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Abstract

Innovative and resource-e�icient products are of great importance for a number of industries
including automotive and aerospace. As a consequence, increased usage of lightweight ma-
terials in highly optimized structural designs is of highest priority. Structural optimization, in
particular topology optimization, has seen accelerated deployment throughout all industries
in the past decade, mainly due to the fact that significant e�iciency gain can be achieved at
the concept design level. In terms of extremely lightweight structures, composite structures
are a key-player as they o�er the possibility of tailoring the material to a specific application.
Hence, the purpose of introducing composite materials as part of the design formulation for
structural optimization requires both, to determine the optimal spatial distribution as well as
the optimal local choice of material properties, i.e., the orientation and the anisotropy of the
local material tensor which is controlled by the composite microstructure. Since a change
in topology a�ects the local stress situation, it also a�ects the adjustment of material pa-
rameters (orientation, degree of anisotropy) and vice versa. As a consequence, it is essential
to address the aspects of topology optimization and local material optimization simultane-
ously, which is contrary to the present design practice.

The current work presents a new method for optimization of structural layout and material
that simultaneously addresses the design of the global geometry (topology) and the more
or less detailed design of the material itself in terms of orientation and anisotropy of the lo-
cal material tensor. The concept, which is implemented for three-dimensional structures,
is evaluated on simple pseudo two dimensional (academic) test cases. The global design
objective is to minimize the compliance of a structure, subject to a volume constraint. The
developed method is implemented in Python. The Python code takes advantage of the ad-
vanced FEM capacities of the Abaqus so�ware and employs the Abaqus Scripting Interface
(ASI) to communicate with Abaqus. The global geometry (topology) is determined using the
Bi-Evolutionary Structural Optimization Algorithm (BESO), based on the use of sensitivity
analysis and mathematical programming. Material optimization is achieved by adjusting the
material orientation, based on the local loading conditions (i.e., principal stress directions).
Furthermore, the optimized local anisotropy is determined by adjusting the respective vol-
ume fractions of continuous cylindrical inclusions, based on the relation of the absolute val-
ues of the principal stresses. The homogenized sti�ness tensor is determined using a mi-
cromechanics mean field approach. Therefore, the method yields physically realistic mate-
rial configurations and is based on a reasonable amount of design variables without adding
unnecessary restrictions to the design space. The developed method is applicable to single
as well as multiple loadcases.
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The numerical application of the method on simple pseudo two dimensional (academic) test
cases shows its e�ectiveness and robustness. The material determined with this method
goes beyond topology optimized quasi-isotropic and orientation optimized unidirectional
material as it can be directly optimized for the functional needs at the structural scale. There-
fore, the compliance is significantly reduced compared to a standard topology optimization
with quasi-isotropic material. It is observed that the method is very robust, i.e. shows good
convergence and little sensitivity to the startdesign and control parameters. Therefore, the
proposed method opens up a wide range of interesting perspectives. Next steps include the
generalization of the concept to three dimensional topologies as well as including manufac-
turing constraints such that the practical feasibility of the optimized design can be taken into
account in the optimization process.
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Kurzfassung

Die Entwicklung innovativer und ressourcene�izienter Produkte ist von großer Bedeu-
tung für eine Reihe von Industriesektoren, unter anderem Automobilindustrie sowie Lu�-
und Raumfahrt. Infolgedessen hat der verstärkte Einsatz von Leichtbaumaterialien in hoch-
optimierten Strukturen höchste Priorität. Der Einsatz von Strukturoptimierung, insbesonde-
re Topologieoptimierung, hat in den letzten Jahren an Bedeutung gewonnen. Topologieop-
timierung bietet die Möglichkeit eine optimale Materialverteilung für ein Design unter be-
stimmten funktionalen Nutzungsbedingungen zu erreichen, mit dem Ziel bereits auf der Ebe-
ne des Konzeptdesigns eine signifikante E�izienzsteigerung zu erreichen. Im Hinblick auf
Leichtbau ist die Verwendung von Verbundwerksto�en ein Schlüsselfaktor, da sie die Mög-
lichkeit bieten die mechanischen Eigenscha�en des Bauteils gezielt an die Belastungssitua-
tion anzupassen. Bei der Optimierung von Verbundwerksto�en werden daher zwei Ziele ver-
folgt: die optimale Materialverteilung sowie die Ermittlung optimaler lokaler Materialeigen-
scha�en, definiert über die Orientierung und den Anisotropiegrad des lokalen Steifigkeits-
tensors. Eine Änderung der Topologie beeinflusst die lokale Spannungssituation und damit
auch die optimalen Materialparameter. Dies gilt natürlich auch im umgekehrten Fall. Daher
ist es, im Gegensatz zur derzeitigen Auslegungspraxis notwendig, die Aspekte der Topologie-
optimierung und der lokalen Materialoptimierung gleichzeitig zu berücksichtigen.

Die vorliegende Arbeit stellt eine neue Methode zur Optimierung von Struktur und Material
vor. Dabei werden der Entwurf der globalen Geometrie und der Entwurf des Materials, in Be-
zug auf Orientierung und Anisotropie des lokalen Steifigkeitstensors, gleichzeitig berücksich-
tigt. Das Konzept, das für dreidimensionale Strukturen entwickelt wurde, wird an pseudo-
zweidimensionalen Testbeispielen demonstriert und evaluiert. Ziel der Optimierung ist die
Minimierung der Gesamtnachgiebigkeit der Konstruktion unter Berücksichtigung einer Volu-
menrestriktion. Die hier vorgestellte Methode ist mit Python in Verbindung mit Abaqus FEM
implementiert. Die Ermittlung der Topologie basiert auf dem Algorithmus der Bi-Evolutio-
nären Strukturoptimierung (BESO). Die Optimierung des Materials erfolgt einerseits durch
Anpassung der Materialorientierung, basierend auf den lokalen Belastungsbedingungen
(Hauptspannungsrichtungen) und andererseits durch die Anpassung der jeweiligen Volumen-
anteile kontinuierlicher zylindrischer Einschlüsse (Fasern), basierend auf dem Verhältnis der
Absolutwerte der Hauptspannungen. Der homogenisierte Steifigkeitstensor wird mit einem
mikromechanischem Mean-Field Ansatz bestimmt. Die Methode liefert physikalisch realis-
tische Materialkonfigurationen basierend auf einer angemessenen Anzahl von Entwurfsva-
riablen, ohne dabei den Designraum unnötig einzuschränken. Die entwickelte Methode ist
gleichermaßen für den Einzellastfall als auch für mehrere Lastfälle anwendbar.
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Die Robustheit und E�izienz des vorgestellten Konzepts wird anhand von Standard Testbei-
spielen evaluiert. Das optimierte Material geht dabei über quasi-isotropes und unidirektional
verstärkter Material hinaus, da die Materialeigenscha�en direkt an die funktionalen Anforde-
rungen auf Strukturebene angepasst werden. Die Simulationsergebnisse zeigen eine deutli-
che Reduktion der Gesamtnachgiebigkeit der Struktur. Des Weiteren zeigt die Methode ei-
ne gute Konvergenz und eine geringe Empfindlichkeit gegenüber dem Ausgangsdesign und
für den Topologieoptimierungsalgorithmus notwendigen Eingabeparametern. Dies verdeut-
licht das Potenzial der Methode, eine Vielzahl von interessanten Perspektiven für die Entwick-
lung innovativer Bauteile zu erö�nen. Weitere Schritte beinhalten die Erweiterung des Kon-
zepts auf dreidimensionale Strukturen sowie die Berücksichtigung von Fertigungsrestriktio-
nen hinsichtlich der praktische Umsetzbarkeit des optimierten Designs.
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1. Introduction

In recent years one of the ultimate goals in engineering has been set on the pursuit of ex-
tremely light weight structures as well as the e�icient use of raw material for reduction of
energy in order to preserve the environment. Structural optimization has seen accelerated
deployment throughout all industries in the past decade, mainly due to the fact that tremen-
dous e�iciency gain can be achieved at the concept design level. Therefore, structural op-
timization, in particular topology optimization, is a powerful and already widely used tool
for designing weight optimized structural components. Topology optimization consists in
determining the best size, shape and connectivity of a structure. Most approaches to topol-
ogy optimization are based on a density formulation. In other words, the design variable is
a factor to the material sti�ness. Therefore, the objective is to determine a discrete "black-
and-white" solution containing either full material or voids within a given design domain.
Topology optimization has reached a certain maturity concerning the design of structures
with isotropic material, essentially metals [1, 2, 3, 4].

In terms of extremely lightweight components, composite structures are a key-player due
to their high sti�ness-to-mass and strength-to-mass ratio. Furthermore, composites o�er
the possibility of tailoring a material to a specific application and therefore o�er additional
degrees of freedom in the optimization process. Indeed, it is possible to adapt a composite
material according to the stress distribution within a structure, i.e., to adapt the orientation
and the anisotropy of the local material tensor which is controlled by the composite micro-
structure. In practice, the local control over the microstructure is rather limited. The only
eligible design factors are: the volume ratio of the matrix and the reinforcement, the orien-
tation of a given microstructure and the topology of the microstructure, all within a fixed set
of design variables.

Existing approaches for material optimization focus on directly finding a physically meaning-
ful solution based on a limited number of predefined candidate materials (Discrete Material
Optimization, DMO) [5]. In the context of orientation optimization, di�erent "candidate mate-
rials" simply refers to the same material oriented at various angles in space (fiber angles). The
principal material direction is assumed to coincide with the principal stress direction. How-
ever, for each additional "candidate material" an additional design variable must be added
leading to an increased computational e�ort. It is obvious that Discrete Material Optimization
implies the risk of local optimum solutions. The restriction to a prescribed set of orientations
is resolved in the Continuous Fiber Angle Optimization (CFAO) where local design variables
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are included to parameterize a continuous rotation of an anisotropic base material [6]. How-
ever, most CFAO approaches focus on two-dimensional problems (e.g., laminates for shells
or plates), far less research is dedicated to three-dimensional problems. Other approaches
for optimizing anisotropic materials work with a locally unconstrained configuration of mate-
rial. For the so-called Free Material Optimization (FMO) the individual entries of the material
sti�ness tensor are defined as design variables [7]. FMO is the least restrictive approach but
faces the problem that the optimization may yield a theoretically optimal structure but not
always a physically feasible structure, especially for more complex structures or loading sce-
narios.

The introduction of composite materials as part of the design formulation of structural opti-
mization require to determine the optimal spatial distribution as well as the optimal use of
the material itself. However, the traditional approach to structural design is to select a mate-
rial and then design the structure that best utilizes the given material, e.g., by using topology
optimization. On the other hand, advanced composites (e.g., fiber-reinforced plastics, FRPs)
are o�en used as "black metal" by simply keeping the geometry of a metal component and
replacing it with composite structures that are lighter. In both cases the design of structure
and material is inherently decoupled and yet the performance and quality of the designs
are inextricably linked across the structural and material scales. Since a change in topology
a�ects the local stress situation, it also a�ects the adjustment of material parameters (ori-
entation, degree of anisotropy) and vice-versa. As a consequence, and to address untapped
potentials in terms of lightweight design, there is an urgent need for a systematic approach
to couple structural (topology) and material optimization. This coupling on design level is
expected to enable products with better performance compared to designs that stem from
approaches where structural topology and materials are not concurrently considered.

Further aspects that influence the optimal design, especially when dealing with advanced
composite materials, are of course challenges to existing manufacturing techniques and the
associated costs. Today, manufacturing methods are emerging for anisotropic materials, for
instance 3D printing for fiber-reinforced polymers and Automated Fiber Placement. Certainly,
other manufacturing methods with the possibility of manufacturing new materials with com-
plex composition will arise in the coming decades. However, including manufacturing con-
straints such that the practical feasibility of the optimized design can be taken into account
in the optimization process is not the main focus of this thesis.

The objective of this thesis is to develop a method for simultaneous optimization of topology
and material that shall start from a prescribed maximum design volume, prescribed bound-
ary conditions, and loading, but without any initial "guess" on the shape of the structure. A
computational scheme which concurrently updates the topology and the anisotropic mate-
rial properties based on the local loading conditions is proposed. In the framework of this
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thesis a continuous glass fiber reinforced polymer (GFRP) is used, i.e., infinitely long cylindri-
cal inclusions (glass fiber) embedded in a matrix. Homogenized properties of the anisotropic
material are used to characterize the elasticity tensor coe�icients. The optimization of the
anisotropy distribution consists of adjusting the local material orientation and adjusting the
local material (sti�ness) tensor, based on the local loading conditions in terms of resulting
element stress tensors from a finite element analysis. The emerging principal stress trajec-
tories are used for the material orientation in each element of the finite element model. The
degree of anisotropy is based on the ratio of principal stresses for the respective element.
Depending on the number of loadcases, several possible update schemes are proposed.

The new method, proposed in this thesis, opens up the design space as the material can be di-
rectly optimized for the functional needs at the structural scale. Compared to existing meth-
ods for material optimization, the concept yields physically feasible material configurations
and is based on a reasonable amount of design variables but without adding unnecessary
restrictions to the design space. The new approach to simultaneous topology and material
optimization is illustrated for simple, 2-dimensional test cases. It is noted, however, that the
concept can be generalized to 3-dimensional composite topologies in a straight forward way.
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2. Theoretical Background

In the following sections, the basic terminologies of structural optimization as well as the
general mathematical formulation of a structural optimization problem are introduced. Fur-
thermore, the basic methods, namely size, shape and topology optimization, shall be briefly
described followed by a presentation of the various optimization algorithms. As this thesis
deals with the simultaneous optimization of topology and material, these topics will be dealt
with in detail in Section 2.5, Section 2.6 and Section 2.7.

2.1. General Formulation of an Optimization Problem

The general mathematical formulation of a nonlinear optimization problem with n design
variables, l inequality constraints, andm equality constraints is as follows [2, 8, 3] :

minimize: f (x) (2.1a)
subject to: xLi ≤ xi ≤ xUi ; i = 1, ..., n, (2.1b)

gj (x) ≤ 0; j = 1, ..., l, (2.1c)
hk (x) = 0; k = 1, ...,m. (2.1d)

Equation 2.1a defines the minimization of an objective function f(x) depending on the vec-
tor of the design variable x ∈ Rn, x = [x1, x2, ..., xn]T. The design variables can be ei-
ther discrete (binary) or continuous. Optimization problems that have their design variables
restricted to discrete values are referred to as discrete optimization problems. The mini-
mization problem in Equation 2.1a is subjected to inequality constraints gj (x) and equality
constraints hk (x) (see Equation 2.1c and Equation 2.1d). For practical applications, equality
constraints are of minor importance as in real world problems it is mostly important to keep
upper or lower limits instead of keeping an exact target value [2]. Restrictions on the search-
able design-space are the upper and lower bounds xLi and xUi , see Equation 2.1b. These are
also referred to as explicit restrictions or side constraints on the design variables. An opti-
mization problem is considered as constrained if it has one or more equality and/or inequal-
ity constraints. An unconstrained problem thus has no equality or inequality constraints, but
may have side constraints on the design variables. The objective and constraint functions
can either be linear or non-linear and explicit or implicit functions. Implicit functions usually
appear, when, for example, a numerical simulation (e.g., finite element simulation) is used
to evaluate a response function (e.g., displacement).
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The fact that the optimization problem is formulated as a minimization rather than a maxi-
mization problem is not restrictive since instead of maximizing a function it is always possible
to minimize the negative of it [2]:

max (f(x)) = −min f(x). (2.2)

In the same way, an inequality constraint

gj(x) ≤ 0, (2.3)

can be reformulated to a greater-than-zero inequality constraint by simply multiplying
Equation 2.3 with (−1).

2.2. Terminology

The following terms, variables, and functions are always present in the definition of a struc-
tural optimization problem and therefore are briefly introduced here:

Design Variable

For an optimization problem, the design variables are the set of parameters which are subject
to variation during the optimization process. Design variables may represent the geometri-
cal dimensions of individual members, e.g., "size variables" such as the width or depth of
a member section or the cross-sectional area of a bar. Further examples of design variables
include mechanical or physical properties of the structural materials, the configuration or ge-
ometrical layout of the structure as well as other relevant aspects of a design. Depending on
the type of structural optimization being performed, design variables may be continuous or
discrete. As shown in Section 2.1, mathematically, the full set of design variables for a given
structure is represented as a vector x = [x1, x2, ..., xn]T in an n-dimensional space which
hereina�er will be referred to as design space. The design space is not to be confused with
the design domain which is the region of a structure which is designable during optimization.
The design domain can be either a subset of the model (containing only selected regions of
the model) or the whole model itself. In contrast, non-designable regions are regions that
may not be changed during optimization.

Design Objective

The objective function depends on the design variables and defines the goal of the optimiza-
tion. Therefore, the objective which is a scalar value, represents the single most important
property of a design. In engineering applications, typical objectives are minimizing weight,
maximizing sti�ness, or maximizing strength.
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Sometimes it is necessary to deal with multiple objectives, e.g., minimizing the weight and at
the same time maximizing strength. Similarly, it is possible to have multiple objective func-
tions that arise from multiple di�erent loadcases. In both cases, the optimization problem
consists in finding a single optimal solution that optimizes simultaneously all the objective
functions. One possibility to deal with multiple objectives is to use weighting factors that
scale the influence of the respective objective function on the optimization. A famous exam-
ple of combining several objective functions is the so-called Weighted Sum method where
the objective functions are summed with a "weight factor of importance" (preference ratio).
For instance, Sigmund [9] proposes to combine the objective functions from di�erent load-
cases, so that the problem is changed to a scalar optimization problem. This is exemplarily
shown in Equation 2.4 for the objective of minimizing the compliance as

min
m∑
i=1

wiCi, (2.4)

whereCi denotes the compliance of the loadcase i,m is the total number of loadcases, and
wi is the weight factor of the respective loadcase. The above formulation with a linear com-
bination of the individual cases is simple, but the design solution naturally depends on the
chosen linear combination factors. The di�iculty of this method lies in finding the correct
value of the weight factors prior to the optimization because small perturbations of these
values may lead to very di�erent design proposals.

An alternative to the linear combination of several load cases is to optimize with focus on
the "worst case" out of several loadcases as proposed by Bendsøe et al. [1]. For example
one could decide to minimize the compliance of the loadcase which leads to the worst stress
state. However, evaluating which load case is most relevant is not trivial since it depends on
the geometry of the structure that changes at each optimization iteration step. Furthermore,
this method does not consider the contribution of the other loadcases.

Constraints / Feasible Design / Infeasible Design

Constraints are restrictions placed on the design space of the optimization problem. There-
fore, constraints limit the domain of options available to a designer for generating new de-
sign solutions. Constraints can be classified as constraints on the design responses (e.g.,
sti�ness, displacement, mass, stress), so-called design constraints, or constraints on the de-
sign variables, which are referred to as side constraints. Design constraints restrict the value
of a design response, for instance prevent the structure from violating stress limits, displace-
ment values and so on. Like the objective functions, the design constraints are expressed as a
function of the design variables. Design constraints on the design variables are upper and/or
lower limits on the searchable design space. Figure 2.1 schematically shows the design space
for a cantilever beam where the aim (objective) is to minimize its weight.
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F

Figure 2.1.: Design Space showing feasible and infeasible design regions

The design variables are the height h and the width b of the beam. A design constraint is
placed on the optimization, namely a displacement constraint. Furthermore, there are side
constraints: a lower bound hmin and an upper bound hmax on the height and a lower bound
bmin on the width of the beam. In this context a Feasible Design is a design that satisfies all
constraints whereas an Infeasible Design is one that violates one or more constraints.

Optimum Design

The optimum design refers to the set of design variables which define the maximized or min-
imized objective without violating one of the constraints. Depending on the problem defini-
tion, sometimes constraints are necessary to achieve a meaningful result at all, as Figure 2.1
illustrates. Without any constraints the optimum solution would be at "point A", which is
quite useless for practical applications. Adding a displacement constraint gives a practical
design and the optimum is at "point B". Placing side constraints on the design variableshand
b further restricts the design space (feasible design space) and the optimum is at "point C".

Stopping Conditions

If objective and/or constraints are nonlinear functions of the design variables, the design
problem is called a nonlinear programming problem. Most engineering problems fall in this
category. These problems are frequently solved using numerical, rather than analytical meth-
ods. As numerical optimization algorithms are iterative procedures, a termination criterion
is needed to stop the iterative process.
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An optimization algorithm has converged (can be stopped) if it cannot reach new solution
candidates anymore or if it keeps on producing solution candidates from a "small" subset
of the problem space. According to Harzheim [2], there are three termination criteria mostly
used in structural optimization to determine the end of an optimization procedure.

The first termination criterion is based on defining a limit on the number of iterations. When
the limit on the number of iterations exceeds a specified value, the optimization is termi-
nated. However, this termination criterion is not very useful unless there are exact time con-
straints on the optimization. The final design represents an improvement but rarely an op-
timum because it is unrealistic to expect that a problem will converge at a certain iteration.
A variation of this is to provide a quite large number as the maximum iteration. However, in
such a case obviously the computing expense will be unnecessarily high.

Another possibility is the so-called "objective value convergence test": when all the objective
values are close within a specified tolerance, the iteration is terminated. These convergence
criteria are used to terminate an optimization at a point a�er which no further significant im-
provement in the objective function is expected. When the convergence criterion is satisfied,
it can be assumed, that the optimum has been determined with su�icient accuracy. There-
fore, the second termination criterion is a convergence method that evaluates the absolute
change of the objective function. It requires that the actual change of the objective function
of the last two iterations of the optimization is less than or equal to a certain value as follows:

∣∣f (x(k)
)
− f

(
x(k−1)

)∣∣ ≤ εabs, (2.5)

where f
(
x(k)

)
is the value of the objective function of the current iteration k and f

(
x(k−1)

)
is the value of the objective function of the previous iteration (k − 1). εabs is a user-selected
convergence tolerance value, which determines the termination of the optimization proce-
dure. However, the major disadvantage is that the limit εabs must always be adapted to the
respective objective function.

According to Harzheim [2], the third type of termination criteria is also a convergence crite-
rion and is the most universal stop criterion. It is based on the relative change of the objective
function from one optimization iteration to the next optimization iteration. This termination
condition requires that the relative change in the objective function is less than or equal to
the user-selected convergence tolerance εrel as follows:∣∣f (x(k)

)
− f

(
x(k−1)

)∣∣
|f (x(k))|

≤ εrel, (2.6)

The major advantage is that the user-selected convergence toleranceεrel must not be adapted
to the respective objective function.
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2.3. Structural Optimization Techniques

Optimization has earned a key place in the drive to improve products based on a wide range
of performance criteria. Optimization technology has advanced rapidly over the past decade
and the engineer faces a bewildering variety of tools and methods. Modern structural opti-
mization has evolved since the 1940s, mainly driven by the aerospace industry but expand-
ing to other industrial sectors as well. According to Harzheim [2], in the early years structural
optimization mainly dealt with applications for civil engineering truss structures, with the
design variables being the cross-sectional areas of the elements. The development moved
from the original stage of considering only the geometrical dimensions (sizing or dimension-
ing) of a structure as illustrated in Figure 2.2, to a more general form of optimizing the outer
boundaries (shape) of a structure as illustrated in Figure 2.3, and finally to determining the
best topological layout while still considering the geometry and physical dimensions as well
as connectivity of members and joints, as illustrated in Figure 2.4.

From an engineering point of view structural optimization techniques can be classified into
the following three categories [2]: sizing optimization, shape optimization, and topology op-
timization. All these methods have in common that a physical quantity is optimized while
equilibrium of forces and other constraints on the design are satisfied.

Size Optimization

In a typical size optimization, the basic layout (topology) of the structure is prescribed. The
design variables are structural parameters like the length, width or depth of a member sec-
tion, the cross-sectional area of a bar in a frame, the thickness of a plate or the moment of
inertia of a flexural member. Figure 2.2 shows an example for size optimization of a truss
structure with predefined structural connectivity and a predefined cross-section shape. In
this case, the design variable for sizing optimization is the cross-section diameterD.

Startdesign

Design 
Proposal

A

A-AA

Figure 2.2.: Size optimization
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Shape Optimization

Like with size optimization, in shape optimization, the basic layout (topology) of the struc-
ture is known and remains unchanged during the optimization process. The aim is to im-
prove the performance of the structure by modifying its boundaries [3]. There are several
approaches to represent the shape of a structure and to follow its evolution during shape
optimization. For instance in the Lagrangian Approach, the shape boundary is sampled in a
relatively dense and uniform manner to obtain a su�iciently accurate outline of the shape.
The design variables are the coordinates of the boundary points. The optimal shape can be
evolved by gradually moving those boundary points.

Figure 2.3 shows two examples of shape optimization. Figure 2.3(a) illustrates a shape op-
timization of a startdesign with known structural connectivity but unknown cross-section
shape. The design proposals are the respective optimized cross-section shapes (e.g., circular
or I-beam). Figure 2.3(b) shows a common engineering application of shape optimization. In
this case, shape optimization is used for "fine tuning" the shape of cavities/holes from topol-
ogy optimization in order to reduce stress concentrations which in turn influences fatigue life
positively.

Topography optimization can be considered as a special case of shape optimization. It refers
to pattern shaped reinforcements applied to shell and thin-walled structures.

(a) (b)

Startdesign

Design 
Proposal

A

A

B

B

A-A B-B

Figure 2.3.: Examples of shape optimization: (a) optimal cross-section shape, (b) shape opti-
mization as applied to "fine tuning" a�er topology optimization

Topology Optimization

The topology of a structure, referring to the arrangement of material or the positioning of
structural elements, is crucial for its optimality. Therefore, with topology optimization, the
aim is not to look for the most suitable shape but rather for the optimal distribution of ma-
terial ("optimal load path") inside a predefined design domain for a given set of loads and
boundary conditions. Topology optimization is used when the actual fundamental layout of
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a structure is unknown. It solves the most general structural optimization problem of dis-
tributing a given amount of material freely in the design domain such that the performance
of the structure is optimized without violating predefined constraints. This means, unlike
size and shape optimization, structures optimized through topology optimization can attain
any shape within the design domain.

Topology optimization can be classified into methods for discrete structures and methods for
continuum structures [3]. Figure 2.4 illustrates the two types of topology optimization with
discrete topology optimization shown on the le�-hand side (Figure 2.4(a)) while the contin-
uum topology optimization is shown on the right-hand side (Figure 2.4(b)). Topology opti-
mization for discrete structures is also referred to as Ground Structure Approach [10]. This
approach considers a fixed grid of nodes, a so-called "basic structure", initially with a high
degree of connectivity. This means that the nodes are connected by as many structural ele-
ments, e.g., trusses, in as many ways as possible. In extreme cases each node may be con-
nected to each other node. These links between the nodes are potential structural mem-
bers corresponding to the design variables. Topology optimization can be applied to remove
"under-utilized" members. In contrary, topology optimization for determining the optimal
material distribution for continuum structures, as illustrated in Figure 2.4(b), does not need
any basic structure. The topology optimization problem of a continuum structure is how to
distribute a certain amount of material within a design domain.

(a) (b)

Startdesign

Design 
Proposal

Figure 2.4.: Principles of topology optimization in the (a) discrete and (b) continuous case

Structural topology optimization is of great practical importance as it can result in great ma-
terial savings. In this sense, according to Bendsøe et al. [1], topology optimization is the most
straightforward approach to solve a typical problem in engineering, namely "construct a fail-
safe device with the least possible amount of material".

The aforementioned categorization of methods for structural optimization (size, shape, topol-
ogy) is rather idealized. O�en, structural optimization consists of a mixture of these tech-
niques. For instance, one could use size optimization for the optimization of the cross-section
of a truss structure while at the same time consider topology optimization to remove unnec-
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essary trusses. From the point of view of product development, there are several levels with
respect to structural optimization. Concept Level Design implies that the optimization is per-
formed at a very early or even at the first stage of a design process in order to create the best
design from which to progress. The second level, Fine Tuning Design, refers to optimization
strategies that allow detailed changes to the structure in order to satisfy objective / constraint
criteria but without making any changes to the overall topology. Among the aforementioned
categories of structural optimization, topology design is used at a Concept Design Level to
find the optimal layout of a structure. Size and shape optimization, belong to the level of the
so-called Fine Tuning Design.

2.4. Algorithms for Optimization

Nowadays, it is common practice to use numerical optimization methods to deal with mul-
tidisciplinary industrial design problems [1]. The algorithms deal with the mathematical
form of the optimization problem interfaced with computer models representing the phys-
ical structure. The physical properties of the structure to be optimized are represented by
the design variables, objective function(s), and the design constraint(s). The model is used
to perform structural analyses requested by the optimization algorithm.

Optimization algorithms are used to find the solution to the problem specified in Equation 2.1.
The optimization procedure consists of finding a specific combination of design variable val-
ues that results in the best objective function value, while at the same time satisfying all
equality, inequality and side constraints. Optimization is an iterative process that roughly
consists of the following steps [1], where step 2.-4. constitute the iterative part of the proce-
dure:

1. An initial design (startdesign) is suggested.

2. The design is evaluated, e.g., for mechanical structures by means of computer based
methods like the Finite Element Method (FEM).

3. The design requirements are checked for fulfillment (stopping condition).

4. If the design requirements are fulfilled, the optimization process stops. Else, modifica-
tions to the design are made and a new, improved design is proposed. Subsequently
step 2.− 4. are repeated.

In each iteration step, the algorithm decides by which value ∆x(k) the design, defined by the
design variables x(k), needs to be changed for the following iteration (k + 1):

x(k+1) = x(k) + ∆x(k). (2.7)

Several approaches for solving the design update problem in Equation 2.7, i.e., how ∆x(k)

can be determined, exist. These approaches can be roughly classified as search direction
strategies, global optimization techniques and optimality criteria.
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Depending on the chosen structural optimization technique (size, shape, topology) there are
di�erent requirements on the optimization algorithm. The following subsections provide a
short overview of the most important attributes of a "good algorithm" as well as a discussion
on local/global optimality of a solution. Furthermore, the most commonly used algorithms
are discussed, including gradient-based algorithms, approximation methods, optimality cri-
teria methods, and global optimization algorithms.

2.4.1. Local vs. Global Optimum

A globally optimal solution is a feasible solution with an objective value that is better than all
other feasible solutions to the model. With a convex objective and a convex feasible region,
there can be only one optimal solution, which is globally optimal. On the other hand, a non-
convex optimization problem is any problem where the objective or any of the constraints
are non-convex. Non-convexity implies that there are multiple optima, i.e., several local op-
tima of which usually one is also the global or absolute minimum. A local optimum of an
optimization problem is a solution that is optimal compared to all other feasible solutions in
its immediate vicinity, whereas a global optimum is the best out of all such local optima. An
example of such a non-convex function is illustrated in Figure 2.5.

Figure 2.5.: Objective function with several local minima of which only one is the global op-
timum

It is important to consider that most problems of structural optimization are in fact non-
convex. The probability that an optimization process gets caught in a local optimum depends
on the characteristics of the optimization problem, the parameter settings and the features
of the applied optimization algorithm. Local optimization algorithms are very e�icient for
finding local optima, namely determining an improving neighboring configuration starting
from an initial configuration, see Figure 2.5 with starting point A and starting point B. These
algorithms ensure only local optimality and they do not guarantee that the obtained design
is the global optimum [11].
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However, generally it is highly desirable for an algorithm to identify the global optimum.
Global optimization algorithms employ measures that prevent convergence to local optima
and increase the probability of finding a global optimum. The performance and e�iciency
of a global optimization algorithm is a�ected by the number of local optima as well as their
location and surrounding gradients. The impact of distribution and number of local optima
is discussed in detail by Törn et al. [12].

One of the problems regarding global optimization is that it is o�en not possible to deter-
mine whether the current best solution is situated on a local or a global optimum and thus,
whether global convergence is achieved. In other words, it is usually not clear whether the
optimization procedure can be terminated, whether the optimization procedure should con-
centrate on refining the current optimum or whether it should examine other regions of the
design space instead. Furthermore, global optimization algorithms are not suitable for any
kind of optimization problem as the computational burden increases with growing dimen-
sionality of the optimization problem (i.e., the number of design variables) [13]. According
to Sigmund [14], for instance, global algorithms for topology optimization require orders of
magnitude more function evaluations compared to local algorithms which makes them com-
putationally expensive. However, as global convergence is a major topic of research and is
not the main focus of this thesis it will not be further discussed in detail.

Another problem is related to the non-uniqueness of solutions. Non-uniqueness of solutions
refers to the problem that there exists more than one optimal designs with the same minimal
objective function value (multiple global optima) [1]. An example of such a non-unique so-
lution is the design of a structure in uni-axial tension, as shown in Figure 2.6 (a). The vertical
black strip at the points of force application is assumed to be rigid. A structure consisting of
one thick bar (Figure 2.6 (b)) will be just as good as a structure made up of several thin bars
with the same overall area (Figure 2.6 (c)) [15]. However, this issue can be resolved by using
regularization techniques.

q

(a) (b) (c)

Figure 2.6.: Example of non-unique solutions for a structure in uni-axial tension
(following [15])
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2.4.2. Attributes of Algorithms

Algorithms for finding the optimum structural design have progressed rapidly within the past
decades. In practice, one normally seeks algorithms that explore the feasible design space
in a cost-e�ective manner, aiming for a better optimal solution within an acceptable level of
accuracy depending on the nature and the size of the problem [2]. Most real-world structural
optimization problems in engineering involve complexities like non-linearity, non-convexity,
large dimensionality, design constraints, and mixed nature of variables. The latter refers to
the fact that structural optimization problems may involve a mixture of continuous and dis-
crete design variables. Therefore, from the optimization point of view, the choice of the right
algorithm is crucially important. Several aspects must be considered when selecting an al-
gorithm for practical applications. Considerations regarding the most important properties
of a "good algorithm" can be summarized as follows:

E�iciency

The e�iciency of an algorithm is defined as the computational e�ort that is required to solve
an optimization problem. One possibility to judge the e�iciency of an algorithm is the run-
ning time, measured either in terms of "wall clock time" or CPU time. "Wall clock time" refers
to the amount of time the user has to wait to get an answer (e.g., the final design proposal)
from the computer. The CPU time corresponds to the time the CPU spends on the algorithm,
excluding tasks of the operating system and other processes. "Wall clock time" has been ar-
gued to be more useful in real-world settings by McGeoch [16]. In contrary Beiranvand et
al. [17] states that the CPU time is considerably more stable as it is independent of back-
ground operations of the computer. However, according to Khompatraporn et al. [13] the
execution times of algorithms are not directly comparable if the determined execution times
are from machines with di�erent specifications. Therefore, instead of relying on the execu-
tion time, Khompatraporn et al. [13] suggests to count the number of objective function eval-
uations, needed by the algorithm, to numerically converge to the optimum within some de-
gree of predefined accuracy. This is similar to the measurement of algorithm e�iciency by
the number of so-called fundamental evaluations, proposed by Beiranvand et al. [17]. Fun-
damental evaluation refers to any subroutine that is called by the algorithm in order to gain
fundamental information about the optimization problem, for instance objective function
evaluation, constraint function evaluations or gradient evaluations. The algorithm should
keep the amount of fundamental evaluations as small as possible so that the actual compu-
tation time is reasonable. In other words, an e�icient algorithm should require relatively few
iterations and thus converge quickly.

Accuracy

The accuracy of an algorithm refers to the quality of the algorithmic output which per se is a
numerical issue according to Beiranvand et al. [17]. Algorithms should be able to identify a
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solution with precision, without being overly sensitive to errors in the data or to arithmetic
rounding errors that occur when the algorithm is implemented on a computer. Examples il-
lustrating the e�ect of rounding errors can be found for instance in a publication by Brent [18].

Robustness/Reliability

For practical applications, it is of uttermost importance to use a method that is theoretically
guaranteed to converge to the same solution starting from any initial design estimate. A
method having such a guarantee is called robust [19]. In other words, robustness refers to
the fact that the algorithm should be insensitive to choosing di�erent "starting points", see
Figure 2.5. Another way to define robustness is the following: according to Beiranvand et
al. [17], the reliability and robustness of an optimization algorithm is defined as the ability of
the algorithm to "perform well" over a wide range of optimization problems. In this context,
the robustness of an algorithm can be verified if the algorithm is capable of treating di�erent
types of configurations of structural design problems with similar e�iciency. Another way to
define robustness is the following:

Ease of use

From the users point of view the ideal "user friendly" optimization algorithm is basically a
black box that will output the final solution without too much preparation by the user. Al-
gorithms that depend upon a large number of (externally set) parameters usually require
pre-calibration or "tuning" for every new problem, indicating strong problem-dependency.
An algorithm should need as little problem-specific parameter tuning as possible in order to
enhance result reproducibility. However, this implies nontrivial compromises between user-
friendliness for a non-expert or an average expert and sophisticated implementations [13].

It is noted, however, that there exists no algorithm for structural optimization that outper-
forms others in terms of being able to solve all types of optimization problems. The attributes
of a "good algorithm" mentioned above may conflict and trade-o�s between these attributes
are usually inevitable. For instance, o�en an increase in computational cost (CPU time) has to
be accepted in order to achieve a robust algorithm [17]. Therefore, the emphasis lies on find-
ing the most appropriate algorithm for solving a particular structural optimization problem
instead of finding the "best" optimization algorithm.

2.4.3. Gradient-Based Methods

Gradient-based methods are iterative optimization algorithms of mathematical program-
ming (MP) for finding a (local) optimum for a di�erentiable function. Generally, mathemat-
ical programming refers to an iterative optimization procedure aiming at finding improved
feasible designs with the knowledge of structural response and gradient (sensitivity) infor-
mation [20].
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According to Harzheim [2], gradient-based approaches fall into the category of so-called
search-direction algorithms. The fundamental underlying structure of a search-direction al-
gorithm is the following:

1. One starts with an initial point,

2. determines a direction of movement (according to a specified rule) in which to search
for the next "design point",

3. and moves in that direction with a specified increment in order to improve the objec-
tive function.

At the new design point a new direction is determined and the process is repeated.

Gradient-based algorithms use local gradient information (function derivatives with respect
to the design variables) to determine the most promising direction along which to search for
the optimum. The gradient of a function f (x) is given by the vector of partial derivatives
with respect to each of the n independent variables as

∇f
(
x(k)

)
=

[
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn

]T

. (2.8)

The gradient vector∇f
(
x(k)

)
is perpendicular to the hyperplane tangent to the contour sur-

faces of constant f (x). By determining the gradient, which is also referred to as the sensitiv-
ity of the design with respect to the design variables, it is possible to numerically (mathemat-
ically) determine how the design variables must be adapted to improve the objective while
at the same time satisfying the constraints. A huge variety of such gradient-based methods
is available today [4].

Using gradient-based algorithms, the design variables are updated at each major iteration
k according to

x(k+1) = x(k) + α∗p(k+1), (2.9)

where p(k+1) is the so-called search direction for the major iteration k andα∗ is the so-called
step length. It is notable that the determination of the step length, which is performed with a
so-called line search, usually involves multiple iterations that do not count towards the ma-
jor iterations. This is an important distinction that needs to be considered when comparing
computational cost of various approaches [1]. Equation 2.9 reveals that there are two sub-
problems for each major iteration, already indicated at the beginning of this subsection:

1) Originating from a starting point (the vector of design variables of the current design
x(k)) a search direction p(k+1) is determined.

2) The step length α∗ is determined. The step length defines how the design variables
must be adapted in order to improve the objective.
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The procedure of determining a search direction p(k+1) and finding the step length α∗ is re-
peated until the stopping conditions (or conditions of convergence) are satisfied. The key
point here is that all design variables are considered simultaneously according to their ef-
fect on the objective (and constraint) functions. The di�erence between the various types of
gradient-based algorithms is the method that is used for computing the search direction (the
first sub-problem).

The determination of the step length α∗ is independent of the method that is used for de-
termining the search direction. Therefore, the second sub-problem of determining the step
lengthα∗, which is illustrated in Figure 2.7 (a), is explained first. To determine the step length
along a given search direction p(1) from a starting point (x(0)), a line search is performed.
By using the line search strategy, the multi-dimensional optimization problem is reduced to
a one-dimensional problem, i.e., the line search solves the one-dimensional optimization
problem of finding the optimal step length along the search direction:

α∗ = min (f (α)). (2.10)

The result of the above equation is used in Equation 2.9 to compute the next starting point
x(k+1).

(c)(a) (b)

Figure 2.7.: General procedure of gradient-based search direction algorithms (following [2]).
(a) Determination of the optimal step length α∗ via line search, (b) Search direc-
tion procedure, (c) The convergence of the method of Gradient Descent Method

Getting back to the first sub-problem: the e�iciency of gradient-based algorithms strongly
depends on how the search directions are determined. Gradient Descent Methods, also re-
ferred to as Steepest Descent Methods, use the negative of the gradient of the function at the
current point to determine the search direction. The gradient vector is orthogonal to the
plane tangent to the isolines / isosurfaces (f (x) = const.) of the function. The gradient vec-
tor at a design point, (e.g., atx(1)), is also the direction of maximum rate of change (maximum
increase) of the function at that point. Therefore, in the case of a minimization problem, to
improve the objective function and move further to a minimum, the search direction must
be opposite to the gradient vector. Generally, for gradient based methods the determination
of the function gradient signifies the main computational e�ort.
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The procedure mentioned above can be visualized as a walk in high mountains with the de-
sign variables being the di�erent paths to descend to the lowest point, the valley. The idea is
that if the steps are not too large (causing the algorithm to jump over the target), following
the most downward direction will result in finding the lowest point. Sometimes the terms
gradient-based method and Steepest Descent Method are used interchangeably. However, in
general, gradient-based methods refer to an optimization method in which the direction of
descent is obtained by gradient information, that is, it is not limited to the negative gradient.

According to Harzheim [2], the Steepest Descent Method su�ers from a slow convergence as
two successive search-directions are always orthogonal such that a zigzagging pattern ap-
pears in the optimization process, as illustrated in Figure 2.7 (c). Although substantial im-
provement of the objective may be observed in the first few iterations, the method is usually
very slow closing in on the optimum value. This is especially true for "long and narrow val-
leys". The step length gets smaller and smaller, crossing and recrossing the valley (shown as
contour lines) as it approaches the minimum. The reason why the Steepest Descent Method
converges slowly is that it has to take a right angle turn a�er each step and consequently
search in the same direction as earlier steps.

To improve the convergence of the Steepest Descent Method, the method of Conjugate Gra-
dients, developed by Fletcher et al. [21], can be used. This method is an attempt to mend the
problem mentioned above by "learning" from experience. In the method of Conjugate Gra-
dients the initial step in the first iteration is taken in the direction of the steepest descent. In
all subsequent iterations, a contribution of the search direction from the previous iteration
is added to the negative gradient of the current iteration

p(k+1) = −∇f
(
x(k)

)
+ βp(k), (2.11)

where the coe�icient β is given, for example, by the so-called Fletcher-Reeves formula

β =


0 when k = 0∣∣∇f

(
x(k)

)∣∣2
|∇f (x(k−1))|2

when k > 0
, (2.12)

With this small modification in the determination of the search direction, taking into account
the history of the gradients, the algorithm moves more directly towards the optimum.

The methods described so far use first-order information (first-order derivatives) to obtain
a local model of the objective function to find the optimum design. This is referred to as
linear approximation.
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In contrast, the Newton Method uses second-order information (second-order derivatives)
to approximate the given function f (x) in each iteration by a quadratic function, and then
move to the minimum of this quadratic function. The geometric interpretation of this method
is that in each iteration a paraboloid is fitted to the surface of the objective function f (x) at
the current design point x(k), having the same slopes and curvature as the surface at that
point. Subsequently, the minimum of that paraboloid is determined. If f (x) happens to be
a quadratic function, the exact optimum can be found in one step. According to Harzheim [2]
the Newton Method results in faster convergence but not necessarily less computation time.
While the gradient of a function of n variables is an n-vector, the "second derivative" of an
n-variable function is defined by n2 partial derivatives (the derivatives of the n first partial
derivatives with respect to the n variables). The second-order partial derivatives can be rep-
resented by a square symmetric matrix called the Hessian matrix which contains n(n+1)

2

second-order derivatives:

∇2f
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where H (x) is the Hessian matrix of f at x(k). The computation of the second-order deriva-
tives and the handling of this matrix can be very time-consuming. Quasi-Newton methods
approximate the Hessian matrix to speed up the algorithm by avoiding the computationally
expensive step of determining the exact Hessian matrix. The various Quasi-Newton meth-
ods, like the Davidon-Fletcher-Powell (DFP) method and the Broydon-Fletcher-Goldfarb-
Shanno (BFGS) method, di�er in how they update the approximate Hessian matrix.

All the methods described so far are algorithms for solving an unconstrained optimization
problem. However, most engineering problems have constraints that must be satisfied dur-
ing the design process, see Equation 2.1c and Equation 2.1d. Therefore, it is also important
to examine gradient-based algorithms that involve constraints. Associated with search di-
rection algorithms one can say that a constraint is a boundary which prevents the optimizer
from continuing in certain directions. Gradient-based algorithms for constrained optimiza-
tion problems can be categorized into indirect methods and direct methods. With indirect
methods, the constrained problem is converted into a sequence of unconstrained optimiza-
tion problems. Penalty functions are used to take the constraints into account. Due to this, in-
direct methods are also referred to as penalty function methods. The Exterior Penalty Method
appends a penalty for violating constraints while the Interior Point Method appends a penalty
as one approaches infeasibility of the design. With direct methods the constraints are taken
into account explicitly in the solution algorithm. These methods are also referred to as con-
strained methods.
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Gradient-based methods for solving the constrained optimization problem include the Con-
strained Steepest Descent Method (CSD), Constrained Quasi-Newton-Method and Method of
Feasible Directions(MFD) as well as it’s modification the Modified Method of Feasible Direc-
tions(MMFD). According to Harzheim [2], direct methods are more e�icient than indirect meth-
ods. The reason is that the optimal solution frequently lies on the boundary of the feasible
region. Therefore, restricting the search to only feasible solutions (e.g., when using the Inte-
rior Point Method) or imposing very severe penalties makes it di�icult to find the optimum.
In practice it also might be better not to use the solution right on the boundary of the feasi-
ble region. On the other hand, if the penalty is not severe enough, then a too large region is
searched and much of the search time will be used to explore regions far from the feasible
region.

Like with the unconstrained methods, the design variables for constrained methods are mod-
ified successively during the design process by moving in the design space from one point to
another. Constrained methods consist of the following computational steps:

1. Determine the set of active constraints at the current design point:
For any point x(k) in the feasible region, a constraint gj

(
x(k)

)
≤ 0 is called active at

x(k) if gj
(
x(k)

)
= 0 , and inactive at x(k) if gj

(
x(k)

)
< 0. The active set of constraints

at a design point x(k) is made up of those constraints gj
(
x(k)

)
that are active at the

current point [8].

2. Determine a search direction in the design space, based on the objective function and
the set of active constraints.

3. Determine how far to go in the direction found in the previous step (step length).

4. Check convergence of objective.

Consequently, a search direction which leads to an improvement in the objective function
without violating the constraints must be determined first. The basic concept is as follows:
as long as there are no active constraints, the optimization is performed as an unconstrained
gradient-based search. If a constraint becomes active, a di�erent concept is needed for de-
termining the search direction. A very illustrative description is to divide the design space
into three domains [22]:

1. Usable Domain:
A search direction within the usable domain (usable search direction) leads to an im-
provement of the objective function values. An improvement of the objective function
(minimization) is achieved if the search direction p and the gradient of the objective
function ∇f (x) are antiparallel:

pT∇f (x) < 0. (2.14)
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2. Feasible Domain:
A search direction within the feasible domain (feasible search direction) maintains that
active constraints are not violated. This is the case if the search direction p and the
gradient of the active constraint function∇g (x) are antiparallel:

pT∇g (x) ≤ 0. (2.15)

3. Usable-Feasible Domain:
The intersection between the usable and feasible domain is denoted as usable-feasible
domain. For more than one constraint function the usable-feasible domain is the inter-
section of the usable domain with all feasible domains of the set of active constraints.

Figure 2.8(a) illustrated the three domains described above for one active constraint. If it is no
longer possible to identify a usable and feasible search direction, that is, there is no usable-
feasible domain anymore, the optimum is reached. For one active constraint g (x) this is the
case if the gradient of the objective function∇f (x) and the gradient of the active constraint
g (x) are antiparallel.

When a constraint becomes active, the aim is to move downwards as far as possible along
the constraint limits as shown in Figure 2.8(b). For every k-th iteration, the search direction
must have the following properties:

p(k)T∇f
(
x(k−1)

)
< 0 and p(k)T∇g

(
x(k−1)

)
≤ 0. (2.16)

Usable 
and 
Feasible

(a) (b)

Figure 2.8.: Constrained optimization. (a) Usable and Feasible domain for the determina-
tion of the search direction, considering one active constraint. (b) Concept of the
Method of Feasible Directions (following [2])
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Using the Method of Feasible Directions, a certain tolerance range is defined for determin-
ing whether a constraint is active or not. The reason is that in terms of e�iciency it is highly
desirable to move as far as possible along a search direction. For instance, if one uses an un-
constrained search when already close to the constraint limit, the step length may be very
small and a new search direction must be determined, again requiring the time consuming
computation of gradients. Figure 2.9 illustrates the idea of such a tolerance range, defined
by the limits ε and δ. The tolerance range implies that a constraint is considered active be-
fore reaching the exact value g (x) = 0. Furthermore, a slight violation of the constraint is
tolerated. According to Harzheim [2], typical values for the tolerance limits are ε = −0.03

and δ = 0.003. However, the Method of Feasible Directions shows a tendency to run along
a "zigzag" course when moving along the constraint limit. With the Modified Method of Fea-
sible Directions, which shall not be discussed in detail here, this tendency of "zigzagging" is
suppressed [2].

(a) (b)

Figure 2.9.: Active constraint for the Method of Feasible Directions. (a) Exact constraint. (b)
Introduction of tolerances ε and δ to form a tolerance band at both sides of a
constraint (following [2])

Gradient-based methods are widely used for solving a variety of optimization problems in
engineering, especially when dealing with topology optimization based on element-wise de-
sign variables. According to Bendsøe et al. [1] this is due to the fact that one of the key-
advantages of these methods is that they are e�icient for solving optimization problems
where the number of design variables is high and considerably exceeds the number of con-
straints and objectives. Typically, a large number of design variables appears in topology op-
timization a�er discretization since for a good representation of the design one has to work
with rather fine finite element meshes. However, most gradient-based algorithms have prob-
lems when dealing with discontinuous functions and they are not designed to handle multi-
modal problems (multiple local optima) or discrete and mixed discrete-continuous design
variables. Figure 2.10 illustrates various types of functions that are problematic for gradient-
based optimization algorithms.
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Discrete Discontinuous Multimodal

Figure 2.10.: Graphs of various types of functions that are problematic for gradient-based al-
gorithms

Gradient-based methods in particular are known to be limited by a characteristic referred to
as the ’local optima’ problem (although they are very e�icient in finding such a local opti-
mum for high-dimensional, non-convex problems). Since these methods use only local in-
formation (functions and their gradients at a point) in their search process, they converge
only to a local optimum. During the search for an optimum solution, e.g., global minima,
these techniques can encounter local minima from which they cannot escape due to the ’de-
scent’ nature of the approach. Consequently, one can obtain di�erent solutions to the same
discretized problem, when using di�erent starting points, and global optimality cannot be
guaranteed [23]. Search methods based on local optimization, like the gradient-based algo-
rithms, usually require some type of diversification to overcome local optimality. One way
to achieve diversification is to start the optimization using di�erent starting points. This is
called Multistart Strategy [2]. The key-idea behind the Multistart Strategy is to select several
starting points for a subsequent e�icient local gradient-based optimization, as indicated in
Figure 2.5 with starting point A, leading to the global optimum, and starting point B leading
to a local optimum.

2.4.4. Approximation Methods

As already pointed out, the determination of the gradient (sensitivity) of objective functions
and constraint functions signifies the main computational e�ort of gradient-based algorithms.
Therefore, a multitude of methods have arisen with the aim of increasing the computational
e�iciency of gradient-based methods by replacing the original optimization problem by a se-
quence of sub-problems. These methods are referred to as approximation methods, where
the actual objective function is replaced by a (simpler) approximation function. The num-
ber of structural analyses needed to determine the solution of an optimization problem can
be reduced when appropriate approximations are used [2]. Their accuracy increases with
the number of parameters they contain and/or the way they are computed [24]. Approxima-
tion methods can be categorized into methods of local approximation, where the approxi-
mation is only su�iciently accurate in the immediate vicinity of the actual design point x(k),
and methods of global approximation where the approximation is su�iciently accurate in
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the entire design space. Therefore, local approximations are only used for one iteration step
whereas global approximations can be used for the entire optimization. When using approx-
imation methods, the quality of approximations determines the accuracy and the e�iciency
of the scheme. Consequently for structural optimization, expertise of the user is needed as
these methods can be very complex to use [2].

The key idea of methods of local approximation is to use simple functions that are expected
to provide a good approximation of the actual function in the immediate vicinity of the cur-
rent design point. In consequence, a sequence of sub-problems is solved, each of which is
an approximation of the real optimization problem. The idea of local approximation can be
combined with any of the aforementioned gradient-based methods. Figure 2.11 illustrates
the idea of local approximation for the Method of Feasible Directions. Starting with the design
point x(k−1), the objective function and constraint function(s) near that point are approxi-
mated. The approximated optimization problem is solved using the "line search" strategy
leading to the optimal design point x(k) for which the exact structural responses (objective/-
constraints) are determined. This procedure is repeated until the optimum has been deter-
mined.

FE-Analysis
Values from local 
approximation

Figure 2.11.: Method of Feasible Directions using local approximation (following [2])

Methods of local approximation include Sequential Linear Programming (SLP), Sequential
Quadratic Programming (SQP), Convex Linearization Problem (CONLIN), the Method of Mov-
ing Asymptotes (MMA) as well as the Globally Convergent Method of Moving Asymp-
totes (GCMMA). Sequential Linear Programming is a gradient-based optimization algorithm
that relies solely on linear approximation. Gradient-based optimization algorithms that rely
on nonlinear but convex separable approximation functions are: SQP, CONLIN, MMA and
GCMMA. An example of global approximation is the so-called Response Surface Method.

The Sequential Linear Programming (SLP) method sequentially solves the non-linear opti-
mization problem as a series of linear problems. A linear approximation of a function y (x)

is illustrated in Figure 2.12 (a). The linear approximation is obtained by using Taylor’s expan-
sion in the first order.
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(a)

linear

quadratic

(b)

Figure 2.12.: (a) Linear and quadratic approximation of a function y (x) in the one dimen-
sional case, (b) Sequential Linear Programming Algorithm for objective function
f (x) and constraint g (x) with approximated objective function f̃ (x) and the
approximated constraint g̃ (x) (following [2])

Therefore, the approximated problem of minimizing the objective function can be written as:

min(f̃ (x)) = f
(
x(k−1)

)
+ ∇Tf

(
x(k−1)

) (
x− x(k−1)

)
, (2.17)

The linear approximation only requires the determination of the function value and the gra-
dient at the current design point, see Equation 2.17. If a gradient-based method is used to
solve the optimization problem, the computation of the linear approximation does not re-
quire any additional e�ort since the gradients need to be determined anyway. The entire
line search is carried out on the approximated function. A visualization of the SLP algorithm
is shown in Figure 2.12 (b) where f̃ (x) denotes the iso-lines of the approximated objective
function and g̃ (x) denotes the linear approximation of the constraint. The resulting sub-
problems of linear programming can be solved via linear programming (LP) methods like the
Simplex Method [2]. Since a linearly approximated function has no extremum, SLP problems
require additional constraints, termed as move limits. These move limits represent the max-
imum allowed change of the design variables in the current iteration. The reason for limiting
the change of the design variables is the following: too large step lengths impose the risk of
reaching regions where the approximation of the function is very poor, leading to the risk of
violating constraints. According to Iqbal [8] the SLP algorithm is simple to apply, but should
be used with caution in engineering design problems as it can easily run into convergence
problems.

The Sequential Quadratic Programming (SQP) method solves a quadratic approximation of
the non-linear optimization problem, as depicted in Figure 2.12 (a). SQP uses a quadratic ap-
proximation for the objective function, whereas a linear approximation is used for the con-
straint function(s). According to Iqbal [8], the big advantage of using SQP is that the subprob-
lem represents a convex programming problem. Gradually changing the optimization from
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an (artificial) convex problem to the original (non-convex) design problem, using gradient-
based optimization algorithms in each step until convergence, helps to circumvent the prob-
lem of local optima. Therefore, compared to using solely a gradient-based algorithm without
approximation, there is an increased chance of obtaining a global optimum [1].

Schumacher [3] states that the quality and range of validity of an approximation can be sig-
nificantly improved if "information" of the parameter to be approximated is already consid-
ered when choosing the respective approximation. For instance, for the examples depicted in
Figure 2.13, the volume and mass show a linear dependency on the design variable x. There-
fore, these system responses can be linearly approximated. However, system responses like
stresses and displacements, show a reciprocal dependency on the design variable, as exem-
plarily shown in Figure 2.13. Approaches of reciprocal approximation include the method of
Convex Linearization and the Method of Moving Asymptotes.

h=
xVolume x, Mass M

~V x ~ xM

F

A = x

Stresses   , Displacements u

L

Figure 2.13.: Examples of simple system responses which can be determined analytically
with linear and reciprocal dependency on the design variable

With reciprocal approximation Equation 2.17 can be written as

min(f̃ (x)) = f
(
x(k−1)

)
+

n∑
i=1

∂f
(
x(k−1)

)
∂zi

(z − zi) , (2.18)

where zi = x−1
i is the reciprocal of the design variable xi.

The Convex Linearization (CONLIN) method uses a so-called hybrid or mixed approximation
where the selection of approximation depends on the algebraic sign of the first derivative.
A linear approximation is selected if the first derivative with respect to the design variable is
positive whereas a reciprocal approximation is selected if the first derivative with respect to
the design variable is negative.

With the Method of Moving Asymptotes [25] the choice of the approximations is also based
on the gradient information at the current iteration design point. An important role in the
generation of these subproblems is played by a set of parameters which influence the "cur-
vature" of the approximations, and also act as "asymptotes" for the subproblem. Bendsøe
et al. [1] states that the MMA has proven itself to be very versatile and well suited for large
scale topology optimization problems. However, it must be noted that the MMA, as well as
all other approximation methods do not resolve the issue of local optima.
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2.4.5. Optimality Criteria Methods

Gradient-based methods, approximation methods, and meta-heuristic methods (which will
be dealt with in Subsection 2.4.6) are based on the philosophy of numerically searching the
design space for optimum designs. In other words, starting with an estimate of the optimum
design for the problem, the design is improved iteratively until the optimum is determined.
Optimality criteria (OC) methods are based on a di�erent philosophy. Using OC methods, a
criterion/some criteria are defined such that when this criterion/these criteria are satisfied,
the optimum is found. Therefore, optimality criteria are the conditions a function must sat-
isfy at its minimum point. In order to generate an optimum design, a recursive algorithm
is employed to update the design variables for satisfying the optimality criteria. Algorithms
based on optimality criteria are indirect methods as the objective function is not directly op-
timized. The respective optimality criteria can be

• derived from physics, e.g., Principle of the Fully Stressed Design (FSD) or Simultaneous
Failure Mode Design,

• based on observations from nature (Principle of Adaptive Growth), e.g., Computer Aided
Optimization (CAO) or So� Kill Option (SKO), or

• be derived mathematically, e.g., Kuhn-Tucker-Conditions [26]

The Principle of the Fully Stressed Design (FSD) is one of the earliest optimality criteria ap-
proaches used in structural design and is applicable to structures that are subject only to
stress and "minimum cross-section" constraints (gage constraints) [2]. Therefore, it is widely
practiced for member sizing of frame structures. The FSD optimality criterion states that for
an optimum design, each member of a structure that is not at its minimum gage must be fully
stressed under at least one of the design load conditions. [1]. This optimality criterion implies
that in order to obtain a weight optimized structure, material should be removed from mem-
bers that are not fully stressed unless prevented by a minimum gage constraint (e.g., mini-
mum allowable cross-section). This requires the explicit assumption that the primary e�ect
of adding or removing material from a structure is to change the stress in that member, with
negligible or no e�ect on the rest of the structure. Since in statically determined structures
internal forces are independent of member dimensions, the condition of the Fully Stressed
Design leads to minimum weight. However, in statically indetermined structures, internal
forces are influenced by member dimensions. Therefore, in these cases such a condition
does not necessarily result in minimum weight. According to Harzheim [2], there might be
members that are not fully stressed because they help to relieve stresses in other members.

According to Bendsøe et al. [1], optimality criteria have proven to be an attractive alternative
to overcome the high numerical cost of mathematical programming methods when dealing
with a high number of design variables. This is mainly due to the fact that these methods
only need few numbers of mechanical analyses. However, the disadvantage is that the con-
cept of optimality criteria can only be used for specific problems as it can only handle few
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constraints and a restricted choice of objective functions. Applications of optimality criteria
in structural optimization are discussed in detail in the publications of Chiandussi et al. [27],
Yin et al. [28] as well as Kriechbaum [29].

2.4.6. Global Optimization Algorithms

One possibility to overcome some deficiencies of gradient-based methods is to use so-called
gradient-free or non-gradient-based methods. The key strength of non-gradient-based meth-
ods is their ability to solve problems that are di�icult to solve using gradient-based meth-
ods. The most commonly used gradient-free algorithms are: Nelder-Mead Simplex (Nonlin-
ear Simplex), Simulated Annealing (SA), Divided Rectangles Method, Genetic Algorithms (GA)
and Particle Swarm Optimization (PSO). Many gradient-free algorithms mimic mechanisms
observed in nature or use heuristics. Furthermore, many of them are designed as global op-
timization algorithms. Therefore, these methods will be discussed in Section 2.4.6. Unlike
gradient-based methods in a convex design space, gradient-free methods are not necessar-
ily guaranteed to find the true global optimum. However, they are able to find many good
solutions (mathematician’s point of view vs. engineer’s point of view).

Global optimization algorithms aim at finding the global optimum of an optimization prob-
lem. According to Weise [30], the most e�icient way to solve global optimization problems
currently is to use methods that contain stochastic features. Therefore, the found solution is
dependent on the set of random variables generated. These algorithms are o�en referred
to as heuristic, although recent literature tends to refer to them as meta-heuristic. Meta-
heuristic methods are inspired by nature or physics combined with simple statistical and/or
probabilistic methods [31]. These methods are iterative in nature and use stochastic opera-
tions in their search process to modify one or more initial candidate solutions. These candi-
date solutions are usually generated by random sampling of the design space. As global op-
tima are at least highly desirable, extensive research has been undertaken in the field of meta-
heuristic methods, leading to a huge variety of methods [2, 32, 33]. Among meta-heuristics
the most prominent algorithms for structural optimization are Genetic Algorithms (GA),
Swarm Intelligence Algorithms (SI), and Physics Based Algorithms [2]. According to Gandomi
et al. [31], the two main characteristics of meta-heuristic methods are intensification and di-
versification. This implies focusing on a local region, knowing that a current good solution
can be found in this region (intensification) while at the same time generating diversified so-
lutions to explore the global design space (diversification). A balanced combination of those
two aspects of meta-heuristic algorithms will generally ensure to determine the global or at
least the "near global" optimum.
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Genetic Algorithms (GA) are inspired by concepts of evolutionary biology. GAs simulate a nat-
ural process by generating an initial population of designs and subsequently applying evo-
lutionary principles to improve the design. They are based on three essential components:

• Natural Selection (survival of the fittest)

• Crossover (reproduction processes where genetic traits are propagated)

• Mutation (variation)

Genetic Algorithms is the most general term used when expressing a large family of optimiza-
tion algorithms that make use of the three components mentioned above. However, when
reviewing literature one may also come across names like Evolutionary Algorithms, Evolu-
tionary Programming, Genetic Programming and so forth. These similar techniques di�er in
genetic representation and other implementation details and the nature of the particular ap-
plied problem [2].

Another category of global optimization algorithms are Swarm Intelligence (SI) algorithms.
The term swarm intelligence refers to collective intelligence. Swarm intelligence systems are
typically made up of a population of simple and individually unsophisticated agents. The in-
teraction with each other and the environment leads to the emergence of "intelligent" global
behavior which is unknown to the individual agents. SI algorithms are inspired by the obser-
vation of the collective behavior in "societies" in nature. These "societies" e�iciently solve
complex problem such as finding the shortest path between their nest and food source or or-
ganizing their nest. Examples of SI algorithms include Particle Swarm Optimization (PSO), Ant
Colony Optimization (ACO), and Artificial Bee Colony Algorithm (ABC). For instance the PSO al-
gorithm is based on observations from nature that some animals, such as birds and fish, are
able to share information among their group. E.g., identifying the best place to land is a com-
plex problem (maximizing the availability of food, minimizing the risk of existence of preda-
tors) which depends on both memory of each individual as well as the knowledge gained by
the swarm, known as social knowledge. The ACO algorithm is inspired by the way that ant
colonies find the shortest route between the food source and their nest. Ants communicate
with each other via pheromone trails. When an ant finds some amount of food it carries as
much as it can carry. When returning to the colony it deposits pheromone on it’s paths based
on the quantity and quality of the food. When choosing their way, ants tend to choose, in
probability, paths marked by strong pheromone concentrations. Consequently, the higher
the pheromone level the higher the probability that more ants follow the path, implying that
the pheromone will further increase on that path.

Physics Based Algorithms are inspired by physical phenomena. For instance the algorithm
of Simulated Annealing (SA) is inspired by the physical process of crystallization rather than
biological evolution. In metallurgy and material science annealing is the heat treatment of
material with the aim of altering its properties such as hardness. This heat treatment in-
volves controlled heating and cooling of a material to increase the size of its crystals and
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reduce their defects. Metal crystals have small defects (dislocations of ions) which weaken
the overall structure. When the metal is heated, the energy of the ions and consequently their
di�usion rate is increased. By this, the dislocations can be destroyed and the structure of the
crystal is reformed as the material is cooled down and approaches its equilibrium state. The
initial temperature must not be too low and the cooling must be done su�iciently slow such
that the system doesn’t get stuck in a meta-stable, non-crystalline state, representing a local
minimum of energy. The Simulated Annealing algorithm is a copy of this physical process. It is
based on the analogy between the way in which the crystalline structure of a metal achieves
near global minimum energy states during the process of annealing and the way in which a
function may reach a global minimum during statistical search of the design space.

It is important to note, that no algorithm can guarantee convergence to a global optimum and
it may be more accurate to refer to the algorithms above as having global properties. Global
optimization algorithms that contain stochastic features typically involve the manipulation
of a sample drawn from a uniform distribution over the design space. Obviously, these meth-
ods can never provide an absolute guarantee that the global optimum has been found. All
that can be assured is that the probability of finding the global optimum approaches 1 as
the sample size goes to infinity [30]. However, according to Bandaru et al. [11] most meta-
heuristics have the ability to recover from local optima due to inherent stochasticity or heuris-
tics specifically meant for this purpose (e.g., simulated annealing).

One of the negative predicates attributable to global optimization strategies with respect to
local optimizations (e.g., gradient-based algorithms) is the relatively large number of evalu-
ations that are necessary to find an acceptable minimum. Schumacher [3] states, that gen-
erally, to identify a global optimum, an infinite number of analysis steps is necessary. Global
optimization algorithms provide only an increased probability that a global optimum can be
determined within a finite amount of analyses. Therefore, it is important to keep in mind
that algorithms which improve the chances of finding a global optimum come at increased
computational cost. This is also the reason why most applications, so far, have been on small
scale problems [31].

Harzheim [2] states, that one of the major problems in global optimization is the choice of
an adequate stop criterion. The respective criterion should be stringent enough so that the
algorithm do not waste too many function evaluations a�er the global minimum has been
found. On the other hand, the stop criterion should also be loose enough to ensure that the
algorithm does not terminate before the global optimum has been found.

Another issue is that global optimization methods, e.g., simulated annealing, generally find
the optimal solution of unconstrained optimization problems. They are not capable of di-
rectly considering constraints in the optimization algorithm. Therefore, the constraints must
be taken into account using penalty functions [3]. To recall, penalty functions are used to
convert the constrained global optimization problem to an unconstrained one by adding a
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penalty term to the objective function. However, it is di�icult to choose a static value of the
penalty parameter such that the unconstrained (penalty) problem and the original problem
have the same global optimum [30]. With evolutionary algorithms, another option is to im-
pose that only individuals fulfilling the constraints are retained during the new generation
and new individuals are generated until the desired number of feasible individuals are ob-
tained. Another very ’rough’ option is to generate a su�iciently large set of solutions, pro-
vided that they are equally well distributed (sub)optimal solutions, and sort out the feasible
solutions a�er the optimization has stopped.

2.5. Topology Optimization

Compared to size and shape optimization, topology optimization is a relatively new topic.
Nevertheless, numerical methods for topology optimization have been intensively investi-
gated since the late 1980s [2]. This is mainly due to the fact that topology optimization is
an extremely rapidly expanding research field having many interesting theoretical implica-
tions in mathematics, mechanics, multiphysics and computer science as well as important
practical applications for manufacturing industries (i.e., automotive and aerospace) [34]. The
importance of topology optimization lies in the fact that the choice of the appropriate topol-
ogy in the conceptual design phase is generally the most decisive factor for the e�iciency of
a product.

A very straightforward way to categorize methods for topology optimization is to di�eren-
tiate between methods for discrete structures and methods for continuum structures, see
Figure 2.14. Methods for discrete structures use a so-called "basic structure". A "basic struc-
ture" is defined as a space of points which are connected by as many structural elements,
e.g., bars, in as many ways as possible. In this case, the design problem consists in determin-
ing the optimal number, position, and mutual connectivity of the structural members. In con-
trast, methods for continuum structures do not need any basic structure but require the defi-
nition of the design domain for the optimization. Topology optimization for continuum struc-
tures means simultaneously optimizing the shape of external as well as internal boundaries
and the number of inner holes. Within topology optimization for continuum structures one
can further distinguish between two main types of solution techniques: the Microstructure
(Material) approaches, which are also referred to as Eulerian approaches, and the Macrostruc-
ture (Geometrical) approaches, which are also referred to as Lagrangian approaches. In the
Microstructure approach, which is more commonly used for structural problems, the entire
admissible design domain is discretized, e.g., with finite elements, to describe the geometry
and the mechanical response fields. In the Macrostructure approach, the topology optimiza-
tion is performed in conjunction with a shape optimization. Therefore, in contrast to the Mi-
crostructure approach, which uses a fixed finite element mesh, the mesh must change with
the changes of the boundaries of the design.
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Figure 2.14.: Categorization of methods for topology optimization (following [3])

As the focus of this thesis is on the Microstructure approaches, Macrostructure approaches
will not be discussed in more detail. The Microstructure approach for continuum structures
introduces a set of design variables that describe the presence or absence of material within
the design domain. These design variables are defined either within the element of the mesh
or on every node point of the mesh [1]. Therefore, topology optimization using the Microstruc-
ture approach is synonymous with the presence of many design variables.

Generally, methods for the Microstructure approach are distinguished between those solv-
ing the discretized topology optimization with discrete variables and those using continu-
ous design variables [35], see Figure 2.14. Using discrete design variables (e.g., methods of
Evolutionary Structural Optimization), constitutes the basis for a great part of topology opti-
mization approaches. However, according to Sigmund et al. [36], using design variables that
can only take discrete values (0 or 1), imposes numerical di�iculties when solving the topol-
ogy optimization problem. These numerical issues are discussed in detail in Section 2.6.
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The formulation of continuous (density) design variables constitutes the basis for the major
part of recent research on topology optimization [36]. Methods which use continuous de-
sign variables are for instance the Homogenization approach and Solid Isotropic Material with
Penalization (SIMP). A very illustrative example of the Microstructure approach for topology
optimization for a continuum structure, published by Sigmund [37] is shown in Figure 2.15.
This approach typically involves the following steps:

1) Definition of the design domain (colored green), see Figure 2.15 (a)

2) Definition of the load(s) and boundary condition(s), see Figure 2.15 (b)

3) Discretization of the design domain (e.g., finite elements) and iterative procedure to
solve the optimization problem, see Figure 2.15 (c)

4) Post-processing and final design proposal, see Figure 2.15 (d)

(c) discretization

iteration 0

iteration 10

iteration 20

iteration 30

optimal topology

cargo

cabin

(a)

(d)

(b)

F

Figure 2.15.: Concept of Topology Optimization Procedure (following [37])
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In the most simple form, where there is only one objective function, a topology optimization
problem can be defined the following way [1]:

minimize: f (x) (2.19a)

subject to: V =
N∑
i=1

xiVi ≤ V ∗, (2.19b)

where: 0 ≤ xi ≤ 1. (2.19c)

V ∗ is the prescribed target volume of the structure, Vi is the volume of the respective ele-
ment andN is the total number of elements in the design domain. The material distribution
is described by N elemental design variables xi. The design variables are assumed to at-
tain constant values within each finite element. The aim of the optimization is to determine
whether each element in the continuum should contain material or not. The design variable
xi determines the presence (xi = 1) or the absence (xi = 0) of an element. In other words,
the limit 1 denotes solid material (shown in black in Figure 2.15 (d)) and the limit 0 denotes
void or very weak material (shown in white in Figure 2.15 (d)). The result is a rough descrip-
tion of the outer and inner boundaries of the structure that represents the optimal overall
topological layout.

A large number of algorithms exist for solving the discretized topology optimization problem,
ranging from mathematically well-founded methods that use the gradient of the objective/-
constraint function to non-gradient meta-heuristic approaches (like genetic algorithms). As
already pointed out in Section 2.4.3, gradient-based methods are very e�icient when dealing
with huge optimization problems with a high number of design variables. These approaches
have the advantage of ensuring convergence within a reasonable number of iterations. In his
publication "On the usefulness of non-gradient approaches in topology optimization" Sig-
mund [14] points out that non-gradient, nature inspired methods like genetic algorithms,
swarms and most di�erential evolution techniques are not viable alternatives for the vast
majority of topology optimization problems due to the high number of design variables. Ac-
cording to Bendsøe et al. [1], the most commonly used methods for solving topology opti-
mization problems include CONLIN, Method of Moving Asymptotes, and Optimality Criteria.

2.5.1. Mathematical Formulation for Continuum Structures

To discuss the mathematical formulation for topology optimization of a continuum structure
the simplest type of design problem formulation in terms of objective and constraint is used.
According to Bendsøe et al. [1], the classical problem of topology optimization is to design
for the maximum sti�ness of a statically loaded, linearly elastic structure under a single load
condition under simple source constraints, i.e., a limit on the amount of material at our dis-
posal. The inverse of sti�ness is flexibility or compliance. Therefore, designing for maximum
sti�ness is equivalent to designing for minimum compliance.
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When solving this optimization problem by computational means a typical approach is to use
finite elements. The optimization problem can thus be expressed as:

minimize: fTu

subject to: K (Ee)u = f ,

Ee ∈ Ead,

(2.20)

where K is the sti�ness matrix, u is the global displacement vector and f is the load vector.
The sti�ness matrix K depends on the sti�ness Ee in element e, numbered as e = 1, ..., N .
Again, N is the total number of elements in the design domain. K can be written in the
following form:

K =
N∑
e=1

Ke (Ee) , (2.21)

where Ke is the (global level) element sti�ness matrix. In Equation 2.20Ead denotes the set
of admissible sti�ness tensors.

For topology optimization, the task is to determine which points of space should be material
points and which points should remain void (no material). Therefore, the aim is to determine
the optimal subset of active material points Ωmat of the design domain Ω, where Ω denotes
the entire design domain and Ωmat denotes the domain occupied by isotropic material. Thus,
for a discrete valued design problem (a so-called 0-1 problem) the set of admissible sti�ness
tensors consist of those tensors for which

Eijkl = 1ΩmatE0
ijkl , 1Ωmat =

1 if x ∈ Ωmat

0 if x ∈ Ω \ Ωmat
. (2.22)

E0
ijkl denotes the sti�ness tensor for the given isotropic material. The design variable 1Ωmat is a

binary indicator function with 1Ωmat = 1 denoting solid and 1Ωmat = 0 denoting void material.
A simple source constraint defines a limit on the amount of material at our disposal. This is
expressed by the following inequality:∫

Ω

1ΩmatdΩ = Vol (Ωmat) ≤ V. (2.23)

Therefore, the minimum compliance design is for a limited (fixed) volume V .

It is well-known that this integer (0-1) parametrization of the optimization problem in its gen-
eral continuum setting is ill-posed [1, 15, 38]. A physical explanation of this ill-posedness is,
that for a given structure with a certain volume it is possible to improve the sti�ness by intro-
ducing a lot of small holes without changing the actual volume. The solution tends towards
a design with infinite perforation and finally microstructures that are typically not isotropic
and cannot be represented within the original design description of only isotropic material
and thus are not in the feasible (isotropic) design set anymore.
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Typically, the topology optimization problem is treated by discretizing the design domain Ω.
If the structure is discretized, e.g., usingN finite elements, the size of the holes is limited by
the discretization. However, in this case the ill-posedness of the optimization problem is in-
deed found in the numerical solution and is o�en termed mesh-dependency.

In order to obtain a well-posed problem, a regularization of the topology optimization prob-
lem formulation is required. According to [15], one option to achieve this is to relax the binary
condition and include intermediate material densities in the problem formulation. This is re-
ferred to as Relaxation. For instance, the Homogenization approach assumes a periodically
perforated microstructure. Di�erent microstructures lead to di�erent intermediate densi-
ties. The mechanical properties of the material are determined using the homogenization
theory. An alternative to the homogenization theory is to relax the binary problem using a
continuous density value with no microstructure. The mechanical properties are then deter-
mined using a power-law interpolation function between "solid" and "void". With this power
law, intermediate densities are implicitly penalized, driving the structure towards the de-
sired black-and-white configuration. This black-and-white solution is also o�en referred to as
"0−1" design, where "0" stands for "void" and "1" stands for "solid" material configuration.
This approach is usually referred to as the Solid Isotropic Material with Penalization (SIMP).
The Homogenization approach as well as the Solid Isotropic Material with Penalization are dis-
cussed in more detail in Subsection 2.5.2. It is obvious that relaxation methods usually result
in optimized design regions of intermediate density (gray regions) or perforated microstruc-
tures. The high complexity of these design proposals yields structures that cannot be easily
interpreted for manufacturing purposes and therefore might be complicated and expensive
to manufacture.

From a manufacturing point of view it is attractive to generate "0−1" solutions on a macro-
scopic level. Therefore, one can do quite the opposite of enlarging the design space to re-
solved the ill-posedness problem, namely restricting it. The aim of Restriction methods is
to reduce the original feasible design set to a su�iciently compact subset which possesses
su�icient closedness and therefore solutions to the optimization problem defined in
Equation 2.22. Methods of restriction are for instance the Perimeter Control, Gradient Control
or Mesh-Independent Filtering. These methods are discussed in more detail in Section 2.6.

However, there are methods that directly deal with the discrete (binary) formulation of the
problem, without modifying the original problem by relaxation or restriction. These approa-
ches use heuristic rules to avoid unwanted e�ects such as mesh-dependency or checker-
board patterns, caused by the ill-posedness of the topology optimization problem. These
methods are discussed in more detail in Subsection 2.5.3.
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2.5.2. Topology Optimization with Continuous Design Variables

As mentioned before, one possibility for solving the discretized topology optimization prob-
lem is to use continuous design variables. Approaches to continuous topology optimization
use material models that allow the density of the material to cover the complete range from
0 (void) over intermediate values (composite) to 1 (solid). These methods have the advan-
tage of providing regularization (well-posedness) of typical topology optimization problems
when introduced in the mathematical formulation. The approaches di�er in how the relation
between density and material property is determined and how "intermediate" densities are
handled. Using the Homogenization approach, the design domain is filled with a porous ma-
terial whereas the Solid Isotropic Material with Penalization (SIMP) uses an isotropic material
and an empirical approach.

Homogenization Approach

The homogenization method was the first practical methodology for topology optimization,
published by Bendsoe et al. [39] in 1988. The key idea of this approach is to derive the relation
between the density design variable and the material property based on the homogenization
of a periodic microstructure (micromechanical model). In other words, the material density
is introduced by representing the material as a microstructure. Common types of material
models with periodic, perforated microstructure are the hole-in-cell microstructure, layered
2D-microstructures, and layered 3D-microstructures [1].

An example of a material model with periodic, perforated microstructure - namely the hole-
in-cell microstructure - is illustrated in Figure 2.16.

rotated,
perforated 
microstructure

x

y

ba
1

1

basic cell

F

Figure 2.16.: Example of a hole-in-cell microstructure with rectangular holes for a two dimen-
sional continuum topology optimization problem (following[1])

The microstructure consists of periodically arranged microcells (basic cells) and has an infi-
nite number of infinitely small voids [1]. This leads to a porous "composite" that can have a
density that varies between 0 % and 100 %. The 2-dimensional square microcell consists of
an isotropic material with rectangular holes.
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The geometry of the holes is defined by the geometric parameters a and b. Since the macro-
scopic properties of the microstructure are not isotropic an orientation angle is also needed.
The orientation of the microscopic cells is defined by the angleϕ. The geometric parameters
a, b as well as the orientation ϕ are the design variables. The same concept applies for the
3-dimensional case. However in this case, a total of 5 design variables per microcell are re-
quired: three variables for the edge length of the cavity in the unit cube as well as two angle
variables for the alignment of the cavity.

As mentioned above, the aim is to derive a homogenized material property, based on the mi-
crocells, that only reflects the macroscopic behavior and depends on the geometric parame-
ters of the microcell. In the finite element based homogenization method for topology opti-
mization, those e�ective properties are assigned to the elements of the finite element model
of the structure. This means, each element represents a material consisting of a large number
of microcells. The parametrization of the cells is made in such a way that the density of the
material covers the range of values from completely void (ρi = 0) to completely solid (ρi = 1)
elements. This means, for instance, by changing the dimensions of the void (in this case the
edge lengths of the void a and b), the void region can cover the whole area of the microcell.
Therefore, the final topology may contain three types of regions: solid (a = b = 0), void
(a = b = 1) and "porous" (with di�erent cavity sizes). Figure 2.17 illustrates the basic con-
cept of the homogenization method using a square microcell with a centrally placed square
hole with the geometrical parameters a = b and ϕ = 0. Figure 2.17 (a) shows the design
domain before optimization, Figure 2.17 (b) shows the design proposal a�er optimization.
Prior to the optimization, all elements of the discretized structure have a uniform homoge-
nized material. A�er optimization, the elements have di�erent material densities depending
on the choice of the design variables a = b.

F

(a) (b)

Figure 2.17.: Basic concept of homogenization method using a square microcell with a cen-
trally placed square hole

Using the homogenization method, the optimization does not only yield an optimal material
distribution but also the optimized orthotropic material properties for each element. How-
ever those orthotropic material properties cannot be easily transferred to a real structure.
Furthermore, the "grey" areas found in the final design proposal contain microscopic length-
scale holes that are di�icult or even impossible to manufacture.
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In fact, for the material distribution of a real manufacturable structure with isotropic material
only the two extreme values of the density ρi = 0 and ρi = 1 are of interest, leading to an
isotropic material, where only 1 design variable is needed instead of 3 (in the 2-dimensional
case) or 5 (in the 3-dimensional case) [2]. The homogenization method was the inspiration for
the development of another important structural optimization approach, namely the Solid
Isotropic Material with Penalization method which is described in more detail in the next pas-
sage.

Density-Based approach

An alternative, that avoids the application of the homogenization, is the so-called Density-
Based approach. The aim of this approach is to reduce the complexity of the homogenization
approach and to improve its convergence to 0-1 solutions. The key idea is to relax the binary
topology optimization problem using a continuous density value with no microstructure.

In the density-based approach, the material distribution is parametrized by the material den-
sity distribution. The design variablesxi are represented by the "artificial density" for the i-th
element, defined as the normalized density:

xi =
ρi
ρ0
i

, (2.24)

where ρ0
i is the element’s initial density and ρi is the element’s density a�er the optimiza-

tion. In practical terms, this solution approach is similar to a sizing optimization where the
sizing variables are the densities of the elements. The key issue when using the density-based
approach is to define a relationship between material properties of the element, i.e., the sti�-
ness tensor, and the continuous design variable xi. In his original study, Bendsøe [35] used
a so-called power-law approach as material interpolation scheme. In Bendsøe’s approach,
the material sti�ness is expressed as a power function of the design variable:

Ei = (xi)
pE0

i , p > 1. (2.25)

Ei is the elastic modulus a�er optimization and E0
i is the elastic modulus of a given solid

isotropic reference material. As the design variable is free to move between 0 and 1 ,it can
also take on some intermediate values also referred to as "intermediate densities". From a
practical viewpoint, this is an undesirable feature as the primary goal of isotropic topology
optimization is to find a real and manufacturable shape, namely a density taking only the
values 0 and 1. Therefore, this power-law implicitly penalizes intermediate densities to drive
the structure towards a so-called "black-white" ("0−1") configuration. This penalization pro-
cedure is usually referred to as Solid Isotropic Material with Penalization (SIMP). It is the most
common technique to solve material distribution optimization problems. The penalization
factor p, also referred to as penalty factor, is used to steer the solution to discrete 0/1 values:
with increasing values of the exponent p > 1, the optimized design moves more and more
to a design without intermediate density values ("gray" zones), as indicated in Figure 2.18.
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Figure 2.18.: Relative sti�ness as a function of normalized density with di�erent values of pe-
nalization factor p

However, Sigmund et al. [36] states that the proper choice of the penalization factor is not
trivial. Choosing p too low might cause too much grey scale elements. Choosing p too large,
there is the risk to attain a feasible region too fast that is not the one giving the global opti-
mum [1]. In his publication "Material interpolation schemes in topology optimization" Bend-
søe et al. [40] suggest to use a continuation method which, for instance, for the SIMP method
means that the penalty exponent is gradually increased during the optimization process. Ac-
cording to Sigmund et al. [36] this will o�en result in convergence to better design.

Further approaches to interpolation schemes with isotropic materials exist that all serve the
same purpose, namely to provide a continuous interpolation between "solid" and "void" ma-
terial with a penalization of intermediate densities. These are for instance the Rational Ap-
proximation of Material Properties (RAMP) approach published by Stolpe et al. [41] or schemes
that use explicit penalization [42]. According to [1], these alternative interpolation schemes
have certain theoretical or computational advantageous features for specific problems but
shall not be explained in more detail here.

All density-based optimization approaches mentioned above represent smooth-differentia-
ble problems that can be solved by gradient-based methods (e.g., Method of Feasible Direc-
tions [43]), sequential convex programming methods (e.g., Method of Moving Asymptotes [44]),
optimality criteria methods (e.g., public codes [9], [45]) or by other mathematical program-
ming based optimization algorithms.

2.5.3. Topology Optimization with Discrete Design Variables

An important branch of approaches that directly deal with the discrete valued (continuum)
optimization problem are the Evolutionary Structural Optimization (ESO) approaches. Fur-
ther approaches include the Discrete Level Set approach [46] as well as Discrete Density ap-
proaches that use convex approximation and mathematical programming approa-
ches [47, 48].
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The approaches of Evolutionary Structural Optimization are subject of this subsection, as this
method is used for optimizing the topology in the framework of this thesis. ESO, and its vari-
ations, are numerical methods combined with FEM. The original Evolutionary Structural Op-
timization (ESO) method, developed by Xie et al. [49], has undergone tremendous develop-
ment over the past decades. Its variants include the Additive Evolutionary Structural Opti-
mization (AESO) and Bi-Evolutionary Structural Optimization (BESO). It has to be mentioned
that the term "evolutionary" is somewhat misleading because it usually refers to Darwinian
processes (as in genetic algorithms). For ESO and its representatives the term "evolutionary"
rather indicates the underlying concept of sequential element rejection and admission such
that a structure can evolve towards an optimum.

All ESO approaches have in common that the initial finite element mesh is used through-
out the whole optimization process. This means that the position of nodes and elements are
fixed and only the number of "active" elements changes during the optimization. The ele-
ments themselves are considered as design variables. Thus, the elemental design variable
xi, which is also referred to as "element property number", is used to declare the existence
(xi = 1) or absence of an element (xi = 0). In the isotropic case, each element within the
design domain is assigned a design variable xi = 1 in the beginning which equals a solid
isotropic material (with the respective material properties such as Young’s modulus and Pois-
son’s ratio). When an element is eliminated during the process, its design variable is switched
to xi = 0. Therefore, this element physically does not exist in the current structure and thus
is ignored in assembling the global sti�ness and/or mass matrices. Approaches to evolution-
ary structural optimization di�er in two aspects: how the criterion for the element rejection
(and addition) is defined and how the elements to be removed are handled, i.e., whether
they are completely deleted from the structure (hard-kill) or merely removed by setting the
element sti�ness to a low value (so�-kill).

The concept of the original Evolutionary Structural Optimization approach, first published by
Xie et al. [49] in 1993, is based on the assumption, that the optimal use of material goes along
with an evenly distributed stress field within the structural domain. This concept is clearly re-
flected in the fully stressed design (FSD). The original ESO concludes that lowly stressed ma-
terial is ine�iciently used and therefore can be gradually removed according to a predefined
rejection criterion based on the local stress level. By gradually removing ine�icient material,
it is expected that the resulting structure evolves towards an optimal shape and topology.
This approach is the so-called stress approach since it uses the element stress, e.g. von Mises
stress, as the driving criterion in the evolution process. The gradual removal works as fol-
lows: the stress field of a loaded structure easily can be determined by means of a numerical
simulation method, e.g. finite element method. As the design is over-sized and far from being
optimal, the element stress level σvM

e may vary significantly throughout the design domain.
Lightly stressed elements are "ine�icient" and can be removed from the structure.
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An inequality, which compares the element von Mises stress σvM
e with a critical (maximum)

von Mises stress σvM
critical, is defined to identify those ine�icient elements as follows:

σvM
e < crrσ

vM
critical, (2.26)

where crr is a so-called rejection ratio (rejection rate). Those elements that satisfy the inequal-
ity, defined by Equation 2.26, are removed from the structure. The removal of material hap-
pens by simply deleting elements from the finite element model, for which the original ESO
method is also referred to as "hard-kill" method. The rejection ratio can also be increased,
for each iteration, according to a defined evolutionary ratio cER:

cnewrr = coldrr + cER. (2.27)

As the rejection ratio increases, more and more relatively ine�icient material is removed from
the structure. The cycle of finite element analysis and element removal is repeated until a de-
sired optimum is reached (i.e., until the tolerance is fulfilled).

Apart from the strength requirement, a structure may also need to comply with requirements
on sti�ness/displacement, frequency or buckling load. For these problems the so-called sen-
sitivity approach is used. The sensitivity approach, which is also referred to as sensitivity anal-
ysis, is to study the e�ect of material removal on the above mentioned structural behavior.
For instance, to maximize the sti�ness of a structure, the stress criterion for element addition
and removal is replaced by an elemental strain energy criterion as published by Chu et al. [50]
for ESO and later by Yang et al. [51] for BESO. In literature this is also referred to as sti�ness
criterion.

Generally, the goal of the optimization is to maximize the sti�ness of a structure which is
equivalent to minimizing the compliance since compliance is defined as the inverse of sti�-
ness. When loads are applied in terms of nodal forces only (i.e., no displacement load) the
global mean complianceCglobal of a structure is proportional to its internal energy:

Cglobal ∝ 1

2

∑
i

f i
Tui, (2.28)

wheref i is the nodal load vector andui is the corresponding displacement vector. Therefore,
to minimize the compliance, the expression in Equation 2.28 needs to be minimized.

In the finite element method, the static behavior of a structure is represented by

Ku = f , (2.29)

whereK is the global sti�ness matrix, u is the global nodal displacement vector and f is the
nodal load vector.
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As the propotionality, shown in Equation 2.28, plays no role for the minimization problem
and in order to be consistent with literature, the following formulation is used:

C =
1

2
uTKu. (2.30)

If an element i is removed from a structure withN finite elements, the mean compliance will
have a change which is defined as the element sti�ness sensitivity number αi:

αi = ∆C (2.31)

Similarly, for dynamic problems and the buckling behavior of a structure, sensitivity numbers
can be defined [52]. The sensitivity number represents the contribution of element modifica-
tion to the concerned structural behavior. For sti�ness optimization, the mean compliance
is reduced. Therefore, eliminating elements with the smallest absolute value of sensitivity
will be the most e�ective. Similarly, in frequency or buckling optimization (if the goal is to
frequency or buckling load), elements with the largest sensitivity number can be removed.

As mentioned above, in the original ESO approach "ine�icient" elements are completely re-
moved from the structure (hard-kill). As deleted elements physically do not exist in the up-
dated structure, there is no information about the e�ects of these elements on the objective
function in later stages of optimization. Furthermore, the main criticism concerning original
ESO approaches is that the approach is limited to removing elements from the structure as
an element cannot be readmitted once it has been prematurely or "wrongly" removed from
the structure. According to Xia et al. [53], as a consequence, the original ESO approach re-
quires an over-sized initial design domain to ensure that the final design is represented by
adequate elements as in certain cases the optimization can be misled due to an inappropri-
ately defined initial setting.

The Additive Evolutionary Structural Optimization (AESO) approach, proposed by Querin et
al. [54], is a reverse method to the original ESO algorithm. With AESO the structure evolves
from a base structure (design domain) with little material, gradually adding material to highly
stressed regions. However, like ESO, AESO also only allows for one directional variation of the
structural material layout.

The key idea of the Bi-Evolutionary Structural Optimization (BESO) approach is to devise a
scheme to restore deleted elements in later stages of optimization if necessary. In other
words, in comparison to ESO and AESO, BESO is capable of turning elements "on" (addition)
and "o�" (removal) during the optimization process. Again, one has to distinguish between
the stress based approach and the so-called sensitivity based approach. Furthermore, de-
pending on how the elements to be removed are handled, BESO is referred to as "hard-kill"
BESO or "so�-kill" BESO.



2.5. Topology Optimization 45

The original stress-based BESO approach, published by Querin et al. [55], is a combination
of ESO and AESO. In this improved version of the ESO method, elements can be removed
from the "least e�icient" regions but also added to the "most e�icient" regions of the finite
element model of the structure.

In this original stress based BESO approach, elements to be removed or added are treated
separately with a rejection ratio crr and inclusion ratio cir:

σvM
e < crrσ

vM
critical, (2.32a)

σ̃vM
e ≥ cirσ

vM
critical, (2.32b)

where σ̃vM
e is an approximation of the von Mises stress for void elements. Elements with the

lowest von Mises stress are removed, satisfying the criterion in Equation 2.32a. Void elements
near the highest von Mises stress regions are switched to solid when satisfying the criterion
defined in Equation 2.32b. In contrast, when using the sensitivity based approach for sti�-
ness maximization the sensitivities of the objective function with respect to a local variation
of the material are calculated for each element of the FEM mesh inside the design area. Sub-
sequently, the elements are ranked using the corresponding sensitivity numbers. The solid
elements with the lowest sensitivity numbers are removed from the structure and the void el-
ements with the highest sensitivity numbers are changed to solid elements. As this approach
is used in the framework of this thesis, it is discussed in detail in Chapter 3.

The di�erence between "hard-kill" and "so�-kill" BESO is as follows: in the hard-kill BESO
an element which is regarded as being "ine�icient" is completely deleted from the structure,
similarly to ESO. Hard-kill BESO shows a very high computational e�iciency due to the fact
that eliminated elements are not involved in the finite element analysis. However, this ap-
proach sometimes fails in rectifying incorrect elemental rejection. This is shown by Zhou et
al. [56] for a simple example which shows the complete breakdown of ESO and "hard-kill"
BESO. The example of Zhou et al. is illustrated in Figure 2.19.

It shows a simple topology optimization problem of a beam in which the total compliance is
minimized. The beam has a fixed support at the le� and a roller support at the top. The load
condition consists of a horizontal load and a vertical load. The design domain is discretized
by 100 elements. In the original structure, see Figure 2.19 (a), the lowest strain energy density
is in the element colored blue. Therefore, the rejection criterion for minimum compliance will
take out this element first. A�er removing the blue element in the vertical tie, the resulting
structure becomes a cantilever where the vertical load is transmitted by flexural action, see
Figure 2.19 (b). This structure has a much higher compliance than that of any intuitive design
obtained by removing one element from the horizontal beam. The region with the highest
strain energy density is at the le� bottom of the cantilever. According to the BESO algorithm,
an element may be added in that region rather than recovering the deleted element in the
vertical tie.



46 2. Theoretical Background
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Figure 2.19.: Illustration of the breakdown of hard-kill BESO: (a) boundary and loading con-
ditions defined by Zhou et al. [56], (b) BESO design for a volume fraction
VF = 99 %

Therefore, Zhou et al. [56] conclude, that hard-kill optimization methods such as ESO/BESO
may produce highly non-optimal solutions. However, it may be more appropriate to call such
a solution a highly ine�icient local optimum than a non-optimum [52].

A very e�ective alternative way to "remove" elements from the design domain is to set the
element sti�ness to a very low value (e.g., adjusting elastic modulus, density, thickness, ...).
For instance, Hinton et al. [57] reduced the elastic modulus of elements to be "removed" by
dividing it by a predefined large factor. Rozvany et al. [58] suggest a Sequential Element Re-
jection and Admission (SERA) method which considers two separate material models: a real
material and a virtual material with negligible sti�ness. Huang et al. [59], in 2009, proposed
a sensitivity based "so�-kill" BESO method, using an artificial material interpolation scheme
with penalization similar to the treatment in the SIMP approach. In this method, the ele-
ment’s e�ective properties are determined according to the power-law material scheme

E (xi) = xpiE1, (2.33)

where E1 denotes the elastic modulus for solid material and p is the penalty exponent. The
design variable xi is limited to a minimum value xmin, e.g., xmin = 0.001. Therefore, the void
elements are not completely removed from the structure but replaced by a very so� mate-
rial. The so�-kill BESO approach, by Huang et al., uses the sensitivity approach for element
addition and rejection. Although this so�-kill BESO approach has been introduced quite re-
cently it has shown its capability for solving a wide range of shape and topology optimization
problems with high computational e�iciency [60], [61], [52], [62].
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Considering practical engineering aspects, ESO/BESO approaches to structural optimization
have some attractive features: they can be easily implemented as a post-processing algo-
rithm to most FEM analysis packages and require a relatively small amount of computational
time. In addition, as the optimization is performed with discrete design variables, the result-
ing topology consists of a clear distinctive region without gray regions of "intermediate ma-
terial", which eases the interpretation of the results.

According to Sigmund [14], the "so�-kill" BESO approach, by Huang et al. is capable of ef-
ficiently solving topology optimization problems with discrete design variables as this ap-
proach is inspired by continuous methods and makes use of gradient information (sensitivity
approach). Therefore, Sigmund et al. [36] claim that this approach should not be categorized
as a separate approach but rather as a discrete update version of the standard SIMP scheme.
Due to their simplicity, both in theory and application, ESO and its further developments
have gained great popularity since their primary introduction and have been the subject of
further extensive studies [53].

Most of the early work on ESO/BESO neglected important numerical problems in topology
optimization such as dependency on the discretization of the structure (checker-board and
mesh-dependency), computational e�iciency (convergence), and so on [34]. Mesh-depen-
dency is in fact a common issue for almost all topology optimization methods, not only to
BESO [15]. Therefore, this will be discussed further in the next section.

2.6. Mathematical and Numerical Problems of Topology
Optimization

As mentioned before, discrete valued topology optimization problem is ill-posed. Numeri-
cally, this deficiency manifests itself as dependency of the resulting optimized topology on
the discretization, i.e., mesh-dependency. In order to obtain a well-posed problem, a regu-
larization of the problem formulation is required. This can be achieved, for instance, with
relaxation (e.g., Homogenization Approach, Density Approaches), already discussed in Sec-
tion 2.5.2. Although density-based topology optimization is a relatively mature algorithm,
several inherent numerical instabilities still exist. In this section, approaches for making the
discrete-valued design problem well-posed by including restrictions against formation of mi-
crostructures, are explained. These restrictions are considered directly in the problem for-
mulation. Furthermore, methods to prevent the formation of checkerboard like patterns are
discussed.



48 2. Theoretical Background

2.6.1. Mesh-Dependency

Mesh dependency refers to the phenomenon that performing the same optimization on a
finer mesh yields a qualitatively di�erent solution. So, while refining the mesh-size, optimal
topology results can change correspondingly. If the mesh is fine enough such that a global
optimum can be attained, further refining the mesh should lead to a better finite element
modeling of the same optimal structure as well as a better and smoother description of the
boundaries. Mesh-refinement should not lead to a qualitatively di�erent structure. An illus-
tration of the mesh-dependency e�ect can be seen in Figure 2.20.

Comparing the design proposal for a discretization by 800 elements (Figure 2.20(a)) with a
discretization of 1600 elements (Figure 2.20(b)) reveals that the finer mesh results in a quali-
tatively di�erent structure as more holes appear in the "optimal solution".

F (a) (b)

Figure 2.20.: Example of mesh-dependency

According to Bendsøe et al. [1], one way to e�iciently achieve mesh independent designs is
to reduce the original feasible design set to a su�iciently compact subset by adding some
local or global restrictions on the variation of density to the design problem. Therefore, for
density based approaches like the SIMP method, the design space is restricted such as to re-
move the possibility of rapid oscillations in the density of material in the structure. The aim
of all these methods is that finer meshes shall o�er improved solutions without altering the
design, which is regarded as convergent solutions with respect to mesh refinement [1].

According to Sigmund et al. [15] restriction methods, to prevent mesh-dependency, can be
roughly divided into the following categories:

• Constraint Methods such as, Perimeter Control [63], Global Gradient Control [64] and
Local Gradient Control [65].

• Mesh-independent filtering methods such as, Density Filters [66] and Sensitivity Filters
[67, 15]

• Alternative methods like, for instance, wavelet parametrizations [68], phase-field ap-
proaches [69] and level-set approaches [70].
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In general, constraint methods may be di�icult to use because they require a problem and ge-
ometry dependent choice and tuning of the respective constraint value. Mesh-independent
filtering methods are probably the most popular ones due to their ease of implementation
and their e�iciency both for preventing mesh-dependency (density filtering and sensitivity
filtering) and formation of checkerboards (sensitivity filtering). Alternative methods, accord-
ing to Sigmund [71], are mostly still in their infancy and have yet to be applied to advanced
problems with many constraints.

Perimeter Control

The method of Perimeter Control is also referred to as a global control method. The perimeter
is the sum of the lengths (2-dimensional structures) or areas (3-dimensional structures) of
all inner and outer boundaries of the structure. Designs with fewer, larger holes have lower
perimeter measures than designs of equal volume with more numerous smaller holes, see
Figure 2.21.

Figure 2.21.: 2-dimensional example of how smaller holes increase the perimeterP for a fixed
volume V

Such designs, which are also referred to as chattering designs in literature, are characterized
by unbounded perimeter measures [38]. Therefore, by defining an upper bound constraint
on the perimeter, such chattering designs can be avoided. Furthermore, according to Sig-
mund et al. [15], a bound on the perimeter controls the number and sizes of holes in the
macroscopic design without otherwise restricting the shape or layout of the holes. By incor-
porating perimeter control, one additional constraint, namely on the perimeter, has to be
considered. However, the method is not capable of controlling the minimum member size of
the emerging features in the design domain. Therefore, perimeter control allows the forma-
tion of locally very thin bars (even if in limited numbers).

According to Sigmund et al. [15], to determine the bound of the perimeter constraint for new
design problems is a serious problem. The value of the perimeter constraint must be deter-
mined by experiments since there is no direct relation between local scale in the structure
and the perimeter bound. If the bound is too large, the constraint remains inactive, i.e., it
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has no regularizing e�ect. Choosing the "correct" perimeter constraint is particularly tricky
for three-dimensional topology optimization problems as reported by Fernandes et al. [72].
However, Ambrosio et al. [63] proved that the existence of solutions to the perimeter con-
trolled topology optimization is assured for both the discrete 0-1 setting and the interpolated
version using SIMP.

Gradient Control

Instead of restricting the perimeter, one can also define a bound on the gradient of the den-
sity function ρ. Gradient control schemes can be categorized as global or local. With local
gradient control, also referred to as strict gradient control, the key idea is to constrain the
local gradient of element densities by imposing pointwise bounds on the derivatives of the
function ρwith respect to the design variables:∣∣∣∣ ∂ρ∂xi

∣∣∣∣ ≤ G (2.34)

Therefore, the local gradient scheme defines a local length scale under which structural vari-
ation is filtered out. At the same time, this local length scale corresponds to a lower limit on
the width of the thinnest features of a feasible design. This is, of course, of great importance
for manufacturing considerations.

However, the local gradient constraint adds a high number of extra constraints (in order of
the number of finite elements a�er discretization) to the design problem, since it needs to
be derived for each element. Therefore, this method is considered as being computationally
expensive and too slow for practical design [1]. Although advanced large scale mathematical
programming algorithms can handle a large number of constraints, practice has shown that
the implementation of the constraints can lead to convergence problems [73].

Gradient constraints presuppose that the density function ρ is su�iciently smooth and de-
fined for intermediate values. This is the case, for instance, when the SIMP approach is ap-
plied to the ill-posed topology optimization problem. Unlike the perimeter control, this me-
thod makes no sense for the discrete-valued 0-1 setting of topology optimization with dis-
crete variables, i.e., ESO methods.

Filtering Techniques

Methods of perimeter control and gradient control impose explicit limitations on the design
variables and therefore have to be considered as constraints in the optimization formulation.
A possibility to circumvent additional constraints to the optimization problem are so-called
filtering techniques which can be categorized as Filtering of Densities and Filtering of Sensi-
tivities.
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In the Filtering of Densities approach, each element density is redefined as a weighted aver-
age of the densities in a mesh-independent neighborhood of the element. The neighborhood
of an element e, here referred to as Ωe, is generally specified by elements that have centers
within a given filter radius rmin of the center of element e:

Ωe = {f | ||xf − xe|| ≤ rmin}, (2.35)

where xf is the spatial center location of element f .
Therefore, the modified element density ρ̃e is a function of the neighboring element densities
(design variables) ρf∈Ωe :

ρ̃e = ρ̃e (ρf∈Ωe) . (2.36)

According to Bendsøe et al. [1], typical weighting functions for density filtering are linearly
decaying functions or the Gaussian distribution function. The modified (filtered) densities
are then used to determine the sti�ness matrix, e.g., for the SIMP model:

Eijkl (x) = ρ̃e (x)pE0
ijkl. (2.37)

In the Filtering of Sensitivities approach, the main idea is to base the design updates on fil-
tered sensitivities instead of the sensitivities according to Equation 2.31 . Thus, a�er the finite
element problem is solved, the sensitivities are calculated and subsequently modified. The
modified (filtered) design sensitivity of each element is then determined as a linear weighted
average of the sensitivities of elements within a predefined distance rmin of the correspond-
ing element. As the weighting function is defined as a linearly decaying function, the closer
the elements, the larger the weight factor. The successful deployment of this approach for
evolutionary ESO/BESO methods has been proven for instance by Li et al. [74] and Huang
et al. [75]. As the method of sensitivity filtering is used in the framework of this thesis, this
approach is discussed in detail in Section 3.1.2.

The big advantage of using filtering schemes is that they do not require extra constraints
added to the optimization problem and that they are easy to implement. According to Sig-
mund et al. [15], the likely reason for the filtering of sensitivities to be so e�ective and favor-
able, is that it enhances the convergence to global optima, especially for minimum compli-
ance problems. However, it has to be mentioned that the filter scheme is purely heuristic.

2.6.2. Checkerboard Patterns

Checkerboards refer to the problem of obtaining regions of alternating solid and void ele-
ments ordered in a checkerboard like fashion. The checkerboard problem is illustrated in
Figure 2.22. Diaz et al. [76] shows, that the checkerboard configuration has artificially high
sti�ness compared to the sti�ness of uniformly distributed material. The authors conclude,
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that the main cause for the formation of checkerboard patterns lies in poor numerical mod-
eling of the structure, especially when low-order finite elements are used. Sigmund et al. [15]
confirms that the use of linear shape function finite elements gives rise to the formation of
checkerboard patterns. Checkerboards are numerical "artifacts" that lead to di�iculties in
interpreting and manufacturing the optimized design proposals. Therefore, it is highly desir-
able to suppress the formation of checkerboard patterns in topology optimization of contin-
uum structures.

F

Figure 2.22.: Example of checkerboards

The restriction methods, mentioned in Section 2.6.1, also have the e�ect of reducing or re-
moving checkerboards. By enforcing a constraint (directly or indirectly) on the variation of
density, checkerboard patterns with a strong oscillating density from element to element are
suppressed. Further approaches to circumvent the formation of checkerboards are for in-
stance the usage of higher-order finite elements, smoothing, patch design, and the NoHinge
constraint.

For instance, Sigmund et al. [15] suggest to use higher order elements for the modeling of
the structure so that the sti�ness properties of checkerboard patterns can be accurately cal-
culated and checkerboards are avoided. The author states that checkerboards can be pre-
vented when using 8 or 9-node quadrilaterals for the displacement in combination with an
element wise constant discretization of density. However, as these elements have more de-
grees of freedom per material design variable (compared to four-node element meshes), they
are seldom used in topology optimization [76]. Increasing the degrees of freedom enhances
the accuracy of the numerical analyses but at the same time increases computational cost.
Furthermore, Diaz et al. [76] proved that the application of elements of higher order o�en
does not necessarily yield a checkerboard-free result when using a high value of penaliza-
tion factor pwith the SIMP approach.

Many commercial post-processing codes use smoothing by image processing of the output
images of the "optimal solution" [15]. However, this method ignores the underlying problem
and therefore should be avoided.
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2.7. Material Optimization

Over the past two decades, the demand for lighter and stronger structures, supported by re-
markable advancements in manufacturing techniques, has resulted in an increasing use of
advanced materials, such as composite materials. The development and application of com-
posites is mainly driven by the aerospace industry but at the same time is expanding to other
industrial sectors as well. This includes structural applications for cars, trains and ships as
well as wind turbine blades and civil engineering applications like bridge structures.

As the response of structures depends on the materials they are built of, a central aspect is
the optimal use of material. Therefore, it has been natural to extend the optimization of struc-
tures to the material choice and the consideration of designing the material properties [1].
However, the corresponding design problem, the so-called material optimization (i.e., with
composite materials), is quite complex and an important area in its own right.

In terms of weight reduction, the trend nowadays is to replace highly loaded and massive
structures with composite structures. The concept and application of composite materials
can be traced back to ancient history [1]. The purpose of combining two or more constituents
to form a composite is to gain a new material that has better overall properties compared to
the properties of its constituents. The overall properties are influenced by the constituent
materials themselves, their distribution, but also the interaction between them. In fact, com-
posite structures can be tailored by choosing, among other relevant factors, the individual
constituent materials, their volume fractions, and their orientations.

Fiber-reinforced composite materials, also referred to as fiber-reinforced polymers (FRPs),
are particularly competitive for light-weight design due to their high sti�ness-to-mass and
sti�ness-to-strength ratio, compared for example to metallic materials. FRPs are composed
of fibers of various forms, with superior properties in fiber direction, embedded in a matrix.
The fibers constitute the most important component as they provide the superior proper-
ties of a composite. The matrix groups the fibers together, puts them in fixed positions and
protects them from environmental e�ects such as oxidation, corrosion, and so on. From a
mechanical point of view the matrix provides a load transferring mechanism for the fibers.

The directional nature of fiber-reinforced composites provides the ability to construct a ma-
terial which can meet specific loads and/or sti�ness requirements without wasting material
by providing sti�ness and strength where they are not needed. This anisotropic behavior
of composites, while allowing the engineer to tailor the material more closely to the design
requirements, is a big challenge in product development because the lightweight potential
can only be fully exploited if the fibers are arranged properly. Even small deviations from the
ideal fiber orientation can result in dramatically lowered strength and sti�ness characteris-
tics of the composite part because the matrix (with significantly lower sti�ness and strength
values) is increasingly loaded. Therefore, selecting proper material orientations for the ap-
plication is of utmost importance.
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A polar plot is a useful tool to visualize and quantify the orientation dependent characteristics
of composites – namely showing the variation of a specific material characteristic (e.g., Young’s
Modulus, Shear Modulus, ...) with the loading direction. Figure 2.23 shows a polar plot for the
elastic modulusE1 of a carbon fiber reinforced polymer (AS4/3501-6 epoxy) with a fiber vol-
ume content ofϕf = 60% for quasi-isotropic, unidirectional, and cross-ply material behavior
under various loading directions.

Loading 
Directions

Quasiisotropic

Unidirectional

Cross-Ply (0/90)

Youngs Modulus [MPa]

Figure 2.23.: Polar diagram for the variation of the elastic modulus E1 with respect to the
loading direction

To attain the best results when designing materials with improved properties, adequate op-
timization methods have to be implemented to find practical optimal solutions that satisfy a
given set of design constraints. For instance, significant mass savings can be achieved by so-
called "black-metal" solutions. A black metal solution is a composite structure whose shape
is derived from the former metallic structure (e.g., determined by topology optimization).
However, the black metal solution is not optimal because it is not fully harnessing the ben-
efits of composite materials, i.e., that they are strong along the fiber direction. In order to
obtain an optimal solution, structure and material must be designed simultaneously to gain
load-tailored composite parts. This implies, that there is no a priori on the initial topology
and unlike e.g., the black metal design, there are no simplifying assumptions on the material
behavior. In present design practice, the optimization of structure and material are inher-
ently decoupled and yet the performance and quality of the designs are inevitably linked
across the structure and material scales. Hence, a lot of e�ort has been put on developing a
general continuum based structural optimization method, especially for simultaneous struc-
tural (topology) and material optimization [1].

Early topology optimizations based on the homogenization method [39] already consider
composite structures with continuously varying material orientation and material distribu-
tion. As mentioned above, a decisive factor for e�ective lightweight design is the fiber ori-



2.7. Material Optimization 55

entation according to load path trajectories [77]. Various methods exist to optimize the ori-
entation of orthotropic materials ranging from heuristic-based methods like the Computer
Aided Internal Optimization [78] to methods of Continuous Fiber Angle Optimization [6] and
Load Path Computation [79]. Existing discrete approaches for simultaneous topology and
material optimization, e.g., Discrete Material Optimization focus on directly finding a physi-
cally meaningful solution based on a limited number of predefined candidate angles and/or
candidate materials, with the risk of local optimum solutions.

However, other approaches which avoid the local optimum problem by relaxation of the de-
sign space (Free Material Optimization) face the problem that the optimization may yield a
theoretically optimal structure but not always a physically feasible structure, especially for
more complex structures or loading scenarios
The approaches of Computer Aided Internal Optimization (CAIO), Discrete Material Optimiza-
tion (DMO), Continuous Fiber Angle Optimization (CFAO) as well as Free Material Optimization
(FMO) are described in more detail in the following sub-sections.

2.7.1. Computer Aided Internal Optimization (CAIO)

An example of a stress-based method for orientation optimization of orthotropic materials
is the Computer Aided Internal Optimization (CAIO) by Mattheck [78, 80, 81]. This method
determines an optimized fiber layout for parts made of FRPs, starting from an initial shell ge-
ometry and a given load case. CAIO copies the principle of internal optimization of trees, i.e.,
the biological fiber orientation, in order to minimize shear stresses within orthotropic or mul-
tilayer composite material structures. The aim of this heuristic-based algorithm is to obtain
lightweight structures with high sti�ness and high strength. The reduction of failure-critical
shear stresses is achieved by aligning fiber orientations with principal normal stress trajec-
tories. For this purpose, the principal normal stress eigenvector with the largest eigenvalue
is used. From this new state of fiber orientation, a new stress state emerges, determined by a
finite element analysis. This new stress state is then used as input for the next CAIO iteration
until, for instance, the shear stresses are "su�iciently" reduced [78]. An overview of the CAIO
method is illustrated in Figure 2.24. According to Reuschel et al. [81], this method of fiber
orientation optimization naturally depends on a su�iciently fine mesh to allow proper local
adaption of orientation.

Several mathematical studies, for instance by Gea et al. [82], prove the e�iciency of the method
described above to obtain sti� structures. However, most real-world problems exhibit com-
plicated geometries and loadcases, leading to multiaxial stress states. As mentioned above,
the orientation of the largest absolute eigenvalue, i.e., the corresponding eigenvector, is cho-
sen for orienting the fibers. This is referred to as the ’maximum absolute’ method.
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Figure 2.24.: Flowchart of the CAIO method adapted from Mattheck et al. [78]

For stress states that do not provide a single largest principal normal stress but, for instance,
two (nearly) equal principal normal stresses, aligning fiber orientations with principal normal
stress trajectories is not always unambiguous, as illustrated in Figure 2.25. This can lead to
chaotic designs with alternating fiber directions [83].

Global Geometry
TensionCompression 

Max. Eigenvalues

F
Regions with
unique largest
principal normal
stresses

Problematic
region

Figure 2.25.: Multiaxial stress states leading to ambiguous fiber trajectories

In 2014 Klein et al. [84] proposed a method for computing the resulting fiber orientation for
multiple loadcases, referred to as ’proximity search’ method. The aim of this method is to
avoid chaotic, alternating fiber directions in regions with ambiguous (isotropic) stress states.
Whereas the ’maximum absolute’ method represents the mathematically optimal solution,
the ’proximity search’ method intentionally deviates from the optimal solution with the focus
on improving the design in terms of manufacturability. First, every element is checked for
an ambiguous (isotropic) stress state, i.e., if the principal normal stresses are (nearly) equal.
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Voelkl et al. [83] introduce an equation, a so-called isotropy criterion, to detect this state as

Iiso−crit =
|σI |
|σII |

∈ ]1− riso, 1 + riso[ (2.38)

where riso defines the range of the quotient of two principal normal stresses in which an ele-
ment’s stress state is considered ambiguous. If the criterion, defined in Equation 2.38, is true
for an element’s stress state, the neighboring elements are checked for their stress states as
well. If there is an element, in the direct neighborhood, with an unambiguous (non-isotropic)
stress state, the fiber orientation of the current element is set to the neighbor elements fiber
orientation, see Figure 2.26. If all neighbor elements exhibit an ambiguous (isotropic) stress
state as well, the neighborhood of the neighboring elements are checked as well until an
element with unambiguous stress state is found. Again, the fiber orientation of the current
element is adapted accordingly.

(a) (b)

Figure 2.26.: Adaption of orientation for elements with ambiguous stress state using the
’proximity search’ method. (a) Element with ambiguous stress state, (b) Adap-
tion of the fiber orientation of the current element according to the neighbor
elements fiber orientation

The original CAIO introduced above is useful in giving an idea of force flow within a given
geometry and thus providing trajectories along which fibers should be placed. However, it
is only capable of handling one single layer, not taking the advantage of great lightweight
capabilities when using laminates with several di�erent layers. Therefore, Klein et al. [85]
propose a modification of the original CAIO for multi-layer capabilities, the so-called Multi-
Layer Computer Aided Internal Optimization (ML-CAIO). The ML-CAIO is used to compute the
fiber orientations and number of layers which are needed to transfer the loads within the
structure. The results of the ML-CAIO are then used to determine areas of comparable fiber
orientations (defining a so-called "patch structure"), to define the optimal stacking sequence
and compute the layer thicknesses. An overview over the design approach using ML-CAIO is
illustrated in Figure 2.27. According to Klein et al. [85], it is very important to point out that
in general the results of the proposed approach is not a laminate structure that is completely
ready to manufacture.

In the ML-CAIO approach at first a FEM model with shell elements (and all necessary bound-
ary conditions) is created. Each shell element in the FEM model is a so-called layered shell
element. This means that each shell element consists of several layers which are modeled
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with the help of through thickness integration points. The initial number of layers is arbitrary
but constant for all shell elements.

Initial Structure

MultiLayer - CAIO

Fiber Orientation
Number of layers

Cluster algorithm

Patch structure

Stack computation

Stacking sequence

Genetic algorithm

Layer thicknesses

Design Proposal

Figure 2.27.: Overview of the computational approach on the optimal design of composite
parts using ML-CAIO [85]

Isotropic material behavior is assumed for the first FEM analysis. The procedure of ML-CAIO
is illustrated in Figure 2.28. To optimize the fiber angles in each layer of every element, the
stress tensor is computed for every element layer via FEM analysis. If there is more than
one single loadcase, all the stress states which occur for the part have to be determined (see
Figure 2.28 (a)). The stress states, resulting from each loadcase, are collected, as illustrated
in Figure 2.28 (b). The collected stress states are the basis for determining the layer number
and the fiber orientations. Whenever there is a significant principal stress, a layer with a cor-
responding fiber orientation is needed to bear the load. Figure 2.28 (b) illustrates the compu-
tation procedure for layer 1 and two di�erent loadcases (Loadcase 1, Loadcase 2). The result
of the FEM analysis for layer 1 are the principal stressesσLC 1

11 andσLC 1
22 (for Loadcase 1) as well

as σLC 2
11 and σLC 2

22 (for Loadcase 2). At first, principal stresses with a small absolute value (in
this caseσLC 1

22 andσLC 2
22 ) are deleted because it is assumed that these stresses do not need an

"own" layer. Next, the directions of the remaining principal stresses (σLC 1
11 andσLC 2

11 ) are com-
pared. If there is no significant di�erence between the orientations, the principal directions
(eigenvectors) are summed up. In the example depicted in Figure 2.28 (b), the di�erence be-
tween the principal directions of Loadcase 1 and Loadcase 2 is significant, so both loadcases
need an own layer. Subsequently, layer 1 is extended to two di�erent layers with the respec-
tive angles α = 45o (for σLC 1

11 ) and β = 15o (for σLC 2
11 ). This extension of the initial layers to

multiple layers may lead to multiple layers with equal fiber orientation for instance for layer
1 and layer 5 in Figure 2.28 (b). Therefore, all "double" layers are deleted such that for each
fiber orientation only one layer is remaining, see Figure 2.28 (c). The modified FEM model
is solved again and the fiber orientations of the new model are compared to the preceding
ones. If the di�erence is significant, a new iteration starts, otherwise the algorithm stops. By
iterating like in the original CAIO method for single-layer optimization (first iteration isotropic
material, then anisotropic material), the optimized solution is found.
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Figure 2.28.: Computation of fiber orientations and layer number according to ML-CAIO [85]

2.7.2. Discrete Material Optimization (DMO)

According to Lund [5], the Discrete Material Optimization (DMO) can be used to solve the orien-
tation problem of orthotropic materials and the material selection problem as well as prob-
lems involving both. The key-idea of DMO is adopted from topology optimization. However,
instead of selecting "solid" or "void" properties for each element of the finite element model
(0-1 design), a fixed number of "candidate materials" is available for each element. The scope
of DMO is to choose the best combination out of these predefined "candidate materials".
In the context of orientation optimization, "candidate materials" simply refers to the same
material oriented at various angles in space (fiber orientations), for instance FRP materials
oriented at predefined angles (e.g., 0 o, +45 o, −45 o, 90 o). However, "candidate materials"
might as well be polymer foams, steel, aluminum, or any other material at any orientation.

The method of discrete material optimization relies on ideas from multi-phase topology opti-
mization where the total material sti�ness is computed as a weighted sum of the "candidate
materials" [86]. Similar to topology optimization, the parametrization of the DMO is invoked
at the finite element level. The general methodology is as follows: the element constitutive
matrix Ee is expressed as a weighted sum of the predefined "candidate materials".

Ee =
n∑
i=1

wiEi = w1E1 + w2E2 + ...+ wnEn, 0 ≤ wi ≤ 1. (2.39)

Each "candidate material" is characterized by a constitutive matrix Ei. n denotes the total
number of predefined plausible material configurations, i.e., "candidate materials", per ele-
ment. The number of "candidate materials" per element, n, is also the number of elemental
design variables. Therefore, ifN is the number of elements, the total number of design vari-
ables for a single layered structure is N · n. Note, that the "classical topology optimization"
formulation uses one design variable per element and therefore can be obtained by setting



60 2. Theoretical Background

n = 1 in Equation 2.39. As the constitutive matrices Ei may represent any type of "candi-
date material", this paramterization also allows for simultaneous optimization of fiber orien-
tation and material choice. When working with anisotropic materials, the orientation can be
implicitly included in the problem, i.e., the constitutive matrix is a function of the spatial ori-
entation θi of the fibers (fiber angle). Therefore, in this case, the constitutive tensor of each
individual "candidate material" is defined by an anisotropic base material rotated by a set
of fixed angles as Ei = E (θi). In Equation 2.39, wi are the so-called weight factors of the
"candidate materials". The weight factorswi are limited to values between 0 and 1 as a nega-
tive contribution (wi < 1) is physically meaningless and no matrix can contribute more than
the physical material properties (wi > 1). In general it is important to define a "fair" starting
guess so no materials are favored a priori. Therefore, the initial values of the weight factor
(which may in principle be any set of numbers between 0 and 1) should be chosen such that
the weighting is uniform.

The single most important requirement for the DMO method is that every element must have
one single weight factor of wi = 1 whereas all other weight factors have a value of wi = 0

, i.e.,
∑

iwi = 1, i = 1, ..., n [86]. In other words, the design problem is to choose the best
of the "candidate materials" by choosing the best of the constitutive matrices Ei. Therefore,
the performance of DMO relies heavily on the ability of the optimizer to push the weight fac-
tors to the limit values wi = 0 and wi = 1. Several formulations have been proposed for
the formulation of the weight factor. For instance, for a single layered structure, the simplest
choice of weight function would be to use the SIMP method with wi = xpi where xi denotes
the design variable. Therefore, Equation 2.39 can be written as:

Ee =
n∑
i=1

(xi)
pEi = (x1)pE1 + (x2)pE2 + ...+ (xn)pEn, 0 ≤ xi ≤ 1. (2.40)

The penalization factor p penalizes intermediate values of xi, to push the design variables
towards 0 and 1. However, in this formulation, each design variable scales only one consti-
tutive matrix and has no influence on any of the other constitutive matrices and therefore is
considered as ine�icient [87]. Therefore, Sigmund [87] proposes the following formulation
for two distinct materials (E1,E2):

Ee = (x0)p [(1− (x1)p)E1 + (x1)pE2] , 0 ≤ xi ≤ 1. (2.41)

The di�erence between Equation 2.41 and Equation 2.40 is the term (1− (x1)p) which links
a single design variable to more than one constitutive matrix. Therefore, adding weight for
one "candidate material" automatically reduces the weight for another "candidate material",
thus helping to push the weights towards 0 or 1. In the formulation in Equation 2.41 the
design variable x0 scales the entire contribution to Ee. Therefore, this formulation encom-
passes simultaneous topology optimization (through x0) and multiple material optimization
(through x1).
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The formulation can also be extended to include any number of "candidate materials" as
shown by Stegmann et al. [86]:

Ee =
n∑
i=1

wiEi =
n∑
i=1

[
(xi)

p
n∏
j=1

[
1− (xj 6=i)

p ]]Ei. (2.42)

Again, the term (1− (xj 6=i)
p) is included to drive the design towards a 0/1 design as an in-

crease in xi automatically involves a decrease in all other weights.

For multi-layered structures Equation 2.42 can be used directly [86]. The constitutive matrix
El for a given layer l in a given element can thus be determined by

El =
nl∑
i=1

wiEi =
nl∑
i=1

[
(xi)

p
nl∏
j=1

[
1− (xj 6=i)

p ]]Ei, (2.43)

wherenl is the number of "candidate materials" for the layer. Consequently, for multi-layered
elements, the number of element design variables (n) is the sum of the number of design
variables per layer nlk over all layersN l of an element

n =
N l∑
k=1

nlk. (2.44)

Again, the total number of design variables for the whole structure is N · n where N is the
total number of elements. For multi-layered structures, this implies a significant increase in
the total number of design variables.

The problem of the high number of design variables associated with DMO can be circum-
vented by using so-called patch design variables [86]. Patch design variables denotes merg-
ing several design variables from di�erent elements and/or layers into a single variable. Patch
design variables are inspired by the manufacturing process of composite laminates where
fiber mats covering larger areas are o�en used. For instance, a single patch design variable
can govern the fiber orientation of a layer (fiber mat), even though it covers several elements.
Such patches can also be used to enforce laminate symmetry (to avoid unwanted coupling
e�ects) by assigning the same design variable to the opposite layer. However, one major
drawback is that the layout of these patches is le� up to the engineer a priori. Consequently,
the final result will be dependent on the engineers insight and the initial patch layout.

2.7.3. Continuous Fiber Angle Optimization (CFAO)

The restriction to a prescribed set of "candidate orientations" of Discrete Material Optimiza-
tion is resolved in the Continuous Fiber Angle Optimization (CFAO). In CFAO additional (local)
design variables are included for a continuous rotation of an anisotropic base material.
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Therefore, the design variables are the local orientations (rotation angle of the material),
namely the continuous parameters θi, relative to the reference coordinate system. The fiber
angle θi can be oriented at any angle in the interval −90 o≤ θi ≤+90 o. Figure 2.29 illus-
trates the classical concept of this local orientation optimization in a finite element frame-
work where θi is the fiber angle which can be adapted element wise.

The continuous parametrization of the fiber angle provides flexibility in the solution. How-
ever, the major di�iculty of this continuous parametrization is that the global design space
becomes highly non-convex [1]. Figure 2.30 shows an example of such a non-convex design
space where the objective is to minimize the compliance based on the two design variables
(local orientations) θ1 and θ2. The problem of finding a global optimum becomes even more
complex as the scale of the problem grows. Therefore, design proposals obtained with CFAO
will o�en be sub-optimal (local optimum) results. Nevertheless, it is still a valuable design
tool as it can provide engineers with a significant performance increase [1].

x

y

Figure 2.29.: Concept of continuous fiber angle optimization in a finite element framework

F

Figure 2.30.: Variation of the compliance of a cantilever beam discretized with two elements
with respect to the local orientation variables θ1 and θ2
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Like for the standard topology optimization, several methods have already been proposed to
circumvent the problem of local solutions with CFAO. For instance, Pedersen [88] proposed
an optimality criteria method to optimize 2D continua, beams, and plates. Parametrization
methods where the aim is to change the parametrization to obtain a convex design space
have been successfully applied for the orientation optimization of plates and shells by Foldager
et al. [89] and for plates by Miki et al. [90]. Additionally, regarding manufacturability it is de-
sirable to control the smoothness of material orientation pathways within CFAO approaches.
For instance, Nomura et al. [91] proposes a specialized parametrization and projection scheme
so that the designer can control the complexity of the orientation angles.

2.7.4. Free Material Optimization (FMO)

The least restrictive approach to material optimization is the so-called Free Material Opti-
mization (FMO). Free Material Optimization is a branch of structural optimization that gains
more and more attention in recent years leading to a wide range of models, methods and
theories [1]. Whereas DMO is based on determining the best discrete material selection, for
instance for laminated composite structures, FMO extends this discrete set of admissible ma-
terials, avoiding any restriction to pre-existing materials and searching for more general ma-
terial properties.

The main di�erence to other methods of material optimization is that the design parametriza-
tion of Free Material Optimization allows the entire elastic sti�ness tensor to vary freely at
each point of the design domain. The only requirements imposed on the sti�ness tensor are
necessary conditions that the sti�ness tensor has to be symmetric and positive semidefinite.
However, this does not imply that the material is thermodynamically consistent of physically
reasonable. FMO thus can be used to obtain conceptual optimal structures characterized by
optimal material distribution and optimal material properties. This is also the reason why
FMO is considered as the "ultimate" generalization of the structural optimization problem.

FMO uses certain invariants of the sti�ness tensor as objective. According to Stingl et al. [92] a
frequently used measure of the sti�ness of the material tensor is its trace. Pointwise sti�ness
restrictions are used to define the set of admissible materials. This is done in order to avoid
overly sti� materials (Tr (E) ≤ ρ̄) and to define a lower limit on the sti�ness

(
Tr (E) ≥ ρ ≥ 0

)
where ρ and ρ are finite real numbers [92]. These constraints on the local sti�nesses do not
depend on coordinate systems due to the invariance property of the trace under orthogonal
transformations.

One of the main di�iculties concerns the nature and size of FMO problems. As the design
variables are the entries of the symmetric sti�ness tensor which are allowed to vary point-
wise throughout the structure, the number of independent variables in each sti�ness tensor
is 6 for two-dimensional and 21 for three-dimensional problems. Additionally, according to
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Kočvara et al. [7], it is important to work with relatively fine finite element discretizations to
obtain essentially predictive solutions which, in turn, leads to large-scale problems.

According to [7] the results of FMO, within the assumption of a locally unconstrained configu-
ration of material, can be regarded as ultimately best structure among other possible elastic
continua in terms of optimal material distribution and optimal local material properties. The
fact that the optimal material, as proposed by FMO, does not already exist in nature is seen as
one of the major drawbacks of this optimization method. However, it is a fundamental idea
of FMO to overcome the boundaries of traditional materials as well as laminate manufactur-
ing standards and to motivate the construction of entirely new materials by pointing out the
high potential provided by advanced materials. Free material optimization can thus be used
to generate benchmark solutions for other models and besides to propose novel ideas for
new design situations.
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3. A Method for Simultaneous Topology
and Material Optimization

Structural optimization, in particular topology optimization, is a powerful and already widely
used tool for the design of weight optimized structural components. Topology optimiza-
tion has reached a high level of maturity for isotropic materials [1]. In terms of extremely
lightweight components, composite structures are a key player, o�ering the possibility of
tailoring the material to a specific application. However, few publications exist on concur-
rently optimizing the layout of the structure and the mechanical constitutive behavior of the
structure. Indeed, considering the material properties (i.e., orientation and anisotropy of the
local material tensor, which is controlled by the composite micro-structure) in the optimiza-
tion process is considered complex. The aim of this chapter is to propose an optimization
methodology for the simultaneous structural (topology) and material optimization.

As outlined in the previous chapter, structural optimization deals with the improvement of
the mechanical performance of load carrying structures. The most common measures of
structural performance are weight, sti�ness, stresses, strains, critical loads, displacements,
and geometry. The optimization problems can thus be formulated by taking one or more
of these measures as an objective and some of the other measures as constraints. Engi-
neers usually prefer to minimize the mass of a structure while at the same time imposing
constraints on the global structural sti�ness (i.e., displacement constraints). Nonetheless,
a similar problem can be solved by maximizing the global structural sti�ness and imposing
constraints on the mass. The problem of maximizing the global sti�ness of an elastic struc-
ture can be formulated as the minimization of the compliance. The compliance of a body, in
elasticity, corresponds to the global work done by the external forces for the field of the dis-
placements that are solution of the elastic problem. Therefore, the problem of maximizing
the sti�ness, which is subject to a mass constraint, is synonymous to minimizing the compli-
ance of a structure, which in turn is subject to a constraint on the volume fraction. The opti-
mization problem of minimizing the compliance is mostly discussed in literature and there-
fore is taken up in the framework of this thesis. Therefore, the global design objective for the
simultaneous structural and material optimization is to minimize the compliance of a struc-
ture, subject to a constraint on the amount of material that is at our disposal, i.e., a constraint
on the volume fraction.
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The following sections describe how the "State of the Art" (isotropic) topology optimiza-
tion procedure is extended to anisotropic material behavior. Subsequently, a computational
scheme which updates the anisotropic material properties (local material orientation as well
as the local material tensor) based on the local loading conditions (i.e. principal stresses and
principal stress directions) is proposed. The general concept of the optimization procedure
for the simultaneous optimization of topology and material is shown in Figure 3.1. For both,
the isotropic as well as the anisotropic case, a convergence criterion is checked in each itera-
tion prior to the update of topology and material. As real structures are subjected not only to
one loadcase but multiple loadcases, the method is extended to multiple loadcases as well.

The next sections explain in detail how the topology update is determined (Section 3.1), how
the optimized material properties are determined (Section 3.2), and how the simultaneous
optimization of topology and material is implemented (Section 3.3).

FEM - Analysis

Convergence Yes

No

Design Update

Design Proposal

k = k + 1

Initial Structure
Objective: min Compliance
Constraint: Volume Fraction

Topology / Material

Figure 3.1.: General concept for the simultaneous structural and material optimization for
minimizing the compliance subject to a volume constraint

3.1. Topology update scheme

In the framework of this thesis, the so�-kill Bi-Evolutionary Structural Optimization (BESO)
algorithm, proposed by Huang et al. [59], is used to determine the best topological layout
that yields the sti�est structure with a predefined volume of material. Furthermore, a filter
scheme to overcome numerical issues like mesh-dependency and checkerboard patterns,
as proposed by Huang et al. [75], is used. According to Huang et al. [52], this BESO method
for sti�ness optimization o�ers many advantages as opposed to other methods like for in-
stance SIMP. These include high quality topology solutions which can be easily interpreted
in terms of manufacturability as the final topology does not contain regions of intermediate
densities. Furthermore, the BESO algorithm provides excellent computational e�iciency and
is easy to implement as a post-processing algorithm to most FEM packages. The BESO algo-
rithm as well as the filter scheme are implemented in Python based on the publication by
Zuo et al. [93]. The Python code takes advantage of the advanced FEM analysis capacities of
the Abaqus so�ware and employs the Abaqus Scripting Interface (ASI) to communicate with
Abaqus.
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3.1.1. So�-kill BESO

In 2009 Huang et al. [59] proposed a so�-kill BESO algorithm to solve the topology optimiza-
tion problem that yields the sti�est structure with a prescribed amount of material. To max-
imize the sti�ness of a structure, the total strain energy of the structure or mean compliance
C is minimized for a predefined volume of the material:

minimize: C =
1

2
uTKu, (3.1a)

subject to: V ∗ −
N∑
i=1

xiVi = 0, (3.1b)

where: xi = xmin or 1. (3.1c)

K is the global sti�ness matrix of the structure andu is the displacement vector. The volume
constraint, see (Equation 3.1b), limits the amount of material that is at disposal for the opti-
mization. Vi is the volume of an individual element, V ∗ is the prescribed structural volume,
N is the total number of finite elements in the structural model, and xi denotes the design
variable of the ith element. As outlined in Section 2.5.3, in evolutionary algorithms the el-
ement itself is considered as the design variable. A small value xmin is introduced as lower
bound for the design variable to avoid singularity of the sti�ness matrix. This lower bound
denotes the so� (void) elements and is set to xmin = 0.001.

The formulation of the material interpolation scheme of the BESO algorithm, published by
Huang et al. [59], makes use of the SIMP material interpolation model. Therefore, the Young’s
modulus is interpolated as a function of the element design variable as

Ei = E (xi) = (xi)
p E0

i , (3.2)

similar to Equation 2.25. E0
i denotes the Young’s modulus of the solid isotropic material and

p is the penalty factor. It is assumed that the Poisson’s ratio is independent of the design
variables xi. Thus, the global sti�ness matrix K is expressed by the element sti�ness matrix
Ki and the design variables as follows:

K (x) =
N∑
i=1

Ki (Ei) =
N∑
i=1

(xi)
p K0

i . (3.3)

K0
i denotes the element sti�ness matrix of solid elements,N is the total number of elements

in the structure, and x denotes the vector of the design variables.

The design variable update is based on the elemental sensitivity. In other words, a sensitivity
analysis is performed to study the e�ect of material elimination on the structural behavior.
Consequently, the sensitivity number represents the contribution of element modification
to the concerned structural behavior.
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For deriving the sensitivity of the objective with respect to the removal or addition of an ele-
ment, the adjoint method is used. The adjoint method is a numerical method for e�iciently
computing the gradient of a function in a numerical optimization method. The sensitivity of
the structural compliance with regard to the change in the i-th element can be easily derived
by di�erentiating the objective functionC as

αi =
∂C

∂xi
. (3.4)

By using Equation 3.1a, Equation 3.1c and Equation 3.3 the equation above evolves to

∂C

∂xi
= −1

2
pxp−1

i ui
TKe

0ui, (3.5)

where ui is the element displacement vector. The sensitivity is negative for all elements, so
physical intuition is confirmed as additional material in any element decreases compliance,
and therefore, makes the structure sti�er. Since BESO uses discrete design variables, only
two bound materials (xi = 1 andxi = xmin = 0.001) are allowed in the design. TThe sen-
sitivity of an individual element, for both solid and so� elements, thus can be expressed by

αi = −1

p

∂C

∂xi
=


1

2
ui

TKe
0ui whenxi = 1

1

2
xp−1
min ui

TKe
0ui ≈ 0 whenxi = xmin = 0.001.

(3.6)

This equation indicates that the sensitivity numbers of solid elements (xi) are equal to the
elemental strain energy and the sensitivity numbers of so� elements are approximately zero.
The element strain energy, which is the amount of elastic energy stored in a finite element,
can be directly obtained from FEM analysis. Elements with large values of strain energy indi-
cate the location of large elastic deformation (energy). Therefore, by knowing the amount of
the element strain energy one can immediately determine the areas of the structural model
where modifications (changes of the design variable) will have the most impact. It is common
to normalize the strain energy by unit volume, which is referred to as strain energy density.
The element elastic strain energy densities are retrieved from the Abaqus Field Output (using
the keyword "ESEDEN").

3.1.2. Filter Scheme

As already mentioned in Section 2.6, topology optimization is prone to numerical instabili-
ties like mesh-dependency and checkerboard patterns. To recall, mesh-dependency refers
to the problem of obtaining qualitatively di�erent optimized structures when using di�erent
mesh sizes for the modeling of the structure. Checkerboards are referred to as patterns of
alternating solid and void elements ordered in a checkerboard like fashion. According to Sig-
mund et al. [15], these numerical issues can be circumvented, to a large extent, by imposing
restrictions on the variation of the design variables by including for instance a filter scheme
for densities or sensitivities.
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To simultaneously address numerical instabilities like mesh-dependency and checkerboard
patterns, a sensitivity filter scheme for so�-kill BESO, as suggested by Huang et al. [75], is
implemented. The filtering of the elemental sensitivities is performed prior to the update of
the design variables. The key idea of the filter scheme is to replace the raw sensitivity number
αe
i of each element (retrieved from the FEM analysis) with a filtered elemental sensitivity αi.

The filtered elemental sensitivity αi for the i-th element depends on the sensitivities of the
element itself and its neighboring elements within a certain circular "domain of influence" Ωi

defined by a scale parameter denoted as filter radius rmin. The principle of the filter scheme
is illustrated in Figure 3.2.

j rij

(a) (b)

Figure 3.2.: Filter scheme used for filtering the elemental sensitivities

As a first step, the nodal sensitivity numbers αn
j , are determined. Nodal sensitivity numbers

do not carry any physical meaning on their own but rather are needed for the recalculation of
the element sensitivities. They are determined by averaging the raw elemental sensitivities
αe
i of the elements connected to the respective node. Therefore, nodal sensitivity numbers

are calculated as

αn
j =

Me∑
i=1

Viα
e
i

Me∑
i=1

Vi

, (3.7)

where M e denotes the total number of elements connected to the j-th node and Vi is the
volume of an individual element. For instance, for determining the nodal sensitivity αn

3 for
node 3 in Figure 3.2 (a), the raw elemental sensitivities of the connected elements αe

2 and αe
3

are averaged. Similarly, the nodal sensitivity αn
21 for node 21 is calculated by averaging the

raw elemental sensitivities αe
12, αe

13, αe
17, and αe

18. The nodal sensitivity numbers αn
j are used

to calculate the improved, filtered elemental sensitivity numbers αi as:

αi =

Mn∑
j=1

w (rij)α
n
j

Mn∑
j=1

w (rij)

, (3.8)

whereMn is the total number of nodes within a sub-domain Ωi.
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The sub-domain Ωi, centred at the centroid of the i-th element with the scale parameter rmin,
is illustrated in Figure 3.2 (b). Nodes located inside Ωi contribute to the computation of the
filtered sensitivity number αi and w (rij) is a linear weight function for averaging the raw
sensitivities and is defined as:

w (rij) =

rmin − rij for rij < rmin

0 for rij ≥ rmin

, (3.9)

where rij is the distance between the center of the i-th element and the j-th node. As men-
tioned before, the primary role of the scale parameter rmin is to identify the nodes that in-
fluence the filtered sensitivity of the i-th element. The scale parameter rmin is specified by
the user and can be used to control the minimum member size of the emerging features in
the design domain. Huang et al. [75] note that rmin needs to be at least larger than the size
of the smallest finite element in use, in order to have an e�ect. Furthermore, Huang and his
co-workers suggest that rmin is selected to be about 1-3 times of the size of one element to
successfully avoid checkerboard patterns and mesh-dependency.

To improve the accuracy of the sensitivities the sensitivity history of each element is con-
sidered, as suggested by Huang et al. [75]. The current filtered sensitivityαi is averaged with
the sensitivity of the previous iteration as

αi =
αki + αk−1

i

2
, (3.10)

where k denotes the current iteration and k − 1 denotes the previous iteration. Based on
the filtered and history averagedαi the design variables are updated as described in the next
section.

3.1.3. Update of Design Variables

The presence ("solid material") or absence ("so� material") of each element of the discretized
structure defines the material spatial distribution, i.e., the topology of the structure. So�-kill
BESO starts from a full design, iteratively evolving to an optimal structural layout by switch-
ing element status from "solid" (xi = 1) to "so�" (xi = xmin = 0.001) or vice versa. Before
elements are added to or removed from the design by switching the element status, the tar-
get volume for the current design iteration V k needs to be determined. The target volume
decreases step by step until the predefined, constrained volume V ∗ is reached. Thus, the
structural volume is gradually reduced by a so-called Evolution Rate (ER > 0) which deter-
mines the percentage of material to be removed from the design in each iteration step, as
shown in Figure 3.3. The target volume of the current iteration V k is determined based on
the volume of the previous iteration V k−1 and the Evolution RateER as follows

V k = V k−1(1− ER). (3.11)
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Selecting a high value of ER reduces the computational time, i.e., it reduces the number of
iterations. However, according to Huang et al. [52], very high values of ER may result in lo-
cal optima. Once the constrained volume is reached, the optimization runs with a constant
redistribution factor (Evolution Rate ER = 0). Therefore, once the target required material
volume usage is attained, the optimization algorithm alters the topology but keeps the vol-
ume constant (V = const.). From this point on, the cycle of finite element analysis, element
removal and addition (and material adaption in the case of anisotropic material) continues
until the convergence criterion, defined for instance in the variation of the objective func-
tions, is satisfied. The convergence criterion is described in detail in Section 3.3. The proce-
dure described above is di�erent from other methods, e.g., SIMP, where the target volume is
kept constant from the very beginning and the compliance decreases gradually until a con-
vergence criterion is satisfied.

Iteration

Q-Iso

ER > 0
ER > 0

V = const.

Figure 3.3.: Illustration how the compliance (objective) and volume fraction (constraint)
evolves with the number of iterations for the BESO algorithm

The update of the design variables xi, implemented in the numerical simulations of this the-
sis, is based on the update scheme proposed by Huang et al. [59]. Listing A.1 in Appendix A
shows the Python code of a simple bisection method that is used in the framework of this
thesis to determine a threshold parameter for the elemental sensitivities in order to decide
which elements are "e�icient" and therefore shall be included in the design, and which are
not. Solid elements with a sensitivity number below the threshold are removed from the
structure whereas solid elements with a sensitivity number above the threshold are kept as
solid. Likewise, void elements are recovered when their sensitivity number is greater than
the threshold. Void elements are kept as void when their sensitivity number is lower than
the threshold.
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The target volume tv gives volume, i.e., the number of elements, that shall be reached in the
current design iteration. The threshold is changed progressively until the target volume of
the current iteration is reached. The bisection algorithm returns the updated design vari-
ables xi,new as input for the next optimization iteration.

3.1.4. Implementation of the Topology Update Scheme

The implementation of the topology update scheme, described in the previous sections, is
illustrated in Figure 3.4 (a) for the single loadcase (SLC) and Figure 3.4 (b) for multiple load-
cases (MLC).

The initial structure is discretized with finite elements. Control parameters like the Evolu-
tion Rate ER, volume fraction constraint V ∗, and the scale parameter rmin (filter radius) are
defined. A linear static FE-Analysis is carried out to determine the system responses which
are required for the determination of the updated topology, i.e., element elastic strain energy
density. In the next step, the actual volume fraction of the design domain is checked against
the target volume fraction V ∗. If the target volume fraction has not been reached, a new tar-
get volume for the current iteration is determined by decreasing the actual volume by the
evolution rate ER. Otherwise the volume stays constant. The filter scheme, described be-
fore, is used to filter the raw sensitivities determined from the element elastic strain energy
density to prevent numerical instabilities. Subsequently, the filtered elemental sensitivities
are checked against a threshold value: elements with a sensitivity value below the threshold
are "removed" from the structure (xi = xmin = 0.001) which implies that they are set to a very
so� material. Elements with a sensitivity value higher than the threshold are set to "solid"
(xi = 1). The new material distribution is determined based on the current elemental design
variables (xi) and the material properties for "solid elements" and "so� elements". If the de-
sign variable of an element has a value of xi = 1, the material properties of this element
for the next iteration equal the material properties of a solid element (e.g., isotropic mate-
rial). Otherwise, if the design variable of an element has a value of xi = 0.001 the elements
material properties are set to a very so�, isotropic, material with the material parameters
E = 0.0013, ν = 0.3 where the penalization factor is set to p = 3.

When designing structures for complex systems, the handling of Multiple Load Cases (MLC)
is an essential part of the design process, as complex systems may be subject to a large num-
ber of di�erent loading conditions. Therefore, an e�icient strategy for multiple loadcase
problems is crucial in engineering activities. Topology optimization for multiple loadcases
involves the balance among multiple optimal load transferring paths. Generally, each load-
case is considered as an objective function to be optimized. In order to extend the BESO
algorithm to multiple loadcases, the criterion for the addition and removal of the elements
is adapted, as proposed by Zuo et al. [93]. For multiple loadcases the linear static FE-Analysis
of the structure is carried out for each of the loadcases separately.
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Likewise, filtering of the elemental sensitivities is performed for each of the loadcases sepa-
rately. The filtered sensitivities are summed up for all loadcases as

αi =
n∑
j=1

αLC j
i , (3.12)

where n is the total number of loadcases and αLC j
i denotes the elemental sensitivity of the

respective loadcase j. The value of αi is then checked against the threshold, similarly to the
single loadcase procedure. According to Young et al. [62], this is equivalent to a logical "AND"
condition for the element removal process and a logical "OR" condition for the element addi-
tion process. This means that the designs obtained for each individual load case are superim-
posed to produce the new design, whilst satisfying the target volume constraint. Therefore,
if an element is needed for any of the loadcases it must be set to xi = 1. Only if an element
is considered "ine�icient" for both loadcases it can be removed from the structure.

Sensitivity Filter Scheme

New Target
Volume       

FEM- Analysis

YesNo

Initial Structure

Yes No

Updated Material Distribution

Updated Material Distribution

(a) (b)

BESO

BESO

FEM- Analysis

Figure 3.4.: BESO algorithm. (a) Single Loadcase, (b) Multiple Loadcases
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3.2. Material Update Scheme

For a given load and boundary conditions, the stress usually varies in each point of the struc-
ture. Some areas are mainly stressed in tension or compression, whereas others are stressed
in shearing. Consequently, the material should be adapted to the local stresses which are
applied on it. The second aspect of simultaneous optimization developed in the framework
of this thesis, namely the material optimization, tackles this problem by determining the op-
timal material orientation as well as the optimal material anisotropy which vary throughout
the structure. Thus, the update of the material within each iteration step of the optimization
consists of two aspects: (1) adjusting the local material orientation and (2) adjusting the local
material (sti�ness) tensor, based on the local loading conditions.

The following subsections explain in detail how the material is modeled (see Subsection 3.2.1),
how the update of the local material orientation is determined (see Subsection 3.2.2), and
how the update of the local material anisotropy is performed (see Subsection 3.2.3).

3.2.1. Material Modeling

In mechanics of materials, the length-scale at which a problem is considered is of great im-
portance. Typically, a material is an inhomogeneous agglomeration of constituents. For in-
stance composites consist of dissimilar constituents ("phases") that are distinguishable at
some (small) length scale(s). Each constituent shows di�erent material properties and/or
material orientations and may itself be inhomogeneous at some smaller length scale. The
behavior of inhomogeneous materials is determined, on the one hand, by the relevant ma-
terial properties of the constituents. On the other hand, the behavior of inhomogeneous
materials is determined by the geometry and topology of the constituents (the so-called
"phase arrangement"). The process for "bridging length scales" for determining a unique
constitutive behavior for inhomogeneous materials is called Homogenization [94]. The aim
is to determine the overall "e�ective material properties" (e.g. sti�ness, thermal expansion,
strength properties) from the corresponding material behavior and from the geometrical ar-
rangement of the phases. The principle of homogenization is illustrated in Figure 3.5. The le�
picture shows the inhomogeneous composite with it’s constituents, i.e., di�erent phases p
(di�erent materials or pores) with the respective material properties E(p)

i , G
(p)
ij , ν

(p)
ij , .... The

picture on the right shows the "homogeneous equivalent medium" a�er homogenization
with the "e�ective material properties"E∗i , G∗ij, ν∗ij, ....

Approaches for modeling inhomogeneous materials are for instance simple analytical meth-
ods, like the Rule of Mixture, which lack thermodynamical consistency and are limited to sim-
ple topologies (e.g., unidirectionally aligned long-fibers). Other methods, like for instance
Mean Field Homogenization methods, allow for di�erent inclusion shapes (e.g., spherical in-
clusions, continuous cylindrical inclusions, penny-shaped inclusions, ...) and two or more
phases.
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The key idea of Mean Field Homogenization methods is to give a macroscopic response as
well as basic information on the state of deformation within the phases based on assump-
tions of the interaction laws between the di�erent phases (which define the homogeniza-
tion scheme). A good summary of micromechanics and approaches for modeling inhomo-
geneous materials can be found in "A Short Introduction to Basic Aspects of Continuum Mi-
cromechanics" by Böhm [95]. Böhm [95] also states that, the e�ective field method of Mori-
Tanaka [96] is the simplest mean field approach to model inhomogeneous materials and it is
specifically suited for matrix-inclusion-type microtopologies (composites).

Homogenization

Pores

Phase 1 Phase 2

Figure 3.5.: Principle of homogenization for bridging length scales for inhomogeneous ma-
terials by determining the overall "e�ective material properties" (e.g., sti�ness,
thermal expansion, strength properties) from the corresponding material behav-
ior and from the geometrical arrangement of the phases

According to Pierard et al. [97], direct homogenization schemes might lead to physically un-
acceptable macro predictions, i.e., a non-symmetric overall sti�ness tensor. Pierard et al. [97]
propose a two-step homogenization procedure which gives physically acceptable results.
The composite is decomposed into "grains" where each grain contains only one inclusion
family (i.e., inclusions which have the same material properties, aspect ratio, shape, and ori-
entation). In a first step, each grain is homogenized individually, e.g., by using the method of
Mori-Tanaka. In the second step the representative volume element (RVE) is considered as a
set of di�erent grains where each grain is characterized by its sti�ness and orientation (de-
termined in the first step). This "aggregate" denotes a multi-phase composite and therefore
can be homogenized by one of several homogenization schemes. However, Pierard et al. [97]
suggests to use models which are suitable for aggregates or polycrystals (e.g. Voigt, Reuss).
Using Mori-Tanaka also for the second step is not a viable option as this is equivalent to a
direct Mori-Tanaka homogenization on a multiphase composite and therefore leads to the
problems mentioned above.

In the framework of this thesis a continuous glass fiber reinforced polymer (GFRP) is used, i.e.,
infinitely long cylindrical inclusions (glass fiber) embedded in a matrix. The orientation and
volume fraction of the inclusions are determined for each optimization iteration via update
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schemes for the material orientation and the degree of anisotropy (see Subsection 3.2.2 and
Subsection 3.2.3). The predefined input data for the Mori Tanaka calculations, i.e., mechan-
ical and thermal properties of the continuous cylindrical inclusions (fibers) and the matrix,
are listed in Table 3.1 and Table 3.2.

Table 3.1.: Mechanical and thermal properties of Silenka E- Glass fiber [98]
Fibre type Silenka E- Glass

Symbol Unit 1200tex
Longitudinal Young’s modulus Ef1 GPa 74
Transverse Young’s modulus Ef2 GPa 74
In-plane shear modulus Gf12 GPa 30.8
Major Poisson’s ratio νf12 − 0.2
Transverse shear modulus Gf23 GPa 30.8

Table 3.2.: Mechanical and thermal properties of matrix [98]
Matrix type MY750

Symbol Unit
Young’s Modulus Em GPa 3.35
Shear modulus Gm GPa 1.24
Poisson’s ratio νm − 0.35

3.2.2. Material’s 1-Direction

The determination of the ideal orientation of the given material is of fundamental impor-
tance as even small deviations from the ideal fiber alignment result in significantly lowered
strength and sti�ness characteristics of the structure because the matrix (with significantly
lower strength and sti�ness values, see Table 3.1 and Table 3.2) is increasingly loaded.

Single Loadcase

The optimal local fiber orientation for each element is determined based on the resulting
element stress tensors from the finite element analysis. The emerging principal stress tra-
jectories are used for the material orientation in each element of the finite element model.
For this purpose, the principal normal stress eigenvector (principal direction) with the largest
absolute eigenvalue (maximum absolute principal normal stress eigenvalues) is used. This
principal direction defines the material’s 1-direction. The update of the local material axes
for a single loadcase is illustrated in Figure 3.6, where the principal direction with the largest
absolute principal normal stress (indicated with the blue arrows) determines the material’s
1-direction (fiber orientation) for the respective element.
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Figure 3.6.: Principle of material orientation update for a single loadcase

Multiple Loadcases

Similar to the update procedure described above, for multiple loadcases the basic idea is to
align the fibers along the principal stress trajectories with the biggest absolute value. How-
ever, compared to the single loadcase, the orientation is updated according to the principal
directions of the design loadcase, see Figure 3.7. In the framework of this thesis, Loadcase 1
is denoted as "Design Loadcase", therefore, the material orientation is updated according to
this loadcase. The principal directions of all further loadcases do not contribute to the de-
termination of the local material orientation. However, these loadcases do contribute to the
determination of the local material tensor, as described in the next section.

3.2.3. Local Sti�ness Tensor

In addition to the update of the local material orientation, the local sti�ness tensor is up-
dated. The overall volume content of the continuous cylindrical inclusions is set to ξf = 60 %

for all simulations. The optimal degree of anisotropy depends on the nature of the stress
field. Several procedures for updating the local sti�ness tensor for single loadcase and mul-
tiple loadcases are described in detail below. All the procedures designations contain the
prefix Anisotropic-Orient-Material (AOM) as the basis for all of these procedures is the update
of the material orientation described in the previous section and all of these procedures up-
date the local sti�ness tensor with every iteration step of the optimization. The several meth-
ods of AOM described in this subsection di�er in how the degree of anisotropy is determined.
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Material's
1-Direction

Stress Tensor 1LCk ... nLCk
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Directions

Loadcase k

Stress Tensor 1LC1 ... nLC1

Loadcase 1

Design 
Loadcase

Principal 
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...

FEM - Results

Loadcase 2 is
not considered

Figure 3.7.: Principle of material orientation update for multiple loadcases where Loadcase 1
is the design loadcase

AOM-I Single

For the update of the local sti�ness tensor for a single loadcase (AOM-I Single) only inclu-
sions oriented at 0 o and 90 o are allowed, leading to an orthotropic material. The respective
volume fractions, ξ0◦ and ξ90◦ , are based on the ratio of the principal stresses σ11 and σ22 (ab-
solute values) and on the requirement that the sum of those volume fractions must amount
to ξf :

ξ90◦

ξ0◦
=
σ22

σ11

, (3.13a)

ξ0◦ + ξ90◦ = ξf . (3.13b)

The principle of the material update for a single loadcase is illustrated in Figure 3.8. Dif-
ferent stress states lead to di�erent volume fractions, ξ0◦ and ξ90◦ , for the inclusions. For
instance, element 200 shows a predominantly uni-axial stress. Therefore, an almost trans-
versely isotropic material is used. In other words, the volume fraction of the 90 o inclusions
is approximately 0. However, a transversely isotropic material that exhibits a privileged di-
rection is not su�icient for covering the multi-axial stress state in element 1 . In this case
inclusions of 0 o and 90 o (ξ0◦ > 0 and ξ90◦ > 0) are required. The material’s 1-direction
(0 o inclusion) coincides with the local material orientation determined in the course of the
orientation update.
For updating the local material tensor for multiple loadcases three di�erent material update
schemes are proposed. These material update schemes are denoted as AOM-I Multiple, AOM-II
and AOM-III.
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Figure 3.8.: AOM-I Single: Update of the local material tensor for a single loadcase based on
the ratio of the principal stresses σ11 and σ22

AOM-I Multiple

The update procedure AOM-I Multiple for multiple loadcases is equal to the procedure used
with a single loadcase, as described in the previous subsection. In this case, only the design
loadcase is used to determine the respective volume fractions of the 0 o and 90 o inclusions.
The AOM-I Multiple procedure is illustrated in Figure 3.9 for two loadcases. The volume frac-
tions of the inclusions for the material update (ξ0◦ and ξ90◦) are determined based on the
ratio of the principal stresses σLC 1

11 and σLC 1
22 emerging from the design loadcase (in this case

Loadcase 1), disregarding stress states resulting from Loadcase 2. Furthermore, again there
is the requirement that the sum of the volume fractions must amount to ξf . The sti�ness ten-
sor glyph, exemplarily shown for element 5 , clearly shows that the material is only optimized
for Loadcase 1. However, the material is not optimized for Loadcase 2.
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Stress Tensor 1LC2 ... nLC2
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Figure 3.9.: AOM-I Multiple: Update of the local material tensor for multiple loadcases assum-
ing that only the design loadcase is the deciding loadcase for the degree of ani-
sotropy

AOM-II

The key idea of the procedure AOM-II for dealing with multiple loadcases is to consider the
design loadcase with inclusions of 0 o and 90 o and all further loadcases with additional in-
clusions (e.g., θ3, θ4 for a second loadcase). The orientations of these additional inclusions
depend on the principal directions of the respective loadcase with in relation to the principal
directions of the design loadcase. Therefore, the additional inclusions, pertaining to one spe-
cific loadcase, are also orthogonal. It is assumed, that this procedure gives the most design
freedom since the inclusions can be directly adapted to the needs of the further loadcases,
but may lead to non-orthotropic material tensors. Figure 3.10 exemplarily shows the update
procedure AOM-II for two loadcases. First, the principal stresses and principal directions of
the element under consideration are determined for both loadcases. Generally, Loadcase 1
(design loadcase) adds inclusions of 0 o and 90 o whereas Loadcase 2 adds inclusions of θ3 and
θ4. However, for the element exemplarily shown in Figure 3.10 ξ90◦ and ξθ4 are approximately
0 as the respective principal stresses, σII are approximately 0. The orientation of inclusion
θ3 is determined as the angle between the maximum (absolute) stress principal direction of
the design loadcase (Loadcase 1) and the maximum (absolute) stress principal direction of
Loadcase 2.
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As the inclusions of Loadcase 2 must be orthogonal, θ4 is calculated as θ4 = θ3 + 90◦. The re-
spective volume fractions depend on the ratios of the principal stresses of the two loadcases
(superposition of loadcases) and on the requirement that the sum of those volume fractions
(ξ0◦ , ξ90◦ , ξθ3 , ξθ4) must amount to ξf .

FEM - Results

Stress Tensor 1LC1 ... nLC1

Loadcase 1 (Design Loadcase)

F
Stress Tensor 1LC2 ... nLC2

Loadcase 2

2

1
I

II

I

II

I

Figure 3.10.: AOM-II: Update of the local material tensor for multiple loadcases assuming
that the design loadcase contributes with cylindrical inclusions of 0 o and 90 o

whereas the second loadcase contributes with inclusions (θ3, θ4) where the ori-
entation is based on the principal directions of Loadcase 2 with respect to the
principal directions of the design loadcase

AOM-III

In the third approach for updating the local material tensor, AOM-III, inclusions of 0 o, ±45 o

and 90 o are used. These inclusion orientations correspond to the standard composite ply-
orientations employed in traditional material lay-ups. The AOM-III approach is exemplarily
illustrated for element 12 in Figure 3.11 for two loadcases. Again, there is a design loadcase
(Loadcase 1) which determines the orientation, i.e., material’s 1-direction and therefore local
orientation of the 0 o inclusion. The principal stressesσLC 1

11 ,σLC 1
22 as well as the corresponding

principal directions of the design loadcase are determined.
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The stress tensor resulting from Loadcase 2 is rotated to the major principal axis of the design
loadcase. This results in normal stresses, denoted as σLC 2

11,rotated, σLC 2
22,rotated, and shear stresses

τLC 2
12 (indicated by pink arrows in Figure 3.11). These shear stresses are the basis for adding
±45◦ inclusions to the material formulation. For determining the volume fractions ξ0◦ , ξ90◦

and ξ±45◦ , first the stresses contributing to the volume fractions of 0 o and 90 o inclusions are
compared, i.e., σLC 1

11 and σLC 2
11,rotated for the 0 o inclusions and σLC 1

22 and σLC 2
22,rotated for the 90 o in-

clusions. In each case the greater value is used for determining the volume fractions. For the
element exemplarily shown in Figure 3.11, this implies thatσLC 2

11,rotated andσLC 2
22,rotated along with

τLC 2
12 are used for determining the volume fractions. Again, the respective volume fractions

are determined based on the ratio of the stresses (σ11, σ22 and τ12) and on the requirement
that the sum of the volume fractions ξ0◦ , ξ90◦ and ξ±45◦ must amount to ξf . It has to be noted,
that the volume fraction of +45◦ and −45◦ inclusions are assumed to be equal (balanced).
Therefore, ξ+45◦ = ξ−45◦ =

ξ±45◦

2
.

(Design Loadcase)

rotated

rotated

FEM - Results

2

1

Figure 3.11.: AOM-III: Update of the local material tensor for multiple loadcases assuming
standard composite ply orientations of 0 o, ±45 o and 90 o as inclusion orienta-
tions
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Methods for Reference

To evaluate the potential of simultaneously optimizing topology and material (AOM), two fur-
ther schemes are defined to be compared to the standard "State of the Art" topology opti-
mization with quasi-isotropic material.

The Anisotropic (A) scheme denotes the topology optimization with an anisotropic (unidirec-
tional) material but without altering the material properties in every iteration step. In other
words, a�er determining the startdesign (see Section 3.3.1) the local material orientation and
degree of anisotropy remain unchanged throughout the optimization. Only the topology is
altered based on the BESO algorithm.

The second update scheme Anisotropic Orient (AO) is an extension to the Anisotropic update
scheme and corresponds to the idea of Continuous Fiber Angle Optimization (CFAO) presented
in Section 2.7.3. Similar to the Anisotropic update scheme, at first the startdesign for the op-
timization is determined. However, in this case, in addition to the topology update the orien-
tation of the material is updated with every optimization iteration step. The degree of anisot-
ropy remains unchanged, i.e., the optimization is performed with the unidirectional material
defined for the startdesign.

3.3. Computational Scheme

This section introduces the strategy for the proposed optimization method. Figure 3.12 shows
the computational scheme when topology update and material update (i.e., update of the lo-
cal orientation and degree of anisotropy) are combined.

The optimization problem is non-convex and therefore admits several local minima. The ini-
tial structure to be optimized is modeled with a quasi-isotropic material. Quasi-isotropic de-
notes a material having isotropic properties, but only in-plane. In other words, the sti�ness
of the material within the plane of the part is independent of the direction in which the mate-
rial is loaded. To obtain the quasi-isotropic material inclusions of equal content are specified
in 0 o, +45 o, −45 o, and 90 o, i.e. since ξf = 60%, ξ0◦ = ξ90◦ = ξ+45◦ = ξ−45◦ = 15%. The
quasi-isotropic material is also used for the "State of the Art" standard topology optimization
(Q-Iso).

The iterative part of the optimization procedure, which builds on the startdesign, is the fol-
lowing: in every iteration step a FEM-Analysis is performed. As long as the constraint on the
volume fraction is not fulfilled the topology as well as the material properties are updated as
described in the previous sections. Figure 3.12 shows the update of the topology and the ma-
terial update in terms of local material orientation and local degree of anisotropy (visualized
with sti�ness tensor glyphs).
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When the constraint on the volume fraction is fulfilled, a�er 10 further iterations at con-
stant volume fraction, a convergence criterion is checked to determine whether the opti-
mization can be stopped or another design update is necessary. The convergence criterion
is described in detail in Subsection 3.3.2.

Initial Structure
Objective: min Compliance
Constraint: Volume Fraction

Design Update or
Single Loadcase

Loadcase 1
Loadcase 2
Design Update

or or or

Multiple Loadcase

Topology Material

Local Orientation + Degree of Anisotropy 
xe = 1xe = xmin

Design Variable

Design Proposal

FEM - Analysis Convergence

Yes

k = k + 1

Startdesign Yes

No

Figure 3.12.: Computational scheme developed for the simultaneous optimization of topol-
ogy and anisotropic material properties (AOM)

3.3.1. Startdesign

Several suggestions for the startdesign for the optimization can be found in literature. For in-
stance Mattheck et al. [99] suggest to use a unidirectional orientation of the orthotropic axes
for the initial material orientation. Reuschel et al. [81] propose to use an orthotropic mate-
rial with arbitrary orientation assigned to the FEM model to be optimized. Völkl et al. [100]
propose to use an isotropic material for the startdesign of the optimization.

In the framework of this thesis, several startdesigns are investigated in order to determine
if the startdesign has an influence on the optimization result, see Section 4.1. The investiga-
tions show, that aligning the fibers along principal stress axes for the startdesign gives the
best result compared to other startdesigns. The initial design exhibits quasi-isotropic mate-
rial properties, indicated by the respective sti�ness tensor glyphs.
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The fiber orientation for the startdesign is determined by performing a finite element analysis
with the quasi-isotropic material setup and subsequently aligning the material’s 1-direction
according to the principal stress directions as described in Section 3.2.2. The material used
for the startdesign for the optimization is a unidirectional material (i.e., fiber inclusions of 0 o

with ξ0◦ = 60%). The procedure of determining the startdesign is illustrated in Figure 3.13.

Initial Design Startdesign for
Optimization

FEM - Analysis

Figure 3.13.: Determination of a startdesign for the optimization by performing a FEM analy-
sis for the initial, quasi-isotropic structure

3.3.2. Convergence Criterion

For checking if the sensitivity-based optimization has converged a convergence criterion, as
proposed by Xia et al. [53], is implemented. The convergence criterion is expressed as the
change in the objective function in the previous iterations and is given by∣∣∣∣∣∣∣∣

n∑
j=1

(Ck−j+1 − Ck−n−j+1)

n∑
j=1

(Ck−j+1)

∣∣∣∣∣∣∣∣ ≤ εtol, (3.14)

where k is the current iteration number, n is an integer number and εtol is the allowable con-
vergence error. The integer numbern is chosen asn = 5, as proposed by Xia et al. [53], which
means that the changes in the objective function in the last 10 iterations are within the spec-
ified allowable convergence error.

Most studies that deal with minimum compliance problems in topology optimization use
τtol = 0.001 as the convergence tolerance value [53]. Therefore, when dealing with a sin-
gle loadcase, the allowable convergence error is set to εtol = 0.001. Therefore, the changes
in the objective function in the last 10 iterations are within 0.1 % tolerance.
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When dealing with multiple loadcases, the convergence of the design loadcase (Loadcase 1)
is determined as above. When the convergence criterion is fulfilled for the design loadcase,
all other loadcases are checked for convergence, but with a slightly higher tolerance of
εtol = 0.005.
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4. Application of the Method to a Single
Loadcase

In this chapter the method of simultaneous structural and material optimization, described
in the previous chapter, is validated for a single loadcase for simple test cases. The aim is to
verify if the method is capable of e�iciently determining concurrently the material distribu-
tion (topology) and anisotropy distribution.

As compliance is one of the most popular measures regarding the e�iciency of a structure
in topology optimization, the objective of the optimization is to minimize the compliance of
a cantilever beam with a constraint on the volume fraction, V F = 50 %. The simulations
are conducted using a continuous glass fiber reinforced polymer (GFRP), i.e., infinitely long
cylindrical inclusions (glass fiber) embedded in a matrix. The mechanical and thermal prop-
erties of the continuous cylindrical inclusions (fibers) and matrix are listed in Table 3.1 and
Table 3.2.

The design domain and boundary conditions are shown in Figure 4.1 (a) (in the x-y plane).
The size of the design domain is 40mmx 20mmx 1mm and it is discretized with 80 x 40 x 1

linear brick elements with reduced integration, unless otherwise stated. Therefore, the mesh
size in the x-y plane is denoted as msize and amounts to 0.5 mm. The design domain is mod-
eled in 3D. However, as plane stress is assumed, stresses exist in the xy-plane as σx and σy
(normal stresses) and σxy (in-plane shear stress). Each of these stresses is constant along
the element thickness. In addition there is no stress in the z-direction as well as no through-
thickness shear stresses. Therefore, the determination of the material orientation and mate-
rial degree of anisotropy is reduced to a 2D problem.

The le� side of the design domain is fixed (ux, uy = 0). A single load is applied to the lower
right edge of the design domain, indicated with a red dot in Figure 4.1. The translational de-
grees of freedom (x- and y-direction) of the nodes of this edge are coupled to a reference
point. The concentrated force is applied to this reference point. Figure 4.1 (b) shows the
various loading scenarios which were investigated, namely Loadcase A (vertical load), Load-
case B (load at −45 o), and Loadcase C (horizontal load). The loads are applied to the lower
right edge of the design domain. For all loading scenarios the load is set to |F | = 10N.
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Figure 4.1.: Loading scenarios for comparing the optimization methods for a single loadcase

As the problem of optimizing the topology and material is non-convex, the optimal solution is
very sensitive to the initialization. This initialization encompasses the initial material setup
(startdesign) as well as control parameters like the scale parameter rmin (filter radius) and
Evolution Rate ER. Therefore, the influence of the initialization of the model on the opti-
mization results is presented. Furthermore, the influence of the scale parameter rmin and its
use for mesh-dependency are studied. The algorithms A, AO, and AOM-I Single are compared
to the standard topology optimization with quasi-isotropic material Q-Iso.

4.1. Comparison of Startdesigns

In Subsection 3.3.1 a strategy for initializing the model, in terms of the initial material setup
(startdesign), is proposed. In the framework of this thesis the following startdesigns are in-
vestigated:

• Initialization with a quasi-isotropic material (no startdesign)

• Initialization with a unidirectional material oriented at 0 o

• Initialization with a unidirectional material oriented at 45 o

• Initialization with a unidirectional material oriented at−45 o

• Initialization with a unidirectional material oriented at 90 o

• Initialization with the procedure proposed in Subsection 3.3.1, i.e., determining a start-
design based on the principal directions of a preliminary FEM analysis. From here on
this startdesign is referred to as "PD-startdesign".

The results for the various startdesigns are illustrated in Figure 4.2. As the results show the
same tendency for all loading scenarios (A, B, C) , only Loadcase A is shown here. The results
for Loadcase B and Loadcase C can be reviewed in Appendix B.1.
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The startdesigns (see Figure 4.2), from le� to right, are the following: no startdesign, startde-
sign 0 o, startdesign 45 o, startdesign −45 o, startdesign 90 o, and "PD-startdesign". The plot
shows the comparison of the compliance for the optimization methods AO and AOM-I Single
relative to the standard topology optimization Q-Iso. Furthermore, the optimal topologies
resulting from various startdesigns are shown.

The plot reveals, that the AO-method is very sensitive to the initialization with regard to the
orientation of the material’s 1-direction. Especially those startdesigns oriented at 45 o and
90 o show a significantly higher compliance compared to all other startdesigns. This is also
reflected in the optimal topologies which clearly di�er from the optimal topologies deter-
mined with no startdesign, "PD-startdesign", and startdesigns with an initial orientation of
0 o and−45 o.

Furthermore, it has been observed that the optimization with the startdesign oriented at 45 o

and 90 o need many more iterations for the objective function to converge (e.g., 79 iterations
for the startdesign oriented at 45 o as compared to 60 iterations for the PD-startdesign).

In contrast, the method of simultaneously optimizing the topology and material (AOM-I Sin-
gle) does not show a significant dependency of the optimal result on the startdesign. For
instance, for the startdesign with 45 o the compliance of the final design amounts to the high-
est compliance value out of all startdesigns (Wex = 85.575 Nmm). For the PD-startdesign the
compliance of the final design amounts to the lowest compliance value out of all startdesigns
(Wex = 85.231 Nmm). This corresponds to a di�erence of 0.4 %.

Startdesign

Q-Iso
AO
AOM-I Single

Figure 4.2.: Influence of startdesign on the compliance and final topologies for the optimiza-
tion methods AO and AOM-I Single (msize = 0.5 mm, rmin = 3 mm,ER = 0.01)



90 4. Application of the Method to a Single Loadcase

Furthermore, the number of iterations that are needed are more or less the same (e.g., 65
iterations for the startdesign with 45 o and 62 iterations for the PD-startdesign). Concerning
the optimal topologies, the design proposal determined with a startdesign oriented at 45 o

shows a slightly di�erent topology. In this case the small shearing triangle (which can be ob-
served with the final topologies of all other startdesigns) is replaced by two thicker bars.

Based on the results shown above it is concluded that the initialization with a startdesign
with an orientation based on the principal directions determined with a preliminary finite el-
ement analysis (PD-startdesign) is the most suitable as this startdesign also leads to the best
performance in terms of compliance for the AO method. Therefore, this startdesign is used
for all further simulations.

4.2. Influence of Control Parameters

4.2.1. Influence of Filter Radius

As mentioned in Chapter 3, a sensitivity filter scheme is used to avoid the problem of mesh-
dependency of the solutions and to eliminate checkerboard patterns. When applying the
filter scheme, the sensitivities are heuristically modified as weighted averages of the sensitiv-
ities in the mesh-independent neighborhoods. The concept is to take into account the influ-
ence of neighbor elements inside a certain "domain of influence" defined by the scale param-
eter rmin (filter radius). By doing so, the evolution of the sensitivities is expected to become
smoother without abrupt discontinuity in the sensitivity distribution. As the filter scheme
prevents sharp changes of material sensitivities it is expected that the optimization leads to
designs with smoothly varying geometries. However, using sensitivity filtering makes the op-
timization sensitive to the scale parameter rmin as input for the optimization [71]. Therefore,
several values for the scale parameter rmin are investigated, to show its influence on the com-
plexity of the topology and to draw a conclusion which scale parameter rmin shall be used for
the simulations.

Figure 4.3 illustrates the influence of the filter scheme on the sensitivities distribution. The
figure exemplarily shows the sensitivities distribution as well as the corresponding final to-
pologies without filter scheme and with filter scheme. The sensitivities are obtained from a
simulation using the AOM-I Single method for Loadcase A with a discretization of 80 x 40 ele-
ments (mesh sizemsize = 0.5 mm) and a scale parameter of rmin = 1.5 mm. The original sen-
sitivities distribution, without filter scheme, is shown in Figure 4.3 (a1). Figure 4.3 (b1) shows
the sensitivities distribution with filtered sensitivities. The corresponding final topologies
are shown in Figure 4.3 (a2) and Figure 4.3 (b2). The original sensitivities show a very strong
gradient, i.e., they change abruptly from one element to another. Note, an element which
is colored in dark gray has a higher sensitivity compared to elements which are colored in
light gray. This abrupt change in sensitivities is also reflected in the final design topology,
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as elements with a high sensitivity are set to "solid" whereas elements with a low sensitiv-
ity are set to "so�" ("void"). The topology in Figure 4.3 (b2) reveals that, besides avoiding
mesh-dependency and checkerboard patterns, the filter scheme can be used to control the
minimum size of the emerging features in the design domain, i.e., to avoid too detailed struc-
tures.

(a1) (b1)(a2) (b2)

Without filter scheme With filter scheme (rmin = 1.5 )
Filtered 

Sensitivities
Original 

Sensitivities
Final

Topology
Final

Topology

Figure 4.3.: E�ect of the filter scheme (msize = 0.5 mm, rmin = 1.5 mm,ER = 0.01)

Following the recommendation of Huang et al. [75], that rmin should be at least about 1-
3 times the size of one element, several values of rmin were investigated. A mesh size of
msize = 0.5 mm is used for the simulations. For the simulations the scale parameter rmin is
set to the following values:

n 1 3 6 9

rmin = n ·msize [mm] 0.5 1.5 3.0 4.5

Figure 4.4 and Figure 4.5 show the influence of the scale parameter on the complianceWex for
Loadcase A and Loadcase B. As Loadcase C shows the same tendency, the results are shown in
Appendix B.2. For the standard topology optimization Q-Iso, there is an overall tendency for
the compliance to increase with the scale parameter rmin. This means, the smaller rmin, the
better the objective function value. For the AOM-I Single method, the compliance determined
with di�erent values of rmin is within a narrow range (e.g., 25.36 Nmm for rmin = 0.5 mm to
25.61 Nmm for rmin = 4.5 mm for Loadcase B which means a di�erence of 0.9 %).

The topological results for Loadcase A (Figure 4.4) and Loadcase B (Figure 4.5) show that the
use of large filter radii restricts the design field from expressing fine structural features. The
largest scale parameter rmin used in these simulations (rmin = 4.5 mm) gives a topology with
thicker bars. For a small rmin the material distribution is less constrained as there are less
elements that influence the behavior of the considered element.
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The topological results for rmin = 0.5 mm and rmin = 1.5 mm show very thin features, es-
pecially for the Q-Iso method. Generally, such fine features are unwanted, especially with
regards to aspects of finite element stress analysis. A minimum value for the scale parameter
rmin of three times the element size is necessary to maintain that stresses, which represent
the basis for the material optimization, are determined accurately. Therefore, for the con-
ducted simulations, it is concluded that a scale parameter rmin = 3 mm is su�icient to pre-
vent the formation of too thin features but at the same time o�ers enough design freedom as
compared to larger values of rmin. Consequently, this value is used for all further simulations.
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Figure 4.4.: Influence of scale parameter rmin on the compliance and final topologies of Q-Iso
and AOM-I Single for Loadcase A (msize = 0.5 mm,ER = 0.01)
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Figure 4.5.: Influence of scale parameter rmin on the compliance and final topologies of Q-Iso
and AOM-I Single for Loadcase B (msize = 0.5 mm,ER = 0.01)
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4.2.2. Influence of Evolution Rate

Using the BESO algorithm the structural volume is gradually reduced by the so-called Evo-
lution Rate ER until the constrained target volume is reached. Therefore, ER determines
the percentage of material to be removed from the design of the previous iteration. In or-
der to evaluate the sensitivity of the optimization regarding the evolution rate ER several
simulations are conducted using the following values of ER = 0.01, 0.025, and, 0.05. By
performing the material removal with a lower evolution rate, less change is applied to the
topology at each iteration, i.e., less elements are removed within every iteration. As a logical
consequence, a lower evolution rate generally corresponds to a higher number of evolution-
ary iterations (i.e., number of iterations until the constrained volume fraction is attained).
However, the simulations revealed that the number of iterations to convergence (a�er the
attaining the constrained volume fraction of 50 %) does not depend on the evolution rate.

The results in terms of final topology and compliance of the final design for using the afore-
mentioned values of ER are shown for Loadcase A in Figure 4.6. The results for Loadcase B
and Loadcase C can be reviewed in Appendix B.2. Figure 4.6 reveals, that for the standard
topology optimization Q-Iso the topology changes as the evolution rate increases. Further-
more, the compliance significantly increases with higher evolution rates. The compliance of
the final designs determined with evolution rates ER0.01 and ER = 0.05 di�ers by 28 %.
For AOM-I Single, the topology forER = 0.05 is di�erent from the topologies determined for
ER = 0.025 and ER = 0.01. However, for ER = 0.025 and ER = 0.01 the final topologies
are almost the same. However, the compliance doesn’t significantly change. In this case the
compliance of the final designs determined with evolution rates ER = 0.01 and ER = 0.05

di�ers by 0.2 %.

As Loadcase B and Loadcase C, shown in Appendix B.2, show the same tendency as described
above it is concluded that the evolution rate ofER = 0.01 is a good option for the proposed
optimization method and problem. Therefore, this evolution rate is used for all further sim-
ulations.

4.3. Mesh-Dependency

To prove the functional capabilities of the implemented filter scheme proposed in Subsec-
tion 3.1.2, a study on the mesh-dependency of the optimal design is conducted. The results
are presented for Loadcase A in Figure 4.7. The optimal topologies as well as the compliance
are shown for rmin = 3 mm for several mesh sizes. The simulations were conducted with dis-
cretization with 20 x 10 (msize = 2.0 mm), 40 x 20 (msize = 1.0 mm), 80 x 40 (msize = 0.5 mm),
160 x 80 (msize = 0.25 mm), and 400 x 200 (msize = 0.1 mm) elements. Again, the results are
only displayed for the loading scenario Loadcase A as all other loading scenarios show the
same tendency.
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Figure 4.6.: Influence of volume evolution rateER on the compliance and final topologies of
Q-Iso and AOM-I Single for Loadcase A (msize = 0.5 mm, rmin = 3 mm)
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Figure 4.7.: Mesh-independent results for the standard Q-Iso topology optimization and the
simultaneous optimization method AOM-I for Loadcase A
(rmin = 3 mm,ER = 0.01)

The lowest discretization with 200 elements (msize = 2.0 mm) shows a di�erent topology
and a slightly higher compliance compared to the discretization with 800 elements
(msize = 1.0 mm) or higher. For a discretization with 800 elements or higher, the optimal
topology does not depend on the discretization in terms of layout and number of bars, for
both the Q-Iso and AOM-I method.
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The only di�erence between the topologies for di�erent discretization is that the boundaries
of the structure become smoother when refining the mesh.

Regarding the compliance, Figure 4.7 demonstrates that the Q-Iso shows a certain (even if not
significant) mesh-dependency in terms of compliance results. For the simultaneous topology
and material optimization (AOM-I), the solutions are very stable in terms of compliance when
using a discretization equal or higher than 800 elements.

4.4. Comparison of Methods Q-Iso, A, AO, and AOM-I Single

4.4.1. Loadcase A

The results of the various optimization methods, namely Q-Iso, A, AO, and AOM-I Single, are
summarized in Figure 4.8 and Figure 4.9. Figure 4.8 shows the comparison of the relative
compliance for all optimization methods. The standard topology optimization Q-Iso serves
as a reference. A decrease in compliance can be observed for the optimization methods A,
AO, and AOM-I Single, compared to Q-Iso.

Q-Iso A AO AOM-I
Single

Figure 4.8.: Comparison of the relative compliance of the proposed optimization methods
with regard to the compliance of the Q-Iso standard topology optimization for
Loadcase A

Figure 4.9 (a) shows the evolution of the compliance and the volume fraction as a function of
the iteration number. The compliance initially increases as the material is gradually removed
from the design domain. A�er 50 iterations the volume fraction reaches its target value of
50 %. In the subsequent iterations, while the volume remains unchanged, the compliance
gradually converges to a constant value.

Figure 4.9 (b) shows a detailed illustration of the evolution of the compliance at the very be-
ginning of the optimization procedure. For the standard topology optimization, Q-Iso, the
sequential removal of elements starts at Iteration 1. Therefore, from this point on the com-
pliance increases.
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For all other methods, the sequential removal of elements starts at Iteration 2 a�er the de-
termination of the startdesign . At Iteration 2 A, AO, and AOM-I Single show a significantly
lower compliance compared to Q-Iso. The reason is that the startdesign consists of a unidi-
rectional material oriented along the principal directions determined with a the preliminary
finite element analysis of the initial structure with quasi-isotropic material. Therefore, the
startdesign for A, AO, and AOM-I Single is sti�er compared to the Q-Iso design at Iteration 2.
The compliance of AOM-I Single further decreases towards Iteration 3 as the orientation and
the degree of anisotropy are optimized. Apparent bumps in the compliance, e.g., for AOM-I
Single for iterations 40 to 42, are attributed to a significant change in topology, namely the
breaking up of connecting bars. Therea�er, the compliance is quickly recovered.
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of anisotropy
(Iteration 3)
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Figure 4.9.: Comparison of compliance for optimization methods for Loadcase A
(msize = 0.5 mm, rmin = 3 mm, ER = 0.01). (a) Evolution histories of com-
pliance and volume fraction, (b) Detailed illustration of the compliance at the
very beginning of the optimization procedure

The evolution of topology for AOM-I Single is illustrated in Figure 4.10, also showing the elim-
ination of a bar from iteration 40 to iteration 42. This e�ect of "bar elimination" is even more
evident when using a coarser mesh, see Figure 4.11.

The final design topologies for all optimization methods as well as the corresponding mate-
rial’s 1-directions (for A, AO, and AOM-I Single) are shown in Figure 4.12. The final topologies
of Q-Iso and AOM-I Single show similarities, as well as the final topologies of A and AO. For the
orientation optimized unidirectional material (AO) and the algorithm AOM-I Single the mate-
rial’s 1-direction is aligned with the direction of the principal stress with the highest absolute
value within every iteration step.
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Figure 4.10.: Evolution of topology for optimization method AOM-I Single, Loadcase A
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Figure 4.11.: Significant bump in compliance between iteration 45 and iteration 47 for Load-
case A using a discretization of 20 x 10 elements (msize = 2 mm, rmin = 3 mm,
ER = 0.01)

Since the stress field is continuous throughout the structure, the material orientation is con-
tinuous as well, except in areas that are loaded in shear. The optimal material orientation
follows the shape of the structure. However, for the structure determined with method A,
there are regions where the material’s 1-direction does not follow the shape of the structure,
e.g., in the region highlighted with a black frame in Figure 4.12 (b). The "disorientation" of the
material’s 1-direction in this region for method A is attributed to the fact that the material’s
1-direction is still the same as determined for the startdesign. For AO the material orientation
can be adapted to the "needs" of the structure within every iteration. Therefore, this "disori-
entation" doesn’t occur in the final design for the structure optimized with AO as highlighted
with a black frame in Figure 4.12 (c).
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(a)

(b)

(c)

(d)

Figure 4.12.: Comparison of the proposed final design topologies and material’s 1-directions
for Loadcase A
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The di�erences between the optimization methods in terms of the materials degree of ani-
sotropy are visualized by sti�ness tensor glyphs in Figure 4.13, Figure 4.14, and Figure 4.15.
Figure 4.13 shows a comparison of the optimization methods A and AO for the regions high-
lighted with a black frame in Figure 4.12 (b) and (c). The visualization of the sti�ness tensor
glyphs once more points out that for the structure determined with algorithm A, for some
elements, the material’s 1-direction is not aligned correctly with the force flow, i.e., the uni-
directional material is not loaded along it’s fiber direction and therefore is not optimally used.

(a) (b)

A AO

Figure 4.13.: Detailed illustration of the material tensor of the highlighted regions in black in
Figure 4.12 (b) and (c) for optimization methods (a) A and (b) AO.

(a) (b)

AO AOM-I Single

Figure 4.14.: Detailed illustration of the material tensor of the highlighted regions in red in
Figure 4.12 (c) and (d) for optimization methods (a) AO and (b) AOM-I.

Figure 4.14 shows a comparison of the optimization methods AO and AOM-I Single for the re-
gions highlighted with the red frame in Figure 4.12 (c) and (d). In this region, the material’s
1-direction shows no significant di�erence. However, there is a clear di�erence in degree of
anisotropy in the region where the lower bar in compression and the slanted bar in tension
intersect. In this region, the material is loaded in shear. Therefore, the optimal material de-
termined with AOM-I Single is sti�ened in two orthogonal directions, i.e., by adding inclusions
of 90 o. The ability of the material optimized with AOM-I Single to bear shear stresses is also
the reason why the overall topology of AO and AOM-I Single clearly di�er.
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For AO, the topology must be adapted in such a way that shear stresses are avoided as much
as possible, i.e., avoiding intersections of bars, for instance, like the region highlighted by
the yellow frame in Figure 4.12 (d) for AOM-I Single. The respective sti�ness tensor glyphs
are illustrated in Figure 4.15 (a). When shear occurs, the material is sti�ened with 0 o and 90 o

inclusions. However, when stress is predominant in one direction, the material is sti�ened
mainly in one direction. This can be seen in Figure 4.15 for the region highlighted in green
in Figure 4.12 (d). The lower bar is loaded in uni-axial compression which is counteracted by
using a unidirectional material (i.e., only 0 o inclusions).

(a) (b)

AOM-I Single

Figure 4.15.: Detailed illustration of the material tensor of the highlighted regions in yellow
and green in Figure 4.12 (d) for optimization method AOM-I.

4.4.2. Loadcase C

To confirm the tendency of the results observed for Loadcase A, the results of Loadcase C are
shown here. In this case the cantilever beam is loaded with a horizontal single load at the
lower right edge. The results are illustrated in Figure 4.16. Figure 4.16 (a) shows the evolu-
tion of the compliance and volume fraction with the optimization iterations. Figure 4.16 (b)
shows the comparison of the relative compliance for all optimization methods. As with Load-
case A, the standard topology optimization Q-Iso serves as a reference. Similar to Loadcase A,
a decrease in compliance can be observed for the optimization methods A, AO, and AOM-I
Single, compared to Q-Iso. However, as Figure 4.16 (b) reveals, the di�erence in performance
in terms of compliance between AO and AOM-I Single for Loadcase C is smaller compared to
Loadcase A.

Figure 4.17 illustrates the final topologies for Loadcase C as well as the material’s 1-direction
of the final design for the optimization methods A, AO, and AOM-I Single. Like for Loadcase A,
the final topologies determined with Q-Iso and AOM-I Single show similarities as well as the
final topologies determined with A and AO show similarities. Again, the final design deter-
mined with the optimization method A shows regions where the material’s 1-direction is mis-
aligned leading to a poorer performance in terms of compliance compared to AO.
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Figure 4.16.: Comparison of compliance for optimization methods for Loadcase C
(msize = 0.5 mm, rmin = 3 mm,ER = 0.01). (a) Evolution histories of com-
pliance and volume fraction, (b) Comparison of the relative compliance of the
proposed optimization methods with regard to the compliance of the Q-Iso
standard topology optimization

The regions highlighted by a red frame in Figure 4.17 (c) for the optimization method AO
and in Figure 4.17 (d) for the optimization method AOM-I Single are compared in detail in
Figure 4.18. Figure 4.18 (a) shows the sti�ness tensor glyphs for the orientation optimized
unidirectional material determined with AO. Figure 4.18 (b) shows the sti�ness tensor glyphs
for the material determined with AOM-I Single. The plots reveal that for this region where the
load is applied there is almost no di�erence in material’s 1-direction and degree of anisot-
ropy between AO and AOM-I Single except for some elements. The areas highlighted in blue
for AO (see Figure 4.17 (c)) and green for AOM-I Single (see Figure 4.17 (d)) again reveal that
the material of AO is not capable of e�ectively bearing shear stresses whereas AOM-I Single is
capable of adapting the material in terms of adding inclusions of 90 o to sti�en the material
loaded in shear, see Figure 4.19. This is also the reason why the structure determined with
AOM-I Single still performs better than the structure determined with AO. However, for Load-
case C the regions where unidirectional material is su�icient are predominate. Therefore, the
di�erence in compliance between AO and AOM-I Single is not as big as for Loadcase A.
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(a)

(b)

(c)

(d)

Figure 4.17.: Comparison of the proposed final design topologies and material’s 1-directions
for Loadcase C
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(a) (b)

AO AOM-I

Figure 4.18.: Detailed illustration of the material tensor of the regions highlighted in red for
(a) AO optimization method and (b) AOM-I optimization method.

(a) (b)

AO

AOM-I

Figure 4.19.: Detailed illustration of the material tensor of the highlighted regions for
(a) AO optimization method and (b) AOM-I optimization method.

4.5. Sequential versus Simultaneous Optimization

So far the results reveal that the full advantage of anisotropy is exploited when optimizing the
material orientation and the degree of anisotropy. This can be performed either simultane-
ously with the optimization of the material distribution (topology) or sequentially. Sequen-
tial optimization consists in optimizing first the topology of a structure with a fixed isotropic
(or quasi-isotropic) material, and the material anisotropy is optimized for the obtained topol-
ogy. In contrast, simultaneous optimization consists in finding the optimal topology and the
optimal material anisotropy in one step. In this section, the sequential optimization of topol-
ogy and material and the simultaneous optimization method AOM-I Single, as proposed in
this thesis, are compared.
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As indicated above, sequential optimization requires two steps of optimization. Two sequen-
tial optimization methods are proposed for comparison to the simultaneous optimization
method:

• Sequential-I: For this optimization method the first step is a standard topology opti-
mization with quasi-isotropic material, Q-Iso, leading to an optimal topology. This topol-
ogy stays fixed for the second optimization step. In the second step the optimal ma-
terial anisotropy, in terms of material orientation and degree of anisotropy, is deter-
mined. A modified version of AOM-I Single is used for the second step: the material
properties are adapted but the topology stays fixed. The second optimization step of
Sequential-I requires only 1 iteration.

• Sequential-II: Again, the first step is a standard topology optimization using the quasi-
isotropic material Q-Iso. However, in this case the second step of optimization com-
prises a "full" AOM-I Single optimization. In other words, the second optimization step
is performed with respect to the material anisotropy but also with respect to the topol-
ogy.

Figure 4.20 (a) shows the evolution of compliance and volume fraction for Q-Iso, Sequential-I,
Sequential-II, and AOM-I Single for Loadcase A. The detailed results in terms of compliance of
the final design as well as total number of iterations are listed in Table 4.1.

Table 4.1.: Compliance and iterations resulting from sequential (two steps) and simultane-
ous (1 step) optimization

Optimization Steps Compliance [Nmm] Iterations [−]

Sequential-I 1: Q-Iso 204.996 61
2: Material anisotropy 87.986 1

with fixed topology
Sequential-II 1: Q-Iso 204.996 61

2: AOM-I Single 85.231 17
Simultaneous 1: AOM-I Single 84.922 62

Regarding the number of iterations, the results show that Sequential-II needs more itera-
tions compared to the simultaneous optimization, owing to the fact that the optimization
takes place in two steps. A�er 61 iterations the final design using the Q-Iso algorithm is deter-
mined. The sequential algorithms, Sequential-I and Sequential-II, use the material distribu-
tion (topology) from Q-Iso as basis for further optimization of the structure. Between the first
and the second step in the sequential optimization, the compliance significantly drops. The
reason is that the material anisotropy is optimized in the second step. Hence, compared to
the initial quasi-isotropic structure, the anisotropic one is sti�er. For Sequential-I, only one
iteration is performed for the second step of optimization as the material properties are only
adapted once. The optimization performed in the second optimization step of Sequential-II
requires 17 iterations. Regarding the performance in terms of minimizing the compliance,
Sequential-II performs better than Sequential-I.
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The final compliance obtained by these two optimization methods di�ers by 3 %. However,
the di�erence in compliance between Sequential-II and the simultaneous optimization AOM-I
Single only amounts to 0.4 %.
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Figure 4.20.: Comparison of sequential and simultaneous optimization for a cantilever beam
with dimensions 40 mm x 20 mm for Loadcase A (msize = 0.5 mm, rmin = 3 mm,
ER = 0.01)

The final topologies for the sequential and the simultaneous algorithm, shown in Figure 4.20
(b), show only minor di�erences. However, applying the same algorithms to a cantilever
beam with dimensions 60 mm x 20 mm results in final topologies that clearly di�er. Further-
more, the di�erence between Sequential-I and AOM-I Single increases to 12 %. However, the
di�erence between Sequential-II and AOM-I still is very low and amounts to 0.17 %.

Sequential - I Sequential - II AOM - I Single

Figure 4.21.: Comparison of sequential and simultaneous optimization for a cantilever beam
with dimensions 60 mm x 20 mm for Loadcase A (msize = 0.5 mm, rmin = 3 mm,
ER = 0.01)
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4.6. Discussion Single Loadcase

The results of the numerical test cases presented in this chapter demonstrate the e�iciency
of the proposed method of simultaneously optimizing the topology and the material in terms
of material orientation and degree of anisotropy (AOM-I Single) for a single loadcase.

The influence of the startdesign in terms of the material’s 1-direction and material defini-
tion (quasi-isotropic / unidirectional) was investigated. The results show that the method
of AOM-I Single is not overly sensitive to the initialization as opposed to the optimization
method AO. However, there are minor di�erences in the compliance of the final design, ow-
ing to the fact that the design space is highly non-convex. Consequently, unless a global
optimization algorithm is used, di�erent startdesigns lead to di�erent optimal (local) solu-
tions as outlined in Chapter 2. However, the di�erences between the compliance for the final
designs are within a narrow range. The biggest di�erence for the considered startdesigns
amounts to 0.4 %.

The influence of the control parameters for the BESO optimization algorithm, namely the
scale parameter rmin (filter radius) and Evolution Rate ER, were investigated. The scale pa-
rameter rmin is needed as input for the filter scheme. The filter scheme, which is a regular-
ization technique, is required to control abrupt discontinuity in the sensitivity distribution in
order to prevent numerical problems (checkerboard instabilities or mesh-dependency) and
to smooth the final topology. It has to be noted that even if there might be some discontinu-
ity in the anisotropy distribution as well, the anisotropy is not averaged in the framework of
this thesis. However, the strategy of averaging the anisotropy could be similar to the strategy
of filtering the sensitivities.

The influence of various values for the scale parameter rmin on the final topology and the com-
pliance is shown in Section 4.2.1. A larger rmin will constrain the optimization to a chunkier
type of material distribution, see Figure 4.4 and Figure 4.5. Generally, with increasing rmin,
fewer void areas are formed inside the topological structure so that a simpler topology is ob-
tained. In turn, if rmin is too low the final design shows many very thin strands of material
which are unwanted, especially with regard to aspects of finite element simulation. Too thin
features are unwanted especially when using lower order elements which use shape function
which are unable to exhibit kinematics to represent the correct solution. Furthermore, such
fine structures are also unwanted in terms of manufacturability. This further emphasizes a
proper choice of the scale parameter rmin relative to the element size. The compliance of
the final design of the method of AOM-I Single shows marginal dependency on the choice of
rmin. Since the optimal topologies are di�erent, the distribution of anisotropy di�ers as well.
However, obviously the material can be adjusted equally well for di�erent topologies.
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The author is not aware of any detailed studies regarding the influence of the evolution rate
ER on the results of optimization in terms of final topology and compliance of the final de-
sign. Therefore, various values ofER (ER = 0.01,ER = 0.025, andER = 0.05) were investi-
gated. ER = 0.01 corresponds to the lowest value andER = 0.05 corresponds to the highest
value reported in literature. The following observation was made: increasing the evolution
rate leads to an increase in compliance for the standard topology optimization method Q-Iso
but shows negligible e�ect on the compliance for AOM-I Single, see Figure 4.6. However, for
both optimization methods, the topology forER = 0.05 clearly di�ers. Recall, using a lower
evolution rate implies that less material is removed within every iteration step. Therefore, big
changes in topology within one iteration step are avoided. It is concluded that using a lower
ER gives the optimization algorithm more time to evolve in the "right direction". Smaller
changes in topology lead to smaller changes in material’s 1-direction. The degree of anisot-
ropy can be adapted optimally. This is supported by the observations of Huang et al. [52] that
very high values ofER may result in local optima. Therefore, a constant value ofER = 0.01

is used for all simulations.

Regarding the issue of checkerboards, all simulations show checkerboard-free results. Mesh-
dependency refers to the issue that for a specific optimization problem, given a target reduc-
tion in volume, the solution depends on the element size within the mesh. It is clearly unrea-
sonable to allow the density of the mesh to control the topological configuration an optimiza-
tion algorithm will deliver. The results shown in Figure 4.7 reveal, that mesh-dependency
with a tendency towards a high level of porosity (i.e., foam-like "filigree" or "fibrous" con-
figuration) doesn’t occur. However, it has to be noted that there is always a certain mesh-
dependency as certain structures can only evolve with a certain degree of discretization. This
e�ect can be seen in Figure 4.7 for the standard topology optimization Q-Iso as well as for the
simultaneous method AOM-I Single when comparing the final topologies of the discretization
with 200 elements (msize = 2.0 mm) with all other discretizations. The optimal topologies
for a discretization with 800 or more elements show a thin bar oriented at −45 o. This bar
does not occur in the final topology when using a discretization with 200 elements since the
mesh is too coarse. A thin bar oriented at −45 o in the simulation with 200 elements would
lead to "1-node hinges". The reason why such a bar does not occur in the design is that the
filter scheme suppresses such "1-node hinges" as long as the scale parameter rmin is larger
than the element size. The results furthermore show that a discretization using 3200 ele-
ments (msize = 0.5 mm) is su�icient for the simulations as all finer meshes lead to smoother
boundaries but do not influence the results in terms of topology and compliance. Further-
more, finer meshes would imply a significantly higher computational e�ort which in this case
does not represent any added value for the results of the simulations.

With the optimization methods presented in this thesis (Q-Iso, A, AO, and AOM-I Single) ad-
ditional degrees of freedom (in terms of anisotropy distribution) are gradually added to the
optimization procedure. By performing a topology optimization using a quasi-isotropic ma-
terial (Q-Iso), the advantage of directionality of material properties is not exploited. Optimiz-
ing the material orientation in addition to the topology (AO) permits to take advantage of the
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directionality of properties. Using the same constraint on the volume fraction the cantilever
beam with optimized topology and material orientation (AO), is sti�er than a topology opti-
mized structure made of quasi-isotropic material. As the stress field is continuous, the mate-
rial’s 1-direction (aligned with the direction of the principal stress with the highest absolute
value) is continuous. The direction changes continuously throughout the structure, except
on areas where bars intersect. In these areas, the material is loaded in shear. One step further,
to take full advantage of material anisotropy, is to consider the degree of anisotropy in ad-
dition to the material distribution and the material orientation, in the design process (AOM-I
Single). The proposed algorithm AOM-I Single is the least restrictive algorithm, leading to a
general orthotropic material by adding inclusions of 0 o and 90 o with respect to the optimized
material’s 1-direction. It gives the most optimal material that can be reached inside the de-
sign space of a general orthotropic material. This ideal material goes beyond quasi-isotropic
and orientation optimized unidirectional material (AO) as it can be fully adapted to the local
loading conditions and is directly optimized for the functional needs at the structural scale.
In other words, the material is used to its full potential. The ability of the material for AOM-I
Single to adapt to the local loading conditions (i.e., shear stresses) is also the reason why the
final topology shows similarities with the final topology determine with Q-Iso but clearly dif-
fers from the topologies determined with A and AO.

To verify the numerical e�ectiveness of the simultaneous method to allocate the optimal
material distribution (topology) and anisotropy, the AOM-I Single method was compared to
a sequential optimization of topology and material. The method of sequential optimization
is based on the idea of the so-called "black metal" design. A "black metal" solution is a com-
posite structure whose shape is derived from the former metallic structure. This process is
mimicked in the optimization method Sequential-I where the optimization is divided into two
steps: first, the optimal topology is determined using the standard topology optimization
method Q-Iso for a quasi-isotropic material. Second, for the fixed topology, the optimal ma-
terial in terms of material orientation and degree of anisotropy is determined. In contrast, for
the simultaneous optimization AOM-I Single, there is no need to "guess" the initial shape (i.e.,
topology) of the structure that shall be used for the optimization of the anisotropic material.
Throughout the optimization the anisotropy distribution depends on the stress field that in
turn depends on the topology. This emphasizes the influence of the material anisotropy on
the optimal topology and vice versa. The numerical results prove the relevance of the simul-
taneous optimization, since its resulting solution is sti�er than the solution for the sequential
optimization Sequential-I. The simultaneous optimization AOM-I Single is also compared to
an alternative formulation of sequential optimization, namely Sequential-II. Sequential-II first
performs a standard topology optimization with quasi-isotropic material. This design serves
as startdesign for a subsequent simultaneous optimization of topology and material AOM-I
Single. The small di�erence in performance, in terms of compliance, between Sequential-II
and AOM-I Single supports the observation that the AOM-I Single method is not overly sensi-
tive to the startdesign. However, the final topologies of Sequential-II and AOM-I Single clearly
di�er supporting the fact that the design space is highly non-convex with several (even if al-
most equally good) local minima.
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5. Application of the Method to Multiple
Loadcases

The aim of this chapter is to present the results and the performance of the update schemes
proposed in Subsection 3.2.3 when the method of simultaneously optimizing topology and
material (orientation and degree of anisotropy) is extended to multiple loadcases. There-
fore, the optimization algorithms proposed in Chapter 3, Q-Iso, AOM-I Multiple, AOM-II, and
AOM-III, are compared. The main di�erences between those methods lies in how the mate-
rial orientation and degree of anisotropy is updated. Therefore, the proposed methods are
briefly summarized again in Table 5.1. For the simulations two loadcases are considered: a
design loadcase (denoted as LC1) and a second loadcase (denoted as LC2).

Table 5.1.: Optimization methods for multiple loadcases
Material Degree of

Topology 1-Direction Anisotropy
LC1 LC2 LC1 LC2 LC1 LC2

Q-Iso 3 3 7 7 7 7

AOM-I 3 3 3 7 0 o/ 90 o 7

AOM-II 3 3 3 7 0 o/ 90 o θ3/ θ4

AOM-III 3 3 3 7 0 o/ 90 o ±45 o

The setup of the numerical test cases, introduced in Chapter 4 for the single loadcase, is used
with respect to optimization objective and constraint, size of the design domain, discretiza-
tion (msize = 0.5 mm), and boundary conditions. Furthermore, the control parameters for
the filter scheme and the BESO algorithm remain unchanged: rmin = 3 mm and ER = 0.01.
In Figure 5.1 (b) the loading scenarios which are used for the simulations are shown. Each
of these loading scenarios represent a combination of two loadcases, already presented in
the previous chapter. Loadcase AC is a combination of a vertical load applied to the lower
right edge of the structure (same as Loadcase A in Chapter 4) and a horizontal load applied
to the upper right edge of the structure (symmetric to Loadcase C in Chapter 4). Loadcase BB
represents a symmetric loading of the cantilever beam. In this case, Loadcase B, which is
applied to the lower right edge of the structure, is mirrored around the middle plane. For
Loadcase AC the vertical load at the lower right edge is defined as the design loadcase (LC1).
The horizontal load at the upper right hand is chosen as Loadcase 2 (LC2). For Loadcase BB
the load at the lower right edge is used as the design loadcase. Therefore, this load is chosen
as Loadcase 1 (LC1). The load at the upper right hand is chosen as Loadcase 2 (LC2).
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Figure 5.1.: Loading scenarios for comparing the optimization methods for multiple load-
cases

For Loadcase 1, acting on the lower right edge of the design domain, the translational de-
grees of freedom (x- and y-direction) of the nodes of this edge are coupled to a reference
point. The concentrated force is applied to this reference point. Similarly, for Loadcase 2, the
translational degrees of freedom (x- and y-direction) of the nodes of the upper right edge are
coupled to a reference point. The concentrated force is applied to this reference point. The
loads are set to |F | = 10N for all loading scenarios.

5.1. Comparison of Startdesigns

Similar to the single loadcase several startdesigns are compared. The results for Loadcase AC
are shown in Figure 5.2 for the optimization method AOM-II and in Figure 5.3 for the optimiza-
tion method AOM-III. Each figure shows the compliance of the design loadcase (Loadcase 1)
and Loadcase 2 relative to the compliance determined with the standard topology optimiza-
tion Q-Iso. Regarding Loadcase 1, for both optimization methods, AOM-II and AOM-III, there is
no significant di�erence between the compliance of the final design for the investigated start-
designs. For instance for AOM-II, the di�erence between the compliance for the optimization
with "no startdesign" and the optimization with "PD-startdesign" amounts to 0.02 %. For
AOM-III, the di�erence between "no startdesign" and "PD-startdesign" amounts to 0.13 %.
The compliance results for Loadcase 2 clearly show di�erences, depending on the startde-
sign. For both loadcases, the best result in terms of minimum compliance is gained when
the "PD-startdesign" is used.

Figure 5.2 and Figure 5.3 also show the optimal topologies determined with di�erent start-
designs for the optimization. The final topologies for no startdesign and a startdesign with
90 o clearly di�er from the topologies gained with the other startdesigns.
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AOM-II
Q-IsoLoadcase 1

Loadcase 2

Figure 5.2.: Influence of startdesign on compliance and final topologies for the optimization
method AOM-II for Loadcase AC (msize = 0.5 mm, rmin = 3 mm,ER = 0.01)

Startdesign

AOM-III
Q-IsoLoadcase 1

Loadcase 2

76 74 74

Figure 5.3.: Influence of startdesign on compliance and final topologies for the optimization
method AOM-III for Loadcase AC (msize = 0.5 mm, rmin = 3 mm,ER = 0.01)
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5.2. Influence of Control Parameters

Similar to the results for the single loadcase, the results for multiple loadcases show no mesh-
dependency and checkerboard patterns.

5.2.1. Influence of Filter Radius

As for the single loadcase, the choice of the scale parameter rmin and its influence on the final
topology as well as the compliance of the optimized design is investigated. Figure 5.4 shows
the compliance of the final design determined with various rmin and di�erent optimization
methods (AOM-I Multiple, AOM-II, and AOM-III). Figure 5.5 shows the respective final topolo-
gies.

Like for the single loadcase, a lager scale parameter rmin restricts the design field from ex-
pressing fine structural features. In turn, a small scale parameter rmin (rmin = 0.5 mm) leads to
very thin structures. Regarding the compliance of the final design, Loadcase 1 shows a slight
increase in compliance with increasing rmin. The design determined with rmin = 4.5 mm

shows a significantly higher compliance compared to lower values of rmin. For Loadcase 2
the compliance of the design determined with rmin = 4.5 mm is clearly lower compared to
the design with rmin = 3.0 mm and rmin = 1.5 mm and slightly lower than the compliance for
the design determined with rmin = 0.5 mm.

The results for Loadcase BB can be reviewed in Appendix C.1.
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Figure 5.4.: Influence scale parameter rmin on the compliance of AOM-I Multiple, AOM-II, and
AOM-III for Loadcase AC (msize = 0.5 mm,ER = 0.01)
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Figure 5.5.: Influence scale parameter rmin on the final topologies of AOM-I Multiple, AOM-II,
and AOM-III for Loadcase AC (msize = 0.5 mm,ER = 0.01)

5.2.2. Influence of Evolution Rate

Similar to the single loadcase, the sensitivity of the optimization regarding the volume evo-
lution rate ER is investigated. Therefore, simulations were conducted using several di�er-
ent values of ER = 0.01, 0.025, and, 0.05. The results, shown in Figure 5.6, reveal that the
evolution rate has minor influence on the compliance of Loadcase 1. For instance, for AOM-I
Multiple, the di�erence in compliance betweenER = 0.01 andER = 0.05 amounts to 0.5 %

which is in the same range as observed for AOM-I Single, see Section 4.2.2.

Evolution Rate ER [-]

Loadcase 1:
Loadcase 2:

Co
m

pl
ia

nc
e 
C

 [N
m

m
] 

Figure 5.6.: Influence of volume evolution rate ER on the compliance of the final de-
signs for AOM-I Multiple, AOM-II, and AOM-III for Loadcase AC (msize = 0.5 mm,
rmin = 3 mm).

For AOM-II and AOM-III the di�erence in compliance between ER = 0.01 and ER = 0.05

amounts to 3.4 % and 1.1 %. However, the di�erences between the compliance determined
with ER = 0.01 and ER = 0.05 are more significant for the second loadcase: 11.9 % for
AOM-I Multiple, 40 % for AOM-II, and 13 % for AOM-III.
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AOM-II shows the highest di�erence in compliance between the designs gained with di�erent
evolution rates. This is also reflected in the final topologies that clearly di�er, see Figure 5.6.
The results for further loading scenarios (Loadcase BB and Loadcase BC) can be reviewed in
Appendix C.1.

5.3. Comparison of Methods Q-Iso, AOM-I Multiple, AOM-II,
and AOM-III

5.3.1. Loadcase AC

When dealing with multiple loadcases, compromises are made at each iteration of the evolu-
tionary process among these loadcases. The final structure is the optimal design in the sense
that every part of the remaining material has its own role to play for at least one loadcase and
possibly for all loadcases. Regarding the update of the topology, multiple loadcases mean
that if an element is needed for any of the loadcases it is set to "solid". Only when an element
is considered as being "ine�icient" for both loadcases it is set to a very so� material and is
removed from the design. As a logical consequence, the final topology for multiple loadcases
clearly di�ers from the topologies that are gained when optimizing for single loadcases. This
is exemplarily illustrated for the standard topology optimization of a quasi-isotropic material
Q-Iso in Figure 5.7. However, of course, for the quasi-isotropic case it makes no di�erence
which of the loadcases is seen as the design loadcase.

(a) (b) (c)

Figure 5.7.: Optimal design of the cantilever beam determined with the standard topology
optimization method Q-Iso. (a) Optimized for Loadcase A (LC1), (b) Optimized for
Loadcase C (LC2), (c) Optimized for both loadcases (Loadcase AC).

The evolution of compliance and volume fraction for both loadcases are shown in Figure 5.8.
The compliance curve for Loadcase 2 shows a significant bump at the very beginning of the
optimization. This bump occurs as the second loadcase is ignored for the definition of the
startdesign for the optimization. The startdesign is determined solely based on the design
loadcase (Loadcase 1). Therefore, for the first iteration of Loadcase 1, the structure is sti�er
than the quasi-isotropic design whereas for Loadcase 2 it is less sti� than the quasi-isotropic
design.
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Figure 5.8 reveals that the anisotropic optimization algorithms (AOM-I Multiple, AOM-II, and
AOM-III) require more iterations to converge than the standard quasi-isotropic topology op-
timization. Note, the convergence error defined in Section 3.3.2 (εLC1tol = 0.001, εLC2tol = 0.005)
is checked for both loadcases irrespective of the optimization method that is used. The con-
vergence error for Loadcase 2 is not as stringent as for Loadcase 1 since the focus of the opti-
mization is on Loadcase 1 which is considered as design loadcase.
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Figure 5.8.: Evolution histories of compliance and volume fraction for Loadcase AC
(msize = 0.5 mm, rmin = 3 mm,ER = 0.01)

The compliance curves show that Loadcase 1 converges quite fast a�er the structure reaches
the constrained volume of 50 %. However, the optimization is not terminated until the re-
sults for Loadcase 2 are within an acceptable tolerance range to avoid that the optimization
procedure stops within a "bump". As the compliance curve for Loadcase 2 reveals this is espe-
cially important for the optimization method AOM-II which leads to a compliance curve with
significant fluctuations even for a high number of iterations.

All methods show a significant improvement of compliance compared to the standard topol-
ogy optimization Q-Iso. The numerical results are summarized in Table 5.2. The improvement
in compliance of the optimized structure for Loadcase 1 in comparison to the standard topol-
ogy optimization is quite similar for all anisotropic optimization algorithms. The results for
Loadcase 2 show significant di�erences. With regard to Loadcase 2 AOM-II performs best.
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Table 5.2.: Comparison of compliance of the final design determined with optimization meth-
ods Q-Iso, AOM-I Multiple, AOM-II, and AOM-III (Loadcase AC)

ComplianceWex [Nmm]
Loadcase A (LC1) Loadcase C (LC2)

Q-Iso 225.97 79.28
AOM-I Multiple 96.25 66.39
AOM-II 98.99 38.60
AOM-III 97.97 57.71

Figure 5.9 shows a detailed comparison of the relative compliance gained by the proposed
anisotropic optimization methods (AOM-I Multiple, AOM-II, and AOM-III) for multiple loadcases.
The compliance results of AOM-I Multiple serve as a reference. As already pointed out in
Table 5.2, the compliance of Loadcase 2 clearly drops when the structure is optimized us-
ing the algorithms AOM-II and AOM-III. This is plausible because when optimizing with AOM-I
Multiple, Loadcase 2 is not considered for the material update. In this case, Loadcase 2 is only
considered for the topology update, the material is solely optimized for Loadcase 1. This drop
in compliance is especially evident for AOM-II in comparison to AOM-I Multiple.
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Figure 5.9.: Illustration of the performance of Loadcase 1 (Design Loadcase) and Loadcase 2
optimized with AOM-I Multiple, AOM-II, and AOM-III for loading scenario AC where
the single loadcase optimization AOM-I Single serves as a reference.
(msize = 0.5 mm, rmin = 3 mm,ER = 0.01)

The final topologies as well as the material’s 1-direction and sti�ness tensor glyphs, for se-
lected regions of the final design, are shown in Figure 5.10. The final topology determined
with the standard topology optimization Q-Iso di�ers slightly. Compared to the anisotropic
final designs, the quasi-isotropic final design shows a bigger and a smaller shearing trian-
gle whereas for the other anisotropic optimization algorithms the shearing triangles are of
almost equal size.
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(a)

(b)

(c)

(d)

Element 1

Element 1

Element 1

Figure 5.10.: Illustration of final topologies, material’s 1-direction and sti�ness tensor
glyphs for selected regions of interest for the optimization methods (a) Q-Iso,
(b) AOM-I Multiple, (c) AOM-II, (d) AOM-III for Loadcase AC (msize = 0.5 mm,
rmin = 3 mm,ER = 0.01).
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There is almost no di�erence in terms of the final topology for the anisotropic optimization
strategies AOM-I Multiple, AOM-II, and AOM-III. Consequently, the material’s 1-direction (which
is determined based on Loadcase 1 for all anisotropic optimization strategies) is identical for
the major part of the structure. An exception to this is the region where the second load-
case is applied, highlighted with a red frame in Figure 5.10. The sti�ness tensor glyphs in
these regions point out the di�erences between the optimization algorithms AOM-I Multiple,
AOM-II, and AOM-III. A magnified view of the sti�ness tensor glyph for element 1 is shown in
Figure 5.11. The respective volume fractions of the inclusions for this element are summa-
rized in Table 5.3.

(a) (b) (c)

Figure 5.11.: Magnified view of sti�ness tensor glyphs and material’s 1-direction of element
1 highlighted in Figure 5.10

AOM-I Multiple (see Figure 5.10 (b)) adapts the degree of anisotropy according to the local
loading conditions by adding inclusions of 0 o and 90 o based on the principal stresses re-
sulting from Loadcase 1. For instance, for element 1 , this results in a unidirectional mate-
rial aligned with the optimal material’s 1-direction determined by the orientation update for
Loadcase 1, see Figure 5.11 (a). The respective volume fractions of the inclusions for this ele-
ment are listed in Table 5.3.

Table 5.3.: Volume fractions for inclusions for optimization methods AOM-I Multiple, AOM-II,
and AOM-III for an overall fiber volume content of ξf =60 % (Loadcase AC)

Volume Fractions of Inclusions
ξ0◦ ξ90◦ ξθ3 ξθ4 ξ±45◦

AOM-I Multiple 0.59 0.01 7 7 7

AOM-II ≈ 0 ≈ 0 0.48 0.12 7

AOM-III 0.20 0.12 7 7 0.28

For AOM-II, (see Figure 5.10 (c)), the sti�ness tensor glyphs in the region highlighted in red
di�er from those determined with AOM-I Multiple. The method of AOM-II is capable of consid-
ering the second loadcase for determining the optimal degree of anisotropy. In this case, fur-
ther inclusions can be added to the material formulation depending on the principal stresses
of the second loadcase. Therefore, the material can be optimized for the second loadcase as
well. This is especially evident for those regions where the stresses due to Loadcase 2 are sig-
nificantly higher than the stresses due to Loadcase 1. For instance, for element 1 , this means
that the volume fractions ξ0◦ and ξ90◦ are close to zero whereas the volume fractions of the in-
clusions for the second loadcase ξθ3 and ξθ4 determine the degree of anisotropy, see Table 5.3.
The orientations of these inclusions (θ3 and θ4) depend on the principal directions of the con-
sidered loadcase with respect to the principal directions of the design loadcase.
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For instance, for element 1 , the angle between the principal directions of Loadcase 1 and
Loadcase 2 amounts to approximately 62 o. This can be clearly seen in the magnified illustra-
tion of the sti�ness tensor glyph for element 1 , see Figure 5.11 (b).

The optimization algorithm AOM-III also considers the second loadcase for the material up-
date. In this case, the second loadcase is capable of adding inclusions of 0 o, 90 o if the second
loadcase signifies higher stresses in these directions compared to Loadcase 1. Furthermore,
inclusions of±45◦ are added if shear stresses are introduced by the second loadcase. There-
fore, the sti�ness tensor glyph of element 1 clearly di�ers from the sti�ness tensor glyphs of
AOM-I Multiple and AOM-II, see Figure 5.11 (c). In this case, the inclusions of±45◦ play an im-
portant role for the degree of anisotropy, leading to an almost quasi-isotropic material, see
Table 5.3.

5.3.2. Loadcase BB

Figure 5.12 illustrates the evolution histories of compliance and volume fraction for Load-
case BB. Again, the compliance curve for Loadcase 2 shows a significant bump (for all opti-
mization algorithms except Q-Iso) at the very beginning of the optimization. Like with Load-
case AC this is due to the fact that the startdesign for the optimization is determined based
on the design loadcase (Loadcase 1).

For Loadcase BB, the AOM-III algorithm converges more quickly than the AOM-I Multiple and
AOM-II algorithms. Furthermore, it is clearly visible that the evolution history of compliance
for the second loadcase (determined with AOM-II) shows almost no bumps compared to Load-
case AC. As the loads are symmetric, the compliance curves for the Q-Iso optimization are
identical.

All methods show a significant improvement of compliance compared to the standard topol-
ogy optimization Q-Iso. The numerical results, summarized in Table 5.4, confirm the observa-
tions already made for Loadcase AC: for Loadcase 1, the compliance is significantly reduced
for all optimization methods. Compared to AOM-I Multiple, the compliance of the structure
with regard to Loadcase 2 is significantly enhanced when the optimization algorithms AOM-II
and AOM-III are used.

Table 5.4.: Comparison of compliance of the final design determined with optimization meth-
ods Q-Iso, AOM-I Multiple, AOM-II, and AOM-III (Loadcase BB)

ComplianceWex [Nmm]
Loadcase B (LC1) Loadcase B (LC2)

Q-Iso 74.31 74.31
AOM-I Multiple 31.69 66.50
AOM-II 32.36 37.43
AOM-III 32.85 50.80
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Like for Loadcase AC a detailed comparison of the compliance gained with the proposed an-
isotropic optimization methods for multiple loadcases AOM-I Multiple, AOM-II, and AOM-III is
shown, see Figure 5.13. The compliance determined with AOM-I Multiple serves as a refer-
ence.
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Figure 5.12.: Evolution histories of compliance and volume fraction for Loadcase BB
(msize = 0.5 mm, rmin = 3 mm,ER = 0.01)

Figure 5.13.: Illustration of relative compliance and final topologies of Loadcase 1 (Design
Loadcase) and Loadcase 2 optimized with AOM-I Multiple, AOM-II, and AOM-III for
loading scenario BB. (msize = 0.5 mm, rmin = 3 mm,ER = 0.01)
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Figure 5.13 shows that, as opposed to Loadcase AC, the final topology gained with AOM-I
Multiple clearly di�ers from the topologies gained with AOM-II and AOM-III.

To further compare the optimized designs resulting from the proposed optimization algo-
rithms, the final topologies as well as the material’s 1-direction and sti�ness tensor glyphs,
for selected regions of the final design, are shown in Figure 5.14. Due to the symmetric load-
ing conditions, the topology of the standard topology optimization Q-Iso is symmetric, see
Figure 5.14 (a). The structure optimized with AOM-I Multiple shows a non-symmetric design
since the material is optimized for Loadcase 1, see Figure 5.14 (b). In comparison to AOM-II
and AOM-III the topology of AOM-I Multiple shows an additional bar. The topologies of AOM-II
and AOM-III, shown in Figure 5.14 (c) and (d), also show a non-symmetric final design but
show a tendency towards a symmetric design due to the symmetric loading and the fact that
the second loadcase is considered for the material update.

Regarding the degree of anisotropy, all three designs show large areas where the material
is optimized as a unidirectional material aligned with the material’s 1-direction based on the
first principal direction of Loadcase 1. Exceptions are of course regions where bars intersect
and especially the region where the structure is connected to the region where Loadcase 2 is
applied. With increasing proximity to the sphere of influence of Loadcase 2, the stresses for
Loadcase 1 decrease whereas the stresses resulting from Loadcase 2 increase. For AOM-II and
AOM-III, the material is capable of adapting to this circumstance by adding inclusions based
on the local stress situation due to Loadcase 2.

Similarly to Loadcase AC, an element is picked out to show the di�erences in local material
orientation and local material’s degree of anisotropy between AOM-I Multiple, AOM-II, and
AOM-III. Therefore, an enlarged view of element 538 highlighted in Figure 5.14, which is sub-
ject to tensile loading due to Loadcase 1 and Loadcase 2, is shown in Figure 5.15. The resulting
volume fractions of the inclusions for the proposed optimization algorithms are summarized
in Table 5.5.

Table 5.5.: Volume fractions for inclusions for optimization methods AOM-I Multiple, AOM-II,
and AOM-III for an overall fiber volume content of ξf =60 % (Loadcase BB)

Volume Fractions of Inclusions
ξ0◦ ξ90◦ ξθ3 ξθ4 ξ±45◦

AOM-I Multiple 0.42 0.18 7 7 7

AOM-II 0.17 0.05 0.31 0.07 7

AOM-III 0.44 0.06 7 7 0.10
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(a)

(b)

(c)

(d)

Element 538

Element 538

Element 538

Figure 5.14.: Illustration of final topologies, material’s 1-direction and sti�ness tensor
glyphs for selected regions of interest for the optimization methods for Load-
case BB (a) Q-Iso, (b) AOM-I Multiple, (c) AOM-II, (d) AOM-III.
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(a) (b) (c)

Figure 5.15.: Magnified view of sti�ness tensor glyphs and material’s 1-direction of element
538 highlighted in Figure 5.14 for (a) AOM-I Multiple, (b) AOM-II, and (c) AOM-III
(msize = 0.5 mm, rmin = 3 mm,ER = 0.01).

In this case, for AOM-I Multiple the material properties are only optimized for Loadcase 1.
However, element 538 , is sti�ened in 0 o and 90 o direction to bridge the transition between
elements with unidirectional material definition, see Figure 5.15 (a).

For AOM-II, the resulting principal directions from Loadcase 1 and Loadcase 2 are at an an-
gle of 69 o. Therefore, the inclusions for Loadcase 2 (θ3 and θ4) are at an angle of 69 o and
159 o with respect to the material’s 1-direction determined for Loadcase 1. For element 538
the stresses introduced by Loadcase 2 are higher than the stresses introduced by Loadcase 1.
Consequently, the volume fraction of the inclusion ξθ3 is larger than the volume fraction of
the 0 o inclusion (see Table 5.5) which is also reflected in the sti�ness tensor glyph in
Figure 5.15 (b).

For AOM-III, the local stress situation leads to a material that is predominately sti�ened with
inclusions of 0 o but also shows a certain amount of inclusions of ±45◦ due to the stresses
induced by Loadcase 2, see Figure 5.15 (b).

5.4. Discussion Multiple Loadcase

The numerical test cases presented in this chapter show the extension of the simultaneous
optimization of topology and material AOM-I Single, proposed for a single loadcase, to mul-
tiple loadcases. Thus, the cantilever beam already used for the simulations with a single
loadcase is subjected to two loads, where the design loadcase is denoted as Loadcase 1. For
the AOM-I Multiple optimization method Loadcase 2 is only considered for the update of the
topology whereas for AOM-II and AOM-III the second loadcase contributes to the degree of
anisotropy of the material by adding further inclusions.

For the optimization algorithms proposed for multiple loadcases, the influence of the start-
design in terms of the material’s 1-direction and material definition (quasi-isotropic / unidi-
rectional) was investigated. The results reveal that for the optimization methods AOM-II and
AOM-III the compliance of Loadcase 1 is not overly sensitive to the startdesign. However, sim-
ilar to the observations made with a single loadcase, there are minor di�erences owing to
the fact that the design space is highly non-convex. The results furthermore show that Load-
case 2 performs di�erent, in terms of compliance, for di�erent startdesigns.
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Both loadcases perform best with the startdesign based on a unidirectional material aligned
with the main principal direction from a preliminary finite element analysis ("PD-startdesign").
A plausible explanation is that a quick stabilization of the design for the design loadcase
(Loadcase 1) also implies that the material can be adapted more e�ectively for the second
loadcase. If major changes, e.g., in terms of material orientation, are necessary for the de-
sign loadcase, the material obviously can not be optimally adapted for the second loadcase.
As the algorithm AOM-II has more freedom concerning the inclusions that can be considered
for the second loadcase this method is more sensitive to changes induced by the design load-
case. This is supported by the fact that the di�erences in compliance for di�erent startdesigns
for Loadcase 2 are greater for AOM-II compared to AOM-III.

The influence of the control parameters for filter scheme and the BESO algorithm, namely
scale parameter rmin and evolution rateERwere investigated. For Loadcase AC the restriction
to a bulkier design, using a higher rmin, leads to a final design that performs worse for the
design loadcase (Loadcase 1) compared to lower rmin. The final design performs better for
Loadcase 2 when defining a larger rmin. This observation is supported by the fact that the
final topology for rmin = 4.5 mm clearly di�ers. The reason is obvious: the final topology
that evolves for rmin = 4.5 mm is superior for Loadcase 2 compared to all other topologies
that evolve for lower rmin.

The investigation concerning the influence of evolution rateER shows that a proper choice of
ER is necessary with regard to the performance of the second loadcase. A lowerER leads to
a better performance, in terms of compliance, compared to a higherER. That seems logical
as a higher ER means that more material is removed within every iteration step until the
constrained volume of 50 % is reached. Obviously this prevents an optimal adaption of the
degree of anisotropy for the second loadcase. Therefore, with a lower ER the design has
more time to evolve in the "right" direction. This e�ect is even more evident for AOM-II as
opposed to AOM-III confirming the observations made with the startdesign. The reason why
the di�erence is most significant for AOM-II is that this optimization method o�ers the most
design freedom concerning the adaption of the material to the second loadcase. Obviously,
AOM-II reacts more sensitive to bigger changes in topology as well.

As expected, the results reveal that all anisotropic optimization algorithms (AOM-I Multiple,
AOM-II, and AOM-III) show a significant over the standard topology optimization with quasi-
isotropic material (Q-Iso).

As mentioned in Section 3.3.2, the allowable convergence error is set to 0.001 for the design
loadcase (Loadcase 1) and to 0.005 for all other loadcases, in this case Loadcase 2. Therefore,
the convergence error for Loadcase 1 is more stringent. The reason is that the focus of the
optimization is on the design loadcase. However, the optimization does not terminate before
the result is within an acceptable convergence error range for Loadcase 2 as well.
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The compliance curves, presented in Figure 5.8 and Figure 5.12 underpin the necessity of a
convergence criterion for the second loadcase. Especially the evolution of the compliance
for the second loadcase of Loadcase AC shows many "bumps". It is undesirable that the algo-
rithm terminates at a peak of such a "bump", therefore AOM-II needs significantly more itera-
tions than the other algorithms. The reason for these "bumps" again lies in the fact that, con-
cerning the material update, the algorithm AOM-II has more degrees of freedom compared
to AOM-III. Therefore, this algorithm reacts more sensitive to changes, be it minor changes in
topology or the associated minor change in material’s 1-direction. This in turn makes it again
seem logical why this algorithm reacts more sensitively to changes in the evolution rate. This
e�ect is more obvious for Loadcase AC compared to Loadcase BB. A possible explanation is
that for Loadcase BB the individual loads do not exclude each other to such an extent as it is
the case for Loadcase AC.

The proposed algorithms for simultaneously optimizing topology and material were com-
pared considering the following aspects: First, how is the performance of the final design in
terms of compliance of the design loadcase a�ected when the second loadcase is considered
for the material update. Second, how does the gain in performance of the second loadcase
di�er between the methods AOM-II and AOM-III. Concerning the compliance for the design
loadcase, all algorithms perform almost equally well. For the design loadcase the di�erences
between the algorithms are in the low single-digit percentage range. For the second loadcase
the algorithm AOM-II shows the best performance. As the sti�ness tensor glyphs of selected
regions of the final design illustrate AOM-I Multiple adapts the degree of anisotropy according
to the local loading conditions of Loadcase 1 by adding inclusions of 0 o and 90 o. Therefore,
in this case, the second loadcase remains totally unconsidered with regard to the material
properties. AOM-II is capable of considering the second loadcase in the material update by
adding inclusions depending on the principal stresses and principal directions of the second
loadcase with respect to the design loadcase. Therefore, in regions where the stresses re-
sulting from the second loadcase are predominant, the material can be fully optimized for
the local loading conditions. Even though the material’s 1-direction is aligned with the main
principal direction of the design loadcase (and therefore in the extreme case absolutely mis-
aligned with regard to the second loadcase) this is compensated by the inclusions added
for the second loadcase. The inclusions for the design loadcase can be reduced correspond-
ingly if necessary. In the extreme case this means that the respective inclusions for the design
loadcase are set to zero if the stresses resulting from the second loadcase are predominant.
For the algorithm AOM-III, the local stress tensor for the second loadcase is rotated to the
principal directions of the design loadcase. Therefore, the second loadcase contributes with
inclusions of 0 o and 90 o but also with inclusions of ±45◦ depending on the induced shear
stresses. In this case, too, the inclusions can be adapted to the local loading conditions, i.e.,
in regions where the stresses resulting from the second loadcase are predominant. How-
ever, as opposed to AOM-II, the inclusions are limited to certain directions. Therefore, AOM-III
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signifies an improvement compared to AOM-I Multiple, although the improvement is not as
significant as with AOM-II.

As it was expected, symmetric loading conditions (Loadcase BB) lead to a symmetric topol-
ogy for the standard topology optimization Q-Iso. Both algorithms, where the second load-
case is considered for the degree of anisotropy of the local material tensor, show a tendency
towards a symmetric design when subjected to symmetric loading conditions. However, the
part of the structure which establishes the connection to the second loadcase is a bit thicker
than the lower bar that establishes the connection of the structure to the design loadcase. As
mentioned before, in those regions where the second loadcase predominates, the material
can be fully adapted to the second loadcase as the volume fractions of the inclusions for the
design loadcase can be reduced correspondingly. However, in regions where both loadcases
play a role, compromises have to be made regarding the volume fractions of the inclusions
for the design loadcase and the second loadcase. Consequently, if the material can not be
used to its full potential for the second loadcase, this must be counteracted by making the
structure "thicker". This observation is confirmed by the topology gained with AOM-I Multiple.
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6. Summary & Conclusion

The motivation to study material design in a structural optimization framework comes both
from the increased industrial use of advanced materials as well as from developments within
the structural optimization field itself. Therefore, in the framework of this thesis, a tool was
developed to provide an even better support for the design and engineering of competitive
structures within a lightweight and material-oriented development process. The novelty of
this work is the development of a new concept of structural optimization where the topology
of the structure and the material, in terms of material orientation and degree of anisotropy,
are designed simultaneously (AOM - Anisotropic Orient Material). The material properties of
a continuous fiber reinforced polymer (FRP) with infinitely long cylindrical inclusions em-
bedded in a matrix are tailored to the structural design and vice-versa. Thus, the material
is directly optimized for the functional needs at the structural scale in order to gain lighter
and more e�icient structures applicable to many engineering sectors. This is contrary to the
present design practice where the design of structure and material are inherently decoupled.
Existing approaches to structural design either select a material and then design the struc-
ture that best utilizes the given material, thereby reducing the design space, or optimize the
anisotropy distribution for a fixed structural shape.

In the framework of this thesis the aim was to develop a method for simultaneous topology
and material optimization that minimizes the compliance of a structure subject to a volume
constraint. The optimal design, in terms of topology and material properties, is a structure
with high sti�ness.

The developed algorithm is capable of handling a standard topology optimization with quasi-
isotropic material (Q-Iso), a standard topology optimization for a predefined unidirectional
material (A), a simultaneous optimization of topology and material orientation (AO), and a si-
multaneous optimization of topology, material orientation, and material anisotropy (AOM).
To point out the potential of the simultaneous approaches, the respective material update
schemes were compared to the standard topology optimization for a quasi-isotropic mate-
rial. The anisotropic material is modeled by specifying the material’s 1-direction as well as
the orientations and volume fractions of the continuous fiber inclusions within each element
in the fixed FEM mesh.
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The numerical application of the method on simple (academic) test cases shows its e�ec-
tiveness. For the single loadcase it is shown that the AOM-I Single approach makes use of
the largest design space as opposed to A and AO. The orthotropic material determined with
this method goes beyond topology optimized quasi-isotropic (Q-Iso) and orientation opti-
mized unidirectional material (AO) as it can be fully adapted to the local loading conditions.
In other words, the material is used to its full potential. However, for real structures, taking
into account only one loadcase is not su�icient. Therefore, the AOM method was extended
to multiple loadcases.

Regarding multiple loadcases, AOM-I Multiple defines a design loadcase. The design loadcase
determines the material’s 1-direction and the material’s degree of anisotropy, i.e., adjust-
ment of the local sti�ness tensor, based on the local loading conditions in terms of resulting
element stress tensors. In this case, further loadcases are only considered for the update of
the topology. For the approaches AOM-II and AOM-III any additional loadcase contributes to
the optimized topology but also to the degree of anisotropy of the material by adding further
inclusions. Therefore, in comparison to the structure determined by AOM-I Multiple, the ma-
terial of the resulting structure is also optimized with regard to these additional loadcases,
see Section 5.3. It has been shown that the AOM-II approach makes use of the largest de-
sign space as this approach gives the most design freedom. The inclusions can be directly
adapted to the needs of the further loadcases. It has to be noted that the present algorithm
is not limited to two loadcases, as presented in Chapter 5, but can be applied to an arbitrary
number of loadcases.

As outlined in Section 4.5, the sequential approach, where the topology is optimized first for
a fixed (e.g., quasi-isotropic) material followed by an optimization of the material itself, lim-
its the design space. It is found, that indeed, the material anisotropy influences the optimal
shape of the structure as di�erent topologies are obtained in the case of a sequential and
a simultaneous approach to topology and material optimization. These observations verify
that it is necessary to optimize the topology and the anisotropy distribution of the considered
structure all at once, as opposed to the present design practice where the design of structure
and material are inherently decoupled. The concurrent optimization of topology and the
optimized use of fiber reinforced materials show the potential of significant improvement
compared to traditional construction methods.

In the framework of this thesis, the influence of the control parameters which are needed
for the filter scheme and the BESO algorithm (evolution rate ER and scale parameter rmin)
as well as the influence of the initial material setup (startdesign) were investigated. The re-
sults reveal, that the method of simultaneously optimizing the topology and the material for
a single loadcase AOM-I Single is insensitive to the choice of evolution rate ER compared to
the standard topology optimization with quasi-isotropic material Q-Iso.
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The compliance shows negligible di�erences even if the final topologies di�er. The material’s
local orientation and degree of anisotropy is adapted equally well for di�erent values ofER.
The same observations were made for multiple loadcases. The topologies for di�erent val-
ues ofER di�er, however, the compliance of the design loadcase is insensitive to the choice
of ER. Regarding Loadcase 2, the resulting compliance depends on the choice of evolution
rateER. The compliance for Loadcase 2 increases with increasingER.

Regarding the scale parameter for the filter scheme, rmin, it was concluded that a minimum
value of three times the element size is necessary with regard to aspects of finite element
analysis, i.e., that stresses are captured accurately. Furthermore, avoiding the formation of
too thin features makes sense with regard to aspects of manufacturability. The compliance
of the structure determined with AOM-I Single is insensitive to changes of rmin. When deal-
ing with multiple loadcases, the compliance of the design loadcase is very stable, showing
a slight tendency towards increasing compliance with increasing values of rmin. For Load-
case 2 this is not generally the case: the compliance of the optimized structure with respect
to Loadcase 2 depends on the choice of rmin. However, no overall tendency for the compli-
ance of Loadcase 2 was observed: for instance for Loadcase AC the compliance decreases for
higher values of rmin, for symmetric loading with Loadcase BB the compliance increases for
higher values of rmin.

With regard to the startdesign, similar observations were made: the compliance as well as
the final topologies of the structure determined with AOM-I Single as well as AOM-I Multiple,
AOM-II, and AOM-III for the design loadcase, show only minor di�erences. The results suggest,
that due to the expanded design space and the non-convexity of the optimization problem
multiple, almost equally optimal solutions can be determined with di�erent startdesigns. Es-
pecially for the results observed with AOM-I Single this observation allows the presumption
that this algorithm is capable of escaping local minima. The best results, particularly with
regard to multiple loadcases, are achieved when choosing a startdesign where the orienta-
tion of a unidirectional material is based on the principal directions of a preliminary finite
element analysis of a quasi-isotropic structure ("PD-startdesign").

In summary, it was observed, that AOM-I Single is a very robust algorithm for the single load-
case optimization problem. The method shows good convergence and little sensitivity to
the startdesign and control parameters ER and rmin. With respect to the design loadcase,
all methods proposed for multiple loadcases are very robust whereas the compliance of the
second loadcase shows certain dependencies on the choice of the evolution rate ER, scale
parameter rmin, and startdesign. The reason is that Loadcase 2, which is only considered
for the update of the topology and the material’s degree of anisotropy, is very sensitive to
changes in topology and the corresponding changes in material orientation induced by the
design loadcase.
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The concept of simultaneous topology and material optimization was illustrated on simple
two dimensional (academic) test cases. It is noted, however, that the concept can be gener-
alized to three dimensional composite topologies. The extension to three dimensional prob-
lems is necessary in order to use the proposed method in an industrial context. By doing so,
the method is capable of covering a very general, even completely anisotropic, material.

The method was developed on a conceptual level. Including manufacturing constraints such
that the practical feasibility of the optimized design can be taken into account in the opti-
mization process, was not the main focus of this thesis. However, with the potential of addi-
tive manufacturing (i.e., 3D printing) perhaps it would be possible to determine a manufac-
turable material that is close to the optimal solution given by the present algorithm. Since
the material optimization is based on a micromechanics approach with specific fiber orienta-
tions, the resulting material can be directly translated to actual fiber arrangements (in con-
trast to FMO). This feature can potentially also be used to implement manufacturing con-
straints. For this purpose it would be interesting to include a post processing step that deter-
mines the closest manufacturable material from the optimized material. A post processing
step is also needed for the topology as the boundaries of the structure are not smooth.

The present method is only applicable to problems where the objective is to minimize the
compliance. However, in an industrial context this is insu�icient as other physical phenom-
ena must be integrated in the optimization process (i.e., maximum displacement), in order
to propose more robust and realistic solutions. However, as a result of current technological
advances, especially in terms of the ever-increasing use of fiber-reinforced structures (and
the corresponding increase in degrees of freedom) the proposed method opens up a wide
range of very interesting perspectives.
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Appendix

A. Python Codes

Listing A.1: Bisection algorithm for the update of the elemental design variables
1 def bisection_algorithm(alpha_i, x_i, tv):

2 """

3 Bisection algorithm to determine the threshold for elemental

4 sensitivities for updating the design variables x_i

5

6 Parameters

7 ----------

8 alpha_i: dict., filtered elemental sensitivities (key: int el. label)

9 x_i: dict., design variables of previous iteration

10 (key: int el. label)

11 tv: scalar, target volume of the current iteration

12

13 Returns

14 -------

15 x_i_new: dict. of the updated design variables (key: int el. label)

16 """

17

18 lo, hi = min(alpha_i.values()), max(alpha_i.values())

19

20 while (hi - lo) / hi > 0.00001:

21 th = (lo + hi) / 2.

22

23 for key in x_i.keys():

24 if alpha_i[key] > th:

25 x_i_new[key] = 1.

26 else:

27 x_i_new[key] = 0.001

28

29 if sum(x_i_new.values()) - tv > 0:

30 lo = th

31 else:

32 hi = th

33

34 return x_i_new
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B. Further Results Single Loadcase

B.1. Comparison of Startdesigns

Startdesign

Q-Iso
AO
AOM-I SingleLC1

Figure B.1.: Comparison of influence of startdesigns on the compliance and final topologies
of Loadcase B for the optimization methods AO and AOM-I Single
(msize = 0.5 mm, rmin = 3 mm,ER = 0.01)
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Figure B.2.: Comparison of influence of startdesigns on the compliance and final topologies
of Loadcase C for the optimization methods AO and AOM-I Single
(msize = 0.5 mm, rmin = 3 mm,ER = 0.01)
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B.2. Influence of Control Parameters
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Figure B.3.: Influence of the scale parameter rmin on the compliance and final topologies of
Q-Iso and AOM-I Single for Loadcase C (msize = 0.5 mm,ER = 0.01)
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Figure B.4.: Influence of the volume evolution rateERon the compliance and final topologies
of Q-Iso and AOM-I Single for Loadcase B and Loadcase C
(msize = 0.5 mm, rmin = 3mm)
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B.3. Comparison of Optimization Methods

(a) (b)

Q-Iso
A

AO
AOM-I Single

Iteration [-]
Q-Iso A AO AOM-I 

Single

Figure B.5.: Comparison of compliance for optimization methods for Loadcase B
(msize = 0.5 mm, rmin = 3 mm,ER = 0.01). (a) Evolution histories of compliance
and volume fraction, (b) Comparison of the relative compliance of the di�erent
optimization methods with regard to the compliance of the Q-Iso standard topol-
ogy optimization
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Figure B.6.: Comparison of compliance for optimization methods for Loadcase A (design do-
main 80 mm x 20 mm, msize = 0.5 mm, rmin = 3 mm, ER = 0.01). (a) Evolution
histories of compliance and volume fraction, (b) Comparison of the relative com-
pliance of the di�erent optimization methods with regard to the compliance of
the Q-Iso standard topology optimization
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Figure B.7.: Comparison of compliance for optimization methods for Loadcase B (design do-
main 80 mm x 20 mm, msize = 0.5 mm, rmin = 3 mm, ER = 0.01). (a) Evolution
histories of compliance and volume fraction, (b) Comparison of the relative com-
pliance of the di�erent optimization methods with regard to the compliance of
the Q-Iso standard topology optimization
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Figure B.8.: Comparison of compliance for optimization methods for Loadcase C (design do-
main 80 mm x 20 mm, msize = 0.5 mm, rmin = 3 mm, ER = 0.01). (a) Evolution
histories of compliance and volume fraction, (b) Comparison of the relative com-
pliance of the di�erent optimization methods with regard to the compliance of
the Q-Iso standard topology optimization
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(c)

(d)

(a)

(b)

Figure B.9.: Comparison of the proposed final design topologies and material’s 1-directions
for Loadcase B
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(c)
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Figure B.10.: Comparison of the proposed final design topologies and material’s 1-directions
for Loadcase A for a design domain 80 mm x 20 mm
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(c)

(d)

(b)

(a)

Figure B.11.: Comparison of the proposed final design topologies and material’s 1-directions
for Loadcase B for a design domain 80 mm x 20 mm
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Figure B.12.: Comparison of the proposed final design topologies and material’s 1-directions
for Loadcase C for a design domain 80 mm x 20 mm
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B.4. Sequential versus Simultaneous Optimization
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Figure B.13.: Comparison of sequential and simultaneous optimization for a cantilever beam
with dimensions 40 mm x 20 mm for Loadcase B (msize = 0.5 mm, rmin = 3 mm,
ER = 0.01)
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Figure B.14.: Comparison of sequential and simultaneous optimization for a cantilever beam
with dimensions 40 mm x 20 mm for Loadcase C (msize = 0.5 mm, rmin = 3 mm,
ER = 0.01)
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C. Further Results Multiple Loadcases

C.1. Influence of Control Parameters
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Figure C.1.: Influence of di�erent values of the scale parameter rmin on the optimal compli-
ance of AOM-I Multiple, AOM-II, and AOM-III for Loadcase BB
(msize = 0.5 mm,ER = 0.01)
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Figure C.2.: Influence of di�erent values of the scale parameter rmin on the final topologies of
AOM-I Multiple, AOM-II, and AOM-III for Loadcase BB
(msize = 0.5 mm,ER = 0.01)
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Figure C.3.: Comparison of the performance of AOM-I Multiple, AOM-II, and AOM-III for di�erent
evolution ratesER for Loadcase BB (msize = 0.5 mm, rmin = 3 mm).
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Figure C.4.: Comparison of the final topologies determined with AOM-I Multiple, AOM-II, and
AOM-III for di�erent evolution ratesER for Loadcase BB
(msize = 0.5 mm, rmin = 3 mm).
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C.2. Comparison of Optimization Methods
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Figure C.5.: Illustration of the performance of Loadcase 1 (Design Loadcase) and Loadcase 2
optimized with AOM-I Multiple, AOM-II, and AOM-III for Loadcase CC where AOM-I
Multiple serves as a reference. (msize = 0.5 mm, rmin = 3 mm,ER = 0.01)
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Figure C.6.: Illustration of the performance of Loadcase 1 (Design Loadcase) and Loadcase 2
optimized with AOM-I Multiple, AOM-II, and AOM-III for Loadcase BC where AOM-I
Multiple serves as a reference. (msize = 0.5 mm, rmin = 3 mm,ER = 0.01)
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(a)

(b)

(c)

(d)

Figure C.7.: Illustration of final topologies, material 1-direction and sti�ness tensor glyphs
for selected regions of interest for Loadcase BC for the optimization methods
(a) Q-Iso, (b) AOM-I Multiple, (c) AOM-II, (d) AOM-III
(msize = 0.5 mm, rmin = 3 mm,ER = 0.01).
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Figure C.8.: Illustration of the performance of Loadcase 1 (Design Loadcase) and Loadcase 2
optimized with AOM-I Multiple, AOM-II, and AOM-III for Loadcase AC where AOM-I
Multiple serves as a reference. (design domain 80 mm x 20 mm, msize = 0.5 mm,
rmin = 3 mm,ER = 0.01)
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