to zero (Fundamental Lemma of
Variational Calculus):

δS = 0 ⇐⇒
∂L

∂q
−

d

dt

(

∂L

∂q̇

)

= 0 (2.10)

Chapter 2 Wolfgang Flachberger 13

A FEM Approach for solving the HJB Equation

2.1.4 The Canonical Form

Just like in finite-dimensional optimization methods, constraints can be taken into

account by the Lagrange Multiplier Method [HC24]:

S =

∫ tf

t0

L (q, q̇) + p ·

(

dq

dt
− q̇

)

dt (2.11)

Here the connection between q and q̇, the definition of the first derivative, is incorpo-

rated into the functional. As dq/dt = q̇, the value of the action remains unchanged

for every choice of the Lagrange Multiplier p. The constraining equation, neverthe-

less, gets formally eliminated and the additional information in the functional can be

utilized by means of variational calculus under the requirement that another function

p(t) appears in the problem [HC24]. Integration by parts yields:

S =

∫ tf

t0

L (q, q̇)− ṗ · q − p · q̇ dt (2.12)

Applying the Euler-Lagrange Equation with respect to q, q̇ and p leads to:

Lq − ṗ = 0 (2.13)

Lq̇ − p = 0 (2.14)

dq

dt
− q̇ = 0 (2.15)

Note that subscripts denote partial derivatives with respect to the subscripted func-

tions. In classical Mechanics, where L = T − V , the Lagrange Multiplier p becomes

the conservative quantity ofMomentum. The generalized speeds can now be expressed

in terms of generalized coordinates and momentum:

with Lq̇ = Lq̇(q, q̇) and p = Lq̇ ⇒ q̇ = q̇(q, p) (2.16)

By substitution of q̇ = q̇(q, p) the original variational problem is transformed and

projected into a dual space [Ros09].

S[q(·), p(·)] =

∫ tf

t0

L (q, q̇(q, p))− ṗ · q − p · q̇(q, p) dt (2.17)

By selecting a Hamiltonian function as follows:

H (q, p) = p · q̇(q, p)− L (q, q̇(q, p)) (2.18)

The Functional can be expressed as:

S[q(·), p(·)] =

∫ tf

t0

−H (q, p)− ṗ · q dt (2.19)

This is known as the canonical form of the variational problem. It is equivalent to the

action functional but as p is already chosen in order to make the integral statement

stationary it bears certain features that are crucial to Hamilton-Jacobi Theory (see

section 2.1.6). Also the seemingly arbitrary choice of the Hamiltonian function will

14 Chapter 2 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

be clarified in this section. Applying the Euler-Lagrange Equation with respect to all

mutually independent variables, however, leads to the canonical equations:

∂

∂p

(

−H (q, p)− ṗ · q
)

−
d

dt

(

∂

∂ṗ

(

−H (q, p)− ṗ · q
)

)

= 0 (2.20)

∂

∂q

(

−H (q, p)− ṗ · q
)

= 0 (2.21)

Which simplifies to:

Hp − q̇ = 0 (2.22)

Hq + ṗ = 0 (2.23)

In this dual- or phase space (q, p) the dynamics (vector field) possesses zero divergence

which leads to conservation of energy.1

2.1.5 Hamilton-Jacobi Theory

Hamilton-Jacobi Theory is concerned with expressing the above results in a more com-

pact and generalized PDE-Formulation. We continue the derivation of the Hamilton-

Jacobi Equation from the canonical form of the variational problem:

S[q(·), p(·)] =

∫ tf

t0

p · q̇ − H (q, p) dt (2.24)

This expression is clearly a functional but integrals over functions can under certain

conditions as well be interpreted as functions [HC37]. To achieve this we view the

action as explicit function of time and canonical coordinates. By integrating from

initial time to an arbitrary time t it is reasonable to think of S as a function.

S(q, t) =

∫ t

t0

p · q̇ − H (q, p) dt (2.25)

To get rid of the integral we differentiate the equation with respect to time:

Ṡ = St + Sq · q̇ = p · q̇ − H (q, p) (2.26)

Note that this step is only reasonable when it is computed for the canonical form of

the variational problem as it already features the stationary condition in the integral.

From equation (2.13) we conclude:

Sq = p (2.27)

Therefore, the Hamilton-Jacobi Equation (also known as Eikonal Equation [HC24])

becomes:

St + H (q, Sq) = 0 (2.28)

This PDE also explains the at first seemingly arbitrary choice of the Hamiltonian

function and why it is a constant for every Lagrangian that is not explicitly time

dependent (which is the case in mechanics). Moreover it can be seen, that the existence

of the immeasurable quantities energy and momentum such as their conservation

laws naturally arises by introducing the powerful tools of variational calculus and

the Lagrange multiplier method. For more informations on Hamilton-Jacobi Theory

[HC24], [HC37] and [Lev14] are a good starting point.

1Note that in a space with axis q[m] and p[kg ·m/s] the area has the unit [J ·s]. See also Liouville’s
Theorem [Lev14].

Chapter 2 Wolfgang Flachberger 15

A FEM Approach for solving the HJB Equation

2.1.6 The Legendre Transformation

In section 2.1.5 the Legendre Transformation was introduced without ever being men-

tioned as natural consequence of the Lagrange Multiplier method. By viewing it as

independent mathematical concept it can be formulated as follows:

H (q, p) = sup
q̇(q,p)

(

p · q̇ − L (q, q̇)
)

(2.29)

Or, in words: Choose q̇ in dependence of q and p such, that the term in parenthesis

takes a maximum value. Of course, the Legendre Transformation is therefore an

optimization problem of its own that can be treated by the regular methods of analysis

(e.g.: setting the first derivative zero etc.). In section 2.1.5 this was achieved by

application of the Euler-Lagrange Equation. Another Legendre transform leads back

to the Lagrangian:

L (q, q̇) = sup
p(q,q̇)

(

p · q̇ − H (q, p)
)

(2.30)

Note that this definition holds only for problems that require a functional to be sta-
tionary in terms of variational calculus (the action has to take the value of either

minimum, maximum or inflection). It will, however, not always work in Optimal

Control Theory as the cost functional is required explicitly to take a minimum value.

Moreover, the above definition of the Legendre Transform only holds for convex func-

tions. This is, due to the quadratic dependency of kinetic energy on velocity, always

satisfied in mechanics. For general control problems this is not necessarily true. In

fact, most problems that occur in engineering are linear with respect to the control

variable and therefore, do not feature convexity. The next chapter is concerned with

finding the Legendre Transform’s equivalent for Optimal Control Problems.

2.2 The Hamilton-Jacobi-Bellman Equation

In the following we consider a stationary Optimal Control Problem with ODE con-

straints. Hereby, stationary refers to a control task where the cost functional as

well as the dynamics are not explicitly time dependent [Bry75], which is common for

mechanical systems.

min
u(t)∈U

J [x(·), u(·), tf] : =

∫ tf

t0

F (x(t), u(t)) dt+ E(x(tf)) (2.31)

ẋ(t) = f(x(t), u(t)) (2.32)

0 = e(x(tf)) (2.33)

x(t0) = x0 (2.34)

As before we can take the constraints into account by introducing the Lagrange Mul-

tiplier p. As the endpoint constraint is constant it is only relevant to the boundary

conditions of the problem but it can be fit into the functional by the method as well:

min
u(t)∈U

S[x(·), u(·), p(·), λ, tf] :=

∫ tf

t0

F (x(t), u(t)) + p(t) · (f(x(t), u(t))− ẋ(t)) dt+ E(x(tf)) + λ · e(x(tf)) (2.35)

16 Chapter 2 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

Before proceeding we introduce the Control Hamiltonian:

H(x, u, p) := F (x, u) + p · f(x, u) (2.36)

This step is helpful for simplifying the further derivation but it is important to note

that the Control Hamiltonian is not the Hamiltonian’s equivalent for control problems

but just an intermediate step towards it. We now assume the control problem to be

convex with respect to all dependent functions which means that we can use the

Euler-Lagrange Equation to derive the necessary optimality conditions:

∂H

∂u
= 0 (2.37)

∂H

∂p
= ẋ (2.38)

∂H

∂x
= −ṗ (2.39)

As can be seen the obtained system is already closely related to the canonical equations

of Mechanics. While equation (2.38) simply results in the given dynamical constraint

(ẋ = f(x, u)), equation (2.39) is called the adjoint system with the multiplier p as the

adjoint state. Equation (2.37) however, is called Hamiltonian Minimization Condition
and of course it can be used to compute a u for which H becomes stationary (in the

sense of regular calculus) and, hopefully, a minimum:

∂H

∂u
= 0 ⇒ u∗ := u(x, p) (2.40)

The star indicates that we are already dealing with the optimized control. As men-

tioned before these practices will only work if H is convex with respect to u. For the
general case, i.e. an arbitrary dependency between H and u, the following Hamilto-
nian Minimization Condition has to be satisfied:

u∗(x, p) = argmin
u∈U

H(x, u, p) (2.41)

This generalization is the key element of Pontryagin’s Principle. The notation indi-

cates that we are looking for a control u∗ that globally minimizes H for a given (and

time dependent) pair of variables (x, p). Having found this control, we can introduce

the Lower Control Hamiltonian, which is the equivalent of the Hamiltonian in classical

Mechanics:

H (x, p) = H(x, u, p)

∣

∣

∣

∣

∣

u=u∗(x,p)

(2.42)

According to that, if we were to define the Legendre Transform for Optimal Control

Problems, it can be stated as follows:

H (x, p) = min
u∈U

(

F (x, u) + p · f(x, u)
)

(2.43)

We can now view the Optimal Control Problem as Variational Problem in its canonical

form:

S(x, t) =

∫ tf

t

(

H (x, p)− p · ẋ
)

dt+ E(xf) + λ · e(xf) (2.44)

Chapter 2 Wolfgang Flachberger 17

A FEM Approach for solving the HJB Equation

Again the representation as a function has been chosen. Note that this time we inte-

grate from an arbitrary time to a final time tf . Many authors are also referring to this

as ”solving problems backwards in time”[Bry75][Isa65][Ros09]. Unlike in mechanics,

where only the initial state is known for feedback control problems, the final state of

the system is prescribed. Just like in the derivation of the Hamilton-Jacobi Equation

differentiation with respect to time yields:

St + Sx · ẋ = −H (x, p) + p · ẋ (2.45)

As p is just a multiplier and the outcome of the variational problem is unaffected by its

value we set p = Sx. In the following, ”HJ” will be short for Hamilton-Jacobi Equation

and ”HJB” will refer to Hamilton-Jacobi-Bellman Equation. It is now obvious that

the Control Hamiltonian and its Legendre Transform were also defined differently to

the Hamiltonian of Mechanics to ensure that the HJ and the HJB look similar.

St + H (x, Sx) = 0 (2.46)

By taking the constant terms of the cost function (2.47) into account we get the

following boundary conditions:

S(x) = E(x) {x ∈ Ω : e(x) = 0} (2.47)

For stationary Optimal Control Problems the partial time derivative of the cost func-

tion vanishes (St = 0). Many authors, especially in Game Theory, prefer for this kind

of problem a more compact form of the HJB that does not mention Hamiltonians and

the relation to mechanics:

min
u

[

F (x, u) +∇S(x) · f(x, u)
]

= 0 (2.48)

In [Isa65] this is referred to as the Main Equation

2.3 Everything is stationary

Even though stationary Optimal Control problems constitute a special case one can

rearrange every problem, without effectively changing the outcome, in such a way that

it becomes mathematically stationary. The focus on stationary problems is therefore

not a restriction but a step towards finding a unified and simple approach for Optimal

Control problems (especially due to St = 0 which holds only for stationary problems).

To prove this point the following general Optimal Control problem is considered:

min
u(t)∈U

J [x(·), u(·), tf] : =

∫ tf

t0

F (x(t), u(t), t) dt+ E(x(tf), tf) (2.49)

ẋ(t) = f(x(t), u(t), t) (2.50)

0 = e(x(tf), tf) (2.51)

x(t0) = x0 (2.52)

18 Chapter 2 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

As can be seen, the dynamics, cost and constraints are explicitly time dependent. To

eliminate this dependency a new state variable xn+1 is introduced to replace time in

the set of ODEs:

min
u(t)∈U

J [x(·), u(·), tf] : =

∫ tf

t0

F (x(t), u(t), xn+1) dt+ E(x(tf), xn+1(tf)) (2.53)

[

ẋ
ẋn+1

]

=

[

f(x, u, xn+1)

1

]

(2.54)

0 = e(x(tf), xn+1(tf)) (2.55)
[

x(t0)
xn+1(t0)

]

=

[

x0

t0

]

(2.56)

(2.57)

As this new state variable has the simple dynamics ẋn+1 = 1, it will behave just like

the actual time and rise linearly. Therfore, the engineer obtains a formal return to

the stationary system with the consequence that the dimension of the state space is

increased by one.

Chapter 2 Wolfgang Flachberger 19

Chapter 3

Motivation

3.1 Solving Optimal Control problems

DIDO1 approaches Optimal Control Problems by using the canonical equations to

reveal ODE optimality conditions. The resulting system of equations is then numer-

ically solved via the Pseudospectral Method2 [Ros09]. The solution to the resulting

boundary value problem returns only one optimal trajectory for a certain initial con-

dition x0. Feedback solutions using this technique require extensive computing power

and became feasible during the last two decades. The realization of such a system

however is still a complex task and the question arises if there could be other solutions

more accessible to users of other fields than aerospace. By solving the HJB PDE one

obtains not just one optimal trajectory and the associated time dependent control ef-

fort u(t) but a whole strategy. This means that the control effort can be expressed in

terms of the actual state u(x). This could enable Optimal Feedback Control without

ongoing calculations during the control process.

3.2 Optimal Control and Artificial Intelligence

One approach by Russell and Norvig defines artificial intelligence (AI) as designing
systems that behave optimal [RN16]. The validity of this statement is justified as

experiments show, that the behaviour of AI equipped robots can be very well repro-

duced by Optimal Feedback Control [Ros09]. It even seems that Optimal Control,

and especially real-time Optimal Control, offer a more sophisticated way of generat-

ing AI than most machine learning algorithms that critically rely on data. A popular

example where Optimal Control produces similar outcomes as machine learning is

called Hurni’s Sliding Door Experiment [Ros09]. Here, a simple craft has the task to

move to another location as quickly as possible (the craft will take the shortest path;

a straight line). Whilst the craft carries out the task, additional informations and

1DIDO is a software-tool which is capable of solving Optimal Control problems It is developed
and distributed by Elissar Global. Visit https://www.elissarglobal.com/industry/get-dido/ for more
information.

2Pseudospectral Methods constitute a subclass of Spectral Methods. These methods are related
to the Finite Element Method with the main difference that interpolation functions can obtain non-
zero-values over the whole domain, which makes the use of elements and meshing practices obsolete.

20

A FEM Approach for solving the HJB Equation

constraints enter the problem: A sliding door moves in the way of the craft and it

has to find its way around the obstacle. The author of [Ros09] developed a sophis-

ticated mathematical formulation to get hold of time dependent outer factors that

change whilst the control task is carried out and he calls this framework Problem P3.

Problem P is mathematically challenging but can still be solved by DIDO. The major

drawback of this solution technique is that the information of the moving obstacle has

to be considered beforehand, which is a significant disadvantage compared with the

performance of trained AI. Assuming that it is possible to solve the HJB Equation

via the linear Finite Element Method on the other hand, reveals possibilities that

exceed the capabilities of hard to train neural networks by far. By solving the HJB

Equation one obtains a control law for every feasible location in the state space. If a

region in the state space is not feasible any more because, for example, a door moves

through its way, the strategy can be updated by excluding corresponding equations

from the linear system (setting the value of the cost in the affected nodes to zero). A

schedule like this obviously requires the craft to be equipped with a sufficient sensory

apparatus, which is however, the same for all AI equipped devices. Another profound

consequence of the ability to solve the HJB Equation regards robotics. Knowing the

dynamics of robots with a high number of degrees of freedom, one could use the HJB

Equation to compute the optimal control schedule for the robot to walk. This could

enable engineers to no longer have to teach a robot how to walk by time expensive

gradient descent methods.

3.3 Optimal Control and the Linear Quadratic

Regulator

Many authors describe the Linear Quadratic Regulator as an optimal feedback con-

troller. This is of course true but there are also restrictions for the problem formula-

tion. The most important one is of course that the system dynamics have to be linear

which is a huge drawback for general cases. But there are more restrictions regarding

the running cost functions. To reveal all differences to Optimal Control the following

linear system of equations is introduced:

[

ẋ1

ẋ2

]

=

[

x2

−x2

]

(3.1)

These equations can be interpreted as the dynamics of a craft which is allowed to move

in one spatial dimension x1 and is, if moving, slowed down by viscous drag (velocity

proportional drag). Without any control effort acting on the craft the dynamics can

be visualized by the following representation in state space, where x2 represents the

velocity of the craft:

3In contrast to the simpler Problem B that simply results from the canonical equations.

Chapter 3 Wolfgang Flachberger 21

A FEM Approach for solving the HJB Equation

Figure 3.1: Dynamical system without control effort

Of course, the craft is slowed down and will halt on some location depending on the

initial value (the initial position in state space). It could now be the objective of some

sort of regulator to control the craft in such a way that it halts exactly at the location

zero. Lets assume that the craft is controlled by acting directly on its acceleration.

Therefore, we introduce the control variable u and modify the dynamics:

[

ẋ1

ẋ2

]

=

[

x2

−x2 + u

]

(3.2)

The properties of a linear system allow the dynamics to be expressed in terms of matrix

multiplication. Therefore, the constant coefficient matrices A and B are introduced:

ẋ = A x+B u (3.3)

For the current dynamics one would obtain:

[

ẋ1

ẋ2

]

=

[

0 1

0 −1

] [

x1

x2

]

+

[

0

1

]

u (3.4)

Without going deeper into the details of the theory of Linear Quadratic Regulators

it can be said that an infinite time-horizon regulator will solve the following Optimal

Control problem (for R and Q being square matrices of appropriate size):

min
u

J [x, u] :=

∫

∞

0

1

2
u⊤R u+

1

2
(x− xf)

⊤Q (x− xf) dt (3.5)

ẋ = A x+B u (3.6)

0 = x(t → ∞)− xf (3.7)

22 Chapter 3 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

Note that the matrix R is symmetric, positive definite and that the matrix Q has

to be symmetric, positive semidefinite [Nai02]. This is to ensure convexity of the

resulting variational problem. For the sake of simplicity we choose R and Q to be

identity matrices of appropriate size, which, in this example, leads to [1×1] and [2×2]

respectively.

min
u

J [x, u] :=

∫

∞

t0

u2 + x2
1 + x2

2 dt (3.8)

[

ẋ1

ẋ2

]

=

[

x2

−x2 + u

]

(3.9)

0 = x(tf) (3.10)

Here, it is the objective to steer the state x from an arbitrary location to the location

0. Note that it is usual in control engineering to treat state variables equal and

independently of their actual unit. By closer examination of a problem, the cost

function is usually constructed with multipliers of certain units to ensure the cost

functional to have a legitimate unit. The solution to the above problem can be revealed

by solving the Algebraic Riccati Equation [Nai02]:

u(x) = −x1 − x2 (3.11)

With this control law, the dynamics receive an attractor at the desired location, for

arbitrary initial conditions:

Figure 3.2: Dynamical system with LQR

The cost functional (3.2) shall now be examined more closely. The quadratic depen-

dency of u, for example, is artificially introduced to ensure that the Euler-Lagrange

Equation can be applied (a convex function is needed). It is not optimal with respect

to the actual control task, however, as there is no technical or economic reason to

minimize the integral of the square of the control effort4. Moreover the terms x2
1 + x2

2

4There exist certain tasks in electrical engineering where the system equations are in fact linear
and the squared control effort is actually sought to be minimized. This has to do with Ohm’s Law
and arises for minimum energy problems: P = UI = RI2 (The current I is the control variable)

Chapter 3 Wolfgang Flachberger 23

A FEM Approach for solving the HJB Equation

are actually endpoint constraints as they have to be zero at the end (desired location

in state space). It is not optimal to minimize the time integral of the squared error

which is the reason Optimal Control handles endpoint constraints as a boundary con-

dition and not as a running cost. The LQR is very elegant as it allows to express a

strategy via simple matrix multiplications but it is not optimal with respect to ac-

tual engineering tasks, even when the system equations are linear (which usually is

not the case). Optimal Control, on the other hand, obtains even for simple linear

problems like the one above boundary value problems that require elaborate solution

techniques. To implement an optimal controller the engineer also has to define the

task more accurately, for example, controlling the craft in such a way that it halts

exactly at the location zero and gets there in as little time as possible or with as little

energy effort as possible. The minimum time problem for example can be formulated

as follows:

min
u

J [x, u, tf] =

∫ tf

0

dt (3.12)

[

ẋ1

ẋ2

]

=

[

x2

−x2 + u

]

(3.13)

0 = x(tf) (3.14)

−1 ≤ u(t) ≤ 1 (3.15)

The solution to the minimum time problem is now presented with an image borrowed

from Hale and Lasalle5[HL63]:

Figure 3.3: Time-optimal control with the semiuniversal curve C

5The graphic is actually taken from Isaacs [Isa65] who also borrowed it from Hale and Lasalle.

24 Chapter 3 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

For the green region of the state space the optimal control effort is the maximum

which is u = 1 whereas for the red region it is the minimum with u = −1. In

Control Engineering a control law of this type is called a Bang-Bang-Control. Another
remarkable feature of this Optimal Strategy, as it is called in game theory, is that every

regular path through the state space the system can take ends on the semiuniverssal
curve C which is also the location where the control switches its sign. The Curve C
is actually the only path that reaches the endpoint as every other trajectory ends up

on C.

3.4 Advantages of the Finite Element Method in

Optimal Control

The Finite Element Method can not only be used to solve boundary value problems

but also to build simple linear models of the original problems. These models are

of course only linear and easy to solve if the original PDE exhibits a linear operator

which explains the linearization efforts applied to the HJB Equation in the next chap-

ter. If the linearization of the HJB Equation and the application of the Finite Element

Method succeeds then it is also possible to express the whole stiffness matrix of a cer-

tain control task linearly dependent on a set of parameters occurring in the dynamical

system. This dependence could be realized by simple matrix multiplication:

K = C K∗ (3.16)

This possibility would enable the even more general and powerful concept of Adaptive
Control. During the control process an algorithm could compare the calculated sys-

tem behaviour with the actual data from the sensory apparatus and update certain

parameters when they change (for example friction coefficients or the mass if a robot

picks something up etc.). If the FE-analysis of the HJB Equation succeeds the new

information could be incorporated easily even for nonlinear dynamical systems. An-

other interesting feature of the FEM in control theory is that by having a payoff of

endpoint or Mayer type, the actual control purpose is not defined until the boundary

conditions are applied. Hence it would be possible to solve many different optimal

control maneuvers for one system in little time which is of special interest for robotics.

Chapter 3 Wolfgang Flachberger 25

Chapter 4

Problem Modifications for the

Finite Element Analysis

4.1 Linearity of the Control Hamiltonian

4.1.1 Bang-Bang-Control

In Engineering and especially in Mechanical Engineering, the Control Hamiltonian is

usually linear with respect to the Control Vector u. This is mainly due to the fact

that one takes control over a mechanical system by acting on a force or directly on

the acceleration of certain Degrees of Freedom. These are quantities that occur as

linear terms in Newtons Law of Motion and, therefore, they also occur linearly in

the Control Hamiltonian. Even considering mechatronic systems, where electric cur-

rent or voltage is controlled, we can assume the dynamics to be linear in u because

the equations that describe the behaviour of electric motors are usually also linear in

u. The second reason for the linearity of the Control Hamiltonian is related to the

running cost function, or, the Lagrangian Cost Function F (x, u). Most engineering

problems are concerned with minimizing the time for a certain maneuver and/or mak-

ing it as energy efficient as possible. For the minimal time problem the running cost

function is simply F := 1 and therefore not dependent on u. The efficiency problem

is mainly concerned with expressing F as the momentary power input to the system

(the time integral of F should give the energy input). In mechanical as well as in

electrical engineering the power can be expressed as linear combination of measurable

or controlled quantities. Therefore, we can assume that a large class of engineering

problems possesses a Control Hamiltonian that is linear with respect to u. Another

feature of engineering problems is that usually every control variable has an upper

and lower limit. In Control Engineering this is called Box-Constraints. Together with
the linearity of the Control Hamiltonian the Box-Constraints result in what is called

a Bang-Bang-Control. This is a Control Law that acts in its constrained extremum

only. Every control variable of the Control Vector takes either its maximum value,

minimum value or the value zero. Bang-Bang-Controls are known to act aggressively

and perform better than Linear-Quadratic-Regulators. This is due to the fact that

Bang-Bang-Controls are the result of solving the ’real’ optimization problem and not

a simplified one where the convexity of the Control Hamiltonian is artificially imposed

by introducing a quadratic cost functional, such as for the LQR.

26

A FEM Approach for solving the HJB Equation

The linearity of the Control Hamiltonian is the reason why one can’t simply use the

Euler-Lagrange-Equations to formulate the necessary optimality conditions and need

Pontryagin’s Principle to get a grip on the problem. But as shall be shown later, the

Engineering Problem will reveal one crucial advantage over quadratic problems in the

numerical treatment of the HJB Equation.

4.1.2 The Rocket example and another Lagrangian

We consider the introduction example ’Efficient Landing of a Rocket’ and its formu-

lation as Optimal Control Problem from section 1.2.3 with a slight manipulation of

the cost functions:

min
u

J [x(·), u(·)] = −m(tf) (4.1)

ḣ
v̇
ṁ

 =

v
u
m
− g

− u
w

 (4.2)

(0, 0) = (h(tf), v(tf)) (4.3)

(h(0), v(0),m(0)) = (h0, v0,m0) (4.4)

0 ≤ u(t) ≤ umax (4.5)

As can be seen the cost functional has changed from Lagrange to Mayer type. The

solution to the problem will nevertheless be equivalent as:

∫ tf

0

u(t)

w
dt =

∫ tf

0

−ṁ(t) dt = −m(tf) +m0 (4.6)

As predicted, the Control Hamiltonian of the problem is linear in u:

H := ph · v + pv ·
(u

m
− g
)

+ pm ·
(

−
u

w

)

(4.7)

H := phv − pvg +
(pv
m

−
pm
w

)

· u (4.8)

To minimize H with respect to u for 0 ≤ u ≤ umax we introduce the Lagrangian of
the Hamiltonian1 H:

H := phv − pvg +
(pv
m

−
pm
w

)

· u+ µu (4.9)

Here, µ denotes a Lagrange Multiplier. For linear optimization problems the value

of u that minimizes H can either be 0 or umax depending on the present values of

parameters and state variables. To express the minimizing value u as a function of

parameters and state variables we differentiate the Lagrangian of the Hamiltonian and

set its value to zero:

∂H

∂u
= 0 ⇒ µ =

pm
w

−
pv
m

(4.10)

1In this context Lagrangian simply refers to a function that has to be minimized in terms of
mathematical optimization methods. It is not related to the Lagrangian of Theoretical Mechanics.

Chapter 4 Wolfgang Flachberger 27

A FEM Approach for solving the HJB Equation

The minimizing value of u is now dependent on the sign of µ. To handle this mathe-

matically we define the Heavisside Function as:

η(x) :=

{

1 for x > 0

0 for x ≤ 0
(4.11)

The u minimizing H can now be formulated as:

u∗ := −umax η
(pm
w

−
pv
m

)

(4.12)

This leads to the Lower Control Hamiltonian:

H := phv − pvg − umax

(pv
m

−
pm
w

)

· η
(pm
w

−
pv
m

)

(4.13)

Before formulating the Hamilton Jacobi Bellman Equation we change the name of the

state variables to emphasize that we are dealing with a PDE:

x =

x1

x2

x3

 =

h
v
m

 Sx =

∂S/∂x1

∂S/∂x2

∂S/∂x3

 =

ph
pv
pm

 (4.14)

With these changes the Hamilton Jacobi Bellman Equation becomes:

0 = H (4.15)

0 =
∂S

∂x1

x2 −
∂S

∂x2

g − umax

(

∂S

∂x2

1

x3

−
∂S

∂x3

1

w

)

· η

(

∂S

∂x3

1

w
−

∂S

∂x2

1

x3

)

(4.16)

It has to be solved with the following boundary conditions:

S(x) = −x3 {x ∈ Ω : x1 = 0, x2 = 0} (4.17)

With the solution S(x) the optimal strategy can be formulated:

u∗(x) := −umax η

(

∂S(x)

∂x3

1

w
−

∂S(x)

∂x2

1

x3

)

(4.18)

Note that, because of the special features of the function η, the operator of the PDE

(4.16) becomes piecewise linear. The reasoning behind this assumption follows in

section 4.3.

4.1.3 A unified Solution for Engineering Problems

In the previous sections the term Engineering Problem was loosely defined as Opti-

mal Control problem with a Control Hamiltonian linear with respect to u. We now

introduce a mathematical clarification. The Author suggests to name the following

type of Optimal Control problem the Engineering Problem:

min
u(t)

J [x(·)] : =

∫ tf

t0

F (x(t)) dt+ E(x(tf)) (4.19)

ẋ = f(x, u) (4.20)

0 = e (x(tf)) (4.21)

0 ≤ u(t) ≤ a (4.22)

28 Chapter 4 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

where the gradient of the dynamics f with respect to u results in a matrix M(x) that
is not dependent on u:

f := f(x, u) (4.23)

∇u f⊤ := M(x) (4.24)

Note that also the running cost function F has no explicit dependence on u. This is

necessary to simplify the further numerical treatment of the problem. An explanation

for this follows in section 4.3.1. Ways to fit the standard cost functions into the

Engineering Problem are discussed in section 4.2.1 . Another important feature of the

Engineering Problem is that the control vector u is box constrained with each control

variable ui from zero to its maximum value ai. Therefore, as the problem results in a

Bang-Bang-Control, the control results in an on/off-switching scheme. Having defined

the problem we proceed by forming the Control Hamiltonian and minimizing it with

respect to the control vector:

H := F (x) +∇xS(x) · f(x, u) (4.25)

H := F + f⊤∇xS + µ⊤u (4.26)

∇uH := (∇u f⊤)∇xS + µ = 0 (4.27)

⇒ u∗ := −a η
(

(∇u f⊤)∇xS
)

(4.28)

The unified Hamilton-Jacobi-Bellman Equation for the Engineering Problem can now

be expressed compactly as:

F (x) +∇xS(x) · f(x, u
∗) = 0 (4.29)

u∗ := −a η
(

(∇u f⊤)∇xS
)

(4.30)

with the boundary condition:

S(x) = E(x) {x ∈ Ω : e(x) = 0} (4.31)

In section 2.1.1 it was shown how to transform a general Optimal Control problem

into the stationary Optimal Control problem. In the next section it will be explained

how and why we can fit every technically relevant Control Problem into the formalism

of the Engineering Problem.

4.2 Problem Modifications

4.2.1 Lagrange and Mayer Cost

As the Engineering Problem requires the running cost function F to be a function of

the state x only, a method to transform a cost function of Lagrange (or running) type

to one of Mayer (or endpoint) type, is presented. Considering the following Optimal

Control problem with F := F (x, u):

min
u

J [x(·), u(·), tf] : =

∫ tf

t0

F (x(t), u(t)) dt (4.32)

ẋ = f(x, u) (4.33)

0 = e(x(tf)) (4.34)

x(t0) = x0 (4.35)

Chapter 4 Wolfgang Flachberger 29

A FEM Approach for solving the HJB Equation

We can attach the running cost function to the dynamics by introducing a new state

variable xn+1:

min
u

J [x(·), u(·), tf] : = E(x(tf)) = xn+1(tf) (4.36)

[

ẋ
ẋn+1

]

=

[

f(x, u)
F (x, u)

]

(4.37)

0 = e(x(tf)) (4.38)
[

x(t0)
xn+1(t0)

]

=

[

x0

0

]

(4.39)

This works because:

xn+1(tf) =

∫

ẋn+1 dt+ c =

∫

F (x, u) dt+ c (4.40)

This is a method presented in [Isa65]. In many fields such as game theory a cost

function of Mayer type brings certain advantages in the analysis. It also brings inter-

esting possibilities for the FEM treatment of Optimal Control problems. By having a

terminal cost function only, the optimization purpose is not defined until the bound-

ary conditions are applied. Hence, having the stiffness matrix defined, many different

control problems and maneuvers can be calculated in little time.

4.2.2 Example of a nonlinear Hamiltonian: Thrust-Vector

Control

As Optimal Control Theory is applied to many aerospace engineering problems we

consider a simple spacecraft that is controlled by acting directly on its thrust (u1) and

the angle (u2) under which the thrust force acts. Furthermore, gravitational force as

well as Newton-drag act on the craft:

Figure 4.1: Thrust vector controlled aircraft 1

ẋ
v̇x
ẏ
v̇y

=

vx
−u1

m
cos (u2)−

c
m
v2x

vy
−u1

m
sin (u2)−

c
m
v2y − g

(4.41)

30 Chapter 4 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

Note that the dynamics of the spacecraft is clearly nonlinear as the angle of the jet

nozzle is a control variable. In Game Theory it’s common to control such an angle

directly although it is not realistic. Technically it would take some time to readjust

the jet nozzle of the craft. One opportunity to tackle this problem is to control the

angular velocity of the angle of attack directly. As a consequence, the angle of attack

becomes a state variable:

Figure 4.2: Thrust vector controlled aircraft 2

Modification of the equations of motion reveals a new system that is clearly linear

with respect to u:

ẋ
v̇x
ẏ
v̇y
ϕ̇

=

vx
−u1

m
cos (ϕ)− c

m
v2x

vy
−u1

m
sin (ϕ)− c

m
v2y − g

k(u2 − u3)

(4.42)

The author believes that all technical control problems can be boiled down to simple

on/off switching processes of various actuators. As a result the HJB Equation becomes

a piecewise linear PDE and therefore manageable by linear Finite Element Methods.

Hence it is reasonable to put effort in problem modification practices as described in

this chapter.

4.3 Piecewise Linearity of the Hamilton-Jacobi-

Bellman Equation

4.3.1 Weighted Residual Methods for the HJB

Consider the following Engineering Problem:

min
u

J [x(·), u(·)] =

∫ tf

0

dt (4.43)

[

ẋ1

ẋ2

]

=

[

x2

u1 − u2

]

(4.44)

0 = x(tf) (4.45)

0 ≤ u1(t) ≤ 1 (4.46)

0 ≤ u2(t) ≤ 1 (4.47)

Chapter 4 Wolfgang Flachberger 31

A FEM Approach for solving the HJB Equation

This example can be interpreted as the problem of steering an electric car from an

arbitrary location and velocity to standstill at location zero as quickly as possible.

Applying the unified HJB for Engineering Problems reveals:

u∗ := −η
(

(∇u f⊤)∇xS
)

(4.48)

u∗ := −η

([

0 1

0 −1

] [

Sx1

Sx2

])

(4.49)

u∗ :=

[

−η(Sx2)

−η(−Sx2)

]

(4.50)

By taking a closer look at the HJB Equation of the problem it can be seen that the

Heaviside Functions (η(·)) can be condensed to the modulus function (| · |):

F +∇xS · f ∗ = 0 (4.51)

1 + Sx1x2 + Sx2(u
∗

1 − u∗

2) = 0 (4.52)

1 + Sx1x2 + Sx2 (−η(Sx2) + η(−Sx2)) = 0 (4.53)

1 + Sx1x2 − |Sx2 | = 0 (4.54)

|Sx2 | − Sx1x2 = 1 (4.55)

The Function | · | is a piecewise linear and continuous function. To make a statement

about its integrability the sign function is introduced:

sgn(x) :=

1 for x > 0

0 for x = 0

−1 for x < 0

(4.56)

The application of the Finite Element Method requires integrability which is satisfied

by the magnitude function as well as the Heaviside Function:

∫

|x| dx =
1

2
x2 sgn(x) + c for x ∈ R (4.57)

∫

η(x) dx =
1

2
(|x|+ x) + c for x ∈ R (4.58)

Regarding differentiability and linearity of the functions, the following statements can

be made:

d

dx
|x| = const. for x ∈ R \ {0} (4.59)

⇒ linearity of |x| for x ∈ R \ {0} (4.60)

d

dx
η(x) = 0 for x ∈ R \ {0} (4.61)

⇒ η(x) = const. for x ∈ R \ {0} (4.62)

Obviously, |·| is linear for every input but zero and η(·) is linear and constant for every

input but zero. Due to this and the way these functions appear in the HJB equation

for Engineering Problems, the author concludes that these PDEs are suitable for linear

finite element methods and suggests to call their operators piecewise linear. Therefore,

32 Chapter 4 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

the HJB Equation for Engineering Problems takes the form of a piecewise linear PDE

of first order that allows the application of a linear weighted residuals FE-Method:

k
(e)
ij =

∫

Ω(e)

(∣

∣

∣

∣

∂hi

∂ξ1

∣

∣

∣

∣

−
∂hi

∂ξ0
x1

)

w(hj) dΩ
(e) (4.63)

f
(e)
j =

∫

Ω(e)

w(hj) dΩ
(e) (4.64)

With hi := hi(x) being interpolation functions, for example the following linear basis

functions for a four-node quadrilateral element:

h0(ξ) = (1 + ξ0)(1 + ξ1)/4 (4.65)

h1(ξ) = (1 + ξ0)(1− ξ1)/4 (4.66)

h2(ξ) = (1− ξ0)(1 + ξ1)/4 (4.67)

h3(ξ) = (1− ξ0)(1− ξ1)/4 (4.68)

The assumption that the linear treatment of the nonlinear operator | · | will lead to

valid results is firstly based on the fact that it is at least piecewise linear and secondly

that a solution of the HJB is strictly positive (0 ≤ S(x) ∀x ∈ Ω). As S(x) represents
the cost it takes to move from an arbitrary state x to a desired state, it follows that it

cannot take less than zero effort to reach the specified state. Therefore the following

statement is always satisfied:
∣

∣

∣

∣

si
∂hi

∂ξk

∣

∣

∣

∣

= si

∣

∣

∣

∣

∂hi

∂ξk

∣

∣

∣

∣

(4.69)

It seems as if the operator allows the application of the linear Finite Element Method

but by examining the problem closer it can be seen that the algorithm would not be

carried out free of errors as:
∣

∣

∣

∣

∣

n
∑

i=0

si
∂hi

∂ξk

∣

∣

∣

∣

∣

6=

n
∑

i=0

si

∣

∣

∣

∣

∂hi

∂ξk

∣

∣

∣

∣

(4.70)

This is the main reason why the finite element treatment of these problems fails, as

will be shown by various experiments in the next Chapter. Unfortunately, even the

theoretically correct nonlinear FE-application fails as the iterative adaptation of the

stiffness matrix does not converge for the piecewise linear PDE2. It seems like the mag-

nitude operator is generally unsuitable to be treated by the Finite Element Method.

Moreover does the whole family of Weighted Residual Methods even for simple test

problems not show enough reliability. Every solution would have to be examined by

an engineer, just like by using DIDO, which makes WR-Methods unattractive for the

development of a straightforward Optimal Control software.

4.4 A Ritz Approach for the HJB Equation

Although weighted residual methods are convenient to use they often lack reliability

when it comes to mesh convergence. Ritz’s Method on the other hand obtains reliable

2The calculation was carried out with the open source software ”FEniCS” [Aln+15] [LMW+12]
[LM19] trying both, the Galerkin and the Least Squares Method (both unsuccessful)

Chapter 4 Wolfgang Flachberger 33

A FEM Approach for solving the HJB Equation

solutions even when the element order is low and the elements are relatively big.

The only drawback of the method is that the operator of the PDE is required to be

symmetric and strictly positive. To achieve this the strictness on optimality of the

previous sections is discarded and the following quadratic cost functional is introduced:

S[x, u, p] :=

∫ tf

t0

α

2
u2 + F (x, u) + p · (f(x, u)− ẋ) dt (4.71)

Here, F and f are both linear with respect to u. Note that later in the analysis

one could choose α → 0 to meet the aim of the original optimization purpose. The

functional is closely related to the functional used to derive a feedback control law

known as Linear Quadratic Regulator which is, together with PID-Regulators3, still

the state of the art for common industrial applications [Ros09]. It is also informative to

mention that for this functional the (ODE) optimality conditions are simply derived

by applying the Euler-Lagrange Equation with respect to x, u and p. The Control

Hamiltonian of the problem is the following:

H(x, u, p) :=
α

2
u2 + F (x, u) + p · f(x, u) (4.72)

Obviously, as the functional is a polynomial of degree two in u the Hamiltonian
Minimization Condition (HMC), is easy to satisfy:

HMC: ∇uH = 0 =⇒ u∗(x, p) (4.73)

u∗(x, p) = −
1

α
∇u(F + f · p) (4.74)

This leads to the following nonlinear Hamilton-Jacobi-Bellman Equation:

α

2
u∗2 + F (x, u∗) + p · f(x, u∗) = 0 (4.75)

A nonlinear problem formulation is not desirable as it doesn’t feature the advantages

of linear algebraic systems mentioned throughout the last chapters. It is nevertheless

reasonable to consider what happens if p is approached by a finite element discretiza-

tion as follows:

p = Sx = ∇S ≈ ∇

(

n
∑

i=0

sihi(x)

)

= p̂ (4.76)

Obviosly an approximation of this form will cause a residual and it is therfore natural

to formulate another optimization problem. This time the target is to choose the

design variables si of the approximation in such a way that the residual is minimized.

Here the residual is denoted by J :

J(s) :=

∫

Ω

α

2
u∗(x, p̂)2 + F (x, u∗(x, p̂)) + p̂ · f(x, u∗(x, p̂)) dΩ (4.77)

This leads to a finite dimensional optimization problem, which, as the cost function

is a polynomial of degree two, can be solved simply by taking partial derivatives.

3PID-Regulators are the simplest form of feedback control system. PID refers to the control law’s
dependency on the state using a proportional, integral and differential dependency of the former.
See [Nai02] for more information.

34 Chapter 4 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

δJ(s) :=
∂J

∂s
· δs = 0 =⇒

∂J

∂si
= 0 for i = 0,1,2,..,n (4.78)

To be precise, it is actually a Ritz Method which minimizes not an energy functional

but a residual statement (not a weighted residual statement, as the actual error and

not the weighted error is minimized). This is, to the authors knowledge, a new

approach. As the degree of the polynomial is two, the method will result in a simple

linear system. The partial derivatives only have to be computed for one element to

obtain a reproducible element stiffness matrix and element load vector. The scheme

to compute the components of the ESM and ELV is presented for a 2 dimensional

4-node quadrilateral element:

J(s) := J(s0, s1, s2, s3) (4.79)

(4.80)

f0 := −
∂J

∂s0
(0, 0, 0, 0) (4.81)

k00 :=
∂J

∂s0
(1, 0, 0, 0) + f0 (4.82)

k01 :=
∂J

∂s0
(0, 1, 0, 0) + f0 (4.83)

k02 :=
∂J

∂s0
(0, 0, 1, 0) + f0 (4.84)

k03 :=
∂J

∂s0
(0, 0, 0, 1) + f0 (4.85)

f1 := −
∂J

∂s1
(0, 0, 0, 0) (4.86)

k10 :=
∂J

∂s1
(1, 0, 0, 0) + f1 (4.87)

k11 :=
∂J

∂s1
(0, 1, 0, 0) + f1 (4.88)

k12 :=
∂J

∂s1
(0, 0, 1, 0) + f1 (4.89)

k13 :=
∂J

∂s1
(0, 0, 0, 1) + f1 (4.90)

Chapter 4 Wolfgang Flachberger 35

Chapter 5

Coding a Finite Element Solver in

n Dimensions

Before the FE-Approaches of the last chapters can be tested, a general framework for

the Finite Element treatment of Control Problems has to be developed. The most

profound difference to the usual application of FE-Methods, is that for dynamic op-

timization purposes the PDEs have to be solved in a state space and not in the usual

three-dimensional space. For mechanical systems the state space usually has twice the

number of dimensions as the number of degrees of freedom that the system shows. As

for the most common type of Finite Element, the n-simplex, the meshing complex-

ity rises drastically with the dimension there will have to be restrictions concerning

element-type and degree of the used elements. An advantage regarding simplicity

over the problems of continuum mechanics however, is that the mesh generation and

application of boundary conditions will be easier as the state space is usually just an

n-dimensional box.

5.1 The Poisson Equation

It seems to have become a tradition to introduce a new Finite Element Software by

applying it to the Poisson Equation. The scalar function u(x) is required to satisfy

the following PDE for a given function q(x):

∇2u(x) + q(x) = 0

The Poisson Equation can be derived by minimization of the following functional:

J [u] :=

∫

Ω

1

2
|∇u|2 − uq dΩ

The necessary condition for a minimum of the functional requires the directional

derivative of J with respect to u in the direction of the test function ν to vanish:

δJ [u; ν] :=
∂

∂ǫ

∫

Ω

1

2
(∇u+ ǫ∇ν)2 − (u+ ǫν)q dΩ

∣

∣

∣

∣

ǫ=0

= 0

36

A FEM Approach for solving the HJB Equation

This leads to the variational or weak form of the Poisson Equation:

∫

Ω

∇u · ∇ν dA =

∫

Ω

q ν dA

The Ritz Method makes use of the weak form by directly computing the element

stiffness matrix and element load vector from it:

e
∑

i=1

ui

∫

Ω(e)

∇hi · ∇hj dx =

∫

Ω(e)

hj q dx

k(e)u(e) = f (e)

k(e) =

∫

Ω(e)

∇hi · ∇hj dx

f (e) =

∫

Ω(e)

hj q dx

In the following section the Poisson equation will be solved in a two dimensional

domain by a Finite Element Method. Note that this method would also work for an

arbitrary number of dimensions with computing power being the only limitation.

5.2 Dissection of the Code

5.2.1 Treating multiple dimensions

Regarding the arbitrary number of dimensions the software has to cope with the most

important feature to make use of is function numpy.ndindex(). It returns all indices

of an array of arbitrary shape:

[1]: import numpy

array_shape = (2,2,2) # shape of a 3-dimensional matrix of length 2 in each

→֒dimension

for indices in numpy.ndindex(array_shape):

print(indices)

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

It can be used to iterate quickly over every element in an n dimensional array.

Chapter 5 Wolfgang Flachberger 37

A FEM Approach for solving the HJB Equation

5.2.2 Initialisation of the mesh

As mentioned in Chapter 4, n-dimensional cube elements shall be used. One might

also call them n-dimensional square elements - the idea of extending the concept to

n dimensions stays the same and is easily accomplished, which is also the reason the

author chose this type of element. Trying to use the n dimensional equivalent of the

constant strain triangle, which means filling an n-dimensional space with n-simplex

elements, is mathematically challenging and requires a profound knowledge in mesh

generation. The mesh object will be initialized by just the two inputs domain and

resolution. The state space in optimal control is usually a simple n-dimensional box

which makes the mesh generation really simple. The input domain is a list of n tuples

with two entries each. The entries of the first tuple mark where the domain begins

and ends relative to the first spacial axis, respectively.

[2]: # example 1: unit cube

domain = [(0,1),(0,1),(0,1)]

example 2: rectangle (it will be used for further calculations!)

domain = [(0,2),(0,1)]

The second input, resolution, refers to the side length of the n-cube elements the

domain is filled with. To keep things simple all n-cubes are of the same size and the

domain is - if the n-cubes of side length resolution do not fit in perfectly - just

roughly approached by the elements. This is achieved by the following code:

[3]: resolution = 0.2

dimension = len(domain) # the length of the domain input corresponds to the

→֒number of axis of the domain

nr_el_dim = [] # initialize list with number of elements necessary per axis

nr_nd_dim = [] # initialize list with number of nodes necessary per axis

for index in range(dimension): # for every dimension

length = domain[index][1] - domain[index][0] # take length of "box"

nr_el_dim.append(int(length/resolution)) # approximate the domain

nr_nd_dim.append(nr_el_dim[index] + 1)

pass

nr_el_dim = tuple(nr_el_dim)

nr_nd_dim = tuple(nr_nd_dim)

number_elements = numpy.prod(nr_el_dim) # total amount of elements

DoF = numpy.prod(nr_nd_dim) # total amount of gloabal nodes (= DoFs)

print("Number of stacked elements per axis =",nr_el_dim)

print("Total number of elements used =",number_elements)

print("Total number of global nodes", DoF)

Number of stacked elements per axis = (10, 5)

Total number of elements used = 50

Total number of global nodes 66

We now know how many elements and nodes there are and how many elements we

need to stack upon each other in each axis direction. The next step is to assign

a number to every degree of freedom (node) and arrange the numbers in the same

38 Chapter 5 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

way the corresponding nodes are arranged in the mesh. It is then easy to find the

name (number) of a node as the elements of the mesh and the numbering array have

corresponding indices.

[4]: # initialize a list-array: 0, 1, 2,..

nodes = numpy.arange(DoF,dtype=int)

as it is not important how we call each node we can simply reshape "nodes"

node_names_global = numpy.reshape(nodes,(nr_nd_dim),order='C')

print("FE-Mesh:")

print("--------")

print(node_names_global)

FE-Mesh:

[[0 1 2 3 4 5]

[6 7 8 9 10 11]

[12 13 14 15 16 17]

[18 19 20 21 22 23]

[24 25 26 27 28 29]

[30 31 32 33 34 35]

[36 37 38 39 40 41]

[42 43 44 45 46 47]

[48 49 50 51 52 53]

[54 55 56 57 58 59]

[60 61 62 63 64 65]]

A general property of linear n-cubes is the relation between the dimension and the

number of nodes:

[5]: nodes_per_element = 2**dimension

print("Nodes per Element =",nodes_per_element)

Nodes per Element = 4

There is now enough information available to begin with the computation of the

coincidence table.

5.2.3 The coincidence table

The task is to achieve a reliable coincidence table for box-shaped cube-meshes of

arbitrary dimension.

Chapter 5 Wolfgang Flachberger 39

A FEM Approach for solving the HJB Equation

[6]: def coincidenceTable(number_elements, nodes_per_element, dimension, nr_el_dim,

→֒node_names_global):

""" coincidence_table[element,node] """

initialize coincidence table array

coincidence_table = numpy.zeros((number_elements,nodes_per_element),

→֒dtype=int, order='C')

i = 0 # set row count to zero

for element_indices in numpy.ndindex(nr_el_dim): # for every element

j = 0 # set local node count to zero

for node_indices in numpy.ndindex((2,)*dimension): # for every local

→֒node in elmenet

location = tuple([sum(x) for x in

→֒zip(element_indices,node_indices)])# find global location of node

coincidence_table[i,j] = node_names_global[location] # put node

→֒name to table

j += 1 # next element in row

pass

i += 1 # next row

pass

return coincidence_table

T = coincidenceTable(number_elements, nodes_per_element, dimension, nr_el_dim,

→֒node_names_global)

print("Coincidence Table:")

print("------------------")

print(T)

Coincidence Table:

[[0 1 6 7]

[1 2 7 8]

[2 3 8 9]

[3 4 9 10]

[4 5 10 11]

[6 7 12 13]

[7 8 13 14]

[8 9 14 15]

[9 10 15 16]

[10 11 16 17]

[12 13 18 19]

[13 14 19 20]

[14 15 20 21]

[15 16 21 22]

[16 17 22 23]

[18 19 24 25]

[19 20 25 26]

[20 21 26 27]

[21 22 27 28]

[22 23 28 29]

40 Chapter 5 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

[24 25 30 31]

[25 26 31 32]

[26 27 32 33]

[27 28 33 34]

[28 29 34 35]

[30 31 36 37]

[31 32 37 38]

[32 33 38 39]

[33 34 39 40]

[34 35 40 41]

[36 37 42 43]

[37 38 43 44]

[38 39 44 45]

[39 40 45 46]

[40 41 46 47]

[42 43 48 49]

[43 44 49 50]

[44 45 50 51]

[45 46 51 52]

[46 47 52 53]

[48 49 54 55]

[49 50 55 56]

[50 51 56 57]

[51 52 57 58]

[52 53 58 59]

[54 55 60 61]

[55 56 61 62]

[56 57 62 63]

[57 58 63 64]

[58 59 64 65]]

We begin with the dissection of the function. The for-loops indicate that we are going

through every element in the mesh and through every local node of each element. For

every local node we define a location:

[7]: # Example

element_indices = (0,1)

node_indices = (1,1)

location = tuple([sum(x) for x in zip(element_indices,node_indices)])

print("zip(element_indices,node_indices)

→֒=",tuple(zip(element_indices,node_indices)))

print("location =",location)

Chapter 5 Wolfgang Flachberger 41

A FEM Approach for solving the HJB Equation

zip(element indices,node indices) = ((0, 1), (1, 1))

location = (1, 2)

location is basically the actual location of the node in the meshgrid. The expres-

sion sum(x) for x in zip(element indices,node indices) can be understood as

vector addition for tuple objects. By putting location into node names global the

name of the node is returned. This vector becomes the row of the coincidence table

that corresponds to the element it was evaluated for. Because of the special features of

n-cubes the algorithm works for every given dimension and is limited just by software

factors like computation-power, storage and recursion-depth.

5.2.4 The sympy Toolbox

In following sections the sympy toolbox is introduced to perform analytical calculations

for problem formulation but also FE-related purposes. The advantage is clearly the

clean, non-numeric output of sympy but is obvious that there will occur restrictions

with rising number of DoFs and dimensions. For the purpose of this thesis, where the

aim is to test whether or not the Finite Element Method is even suitable for this type

of problems, the sympy-calculations will be sufficient. For extensive real-world use of

the software the functions that use sympy might be replaced with numeric functions.

Formulating the HJB without sympy in an automated manner could be realized by

first converting the analytic system dynamics to a polynomial of certain degree and

then splitting it up into a coefficient matrix and variable (Vandermonde) vector. It is

then natural to also make use of the special features of the Finite Element Method to

realize adaptive control concepts. But these practices exceed the scope of this thesis.

5.2.5 Interpolation-Functions

As we are using four node quadrilateral elements for the Poisson Problem the inter-

polation functions obtain the following form:

h0(ξ) = (1 + ξ0)(1 + ξ1)/4

h1(ξ) = (1 + ξ0)(1− ξ1)/4

h2(ξ) = (1− ξ0)(1 + ξ1)/4

h3(ξ) = (1− ξ0)(1− ξ1)/4

It has to be acknowledged that by building polynomials through multiplying terms

like (x + 1) it is very easy to place the roots. This fact can be used to ensure that

the function obtains zero values in nodes it doesn’t belong to. For cube elements of

dimension d and number of node per element N the computation of the interpolation

can be expressed as:

hk =
1

N

d−1
∏

i=0

(1± ξi)

where the sign used is dependent on the specific interpolation function, but it is

clear that every configuration has to be carried out once like in the two-dimensional

42 Chapter 5 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

case. The following code computes interpolation functions for elements of arbitrary

dimension by using the above considerations.

[8]: import sympy

XI = numpy.asarray(sympy.symbols('xi:' + str(dimension))) # initialize vector

→֒with local coordinates

def interpolationFunctions(XI, nodes_per_element, dimension, resolution):

""" interpolationfunction[localNode] """

h = sympy.ones(nodes_per_element,1)

i = 0

for localNodeIndices in numpy.ndindex((2,)*dimension):

for axis in range(dimension):

if localNodeIndices[axis] == 0:

factor = -1

else:

factor = 1

h[i] = h[i] * (1 + factor * XI[axis] * 2/resolution)

i += 1

h = h/nodes_per_element

return h

h = interpolationFunctions(XI, nodes_per_element, dimension, resolution)

from IPython.display import display

print("local coordinates:")

print("------------------")

for i in range(len(XI)):

display(XI[i])

print("interpolation functions:")

print("------------------------")

display(h)

local coordinates:

ξ0

ξ1

interpolation functions:

(1−10.0ξ0)(1−10.0ξ1)
4

(1−10.0ξ0)(10.0ξ1+1)
4

(1−10.0ξ1)(10.0ξ0+1)
4

(10.0ξ0+1)(10.0ξ1+1)
4

For Finite Element Problems where the variational formulation is a first order integral

PDE (just like the Poisson Equation or the Hamilton-Jacobi-Bellman Equation) the

first derivatives of the interpolation functions have to be computed:

Chapter 5 Wolfgang Flachberger 43

A FEM Approach for solving the HJB Equation

[9]: def interpolationFunctionsDerivatives(XI, h, nodes_per_element, dimension):

""" interpolationfunction[node, derivativeaxis] """

dh_dX = sympy.ones(nodes_per_element, dimension)

for index in range(nodes_per_element):

for axis in range(dimension):

dh_dX[index,axis] = sympy.diff(h[index], XI[axis])

return dh_dX

dh_dx = interpolationFunctionsDerivatives(XI, h, nodes_per_element, dimension)

print("derivatives of interpolation functions:")

print("---------------------------------------")

display(dh_dx)

derivatives of interpolation functions:

25.0ξ1 − 2.5 25.0ξ0 − 2.5
−25.0ξ1 − 2.5 2.5− 25.0ξ0
2.5− 25.0ξ1 −25.0ξ0 − 2.5
25.0ξ1 + 2.5 25.0ξ0 + 2.5

5.2.6 Problem Formulation

The following input script already makes use of the problem formulation scheme of

optimal control problems. In order to make the analogy more readable we rename the

functions occurring in the Poisson Equation in order to make it look like an optimal

control problem:

∇2S(x) + F (x) = 0

S(x) = E(x) {x ∈ Ω : e(x) = 0}

The domain Ω was already defined when the mesh array was initialized. The functions

F (x), e(x) and E(x) are defined here:

[10]: """ input skript """

running or "lagrangian" cost

def F(X):

x0 = X[0]

x1 = X[1]

F = 1

return F

define boundary (endpoint constraint)

def e(X_f):

xf0 = X_f[0]

xf1 = X_f[1]

e0 = xf0

e1 = 0

e = [e0, e1]

return e

44 Chapter 5 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

define boundary value (endpoint or "mayer" cost)

def E(X_f):

xf0 = X_f[0]

xf1 = X_f[1]

E = 0

return E

The used syntax is also common for ODEs in Python. Note that the user can formulate

every Optimal Control relevant constraint analogously to the analytical formulation.

For a general purpose FEM software this kind of input is not sufficient as it is not

possible to define complicated boundaries within this simple framework.

5.2.7 Variational Formulation

For the Poisson example the variational formulation of the operator equation can be

expressed simply by taking the dot product of the two symbolic vectors Sx and νx.

[11]: X = numpy.asarray(sympy.symbols('x:' + str(dimension)))

V = numpy.asarray(sympy.symbols('v_x:' + str(dimension)))

S_x = numpy.asarray(sympy.symbols('S_x:' + str(dimension)))

Au = numpy.dot(S_x, V) # Operator Equation

print("Variational Formulation of the Operator Equation:")

print("---")

display(Au)

Variational Formulation of the Operator Equation:

Sx0vx0 + Sx1vx1

5.2.8 ESM and ELV

As the specific Poisson example treated in this section is not explicitly dependent

on the coordinate frame and all elements have the same shape and orientation in

the domain, it follows, that every element has the same element stiffness matrix and

element load vector. Note that the algorithm could also treat problems where the

equation is explicitly dependent on the domain (on a global coordinate frame). The

Software handles such problems, other than most FE-Software-tools, by formulating

the ESM as a function of the domain. In the assembly every ESM is then evaluated

according to the specific location of the element. ESM and ELV are computed by

substituting Sx and νx with specific derivates of the interpolation functions (according

to the usual FE-scheme). Then every element of the arrays is integrated analytically

over the domain of one element.

Chapter 5 Wolfgang Flachberger 45

A FEM Approach for solving the HJB Equation

[12]: def elementStiffnessMatrixAnalytic(Au, V, S_x, h, dh_dx, X, XI,

→֒nodes_per_element, dimension, resolution):

evaluate componets of k_ij (not integrated jet)

k_ij = sympy.zeros(nodes_per_element,nodes_per_element)

for i in range(nodes_per_element):

for j in range(nodes_per_element):

sub = []

for k in range(dimension):

sub.append((S_x[k], dh_dx[i,k]))

sub.append((V[k], dh_dx[j,k]))

k_ij[i,j] = Au.subs(sub)

prepare substitution for coordinate transformation

x_to_xi = []

for j in range(dimension):

x_to_xi.append((X[j], XI[j] + X[j]))

transform to local coordinate frame and integrate

for indices in numpy.ndindex(k_ij.shape):

k_ij[indices] = k_ij[indices].subs(x_to_xi)

for i in range(dimension):

k_ij[indices] = sympy.integrate(k_ij[indices],(XI[i],-resolution/

→֒2,resolution/2))

return k_ij

k_ij = elementStiffnessMatrixAnalytic(Au, V, S_x, h, dh_dx, X, XI,

→֒nodes_per_element, dimension, resolution)

print("Elementstiffnessmatrix:")

print("-----------------------")

display(k_ij.evalf(3))

Elementstiffnessmatrix:

0.667 −0.167 −0.167 −0.333
−0.167 0.667 −0.333 −0.167
−0.167 −0.333 0.667 −0.167
−0.333 −0.167 −0.167 0.667

46 Chapter 5 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

[13]: def elementLoadVectorAnalytic(h, F, X, XI, nodes_per_element, dimension,

→֒resolution):

f_j = h * F(X)

prepare substitution for transformation

x_to_xi = []

for j in range(dimension):

x_to_xi.append((X[j], XI[j] + X[j]))

transform and integrate

for j in range(nodes_per_element):

f_j[j] = f_j[j].subs(x_to_xi)

for dim in range(dimension):

f_j[j] = sympy.integrate(f_j[j],(XI[dim], -resolution/2, resolution/

→֒2))

return f_j

f_j = elementLoadVectorAnalytic(h, F, X, XI, nodes_per_element, dimension,

→֒resolution)

print("Elementloadvector:")

print("------------------")

display(f_j)

Elementloadvector:

0.01
0.01
0.01
0.01

5.2.9 The Assembly

As mentioned before, the assembly-algorithm does not only build the stiffness matrix

and load vector from given vectors and matrices but also evaluates the element

matrix and element vector if they are passed to the assembly function as functions

of the global coordinate frame. assemble does this by converting the indices of an

element to the actual location of the element in the mesh. The variables are then

evaluated for the specific location of the mesh. The approach is unusual and is also

enabled and limited by the capabilities of sympy.

Chapter 5 Wolfgang Flachberger 47

A FEM Approach for solving the HJB Equation

[14]: def assemble(T, DoF, k_ij, f_j, X, nodes_per_element, resolution):

initialize transport arrays

k = numpy.zeros((nodes_per_element, nodes_per_element))

f = numpy.zeros((nodes_per_element, 1))

initialize stiffnessmatrix and loadvector of the whole system

K_ = numpy.zeros((DoF,DoF))

F_ = numpy.zeros((DoF,1))

el = 0 # element counter

for e_index in numpy.ndindex(nr_el_dim): # for every element

prepare substitution for element

evaluate = []

e_location = numpy.asarray(e_index) * resolution + numpy.

→֒ones(dimension)*resolution

for i in range(dimension):

evaluate.append((X[i], e_location[i]))

evaluate k_ij and f_j for element

for indices in numpy.ndindex((nodes_per_element, nodes_per_element)):

k[indices] = k_ij[indices].subs(evaluate)

for j in range(nodes_per_element):

f[j,0] = f_j[j].subs(evaluate)

assemble K_ and F_

for k_index in numpy.ndindex((nodes_per_element, nodes_per_element)):

i = T[el,k_index[0]]

j = T[el,k_index[1]]

K_[i,j] += k[k_index] #round(k[k_index],1)

for f_index in range(nodes_per_element):

F_[T[el,f_index],0] += f[f_index,0] #round(f[f_index,0],1)

el += 1 # next element

return K_, F_

K_, F_ = assemble(T, DoF, k_ij, f_j, X, nodes_per_element, resolution)

numpy.set_printoptions(precision=3)

print("Stiffnessmatrix:")

print("----------------")

print(K_)

Stiffnessmatrix:

[[0.667 -0.167 0. ... 0. 0. 0.]

[-0.167 1.333 -0.167 ... 0. 0. 0.]

[0. -0.167 1.333 ... 0. 0. 0.]

...

[0. 0. 0. ... 1.333 -0.167 0.]

[0. 0. 0. ... -0.167 1.333 -0.167]

[0. 0. 0. ... 0. -0.167 0.667]]

48 Chapter 5 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

5.2.10 Applying the Boundary Condition

The following function searches nodes that lie on the defined boundary by evaluation

of the boundary function e for every location of every node. If the boundary

function returns the null-vector then the corresponding node lies on the bound-

ary. the function returns then the names, indices and locations of the boundary-nodes.

[15]: def boundaryNodes(e, domain, nr_nd_dim, dimension, resolution):

node_locations_global = numpy.zeros(nr_nd_dim + (dimension,))

initialPoint = []

for i in range(dimension):

initialPoint.append(domain[i][0])

initialPoint = numpy.asarray(initialPoint)

for indices in numpy.ndindex(nr_nd_dim):

step = numpy.asarray(list(indices))

node_locations_global[indices] = initialPoint + step * resolution

boundary_nodes = []

boundary_node_indices = []

length = len(e(node_locations_global[indices]))

for indices in numpy.ndindex(nr_nd_dim):

if e(node_locations_global[indices]) == list((0,)*length):

boundary_nodes.append(node_names_global[indices])

boundary_node_indices.append(indices)

if boundary_nodes == []:

print("ERROR: no boundary nodes found.")

return boundary_nodes, boundary_node_indices, node_locations_global

bNodes, bNodeInd, nodeLoc = boundaryNodes(e, domain, nr_nd_dim, dimension,

→֒resolution)

print("Boundary Node (Names) =",bNodes)

print("Boundary Node Indices =",bNodeInd)

#print("Boundary Node Locations :")

#print("-------------------------")

#print(nodeLoc)

Boundary Node (Names) = [0, 1, 2, 3, 4, 5]

Boundary Node Indices = [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0,

→֒5)]

Now the boundary condition is applied. The solution vector U is first initialized as

array of zeros. Then the known values are put in to the solution vector. Therefore,

the boundary value function E is evaluated for the locations of the boundary nodes.

The resulting values are then placed in the correct position of U . After this a matrix

product K U is calculated. The result is subtracted from the load vector F . This

procedure is necessary for non-zero boundary values. Afterwards the columns and

rows that correspond to known values of U are deleted from the system of equations

in order to compute the remaining part of U by inverting K and multiplying it with

the load vector. afterwards, the known boundary values of the solution vector are

substituted back and U is reshaped for the visualization.

Chapter 5 Wolfgang Flachberger 49

A FEM Approach for solving the HJB Equation

[16]: from numpy.linalg import inv

def applyBoundaryCondition(K_, F_, E, DoF, bNodes, bNodeInd, nodeLoc, nr_nd_dim):

U_ = numpy.zeros((DoF,1))

i = 0

for node in bNodes:

U_[node] = E(nodeLoc[bNodeInd[i]])

i += 1

delta_F = numpy.dot(K_,U_)

F_ = F_ - delta_F

delete rows with fixed U values from the system of equations

K_ = numpy.delete(K_, bNodes, 0)

K_ = numpy.delete(K_, bNodes, 1)

F_ = numpy.array([numpy.delete(F_, bNodes)]).T

solve system of equations

U_ = numpy.dot(inv(K_), F_)

insert boundary values

bvals =[]

for i in bNodeInd:

bvals.append(E(nodeLoc[i]))

for i in bNodes:

U_ = numpy.insert(U_, i, bvals[i])

U_ = numpy.array([U_]).T

S = numpy.reshape(U_,(nr_nd_dim),order='C')

return S

S = applyBoundaryCondition(K_, F_, E, DoF, bNodes, bNodeInd, nodeLoc, nr_nd_dim)

print("FE-Solution:")

print("------------")

print(S)

FE-Solution:

[[0. 0. 0. 0. 0. 0.]

[0.38 0.38 0.38 0.38 0.38 0.38]

[0.72 0.72 0.72 0.72 0.72 0.72]

[1.02 1.02 1.02 1.02 1.02 1.02]

[1.28 1.28 1.28 1.28 1.28 1.28]

[1.5 1.5 1.5 1.5 1.5 1.5]

[1.68 1.68 1.68 1.68 1.68 1.68]

[1.82 1.82 1.82 1.82 1.82 1.82]

[1.92 1.92 1.92 1.92 1.92 1.92]

[1.98 1.98 1.98 1.98 1.98 1.98]

[2. 2. 2. 2. 2. 2.]]

50 Chapter 5 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

[17]: import matplotlib.pyplot as plt

S = numpy.flipud(S.T)

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(S, origin='lower', extent=[0, 2, 0, 1],vmax=abs(S).max(),

→֒vmin=abs(S).min())

cbar = plt.colorbar(im)

cbar.set_label('S(x,y)')

ax.set_ylabel('y')

ax.set_xlabel('x')

plt.show()

Figure 5.1: Output: FE-Solution of the Poisson Equation with low resolution mesh

for Dirichlet boundary condition u(x = 0, y) = 0 and u(x = 2, y) = 2.

Error =

(
∫

Ω

(∇2S(x)− F)2dΩ

)
1
2

[18]: Laplace_S = numpy.zeros(S.shape)

F = numpy.ones(S.shape) * 2

for i in range(dimension):

Laplace_S += numpy.gradient(numpy.gradient(S)[i]/resolution)[i]/resolution

Error = 0

for indices in numpy.ndindex(S.shape):

Error += (Laplace_S[indices]+F[indices])**2 * resolution**dimension

Error = Error**0.5

print("Error:")

print("------")

print(Error)

Chapter 5 Wolfgang Flachberger 51

A FEM Approach for solving the HJB Equation

Error:

1.8734993995195384

The above results can be verified by comparing them to the analytical solution of the

same problem. Therefore, the developed software can be used to solve linear PDEs

where the variational form is not dependent on boundary integrals and only Dirichlet

boundary conditions have to be applied.

52 Chapter 5 Wolfgang Flachberger

Chapter 6

Experiments and Results

6.1 The ARTOC Toolbox

To use the code of the former section in a more compact and practical way a simple

library called artoc1 is introduced. To test it the Poisson problem is revisited:

[1]: from IPython.display import display

import matplotlib.pyplot as plt

from artoc import *

import numpy

import sympy

numpy.set_printoptions(precision=2)

numpy.set_printoptions(suppress=True)

""" input skript """

define mesh

domain = [(0,2),(0,1)]

resolution = 0.02

define boundary

def e(X_f):

xf0 = X_f[0]

xf1 = X_f[1]

e0 = xf0

e1 = 0

e = [e0, e1]

return e

define boundary value

def E(X_f):

xf0 = X_f[0]

xf1 = X_f[1]

E = 0

return E

1A.R.T.O.C. stands for Adaptive Real-Time Optimal Control referring to the capacity of the
method to also enable adaptive control

53

A FEM Approach for solving the HJB Equation

define weak formulation

dimension = len(domain) # dimension of the state space

v = sympy.Symbol('v') # test function

V_x = numpy.asarray(sympy.symbols('v_x:' + str(dimension)))

S_x = numpy.asarray(sympy.symbols('S_x:' + str(dimension)))

Au_v = numpy.dot(S_x, V_x)

f_v = v

OperatorEq = sympy.Eq(Au_v - f_v, 0)

print("Variational Formulation of the Operator Equation:")

print("---")

display(OperatorEq)

Variational Formulation of the Operator Equation:

Sx0vx0 + Sx1vx1 − v = 0

As all key-classes and functions of artoc were already imported using the command

from artoc import * the user can now initialize a mesh object simply by calling

the function mesh which simply takes the input domain and resolution. Now the

user can attach further requirements and commands to the mesh-object. In the code

below the mesh-object is assigned to the variable m. To solve the Poisson equation

in the defined mesh the user can simply call the function m.solveWeakForm() and

input the symbolic functions according to the following syntax:

[2]: m = mesh(domain, resolution) # initialize mesh object

S = m.solveWeakForm(Au_v, f_v, e, E) # solve weak form in defined mesh

print(S)

S = numpy.flipud(S.T)

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(S,extent=[0, 2, 0, 1],vmax=S.max(), vmin=S.min())

cbar = plt.colorbar(im)

cbar.set_label('S(x,y)')

ax.set_ylabel('y')

ax.set_xlabel('x')

plt.show()

[[0. 0. 0. ... 0. 0. 0.]

[0.04 0.04 0.04 ... 0.04 0.04 0.04]

[0.08 0.08 0.08 ... 0.08 0.08 0.08]

...

[2. 2. 2. ... 2. 2. 2.]

[2. 2. 2. ... 2. 2. 2.]

[2. 2. 2. ... 2. 2. 2.]]

54 Chapter 6 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

Figure 6.1: Output: FE-Solution to the Poisson Equation with high resolution mesh

[3]: Laplace_S = numpy.zeros(S.shape)

F = numpy.ones(S.shape) * 2

for i in range(dimension):

Laplace_S += numpy.gradient(numpy.gradient(S)[i]/resolution)[i]/resolution

Error = 0

for indices in numpy.ndindex(S.shape):

Error += (Laplace_S[indices]+F[indices])**2 * resolution**dimension

Error = Error**0.5

print("Error:")

print("------")

print(Error)

Error:

1.4609414772709162

As expected the error in the numerical solution is reduced by increasing the number

of finite elements used for the calculation.

6.2 The Poisson Equation in four dimensions

To test artoc’s capability to solve higher dimensional PDEs another Poisson example

is considered. This time the objective is to solve the Equation in a four dimensional

unit cube. By calling additional features of artoc the drastic increase of nodes per

element and interpolation functions can be viewed:

Chapter 6 Wolfgang Flachberger 55

A FEM Approach for solving the HJB Equation

[4]: domain = [(0,1),(0,1),(0,1),(0,1)]

resolution = 0.2

m = mesh(domain, resolution)

print("Nodes per Element:",m.nodes_per_element)

print("Global Nodes (DoF):", m.number_nodes)

Nodes per Element: 16

Global Nodes (DoF): 1296

[5]: display(m.interpolationFunctions())

(1−10.0ξ0)(1−10.0ξ1)(1−10.0ξ2)(1−10.0ξ3)
16

(1−10.0ξ0)(1−10.0ξ1)(1−10.0ξ2)(10.0ξ3+1)
16

(1−10.0ξ0)(1−10.0ξ1)(1−10.0ξ3)(10.0ξ2+1)
16

(1−10.0ξ0)(1−10.0ξ1)(10.0ξ2+1)(10.0ξ3+1)
16

(1−10.0ξ0)(1−10.0ξ2)(1−10.0ξ3)(10.0ξ1+1)
16

(1−10.0ξ0)(1−10.0ξ2)(10.0ξ1+1)(10.0ξ3+1)
16

(1−10.0ξ0)(1−10.0ξ3)(10.0ξ1+1)(10.0ξ2+1)
16

(1−10.0ξ0)(10.0ξ1+1)(10.0ξ2+1)(10.0ξ3+1)
16

(1−10.0ξ1)(1−10.0ξ2)(1−10.0ξ3)(10.0ξ0+1)
16

(1−10.0ξ1)(1−10.0ξ2)(10.0ξ0+1)(10.0ξ3+1)
16

(1−10.0ξ1)(1−10.0ξ3)(10.0ξ0+1)(10.0ξ2+1)
16

(1−10.0ξ1)(10.0ξ0+1)(10.0ξ2+1)(10.0ξ3+1)
16

(1−10.0ξ2)(1−10.0ξ3)(10.0ξ0+1)(10.0ξ1+1)
16

(1−10.0ξ2)(10.0ξ0+1)(10.0ξ1+1)(10.0ξ3+1)
16

(1−10.0ξ3)(10.0ξ0+1)(10.0ξ1+1)(10.0ξ2+1)
16

(10.0ξ0+1)(10.0ξ1+1)(10.0ξ2+1)(10.0ξ3+1)
16

The problem formulation looks the same as in any number of dimensions due to the
syntax of sympy:

[7]: # define weak formulation

dimension = len(domain) # dimension of the state space

v = sympy.Symbol('v') # test function

V_x = numpy.asarray(sympy.symbols('v_x:' + str(dimension)))

S_x = numpy.asarray(sympy.symbols('S_x:' + str(dimension)))

Au_v = numpy.dot(S_x, V_x)

f_v = v

OperatorEq = sympy.Eq(Au_v - f_v, 0)

print("Variational Formulation of the Operator Equation:")

print("---")

display(OperatorEq)

Variational Formulation of the Operator Equation:

Sx0vx0 + Sx1vx1 + Sx2vx2 + Sx3vx3 − v = 0

56 Chapter 6 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

As four dimensional problems can’t be visualized properly only the error-norm is
computed for the solution.

[9]: S = m.solveWeakForm(Au_v, f_v, e, E) # solve weak form in defined mesh

Laplace_S = numpy.zeros(S.shape)

F = numpy.ones(S.shape) * 2

for i in range(dimension):

Laplace_S += numpy.gradient(numpy.gradient(S)[i]/resolution)[i]/resolution

Error = 0

for indices in numpy.ndindex(S.shape):

Error += (Laplace_S[indices]+F[indices])**2 * resolution**dimension

Error = Error**0.5

print("Error:")

print("------")

print(Error)

Error:

1.823842098428484

As the computed error is close to the error of the two dimensional Poisson example

with the same element size, which was obviously correct, the author concludes that

the algorithm works properly.

6.3 Weighted Residual Methods for the piecewise

linear HJB

6.3.1 Automated formulation of the HJB

In order to develop a user-friendly Optimal Control software the problem formulation

was also automated as far as possible (again with the sympy toolbox). The following

input script contains all the information about the Optimal Control problem from

section 3.3.

[10]: """ input skript """

define mesh

domain = [(-1,1),(-1,1)]

resolution = 0.2

dimension = len(domain)

dynamic constraint f := f(X,U)

def f(X,U):

u0 = U[0]

u1 = U[1]

x0 = X[0]

x1 = X[1]

dx0_dt = x1

dx1_dt = - x1 + u0 - u1

X_dot = [dx0_dt, dx1_dt]

return X_dot

Chapter 6 Wolfgang Flachberger 57

A FEM Approach for solving the HJB Equation

u_max = [1,1] # max values of the control vector

running cost F := F(X)

def F(X):

x0 = X[0]

x1 = X[1]

F = 1

return F

endpoint constraint e := e(X_f) = 0

def e(X_f):

xf0 = X_f[0]

xf1 = X_f[1]

e0 = xf0

e1 = xf1

e = [e0, e1]

return e

endpoint cost E := E(X_f)

def E(X_f):

xf0 = X_f[0]

xf1 = X_f[1]

E = 0

return E

As can be seen the operator of the HJB Equation can be formulated automatically

by a function dependent on the dynamics. For more information on this function see

Appendix B.

[11]: from artoc import *

Au = HJB_piecewiseLinear(f, dimension, u_max)

display(Au)

Sx0x1 − Sx1 (x1 + 1.0 sign (Sx1))

The remaining Part of the equation is simply the running cost function F (x).

6.3.2 Galerkin’s Method

artoc is designed to resemble the analytical integral equations of the theory behind

the finite element method. Therefore, having the operator defined, it is reasonable

to define a symbolic test-function v and formulate the weighted integral statement

according to Galerkin’s Method.

[12]: m = mesh(domain, resolution) # initialize mesh object

v = sympy.Symbol('v') # test function

X = numpy.asarray(sympy.symbols('x:' + str(dimension)))

S = m.solveWeakForm(Au*v,-F(X)*v, e, E) # solve weak form in defined mesh

print(S)

S = numpy.flipud(S.T)

58 Chapter 6 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(S,extent=[-1, 1, -1, 1],vmax=S.max(), vmin=S.min())

cbar = plt.colorbar(im)

cbar.set_label('S(x,y)')

ax.set_ylabel('y')

ax.set_xlabel('x')

plt.show()

[[0.12 0.07 0.04 0.06 0. 0.06 -0.01 0.05 -0.03 0.07 -0.06]

[0.13 0.09 0.15 0.07 0.14 0.04 0.11 0.03 0.13 -0. 0.1]

[0.09 0.13 0.08 0.15 0.08 0.17 0.09 0.16 0.03 0.18 -0.13]

[0.14 0.08 0.15 0.06 0.15 0.03 0.12 0.02 0.2 -0.08 0.17]

[0.07 0.16 0.06 0.18 0.07 0.2 0.11 0.24 -0.04 0.26 -0.21]

[0.16 0.05 0.18 0.02 0.15 0. 0.1 -0.1 0.29 -0.17 0.26]

[0.04 0.19 0.03 0.24 0.06 0.4 0.05 0.47 -0.16 0.37 -0.31]

[0.21 0.01 0.22 -0.08 0.17 -0.28 0.1 -0.32 0.3 -0.21 0.3]

[-0.02 0.25 -0.01 0.38 0.08 0.63 0.2 0.71 -0.1 0.44 -0.38]

[0.29 -0.09 0.25 -0.27 0.08 -0.6 -0.11 -0.73 0.22 -0.36 0.42]

[-0.14 0.41 0. 0.67 0.26 1.1 0.55 1.26 0.15 0.6 -0.48]]

Figure 6.2: Output: Invalid Galerkin-solution due to the piecewise linear HJB Equa-

tion with low resolution mesh. The Dirichlet boundary condition was applied only on

a single node: u(0, 0) = 0 (as required by the problem formulation).

As can be seen the generated solution is invalid, which is due to the wrong assumption

that piecewise linear PDEs can be solved via the linear Finite Element Method (for

a detailed explanation see section 4.3.1). To ensure that the experiment did not only

fail due to mesh convergence issues the calculation was also carried out for a finer

mesh:

Chapter 6 Wolfgang Flachberger 59

A FEM Approach for solving the HJB Equation

[13]: resolution = 0.02

m = mesh(domain, resolution) # initialize mesh object

S = m.solveWeakForm(Au*v,-F(X)*v, e, E) # solve weak form in defined mesh

S = numpy.flipud(S.T)

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(S,extent=[-1, 1, -1, 1],vmax=S.max(), vmin=S.min())

cbar = plt.colorbar(im)

cbar.set_label('S(x,y)')

ax.set_ylabel('y')

ax.set_xlabel('x')

plt.show()

Figure 6.3: Output: Invalid Galerkin-solution due to the piecewise linear HJB Equa-

tion with high resolution mesh. The Dirichlet boundary condition was applied only

on a single node: u(0, 0) = 0 (as required by the problem formulation).

6.3.3 The Least Squares Method

The Least Squares Method for linear problems can be viewed as a special case of

the Weighted Residual Method where the weight function is the operator equation in

dependence of a test function. The method can be derived by squaring the integral

operator equation and minimizing it with respect to the design variables. According

to that it is the only other method, in addition to Ritz’s Method, that is based on

the minimization of a functional [Red84]. Therefore, the weighting function can be

simply generated by substituting the operator equation with test functions. Of course

the resulting element stiffness matrix will be quadratically dependent on x.

[14]: V_x = numpy.asarray(sympy.symbols('v_x:' + str(dimension)))

w = Au.subs([(S_x[0],V_x[0]),(S_x[1],V_x[1])]) # weight function

k, f = m.ESM_ELV_weak(Au*w,-F(X)*w)

display(k.evalf(1))

60 Chapter 6 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

0.2x2
1 − 0.2x1 + 0.3 −0.2x2

1 + 0.5x1 + 0.3 −0.2x2
1 − 0.3x1 + 0.2 0.2x2

1 + 0.2
−0.2x2

1 + 0.5x1 + 0.3 1.0x2
1 + 1.0x1 + 0.3 0.2− 0.8x2

1 −0.2x2
1 + 0.3x1 + 0.2

−0.2x2
1 − 0.3x1 + 0.2 0.2− 0.8x2

1 1.0x2
1 − 1.0x1 + 0.3 −0.2x2

1 − 0.5x1 + 0.3
0.2x2

1 + 0.2 −0.2x2
1 + 0.3x1 + 0.2 −0.2x2

1 − 0.5x1 + 0.3 0.2x2
1 + 0.2x1 + 0.3

[15]: resolution = 0.2

m = mesh(domain, resolution) # initialize mesh object

S = m.solveWeakForm(Au*w,-F(X)*w, e, E) # solve weak form in defined mesh

print(S)

S = numpy.flipud(S.T)

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(S,extent=[-1, 1, -1, 1],vmax=S.max(), vmin=S.min())

cbar = plt.colorbar(im)

cbar.set_label('S(x,y)')

ax.set_ylabel('y')

ax.set_xlabel('x')

plt.show()

[[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

[0.11 0.09 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

[0.12 0.08 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

[0.12 0.08 0.11 0.09 0.11 0.1 0.08 0.1 0.1 0.1 0.1]

[0.09 0.11 0.09 0.1 0.12 0. 0.11 0.1 0.1 0.1 0.1]

[0.07 0.12 0.09 0.11 0.08 0.1 0.11 0.1 0.1 0.1 0.1]

[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]]

Figure 6.4: Output: Invalid Least-Squares-solution of the piecewise linear HJB Equa-

tion with low resolution mesh. The Dirichlet boundary condition was applied only on

a single node: u(0, 0) = 0.

Chapter 6 Wolfgang Flachberger 61

A FEM Approach for solving the HJB Equation

Just like for the Galerkin Method, the solution is obviously invalid.

[16]: resolution = 0.02

m = mesh(domain, resolution) # initialize mesh object

S = m.solveWeakForm(Au*w,-F(X)*w, e, E) # solve weak form in defined mesh

S = numpy.flipud(S.T)

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(S,extent=[-1, 1, -1, 1],vmax=S.max(), vmin=S.min())

cbar = plt.colorbar(im)

cbar.set_label('S(x,y)')

ax.set_ylabel('y')

ax.set_xlabel('x')

plt.show()

Figure 6.5: Output: Invalid Least-Squares-solution of the piecewise linear HJB Equa-

tion with high resolution mesh. The Dirichlet boundary condition was applied only

on a single node: u(0, 0) = 0.

6.4 The Ritz Method

The Ritz Method is usually used when a Problem can be posed as boundary value

problem as well as variational problem. The variational problem can then be solved

directly by introducing interpolation functions and design variables with respect to

which the functional can be minimized. The difference of the following approach is

that the integral form of the discretized HJB Equation is minimized by a similar

method. This is natural as the HJB was modified in order to be quadratic; after

differentiation this leads to a liner system of equations. To the authors knowledge, this

is a new approach. The following code formulates the HJB Equation for a quadratic

cost functional as introduced in section 4.4.

62 Chapter 6 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

[17]: from artoc import *

def F(X,U):

u0 = U[0]

u1 = U[1]

x0 = X[0]

x1 = X[1]

F = 1

return F

dynamic constraint f := f(X,U)

def f(X,U):

u0 = U[0]

u1 = U[1]

x0 = X[0]

x1 = X[1]

dx0_dt = x1

dx1_dt = - x1 + u0 - u1

X_dot = [dx0_dt, dx1_dt]

return X_dot

dimension = 2

W = HJB_quadraticCost(f, F, dimension, 2)

display(W)

Sx0x1 +
S2
x1

α
+ Sx1

(

−
2Sx1

α
− x1

)

+ 1

artoc also provides a function which directly minimizes quadratic functionals and

computes the element load vector and element stiffness matrix. Due to the algorithm

only the element load vector is explicitly dependent on the global coordinate frame.

[18]: alpha = sympy.Symbol('alpha')

W = W.subs(alpha,1)

k, f = m.ESM_ELV_ritz(W)

display(k)

−0.666666666666667 0.666666666666667 −0.333333333333333 0.333333333333333
0.666666666666667 −0.666666666666667 0.333333333333333 −0.333333333333333
−0.333333333333333 0.333333333333333 −0.666666666666667 0.666666666666667
0.333333333333333 −0.333333333333333 0.666666666666667 −0.666666666666667

Unfortunately this method did not lead to valid results either. It is now obvious that

it is not possible to minimize the error produced by a Finite Element discretization

directly. Such practices have to be approached just like in the least squares method

where the square of the produced error is minimized.

[19]: domain = [(0,1),(0,1)]

resolution = 0.2

m = mesh(domain, resolution)

S = m.solveRitz(W, e, E)

print(S)

Chapter 6 Wolfgang Flachberger 63

A FEM Approach for solving the HJB Equation

S = numpy.flipud(S.T)

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(S,extent=[0, 1, 0, 1],vmax=S.max(), vmin=S.min())

cbar = plt.colorbar(im)

cbar.set_label('S(x,y)')

ax.set_ylabel('y')

ax.set_xlabel('x')

plt.show()

[[0.00e+00 -7.85e-01 -1.63e+00 -2.31e+00 -2.84e+00 -3.10e+00]

[-4.70e-01 -4.57e-01 -1.59e-01 -6.19e-02 2.20e-03 -2.85e-02]

[-1.90e+09 -1.90e+09 -1.90e+09 -1.90e+09 -1.90e+09 -1.90e+09]

[3.54e+10 3.54e+10 3.54e+10 3.54e+10 3.54e+10 3.54e+10]

[-2.19e+12 -2.19e+12 -2.19e+12 -2.19e+12 -2.19e+12 -2.19e+12]

[-4.50e+15 -4.50e+15 -4.50e+15 -4.50e+15 -4.50e+15 -4.50e+15]]

Figure 6.6: Output: Invalid modified Ritz-solution of the piecewise linear HJB Equa-

tion with low resolution mesh. The Dirichlet boundary condition was applied only on

a single node: u(0, 0) = 0.

[20]: resolution = 0.02

m = mesh(domain, resolution)

S = m.solveRitz(W, e, E)

S = numpy.flipud(S.T)

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(S,extent=[0, 1, 0, 1],vmax=S.max(), vmin=S.min())

cbar = plt.colorbar(im)

cbar.set_label('S(x,y)')

ax.set_ylabel('y')

ax.set_xlabel('x')

plt.show()

64 Chapter 6 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

Figure 6.7: Output: Invalid modified Ritz-solution of the piecewise linear HJB Equa-

tion with high resolution mesh

As mentioned in section 4.4 the piecewise HJB Equation could also not be solved by

the nonlinear Finite Element Method. One could be lead to believe that by using

a quadratic functional the resulting PDE of this section would be more suitable for

nonlinear methods (due to the quadratic dependencies). Unfortunately a nonlinear

Galerkin Method for the above problem was also not successful. The calculations were

performed by FEniCS and the error newton solver did not converge was encountered.

6.5 A Splitting Method

Consider the following PDEs where equation (6.1) is the Hamilton-Jacobi-Bellman

Equation for the optimal control problem of section 4.3.1:

|Sx1 |+ Sx0 · x1 = 0 (6.1)

Sx1 + Sx0 · x1 = 0 (6.2)

−Sx1 + Sx0 · x1 = 0 (6.3)

Due to the special features of the magnitude operator the following statements must

be true:

• A solution of equation (6.2) is also a solution to equation (6.1) for every x for

which S(x) ≥ 0 is statisfied.

• A solution of equation (6.3) is also a solution to equation (6.1) for every x for

which S(x) < 0 is statisfied.

This gives rise to the opportunity to find solutions to the piecewise liner HJB by

splitting it up into two linear problems. After finding a solution to each problem

Chapter 6 Wolfgang Flachberger 65

A FEM Approach for solving the HJB Equation

the resulting strategies can be overlayed to find the solution to the original Optimal

Control problem. This procedure shall now be tested for the above problem using the

least squares Finite Element Method in FEniCS. First the used functions are defined:

[21]: import numpy

import matplotlib.pyplot as plt

import matplotlib.cm as cm

def toArray(fenicsSolution, length, a, b):

x = numpy.linspace(a, b, length)

y = numpy.linspace(a, b, length)

S = numpy.zeros((length, length))

for i in range(length):

for j in range(length):

S[i,j] = fenicsSolution(x[j], y[i])

S = numpy.flipud(S)

return S

def ReLU(array):

for indices in numpy.ndindex(array.shape):

if array[indices] < 0.0:

array[indices] = 0.0

else:

pass

return array

def sgn(array):

for indices in numpy.ndindex(array.shape):

if array[indices] < 0.0:

array[indices] = -1.0

elif array[indices] > 0.0:

array[indices] = 1.0

else:

pass

return array

def heav(array):

for indices in numpy.ndindex(array.shape):

if array[indices] > 0.0:

array[indices] = 1.0

else:

array[indices] = 0.0

return array

The function toArray is introduced to convert the FEniCS solution object to a simple

numpy array for processing purposes. The function ReLU2 is a function that returns the

input array if the entries are positive. If not, the negative entries are replaced with the

value zero. The functions sgn and heav are the standard sign and Heaviside functions.

The following script solves the two linear problems by making use of FEniCS:

2ReLU stands for Rectified Linear Unit

66 Chapter 6 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

[40]: from fenics import *

a = -1

b = 1

mesh = RectangleMesh(Point(a, a), Point(b, b), 100, 100)

V = FunctionSpace(mesh, 'CG', 2)

Define boundary condition

tol = 0.04 # tolerance for finding boundary nodes

def boundary(x):

return near(x[0], 0, tol) and near(x[1], 0, tol)

bc = DirichletBC(V, Constant(0.0), boundary)

Define variational problem

u = TrialFunction(V)

v = TestFunction(V)

f = Constant(1.0)

y = Expression('x[1]', degree=1)

a1 = (u.dx(1) - u.dx(0)*y)*(v.dx(1) - v.dx(0)*y)*dx

a2 = (-u.dx(1) - u.dx(0)*y)*(-v.dx(1) - v.dx(0)*y)*dx

L1 = f*(v.dx(1) - v.dx(0)*y)*dx

L2 = f*(-v.dx(1) - v.dx(0)*y)*dx

Compute solution

u1 = Function(V)

u2 = Function(V)

solve(a1 == L1, u1, bc)

solve(a2 == L2, u2, bc)

plot(u1)

plt.show()

Chapter 6 Wolfgang Flachberger 67

A FEM Approach for solving the HJB Equation

Figure 6.8: Output: FEniCS generated Least-Squares-solution to equation (6.2)

[41]: plot(u2)

plt.show()

Figure 6.9: Output: FEniCS generated Least-Squares-solution to equation (6.3)

To make use of the output, it has to be defined where the individual solutions are also a

solution to equation (6.1). By taking the partial derivative in y-direction and applying

the ReLu function to the solution of equation (6.2), one obtains the subdomain where

68 Chapter 6 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

the solution is also a solution to equation (6.1). For the solution to equation (6.3) the

procedure works analogously.

[42]: length = 20

S1 = toArray(u1, length, -1, 1)

S2 = toArray(u2, length, -1, 1)

S1_y = -numpy.gradient(S1)[0]

S2_y = -numpy.gradient(S2)[0]

plt.figure(dpi=120)

color_map = plt.imshow(ReLU(S1_y), extent=[-1, 1, -1, 1])

plt.colorbar()

plt.show()

Figure 6.10: Output: Modification of the solution to equation (6.2): ReLU(∂S
∂y
)

[43]: plt.figure(dpi=120)

color_map = plt.imshow(ReLU(-S2_y), extent=[-1, 1, -1, 1])

plt.colorbar()

plt.show()

Chapter 6 Wolfgang Flachberger 69

A FEM Approach for solving the HJB Equation

Figure 6.11: Output: Modification of the solution to equation (6.3): ReLU(−∂S
∂y
)

Unfortunately, the solutions are not defined everywhere in the domain and are often

contradictory. The control law is dependent on the partial derivatives of the solution:

u = heav(
∂S

∂y
) (6.4)

By obeying each individual solution and overlaying the resulting strategies, the fol-

lowing incomplete strategy is revealed:

[44]: u = -(heav(S1_y)-heav(-S2_y))

u = numpy.flipud(u)

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(u, cmap=cm.RdYlGn,

origin='lower', extent=[-1, 1, -1, 1],

vmax=abs(u).max(), vmin=-abs(u).max())

cbar = plt.colorbar(im)

cbar.set_label('$u(x_0,x_1)$')

ax.set_ylabel('velocity x_1')

ax.set_xlabel('location x_0')

plt.show()

70 Chapter 6 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

Figure 6.12: Output: Incomplete strategy to satisfy equation (6.1)

As can be seen, the solutions are correct in the regions where they are not contradic-

tory. It is nevertheless not a valid strategy as the dynamics of the problem shows:

[45]: x0_ = numpy.linspace(a, b, length)

x1_ = numpy.linspace(a, b, length)

U = u

x0_dot = numpy.zeros((length, length))

x1_dot = numpy.zeros((length, length))

for i in range(length):

for j in range(length):

x0_dot[i,j] = x1_[i]

x1_dot[i,j] = U[i,j]

ig, ax = plt.subplots(dpi=120)

im = ax.imshow(u, cmap=cm.RdYlGn,

origin='lower', extent=[-1, 1, -1, 1],

vmax=abs(u).max(), vmin=-abs(u).max())

ax.quiver(x0_, x1_, x0_dot, x1_dot)

ax.set_aspect('equal', 'box')

ax.set_ylabel('velocity x_1')

ax.set_xlabel('location x_0')

cbar = plt.colorbar(im)

cbar.set_label('$u(x_0,x_1)$')

plt.show()

Chapter 6 Wolfgang Flachberger 71

A FEM Approach for solving the HJB Equation

Figure 6.13: Output: Incomplete strategy to satisfy equation (6.1) including the

dynamics-vectorfield.

72 Chapter 6 Wolfgang Flachberger

Chapter 7

A new Approach

7.1 Convergence and Convexity

As was shown in the last Chapters the linearization efforts of the HJB turned out

to be a dead end. The HJB is nonlinear and has to be treated as such. The Finite

Element Method for nonlinear problems requires the variational form to be convex in

order to apply methods such as the Newton-Raphson-Algorithm. The requirement is

due to the fact that there has to be mathematically accessible information of how to

iteratively reduce the residual of the approximation and to approach a numerical solu-

tion. In order to achieve the convexity for problems that are nonlinear but not convex

such as the piecewise linear HJB, the so called Macaulay Bracket can be applied. This

method is common in continuum mechanics and is used to consider geometric con-

straints such as Hertzian contact and also to model plasticity. These phenomena have

one thing in common with the box constraints encountered in Optimal Control The-

ory: They constitute a special case called Karush-Kuhn-Tucker-Conditions (KKT).

These conditions constrain a certain quantity to a minimum and maximum value and

have no consequence to the functional when the value of the quantity is somewhere

in between these values. The Macaulay Bracket elegantly applies these constraints

while maintaining convexity. In modelling plasticity the stress is the constrained to

a maximum value whereas in Optimal Control the control vector is constrained. The

author ran several FE-Simulations in FEniCS using the described method for simple

test problems such as in Chapter 6. The outcome was however disillusioning as it

became clear that the boundary conditions delivered by the Optimal Control Prob-

lem itself are not sufficient to generate a numerical solution. For the algorithm to

converge towards a solution the input to the problem has to be provided along with

the boundary value on the whole mathematical boundary of the state space. These

boundary values are usually unknown and to find them the canonical equations of the

problem would have to be solved for every point on the boundary, which, needless

to say, results in extraordinary effort and is therefore not feasible. Note that it is,

however, possible to solve the canonical equations with the Macaulay bracket. In

fact, by comparing solutions, it seems as if DIDO does the very same thing: Using

the Macaulay bracket. It is informative to mention that the boundary conditions in

the experiment were found by finding an analytical solution beforehand. Moreover

it seemed that even preparing the problem already with the required boundary con-

73

A FEM Approach for solving the HJB Equation

ditions did not guarantee the convergence of the algorithm. An initial guess of the

function had to be applied which was not too close from the analytical solution. Ini-

tializing the function with all zero entries (which is usual in FEM) led to convergence

issues and often returned the zero-function. Hence it is clear that also by treating

the HJB nonlinear as it is, the Finite Element Method will not reliably find solutions.

In the following section an alternative to solving the HJB directly is presented, that

highly rests upon the theory of the Linear Quadratic Regulator.

7.2 The Linear Quadratic Regulator revisited

It is imperative to understand that the procedure of finding a Linear Quadratic Reg-

ulator actually solves the corresponding HJB. It is however unusual to introduce the

method by using the HJB as it is easier and more straightforward by deriving it by

application of the Euler-Lagrange-Equations or the canonical equations. A deriva-

tion using the HJB can however by found in [Nai02] which is also the source for the

following derivation. Consider the following Optimal Control Problem:

∫

∞

0

1

2
u⊤R u+

1

2
x⊤Q x+ p⊤(A x+B u− ẋ) dt (7.1)

Therefore the Control Hamiltonian becomes:

H :=
1

2
u⊤R u+

1

2
x⊤Q x+ p⊤(A x+B u) (7.2)

Note that the Problem is convex in u if R is a real, symmetric, positive definite

matrix [Nai02]. Therefore, by choosing R as such, minimization of the Hamiltonian

is performed by computing the gradient with respect to u:

∂H

∂u
:= R u+B⊤p = 0 ⇒ u∗ = −R−1B⊤p (7.3)

Substitution into the control Hamiltonian gives the lower control Hamiltonian:

H :=
1

2
(R−1B⊤p)⊤R R−1B⊤p+

1

2
x⊤Q x+ p⊤(A x− B R−1B⊤p) (7.4)

H :=
1

2
p⊤B R−1B⊤p+

1

2
x⊤Q x+ p⊤A x− p⊤B R−1B⊤p (7.5)

H := −
1

2
p⊤B R−1B⊤p+

1

2
x⊤Q x+ p⊤A x (7.6)

The ingenious step in deriving the algebraic Riccati equation (ARE) is ”guessing” the

solution to the Lagrange multiplier p to be of the following linear form, depending

only on x:

74 Chapter 7 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

p = P x (7.7)

Where P is a constant symmetric matrix. After substitution, the following HJB has

to be satisfied:

−
1

2
x⊤P⊤B R−1B⊤P x+

1

2
x⊤Q x+ x⊤P⊤A x = 0 (7.8)

Note that, as every occurring matrix expression has to be multiplied by x from both

sides, one can argue, that if the condition has to be satisfied for every x, just the

following quadratic matrix equation has to be satisfied by P :

−
1

2
P⊤B R−1B⊤P +

1

2
Q+ P⊤A = 0 (7.9)

As P is a symmetric matrix the above equation can multiplied by two and then be

rearranged to fit the standard way it is presented in the literature:

P A+ A⊤P − P⊤B R−1B⊤P +Q = 0 (7.10)

This is called the Algebraic- or Matrix-Riccati-Equation and it can in many cases be

solved conveniently by e.g. the Newton-Raphson-Method. Note that the equation is

convex in the unknown P which makes the algorithm convergent and that there are as

many equations as unknowns with allows unambiguous solutions. The method is due

to its reliability and elegance widespread in control engineering. The only drawback is

of course the simple linear form the dynamic equations have to satisfy. It is neverthe-

less clear that all kinds of information, also information of nonlinear dynamics, could

in principle be stored in matrix form. Of course, to hold the information, the ma-

trices to store that kind of information must be significantly bigger than usual linear

dynamical systems. In data science it is common to replace a complicated dynamical

system with few degrees of freedom with a linear system with an enormous amount of

variables that somehow describe the state (for example a neural network; it is actually

just a linear dynamical system). The problem with these practices however is, that

they are for one extremely calculation-intensive and, more importantly, there is no

mathematical guarantee whatsoever, that the obtained system will always be a proper

description of the actual dynamics. In the following, a reliable and convenient way to

produce these kind of matrices is presented, that relies not on data but on profound

mathematical principles. This method will but be calculation-intensive as well.

Chapter 7 Wolfgang Flachberger 75

A FEM Approach for solving the HJB Equation

7.3 The Liouville Equation

As mentioned throughout the previous chapters, an arbitrary dynamical system can

be very well interpreted as a vector field. Now consider a particle moving through a

state space, with its motion being guided and entirely determined by this vector field.

One can easily add further particles to this abstraction that move independently from

each other but still are governed by the same dynamics. Extending this idea further

and further one ends up with a density distribution over the whole valid region of the

state space, that changes continuously and, at each location, represents the probability

to encounter a particle at a given time. Of course, as we are dealing now with a

multidimensional scalar function and not with a vector, the equations that deliver the

motion of the probability-density-function must now be of PDE form. This equation

is called Liouville-Equation:

ρ̇ = ∇ · (ρf(x, u)) (7.11)

As can be seen the Liouville Equation is a multidimensional linear PDE regardless of

the dynamical system. This allows the application of the linear Finite Element Method

and more importantly the application of the previously presented FE-Software. After

setting the control vector to zero, a Galerkin Method could be applied:

ρ̇ = ∇ · (ρf(x, 0)) −→ FEA −→ Ẋ = Â X (7.12)

The application of such a method would then return a linear dynamical system where

the probability-density-function would be described by the vector X.

ρ(x) ≈
∑

i

Xihi(x) (7.13)

Of course this vector can store any distribution and therefore also describe a single

discrete state. Theoretically the function is then required to be a Dirac distribution.

Of course the whole idea describes a bigger problem than was intended here to describe

in the first place, but the information we seek is still contained in this system and

can therefore be used. In fact we encounter another special case of control Problem

namely PDE constrained Optimal Control1. In some cases, a LQR can be used to

control such systems. To do so, the PDE is of course required to be linear. This is,

however, not the only requirement as also the way the control vector acts upon such

a system has to fit in the LQR formalism. An example where this could be applied

would be active damping of an oscillating structure. To apply the LQR formalism to

the linearized system we require the initial dynamical system to be linear with respect

to the control vector, which, as was described in Chapter 5, can be effectively achieved

for any problem in engineering. This is however necessary for the further treatment of

1See for example [Trö05] for a detailed introduction.

76 Chapter 7 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

the problem as will be shown soon. First consider how an arbitrary dynamical system

with one control variable u could be treated by the linear Finite Element Method:

ρ̇ = ∇ · (ρf(x, u)) = ∇ · (ρa(x) + ρb(x)u) (7.14)

Ẋ = Â X + B̂ X u (7.15)

The two computed stiffness matrices shall be named Â and B̂ as for the usual linearized

systems. Of course we do not have the very same case here as the controlled term is

still dependent on the state X. To overcome this we apply another profound change to

the problem by also allowing the control to be a continuous function that can obtain

any real value for every location in the state space.

Ẋ = Â X + B̂ U (7.16)

This is of course not possible for the actual control that can obtain one real value

at each instant. It is nevertheless reasonable that if we allow the state to be non-

discrete but continuous we also allow the control to act on every possible state in

every possible way at each instant. We continue by formulating the following Optimal

Control Problem that fits into the scheme of the Linear Quadratic Regulator and

acknowledge that the strategy that is obtained by solving the corresponding ARE

actually tries to solve a different problem than we wanted to solve in the first place:

∫

∞

0

1

2
U⊤R̂ U +

1

2
X⊤Q̂ X + p⊤(Â X + B̂ U − Ẋ) dt (7.17)

Note that the matrices Q̂ and R̂ can be chosen in order to resemble cost measures

analogously to the linearized case as shall be shown soon. To find out how the solution

of this problem is related to the solution of the problem we wanted to solve in the first

place, we formulate this reference problem analytically as regular PDE constrained

optimal control problem:

∫

∞

0

∫

Ω

1

2
r(x)u2ρ+

1

4
q(x)ρ2 + λ(∇ · (ρf(x, u))− ρ̇) dΩ dt (7.18)

Where r(x) and q(x) are given functions and ρ(x), u(x) and λ(x) are the searched

functions of the state space Ω. Note that an integral form was chosen; the volume

integral over Ω is actually a weak requirement due to later numerical treatment. In

general one could formulate the functional just by integration over time, which is a

stronger requirement. Now we concentrate on just one term of the functional and

apply integration by parts:

Chapter 7 Wolfgang Flachberger 77

A FEM Approach for solving the HJB Equation

∫

Ω

λ∇ · (ρf) dΩ =

∫

∂Ω

λ(ρf) · n dΩ−

∫

Ω

∇λ · (ρf) dΩ (7.19)

It can be arranged later that the boundary term of the integral is always zero by

requiring that f(x, u) is the zero vector on the boundary. This can be achieved by

prescribing appropriate values for u at the boundary. Even if it wouldn’t be necessary

to do so it is nevertheless reasonable, as a mechatronical system shouldn’t move further

away anyway if it reaches a state that is on the boundary of its operating space.

∫

∞

0

∫

Ω

1

2
r(x)u2ρ+

1

4
q(x)ρ2 +∇λ · ρf(x, u)− λρ̇ dΩ dt (7.20)

To derive the necessary conditions for the functional to become a minimum the Euler-

Lagrange Equation can be used. Applying it with respect to ρ reveals:

1

2
r(x)u2 +

1

2
q(x)ρ+∇λ · f − λ̇ = 0 (7.21)

As the time integral of the former functional goes to infinity, we can set λ̇ to zero.

This was shown by Kalman [Nai02]. The same assumption is also applied to derive

the algebraic Riccati equation. Now consider what happens if the probability to

encounter a particle is one at every location in state space, an therefore ρ(x) := 1.

It seems logical that the control will at every location do its best to bring the whole

distribution back to a desired state, but the effect has even more properties that are

related to the initial problem. Substitution reveals:

1

2
r(x)u2 +

1

2
q(x) +∇λ · f = 0 (7.22)

Now one can choose the functions that were not yet defined to be:

r(x) := R = const. (7.23)

q(x) := x⊤Q x (7.24)

By substituting these functions one obtains:

1

2
u⊤R u+

1

2
x⊤Q x+∇λ · f = 0 (7.25)

This equation is basically the HJB of the corresponding ODE constrained optimal

control problem. This means that by minimizing this Hamiltonian with respect to

78 Chapter 7 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

the control u, we get analogous analytical expressions for the optimality conditions of

the reference PDE problem as for the initial problem. Therefore the solution to the

reference problem is similar if and only if ρ(x) := 1. The next step is to access the

information generated by solving the corresponding ARE. To do so, we first have to

consider that we allowed the control to be explicitly independent of the state X. We

now have to fix this as it is not true for the dynamical system that was obtained by

the finite element method. Therefore we require the following statement to be true:

U = K̂ X = X u (7.26)

Now imagine what happens if the probability to encounter a particle is 1 at every

location in the state space:

ρ(x) := 1 −→ X = 1 = (1, 1, 1, 1, 1, 1, 1, ...)⊤ (7.27)

K̂ 1 = 1 u (7.28)

Now the control function will at every location in state space return the feedback law

that is needed to bring the density function back to a desired state. But u is in fact

a function of the state-space as well. We encounter a situation where a continuous

function that lives in a state space is somehow linked to a finite element discretisation

of the same space.

K̂ 1 = 1 u(x) (7.29)

In order to find u(x) the information in the equation has to be accessed as usual in dis-

cretized systems. Consider an arbitrary discrete state x∗ represented by a continuous

function:

ρ∗(x) := δ(x− x∗) ≈
∑

i

X∗

i hi(x) (7.30)

X∗ = (0, 0, ..., 0, 1, 0, 0, 0, 0, ...)⊤ (7.31)

To find the value of u at the location x∗ the following equation is suggested:

X∗⊤K̂ 1 = X∗⊤1 u(x∗) (7.32)

u(x∗) = X∗⊤K̂ 1 (7.33)

Chapter 7 Wolfgang Flachberger 79

A FEM Approach for solving the HJB Equation

7.4 Experiment

In the following, the above method is tested for the simple LQR example from section

3.3. First, all necessary numeric packages are imported. In addition, the sign function

as well as a simple program to solve the LQR problem are defined:

[1]: from IPython.display import display

import matplotlib.pyplot as plt

import numpy

import sympy

import scipy.linalg

numpy.set_printoptions(precision=2)

numpy.set_printoptions(suppress=True)

def lqr(A,B,Q,R):

P = numpy.matrix(scipy.linalg.solve_continuous_are(A, B, Q, R))

K = numpy.matrix(scipy.linalg.inv(R)*(B.T*P))

eigVals, eigVecs = scipy.linalg.eig(A-B*K)

return K, P, eigVals, eigVecs

def sgn(array):

for indices in numpy.ndindex(array.shape):

if array[indices] < -0.0001:

array[indices] = -1.0

elif array[indices] > 0.0001:

array[indices] = 1.0

else:

array[indices] = 0.0

pass

return array

Next, all key classes and methods of femco, which stands for ”Finite Element Method

enhanced Control”, are imported. Most of the functions of this package are simi-

lar to the functions presented in Chapter 5. The full source code can be found in

Appendix C. First the domain and resolution of the mesh are defined. To find the

variational forms of the Liouville equation, the operator equation is simply multiplied

by a test function. Therefore just a simple Weighted Residual Method is used, namely

Galerkin’s Method, as the weight functions are the same as the interpolation func-

tions. This process of obtaining the variational form from the dynamics can later be

automated just like for the former program. For the sake of simplicity it is done here

’by hand’:

[2]: from femco import *

""" input skript """

define mesh

domain = [(-1,1),(-1,1)]

resolution = 0.1

80 Chapter 7 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

define weak formulation

dimension = len(domain) # dimension of the state space

v = sympy.Symbol('v') # test function

X = numpy.asarray(sympy.symbols('x:' + str(dimension)))

S = sympy.Symbol('S')

V_x = numpy.asarray(sympy.symbols('v_x:' + str(dimension)))

S_x = numpy.asarray(sympy.symbols('S_x:' + str(dimension)))

Au_v = (S_x[0]*X[1] - S_x[1]*X[1] - S)*v

print("weak form A matrix")

print("---")

display(Au_v)

weak form A matrix

v (−S + Sx0x1 − Sx1x1)

[3]: Bu_v = (S_x[1])*v

print("weak form B matrix")

print("---")

display(Bu_v)

weak form B matrix

Sx1v

Next the element stiffness matrices are computed and then assembled into A and B

Matrix respectively. To get a better understanding the matrices are visualized:

[4]: m = mesh(domain, resolution) # initialize mesh object

k = m.ESM_weak(Au_v) # solve weak form in defined mesh

A = m.assemble(k)

print("A matrix")

print("---")

print(A)

plot

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(A,extent=[-1, 1, -1, 1],vmax=A.max(), vmin=A.min())

cbar = plt.colorbar(im)

cbar.set_label('S(x,y)')

ax.set_ylabel('y')

ax.set_xlabel('x')

plt.show()

Chapter 7 Wolfgang Flachberger 81

A FEM Approach for solving the HJB Equation

A matrix

[[-0. -0.01 0. ... 0. 0. 0.]

[0.02 0.03 -0.01 ... 0. 0. 0.]

[0. 0.02 0.03 ... 0. 0. 0.]

...

[0. 0. 0. ... 0.03 0.02 0.]

[0. 0. 0. ... -0.01 0.03 0.02]

[0. 0. 0. ... 0. -0.01 -0.]]

Figure 7.1: Output: Â-matrix. The color of every pixel corresponds to the numerical

value of the entries of the matrix. Note also the band-structure which is due to the

efficient numbering of the nodes in the mesh.

[5]: m = mesh(domain, resolution) # initialize mesh object

k = m.ESM_weak(Bu_v) # solve weak form in defined mesh

B = m.assemble(k)

print("B matrix")

print("---")

print(B)

plot

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(B,vmax=B.max(), vmin=B.min())

cbar = plt.colorbar(im)

plt.show()

82 Chapter 7 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

B matrix

[[-0.02 -0.02 0. ... 0. 0. 0.]

[0.02 0. -0.02 ... 0. 0. 0.]

[0. 0.02 0. ... 0. 0. 0.]

...

[0. 0. 0. ... 0. -0.02 0.]

[0. 0. 0. ... 0.02 0. -0.02]

[0. 0. 0. ... 0. 0.02 0.02]]

Figure 7.2: Output: B̂-matrix. The color of every pixel corresponds to the numerical

value of the entries of the matrix. Note also the band-structure which is due to the

efficient numbering of the nodes in the mesh.

As can be seen the matrices are both sparse which will eventually result in less com-

putation effort as for ”dense” matrices. To get a better understanding of what these

matrices actually do and how nonlinear dynamic behaviour can be predicted from it

we continue by multiplying the distribution vector of a single discrete state with the

Â-matrix. This will of result in the rate of change of the distribution. It is informative

to compare figure 7.3 to figure 3.1:

[9]: X = numpy.zeros((max(B.shape),1))

p = 155

X[p] = 1

X_dot = numpy.dot(A,X)

dx_dt = numpy.reshape(X_dot,(int(numpy.sqrt(A.shape[0])),int(numpy.sqrt(A.

→֒shape[0]))),order='C')

Chapter 7 Wolfgang Flachberger 83

A FEM Approach for solving the HJB Equation

dx_dt = dx_dt.T

dx_dt = numpy.flipud(dx_dt)

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(dx_dt, extent=[-1, 1, -1, 1],vmax= X_dot.max(), vmin=X_dot.min())

cbar = plt.colorbar(im)

cbar.set_label('rho(x,y)')

ax.set_ylabel('y')

ax.set_xlabel('x')

plt.show()

Figure 7.3: Output: Change in the probability-density-function for a Dirac-

distribution. Obviously the distribution is drawn to the left upper center of the state

space (as prescribed by the dynamics-vectorfield).

Next the R̂ and Q̂ matrices need to be defined. For R̂ it is reasonable to use an

identity matrix that is multiplied by a scaling factor that needs to be determined

experimentally. The author suggests to use the volume of the state space divided by

the number of nodes in the mesh as this leads to usable results for many different

mesh resolutions. To find Q̂ it is useful to define it as if it was just for the regular

linearized systems and then use the function Q to FEM Q(). This function basically

computes the value of x⊤Q x for every node and writes the value to the corresponding

diagonal entry of the Q̂-matrix that will be used with the FEM linearization of the

Liouville equation. Therefore one obtains a cost measure that is almost similar to the

simple linear case. For more information the reader is referred to Appendix C.

[6]: R = numpy.identity(B.shape[0])*(m.state_space_vol/m.number_nodes)

Q = numpy.array([[1, 0],

[0, 1]])

Q = m.Q_to_FEM_Q(Q)

84 Chapter 7 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

Next, the so called ”controllability” is checked for the obtained matrices. This is also

a common practice when making use of LQR. The controllability would, for example,

not be satisfied if the control variable has no direct or indirect influence on certain

state variables.

[7]: import control

from numpy.linalg import matrix_rank

print(matrix_rank(control.ctrb(A, B)) == A.shape[0])

True

As the system is obviously controllable, we conclude by applying scypy’s functions

to iteratively find the K̂ matrix that contains all the informations on how to control

the system:

[8]: K, P, E, eigVecs = lqr(A, B, Q, R)

print(K)

[[-8.63 10.19 -2.26 ... 0. 0. 0.]

[-9.94 -3.57 9.37 ... 0. 0. 0.]

[-4.79 -11.36 -2.92 ... -0. -0. -0.]

...

[0. 0. 0. ... 2.92 11.36 4.79]

[-0. -0. -0. ... -9.37 3.57 9.94]

[-0. -0. -0. ... 2.26 -10.19 8.63]]

Now the final formula of the previous section will be applied to find a strategy:

[12]: U = numpy.zeros((max(B.shape),1))

one = numpy.ones((max(B.shape),1))

for p in range(max(B.shape)):

X = numpy.zeros((max(B.shape),1))

X[p] = 1

Uc = -numpy.dot(K,one)

u = Uc.T@X

U[p] = u

U = numpy.reshape(U,(int(numpy.sqrt(A.shape[0])),int(numpy.sqrt(A.

→֒shape[0]))),order='C')

U = U.T

U = numpy.flipud(U)

ctrllaw = U

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(ctrllaw, extent=[-1, 1, -1, 1],vmax= U.max(), vmin=U.min())

cbar = plt.colorbar(im)

cbar.set_label('rho(x,y)')

ax.set_ylabel('y')

ax.set_xlabel('x')

plt.show()

Chapter 7 Wolfgang Flachberger 85

A FEM Approach for solving the HJB Equation

Figure 7.4: Output: Feedback control law or strategy generated by the previously

described method for the problem from section 3.3. To increase the accuracy multiple

FE-Methods and variational forms should be tested.

Compare the produced strategy to figure 3.2. The strategies are not exactly the same

but they are obviously related. Especially at the boundary the here produced strategy

seems to lack accuracy which is probably because u was not chosen in order for the

boundary integral of the previous section to vanish. This could however be arranged

easily with more sophisticated software-tools and would probably lead to more concise

results. Another way this could be achieved is by finding a better variational form

and better fitting FE-Method. This is, however, beyond the scope of this thesis

as the aim was only to prove the principal possibility to solve the HJB by the Finite

Element Method. For further investigation of the produced strategy, the sign function

is applied:

[13]: U = sgn(U)

ctrllaw = U

fig, ax = plt.subplots(dpi=120)

im = ax.imshow(ctrllaw, extent=[-1, 1, -1, 1],vmax= U.max(), vmin=U.min())

cbar = plt.colorbar(im)

cbar.set_label('rho(x,y)')

ax.set_ylabel('y')

ax.set_xlabel('x')

plt.show()

86 Chapter 7 Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

Figure 7.5: Output: Sign function applied to the feedback control law displayed in

figure 7.4.

As can be seen the control effort becomes zero as soon as the state reaches its desired

location which is necessary and expected. Note also that the strategy in figure 3.2 and

the currently reviewed strategy (figure 7.5) both change the sign of the control-law at

the same locations (with exclusion of the errors at the boundary of course).

Chapter 7 Wolfgang Flachberger 87

Chapter 8

Conclusion

The author has, as part of this thesis, deepened his knowledge in variational calculus

as well as in the Finite Element Method with the aim of deriving a versatile way of

solving the Hamilton-Jacobi-Bellman Equation numerically to enable feedback control

of nonlinear dynamical systems. To do so, a Finite Element software was developed

that can, under certain restrictions regarding element type, be applied to PDEs of

arbitrary dimension. The software developed to demonstrate this is, to the authors

knowledge, the only FEM-Software that is capable of these calculations. Furthermore,

a new method was derived, that is capable of solving feedback control problems of

nonlinear dynamics. This was achieved by formulating the problem in such a way that

it has a unique solution. There remains, however, a lot of research work to do in order

to find a better variational formulation (or a more suitable FE-Method) in order to

improve the generated feedback control laws. After this hurdle has been cleared there

remains only one fundamental restriction factor: The number of state variables that

can be taken into account. As the number of the degrees of freedom of the system

of equations rises roughly exponentially with the number of state variables it is clear

that the boundary of the physically manageable amount of information can soon be

reached. The author is nevertheless convinced that the future of Control Theory is

based on solving multidimensional boundary value problems and sees the development

of the Finite Element software and the variational methods presented in this thesis as

first step in the right direction.

88

Appendix A

Notation

If not defined differently, every vecor is a column vector:

a =

a1
a2
a3

 b =

b1
b2
b3

 (A.1)

The standard vector dot-product will be used:

a · b = a⊤b = a1b1 + a2b2 + a3b3 (A.2)

If a vector product isn’t explicitly denoted with a dot or the Transpose-Operator then

it shall be computed as Hadamard Product :

a b =

a1b1
a2b2
a3b3

 (A.3)

The multiplication of column-vector and row-vector results in an two dimensional

matrix:

a b⊤ =

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 (A.4)

Empowerisation is not executed as Hadmard Product :

a2 = a21 + a22 + a23 = a⊤a (A.5)

A Nabla-Operator with a vector as subscript denotes the gradient in the corresponding

vector space:

∇a =

∂/∂a1
∂/∂a2
∂/∂a3

 (A.6)

Hadamard-Product is computed before dot operations:

∇2u(x) = ∇ · ∇u(x) =
∂2u(x)

∂x2
1

+
∂2u(x)

∂x2
2

+ . . . (A.7)

89

Appendix B

ARTOC Toolbox

[1]: """

A.R.T.O.C. - Adaptive Real-Time Optimal Control

author: wolfgang flachberger (c)

em@il: wolfgang.flachberger@stud.unileoben.ac.at

08-03-2020

NOTATION:

vectors: (usually one dimensional numpy arrays of shape (n,))

np.outer(x,x) = xx^(T)

np.dot(x,x) = x^(T)x

x*x = xx (hadamard)

matrices:

np.dot(M,M) = MM

the author recommends the use of column vectors of shape (n,1)

numpy.dot() computes for this strict notation not the actual

dot pruduct but the regular vector/matrix multiplication:

np.dot(x,x) = ERROR

np.dot(x.T,x) = x^(T)x

np.dot(x,x.T) = xx^(T)

use numpy.linalg.multidot((x.T,M,x)) to multiply multiple vectors/matrices.

--

"""

import numpy

import sympy

from sympy.functions import sign

from numpy.linalg import inv

class mesh:

"""creates mesh object

arguments:

domain: feasable domain of the state space: takes a list of n tuples

(a,b) that bound the domain in the corresponding dimension

(the domain is an n-dimensional box --> "box constraints")

resolution: side length of the finite n-dimensional cube elements

"""

def __init__(self, domain, resolution):

self.domain = domain

self.resolution = resolution

"""---"""

dimension = len(domain) # dimension of state space

nodes_per_element = 2**dimension

calculate number of finite cube elements to cover domain

nr_el_dim = [] # list with number of elements necessary per axis

nr_nd_dim = [] # list with number of nodes necessary per axis

for index in range(dimension): # for every dimension

length = domain[index][1] - domain[index][0] # take length of "box"

nr_el_dim.append(int(length/resolution)) # the domain is just

approximated --> the Jacobian matrix is therfore not necessary

because all elements are of the same size and shape

nr_nd_dim.append(nr_el_dim[index] + 1)

pass

nr_el_dim = tuple(nr_el_dim)

nr_nd_dim = tuple(nr_nd_dim)

number_elements = numpy.prod(nr_el_dim) # total amount of elements

number_nodes = numpy.prod(nr_nd_dim) # total amount of gloabal nodes

nodes = numpy.arange(number_nodes,dtype=int)

node_names_global = numpy.reshape(nodes,(nr_nd_dim),order='C')

v = sympy.Symbol('v') # test funtion

X = numpy.asarray(sympy.symbols('x:' + str(dimension)))

XI = numpy.asarray(sympy.symbols('xi:' + str(dimension)))

S_x = numpy.asarray(sympy.symbols('S_x:' + str(dimension)))

90

A FEM Approach for solving the HJB Equation

V_x = numpy.asarray(sympy.symbols('v_x:' + str(dimension)))

"""---"""

self.dimension = dimension

self.nodes_per_element = nodes_per_element

self.number_elements = number_elements

self.number_nodes = number_nodes

self.nr_el_dim = nr_el_dim

self.nr_nd_dim = nr_nd_dim

self.node_names_global = node_names_global

self.v = v

self.X = X

self.XI = XI

self.S_x = S_x

self.V_x = V_x

T = self.coincidenceTable()

self.T = T

h = self.interpolationFunctions()

self.h = h

dh_dx = self.interpolationFunctionsDerivatives()

self.dh_dx = dh_dx

"""---"""

def coincidenceTable(self):

""" coincidence_table[element,node] """

coincidence_table = numpy.zeros((self.number_elements,self.nodes_per_element), dtype=int, order='C')

local_to_global = numpy.zeros((2,)*self.dimension)

i = 0

for element_indices in numpy.ndindex(self.nr_el_dim):

for node_indices in numpy.ndindex((2,)*self.dimension):

location = tuple([sum(x) for x in zip(element_indices,node_indices)])

local_to_global[node_indices] = self.node_names_global[location]

pass

array = numpy.reshape(local_to_global, self.nodes_per_element)

coincidence_table[i] = array

i += 1

pass

return coincidence_table

def interpolationFunctions(self):

""" interpolationfunction[node] """

i = 0

h = sympy.ones(self.nodes_per_element,1)

for element_indices in numpy.ndindex((2,)*self.dimension):

for axis in range(self.dimension):

if element_indices[axis] == 0:

factor = -1

else:

factor = 1

h[i] = h[i] * (1 + factor * self.XI[axis] * 2/self.resolution)

i += 1

h = h/self.nodes_per_element

return h

def interpolationFunctionsDerivatives(self):

""" interpolationfunction[node, derivativeaxis] """

dh_dX = sympy.ones(self.nodes_per_element, self.dimension)

for index in range(self.nodes_per_element):

for axis in range(self.dimension):

dh_dX[index,axis] = sympy.diff(self.interpolationFunctions()[index], self.XI[axis])

return dh_dX

"""---"""

def ESM_ELV_weak(self, Au_v, F_v):

evaluate componets of k_ij (not integrated jet)

k_ij = sympy.zeros(self.nodes_per_element,self.nodes_per_element)

for i in range(self.nodes_per_element):

for j in range(self.nodes_per_element):

sub = []

for k in range(self.dimension):

sub.append((self.S_x[k], self.dh_dx[i,k]))

sub.append((self.V_x[k], self.dh_dx[j,k]))

sub.append((self.v, self.h[j]))

k_ij[i,j] = Au_v.subs(sub)

prepare substitution for coordinate transformation

x_to_xi = []

for j in range(self.dimension):

x_to_xi.append((self.X[j], self.XI[j] + self.X[j]))

transform to local coordinate frame and integrate

for indices in numpy.ndindex(k_ij.shape):

k_ij[indices] = k_ij[indices].subs(x_to_xi)

for i in range(self.dimension):

k_ij[indices] = sympy.integrate(k_ij[indices],(self.XI[i],-self.resolution/2,self.resolution/2))

evaluate componets of f_j (not integrated jet)

f_j = sympy.zeros(self.nodes_per_element,1)

for j in range(self.nodes_per_element):

sub = []

for k in range(self.dimension):

sub.append((self.V_x[k], self.dh_dx[j,k]))

sub.append((self.v, self.h[j]))

f_j[j] = F_v.subs(sub)

prepare substitution for transformation

x_to_xi = []

for j in range(self.dimension):

x_to_xi.append((self.X[j], self.XI[j] + self.X[j]))

transform and integrate

Chapter B Wolfgang Flachberger 91

A FEM Approach for solving the HJB Equation

for j in range(self.nodes_per_element):

f_j[j] = f_j[j].subs(x_to_xi)

for dim in range(self.dimension):

f_j[j] = sympy.integrate(f_j[j],(self.XI[dim], -self.resolution/2, self.resolution/2))

return k_ij, f_j

def ESM_ELV_ritz(self, W):

initialize ESM and ELV

k_ij = sympy.zeros(self.nodes_per_element,self.nodes_per_element)

f_j = sympy.zeros(self.nodes_per_element,1)

finite element approximation with "s" as design variables

s = numpy.asarray(sympy.symbols('s:' + str(self.nodes_per_element)))

p = sympy.zeros(self.dimension,1)

for i in range(self.nodes_per_element):

p += self.dh_dx.T[:,i]*s[i]

prepare substitution for coordinate transformation

S_x_to_p = []

for j in range(self.dimension):

S_x_to_p.append((self.S_x[j], p[j]))

W = W.subs(S_x_to_p)

THE FOLLOWING CODE WORKS ONLY IN 2 DIMENSIONS

for i in range(self.nodes_per_element):

f_j[i,0] = sympy.diff(W,s[i]).subs([(s[0],0),(s[1],0),(s[2],0),(s[3],0)])

k_ij[i,0] = sympy.diff(W,s[i]).subs([(s[0],1),(s[1],0),(s[2],0),(s[3],0)])-f_j[i,0]

k_ij[i,1] = sympy.diff(W,s[i]).subs([(s[0],0),(s[1],1),(s[2],0),(s[3],0)])-f_j[i,0]

k_ij[i,2] = sympy.diff(W,s[i]).subs([(s[0],0),(s[1],0),(s[2],1),(s[3],0)])-f_j[i,0]

k_ij[i,3] = sympy.diff(W,s[i]).subs([(s[0],0),(s[1],0),(s[2],0),(s[3],1)])-f_j[i,0]

f_j = - f_j

prepare substitution for coordinate transformation

x_to_xi = []

for j in range(self.dimension):

x_to_xi.append((self.X[j], self.XI[j] + self.X[j]))

transform to local coordinate frame and integrate

for indices in numpy.ndindex(k_ij.shape):

k_ij[indices] = k_ij[indices].subs(x_to_xi)

for i in range(self.dimension):

k_ij[indices] = sympy.integrate(k_ij[indices],(self.XI[i],-self.resolution/2,self.resolution/2))

transform and integrate

for j in range(self.nodes_per_element):

f_j[j] = f_j[j].subs(x_to_xi)

for dim in range(self.dimension):

f_j[j] = sympy.integrate(f_j[j],(self.XI[dim], -self.resolution/2, self.resolution/2))

return k_ij, f_j

def assemble(self, k_ij, f_j):

initialize transport arrays

k = numpy.zeros((self.nodes_per_element, self.nodes_per_element))

f = numpy.zeros((self.nodes_per_element, 1))

initialize stiffnessmatrix and loadvector of the whole system

K_ = numpy.zeros((self.number_nodes,self.number_nodes))

F_ = numpy.zeros((self.number_nodes,1))

el = 0 # element counter

for e_index in numpy.ndindex(self.nr_el_dim): # for every element

prepare substitution for element

evaluate = []

e_location = numpy.asarray(e_index) * self.resolution + numpy.ones(self.dimension)*self.resolution/2

for i in range(self.dimension):

evaluate.append((self.X[i], e_location[i]))

evaluate k_ij and f_j for element

for indices in numpy.ndindex((self.nodes_per_element, self.nodes_per_element)):

k[indices] = k_ij[indices].subs(evaluate)

for j in range(self.nodes_per_element):

f[j,0] = f_j[j].subs(evaluate)

assemble K_ and F_

for k_index in numpy.ndindex((self.nodes_per_element, self.nodes_per_element)):

i = self.T[el,k_index[0]]

j = self.T[el,k_index[1]]

K_[i,j] += k[k_index] #round(k[k_index],1)

for f_index in range(self.nodes_per_element):

F_[self.T[el,f_index],0] += f[f_index,0] #round(f[f_index,0],1)

el += 1 # next element

return K_, F_

def boundaryNodes(self, e):

node_locations_global = numpy.zeros(self.nr_nd_dim + (self.dimension,))

initialPoint = []

for i in range(self.dimension):

initialPoint.append(self.domain[i][0])

initialPoint = numpy.asarray(initialPoint)

for indices in numpy.ndindex(self.nr_nd_dim):

step = numpy.asarray(list(indices))

node_locations_global[indices] = initialPoint + step * self.resolution

boundary_nodes = []

boundary_node_indices = []

length = len(e(node_locations_global[indices]))

92 Chapter B Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

for indices in numpy.ndindex(self.nr_nd_dim):

if e(node_locations_global[indices]) == list((0,)*length):

boundary_nodes.append(self.node_names_global[indices])

boundary_node_indices.append(indices)

if boundary_nodes == []:

print("ERROR: no boundary nodes found.")

return boundary_nodes, boundary_node_indices, node_locations_global

def applyBoundaryCondition(self, K_, F_, E, bNodes, bNodeInd, nodeLoc):

U_ = numpy.zeros((self.number_nodes,1))

i = 0

for node in bNodes:

U_[node] = E(nodeLoc[bNodeInd[i]])

i += 1

delta_F = numpy.dot(K_,U_)

F_ = F_ - delta_F

delete rows with fixed U values from the system of equations

K_ = numpy.delete(K_, bNodes, 0)

K_ = numpy.delete(K_, bNodes, 1)

F_ = numpy.array([numpy.delete(F_, bNodes)]).T

solve system of equations

U_ = numpy.dot(inv(K_), F_)

insert boundary values

bvals =[]

for i in bNodeInd:

bvals.append(E(nodeLoc[i]))

sorted_bNodes = sorted(bNodes)

for i in range(len(bNodes)):

U_ = numpy.insert(U_, sorted_bNodes[i], 0.0)

c = 0

for i in bNodes:

U_[i] = bvals[c]

c += 1

U_ = numpy.array([U_]).T

S = numpy.reshape(U_,(self.nr_nd_dim),order='C')

return S

def solveWeakForm(self, Au_v, F_v, e, E):

k_ij, f_j = self.ESM_ELV_weak(Au_v, F_v)

K_, F_ = self.assemble(k_ij, f_j)

bNodes, bNodeInd, nodeLoc = self.boundaryNodes(e)

solution = self.applyBoundaryCondition(K_, F_, E, bNodes, bNodeInd, nodeLoc)

return solution

def solveRitz(self, W, e, E):

k_ij, f_j = self.ESM_ELV_ritz(W)

K_, F_ = self.assemble(k_ij, f_j)

bNodes, bNodeInd, nodeLoc = self.boundaryNodes(e)

solution = self.applyBoundaryCondition(K_, F_, E, bNodes, bNodeInd, nodeLoc)

return solution

if __name__ == '__main__':

mesh()

def HJB_piecewiseLinear(f, dimension, u_max):

"""returns operator equation (Au) for the picewise linear HJB

"""

symbols

nr_controls = len(u_max)

U = numpy.asarray(sympy.symbols('u:' + str(nr_controls))) # contol vector

X = numpy.asarray(sympy.symbols('x:' + str(dimension)))

S_x = numpy.asarray(sympy.symbols('S_x:' + str(dimension)))

pontryagin's principle

H = numpy.dot(S_x,f(X,U)) # control hamiltonian

prepare substitution u = u*(x,p)

U_to_U_star = []

for i in range(nr_controls):

U_to_U_star.append((U[i], -u_max[i]*((sign(sympy.diff(H, U[i]))+1)*0.5)))

HJB = H.subs(U_to_U_star) # lower control hamiltonian

HJB = sympy.simplify(HJB)

return HJB

def HJB_quadraticCost(f, F, dimension, nr_controls):

"""returns HJB for a quadratic cost functional

0 = alpha*u^2 + F(X,U) + S_x * f(X,U))

"""

symbols

U = numpy.asarray(sympy.symbols('u:' + str(nr_controls))) # contol vector

X = numpy.asarray(sympy.symbols('x:' + str(dimension)))

S_x = numpy.asarray(sympy.symbols('S_x:' + str(dimension)))

alpha = sympy.Symbol('alpha')

Chapter B Wolfgang Flachberger 93

A FEM Approach for solving the HJB Equation

H = numpy.dot(S_x,f(X,U)) + F(X,U)

prepare substitution u = u*(x,p)

U_to_U_star = []

for i in range(nr_controls):

U_to_U_star.append((U[i], -(1/alpha) * sympy.diff(H, U[i])))

HJB = (alpha/2)*numpy.dot(U,U) + F(X,U) + numpy.dot(S_x,f(X,U))

HJB = HJB.subs(U_to_U_star) # lower control hamiltonian

return HJB

94 Chapter B Wolfgang Flachberger

Appendix C

FEMCO Toolbox

[]: """

--

| femco - Finite Element Method enhanced Control |

| author: wolfgang flachberger (c) |

| em@il: wolfgang.flachberger@unileoben.ac.at |

| 30-11-2020 |

--

"""

from numpy.linalg import multi_dot as dot

import numpy

import sympy

class mesh:

"""creates mesh object

arguments:

domain: feasable domain of the state space: takes a list of n tuples

(a,b) that bound the domain in the corresponding dimension

(the domain is an n-dimensional box --> "box constraints")

resolution: side length of the finite n-dimensional cube elements

"""

def __init__(self, domain, resolution):

self.domain = domain

self.resolution = resolution

"""---"""

dimension = len(domain) # dimension of state space

nodes_per_element = 2**dimension

calculate number of finite cube elements to cover domain

nr_el_dim = [] # list with number of elements necessary per axis

nr_nd_dim = [] # list with number of nodes necessary per axis

state_space_vol = 1

for index in range(dimension): # for every dimension

length = domain[index][1] - domain[index][0] # take length of "box"

nr_el_dim.append(int(length/resolution)) # the domain is just

approximated --> the Jacobian matrix is therfore not necessary

because all elements are of the same size and shape

nr_nd_dim.append(nr_el_dim[index] + 1)

state_space_vol = state_space_vol * length

pass

e_loc_zeroind = []

for index in range(dimension):

e_loc_zeroind.append(domain[index][0])

e_loc_zeroind = numpy.asarray(e_loc_zeroind)

nr_el_dim = tuple(nr_el_dim)

nr_nd_dim = tuple(nr_nd_dim)

number_elements = numpy.prod(nr_el_dim) # total amount of elements

number_nodes = numpy.prod(nr_nd_dim) # total amount of gloabal nodes

nodes = numpy.arange(number_nodes,dtype=int)

node_names_global = numpy.reshape(nodes,(nr_nd_dim),order='C')

S = sympy.Symbol('S')

v = sympy.Symbol('v') # test funtion

X = numpy.asarray(sympy.symbols('x:' + str(dimension)))

XI = numpy.asarray(sympy.symbols('xi:' + str(dimension)))

S_x = numpy.asarray(sympy.symbols('S_x:' + str(dimension)))

V_x = numpy.asarray(sympy.symbols('v_x:' + str(dimension)))

"""---"""

self.state_space_vol = state_space_vol

self.e_loc_zeroind = e_loc_zeroind

self.dimension = dimension

self.nodes_per_element = nodes_per_element

self.number_elements = number_elements

self.number_nodes = number_nodes

self.nr_el_dim = nr_el_dim

self.nr_nd_dim = nr_nd_dim

95

A FEM Approach for solving the HJB Equation

self.node_names_global = node_names_global

self.X = X

self.XI = XI

self.S = S

self.S_x = S_x

self.v = v

self.V_x = V_x

T = self.coincidenceTable()

self.T = T

h = self.interpolationFunctions()

self.h = h

dh_dx = self.interpolationFunctionsDerivatives()

self.dh_dx = dh_dx

"""---"""

def coincidenceTable(self):

""" coincidence_table[element,node] """

coincidence_table = numpy.zeros((self.number_elements,self.nodes_per_element), dtype=int, order='C')

local_to_global = numpy.zeros((2,)*self.dimension)

i = 0

for element_indices in numpy.ndindex(self.nr_el_dim):

for node_indices in numpy.ndindex((2,)*self.dimension):

location = tuple([sum(x) for x in zip(element_indices,node_indices)])

local_to_global[node_indices] = self.node_names_global[location]

pass

array = numpy.reshape(local_to_global, self.nodes_per_element)

coincidence_table[i] = array

i += 1

pass

return coincidence_table

def interpolationFunctions(self):

""" interpolationfunction[node] """

i = 0

h = sympy.ones(self.nodes_per_element,1)

for element_indices in numpy.ndindex((2,)*self.dimension):

for axis in range(self.dimension):

if element_indices[axis] == 0:

factor = -1

else:

factor = 1

h[i] = h[i] * (1 + factor * self.XI[axis] * 2/self.resolution)

i += 1

h = h/self.nodes_per_element

return h

def interpolationFunctionsDerivatives(self):

""" interpolationfunction[node, derivativeaxis] """

dh_dX = sympy.ones(self.nodes_per_element, self.dimension)

for index in range(self.nodes_per_element):

for axis in range(self.dimension):

dh_dX[index,axis] = sympy.diff(self.interpolationFunctions()[index], self.XI[axis])

return dh_dX

"""---"""

def ESM_weak(self, Au_v):

evaluate componets of k_ij (not integrated jet)

k_ij = sympy.zeros(self.nodes_per_element,self.nodes_per_element)

for i in range(self.nodes_per_element):

for j in range(self.nodes_per_element):

sub = []

for k in range(self.dimension):

sub.append((self.S_x[k], self.dh_dx[i,k]))

sub.append((self.V_x[k], self.dh_dx[j,k]))

sub.append((self.S, self.h[i]))

sub.append((self.v, self.h[j]))

k_ij[i,j] = Au_v.subs(sub)

prepare substitution for coordinate transformation

x_to_xi = []

for j in range(self.dimension):

x_to_xi.append((self.X[j], self.XI[j] + self.X[j]))

transform to local coordinate frame and integrate

for indices in numpy.ndindex(k_ij.shape):

k_ij[indices] = k_ij[indices].subs(x_to_xi)

for i in range(self.dimension):

k_ij[indices] = sympy.integrate(k_ij[indices],(self.XI[i],-self.resolution/2,self.resolution/2))

return k_ij

def assemble(self, k_ij):

initialize transport arrays

k = numpy.zeros((self.nodes_per_element, self.nodes_per_element))

initialize stiffnessmatrix and loadvector of the whole system

K_ = numpy.zeros((self.number_nodes,self.number_nodes))

el = 0 # element counter

for e_index in numpy.ndindex(self.nr_el_dim): # for every element

prepare substitution for element

evaluate = []

e_location = self.e_loc_zeroind + numpy.asarray(e_index) * self.resolution + numpy.ones(self.dimension)*self.resolution/2

for i in range(self.dimension):

evaluate.append((self.X[i], e_location[i]))

evaluate k_ij and f_j for element

for indices in numpy.ndindex((self.nodes_per_element, self.nodes_per_element)):

96 Chapter C Wolfgang Flachberger

A FEM Approach for solving the HJB Equation

k[indices] = k_ij[indices].subs(evaluate)

assemble K_ and F_

for k_index in numpy.ndindex((self.nodes_per_element, self.nodes_per_element)):

i = self.T[el,k_index[0]]

j = self.T[el,k_index[1]]

K_[i,j] += k[k_index] #round(k[k_index],1)

el += 1 # next element

return K_

def stateToFEM(self, x):

""" takes a column vector of a state in state space and transforms

it to the corresponding location in FEM/Probability space

(returns a column vector)

"""

x = (x-numpy.array([self.e_loc_zeroind]).T)/self.resolution

loc = tuple([int(numpy.round(number)) for number in x])

node = self.node_names_global[loc]

X = numpy.zeros((self.number_nodes,1),dtype=int)

X[node] = 1

return X

def FEMtoState(self, X):

node_name = numpy.where(X == 1)[0][0]

node_indices = numpy.where(self.node_names_global == node_name)

x = numpy.asarray(node_indices) * self.resolution + numpy.array([self.e_loc_zeroind]).T

return x

def Q_to_FEM_Q(self, Q):

size = self.number_nodes

I = numpy.identity(size, dtype=int)

Q_ = numpy.zeros((size,size))

for i in range(size):

point = numpy.array([I[:,i]]).T

x = self.FEMtoState(point)

Q_[i,i] = dot((x.T, Q, x))[0][0]

return Q_

if __name__ == '__main__':

mesh()

Chapter C Wolfgang Flachberger 97

List of Figures

1.1 The rocket during a landing maneuver. 9

3.1 Dynamical system without control effort 22

3.2 Dynamical system with LQR . 23

3.3 Time-optimal control with the semiuniversal curve C 24

4.1 Thrust vector controlled aircraft 1 . 30

4.2 Thrust vector controlled aircraft 2 . 31

5.1 Output: FE-Solution of the Poisson Equation with low resolution mesh

for Dirichlet boundary condition u(x = 0, y) = 0 and u(x = 2, y) = 2. . 51

6.1 Output: FE-Solution to the Poisson Equation with high resolution mesh 55

6.2 Output: Invalid Galerkin-solution due to the piecewise linear HJB

Equation with low resolution mesh. The Dirichlet boundary condi-

tion was applied only on a single node: u(0, 0) = 0 (as required by the

problem formulation). 59

6.3 Output: Invalid Galerkin-solution due to the piecewise linear HJB

Equation with high resolution mesh. The Dirichlet boundary condi-

tion was applied only on a single node: u(0, 0) = 0 (as required by the

problem formulation). 60

6.4 Output: Invalid Least-Squares-solution of the piecewise linear HJB

Equation with low resolution mesh. The Dirichlet boundary condition

was applied only on a single node: u(0, 0) = 0. 61

6.5 Output: Invalid Least-Squares-solution of the piecewise linear HJB

Equation with high resolution mesh. The Dirichlet boundary condi-

tion was applied only on a single node: u(0, 0) = 0. 62

6.6 Output: Invalid modified Ritz-solution of the piecewise linear HJB

Equation with low resolution mesh. The Dirichlet boundary condition

was applied only on a single node: u(0, 0) = 0. 64

6.7 Output: Invalid modified Ritz-solution of the piecewise linear HJB

Equation with high resolution mesh . 65

6.8 Output: FEniCS generated Least-Squares-solution to equation (6.2) . 68

6.9 Output: FEniCS generated Least-Squares-solution to equation (6.3) . 68

6.10 Output: Modification of the solution to equation (6.2): ReLU(∂S
∂y
) 69

6.11 Output: Modification of the solution to equation (6.3): ReLU(−∂S
∂y
) . . . 70

6.12 Output: Incomplete strategy to satisfy equation (6.1) 71

6.13 Output: Incomplete strategy to satisfy equation (6.1) including the

dynamics-vectorfield. 72

98

A FEM Approach for solving the HJB Equation

7.1 Output: Â-matrix. The color of every pixel corresponds to the numer-

ical value of the entries of the matrix. Note also the band-structure

which is due to the efficient numbering of the nodes in the mesh. 82

7.2 Output: B̂-matrix. The color of every pixel corresponds to the numer-

ical value of the entries of the matrix. Note also the band-structure

which is due to the efficient numbering of the nodes in the mesh. 83

7.3 Output: Change in the probability-density-function for a Dirac-

distribution. Obviously the distribution is drawn to the left upper

center of the state space (as prescribed by the dynamics-vectorfield). . . 84

7.4 Output: Feedback control law or strategy generated by the previously

described method for the problem from section 3.3. To increase the

accuracy multiple FE-Methods and variational forms should be tested. 86

7.5 Output: Sign function applied to the feedback control law displayed in

figure 7.4. 87

Chapter C Wolfgang Flachberger 99

Bibliography

[HC24] David Hilbert and Richard Courant. Methoden der mathematischen
Physik: Erster Band. Springer-Verlag Berlin Heidelberg New York 1968,

1924.

[HC37] David Hilbert and Richard Courant. Methoden der mathematischen
Physik: Zweiter Band. Springer-Verlag Berlin Heidelberg New York 1968,

1937.

[HL63] Jack K Hale and Joseph P LaSalle. “Differential equations: Linearity vs.

nonlinearity”. In: SIAM Review 5.3 (1963), pp. 249–272.

[Isa65] Rufus Isaacs. Differential games: a mathematical theory with applications
to warfare and pursuit, control and optimization. Courier Corporation,
1965.

[Bry75] Arthur Earl Bryson. Applied optimal control: optimization, estimation
and control. Routledge, 1975.

[Red84] JN Reddy. Energy and variational principles in applied mechanics. John
Wiley and Sons New York, 1984.

[Nai02] D Subbaram Naidu. Optimal control systems. CRC press, 2002.

[Trö05] Fredi Tröltzsch. Optimale Steuerung partieller Differentialgleichungen.
Vol. 2. Springer, 2005.

[Ros09] I Michael Ross. A primer on Pontryagin’s principle in optimal control.
Collegiate Publ., 2009.

[LMW+12] Anders Logg, Kent-Andre Mardal, Garth N. Wells, et al. Automated So-
lution of Differential Equations by the Finite Element Method. Springer,
2012. isbn: 978-3-642-23098-1. doi: 10.1007/978-3-642-23099-8.

[Lev14] Mark Levi. Classical mechanics with calculus of variations and optimal
control: an intuitive introduction. Vol. 69. American Mathematical Soc.,

2014.

[Aln+15] Martin S. Alnæs et al. “The FEniCS Project Version 1.5”. In: Archive of
Numerical Software 3.100 (2015). doi: 10.11588/ans.2015.100.20553.

[RN16] Stuart Russell and Peter Norvig. “Artificial intelligence: a modern ap-

proach”. In: (2016).

[LM19] Hans Petter Langtangen and Kent-Andre Mardal. Introduction to nu-
merical methods for variational problems. Vol. 21. Springer Nature, 2019.

100

	Introduction
	The Historic Development of Optimal Control
	Problem Formulation
	Example: Efficient Landing of a Rocket
	State and Control Space
	Reformulation as Optimal Control Problem

	Optimal Control and Theoretical Mechanics
	Review of the principles of Mechanics
	The Principle of Virtual Work
	d'Alembert's Principle
	Lagrangian Mechanics and Hamilton's Principle
	The Canonical Form
	Hamilton-Jacobi Theory
	The Legendre Transformation

	The Hamilton-Jacobi-Bellman Equation
	Everything is stationary

	Motivation
	Solving Optimal Control problems
	Optimal Control and Artificial Intelligence
	Optimal Control and the Linear Quadratic Regulator
	Advantages of the Finite Element Method in Optimal Control

	Problem Modifications for the Finite Element Analysis
	Linearity of the Control Hamiltonian
	Bang-Bang-Control
	The Rocket example and another Lagrangian
	A unified Solution for Engineering Problems

	Problem Modifications
	Lagrange and Mayer Cost
	Example of a nonlinear Hamiltonian: Thrust-Vector Control

	Piecewise Linearity of the Hamilton-Jacobi-Bellman Equation
	Weighted Residual Methods for the HJB

	A Ritz Approach for the HJB Equation

	Coding a Finite Element Solver in n Dimensions
	The Poisson Equation
	Dissection of the Code
	Treating multiple dimensions
	Initialisation of the mesh
	The coincidence table
	The sympy Toolbox
	Interpolation-Functions
	Problem Formulation
	Variational Formulation
	ESM and ELV
	The Assembly
	Applying the Boundary Condition

	Experiments and Results
	The ARTOC Toolbox
	The Poisson Equation in four dimensions
	Weighted Residual Methods for the piecewise linear HJB
	Automated formulation of the HJB
	Galerkin's Method
	The Least Squares Method

	The Ritz Method
	A Splitting Method

	A new Approach
	Convergence and Convexity
	The Linear Quadratic Regulator revisited
	The Liouville Equation
	Experiment

	Conclusion
	Notation
	ARTOC Toolbox
	FEMCO Toolbox
	List of Figures
	Bibliography

