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Abstract

Titanium aluminides are technologically important intermetallic alloys with many prop-

erties interesting also from a basic research point of view. When alloyed with Mo, several

(meta)stable phases have been reported; their properties are, largely unknown due to

the alloy processing and/or non-existence as a single-phase material. We employed first

principles calculations to study compositional trends in structural and mechanical prop-

erties. We could show that Mo increases the density of all studied phases, leads to their

chemical destabilization with the exception of the ordered bcc βo phase, increases their

ductility, and enhances the elastic anisotropy. Anisotropic thermal expansion coefficients

of tetragonal γ-TiAl and hexagonal α2Ti3Al phases were calculated. The predicted val-

ues show that for γ-TiAl, the more computational demanding method with decoupled

impact of volume and temperature effects on the cell shape leads to significantly better

results than that with only ground-state optimized unit cell geometry. Predictions of

ordering temperatures solely based on the configurational entropy do not yield values in

the experimentally expected ranges. Furthermore, bcc-fcc structural transformations of

β/βo → γdis/γ TiAl+Mo are studied. In particular, tetragonal (Bain’s path) and trig-

onal transformations are combined with the concept of special quasi-random structures

and examined. Our calculations of the ordered phases show that the βo → γ tetragonal

transformation is barrierless, i.e., proceeds spontaneously, reflecting the genuine struc-

tural instability of the βo phase. Upon alloying of ≈ 7.4 at.% Mo, a small barrier between

βo and γ-related local energy minima is formed. Yet a higher Mo content of ≈ 9 at.% leads

to an opposite-direction barrierless transformation γ → βo, i.e., fully stabilizing the βo

phase. The martensitic bcc-hcp transformation for TiAl+Mo alloys were reported. Since

the Potential Energy Surfaces (PES) clearly suggest that the minimum energy paths are

not straight connections of the initial and final states, we have additionally relaxed the

ionic positions along the transformation paths. We could show that elastic energy is a

decent approximation of PES as a function of cell shape and fixed atomic positions, pro-

vided the initial structure is mechanically stable. The transformation energy landscape

as a function of Mo content predicts that, adding Mo favors βo/β phase on the expense

of B19/α′, eventually leading for spontaneous, barrierless transformations B19→ βo and

α′ → β for 12.5 at.% Mo.
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Kurzfassung

Titanaluminide sind technologisch wichtige intermetallische Legierungen mit vielen Eigen-

schaften, die auch aus Sicht der Grundlagenforschung interessant sind. Durch Legieren

mit Mo wurden mehrere (meta)stabile Phasen gefunden deren Eigenschaften , aufgrund

des Herstellungsprozesses und/oder als einphasiges Material nicht existieren, weitge-

hend unbekannt sind. Ab-Initio Berechnungen wurden verwendet, um Trends in den

strukturellen und mechanischen Eigenschaften, abhängig von der chemischen Zusam-

mensetzung zu untersuchen. Wir konnten zeigen, dass Mo die Dichte aller untersuchten

Phasen erhöht, zu ihrer chemischen Destabilisierung mit Ausnahme der geordneten bcc

βo-Phase führt, ihre Duktilität erhöht und die elastische Anisotropie verstärkt. Weit-

ers wurden anisotrope thermische Ausdehnungskoeffizienten von tetragonalen γ-TiAl-

und hexagonalen α2Ti3Al-Phasen berechnet. Die berechneten Werte zeigen, dass für γ-

TiAl die rechenintensivere Methode mit entkoppeltem Einfluss von Volumen- und Tem-

peratureffekten auf die Simulationsgeometrie zu deutlich besseren Ergebnissen führt als

diejenige bei dem die Zellgeometrie (Gitterparameter) nur im Grundzustand optimiert

wurde. Vorhersagen von Ordnungstemperaturen, die allein auf der Konfigurationsen-

tropie basieren, liefern keine Werte in den experimentell erwarteten Bereichen. Weiters

wurden bcc-fcc-Strukturumwandlungen von β/βo → γdis/γ TiAl+Mo untersucht. Tetrag-

onale (Bain’s path) und trigonale Transformationen mit dem der wurden mit optimiert

statistisch zufälligen Strukturmodellen (Special Quasi-random Structures) modelliert und

untersucht. Unsere Berechnungen der geordneten Phasen zeigen, dass die tetragonale

βo → γ-Transformation keine Energiebarriere zeit, d.h. spontan abläuft, was die echte

strukturelle Instabilität der βo-Phase widerspiegelt. Beim Legieren von ≈ 7.4 at.% Mo

bildet sich eine kleine energetische Barriere zwischen den βo und γ-bezogenen lokalen

Energieminima. Ein höherer Mo-Gehalt von ≈ 9 at.% führt jedoch zu einer entgegenge-

setzt gerichteten barrierefreien Umwandlung γ → βo, d.h. zu einer vollständigen Sta-

bilisierung der βo-Phase. Zudem wurde auch die martensitische bcc-hcp-Umwandlung

für TiAl+Mo-Legierungen untersucht. Da die Potentialhyperflächen deutlich darauf hin-

weisen, dass die minimalen Energiepfade keine geraden Verbindungen der Anfangs- und

Endzustände sind, haben wir zusätzlich die Ionenpositionen entlang der Umwandlungsp-

fade optimiert, um den energetisch günstigsten Umwandlungspfad zu finded. Wir konnten

zeigen, dass die elastische Energie eine akzeptable Näherung der Potentialhyperfläche als

Funktion der Zellform und der konstanten Atompositionen darstellt, vorausgesetzt, die

Ausgangsstruktur ist mechanisch stabil. Die Transformationsenergielandschaft als Funk-

tion des Mo-Gehalts sagt voraus, dass die Zugabe von Mo die βo/β-Phase auf Kosten

von B19/α′ begünstigt, was schließlich zu spontanen, barrierefreien Transformationen

B19→ βo und α′ → β für 12, 5 at.% Mo führt.

xv
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My contribution: I performed the VASP calculations, and contributed to editing

the manuscript.
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Chapter 1

Introduction

1.1 Materials science and simulation

Computational materials science offers powerful tools to obtain insights into the materi-

als’ structures, behaviors, properties, and their response to imposed internal and external

changes. Steadily increasing computational resources enable scientists to apply novel the-

ories and to construct models closer to reality, thus improving the knowledge of materials

systems and their components.

Similarly to a diversity of experimental methods, there are numerous theoretical modeling

methods. Based on the considered material system and goals of the study, the proper

modeling approach is chosen. For this purpose, briefly, the modeling techniques are briefly

described below (see Fig. 1.1).

For a typical mesoscale method, e.g., dislocations and phase field, the continuum-based

methods are employed. Therefore, mesoscale modeling techniques can predict the vari-

ous parameters, describing the various physical phenomena, governing material behavior

at different length scales, either in terms of continuum, thermodynamic descriptions or

discrete particles and their interaction.

In order to describe materials on the atomistic level, interatomic interactions are

needed. The most two famous and commonly applied techniques, making use of those

interactions, are molecular dynamics (MD) and Monte Carlo (MC). Semi-empirical po-

tentials usually are applied to simulate large systems with even billions of atoms. These

techniques can predict the properties of many-particle interactions. The interatomic po-

tential plays a crucial role regarding the accuracy of calculations.

Fitting and optimization of interatomic potentials are severely non-trivial and time-

consuming tasks. An even more dramatic disadvantage of the interatomic potentials
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Figure 1.1: Overview of modeling techniques operating at different lengths and typically
dealing with phenomena from various materials science disciplines (parts of the figure
taken from Refs. [1, 2]).

is that they are not, in general, transferable. That means that each potential is fitted

to a certain subset of the material properties. For example, there are potentials for the

same elements, which are good at reproducing bulk mechanical properties, whilst others

have predictive power for surface energies. These disadvantages affects the wide usage of

these techniques in engineering materials science.

To gain detailed insight into the crystal structures at the electronic level, Density

Functional Theory (DFT) is the method of choice in materials science. In this regard,

it is the most popular approach, among so-called first principles or ab initio modeling

which claims to use no input parameters. Thus it is suitable for predicting properties

of materials in consistent and unbiased way, spanning from crystalline structures over

individual atomistic processes to electronic structure and bonding. Although being a

very accurate method, it is limited to only hundreds of atoms because of computational

demands.
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1.2 Designing alloys: towards the prediction of materials

properties

An alloy is a combination of two or more elements while its properties are not determined

by a single element only (for instance, a famous example is brass made from copper and

zinc). A simple replacement of one element (e.g., Nb or Mo in TiAl-alloys) with another

(e.g., Ni) results in completely different material behavior, and consequently application

areas (e.g., shape memory NiTi-alloys vs. structural light-weight TiAl-alloys).

A deeper understanding of the chemical and physical mechanisms can be helpful to realize

the diversity of properties of structurally similar intermetallic compounds. Within this

study, first-principles methods are employed to come up with a theoretical model, to

predict structural and mechanical properties of TiAl+Mo intermetallic alloys.

1.3 State-of-the-art

1.3.1 TiAl-based alloys

Titanium aluminides (TiAl) form a family of novel light-weight intermetallic alloys. Those

alloys exhibit benefits such as low density, high specific yield strength, good corrosion,

and oxidation resistance [3–7] making them heavily used in industry. Nevertheless, fur-

ther studies to improve their weakness such as brittleness [8–10] are needed. The mi-

crostructures of the TiAl-alloys have two major constituents at room temperature (RT).

An ordered tetragonal face-centered γ-TiAl phase (L10, space group P4/mmm) and an

ordered hexagonal α2-Ti3Al phase (D019, space group P63/mmc) [11]. Both these phases

are brittle, considering hot-forming at high temperatures [3, 11].

To overcome these weakness, the binary TiAl is alloyed with specific elements. For

example, the cubic β-TiAl-based alloys have been developed with disordered bcc structure

(A2, space group Im3̄m) which appears at elevated temperatures. β-TiAl arises in the

equilibrium phase diagram of the binary Ti-Al system only at low Al contents [3, 12]. It

can be stabilized by alloying with so-called β-stabilizing elements such as Mo or Nb.

More specifically, the body-centered cubic phase has two variants: the disordered high-

temperature β phase, and a low-temperature ordered βo-TiAl phase (B2, space group

Pm3m). The ordered structure (CsCl-type) contains two sublattices, which in the case

of binary TiAl are one fully occupied with Al and the other one with Ti atoms (see orange

planes in Fig. 1.2b). In contrast, all sites in the disordered β phase are randomly occupied

with both Al and Ti, since there are no specific sublattices (as shown in Fig. 1.2a). It is

also possible to say that, there is only one sublattice for disordered cases.

8



Ti sublattice

Al sublattice

Mo replaced Al Al 

Ti 

(a) disordered��-TiAl (b) ordered����-TiAlo

Figure 1.2: Structural model of (a) disordered β and (b) ordered βo TiAl+Mo. For
disordered β phase, the underlying structure is the bcc lattice on which Ti, Al and Mo
atoms are fully mixed. In the case of the ordered structure βo, the underlying lattice is
B2 (with Ti and Al sublattices). Mo is shown to substitute only for Al.

The specific role of the disordered β phase is that it provides a sufficient number of

independent < 111 > {110} slip systems. Consequently, high-temperature workability

is significantly improved. However, the phase fraction of the ordered βo phase should

be minimized at service temperature in order not to deteriorate, for example, the creep

behavior as reported for various β/βo-phase containing TiAl-alloys [3, 11, 13].

Depending on the exact chemical composition, the alloy passes through different phase

fields upon its cooling. As a consequence, various temperature-dependent phase fractions

of the β/βo-phase are present at RT. Additionally, different degrees of order can be

obtained. In our work, we have shown that structural disorder of the β phase has a similar

stabilizing effect as alloying with ternary β-stabilizing Mo element [14]. We suggested

that the stabilizing effect is connected with roughening the potential energy surface in the

Born-Oppenheimer configurational space. Hence, it barriers appear along the β/βo → γ

transformation path [14].

1.3.2 Alloying and phase transformations

As demonstrated by the phase diagram (Fig. 1.3), the final equilibrium composition

of TiAl+Mo alloys strongly depends on their Mo content. The crossing of phase-field

boundaries in equilibrium includes precipitation and/or dissolution of new phases, and

hence involves diffusional processes. The actual phase constitution is additionally de-

pendent on the speed of cooling. For extremely fast cooling rates, diffusion is inhibited.
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Figure 1.3: The equilibrium Ti-44Al+Mo (at.%) phase diagram [15].

Consequently, precipitation and growth of the α/α2 and γ phases (as present in the equi-

librium phase diagram, Fig. 1.3) are suppressed, and instead, a martensitic hexagonal

α′/α′2 phase appears in the β/βo matrix. Being a martensitic variant implies that both

the α′/α′2 phase and the β/βo matrix have the same chemical composition. This mi-

crostructure has been observed recently for the first time in the Ti-44Al-3Mo (at.%) alloy

[16]. Having a close-to-stoichiometric overall composition, the α′2 phase becomes an Al

supersaturated α2 phase (which has a nominal composition Ti3Al).

The bcc-based β phase and hcp-based α′2 phase exhibit the Burger’s orientation relation-

ship

[11̄1]β/βo ‖ [21̄1̄]α′/α′
2

(1.1)

and

(011)β/βo ‖ (0001)α′/α′
2

(1.2)

The system has been studied previously by a number of experimental techniques, includ-

ing light optical microscopy, scanning, and transmission electron microscopy, differential

scanning calorimetry, conventional X-ray as well as high-energy X-ray diffraction or me-

chanical testing [17, 18]. These techniques allowed to establish a pseudo-binary phase

diagram. Kabra et al. [17] used the neutron diffraction and concluded that the order-

disorder temperature in Ti-44Al-7Mo alloy is 1265◦C while it drops by ≈ 30◦C when the

Mo content is reduced to 3 at.%. The ordering temperature for the α2 phase (Ti3Al-based)

has been estimated at 1205◦C for the 3 at.% alloy variant.

Nevertheless, there is a lack of understanding of the ordering β ↔ βo mechanisms, as well

as no information on the ordering in the novel martensitic phase α′ ↔ α′2 is available.
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Particularly challenging is the case of martensitic microstructure, where the experimental

setup does not allow for resolving the exact temperatures at which ordering and the

martensitic transformation happen (due to the fast cooling rates applied).

Consequently, it is not known which of the phenomena occurs first, i.e., whether the

martensitic transformation starts from the βo or the β phase (and what consequences the

starting configuration may have). Similarly, due to the lack of experimental data, the

degree of ordering of the βo matrix and the martensitic α′2 phases on cooling to room

temperature is not known.

1.3.3 Martensitic and ordering transformations

Forming of a low-symmetry orthorhombic B19-TiAl (B19, space group Pmma) phase in

α2 phase was observed after fast cooling [19], by structural changes during α → α2 +

γ [16], as well as in Ti-(40-44)Al-8.5Nb alloys [11]. The latter claims the B19 phase to

be a transitional phase between β and/or βo and an orthorhombic O-Ti2AlNb phase.

Moreover, the appearance of the B19 phase was observed [20] in Ti-45Al-3Mo-0.1B alloy.

For this comprehensive study it is necessary to understand and predict its structure and

its behavior during the martensitic α→B19 phase transformation.

Apart from crystallographic phase transformations, at certain temperatures, both order-

ing processes β ↔ βo, α↔ α2 can occur[21, 22] simultaneously. Additionally, martensitic

transformations β → α′ (disordered hexagonal Ti0.5Al0.5) and/or βo → α′2 (partially or-

dered hexagonal Ti0.5Al0.5 based on the α2 phase) have been reported in Ti-44Al-3Mo

alloys [15, 22].

Since many of those phases have only limited stability and/or appear only in complex

multi-phase materials, their structural characterization is experimentally challenging. On

the other hand, knowledge of compositional trends in mechanical properties is desirable

for knowledge-based development and optimization of novel alloys based on the TiAl

intermetallic system.

1.4 Goals of the thesis

This thesis aims on providing underlying material properties of TiAl+Mo ternary inter-

metallic system, and thereby on fundamental understanding of ordering phenomena and

the martensitic transformation process in the TiAl+Mo system by means of atomistic

calculations. The specific goal are:

• Calculate structural and mechanical properties of relevant ordered and disordered

phases in ternary TiAl+Mo system using first principles calculations.

11



• Evaluate impact of configurational entropy on the ordering transformation temper-

ature.

• Estimate transformation barriers for diffusionless transformations in the ternary

TiAl+Mo system.

1.5 Structure of the thesis

To set the theoretical scene for the detailed prediction of the research questions described

above, Chap. 2 discusses the relevant fundamentals of quantum mechanics, and the details

of simulation set up are presented in Chap. 3. Chap. 4 introduces the major structural

properties of the considered TiAl phases. The insight into the mechanical properties

of phases and compositions is discussed particularly in Chap. 5. Chap. 7 addresses the

ordering temperature behavior of β → βo and α′ →B19(α′2). The Chap. 6 and 8 which

are mostly based on the author’s own publications, provide new insights into the thermal

properties and phase transformations, which both resulted as a side projects along the

course of this study. The martensitic transformation βo →B19 and β → α′ is discussed

in Chap. 9. Finally, the presented results are concluded and an outlook is given in

Chap. 10.
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Chapter 2

Methods

2.1 Schrödinger equation in a many-body system

Erwin Schrödinger

One of the critical issues in theoretical physics and chem-

istry is understanding the structure of electrons in many-

body systems. Unlike macro- to microscopic-scale problems,

studying light particles such as electrons at nanoscale re-

quires treatment within the quantum space. The basis of

quantum mechanics is the Schrödinger equation, which re-

quires writing the necessary descriptor of the Hamiltonian

system. The starting point of a discussion is the time-

dependent Schrödinger equation as follow:

i~
∂

∂t
Ψ(r, t) =

(
− ~2

2m
∇2 + V (r, t)

)
Ψ(r, t) = ĤΨ(r, t) (2.1)

where the r is a vector of the positions of many particles. If V (r) has no explicit depen-

dency on time, then Eq. (2.1) simplifies to the time-independent Schrödinger equation:

Ĥψ(r) = Eψ(r) . (2.2)

In the this Eq. (2.2), Ĥ indicates the Hamiltonian operator, ψ is the many-body wave

function which depends on the coordinates of all nuclei and electrons and, E is the total

energy of the system,

ψ ≡ ψ(r1, r2, ..., rN ;R1,R2, ...,RM). (2.3)

where it is considered a system containing N electrons and M nuclei at positions {ri}Ni=1

and {Rj}Mj=1, respectively.
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To solve the Schrödinger equation for a solid represented as a many-body system, it is

useful to note, that the Hamiltonian operator in Eq. (2.3) includes interactions between

the electrons and atomic nuclei,

Ĥ = T̂elec.({ri}Ni=1) + T̂nucl.({Rj}Mj=1) + V̂elec.({ri}Ni=1)+

+ V̂nucl.({Rj}Mj=1) + V̂elec.−nucl.({ri}Ni=1, {Rj}Mj=1) =

= −~2

2

N∑
i=1

∇2
ri

m
− ~2

2

M∑
j=1

∇2
Rj

Mj

+
1

8πε0

N∑
i,i′=1
i6=i′

e2

|ri − ri′|
+

+
1

8πε0

M∑
j,j′=1
j 6=j′

e2ZjZj′

|Rj −Rj′ |
− 1

4πε0

N∑
i=1

M∑
j=1

e2Zj
|Rj − ri|

,

(2.4)

where m (Mj) indicates the mass of an electron (a nucleus), ~ is the reduced Planck’s

constant, ε0 is the vacuum permittivity, e is the elementary charge, and Zj the atomic

number of a nucleus j. The first two terms, T̂elec. and T̂nucl. express electron-electron

and nucleus-nucleus repulsion energies, respectively. The third and forth terms, V̂elec.

and V̂nucl., indicates the electron-nucleus (Coulomb) attraction energies, while the fifth

term, V̂elec.−nucl., represent the kinetic energies of electrons and nuclei. Each Laplacian,

∇2
ri

(∇2
Rj

), involves differentiation concerning the coordinates of the ith electron (jth

nucleus).

2.2 From wave function methods to density functional

theory

In practice, solving equation Eq. (2.2) analytically is achievable only for minimal systems

due to the nature of the wave function, Eq. (2.3), that requires coordinates of all inter-

acting particles. Consequently, several approximations have been extended to compute

the ground-state energy, i.e., the minimum eigenvalue of Ĥ, as well as energies of excited

states, i.e., higher eigenvalues of Ĥ.

2.2.1 Born-Oppenheimer approximation

The first step forward was the Born-Oppenheimer (adiabatic) approximation [23] which

neglects the motion of much heavier and slower nuclei. Considering the mass of an

electron is ' 1800 times smaller than the mass of a proton. The nucleus-to-electron

mass ratio increases for heavier particles. Therefore, the nucleus acts as a fixed ex-

ternal potential with zero kinetic energy from the prospect of a moving electron. The
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Robert Oppenheimer

electrons in the first place keep the internal equilibrium and react

to all external forces. Hence, the dynamics of nuclei and electrons

can be decoupled, as it is appearing on different time scales.

Such a simplistic argument vastly decreases the complexity of

the wave function, Eq. (2.4), which displays a function of the

electron positions only,

ψ ≡ ψ(r1, r2, ..., rN) . (2.5)

Consequently, the Hamiltonian operator, Eq. 2.4, takes the form

Ĥ = T̂elec.({ri}Ni=1) + V̂elec.({ri}Ni=1) + V̂ext.({ri}Ni=1, {Rj}Mj=1) =

= −~2

2

N∑
i=1

∇2
ri

m
+

1

8πε0

N∑
i,i′=1
i6=i′

e2

|ri − ri′|
+

+ V̂ext.({ri}Ni=1, {Rj}Mj=1).

(2.6)

The Vext. term includes the electron-nucleus interaction, which can be described as the

interaction of electrons with distinct external potential. In contrast, the universal first

two terms in Eq. (2.6), the Vext. term comprises all the material-specific information.

While the Born-Oppenheimer approximation simplified the Schrödinger equation (2.1)

Douglas R. Hartree

Vladimir A. Fock

significantly, the solution for actual materials was still too costly

due to the Coulombic electron-electron interactions.

2.2.2 Hartree-Fock method

Among additional efforts to overcome the complexity of the

many-body problem are the Hartree (1928) and the Hartree-Fock

approximations (1930) [24]. Hartree offered an ansatz for the

form of the electron wave function written as a product of single-

electron wave functions, φi(ri), i = 1, 2, ..., N :

ψ(r1, r2, ..., rN) ≡ φ1(r1)φ2(r2), ..., φN(rN). (2.7)

As a consequence, the Hamiltonian was decomposed into a sum of

individual (non-interacting) Hamiltonians, one for each electron.

In the Hartree’s formulation, each electron identifies the others as

a mean field, generate a replacement of the Coulombic electron-

electron interaction by an effective (Hartree) potential from all

other electrons. The total wave function describing the set of all
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electrons is product of single-electron wave functions. Since the Hartree method neglects

the electron-electron exchange interactions defined by the Pauli exclusion principle, the

corresponding total energy, E =
∑N

i=1, is overestimated. This problem is resolved by

taking the many-body wave-function in a form of a single Slater determinant as:

ψ(x1,x2, ...,xN) =
1√
N !


φ1(x1) · · · φ1(xN)

...
. . .

...

φN(x1) · · · φN(xN)

 . (2.8)

where the variable x includes both spatial, r, and spin, s, coordinates, and 1/
√
N ! rep-

resents a normalization factor of the N -electron system. The wave function (2.8) is

antisymmetric, i.e., changes sign upon exchanging positions of two particles. Two elec-

trons cannot occupy the same orbital (two equal rows in Eq. (2.8)) and the same point

in the generalized space (two equal columns in Eq. (2.8)), as the Slater determinant is

nullified in such a case.

The hypothesis of independent electrons and the initiation of an effective potential from

the averaged potential, however, prohibit repulsive interaction between anti-parallel spin

electrons emerging in the so-called correlation effects (demonstrated by the fact that

two electrons cannot stay very close to each other due to the Coulomb repulsion) [25].

This leads to an overestimation of the total energies and band gaps. The Hartree-Fock

approach is relatively suitable for systems with a small number of localized electrons. Still,

it fails in perfect metals with completely delocalized electrons, as it omits the collective

Coulomb screening.

2.2.3 Hohenberg-Kohn theorems

Against the Hartree and the Hartree-Fock approximations, the Density Functional Theory

(DFT) synthesize both exchange and correlation effects. Instead of the extremely sophisti-

cated wave function (2.5), DFT considers the electronic charge density, n(r) = n(x, y, z),

which is a function of only 3 variables. The total charge density according to an N -

electron system can be written as the expectation value of the density operator, n̂(r),

n(r) = 〈ψ|n̂(r)|ψ〉 = 〈ψ|
N∑
i=1

δ(r− ri)|ψ〉

=
N∑
i=1

∫
δ(r− ri)|ψ(r1, r2, ..., rN)|2dr1dr2...drN

=
N∑
i=1

∫
|ψ(r1, r2, ..., ri = r, ..., rN)|2dr1dr2...��ZZdri...drN ,

(2.9)
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Walter Kohn

where δ denotes the Kronecker delta. DFT relies on two theorems

introduced by Hohenberg and Kohn [26] in 1964, declaring that

ground-state properties of atoms, molecules, and solids can be

extracted from their total electronic charge density.

H-K Theorem 1. For any system of interacting particles in an

external potential field, Vext.(r), the potential Vext.(r) is deter-

mined uniquely—except for an additive constant by the ground-

state particle density alone.

The H-K Theorem 1 claims one-to-one correspondence between

the external potential and the ground-state electronic charge

density. The ground-state wave function, accordingly, is also

prepared. Hence, each likely wave function provides a unique

charge density and vice versa; each possible charge density de-

fines a unique Hamiltonian, hence, the dependent ground-state

wave function. We note that Schrödinger equations with Hamil-

tonians Ĥ and Ĥ ′ = Ĥ + c, where c is an arbitrary constant, will

produce the same eigenfunctions and all the eigenenergies will

only be shifted by c.

H-K Theorem 2. For any system of interacting particles defined by the charge density

n(r)—in an external potential, Vext.(r), there is a total energy functional,

E[n(r)] = FHK[n(r)] + Vext.[n(r)] = FHK[n(r)] +

∫
Vext.n(r)dr, (2.10)

where FHK[n(r)] indicates a universal functional. The exact ground-state energy is the

global minimum of E[n(r)] conditional to the constraint that the integral of E[n(r)]

remains the total number of electrons in the system. The corresponding density is the

exact ground-state density n0(r), meaning that

δ

δn
E[n(r)]

∣∣∣∣
n=n0

= 0, (2.11)

and

E0 = E[n0(r)]. (2.12)

According to the H-K Theorem 2, the ground-state density can be prepared (up to an

additive constant) by using the variational (Ritz) principle [27] represented by Eq. (2.11),

i.e. as the global minimum of the total energy functional, E[n(r)]. This charge density

also defines the exact ground-state energy.
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Accurate evidence of Hohenberg-Kohn theorems can be found in the original paper [26].

Although the theorems developed the fundamental aspect of electronic structure prob-

lems, they still present (only) a variational principle method but no direct recipe for solv-

ing the many-body Schrödinger equation. Especially, no information about the so-called

Hohenberg-Kohn functional, FHK[n(r)], is given, without the fact that it is universal, i.e.

the same for all electron systems and independent of the external potential Vext.(r).

2.2.4 Kohn-Sham equations

Lu J. Sham

In 1965, Kohn and Sham [28] introduced a concept that enabled

to turn of DFT into a real computational tool. The basic idea was

to describe the physical system of many interacting electrons by

a set of fictitious non-interacting particles in an external effective

potential, Veff..

The Kohn-Sham ansatz ensures that the ground-state charge

density of the fictitious non-interacting system is equal to that

of the real interacting system.

Kohn-Sham Ansatz. There is an effective (Kohn-Sham) po-

tential, V̂eff. for each system of interacting electrons in an external potential, yielding

charge density

n(r) =
N∑
i=1

|φi(r)|2,

equal to that of the interacting system. The (Kohn-Sham) orbitals, φi(r), obey the one

particle Schrödinger-like equation

(
− ~2

2m
∇2 + V̂eff.

)
︸ ︷︷ ︸

ĤKS

φi(r) = Eiφi(r). (2.13)

Alternately of solving Schrödinger equation for the N -electron wave function, the Kohn-

Sham Ansatz states that it suffices to solve N single-electron Schrödinger-like equations

(2.13) for a system with N independent (non-interacting) electrons which move in a

potential that generated by the nuclei and the remaining electrons. The eigenvalues of

the Kohn-Sham Hamiltonian, ĤKS in Eq. (2.13), do not represent real single-electron

energies. Also, the Kohn-Sham orbitals, φi, have no real physical meaning but have been

shown to generate reasonable descriptions of real electronic band structures [29]. The

only way to combine quantum-mechanical exchange and correlation effects is to include

them in the effective potential term, V̂eff., which is identical due to the second Hohenberg-
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Kohn Theorem. According to Kohn and Sham,

Veff. = Vext.[n(r)] + VH[n(r)] + Vxc[n(r)]. (2.14)

The first term, Vext.[n(r)], indicates the external potential acting on the interacting system

of electrons (e.g., the potential background from ions). The second term, VH, is the

Coulomb (a.k.a. Hartree) potential

VH =
1

4πε0

∫
n(r′)

|r− r′|
dr′, (2.15)

while the last term, Vxc, called exchange-correlation potential, incorporates everything

else to make Veff. exact. The exchange-correlation potential contains the kinetic energy

difference between the Coulomb interaction of electrons with the exchange-correlation

hole as well as the real interaction and fictitious non-interacting systems. Going back to

Eq. (2.10), the Hohenberg-Kohn functional, FHK, takes the form

FHK[n(r)] = T0[n(r)] + VH[n(r)] + Vxc[n(r)], (2.16)

where the T0[n(r)] denotes the kinetic energy of the non-interacting system.

The Kohn-Sham method, Eq. (2.13), Eq. (2.14), provides the exact theory and the correct

charge density for any system by considering the exchange-correlation functional. The

only approximation is the Born-Oppenheimer hypothesis of decoupled electronic and

ionic dynamics. In practice, however, the Vxc[n(r)] term is unexplored and needs to be

approximated too.

The Kohn-Sham equations Eq. (2.13) define a self-consistent problem and are usually

solved by an iterative method. First, a trial charge density is used to compute the corre-

sponding Kohn-Sham Hamiltonian, ĤKS. Then, the Kohn-Sham equations Eq. (2.13) are

determined, and a new charge density is defined from the Kohn-Sham orbitals, φi(r), and

applied to construct the Kohn-Sham Hamiltonian again. The scheme is repeated until

arriving convergence within a designated accuracy.

2.2.5 The exchange-correlation potential

The exchange-correlation potential, Vxc in Eq. (2.14), contains the energy difference be-

tween the physical system of interacting electrons and the auxiliary non-interacting sys-

tem. Vxc can be calculated as a functional derivative of the exchange-correlation energy,

Exc, with considering the local density, n(r),

Vxc[n(r)] =
δExc[n(r)]

δn(r)
. (2.17)
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When considering homogeneous electron gas, Vxc depends only on the value of the density.

For non-homogeneous systems, however, Vxc generally depends also on the derivatives of

the charge density, leading to

Vxc[n(r)] =

∫
Vxc(n(r),∇n(r),∇(∇n(r)), ...), n(r)dr. (2.18)

In what follows, the most popularly applied approximations for the exchange-correlation

potential will be described.

2.2.6 Local density approximation (LDA)

The Local Density Approximation (LDA) was firstly introduced in 1965, in the original

work by Kohn and Sham [28] who assumed the so-called jellium model, i.e. a homoge-

neous electron gas with electrons evenly distributed in a uniform positive external poten-

tial. Consequently, the exchange-correlation energy functional, Exc[n(r)] in Eq. (2.17),

reads [25]

ELDA
xc [n(r)] = ELDA

x [n(r)] + ELDA
c [n(r)] =

∫
εLDA

xc (n(r))n(r)dr, (2.19)

wherein εLDA
xc (n(r)) is the exchange-correlation energy of each particle of a single electron

in a uniform electron gas with the density n(r). Furthermore, εLDA
xc (n(r)) can be expressed

as a sum of the exchange energy density, εLDA
x (n(r)), and the correlation energy density,

εLDA
c (n(r)),

εLDA
xc (n(r)) = εLDA

x (n(r)) + εLDA
c (n(r)). (2.20)

Employing the Hartree-Fock approximation for homogeneous electron gas yields the ex-

change part, εLDA
c (n(r)) = −Cn1/3(r) [28, 30], and hence

ELDA
x [n(r)] = −3

4

(
3

π

)1/3

︸ ︷︷ ︸
C

∫
n4/3(r)dr. (2.21)

Although the correlation part, εLDA
c (n(r)), comes more challenging to display in an ana-

lytic form, it was parametrized by e.g. Ceperley and Alder [31] via quantum Monte-Carlo

calculations. From the definition, LDA presents a good explanation for systems possess-

ing rather a uniform charge density, e.g., nearly free electron metals. LDA also works

pretty well for semiconductors, molecules, and ionic crystals but breaks once the charge

density changes distinctly, such as in the case of highly localized charge density distri-

bution. LDA disesteems band gaps and exceeds binding, which leads to generally lower

lattice parameters (bond lengths) compared to experimental values [25].
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2.2.7 Generalized gradient approximation (GGA)

John P. Perdew

Very complex potential landscapes around electrons characterize

most real systems, therefore non-homogeneous charge density,

calling for further improvement of the simplistic LDA approach.

Already Kohn and Sham regarded that the charge density gra-

dient, ∇n(r), is important to get a better view of the exchange-

correlation energy. In the 1990s, Perdew, and co-workers [32, 33]

made a real breakthrough by proposing the Generalized Gradient

Approximation (GGA), in which the exchange-correlation energy

reads

EGGA
xc [n(r)] =

∫
εGGA

xc (n(r),∇n(r))n(r)dr =∫
εGGA

xc (n(r))Fxc(n(r),∇n(r))n(r)dr.

(2.22)

GGA exchange-correlation energy functionals produce plenty of results for many systems

but underestimate binding, systematically, hence overestimate bond lengths. Similarly to

LDA, GGA underestimates band gaps [25, 34]. To overcome this limitation, the so-called

meta-GGA (MGGA) approach—adding more semi-local information than GGA have

been developed [34]. MGGA also respects higher-order density gradients or includes the

kinetic energy density, which contains derivatives of the occupied Kohn-Sham orbitals.

Another approach is hybrid exchange-correlation functionals, connecting the Hartree-

Fock and GGA method advantages, as their systematic errors partially cancel out [25].

Unlike GGA, the Hartree-Fock method yields smaller bond lengths, larger binding en-

ergy, and wider band gaps. Since Hartree and Fock omitted correlation effects, hybrid

functionals include full GGA-type correlation, while the exchange part is some mixture

of the exact Hartree-Fock exchange (often ' 25%) and a GGA-type exchange [25, 35].

2.2.8 Basis wave functions

For a practical implementation of DFT, it is important to expand the Kohn-Sham orbitals,

φi(r) in Eq. (2.13), in a reasonable basis, φbasis
p (r),

φi(r) =
P∑
p=1

cipφ
basis
p (r), (2.23)
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where cip are constant coefficients. Accordingly, the Kohn-Sham equations are equal to

the system of linear equations [36]
· · · · · · · · ·
... 〈φbasis

j |ĤKS|φbasis
k 〉 − Ei〈φbasis

j |φbasis
k 〉 ...

· · · · · · · · ·


︸ ︷︷ ︸

H


ci1
...

ciP

 =


0
...

0

 .
(2.24)

Diagonalisation of the matrix H produces P sets of coefficients cip and P eigenvalues.

In principle, the function space where the eigenfunctions φi(r) belong to is infinite-

dimensional; hence P is infinite. For practical reasons, however, P requires to be trun-

cated because the actual size of the basis set influences the accuracy of the solution,

directly. Suitable basis wave functions can reduce the value of P required for the desig-

nated accuracy. The linear combination of atomic orbitals (LCAO) [37], orthogonalized

plane waves method (OPW) [38], and projector augmented plane waves (PAW) [39] are

the most popular ones include. In this thesis, the last-mentioned PAW method was ap-

plied. The advantage of plane waves is their orthogonality, largely simplifying terms of

type Ei〈φbasis
j |φbasis

k 〉 matrix equation (2.24), and their simplistic analytical form.

2.2.9 Periodic boundary conditions

Extended systems with too many atoms, such as bulk materials or surfaces, could be

computationally treatable. Consequently, an important feature is crystal periodicity that

allows using supercells consisting of several unit cells to approximate the intended sys-

tem. Following periodic boundary conditions, the Bloch Theorem [25, 40], ensures that

defining wave functions inside a unit cell (supercell) is enough to explain the infinite peri-

odic system since wave functions outside this limited region only vary by a phase factor.

Following the Bloch Theorem, each Kohn-Sham eigenfunction in a periodic solid can be

denoted as a product of a plane wave, eikr with a wave vector k from the first Brillouin

zone, and a lattice-periodic function,

φn,k(r) = eikrun,k(r). (2.25)

In the above, the band index, n, label the wave functions for a given k. This means that

a wave vector labels each plane wave, k, i.e., a triplet of (k1, k2, k3). Applying a Fourier

expansion of un,k(r) with respect to the reciprocal lattice vectors, G, leads to

φn,k(r) = eikr
∑
G

cGn,keiGr =
∑
G

cGn,kei(K+G)r, (2.26)
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where cGn,k are (complex) expansion coefficients that require to be determined. In princi-

ple, wave functions for electrons inside a unit cell should be calculated at infinite number

of k-points in the corresponding reciprocal unit cell. For practical reasons, however, only

a finite number of k-points, i.e. a certain k-point mesh is assumed [25].

As already discussed, a formally exact description of the electronic wave functions needs

an infinite basis set. In reality, only a limited number of plane waves can be taken into

account. The basis set size is conventionally connected to the kinetic energy of a plane

wave

E =
~2|k + G|2

2m
. (2.27)

Concerning the ground-state properties, lower-energy plane waves probably provide more

to the solution sought than the higher-energy ones. Therefore, a cut-off energy

E =
~2|kcut|2

2m
. (2.28)

can be determined and only plane waves with |k + G| < kcut are used in the expan-

sion Eq. (2.26). Obviously, the higher the Ecut value, the larger wave function basis is

generated, directly affecting the quality of the solution.

2.2.10 Pseudopotentials

The wave function expansion into plane waves, Eq. (2.26), demands a large number of

plane waves in the core region where the are rapid oscillations by the diverging potential.

Since oscillations are computationally very expensive to represent, the pseudopotential

method efficiently can reduce the core electrons tightly bonded. They are highly localized

in the close environment of atomic nuclei and no significant participation in chemical

bonding. Pseudopotentials are formed to generate artificial nodeless wave functions in the

nucleus and core electron region while replicating the valence electron states (only) outside

of a given radius. Due to that, the more wave functions from the core as a valence state,

a more accurate pseudopotential can be generated; nevertheless, this can significantly

raise computational costs. The already mentioned projector augmented plane waves

(PAW) [39] connects both the pseudopotential and the all-electron methods. Applying

the frozen core approximation to the core region’s wave function achieves the accuracy of

all electron methods. While actual valence wave functions with actual nodes near nuclei

can be obtained, then it gives accurate calculations of the optical and magnetic properties

possible while retaining the capability of the pseudopotential method [25, 36].

23



2.2.11 Muffin-tin orbitals

The muffin-tin spheres divide the crystal into two parts, one is the region surrounded

by the atomic sites and the other one is the interstitial region outside of the mentioned

spheres. Inside the muffin-tin spheres (the spheres never touch each other) with radius

Smuffin−tin, the potential, Vmuffin−tin, is assumed to be spherically symmetric, while for the

interstitial region is considered approximately constant, VI. Without loss of generosity,

the potential in the interstitial region can be set to zero. In this relation, the potential

of a single muffin-tin well for a crystal with one atom is written by:

Vmuffin−tin(r) =

 V (r)− VI , if |r| < Smuffin−tin ,

0 , if |r| > Smuffin−tin ,
(2.29)

where, V (r) is the spherically symmetric part of the crystal potential. Now, the Schrödinger

equation (2.13) can be written as:[
− ~2

2m
∇2 + Vmuffin−tin

]
φi(r) = (Ei − VI)φi(r). (2.30)

2.3 Structural stability

Inside the useful part of this thesis, a material’s structural stability was evaluated on three

levels, containing chemical, mechanical, and dynamical (vibrational, phonon) stability.

Theoretical concepts can be found in any standard textbook of solid state physics, e.g.,

Kittel and McEuen [41].

2.3.1 Chemical stability

The energy of formation, Ef , which explain chemical stability, represents the energy ab-

sorbed or released when combining particles from an infinite pool into a complex structure,

Ef =
1∑
s ns

(
Etot −

∑
s

nsµs

)
. (2.31)

where, Etot is the total energy of the cell, µs and ns are the chemical potential and

the number of atoms, respectively, of the element s (e.g. Ti, Al or Mo). The chemical

potential, µs, is conventionally approximated by the total energy per atom of the ground

state of the element s, e.g. µAl ≡ Efcc−Al
tot , µTi ≡ Ehcp−Ti

tot or µMo ≡ Ebcc−Mo
tot . The negative

formation energy, Ef [42, 43] means the structure is chemically stable.

2.3.2 Mechanical stability

Certain strain energy can be expected by any deformation which can bring material

from its equilibrium characterized by equilibrium energy E0 and the volume V0 to a
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higher-energy (deformed) state. For instance, the strain energy, E(ε), of a homogeneous

deformation by an infinitesimal strain, can be Tailor-expanded around the equilibrium

configuration and approximated by a quadratic function of all the independent deforma-

tion parameters, i.e. the strain components εij. This quadratic approximation of the

strain energy is valid for sufficiently small strains, which is known as harmonic elasticity,

E(ε) = E0︸︷︷︸
A

+V0

3∑
i,j=1

∂E

∂εij

∣∣∣∣
V0︸ ︷︷ ︸

Bij

εij +
1

2
V0

3∑
i,j,k,l=1

∂2E

∂εij∂εkl

∣∣∣∣
V0︸ ︷︷ ︸

Cijkl

εijεkl +O(ε3) =

= A+ V0

3∑
i,j=1

Bijεij +
1

2
V0

3∑
i,j,k,l=1

Cijklεijεkl =

=
1

2
V0

3∑
i,j,k,l=1

Cijklεijεkl

(2.32)

The harmonic approximation is granted for the previous equation. As all strains are

zero in equilibrium, the intended strain energy is set to zero (E0 ≡ A ≡ 0). The first

derivatives of the strain energy are zero (Bij ≡ 0), because the Taylor expansion is done

nearby equilibrium configuration. The theory of linear elasticity cancels the higher-order

derivatives (O(ε3) ≡ 0). In Eq. (2.32), Cijkl is the 4-rank elastic tensor, having generally

81 independent components. Imposing the symmetry requirement, Cijkl = Cjikl = Cijlk,

together with the rule of exchanging partial derivatives, Cijkl = Cklij, the number of

independent components decreases to 21. Furthermore, applying a mapping that gets a

pair of Cartesian indices inside a single integer (Voigt’s notation)

11 7→ 1; 22 7→ 2; 33 7→ 3; 23 7→ 4; 13 7→ 5; 12 7→ 6, (2.33)

the quadratic form of Eq. (2.32) reads

E(ε) =
1

2
V0

6∑
i,j=1

Cijεiεj (2.34)

Lastly, in the lack of external loads, the material is stable; while within the harmonic

approximation if and only if for all non-zero strains its elastic energy given by Eq. (2.34)

is positive. As Cij (in the Voight’s notation) is a 6 × 6 matrix, this is equivalent to the

following necessary and enough mechanical stability conditions [44],

(I) the matrix C is positive definite,

(II) all eigenvalues of C are positive,
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(III) all leading principal minors of C are positive.

These conditions hold regardless of the crystal symmetry. The simplest form of (I) is for

cubic systems

C11 − C12 > 0, C11 + 2C12 > 0 C44 > 0, (2.35)

known as the Born stability criterion [44, 45].

2.4 The elastic properties of crystals

DFT allows a parameter-free approach for assessing mechanical properties at the atomic

level from single-crystal elastic constants. Keeping the notation of Section 2.3.2 together

with the assumption of harmonic elasticity, second-order elastic constants, Cij, can be

described as the coefficients of proportionality between the stresses, σi, of the material

and the macroscopic strains, εj, acting on the material. This relationship is known as

the Hooke’s law, which in components reads

σi =
6∑
j=1

Cijεj , (i = 1, 2, ..., 6) (2.36)

Equation (2.36) considers the earlier introduced Voigt’s notation Eq. (2.33). Therefore,

the elastic (stiffness) matrix, Cij has size 6×6 and it is symmetric, consequently contains

21 independent elements. The crystal class of the material in question dictates additional

symmetry requirements that further decrease independent elastic constants [44]. Specifi-

cally, the elastic response of material with cubic symmetry is fully characterized by three

independent elastic constants, C11, C12, C44, while the corresponding elastic matrix reads

Ccubic
ij =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


. (2.37)
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And hexagonal crystal system with 5 independent elastic constants:

Chexagonal
ij =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66


(2.38)

with C66 = (C11 − C12)/2 [44].

Two different methods are available to calculate elastic constants from first principles.

The energy-strain method extracts Cij directly from the variation of the strain energy,

E, of the system with strain according to the already derived Eq. (2.34), i.e. E(ε) =
1
2
V0

∑6
i,j=1 Cijεiεj

Based on the Hooke’s law (2.36), the stress-strain method uses directly the variation of

stresses with the applied strain, as given by σi =
∑6

j=1Cijεj . As shown by Caro, Schulz,

and O’Reilly [46], the stress-strain method is more robust. It converges faster than the

energy-strain approach concerning the number of plane waves in the basis set and the

number of k-points sampling the reciprocal space [47].

2.4.1 Single crystalline Young’s modulus

The directional dependence of Young’s modulus, Ehkl, can be related to the elastic com-

pliances (Sij) = (Cij)
−1.

For a cubic structure, the directional Young’s modulus is [48]:

1

Ehkl
= S11 − 2

(
S11 − S12 −

1

2
S44

)
(l21l

2
2 + l22l

2
3 + l21l

2
3) (2.39)

where l1, l2 and l3 are the directional cosines of the direction [hkl].

Equation (2.39) simplifies for the three low-index cubic directions into:

1

E100

= S11 , (2.40)

1

E110

= S11 −
1

2

(
S11 − S12 −

1

2
S44

)
, (2.41)

1

E111

= S11 −
2

3

(
S11 − S12 −

1

2
S44

)
. (2.42)
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Similarly, for hexagonal phases one gets [48]:

1

Ehkl
= (1− l23)S11 + l43S33 + l23(1− l23)(2S13 + S44) (2.43)

where the Eq. (2.43) yields:

1

E2110

=
1

E100

= S11 , (2.44)

1

E0001

=
1

E001

= S33 . (2.45)

2.5 Polycrystalline bulk, shear, and Young’s modulus

From the obtained Cij of a single crystal, polycrystalline bulk modulus, B, and shear

modulus, G, are defined as:

B =
BV +BR

2
, (2.46)

G =
GV +GR

2
, (2.47)

where the BV , GV , and BR, GR are Voigt’s and Reuss’s bulk and shear modulus respec-

tively.

For a cubic system with C11,C12 and C44 elastic constants:

BV = BR =
C11 + 2C12

3
, (2.48)

GV =
C11 − C12 + 3C44

5
, (2.49)

GR =
5(C11 − C12)C44

3(C11 − C12+)4C44

. (2.50)

On the other hand, for hexagonal structures the numbers of independent single-crystal

elastic constant are five (C11, C12, C13, C66 and C66), the Voigt’s, Reuss’s bulk and shear

modulus are given by

BV =
2C11 + 2C12 + 4C13 + C33

9
, (2.51)

BR =
(C11 + C12)C33 − 2C2

13

C11 + C12 − 4C13 + 2C33

, (2.52)

GV =
C11 + C12 − 4C13 + 2C33 + C44 + 12C66

30
, (2.53)

GR =
5[(C11 + C12)C33 − 2C2

13]C44C66

6BVC44C66 + 2[(C11 + C12)C33 − 2C2
13](C44 + C66)

, (2.54)
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with

C66 =
C11 − C12

2
. (2.55)

Polycrystalline Young’s modulus, E, is calculated as:

E =
9BG

3B +G
. (2.56)

2.6 Quasi-harmonic approximation (QHA)

Recently, phonopy [49] has become one of the most used tools in the computational ma-

terial science field. The quasi-harmonic approximation (QHA) is implemented in it to

calculate some thermal properties, e.g., thermal expansion or heat capacity. However, in

the there implemented approach, the temperature has no direct effect on the unit cell

geometry such as c/a and b/a ratios or the lattice angles [50]. Since the main application

field of the TiAl-based alloys is at high temperatures, accurate knowledge of tempera-

ture dependencies of structural and thermodynamic properties, i.e., thermal expansion

coefficient (TEC) is of crucial importance[51, 52].

As a counterpart to the experimentally estimated values of TEC [53–58], first principles

quantum-mechanical methods were used to predict the thermal expansion properties of γ-

TiAl alloys [59]. Nonetheless, comparing the result of Fu et al. [59] and He et al. [58], the

thus revealed discrepancies call for improved implementation of the QHA to determine

TEC for α2-Ti3Al (hexagonal) and γ-TiAl (tetragonal) phases.

2.6.1 The used concepts

Note: This section is a part of an own publication [50].

Structural optimization includes the evaluation of total energies at various volumes. Full

relaxation including the unit cell shape and internal atomic coordinates optimization was

performed for every volume, yielding lattice parameters aξ0(V ) and cξ0(V ) (ξ = γ or α2)

as functions of volume at 0 K.

Thermal properties were evaluated within the quasi-harmonic approximation (QHA) us-

ing the phonopy code [49, 60]. The phonon frequencies were calculated for 6 evenly

spaced volumes in the range 15.4–17.4 Å
3
/at. (γ-phase) and 6 volumes in the range 15.8–

17.9 Å
3
/at. (α2-phase) employing 3×3×3 (54 atoms) and 2×2×2 (64 atoms) supercells,

respectively.

Assuming that the c/a ratio is only a function of volume and not temperature, the

resulting temperature dependence of volume V ξ(T ) as obtained from the QHA (phonopy-

qha package) allows to determine also the temperature dependencies of individual lattice
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constants xξ(T ), x = a, c and ξ = γ, α2, as:

xξ(T ) = xξ0(V (T )) . (2.57)

This treatment is in Chap. 6 termed as ‘ground state optimized cell shape’ (gs-cs).

To probe the validity of the assumption that the c/a is only a function of volume in-

dependent of temperature, we have adopted additional scheme. For every volume, we

selected 5 c/a ratios around the GGA-PBE equilibrium values ((c/a)GGA−PBE
γ = 1.018,

(c/a)GGA−PBE
α2

= 0.809). For each of these static configurations, thermodynamic proper-

ties within the harmonic approximation (phonopy package) were calculated, hence yield-

ing vibrational Helmholtz free energies Fvib(T, V, c/a). The total Helmholtz free energy,

F , was constructed by adding the 0 K total energies:

F (T, V, c/a) = Etot(V, c/a) + Fvib(T, V, c/a) . (2.58)

The equilibrium geometry at a fixed temperature T was then calculated by two-step

fitting. First, we estimated

F (T, V ) = min
c/a

F (T, V, c/a) (2.59)

by fitting the F (T = const., V = const, c/a) data with a second order polynomial.

Subsequently, the F (T, V ) data were fitted with the Birch–Murnaghan equation of state

[61] to obtain the equilibrium volume V0(T ) (in addition to free energy, F (T ), bulk

modulus, B(T ), and pressure derivative of bulk modulus, B′(T )). Finally, the (c/a)(T =

const., V ) data minimising F (T = const., V, c/a) in Eq. (2.59), were linearly interpolated

as a function of V , and the equilibrium value at temperature T was estimated from this

linear fit at V = V0(T ). This procedure allows to decouple the influence of temperature

and pressure (volume) on the cell geometry and in the Chap. 6 is thus termed ‘temperature

optimized cell shape’ (to-cs) approach.

The thermal expansion coefficients were calculated from the estimated lattice parameters

as:

αξx(T ) =
1

xξ(T )

dxξ
dT
≈ 1

xξ(T )

xξ(T + ∆T )− xξ(T −∆T )

2∆T
. (2.60)

Finally, the heat capacity at constant (ambient) pressure, Cp, was estimated from the

Helmholtz free energy, F ξ(T ), as

Cp(T ) = −T ∂
2F (T )

∂T 2
≈ −T F (T + ∆T ) + F (T −∆T )− 2F (T )

(∆T )2
(2.61)

The latter expressions in Eqs. (2.60) and (2.61) represent numerical derivatives as both,

lattice constants and Helmholtz free energy were calculated on a discrete set of temper-

atures from 0 to 1000 K with a step of 10 K.
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Chapter 3

Simulation setup

3.1 Structural models

3.1.1 Phases with composition Ti0.5Al0.5

In the present thesis, several different TiAl structures were considered for investigation.

Their overview is shown in this section. Those include eight TiAl-based structures,

namely α2-Ti3Al, α′2-TiAl, α′-TiAl, βo-TiAl, β-TiAl, γ-TiAl, γdis-TiAl and B19-TiAl

(Table 3.1).

The chemical disorder is modeled with supercells having optimized short range order pair

correlation functions, often referred to as Special Quasi-random Structures (SQSs) [62].

They were generated with our own code sqsgenerator [63].

A conventional bcc cell β was used to construct 3× 3× 3 supercells containing 54 atoms

which represent the disordered β-TiAl phase (Ti0.5Al0.5)(see Fig. 3.1a). From the per-

spective as to how to distribute atoms among the lattice sites (in the supercell for the

SQS approach or the unit cell for the CPA), this structure has only 1 sublattice (all

lattice sites are equivalent), see Fig. 3.1a). The same supercell size was used also for

modeling its ordered variant, βo-TiAl, based on the B2 unit cell (space group nr. 221

(Pm3̄m), Fig. 3.1b)). In contrast to the β phase, the ordered-βo structure has two sub-

lattices. In their perfect state, these two sublattices are fully populated with Ti and Al

atoms, respectively. Therefore, Mo may occupy any of these sublattices. Assuming a

direct substitution, this leads to what is further on referred to as Ti-rich compositions,

Ti0.5Al0.5−xMox or Al-rich compositions, Ti0.5−xAl0.5Mox. Obviously, the same composi-

tions (and hence terminology) are allowed also for the disordered β phase in which all

three elements occupy the same sublattice. The structural studies are complemented

also with discussing compositional trends of the stable Ti0.5Al0.5 intermetallic phase, the

conventional slightly-tetragonal γ-TiAl (L10, space group nr. 123 (P4/mmm)) and its
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(a) βTiAl
(b) βo-TiAl

(c) γ-T (d) γdis-TiAl

(e) α′2-TiAl (f) α′-TiAl

(g )B19-TiAl

Figure 3.1: Visualization of the atomic arrangements of the studied phases in simulation
boxes.
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hypothetical disordered counterpart, γdis (A1, space group nr 225 (Fm3̄m)). The unitcell

of γ-TiAl can be reduced to a body-centered tetragonal (bct) structure shown in Fig. 3.1c.

Both γdis and Mo-alloyed γ phases were modeled as 2×2×2 multiple of a 4-atom conven-

tional fcc/γ-TiAl cell leading to 32 atomic supercells (see γdis in Fig. 3.1d) [14]. Again,

the Ti-rich and Al-rich terminology for Mo-alloyed systems is used with the same meaning

as for the βo/β structures.

Regarding the hexagonal counterparts for the martensitic transformation, we consider

α2-Ti3Al (D019, space group nr. 194 (P63/mmc)) (see Fig. 3.2a) as a parent phase for

creating the martensitic α′2/α
′ structures (i.e., with the same composition of Ti0.5Al0.5 as

the β/βo phases). The D019 has two sublattices: a Ti sublattice containing 75% of the

lattice sites and Al with 25% lattice sites (Fig. 3.2b). Since an overall composition of

Ti0.5Al0.5 is required for the α′2 structure, the Al sublattice was fully populated with Al

atoms, while the D019-structure Ti sublattice was randomly populated with 1/3 Al atoms

and 2/3 of Ti atoms (Fig. 3.2c). These are the fractional occupancies that enter the CPA

structural definition using the D019 unitcell, and are the target sublattice concentrations

to the supercell model as well. In the latter case, a 2 × 2 × 2 supercell of the D019 8-

atomic unit cell (all together with 64 atoms) was created. The (originally D019-structure)

Ti sublattice was randomly populated with 32 Ti and 16 Al atoms (Fig 3.2c). Hence,

The resulting α′2 structure is only a partially ordered structure (see Fig. 3.1e). In order

to create a disordered α′ structure with the composition Ti0.5Al0.5, all 64 atom sites were

randomly populated with 32 Ti and 32 Al atoms, i.e., the resulting structure is hcp lattice

(A3, space group nr. 194 (P63/mmc)) with fractional occupancies xTi = 0.5 and xAl = 0.5

for all sites. For the Mo-alloyed ordered α′2 structures (Fig 3.2f), Mo was considered to

replace Al/Ti on Ti-sublattice (of the underlying D019 structure, Fig. 3.2b). The reason is

that our calculations revealed that adding Mo on the Al-sublattice yields higher energies

than on the Ti-sublattice and hence such atomic distribution is less favorable. As a fully

ordered counterpart of the α′-TiAl phase, we consider the orthorhombic B19-TiAl (space

group nr. 51 (Pmma) phase (see Fig. 3.1g) [64].

3.2 Computational methods

Our calculations are based on Density Functional Theory (DFT), introduced in Chap. 2

as implemented in two complementary codes. The supercell calculations were performed

using Vienna Ab-initio Simulation Package (VASP) [65] using Projector Augmented-

Wave method (PAW) potentials [39, 66]. The valence configurations of used pseudopo-

tentials of Ti, Al, and Mo were [Ar]3d24s2, [Ne]3p1, and [Kr]4d55s1 respectively. The

electron-electron exchange and correlation interactions were calculated using Perdew-

Burke-Ernzerhof’s formulation of the generalized gradient approximation (GGA-PBE) [33].
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a)D019-unitcell

b)D019-Ti0.75Al0.25 c)α2'-Ti0.5Al0.5

1/3 Al site(16 atoms)+

2/3 Ti site(48 atoms)

Al sublat.16 atoms

Ti sublat.48 atoms

Figure 3.2: A schematic visualization of the relation between α2-Ti3Al and α′2-TiAl struc-
tures: (a) α2 (D019) unit cell, (b) 2 × 2 × 2 supercell of α2, and (c) α′2 supercell with
(D019) Al-sublattice fully occupied with Al and (D019) Ti-sublattice populated with 2/3
Ti and 1/3 Al atoms.

Table 3.1: Overview of the investigated TiAl-phases.

Phase Nominal compositions Ordering Space group Structure type

α2 hcp-Ti3Al ordered P63/mmc D019

α′2 hcp-TiAl partially ordered P63/mmc D019

α′ hcp-Ti3Al disordered P63/mmc A4

βo bcc-TiAl ordered Pm3m B2

β bcc-TiAl disordered Im3m A2

γ bct-TiAl ordered P4/mmm L10

γdis fcc-TiAl disordered Fm3m L10

B19 orthorhombic-TiAl ordered Pmma B2

The wave functions were expanded in plane waves up to a kinetic energy cut-off of 500 eV.

An automatically generated Γ-centered Monkhorst-Pack mesh of k-points was used to

sample the irreducible part of the Brillouin zone. The spacing of k-points used for sam-

pling the irreducible part of the first Brillouin zone was ≈ 0.1 Å
−1

. This translates to

19× 19× 19, 12× 12× 13 and 20× 20× 18 k-point meshes for the reciprocal lattice of

βo, α2 and γ unit cells, respectively.

The calculations were converged with respect to the number of k-points and plane wave

cut-off energy to reach a total energy accuracy of 1 meV/at. or better. A total en-

ergy convergence threshold of 10−6 eV (per simulation box) was used for the electronic

self-consistency, while 10−4 eV was used as a stopping criterion for the structural relax-

ations. In order to compare the influence of local atomic relaxations, different optimiza-

tion schemes were used and are discussed in the next chapters.
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The second approach employed the Green’s function Exact Muffin-tin Orbital (EMTO)

method [67, 68] within the Coherent Potential Approximation (CPA) [69–71] as imple-

mented in the Lyngby version of EMTO-CPA code [72]. The intrasite Coulomb interac-

tions parameters, that describe electrostatic interactions in the single-site approximation,

are used in calculations of the total energy of random alloys within CPA. These pa-

rameters have been calculated using the locally self-consistent Green’s function (LSGF)

[73, 74] the method implemented within the EMTO technique (ELSGF) [75]. All the self-

consistent EMTO-CPA calculations were performed with the orbital momentum cutoff of

lmax = 3 for partial waves. The integration over the Brillouin zone was performed using

a 32×32×32 grid of k-points for cubic structures, 32×32×19 for the hcp structure, and

18× 32× 19 for the B19 structure determined according to the Monkhorst-Pack scheme

[76]. Self-consistent electron densities were obtained within the spherical cell approxima-

tion (SCA) [77] and the local density approximation (LDA) [32]. Then the total energies

were calculated employing the full charge density (FCD) formalism [78, 79] and the GGA-

PBE [33] for the exchange-correlation energy. In all the EMTO-CPA calculations of the

B19 structure, we have used the relaxed atomic coordinates of TiAl calculated by VASP.

Parts of most of the figures in this thesis were visualized using the VESTA package [80–

82].

Thermal properties were evaluated within the quasi-harmonic approximation (QHA) us-

ing the phonopy code [83, 84].

The atomic distributions inside the supercells were generated following the Special Quasi-

random Structures (SQSs) concept [85] with optimized pair correlation functions up to

the 7th coordination shell [86] using an in-house software tool [63].

3.3 Structural connections

3.3.1 Bcc-to-fcc structural connections

Note: This section is a part of an own publication [14].

In order to investigate the transformation barriers, it is necessary to define the structural

connection(s) of the initial and final phases of interest. When a body-centered cubic phase

is represented by a conventional cubic cell, a simple tetragonal deformation leads to a face-

centered cubic structure represented by a body-centered tetragonal cell (bct) (Fig. 3.3a).

This is known as Bain’s transformation path [87–95]. As the starting points, first, consider

the a and c be the lattice constants of the bcc or bct structure; a = c = abcc in the former

state, i.e. c/a = 1. Second consider an fcc conventional cell with a cubic lattice parameter

afcc; the lattice parameters of the corresponding bct cell are a = afcc

√
2/2 and c = afcc,
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Figure 3.3: Visualization of the considered structural transformations: (a) tetragonal
(Bain’s) path connecting the βo (B2) and γ (L10) structures and (b) trigonal path con-
necting the βo (B2) and L11 structures an intermediate B1 structure. In the case of
disordered systems, all sites are occupied by both Ti and Al (and Mo) atoms with an
equal probability reflecting the desired composition, and both paths connect the bcc
and the fcc structures, whereby the trigonal path contains an intermediate simple cubic
structure. The red arrows schematically show the applied deformation (tetragonal or
trigonal).
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i.e., c/a =
√

2.Using a transformation coordinate ∆, where ∆ = 0 corresponds to the bcc

structure whereas ∆ = 1 represents the bct (fcc) structure, the lattice parameters of the

bct cell change as:

a(∆) = (1−∆)abcc + ∆

√
2

2
afcc , (3.1)

c(∆) = (1−∆)abcc + ∆ · afcc . (3.2)

During this transformation, the (100)bcc plane converts to the (110)fcc while the (001)bcc

remains the (001)fcc plane. We note, that some authors (see, e.g., Refs. [94–97]) use

directly c/a as the transformation coordinate changing from c/a = 1 (∆ = 0) to c/a =
√

2

(∆ = 1). Another important point is that the lattice parameters change linearly along

the transformation path. Consequently, volume is neither linearly changing with ∆ nor it

is constant as, e.g., in Ref. [93]. Nonetheless, in the particular case of the Bain’s path in

the TiAl+Mo system, these different definitions result in negligible changes of the energy

landscape since the specific volumes of the βo-TiAl (V = 16.19 Å
3
/at.) and the γ-TiAl

(V = 16.25 Å
3
/at.) phases are almost identical.

When applying the Bain’s transformation path to the ordered γ-TiAl phase which is a

slightly tetragonally deformed fcc structure, the lattice parameters afcc in Eqs. (3.1) and

(3.2) are replaced by aγ and cγ, respectively. The Bain’s transformation path is schemat-

ically shown in Fig. 3.3a for the ordered structures βo ↔ γ and the two chemical species

Ti and Al are shown as spheres with different colors (blue and orange, respectively). In

the case of transformations between binary disordered structures, β ↔ γdis, all lattice

sites are equivalent, occupied randomly by Ti and Al atoms with the same probability

(all atoms in the figure would have the same color). The trigonal path is another type of

a bcc-to-fcc transformation (see, e.g., Refs. [88–93, 95–102]). As shown in Fig. 3.3b, it is

defined by an extension along the [111] direction of the bcc structure. The ordered cubic-

symmetry structures forming an equimolar binary compound are B2 (CsCl prototype),

B1 (NaCl prototype), and L11 (CuPt prototype). They can be conveniently described

by a suitable transformation coordinate ∆ with values ∆ = 0 for the bcc (B2 in the

case of ordered binary compound) phase, ∆ = 1
3

for the simple cubic (sc)(B1) phase and

∆ = 1 for the fcc (L11) phase. The lattice vectors matrix defining the unit cell is given as

a function of the transformation coordinate ∆, following the graphical representation in

Fig. 3.3b by also considering the possible specific volume change along the transformation

path, as:
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Figure 3.4: Dependence of c/a =

√
2
∣∣[111]

∣∣/∣∣[112̄]
∣∣ on the transformation coordinate ∆

for the trigonal transformation defined by Eqs. (3.3) and (3.4).
∣∣[·]∣∣ means length of a

vector [·] in a non-orthogonal coordination system which is defined by the rows of matrix
M in Eq. (3.3).

M(∆) =



a(∆)


1 ε 0

0 1 ε

ε 0 1

 , ε = 3∆ , if 0 ≤ ∆ ≤ 1

3
,

a(∆)


1 1− ε ε

ε 1 1− ε

1− ε ε 1

 , ε =
3

4

(
∆− 1

3

)
, if

1

3
≤ ∆ ≤ 1 ,

(3.3)

The unit cell volume, V = detM, is linearly interpolated between the high-symmetry

structures along the trigonal transformation path as

V (∆) =


(1− 3∆)Vbcc + 3∆ · Vsc , if 0 ≤ ∆ ≤ 1

3
,

3∆ · Vsc +
3∆− 1

2
Vfcc , if

1

3
≤ ∆ ≤ 1 ,

(3.4)

where Vbcc, Vsc, and Vfcc are equilibrium volumes of bcc (B2), sc (B1) and fcc (L11)

structures per 2 atoms, respectively.

We note that our definitions of the trigonal transformation path allow for volume changes

between the βo and L11, and β and γdis phases, respectively. In contrast to our description,
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previous literature focusing on the trigonal path with the constant volume used c/a as

a transformation coordinate [89, 93]. There, c is the length of the [111] vector in a non-

orthogonal coordination system defined by rows of the matrix M in Eq. (3.3), whereas

a =
∣∣[112̄]

∣∣/√2. Knowing additionally the relation between V = detM and ∆ (in the

present case given by Eq. (3.4)), one can directly relate c/a to ∆. This is shown in

Fig. 3.4.

3.3.2 Bcc-to-hcp structural connections

In this study, also a bcc→hcp transformation path was investigated. Namely, it was

applied for ordered phases, βo →B19 and disordered β → α′ phases to reveal barriers for

corresponding martensitic transformations.

As proposed by Paidar et al. [93], this can be realized by applying a homogeneous de-

formation (volume expansion) coupled with shuffling of neighboring atomic planes in

opposite directions.

The structure in the bottom-left corner of Fig. 3.5, (δc, δs) = (0, 0), represents the βo-bcc

structure projected along the [11̄0] cubic direction, thus leading to a representation with

and tetragonal cell with a and c lattice constants equal to 3.187 Å (= aβo) and 4.507 Å (=√
2aβo), respectively. The upper-right corner (δc, δs) = (1, 1) shows the orthorhombic B19

structure, representing a hexagonal counterpart of the ordered the βo phase. To execute

βo →B19 transition, two independent mechanisms are used simultaneously. The first one

is related to changing the cell shape (represented by the parameter δc) by stretching a

by approximately 9%, c by 3% and shrinking the b lattice constant by approximately 8%

(follow structure changes along the horizontal rows in Fig. 3.5). The lattice parameters

of βo unitcell change as:

aB19 =

√
2aβo(
V
V0

)1/3
, (3.5)

bB19 = aB19

(
δs2
√

3− 3
√

2

6
+

√
2

2

)
, (3.6)

cB19 = aB19

(
δs(2
√

2− 3)

3
+ 1

)
, (3.7)

where

V

V0

=
√

2

[
δs2
√

3− 3
√

2

6
+

√
2

2

][
δs2
√

2− 3

3
+ 1

]
(3.8)

and V0 = (aβo)
3. For δs = δc = 0, we obtain the bcc structure and δs = δc = 1 corresponds

to the hcp structure.
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Figure 3.5: Visualization of βo →B19 transformation in terms of cell shape changes and
shuffling of atoms.

Therefore, along the βo →B19 transformation path the lattice parameters change as:

a = aβo(1− δc) + aB19δc , (3.9)

b = bβo(1− δc) + bB19δc , (3.10)

c = cβo(1− δc) + cB19δc . (3.11)

The second mechanism is the shuffling of atomic positions which is visualized in Fig. 3.5

as the structural changes along the δs axis (vertical columns) column (a), as the dark

blue balls (Al atoms) are approaching more each other. Namely, the distances between

the atoms (both Al (blue) and Ti (orange)) change from being uniform along the a lattice

vetor for δs = 0 to being pair-wise coupled (δs = 1).

The positions of atoms are, in the units of the orthorhombic lattice constants a, b and c,

given as (1
2
− δs

6
, 0, 1

2
), (0, 0, 0), (- δs

6
, 1

2
, 1

2
) and (1

2
, 1

2
, 0).

The above described transformations represent the well known Burgers oreientation re-

lationship (110)bcc‖(0001)hcp, which has been intensively studied before [93, 103–105].
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It is trivial to mention the same equations (Eqs. (3.9)–(3.11)) and definitions were used

for β → α′ transformation path.

Finally, let us know that while those two mechanisms are well defined/decoupled in the

case of ordered βo →B19 phases, the exact meaning of the transformation coordinates,

especially the shuffling described by δs, becomes somewhat ambiguous in the case of disor-

dered and/or Mo alloyed systems, due to the local relaxations. Therefore, investigation of

the whole potential energy surface (PES) in terms of two independent parameters δc and

δs was done only for the binary TiAl system. For the ternary TiAl+Mo systems, we used

a single transformation coordinate, δ, linearly interpolating between the βo/β cell shape

and atomic positions, and B19/α′ cell shape and atomic positions. Such transformation

path corresponds to a section of the PES along with configurations with δc = δs = δ,

visualized by a dashed arrow in Fig. 3.5. The error in estimating the transformation

barrier from the whole PES and along this single section are discussed in Chap. 9 for the

case of ordered and disordered binary TiAl systems.
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Chapter 4

Structural properties

The equilibrium structural properties and energies were obtained by fitting volume-

dependent energies by Birch-Murnaghan equation of state [61] by fixing the cell symmetry

(cubic, hexagonal, orthorhombic) and relaxing atomic positions for each volume, unless

stated otherwise. The chemical stability was quantified using the formation energy, Ef ,

defined as:

Ef = E0(TimAlnMol)−
mE0(Ti) + nE0(Al) + lE0(Mo)

m+ n+ l
, (4.1)

where E0(TimAlnMol) is the total energy (per atom) of a supercell with m, n and l

atoms of Ti, Al and Mo, respectively, representing the studied phases. E0(Ti), E0(Al)

and E0(Mo) are the total energies (per atom) of hcp-Ti, fcc-Al and bcc-Mo elements

in their standard (reference) states, respectively. The equilibrium total energies were

obtained by fitting volume-dependent energies by Birch-Murnaghan equation of state

[61] by fixing the cell symmetry (cubic, hexagonal, orthorhombic) and relaxing atomic

positions for each volume unless stated otherwise.

4.1 TiAl-binary alloys

The equilibrium ground state properties of a compound at zero pressure are obtained

by minimizing the internal energy. The relevant degrees of freedom are specific volume,

atomic position, and cell shape. The atomic positions which depend on the local chem-

ical environment, are naturally differing from ideal lattice sites in the supercell VASP

approach to disordered systems due to explicitly considering different nearest neighbor-

hoods. This relaxation is caused by energy decrease by vanishing a net force each atom

is experiencing. On the other hand, due to the effective potential experienced by atoms

in the EMTO-CPA approach, no such local relaxations occur since all sites on a certain

sublattice are strictly equivalent. Similarly, due to the explicit disorder in the supercell
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treatment together with rather small supercell sizes used, the final symmetry of the dis-

ordered supercells is very low (ideally P1), which eventually leads to non-zero stresses

even for zero pressure.

Such a cell shape breaks the macroscopic crystallographic symmetry; it is an artificial

consequence of the arrangement of atoms in the supercell and will not occur on a macro-

scopic scale due to averaging. Therefore, it is not present in the EMTO-CPA treatment

where the long-range order is correctly described.

In order to address these issues, we consider 3 different optimization schemes of each

supercell structure calculated with VASP. Namely, ’no-relaxation’ represents struc-

tures optimized only with respect to the specific volume, by fixing the atomic positions

and desired crystallographic symmetry (cubic, hexagonal, orthorhombic). These results

should (structurally) correspond to the EMTO-CPA results.

In the second mode, ’ionic-relaxation’, the atomic positions and volume are relaxed

while still restricting the cell shape to the desired macroscopic symmetry (cubic for β/βo

structures, hexagonal for α′/α′2 structures, tetragonal for γ/γdis and orthogonal for B19

structure). n order to achieve the cell shape optimization with prescribed symmetry, the

c/a ratio was also optimized by running a series of calculations at fixed volume in the

case of hexagonal and tetragonal structures; for the orthorhombic phase, additionally also

the b/a ratio was optimized. Finally, we also ’fully-relaxed’ the cell shape by setting

ISIF=3 in the VASP input file INCAR.

As seen from Table 4.1, Ef is negative for all compositions, suggesting that all structures

are chemically stable. As expected, all relaxation schemes yield the same result in the

case of the βo and γ structures due to their high symmetry. Minor energy differences

between different optimization schemes are obtained in the case of the B19-TiAl structure.

Nonetheless, the differences in the range of 1 meV/at. are the edge of the accuracy of our

calculations, and consequently, also in this case we conclude that the optimized geometry,

as well as formation energy, is almost independent of the chosen method.

Allowing the local atomic positions to relax yields a decrease in the formation energy for

all disordered (partially ordered, α′2) structures: by≈ 20 meV/at. for α′/α′2, ≈ 10 meV/at.

for γdis and ≈ 50 meV/at. for the βo phase.

Allowing for a full cell shape relaxation in the case of the hexagonal α′/α′2 structures did

not yield any significant further relaxation.

Significantly larger discrepancies are obtained in the case of the β phase. A large energy

drop of 24 meV/at. is obtained once the cell shape is allowed to relax. A closer look reveals

that the initially cubic shape is slightly tetragonally distorted; some local environments
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are even so strongly distorted, that they notably resemble the γ-TiAl phase, the ground

state structure for stoichiometric composition. Therefore, a spontaneous transformation

β → γ is predicted to occur for the disordered β phase as a consequence of the symmetry

broken by the chemical disorder in the SQS (see Chap. 8 and Ref. [14]).

Analyzing the energy differences between the ordered and disordered phases (optimization

mode ’ionic-relaxation’) yields that the formation energies of the ordered phases are

lower than that of the disordered phases, namely ∆Ef (α
′ − α′2) = 42 meV/at., ∆Ef (β −

βo) = 11 meV/at. and ∆Ef (γdis − γ) = 163 meV/at. In the former case of hexagonal

structures, even lower energy is obtained for the fully-ordered variant B19, ∆Ef (α
′
2 −

B19) = 60 meV/at.

Similarly, the energy differences have been calculated for EMTO-CPA result. Specifically,

∆Ef (α
′−α′2) = 45 meV/at., ∆Ef (β−βo) = 56 meV/at. and ∆Ef (γdis−γ) = 179 meV/at..

It is predicted the lower energy difference with the VASP-SQS method for all cases,

specially for the cubic TiAl binary alloys. Further, discussions about the fully-relaxed

result of β/βo and γdis/γ have presented in detail in Chap. 8.

4.2 Ternary TiAl+Mo system

4.2.1 Cell shape optimization

The main aim of this chapter is to reveal compositional trends induced by alloying

Mo into the cubic and hexagonal Ti0.5Al0.5 phases. We start by discussing structural

trends in this section, followed by stability analysis and mechanical properties in the

next sections. The below presented structural properties of supercells are based on the

’ionic-relaxation’ data (see the previous section) preserving the macroscopic unit

cell geometry but relaxing local atomic positions. The only exception is the B19 phase

for which the ’fully-relaxed’ data are presented. This was motivated by (i) a good

agreement between the two relaxation schemes for pure Ti0.5Al0.5 (Tab. 4.1) and by (ii)

employing a computationally more efficient method (a full relaxation in a single calcu-

lation instead of a series of fixed volume/cell shape calculations which would have been

subsequently fitted).

The equilibrium volume trends are summarized in Fig. 4.1 for Ti0.5Al0.5−xMox (Ti-rich)

and Ti0.5−xAl0.5Mox (Al-rich) compositions (0 ≤ x / 0.17) as a function of the Mo

content, x. It is found that the volume of TiAl+Mo alloys decreases almost linearly in

most of the structures. The most significant deviation is the Ti-rich βo and B19 phases

yielding an almost constant value.

The mostly decreasing specific volume together with the fact that Mo is heavier than
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Table 4.1: Formation energy Ef , equilibrium volume V0 optimized lattice constants a, b
and c, c/a and bulk modulus B, for different TiAl-phases calculated using the supercell
approach with various optimization schemes and compared with EMTO-CPA results.

Phase Relaxation Ef [eV/at.] V0 [Å
3
/at.] a [Å] b [Å] c [Å] c/a B [GPa]

βo

EMTO-CPA −0.281 16.257 3.192 3.192 3.192 1.000 111

no-relaxation −0.263 16.185 3.187 3.187 3.187 1.000 110

ionic-relaxation −0.263 16.185 3.187 3.187 3.187 1.000 110

full-relaxation −0.263 16.186 3.187 3.187 3.187 1.000 –

β

EMTO-CPA −0.237 16.496 3.207 3.207 3.207 1.000 105

no-relaxation −0.201 16.468 3.178 3.178 3.178 1.000 105

ionic-relaxation −0.252 16.305 3.194 3.194 3.194 1.000 154

full-relaxation −0.276 16.466 3.608 2.875 3.189 0.883 –

γ

EMTO-CPA −0.404 15.95 3.96 3.96 4.06 1.03 117

no-relaxation −0.404 16.245 3.994 3.994 4.073 1.019 113

ionic-relaxation −0.404 16.245 3.994 3.994 4.073 1.019 113

full-relaxation −0.404 16.245 3.994 3.994 4.073 1.019 113

γdis

EMTO-CPA −0.225 16.25 4.02 4.02 4.02 1.000 110

no-relaxation −0.232 16.550 4.045 4.045 4.045 1.000 105

ionic-relaxation −0.241 16.557 4.045 4.045 4.045 1.000 103

full-relaxation −0.248 16.497 4.760 4.760 2.936 1.616 –

α′2

EMTO-CPA −0.287 16.506 5.727 5.727 4.648 0.811 108

no-relaxation −0.280 16.427 5.721 5.721 4.635 0.811 108

ionic-relaxation −0.300 16.409 5.737 5.737 4.604 0.802 107

full-relaxation −0.301 16.398 5.791 5.715 4.604 0.795 –

α′

EMTO-CPA −0.242 16.592 5.739 5.739 4.653 0.810 106

no-relaxation −0.240 16.556 5.729 5.729 4.659 0.813 107

ionic-relaxation −0.258 16.540 5.733 5.733 4.647 0.810 106

full-relaxation −0.259 16.534 5.770 5.754 4.647 0.805 –

B19

EMTO-CPA −0.352 16.327 4.923 2.865 4.631 0.940 112

no-relaxation −0.359 16.279 4.875 2.882 4.634 0.950 105

ionic-relaxation −0.360 16.241 4.888 2.871 4.627 0.946 111

full-relaxation −0.361 17.361 5.086 2.936 4.649 0.914
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either of Ti and Al, suggests that the mass density of the alloys containing Mo significantly

increases. We note that the trends obtained by both modeling techniques, the supercell

approach (solid lines) as well as the CPA method (dashed lines), are the same and thus

are expected to be trustworthy.

The volumetric trends are somewhat surprising, taking into account the atomic sizes as

conventionally measured with either covalent radii (r(Al) = 121 pm < r(Mo) = 154 pm <

r(Ti) = 160 pm [106] or atomic radii (r(Al) = 125 pm < r(Ti) = 140 pm < r(Mo) =

145 pm) [107]. In contrast to those, metallic radii suggests that Mo is marginally the

smallest atom: r(Mo) = 139 pm < r(Al) = 143 pm < r(Ti) = 147 pm [108]. This points

towards a stronger effect of the metallic bonding as compared with the covalent one

and therefore many-body interactions are more presumably dominant than the angular

bonding. Although such interpretation may seem somewhat speculative, it is well in

line with the ductility trend-givers (Pugh’s criterion, Cauchy pressure) discussed later in

Sec. 5.2.

Comparing ordered and disordered phases, it turns out that the ordered phases result

in smaller specific volumes, hence in higher mass density. This is even strengthened by

considering the B19 phase as the most ordered counterpart of the α′/α′2 phases. It is

worth mentioning that the EMTO-CPA results for the high Mo content compositions

suggest an opposite trend: a fully disordered β structure is predicted to have a smaller

specific volume than the βo phase. A closer inspection reveals that this is primarily

caused by the much stronger specific volume decrease with increasing Mo content in the

case of the EMTO-CPA calculations w.r.t. VASP-SQS ones. Additionally, the significant

local distortions [14] which are not accounted for by the EMTO-CPA approach, lead

to increasing average spacing between the atoms in the β phase and hence large space

volume as predicted by VASP-SQS method.

4.2.2 Chemical stability

Chemical stability as measured by the energy of formation (Eq. 4.1) suggests that al-

though all studied structures are chemically stable (Ef < 0), neither of γ/γdis and

B19/α′2/α phases really prefers to contain Mo (Fig. 4.2). In other words, alloying Mo in-

creases Ef with respect to the Ti0.5Al0.5 state and hence leads to a relative destabilization

of those phases.

In those cases, the CPA-based and supercell-based results exhibit qualitatively the same

trends.

The β phase exhibits the same behaviour as described above: alloying Mo is predicted to

chemically destabilize it the for both VASP-SQS and EMTO-CPA methods. Contrarily
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Figure 4.1: The calculated volume plotted against the molybdenum contents on two
different sublattices and different structures. Dashed and solid lines denote data obtained
using EMTO-CPA and VASP-SQS methods, respectively. The Ti-rich compositions are
shown with blue (disordered) and orange (ordered) colors, while the Al-rich compositions
with pink (disordered) and green (ordered) colors. The increasing amount of molybdenum
is displayed by darkening the color shades.

to that, Mo is suggested to stabilize the ordered βo phase (which is in agreement with

previous data for the Ti-rich configurations [109]). While both methods agree for the

Ti-rich composition, there is a large difference between them in the case of the Al-rich

compositions. There the EMTO-CPA method predicts destabilization (increasing Ef ) by

alloying of Mo, while the VASP-SQS method leads to a slight stabilization (decreasing

Ef ). We interpret this as a direct impact of local relaxations present in the VASP-SQS

method, which act as the stabilization mechanism.

Anti-site substitutional mechanisms were also considered for the Al-rich compositions
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of the B19 phase. In particular, Mo atoms were placed on the Al sublattice and the

same number of Al atoms were distributed on the Ti sublattice. It turns out that such

configurations yield even lower energies than a direct substitution with Mo atoms on the

Ti sublattice. We interpret this as a strong Al sublattice preference for Mo in the case of

the B19, in contrast to a previous report which did not consider anti-site defects in the

B19 phase [110].

In all cases, the trends are fairly linear in the investigated compositional range and hence

linear trends lines were added as guides for the eye into Fig. 4.2. The VASP-SQS data

are more scattered (w.r.t. a linear trend) then the EMTO-CPA values. This is likely a

consequence of finite-sized (and perhaps not large enough) supercells in the VASP-SQS

approach (It is discussed in Chap. 8).

4.2.3 Phase stability

A further insight into the stability of individual phases is provided by investigating their

elastic stability. An elastically (mechanically) stable structure is, in the Voigt’s notation,

described by a 6 × 6 matrix Cij of elastic constants, which is positive-definite, i.e. any

(small-enough) deformation leads to an increase of the internal energy [111]. Positive-

definiteness of a matrix is equivalent to all its eigenvalues (and in particular the smallest

one), to be positive. Minimum eigenvalues for the Cij matrices for all β/βo and α′/α′2
(reported and discussed in detail in Chap. 5) structures are shown in Fig. 4.3. While all

the hexagonal structures are predicted mechanically stable (λmin > 0, Fig. 4.3b), several

βo structures are identified as mechanically unstable (λmin < 0, Fig. 4.3a). Those are

removed from any further analyses in this and next Chapters.

4.3 CPA vs supercell approach

4.3.1 Local relaxations

In order to understand the VASP-SQS and EMTO-CPA predictions in details, in this

section we focus on differences of both methods to gain more insight into these approaches.

According to Fig.4.2, it seems βo Al-rich and B19 Ti-rich compositions result in opposite

trends of formation energy from the two methods. Therefore, the VASP-SQS formation

energy of these compositions (green and orange solid lines, respectively) with fixed atomic

positions are plotted in Fig. 4.4a to be compared with the EMTO-CPA results.

Clearly, the unrelaxed VASP results are in consistent with the EMTO-CPA data with

≈ 20 meV/at. differences in case of the βo phase and even less for the B19 phase , which

are quite acceptable. It is thereby concluded that the differences between the two methods

49



(a)

3.
7%

11.1%

7.4%

14
.8

%
14.8%

11
.1

%

3.
7%

11
.1%

14.8%

7.4
%3.

7%

7.4
%

-0.36 -0.32 -0.28 -0.24 -0.20 0.00

-60

-40

-20

0

20

40

60

80

100

120

mechanically unstable
mechanically stable

 β-Ti rich
 β-Al rich
 βo-Ti rich
 βo-Al rich

Formation energy [eV/at.]

Formation energy [eV/at.]

λ m
in

 [G
Pa

]

11.1%
7.4%

3.
7%

14
.8

%

0.0%
0.

0%

chem
ically stable

chem
ically unstable

(b)

12
.5

%
15

.6
2%

15
.6

2%

9.
37

% 12
.5

%

15
.6

2%

9.
37

%

12
.5

%

6.
25

%6.2
5%

9.
37

%
3.

12
%

6.
25

%

15
.6

2%
12

.5
%

3.
12

%

3.
12

%

9.
37

%

3.
12

%

6.
25

%

-0.32 -0.28 -0.24 -0.20 0.00

0

20

40

60
α '-Ti rich
α '-Al rich
α2'-Ti rich
α2'-Al rich

mechanically unstable
mechanically stable

chem
ically stable

Formation energy [eV/at.]

λ m
in

 [G
Pa

]

0.0%

0.
0%

chem
ically unstable

Figure 4.3: Minimum eigenvalues, λmin, of the matrix of elastic constants Cij plotted
against corresponding formation energy, Ef , for (a) β/βo and (b) α′/α′2 phases as a
function of Mo content. Negative (positive) values of λmin (Ef ) signify mechanically
(chemically) unstable systems.

50



(a)

0 2 4 6 8 10 12 14 16
-0.38
-0.36
-0.34
-0.32
-0.30
-0.28
-0.26
-0.24
-0.22
-0.20
-0.18
-0.16
-0.14

Fo
rm

at
io

n 
en

er
gy

 [e
V

/a
t.]

Mo content [at.%]

β o-A
l rich-VASP-unrelaxed

β o-A
l rich-CPA

Β19-Ti ric
h-VASP-unrelaxed

Β19-Ti rich-CPA

(b)

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

Mo content [at.%]

Lo
ca

l L
at

tic
e 

D
is

pl
ac

em
en

t ∆
d 

.1
03

E f (
β o)

-V
ASP

-re
lax

edLLD (β o)

Ti0.5-xAl0.5Mox
0.00

0.02

0.04

0.06

0.08
 R

el
ax

at
io

n 
en

er
gy

 [e
V

/a
t.]

Figure 4.4: a) The unrelaxed formation energies of βo Al-rich (green color), and B19 Ti-
rich (orange color) compositions of VASP-SQS (solid lines) calculations have compared
with EMTO-CPA (dashed lines) calculations as a function of Mo contents and b) the
relaxation energies (green color) and local lattice displacement (orange color) of βo Al-
rich compositions as a function of Mo contents

51



in Fig. 4.2 stem from differently treated local atomic relaxationsthe effect of relaxation

by relaxing the atomic position, cell shape and cell volume in structures. To quantify

the effect of the atomic relaxations, the mean Local Lattice Displacement (LLD), defined

as [112]:

∆d = 1/N
∑
i

√
(xi − x′i)2 + (yi − y′i)2 + (zi − z′i)2 , (4.2)

is used to measure the effect. In the above, the relaxed and unrelaxed positions of atom

i are (xi, yi, zi) and (x′i, y
′
i, z
′
i), respectively and N is the number of atoms in the unitcell.

In Fig.4.4b, the LLD, ∆d and the relaxation energy are represented as a function of the

Mo content for the βo phase. The relaxation energy is defined as the energy difference

(per atom) between the supercell relaxed and fixed atomic positions.

The ∆d increases with Mo up to ≈ 7.5 at.% and afterward decreases. That is, the

relaxation becomes large in concentrated alloys. The relaxation energy exhibits a similar

trend as that of ∆d, which is easy to understand since a larger ∆d is generally expected

to result in a larger relaxation energy.

4.3.2 Spontaneous transformation B19 → βo

The situation is slightly more complicated in the case of the B19-phase. The orthorhom-

bic symmetry implies that b/a and c/a ratios are degrees of freedom during the struc-

tural optimization. Combined with the relaxation of the atomic positions allowed by

the VASP calculation this leads to a possibility of relaxing the B19-based supercell

into the βo (see Sec. 3.3.2). We therefore analyze of our VASP B19 Ti-rich struc-

tures in terms of radial distribution functions. Local structural motifs resembling a cubic

structure can be detected after the full relaxation especially for high Mo contents (see

Fig. 4.5). In the other words, the structural instability of B19 phase at Ti0.38Al0.50Mo0.12

and Ti0.34Al0.50Mo0.16 compositions have emerged already, facilitated by the local atomic

displacements. For instance in case of 12.5 at.% Mo, the local structural motif with

a = 4.031 Å and b = c = 2.850 Å (see Fig. 4.6) changes to a = 3.081 Å, b = 3.224 Å

and c = 3.010 Å after full structural relaxation leading to a significant change of the cell

shape, which is noticeably similar to the cubic lattice parameters. Therefore we conclude

that the discrepancies between the EMTO-CPA and VASP-SQS results shown in Fig. 4.2

for the B19 phase and its Ti-rich compositions can be ascribed to fundamental differences

between the two methods: the system exhibits spontaneous (barrier-less) phase transfor-

mation from the B19 to the βo phase for high Mo content, which cannot be realised by the

relaxation scheme in the EMTO code (having fixed atomic positions), but is rexlected by

the structures fully-relaxed by VASP. The B19→ βo transformation is discussed in detail

in Chap. 9.
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Chapter 5

Mechanical properties

5.1 Elastic properties

We start with discussing the elastic response of β/βo and α′/α′2 phases of the TiAl+Mo

system. The polycrystalline elastic bulk and Young’s moduli, obtained using the single

crystal elastic constants Cij, are shown in Fig. 5.1. To help the reader extracting the

composition-related trends, points corresponding to the same phase and off-stoichiometry

are underlain with colored arrows, highlighting the trends for increasing Mo content. As

a general observation we state that bulk modulus increases with Mo content in the case

of the ordered βo phase; the uncertainty in elastic properties related to the structural

instability of the ordered βo prohibits identifying a clear trend for the Young’s modulus.

Bulk modulus increases with increasing Mo content also for the disordered β phase, but

now the Young’s modulus slightly drops.The same holds true for all hexagonal α′ and

α′2 variants. We note, however, that a closer inspection of the individual data-points

reveals a significant scatter in some cases (i.e., the smallest bulk modulus value for α′ Al-

rich compositions is actually obtained for 15.62 at.% Mo), and hence the absolute values

should be taken with care.

Additionally is turns our that the the (partially) ordered variants yield slightly larger

Young’s modulus (are thus stiffer) than the corresponding disordered phases with the

same composition. This difference is larger for the Al-rich compositions (compare purple

and green datasets in Fig. 5.1 than for the Ti-rich ones (blue and orange datasets in

Fig. 5.1). Lastly, while the bulk moduli span over the same range of ≈ 105 GPa (xMo = 0)

to ≈ 125 GPa (xMo ≈ 15 at.%), ordered βo phase is predicted to have ≈ 10% larger bulk

modulus than corresponding disordered configurations β.

In general we conclude that Mo decreases compressibility (1/B) of the β/βo and α′α′2
phases and leads to a slight softening of tensile modulus.

55



(a)

11
.1

%

14
.8

%

3.7%

11.1%

7.4
%

3.
7%

0.0%

14
.8

%
3.7

%7.4
%

11
.1

%

stiffer

14.8%

stiffer
14

.8
%

3.
7%

0 100 200
100

105

110

115

120

125

130

135 β-Ti rich
β-Al rich
βo-Ti rich
βo-Al rich

Young's modulus [GPa]

B
ul

k 
m

od
ul

us
 [G

Pa
]

(b)

0.
0%

0.
0%

3.12%

9.37%
6.25%12.5%

15.62%

12.5%

6.25%

3.12%

15
.6

2%

9.
37

%6.
25

%

9.37%

12
.5%

15
.6

2%

15
.6

2%
12

.5
%

9.37%

3.
12

%

3.1
2%

6.25%

stiffer

0 50 100 150 200
100

105

110

115

120

125

130

135 α'-Ti rich
α'-Al rich
α2'-Ti rich
α2'-Al rich

B
ul

k 
m

od
ul

us
 [G

Pa
]

Young's modulus [GPa]

stiffer

Figure 5.1: (Polycrystalline) bulk modulus, B, plotted against the polycrystalline Young’s
modulus, E, for (a) cubic β/βo and (b) hexagonal α′/α′2 TiAl+Mo phases for various Mo
compositions . The different sublattices (Ti-rich and Al-rich compositions) are shown with
square and diamond symbols, respectively. Ordered and disordered/cubic and hexagonal
phases are differentiated by colors (blue-pink/yellow-green respectively). The colored
underlying arrows are guides for the eye to highlight Mo concentration trends.
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5.2 Impact of Mo on ductility

Ductility and brittleness trends of materials are often assumed based on Pugh’s B/G

ratios and Cauchy pressure values, since both are readily available once the elastic prop-

erties are determined. According to the Pugh’s criterion [113], a system is expected to

behave in a ductile (brittle) manner if B/G > 1.75 (B/G < 1.75). Despite the exact

statements above may be too strong (in particular the “magic” boundary for B/G), they

can be certainly used as a qualitative indicators for coherently comparing a series of

systems/compositions.

The thus obtained trends are commonly supported by the Cauchy pressure behavior:

Pettifor [114] has suggested that the more positive the Cauchy pressure is, the more

dominant is metallic bonding (and hence the ductile behaviour), whereas negative values

signify angular bonding and hence a brittle character. The Cauchy pressure for cubic

systems is defined as C12 − C44. Two analogous values exist for hexagonal crystals:

C13 − C44 for {100} planes and C12 − C66) for the (001) plane. Therefore, we average

these values with considering a twice larger weight on the first value (representing (100)

and (010) planes) in order to get a single value, similarly as in the cubic case.

The results presented in Fig. 5.2 demonstrate that Mo increases ductility of all considered

phases. Both factors, B/G as well as the Cauchy pressure, increase with increasing Mo

content for all phases. This is mainly true for the Pugh’sB/G ratio. It seems by increasing

Mo in both Al/Ti-rich compositions the B/G ratio of disordered-β is going up in positive

range noticeably. The calculated Cauchy pressure trends also point towards increased

ductility by increasing their values in to the positive range, i.e., suggesting more metallic

bonding and thus more ductility. For the ordered-βo structure the Cauchy pressure stays

positive, except for 3.7 at.% Mo at Ti-rich site, which is predicted to behave in a brittle

manner. The B/G ratio and Cauchy pressure were calculated also the for hexagonal

structures. In all Ti/Al-rich compositions (Fig. 5.2b) B/G > 1.75 together with positive

Cauchy pressure, therefore the actual composition is predicted to play an important role

influencing ductility. This is for example evident for the disordered α′ compositions with

high molybdenum impact (the blue and pink areas).

5.3 Elastic anisotropy

Elastic anisotropy directly impacts many mechanical and physical properties, for example

phase transformations, dislocation dynamics and plastic deformation, or thermodynamic

properties, to name a few [48]. While anisotropy is commonly described with the Zener’s

anisotropy ratio for the cubic materials, general elastic symmetry requires a slightly more

involved treatment [115].
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Figure 5.2: The Cauchy pressure versus B/G ratio of the TiAl+Mo system for (a) for
cubic β/βo and (b) hexagonal α′/α′2 structures. The different sublattices (Ti-rich and Al-
rich compositions) are shown with square and diamond symbols, respectively. Ordered
and disordered/cubic and hexagonal phases are differentiated by colors (blue-pink/yellow-
green respectively). The shaded areas help to identify trends related to Mo content.
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In this section we use two quantities which can be applied both to cubic and hexagonal

systems. Considering the single-crystalline elastic constants Cij, it is possible to calculate

directionally-dependent Young’s modulus Ehkl [48], which quantifies the elastic response

in different crystallographic directions upon application of uniaxial stress (in the direc-

tion [h k l]). Elastically isotropic materials (by definition) do not exhibit any directional

dependence of Ehkl and Youngs’s modulus is a constant. Hence, quantification of the

difference between maximum and minimum value of Ehkl as a function of the crystal-

lographic direction allows to ‘quantify’ deviation from an elastically isotropic material,

which corresponds to Emax − Emin = 0. Obviously, such quantification can be applied to

any arbitrary crystal symmetry. We note that in the case elastically isotropic materials,

also the polycrystalline Voigt’s (EV ) and Reuss’s (ER) averages are identical and equal

to single-crystalline E.

As a second quantification we employ the polycrystalline shear anisotropy calculated as:

AG =
GV −GR

GV +GR

, (5.1)

where GV and GR are shear moduli within the Voigt’s and Reuss’s averages, respectively.

Again, AG = 0 signifies elastic isotropy and a departure from zero represent the increasing

anisotropy.

Two important aspects can be deduced from results shown in Fig. 5.3. Firstly, in particu-

lar the βo phase shows a very strong anisotropy as the Mo increases (Fig. 5.3a), although

the same compositional trend is observed also for the hexagonal phases (Fig. 5.3b). In-

terestingly, for the βo phase, this effect is predicted to be maximum for xMo ≈ 11 at.%

whereas for even higher Mo content, the significantly more isotropic behaviour is ob-

tained. Generally, the cubic phases β/βo are expected to be more anisotropic than the

hexagonal α′/α′2 ones. Secondly, the disordered cubic phase β is clearly less isotropic than

its ordered variant βo. On the contrary, no significant difference between the (partially)

ordered α′2 and disordered α′ hexagonal variants is predicted.

The generally increased anisotropy due to Mo alloying may contribute to the (strain)

hardening of those alloys [116], in addition to the impact of refinement and solid-solution

hardening effects reported for the Ti-Al-Mo before [21].

It is noteworthy to mention, that values of Emin ≤ 0 signify mechanical instability. If

such situation happens in a certain direction, straining material along such direction

would lead to negative strain energy and hence to a spontaneous transformation to other

structure. Such situation is the case for low-Mo compositions (xMo ≤ 8 at.%) in the

Al-rich ordered βo phase, which have been, however, excluded already by the λmin > 0

criterion (Sec. 4.2.2 and Fig. 4.3).
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Figure 5.3: Quantification of the elastic anisotropy using the shear anisotropy, AG, versus
directional Young’s modulus of TiAl+Mo compositions, a) for the cubic phases and b) for
the hexagonal structures. The different sublattices used for Mo substitution (Ti/Al-rich)
are specified by square and diamond symbols respectively, further, ordered and disordered
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Chapter 6

Quasi-harmonic approximation: towards

thermal expansion

This chapter is based on an own publication [50]

6.1 Temperature dependency of volume and c/a ratio

Figure 6.1 shows the temperature dependence of volume and c/a ratio for the intended

phases, γ (orange curves) and α2 (blue curves), by applying the two above explained

approaches, gs-cs (dashed lines) and to-cs(solid lines). Results in Fig. 6.1a suggests iden-

tical behaviour for α2-Ti3Al phase considering both approaches. On the contrary, there

are obvious differences in the case of γ-TiAl. A rapid, non-linear increase (specifically,

for the gs-cs approach) of the specific volume above room temperature (RT), ≈ 298K, is

predicted for γ-TiAl.

According to Fig. 6.1b, while the absolute values of the c/a ratio for the hexagonal α2-

Ti3Al structure are nearly the same, a significant discrepancy between the two approaches

is predicted for the tetragonal γ-TiAl phase. Surprisingly, the the methods are showing

inverse behaviour for the two structures. Namely, while the gs-cs(γ) approach leads to

temperature-induced increase of c/a, its value decreases in the case of the α2 phase, and

a vice verse trend is obtained for the to-cs approach (solid lines) by considering both

structures.

It is possible to predict the lattice parameters a and c, in terms of specific volume and

c/a and subsequently, the lattice thermal expansion coefficients (see Fig. 6.2), αa and αc

can be obtained by solving the Eq. (2.60).

As displayed in Fig. 6.2a, a marginally larger αa than αc is predicted for all temperatures

in case of α2-Ti3Al structure. Noticeably, while the αc of the α2-Ti3Al structure is going
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Figure 6.1: (a) Specific volume and (b) c/a ratio as functions of temperature for the α2-
Ti3Al (blue) and γ-TiAl (orange) phases predicted using quasi-harmonic approximation
with cell shape optimised at 0 K (dashed, label ‘gs-cs’ (ground state optimised cell shape))
and at every temperature (solid line, label ‘to-cs’ (temperature optimised cell shape)).
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Figure 6.2: Lattice thermal expansion along (a) a-direction, αa, and (b) c-direction, αc,
as functions of temperature for the α2-Ti3Al (blue) and γ-TiAl (orange) phases predicted
using quasi-harmonic approximation with cell shape optimised at 0 K (dashed, label ‘gs-
cs’) and at every temperature (solid line, label ‘to-cs’). The data points shown by dots
are the actual numerically calculated values using Eq. (2.60). The smooth curves are
‘guides for the eyes’ from interpolation using Bezier curves.
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to be saturated above RT around 10 × 10−6 K−1 (Fig. 6.2b), αa is still increasing above

RT and even higher than 10×10−6 K−1 above ∼ 600 K (Fig. 6.2a). Importantly, there are

no significant differences between the predicted values by gs-cs and to-cs methods. The

obtained differences are of the same order as the scatter of the numerical noise imposed

by the to-cs method, represented by the individual data points in Fig. 6.2.

The γ-TiAl structure behaves differently. It seems for both αa and αc, the gs-cs approach

yields a very similar, strongly temperature dependent behaviour as well as strong temper-

ature dependency. It is a consequence of its large volume thermal expanding of volume as

shown in Fig. 6.1a. Contrarily, this structure shows a large TEC values αa (a-direction)

of ∼ 15×10−6K−1 only for αa (a-direction) above RT using the to-cs approach, whereas a

3-fold smaller values of ∼ 5× 10−6K−1 are presdicted for αc (c-direction). This behavior

can be interpreted a consequence of the strong temperature dependence of c/a.

In summary, while the computationally more demanding to-cs method does not yield

too different temperature dependence of the structural properties in comparison with the

simpler gs-cs approach for the α2-Ti3Al, non-negligible differences are obtained in the

case of the γ-TiAl.

6.2 Heat capacity and bulk modulus

The heat capacity can be calculated using the computed vibrational entropy by the

Helmholtz free energy. In fact, it is expressed in the relevant literature [117, 118] as the

only important contribution when dealing with non-magnetic materials at temperatures

far below the melting point. Due to that, some other thermal-dependent properties can

be calculated by the here obtained thermodynamic potentials. The heat capacity, Cp, at

constant (ambient) pressure was evaluated according to Eq. (2.61). The calculated values

for the two phases are almost identical, in particular from the to-cs treatment (Fig. 6.3b).

This result could be intuitively understood by the fact that the molar heat capacities of

Al and Ti are very similar [119].

Bulk modulus can be estimated by fitting the Helmholtz free energy surface at a fixed

temperature with the Birch-Murnaghan equation of state. Obviously, the bulk modulus

of γ-TiAl is smaller than α2-Ti3Al (Fig. 6.3b). Moreover, the softness of bulk modulus is

predicted to reduce by∼ 12% with increasing temperature from 0 to 770 K (∼ 500◦C), and

similarly, ∼ 12% between RT and 500◦C for both structures using the ‘to-cs’ approach.

Significantly different is only the gs-cs temperature dependence for the γ-TiAl, which

yields a drop of over 30% between 0 and 770 K, further underlying that this approach is

not reasonable for the γ-TiAl, as already demonstrated by other properties.
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6.3 Conclusion

Thermal properties, with a special focus on structural analysis of temperature depen-

dent lattice parameters and coefficients of thermal expansion of tetragonal γ-TiAl and

hexagonal α2-Ti3All phases of binary TiAl system, were calculated using first principles

methods. We put our attention on testing whether the c/a ratio is purely a function

of volume independent of temperature, or whether temperature and volumetric effects

have to be separated. Our calculations show that in the case of the γ-TiAl phase sig-

nificant differences are obtained, while both approaches yield comparable results for the

hexagonal α2-Ti3Al phase.

6.4 Analytical fits

The above discussed thermodynamic quantities calculated using the ‘to-cs’ approach were

fitted with a polynomial of the form

X(T ) = aX0 +
4∑
i=1

aXi T
i +

4∑
i=1

bXi
1

T i
+ cX ln(T ) . (6.1)

This function fits accurately all obtained data within the temperature window from 0

to 1000 K. The fitted coefficients for X = F (Helmholtz free energy), Cp (molar heat

capacity), B (bulk modulus), αa and αc (TEC in the a and c directions) are summarised

in Tables 6.2 and 6.1, and the polynomial fits are presented in Fig. 6.4. The calculated

dependencies provide a consistent set of material constants which could serve, e.g., for

CALPHAD-like modelling.
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Table 6.1: Fitted coefficients according to Eq. (6.1) for the calculated thermodynamic
properties of the γ-TiAl phase. F is Helmholtz free energy [eV/at.], Cp is molar heat
capacity at constant pressure [J/K/mol] (mol of atoms), B is bulk modulus [GPa] and
αa and αc are TEC in the [1 0 0] and in the [0 0 1] directions [K−1].

F Cp B αa αc

[eV/at.] [J/K/mol] [GPa] [K−1] [K−1]

a0 −6.4187× 10+00 −3.4558× 10+01 1.1499× 10+02 −3.6457× 10−05 −3.8562× 10−04

a1 −1.8683× 10−04 −4.2978× 10−02 −1.8487× 10−02 −7.0845× 10−08 −3.9878× 10−07

a2 −3.7211× 10−07 5.0198× 10−05 1.5144× 10−06 8.5104× 10−11 4.5801× 10−10

a3 1.5691× 10−10 −3.5403× 10−08 −6.3023× 10−10 −5.4782× 10−14 −3.2999× 10−13

a4 −3.7138× 10−14 1.0447× 10−11 −2.0214× 10−12 1.4449× 10−17 1.0165× 10−16

b1 3.4305× 10+00 2.9671× 10+02 −2.1317× 10+02 −7.2401× 10−04 6.0522× 10−03

b2 −6.0577× 10+01 −2.0669× 10+01 5.5554× 10+03 3.6802× 10−02 −9.7074× 10−02

b3 6.3758× 10+02 −3.9874× 10+04 −6.9252× 10+04 −5.5989× 10−01 9.1203× 10−01

b4 −2.6280× 10+03 2.7003× 10+05 3.1027× 10+05 2.7435× 10+00 −3.4160× 10+00

c 4.4277× 10−02 7.9870× 10+00 −4.5702× 10−01 1.1764× 10−05 8.0199× 10−05

Table 6.2: Fitted coefficients according to Eq. (6.1) for the calculated thermodynamic
properties of the α2-Ti3Al phase. F is Helmholtz free energy [eV/at.], Cp is molar heat
capacity at constant pressure [J/K/mol] (mol of atoms), B is bulk modulus [GPa] and
αa and αc are TEC in the (0 0 0 1) plane and in the [0 0 0 1] direction [K−1].

F Cp B αa αc

[eV/at.] [J/K/mol] [GPa] K−1] [K−1]

a0 −7.3540× 10+00 −2.0371× 10+01 1.1716× 10+02 −1.6008× 10−04 5.4128× 10−05

a1 −2.1062× 10−04 −3.1196× 10−02 −1.4167× 10−02 −1.8981× 10−07 2.5208× 10−08

a2 −3.6153× 10−07 3.8017× 10−05 −4.9187× 10−06 2.3150× 10−10 −3.7248× 10−11

a3 1.5105× 10−10 −2.7416× 10−08 −6.5580× 10−10 −1.6951× 10−13 3.9920× 10−14

a4 −3.5505× 10−14 8.2107× 10−12 6.6516× 10−14 5.2923× 10−17 −1.6988× 10−17

b1 3.4451× 10+00 1.9711× 10+01 −1.6377× 10+02 1.8767× 10−03 −2.2451× 10−03

b2 −5.9472× 10+01 5.5440× 10+03 3.9202× 10+03 −1.9966× 10−02 6.8760× 10−02

b3 6.1738× 10+02 −1.0178× 10+05 −4.6560× 10+04 1.1511× 10−01 −9.5646× 10−01

b4 −2.5244× 10+03 5.3097× 10+05 2.0274× 10+05 −2.3378× 10−01 4.5685× 10+00

c 4.6143× 10−02 5.1928× 10+00 −5.4515× 10−01 3.5711× 10−05 −7.7496× 10−06
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Figure 6.4: Fits of ‘to-cs’ calculated thermodynamic properties using Eq. (6.1) and co-
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Chapter 7

Ordering temperatures as a function of

Mo

The previous chapters have presented a systematic study on structural, energetic and

elastic properties of the TiAl+Mo phases. The focused was laid on a comparing proper-

ties of ordered (βo, B19, partly-ordered α′2, γ) variants with their chemically disordered

counterparts. Knowledge of the energy differences related to the ordering state enables

establishing ordering temperatures. To do so, we assign the whole energy gain change

upon ordering to the loss of the configurational entropy.

7.1 Configurational entropy

Suppose that the atomic concentrations of Ti, Al and Mo are xTi, xAl and xMo (xTi +

xAl + xMo = 1). The configurational entropy (per atom) is defined as

Sconf = −kB
∑

i=Ti,Al,Mo

xi lnxi (7.1)

and the corresponding configurational part of the free energy is Fconf = −TSconf . The

entropy term is different for the ordered phases, in which the chemical disorder is realized

only on one sublattice (half of the total number of atomic sites), and in fully disor-

dered cases where all lattice sites are randomly populated with Ti, Al and Mo. Let us

demonstrate this on an example of Ti-rich compositions; Al-rich compositions are treated

analogously. The entropy of the disordered case is given by Eq. (7.1). In the ordered

cases, the Ti sublattice amounts to half of the sites, but contains no disorder. Hence
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Sconf,Ti subl. = 0. The entropy on the Al sublattice is then given by

Sconf,Al = −kB
2

∑
i=Al,Mo

(2xi) ln(2xi)

= −kB
2

((2xMo) ln(2xMo) + (1− 2xMo) ln(1− 2xMo))︸ ︷︷ ︸
A

. (7.2)

The factor 1/2 in front of the sum relates to the fact, that the disorder is only on 1

sublattice; the factor 2 in the addends corresponds to the Al and Mo concentration on

the Al sublattice only. Finally we note that the factors 1/2 and 2 are related to the

fact that both sublattices in our particular case of βo and B19 phases contain the same

amount of sites.

Omitting all other contributions to the free energy but configurational entropy, and equat-

ing the free energies of ordered and disordered phases at the ordering temperature Tord,

one obtains:

E0(βo) +
TordkB

2

∑
i=Al,Mo

2xi ln(2xi) = E0(β) + TordkB
∑

i=Ti,Al,Mo

xi lnxi , (7.3)

where E0(βo) and E(β) are total (or formation) energies (per atom) of the βo and β

phases, respectively, at T = 0 K. Remembering, that for Ti-rich compositions we fix

xTi = 0.5, the above expression yields

Tord =
E0(β)− E0(βo)

kB ln 2
. (7.4)

It is trivial to show that the same is true also for the Al-rich compositions. Identical

formula applies also to binary α′ →B19 ordering temperature.

In the case of hexagonal α′/α′2 phases, the corresponding energy differences E0(α′) −
E0(α′2) replace E0(β)− E0(βo) in the Eq. (7.4). Further by considering α′2 as a partially

ordered structure, the configurational entropy is related to the mixing of 2
3
Ti and 1

3
Al on

the Ti-sublattice in the D019-α2 phase. The Al sublattice of of the parent Ti3Al is fully

populated with Al, hence corresponding entropy is:

SAl = 0. (7.5)

This concerns 1
4

of all overall sites (the Al sublattice in Ti3Al).

Our calculations shown that in the case of Ti-rich compositions, Mo preferentially substi-

tutes for Al on the Ti sublattice. Therefore, the Ti sublattice (3
4

of all sites) contains all

Ti and Mo atoms, and remaining Al atoms. From overall mole fraction xAl of Al atoms,
1
4

is on the Al sublattice; the Ti sublattice is thus randomly populated with xAl − 1
4

Al
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atoms, xT i, Ti atoms and xMo Mo atoms. The relative concentrations on the Ti sublattice

are

x′Ti =
4

3
xTi ,

x′Mo =
4

3
xMo ,

x′Al =
4

3

(
xAl −

1

4

)
with ∑

i=Ti,Al,Mo

x′i = 1 .

Therefore the entropy on Ti sublattice is

STi = −kB
∑

i=Ti,Al,Mo

x′i lnx
′
i. (7.6)

The total entropy (per atom) is therefore:

S(α′2) =
1

4
SAl +

3

4
STi =

3

4
STi. (7.7)

The ordering temperature can be obtained by equating free energies (containing configu-

rations entropies) of fully disordered and partially ordered systems at temperature Tord:

E0(α′) + TordkBS(α′) = E0(α′2) + TordkBS(α′2) (7.8)

which leads to (after a couple of algebraic simplifications)

E0(α′)− E0(α′2) = TordkB

[
3

4
ln

4

3
+

(
xAl −

1

4

)
ln

(
xAl −

1

4

)
− xAl lnxAl

]
(7.9)

and finally

Tord =
E0(α′)− E0(α′2)

kB

[
3
4

ln 4
3

+

(
xAl − 1

4

)
ln

(
xAl − 1

4

)
− xAl lnxAl

] . (7.10)

7.2 Ordering temperature

In the below we present results of a very simple approach making use of the readily avail-

able quantities to estimate the ordering temperature, Tord, using the formalism described

in previous Sec. 7.1.

A series of ordered (βo, B19, partly-ordered α′2) phases and their chemically disordered

counterparts (β, α′) are discussed in the present work and have been reported to undergo

ordering transformations.
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Figure 7.1: The ordering temperatures of β → βo, and α′ → α′2 (transparent) and α′ →
B19 Ti and Al rich compositions. The green lines correspond to the EMTO-CPA result
and orange lines are the VASP result. The transparent lines correspond to the α′ → α′2.

As demonstrated in Fig. 7.1, the ordering temperature of β → βo-binary TiAl, is predicted

≈ 250 K, and increases with Mo up to ≈ 2500 K for Ti-rich compositions. The EMTO-

CPA predicts somewhat higher temperature (e.g. ≈ 1000 K for binary TiAl), but both

methods qualitatively agree on the increasing trend in Tord with adding Mo. In contrast

to that, the ordering temperatures of Al-rich cubic compositions show different trends

considering two approaches. As discussed in Sec. 4.3, neglecting the lattice distortions

leads to energetically preferring the disordered β phase over βo for high Mo-containing

Al-rich compositions, hence leading to the non-physical prediction of Tord < 0 K for

xMo ≈8 at.% and more.

Similar trends in Tord are predicted for the hexagonal phases using both methods. In

the case of α′ →B19 ordering temperature, the supercell VASP-SQS calculations fail to

predict any smooth trend. Tord varies between ≈ 1400 K and ≈ 2500 K. The EMTO-CPA

calculations predict uniform increase of Tord for decreasing (increasing) Mo content for
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the Ti-rich (Al-rich) compositions. Qualitatively opposite trends are obtained for the

partial ordering α′ → α′2. In both cases, the ordering temperatures are very high, even

above the melting temperature of 1729 K for the binary Ti0.5Al0.5 [120].

We therefore conclude that this rather simplistic approach neglecting other entropic con-

tributions (e.g., vibrational), treating sublattices as independent and non-interacting sys-

tems, and approximating fully disordered systems with finite-sized supercells (in the case

of EMTO-CPA), is not sufficient to predict order-disorder transition temperatures. De-

tailed investigation including evaluation of pair interactions and incorporating Monte

Carlo simulations beyond the scope of this thesis and are reported elsewhere [121].
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Chapter 8

Bcc to fcc phase transformations

This chapter is based on an own publication [14].

8.1 Ground-state properties

The structural instability of some phases emerges already when searching for their mini-

mum-energy configurations. In particular, there is a significant dependency of a compu-

tational model of the disordered β-TiAl phase on constraints applied during its structural

relaxation. When the simulation box shape is fixed to a cubic one (termed ‘ionic relax-

ation’ in Chap. 4), the structural relaxation results in large, seemingly disordered, local

atomic displacements, see Fig. 8.1a, while a full structural relaxation leads to a significant

change of the cell shape (see Fig. 8.1b).

For example, one local structural motif (lemon trapezium) in the former case changes

to a clear rectangle with a = 2.886 Å and c = 4.061 Å upon a full relaxation. These

values are notably similar to the γ-TiAl lattice parameters expressed in a tetragonal

body-centered cell: a = 2.826 Å and c = 4.062 Å [122]. On the other hand, the blue

area in Fig. 8.1a resembling a sheared square (a = 3.167 Å, c = 3.417 Å), changes to a

general non-rectangular shape in Fig. 8.1b. Consequently, also the disordered structures

spontaneously transform similar to βo → γ, however, the transformation β → γdis is to

be expected to take place only locally.

The structural relaxations in the disordered β-TiAl structure, can also be visualized as

a histogram of bond angles (Fig. 8.1c) corresponding to the fully relaxed structure from

Fig. 8.1b. When compared with the structural fingerprints of ideal ordered βo-TiAl phase

(black) and ordered γ-TiAl structure (red), a significant overlap with the γ structure is

apparent. However, some bond angles around 110o still resemble the initial (unrelaxed)

disordered β (ordered βo) structure, while others around 145o do not agree with either
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Figure 8.1: Schematic visualization of the minimum-energy configuration of the disor-
dered β-TiAl phase when (a) preserving the overall cubic cell shape and (b) when fully
relaxing the supercell. The blue and green motifs result in significantly different shapes
depending on the relaxation mode. (c) Histogram of bond angles of the fully relaxed
structure.
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of the two fingerprints. This only further highlights the complexity and richness of the

structural relaxations demonstrating the structural instability of the bcc-based TiAl (see

also our previous results in Ref. [109]). In what follows, we used models with desired

(fixed) cell shape and fully-relaxed internal degrees of freedom (atomic positions).

8.2 Tetragonal Bain’s path for the stoichiometric TiAl

phases

We proceed with investigation of configurations along the Bain’s tetragonal deformation

path βo ↔ γ as described in detail in Sec. 3.3.1. The lattice parameters were set according

to Eqs. (3.1) and (3.2). The atomic positions remain fixed by the crystal symmetry of

the ordered βo and γ TiAl phases. As shown in Fig. 8.2, the energy extrema correspond

to ∆ = 0 (βo-TiAl, maximum) and ∆ = 1 (γ-TiAl, minimum). The latter is consistent

with the fact that the γ phase is the ground state for stoichiometric Ti0.5Al0.5. Both of

the above mentioned extrema can be understood in terms of so-called symmetry-dictated

extrema. (Note, that while our transformations are not volume conserving the energies

change by less than 0.1 meV/at. when the volume is kept constant, well below the

accuracy of our calculations, and the arguments of Craievich et al. [87] can be applied in

our case, too. Namely, those authors have shown that some energy extrema on energy

profiles along the constant-volume transformation paths are dictated by the symmetry).

Most of the structures along a transformation path between two higher-symmetry struc-

tures, here between B2 and L10 at the Bain’s path, have a symmetry that is lower than

cubic. At those points of the transformation path where the symmetry of the structure

is higher, the derivative of the total energy with respect to the parameter describing the

path must be zero. These are the so-called symmetry-dictated extrema. However, other

extrema may occur that are not dictated by the symmetry and reflect properties of the

specific material. For more details on different types of extrema we refer the reader to

Refs. [87–89, 93–97].

The βo → γ Bain’s path between ordered phases exhibits no transformation barrier (i.e.,

it is a barrierless or spontaneous transformation) and a net gain in energy is equal to (see

Table 4.1)

∆E(βo → γ) = E(βo)− E(γ) = 141 meV/at.

This value is in good agreement with previous studies, for instance, Paidar et al. [93] have

reported the energy difference along the Bain’s path for the βo → γ case of ordered phases

equal to about 140 meV/at. while Šob, Wang, and Vitek [89] obtained about 150 meV/at.

Next we investigated the same transformation also for the disordered variants of the
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ordered βo and γ phases, i.e., β ↔ γdis. In particular, the blue curve (bottom of the

shaded area) in Fig. 8.2 corresponds to a bcc-optimized SQS structure (β-SQS), which

is transformed to γdis-TiAl (fcc). This means that the short range order parameters

were optimized for the bcc lattice (e.g., the first coordination shell containing 8 nearest

neighbors) and obviously the Warren-Cowley SRO parameters may no longer be optimal

after the transformation to the fcc γdis-TiAl phase with 12 nearest neighbors. Taking the

fcc structure instead and optimizing its SRO parameters we obtained another supercell

(this time with 32 atoms, i.e., 2 × 2 × 2 conventional 4-atomic fcc cell). This supercell

(γdis-SQS) for γdis-TiAl is tetragonally transformed into the β-TiAl yielding the data on

the red curve.

Therefore, while both blue and red curves are describing the same process, the differ-

ence between them may be interpreted as the SQS accuracy limit of our calculations

(given also the chosen supercell size).The blue curve starts with β structure at −0.252

and reach the γdis phase at −0.241 (refer to Tab. 4.1). Consequently, a simple average

(green curve) of these curves is used as a representative for the β ↔ γdis transformation

path of disordered phases with the color-shaded area being an estimate of the accuracy

(Fig. 8.2). The inset clearly shows that small barriers between the two phases occurs for

both SQS types, although the actual energy barrier(s) and energy landscapes slightly dif-

fer. In summary, our calculations confirm the spontaneous character of the diffusionless

transformation βo → γ of the ordered phases driven by a mechanical instability (long-

wavelength phonons) in the βo-TiAl phase. This driving force is significantly reduced (the

red curve Fig. 8.2), or even completely reversed (the blue curve in Fig. 8.2) in the case

of the disordered β-TiAl phase and its hypothetical, chemically disordered counterpart

γdis-TiAl. Moreover, a (small) energy barrier exists in the disordered case preventing the

transformation to proceed spontaneously. Therefore, these results confirm our previous

findings that the chemical disorder relatively stabilizes the bcc-based β-TiAl (Chap. 4

and Ref. [109]).

8.3 Trigonal transformation in the stoichiometric TiAl

In this section we explore another structural transformation connecting the bcc-like βo

and β on the one hand and the fcc-like states γ and γdis on the other hand via the

trigonal transformation path described in detail in Section 3.3.1. The corresponding

transformation barriers are shown in Fig. 8.3.

The B2 lattice parameter (aB2 = 3.187 Å) changes to aB1 = 2asc = 5.292 Å and fur-

ther to aL11 = 2afcc = 8.132 Å. These changes correspond to specific volumes of VB2 =

16.19 Å
3
/at., VB1 = 18.52 Å

3
/at. and VL11 = 16.81 Å

3
/at., respectively. For a trigo-
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Figure 8.3: The formation energy along the tetragonal (Bain’s) and the trigonal trans-
formation paths for (a) ordered βo → γ/L11 and (b) disordered β → γdis TiAl.

nal path with the specific volume interpolated between the high-symmetry structures,

a barrier of 503 meV/at. (see purple curve with star symbols) is obtained. This value

is smaller than the previously reported values of 520 meV/at. [93] and 540 meV/at.

[89]. This stems from the fact, that the past reports assumed constant volume along

the transformation path. To test this hypothesis, we calculated the energies along the

trigonal path with keeping the volume constant (and fixed to VB2 (see the orange curve

in Fig. 8.3a), yielding a barrier of 596 meV/at.). Importantly, the maximum along the
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trigonal path is obtained in either case for the B1 structure, while the B2 (βo) and L11

structures represent local minima.

The final L11 structure represents a metastable phase. Its energy is higher than that

of the βo structure by 76 meV/at. and by 217 meV/at. higher than the γ-TiAl (L10

structure), the ground state of TiAl. Similar values of 61 meV/at. and 71 meV/at.

were reported for E(L11 − B2) by [89] and [93], respectively, while the same authors

obtained of 215 meV/at. and 212 meV/at. for E(L11 − L10). The B1 structure repre-

sents a local maximum/saddle point and the energy can be further decreased towards

the L11 structure for increasing the trigonal distortion. Although this state is (at least

thermodynamically) stable, it has not been experimentally reported for the TiAl system

with the ground state being the γ-TiAl phase and hence will not be further discussed.

Moreover, the barriers are significant and the trigonal transformation is energetically less

convenient than the spontaneously proceeding tetragonal path. Consequently, the trigo-

nal transformation path cannot connect the ordered βo-TiAl and γ-TiAl phases (has the

L10 lattice), although it offers a possible structural transformation path connecting bcc

and fcc disordered states investigated below.

The situation is rather different in the case of disordered states due to the lack of a

higher symmetry (Fig. 8.3b). The intermediate state corresponding to a simple cubic

structure turned out very difficult to structurally optimize, and therefore we focused on

linearly interpolating specific volumes between the values corresponding to the bcc β-TiAl

(abcc = 3.207 Å, Vbcc = 16.49 Å
3
/at.) and fcc γdis-TiAl (afcc = 4.05 Å, Vfcc = 16.61 Å

3
/at.)

phases. The structural complexity manifest itself by the rather scattered data for different

∆ along the trigonal path. Therefore, the energies are represented by a shaded region

with upper and lower envelope for the reader’s convenience (Fig. 8.3b). Although the

trigonal barrier is an order of magnitude lower than that for the ordered phases, it is still

significantly higher than for the tetragonal Bain’s path: ≈ 60–90 meV/at. for the trigonal

deformation as compared with ≈ 10 meV/at. for the tetragonal Bain’s path. Therefore,

the trigonal transformation is also in the case of disordered phases rather unlikely to

be the actual transformation mechanism as the tetragonal path exhibits significantly

smaller (to negligible) barriers. We can thus conclude that the (spontaneous) structural

transformation between both ordered βo → γ and disordered states β → γdis is more

likely to proceed via the tetragonal Bain’s path instead of the trigonal transformation.
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Figure 8.4: The calculated formation energy of the ordered βo and γ as well as the
disordered β and γdis-TiAl as a function of the Mo content. The dashed black arrows
show spontaneous transformation as obtained during the structural relaxation at 0 K.

8.4 Impact of Mo on the βo ↔ γ and β ↔ γdis transfor-

mations in TiAl

As has been mentioned in the Sec. 1.3, the pure βo-TiAl phase does not exist – it exhibits

mechanical and dynamical instability leading to a spontaneous barrierless transformation

of the βo phase into the stable γ-TiAl [109]. Since Mo can be added to TiAl in order to

stabilize the βo/β phases [122], we next study the impact of Mo on the transformation

energy landscape of both ordered βo ↔ γ and disordered β ↔ γdis states.

The computed energies of formation are shown in Fig. 8.4. Focusing now on the ordered

phases, for a low Mo content, the γ phase is more stable than the βo variant (corresponding

to the driving force for the spontaneous transformation at xMo = 0), but with increasing

Mo content the energy difference between these two phases decreases and finally at ≈
8 at.% Mo the βo-TiAl+Mo phase becomes more stable than the γ-TiAl+Mo variant.

The intersection point of the energy of βo and γ phases denotes the ranges of stability of

the single phases, which can co-exist with identical composition exactly at Mo content

corresponding to this cross-over.

In contrast to the ordered phases discussed above, the disordered phases exhibit a prefer-

ence for the bcc structure over the fcc one for all considered Mo compositions (Fig. 8.4).

Although the β phase is slightly preferred over the γdisphase, the reader should recall
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Figure 8.5: Formation energies of βo/β and γ/γdis phases as a function of Mo content
(Ti0.5Al0.5−xMox) at 1000 K calculated with the Debye model.

the energy differences presented in Fig. 8.2 for different cells (different sizes, different

relaxations). The energy difference between β and γdis remains similar to that between

different SQSs and supercell sizes (Fig. 8.2). In fact, local structural motifs resembling

a hexagonal structure can be detected after the full relaxation which could indicate a

relaxation-induced transformation towards a hexagonal α-based phase. A martensitic

transformation of the β-TiAl to a hexagonal phase has been recently experimentally re-

ported [16, 22] and hence such relaxation may possibly be related to this diffusionless

transformation as will be discussed in Chap. 9.

Employing the Debye model, we calculated vibrational contribution to the free energy

of all four intermetallic phases, as well as of elemental Al, Ti and Mo metals, and used

these values to calculate formation energy at finite temperature. The total energy of the

binary/ternary systems (the first term on the right hand side of Eq. 4.1) was further

corrected for the configurational entropy on the Al sublattice (ordered systems) or in the

whole simulation cell (disordered systems). Figure 8.5 shows the resulting Ef as functions

of Mo content corresponding to 1000 K. The most important effect of the temperature

is the stabilization of the βo/β phases with respect to the γ phase. We note that the

pure βo-TiAl phase is mechanically unstable, and hence the Debye model (requiring

knowledge of elastic constants) is not applicable. It is also worth mentioning that γ/γdis

and βo/β phases become energetically very close. This indicates that the systems are

approaching the order/disorder transition at temperatures somewhat higher than 1000 K
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(cf. Chapter 7). The Debye model as used here is quite a crude approximation (it

considers elastically isotropic material, further no explicit treatment of phonons, no an

harmonicity, etc. is included), and thus the present results should be regarded only

as demonstrating temperature-related trends rather than accurately predicting ordering

temperatures.

Figure 8.6a shows the transformation energy landscape along the tetragonal path as a

function of the Mo content for the ordered phases. While the γ structure is clearly

preferred for the considered Mo content of 0 and 3.7 at.% with no energy barrier between

the βo and the γ phase, the situation is completely opposite for the 9.3 at.% Mo when the

βo-phase is energetically preferred over the γ phase without any transformation barrier.

An interesting case occurs for 7.4 at.% Mo when the γ phase exhibits more negative Ef

than the βo phase (by ≈ 18 meV/at.) but, importantly, the Bain’s path shows a small

energy barrier (of about ≈ 1 meV/at.). Despite its very small height, the barrier opens

the possibility of stabilizing both phases, i.e. the βo phase would become metastable in

this particular case.

Figure 8.6b shows energy changes along the β → γdis Bain’s transformation path of several

studied Ti0.5Al0.5−xMox compositions. Unlike in the case of the ordered phases (Fig. 8.6a),

the disordered phases do not exhibits any clear trend as a function of Mo content. In

agreement with formation energies (Fig. 8.4), the γdis phases have higher energy than

the β phases. Also, in contrary to the ordered phases, β → γdis always exhibit barriers

(although in many cases very small) separating the β and γdis phases. Consequently, the

chemical disorder effectively prevents any spontaneous phase transformations as predicted

for the case of ordered βo and γ phases.

8.5 Structural peculiarities of the TiAl(+Mo) system

Our results summarized in the previous section clearly show that the TiAl(+Mo) system

exhibits a number of rather unusual properties. For example, when inspecting the en-

ergetics of both ordered and disordered TiAl phases transformed along the Bain’s path

(see Fig. 8.2), it is striking how small energy changes are induced by this structural

transformation in the disordered β → γdis case.

An inset at the right-hand side of Fig. 8.2 visualizes energy barriers of a few meV/atom

that could be easily overcome. Consequently, the disordered β-TiAl is expected to be

quite deformable even in an elastic manner. Despite the disordered β-TiAl is experimen-

tally not observed, the above mentioned deformability can be expected for other phases

and/or compositions. For example, the composition of the ordered βo-TiAl stabilized by

9.3 at.% Mo is close to those found in experimental samples and the energy barriers along
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(i)   Δ=0.9  (h)   Δ=0.8  (g)   Δ=0.7  
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(e)   Δ=0.5  

Figure 8.7: Visualization of relaxed internal atomic positions in 54-atom SQS supercell
as obtained from minimization of the total energy with respect to the atomic coordinates
for selected states along the Bain’s path.
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a major part of the Bain’s tetragonal path are also only a few meV/atom (see Fig. 8.6a).

Therefore, it is worthwhile to analyze structural behavior of different phases at an atomic

scale along the studied tetragonal path in detail.

Starting with the above mentioned disordered β-TiAl phase and the very small energy

changes induced in it by the tetragonal transformation, there are a few facts that should

be mentioned.

First, the volume-conserving Bain’s transformation is characterized by only very small

changes in the first nearest neighbour distances. Therefore, the 1NN bonds are re-oriented

in space rather then significantly shortened. The reorientation process is energetically

less costly presumably due to the dominant metallic nature of the bonds.

Second, both Ti and Al were reported to exhibit rather small energy differences between

the bcc and fcc structures along the Bain’s path (about 100 meV/at. and 40 meV/at. for Ti

and Al, respectively, see, e.g. Craievich et al. [123]). These energy differences are smaller

than E(βo− γ) = 1401 meV/at. for TiAl. Moreover, none of these two elements is stable

in the bcc structure in their ground state and they both spontaneously transform from

the bcc structure (symmetry-dictated energy maximum) to the fcc structure (symmetry-

dictated energy minimum) in a barrierless manner.

As much as these two reasons may intuitively justify the βo → γ behavior, they cannot

completely explain the computed results along the whole tetragonal path as the same

arguments hold equally well for the disordered β-TiAl, which has the same composition

and its energy changes along the tetragonal Bain’s transformation path are an order of

magnitude smaller (about 10 meV/at.).

The major difference between the disordered β-TiAl and its ordered counterpart is related

to its internal atomic configuration and it is not only the fact that β-TiAl has the atoms

distributed in a disordered manner. As already discussed above (and shown in Fig. 8.1a),

the β-TiAl is internally significantly distorted and the atoms exhibit a tendency to locally

resemble the structure of γ-TiAl. We have found that the same significant internal

distortions exist in structures encountered along a major part of the Bain’s path (Fig. 8.7),

in particular for structures from ∆ = 0 up to ∆ = 0.6. We note that similar behaviour is

obtained also for the low-Mo containing TiAl+Mo systems.

In order to analyze distortions of the internal atomic structures quantitatively, we have

studied radial distribution functions in the structures encountered along the tetragonal

transformation path (Fig. 8.8). Using a comparison with the ordered βo-TiAl, the differ-

ences in the atomic distributions are clearly visible. In particular, the second coordination

(2NN) sphere with 6 atoms in the ordered βo-TiAl (at ∆=0) splits upon transformation,

and 4 of its atoms continuously move along the path towards the first coordination (1NN)
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shell in the γ phase (∆ = 1), thereby increasing the number in the first coordination cell

to 12 (not considering the small tetragonality of the γ-TiAl), see Fig. 8.8a. The other

two atoms move further away to join some of the atoms from the third nearest neighbor

(3NN) shell (at ∆=0) to form the 2NN shell in the γ phase (∆ = 1). In contrast to these

well defined coordination shells in the case of the ordered βo-TiAl, there is hardly any

2NN shell visible in the radial distribution functions of the disordered β-TiAl (Fig. 8.8b

and the magnification in Fig. 8.8c). The peak corresponding to the 1NN shell is signif-

icantly broadened covering the distances from 2.8 Å to 3.2 Å. It effectively means that

the environment indeed resembles that in the γ phase already for ∆ = 0.

Therefore, it should be emphasized that the small energy changes in the disordered TiAl

along the Bain’s path are not those associated with a process when a crystal structure

changes from one with strictly 8 atoms in the first nearest neighbor (1NN) shell to another

with 12 atoms in the 1NN shell. It is rather so that the Ti and Al atoms locally rearrange

(whenever possible) so as to have an fcc-like environment even in configurations that have

the shape of the simulation box corresponding to small ∆ values.

In order to further analyze the importance of the above mentioned internal distortions we

have also computed a situation when the β-TiAl phase is chemically disordered but the

atoms are located in perfect and undistorted lattice positions, e.g., bcc-like for ∆ = 0.

Computationally it means that the atomic positions were not relaxed, i.e. the total

energy was not minimized with respect to the atomic positions. It turns out that the

mechanical and thermodynamic stability of such internally undistorted structures is very

(even qualitatively) different from the internally distorted (relaxed) ones (Fig. 8.9). The

energy of unrelaxed structures is significantly higher than that of their relaxed (internally

distorted) counterparts (these energies are same as in Fig. 8.2). In particular, the energies

of the unrelaxed structures with ∆ = 0 are clearly higher than those with ∆ = 1. The

energy dependence of configurations close to the ∆ = 0 is very flat and there is no energy

barrier along the transformation path. Consequently, the undistorted structures with

∆ = 0 have quite a different mechanical stability: it is much reduced (when compared with

the internally distorted configuration with ∆ = 0), it is in fact on the verge of instability as

there is hardly any barrier for a transformation to the (internally undistorted) γ structure

with ∆ = 1.

When discussing unusual properties of the TiAl+Mo system, it is worth to mention the

impact of Mo atoms on the structures that are tetragonally transformed. Regarding the

internal atomic configuration of TiAl+Mo phases, the presence of Mo atoms in both

ordered and disordered TiAl leads to distortions that are very similar to those in dis-

ordered binary TiAl. Employing the analysis of the RDFs along the tetragonal Bain’s

path again, our results are summarized for 7.4 at.% of Mo in Fig. 8.10. Starting with the
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Figure 8.8: Radial distribution functions for (a) the ordered βo-TiAl and (b) the dis-
ordered β-TiAl phases, tetragonally transformed to the γ/γdis phases. Part (c) is a
magnified part of (b). The straight lines schematically indicate shifts in selected nearest
neighbor shells of atoms.

88



β-SQS-relaxed

β-SQS-unrelaxed

γ-SQS-relaxed

γ-SQS-unrelaxed

0.0 0.2 0.4 0.6 0.8 1.0
-0.28

-0.26

-0.24

-0.22

-0.20

-0.18

Fo
rm

at
io

n 
en

er
gy

 [e
V

/a
t.]

Transformation coordinate ∆ 

Figure 8.9: Comparison of energies along the β → γdis Bain’s transformation path of
disordered TiAl for β-optimized (blue) and γ-optimized (red) SQSs with relaxed (full
lines) and unrelaxed (dashed lines) internal positions.

ordered TiAl+Mo, the 1NN and 2NN shells merge for ∆ = 0 into a single broad peak (cf.

Fig. 8.8a). We interpret this as a tendency to merge the atoms from the 2NN with those

in the 1NN in order to form locally an environment that mimics the γ phase. This can

be a crucial fact as the Mo atoms stabilize the ordered TiAl phase making it eventually

stable even in the β structure.

As far as the disordered TiAl structures with Mo additions are concerned, we exemplify

the trends in the case with 7.4 at.% Mo (see Fig. 8.10b, c). The 2NN shell is so broadened

and partly merged with both the 1NN shell and other shells that it is very difficult to

resolve them (see the magnification in Fig. 8.8c). This behavior resembles that in the

disordered binary TiAl visualized in Fig. 8.8b, c. Here it is worth mentioning that the

chemical disorder and Mo additions are two mechanisms stabilizing the βo/β phases of

TiAl+Mo. It is interesting that their combination, i.e. Mo additions into the disordered

β-TiAl does not enhance the stabilization effect. On the contrary, the impact of Mo

atoms on the thermodynamic stability of disordered β-TiAl+Mo is negative, i.e. Mo

atoms energetically destabilize the disordered TiAl+Mo phase, as visible in the trends

of the formation energy in Fig. 8.4. This trend is reverted with temperature (including

configurational and vibrational entropy), see Fig. 8.5. We therefore conclude that the

stabilizing effect of Mo is related to (i) replacing Ti-Al bonds with Ti-Mo (ordered βo-

TiAl+Mo) and (ii) significant contribution to vibrational entropy at high temperatures.
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Figure 8.10: Radial distribution functions for (a) the ordered βo and (b) disordered β
TiAl+Mo phases with 7.4 at.% Mo additions. (c) is a magnified part of the RDFs from
the (b). The straight green lines schematically indicate shifts in selected nearest neighbor
shells of atoms.
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Table 8.1: The short-range order parameters of the 54-atom (β-SQS) and 32-atom (γdis-
SQS) supercells used in our calculations. The parameter ∆ is the transformation coordi-
nate with ∆ = 0 corresponding to the bcc structure and ∆ = 1 to the fcc structure. αi
is the Warren-Cowley short range order parameter for the ith coordination shell and α is
their weighted sum used as an objective function during the SQS generation [63].

∆ α α1 α2 α3 α4 α5 α6 α7

β-SQS
0 0.0088 -0.0000 -0.0062 0.0000 -0.0185 0.0000 -0.0021 0.0053

1 0.0228 -0.0123 0.0062 -0.0123 0.0000 -0.0074 -0.0062 0.0053

γdis-SQS
0 0.0200 0.0000 0.0000 0.0000 0.0000 -0.1000

1 0.0208 0.0000 0.0000 0.0000 -0.0833 0.0000

8.5.1 Supercell size vs. SQS

We now focus a bit closer on the SQS supercells and the fact that the energy values shown

in Fig. 8.2 for two different SQS supercells exhibit a difference of about 20 meV/at. We

assign this apparent discrepancy to differences in the supercell shapes and/or sizes leading

to differently optimized short range order parameters during their generation. In particu-

lar, the β-SQS is a 3×3×3 supercell based on a 2-atom bcc conventional cubic cell, thus

containing 54 atoms. Consequently, the 8th coordination shell is the first one containing

periodic images of atoms (located in the neighboring periodically repeated supercells),

making only the first 7 coordination shells available for an independent optimization of

the atomic disorder. On the contrary, the γdis-SQS is a 2× 2× 2 supercell based on the

conventional 4-atom fcc cell containing 32 atoms. Here, already the 6th coordination shell

contains periodic images of atoms. Therefore, in this case, only atoms in the first five

coordination shells can be independently optimized. The short-range order of atoms in a

binary alloy can be conveniently described by Warren-Cowley short range order (SRO)

parameters defined as

αi = 1− NAB

NMixAxB

, (8.1)

where NAB is the number of A–B pairs at the ith coordination shell in a supercell with

N sites, Mi is the coordination of each site on the ith shell, and xA and xB = 1− xA are

compositions of atoms A and B, respectively.

It turns out that our two structural models with 54 and 32 atoms have the Warren-Cowley

short range order parameters responding to the simulated tetragonal transformation very

different (see Tab. 8.1). In particular, while the 54-atom cell has zero α1 and α3 pa-

rameters corresponding to the first and third shells in the bcc structure, respectively,

the absolute values of the first three SRO parameters α1, α2 and α3 are significantly

non-zero for the Bain-transformed β-SQS to the fcc structure (the overall α = 0.0228 for

∆ = 1). Here we note that the objective function combines individual SRO parameters
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αi (specifically, their absolute values) with arbitrary weights, here with factors 1/i. These

decreasing weights 1/i represent an intuitive expectation that the nearest interactions are

the most important. However, they do not reflect any specific chemistry of the studied

system. The identified complexity related to the SQS description of strong long-range

interactions present in the Ti-Al intermetallic system, in particular for the small cells,

is in agreement with a previous study on the supercell-size effect on accuracy of elastic

constants in the Ti-Al systems [124]. It was shown that the 32-atomic supercell is to be

expected to have an error of around 1%, while increasing the size to 108 atoms, the error

drops to approximately half of that [124].

8.6 Spontaneous transformation as a function of the Mo

content

Let us discuss in detail our results obtained for the formation energies given in Fig. 8.4. In

particular, it should be noted that the points in Fig. 8.4 represent the calculated energies

based on different supercells with different sizes with the Mo atoms distributed according

to the SQS concept. The βo-based SQS supercells contain 54 atoms while the γ-based SQS

supercells contain 32 atoms. As a consequence of different sizes the Mo concentrations

in the 32-atom and 54-atom supercells are slightly different (one Mo atom corresponds

to 1.85 at.% in the βo-based supercells and 3.12 at.% in the γ-based supercell). Thus, for

example, while the datapoint at xMo = 3.12 at.% on the γ dataset in Fig. 8.4 corresponds

to one Mo atom in the γ-based supercell, the data point at xMo = 3.70 at.% is a fully

structurally relaxed βo phase with two Mo atoms in the supercell (i.e. spontaneously

transformed β-SQS once also cell shape optimization was allowed).

These differences also mean that a special attention must be paid when comparing spon-

taneous transformations in Fig. 8.4 (see the vertical black dashed arrows) with the tetrag-

onal Bain’s transformations in Fig. 8.6a. The comparison is straightforward for, e.g., a

spontaneous transformation of βo → γ shown in Fig. 8.4 for 3.7 at.% Mo, which is fully

in agreement with the transformation energetics depicted in Fig. 8.6a. Similar situation

is in the case of 7.4 at.% (4 Mo atoms in the βo phase supercell), although the energy

difference, i.e. the transformation driving force, is much smaller. Importantly, no βo → γ

transformation occurs for 11.1 at.% (6 Mo atoms in the βo supercell). On the contrary, the

βo-TiAl+Mo datapoint with xMo = 9.4 at.% is actually a spontaneously transformed γ

phase (with 3 Mo atoms in the γ supercell). In summary, since the structural relaxations

(at 0 K) are sufficient to induce phase transformations, the Born-Oppenheimer energy

landscape for the tetragonal βo ↔ γ structural connection is likely to contain negligible-

to-no energy barriers, in agreement with results from the previous section (Fig. 8.6a).
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Therefore, the γ and βo phase can co-exist only when the local Mo content in each of

them is different (up to ≈ 7 at.% in the γ-TiAl the less Mo, the more stable), otherwise

in the case of βo-TiAl for yet higher Mo content.

8.6.1 Experimental evidence

To support the results of our calculations, let us now compare them with available exper-

imental data. During the previous decades, phase equilibria and phase transformations

in the ternary Ti–Al–Mo system have been investigated by a number of different re-

search groups and discussed, e.g., in Refs. [17, 18, 120, 125–131], to name a few. Yet,

only some experimental studies have explicitly addressed the phase transformations be-

tween β (or βo) and γ phases in Mo-containing alloys [21, 128, 128, 132, 133]. Singh and

Banerjee [128] analyzed solidification structures of various Ti-(44-50)Al-(2-6)Mo (at.%)

alloys. A comparison of the measured chemical compositions, which prevail in these mi-

crostructures close to thermodynamic equilibrium, reveals large differences in the local

Mo content in the β/βo and γ phases. For example, in the Ti-50Al-6Mo (at.%) alloy, the

primary β phase (present at room temperature as ordered βo) exhibits a Mo content of

13.0 at.%, whereas only 3.2 at.% Mo are present in the interdendritic γ phase. In Ti-50Al-

2Mo (at.%), there are 11.1 at.% Mo in βo and only 1.2 at.% Mo in γ, while peritectic α

(present at room temperature as ordered α2) features in both microstructures as a third

phase. These chemical compositions, which were determined by means of electron probe

microanalysis, support our conclusion drawn in previous results section, namely that the

co-existence of γ and βo must be connected with differences in the local Mo content.

Furthermore they confirm our prediction that the βo phase is more stable than γ for Mo

contents of 8 at.% and higher, while for lower Mo contents a spontaneous transformation

to γ takes place.

At this point it is important to note that qualitative arguments of this kind can only

be deployed, if experimental conditions close to thermodynamic equilibrium apply, and

the experiments were conducted at sufficiently low temperatures. In specimens that were

quenched from high temperatures, also Mo contents lower than ≈ 8 at.% can be observed

in the βo phase. For example, Singh and Banerjee [128] observed Mo contents as low

as 2.2 at.% and 2.9 at.% after quenching a Ti-44Al-2Mo (at.%) alloy from 1673 K and

1573 K, respectively. These microstructures are usually not stable and transform upon

heating as they approach thermodynamic equilibrium. In a recent paper, Musi et al.

[22] compared quenched specimens of a Ti-44Al-3Mo (at.%) alloy with hot-isostatically

pressed conditions of the same material and found (by means of electron dispersive spec-

troscopy in a transmission electron microscope) that the chemical composition of the βo

phase increased from a Mo content of 4.1 at.% to 7.7 at.% during annealing at 1473 K
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and slow cooling. In contrast to this, the newly formed γ phase finally exhibited a Mo

content of 1.5 at.%, which is again in good qualitative agreement with our predictions.

Recently, the partitioning of Mo between the phases βo and γ has also been studied

experimentally in the course of an in situ heating experiment at a synchrotron radiation

source [133]. For this experiment, a Ti-44Al-7Mo (at.%) alloy was selected. According to

the equilibrium phase diagram [131, 134], βo and γ are the only stable phases in this alloy

below roughly 1473 K. Consequently, no other phases have to be considered during the

observation of the β → βo+γ phase transformation, which occurs when the quenched and,

thus, supersaturated single-phase βo microstructure decomposes upon heating. Starting

from the solid solution, in which β exhibits the nominal chemical composition of the

alloy, γ particles of a reduced Mo content nucleate and grow. After heating to 953 K at

a rate of 10 K/min, the γ precipitates were found to have a Mo content of 3.9 at.%. As

only 8 to 10 % of the matrix had transformed to γ at this point, atom probe tomography

indicated that the Mo content of the βo matrix had increased only marginally. Long-term

annealing of this material at 1273 K, though, has been shown to finally yield Mo contents

of 16.3 at.% in the βo and 2.0 at.% in the γ phase [21]. This behaviour is again very

much in agreement with our calculations. As can be deduced from Fig. 8.4, the overall

energy of the system is minimized by the observed phase separation, during which almost

pure γ phase and βo at a significantly higher Mo content are obtained. Furthermore,

in accordance with our results, this transformation was found to take place without the

formation of any metastable phase of different crystallographic structure.

Based on our calculations, we can even go one step further. The convex shape of the

curve related to the βo phase in Fig. 8.4 may be taken as an argument supporting the

suggestions proposed in Ref. [133], namely that in the investigated Mo-range, the βo

phase does not display any tendency towards spinodal decomposition, but that the phase

separation is governed rather by a nucleation and growth process. This research question

was raised, as the conditions pertaining to classic nucleation, e.g. that the γ nuclei already

show their final chemical composition, were found to be not ideally fulfilled due to the

complexity of the proposed heat treatments. In this regard, our ab initio calculations

successfully address a critical issue which is, in this material system, not easily accessible

by means of experimental techniques.
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Chapter 9

Cubic to hexagonal martensitic

transformations

From the discussions in Sec. 1.3.2 and 1.3.3 we expect a diffusionless transition from

cubic to hexagonal phase to take place upon rapid cooling. However, before this transition

occurs, the cubic phase must become dynamically unstable (as predicted and explained in

details in Sec. 4.2.3 and 8.2) with respect to distortions (has described in Sec. 3.3.2) which

transform it to hexagonal structure. The transition path studied in the present work

involves two degrees of freedom, namely δc (cell shape) and δs (shuffling) as introduced in

Sec. 3.3.2. Using these transformation coordinates, the cubic phase is (δc, δs)=(0.0,0.0)

and the hexagonal corresponds to (1.0,1.0). Hence we performed total energy calculations

for a set of distortions with δc, δs ∈ [0.0, 1.0].

9.1 Potential energy surface and the energy barriers for

binary TiAl system

The potential energy surface (PES) is the ground state electronic energy of the system

which is constructed as a function of the atomic configurations. In the next sections, the

calculated energies of two martensitic transformations (βo →B19 and β → α′) will be

discussed.

9.1.1 βo →B19 martensitic transformation

The potential energy surface of βo →B19 is displayed in Fig. 9.1. The transformation is

started with changing cell shape and shuffling the atomic positions from the B2 structure

(a = b = c = 3.187 Å) to the B19 structure (a = 4.917, b = 2.839 and c = 4.636 Å).

The ordered βo and B19 unit cells are located at the lower-left and upper-right corners of
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Figure 9.1: A contour plot of a potential energy surface of βo →B19 martensitic transfor-
mation in terms of cell shape and cell volume changes, δs and δc, respectively. The dashed
black curve shows the minimum energy path (MEP) which was drawn by tracing back
the steepest descent from the initial (βo) to final (B19) structures. Crystal structures of
some states belonging to the specific δc and δs are shown.

Fig. 9.1, respectively. In contrast, the upper-left and lower-right corner plots corresponds

to unit cells transformed along only one of the δs or δc axes. As can be seen in the

contour plot, the local maximum ' −6.113 eV/at. and minimum ' −6.207 eV/at.

belong to βo and B19 structure, respectively. However, the B19 phase is energetically

favored nearby ' −6.207 eV/at.. The dashed black curve shows the minimum energy

path which was drawn by tracing back the steepest descent from the initial (βo) to the

final (B19) structure. The most clearly revealed feature in the βo →B19 transformation

is the fact that it is barrierless, and therefore a spontaneous transition is anticipated.

9.1.2 β → α′ martensitic transformation

We start the analysis by considering a disordered structure modeled using special quasi-

random structures (SQS) method [63, 86], in which the Warren-Cowley short-range order

(SRO) parameters were optimized for pair up to 7th coordination shell in the bcc struc-

ture. We call this structure a bcc(sqs). The PES corresponding to the β → α′ martensitic

transformation obtained with bcc(sqs) is plotted in Fig. 9.2a; we called this path bcc(sqs).

To gain more insight and clarity, we have additionally considered SQS structure with SRO
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(a)

(b)

Figure 9.2: A contour plot of a potential energy surface of β → α′ martensitic bcc to
hcp transformation, in which (a) bcc(sqs) and (b) hcp(sqs) are deformed in terms of cell
shape change and cell volume changes δs and δc, respectively. The dash black curves
show the minimum energy path (MEP) which was drawn by tracing back the steepest
descent from the initial (β) to final (α′) structures. The solid-red curve demonstrates the
position of the energy barrier. Snapshot of β and α′ states are shown.
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parameters optimized on the hcp lattice. Thus we have explored a reverse path by start-

ing transformation from hexagonal α′ (sqs-structure) to cubic β-TiAl as a function of

δc and δs, which is plotted in Fig. 9.2b. This path is called hcp(sqs). In both transfor-

mations, (δc, δs) = (0.0, 0.0) and (1.0,1.0) correspond to β-TiAl (lower-left corner) and

α′-TiAl (upper-right corner), respectively.

By comparing both contour plots, unlike the cases of βo →B19 (Fig. 9.1) and hcp(sqs)

(Fig. 9.2b) transformations, there is an energy barrier (crossing of dashed-black and

solid-red curves) ' −6.05 eV/at. along the bcc to hcp transformation using bcc(sqs)

(Fig. 9.2a). This means that the transformation in this case is not spontaneous. The

Minimum Energy Path (MEP) was analyzed in both systems (see Fig 9.2). The dashed

black curves represent the MEP of the ionic relaxation of bcc(sqs) and hcp(sqs) transfor-

mations, respectively. It is therefore obvious that the TiAl system is extremely sensitive

the actual disorder state, as demonstrated by the qualitatively different behavior of dif-

ferent SQS cells.

9.1.3 Comparison with the CPA method

In order to obtain more trust in the ab initio predictions, the total energy along the

cubic to hexagonal transformation path was calculated also using an alternative EMTO-

CPA method. Unlike the VASP-SQS method, EMTO-CPA does not use any supercell

but treats the disorder problem within the single-site approximation. Moreover, for the

clarity of the comparison, we will represent the transformation landscapes using only a

single transformation coordinate, namely δc. The shuffling parameter, δs is set equal to

δc for the EMTO-CPA calculations as well as the initial structures for the VASP-SQS

calculations. This corresponds to a transformation along the diagonal (0, 0) → (1, 1) in

Figs. 9.1 and 9.2. However, while the PES clearly suggest that the MEPs are not straight

connections of the initial and final states, we have additionally relaxed the ionic positions

in VASP-SQS while keeping the cell shape fixed. Those calculations are in the following

denoted as ‘relaxed’, whereas the energies corresponding to the initial states with δs = δc

are denoted as ‘unrelaxed’. Finally we note that this relaxation can yield lower energies

along the transformation path than what would be read out from PES, as the relaxation

may be more general than what is described by a simple plane shuffling.

Generally, we compare the EMTO-CPA result with the supercell result without the ionic

relaxation, i.e. with energies corresponding to the initial configurations, identical to

that considered with the EMTO-CPA method. In Fig. 9.3 we plot the total energies

normalized to the the βo/β state energy by subtracting the total energy, E, from the

total energy of the initial state, E0, which belongs to δc = 0.0 state (β structure). The

transparent blue line in Fig 9.3a is the total energy of unrelaxed βo →B19 deformation
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obtained by VASP and the green line represents the gained total energy by EMTO-CPA

method. Both method agree qualitatively on the energy landscape including a maximum

at δc = 0.0 state and a minimum at δc = 1.0 state which belong to βo and the B19

structures, respectively. VASP predicts somewhat larger energy difference between the

two states of ∆E(B19− βo) = −0.094 eV/at. than the EMTO-CPA method which yields

∆E(B19 − βo) = −0.065 eV/at.. Those values are consistent with results in Table 4.1,

with the EMTO-CPA value differing slightly, perhaps due to slightly different geometry of

the B19 structure. Allowing for ionic relaxations results in a significant energy reduction

for small δc (i.e. in the vicinity of the βo structure), while for δc → 1 only minor energy

gain due to ionic relaxations are predicted. This is consistent with the MEP shape shown

in Fig. 9.1.

The same comparison for β to α′ is presented in Fig. 9.3b. The unrelaxed energies

along the bcc(sqs) path show a good agreement with the EMTO-CPA method. The

energy difference ∆E(α′−β) = −0.007 eV/at. predicted by VASP-SQS is almost identical

with ∆E(α′ − β) = −0.008 eV/at. obtained from EMTO-CPA. Moreover, both methods

suggest a small energy barrier of Eb = ∆E(barrier− β) = 0.004 eV/at. (VASP-SQS) and

0.002 eV/at. (EMTO-CPA). Relaxing the SQS supercells yields the energy difference to

∆E(α′ − β) = 0.006 eV/at.. Importantly, the phase preference changes (β is more stable

than α′) and the transformation barrier increases to E(barrier− β) = 0.013 eV/at..

The hcp(sqs) path was evaluated also with respect to the β bcc(sqs) phase in Fig. 9.3b.

Several aspects can be realized. First, the hcp(sqs) path decreases the energy of α′

structure at the δc = 1.0 in both relaxed and unrelaxed cases (with respect to bcc(sqs)),

which means the hcp(sqs) is energetically more suitable description than the bcc(sqs).

Second, the unrelaxed energy difference in case of hcp(sqs), ∆E(α′−β) = −0.061 eV/at.,

is bigger than the energy difference of unrelaxed bcc(sqs). By relaxing the structures

along the transformation path, this energy difference decreases (in absolute valuee) to

∆E(α′ − β) = −0.04 eV/at.. Third, no barrier is predicted for the hcp(sqs) in both

unrelaxed as well as relaxed cases (for the latter the barrier is 1.8 meV/at., which is likely

within the accuracy error of our calculations).

From Fig. 9.3b, it is predicted the unrelaxed bcc(sqs) has a similar energy landscape to

the EMTO-CPA method, unlike the hcp(sqs). Since CPA is expected to provide a more

accurate description of ideal random alloys than SQS supercells, we conclude that bcc(sqs)

is likely to describe the transformation energetics better. The effect of atomic relaxation

is clarified by comparing the relaxed and unrelaxed energies: the phase preference is

inverted from α′ to β, which is likely to be linked to the dynamical instability of the β

phase [109]. Further, the phase preference would be inverted from β to α′ by considering

hcp(sqs) instead of bcc(sqs).
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9.1.4 Strain energy

The cell shape changes without shuffling correspond to elastic deformations and hence the

energy change along δs = const. can be ascribed to the strain energy [135]. This allows

to couple atomic description using quantum mechanics and linear elasticity. The strain

energy, Estrain, can be estimated using elastic constants as in the following equation:

Estrain =
1

2
V0

∑
Cijεiεj (9.1)

where the V0 is the equilibrium volume, the Cij are the elastic constants, and the εi,j

are the components of the strain tensor in Voigt’s notation (it is explained in detail in

Sec. 2.4.

Realizing, that the strain tensor for the cubic to hexagonal transformation does not

contain any shear components, and using the matrix of elastic constants Cij, the corre-

sponding strain energy, Estrain, is

Estrain =
1

2
V0

[
C11ε

2
1 + 2C12ε1ε2 + C22ε

2
2 + 2C13ε1ε3 + C33ε

2
3 + 2C23ε2ε3

]
(9.2)

The strains are defined using the cell lattice constants with respect to the initial structure.

If a structure is elastically stable with respect to a chosen deformation, then the stain

energy is positive and increases with increasing strain. As demonstrated in Fig. 9.4a,

with transforming the βo →B19, the strain energy (the green curve that so-called “strain

energy-βo T”) quadratically increases. Unlike that, the total energy difference ∆E((δc, δs =

0)− βo) first slightly decreases and increases only for δc ≥ 0.5. This discrepancy is likely

to be related to the mechanical instability of the βo phase, which is not picked by the

linear elasticity.In contrast to that, another approach by transforming the B19 structure

and follow the path in terms of δc (the green curve that so-called “strain energy-B19 T”,

∆E((δc, δs = 1)− B19)) exhibit a very decent correlation with the and red curve in Fig.

9.4a. This implies that PES for δs ≈ 1 and 0 ≤ δc ≤ 1 is dominated represent by the

elastic energy. It also nicely demonstrates the mechanical stability of the B19 phase (red

curve), in agreement with Sec. 4.2.3.

Figure 9.4b shows a similar result for the disordered phases, i.e. the β → α′ transforma-

tion, and both considered SQS structures, bcc(sqs) (solid lines) and hcp(sqs) dashed lines.

All SQS model are predicted to be mechanically stable, in line with results in Sec. 4.2.3.

In particular for the bcc structures, the elastic energy very well agrees with energy de-

rived from PES (the blue area); in the case of deforming the hexagonal α′ structure, the

strain energy is smaller than the actual energy from PES, ∆E((δc, δs = 1)− α′) (the red

area), suggesting that in this case the linear elasticity is not fully capturing the behavior.

101



(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

stra
in energy-β o T

.

βo deformed-βo T.

E-
E 0 [e

V
/a

t.]

δc

B19 deformed-β
o  T.

  δs=0.0    

  δs=1.0    

βo-δc(1.0)-δs(1.0)

βo-δc(1.0)-δs(0.0)

βo-δc(0.0)-δs(1.0)

βo-δc(0.0)-δs(0.0)

strain energy-Β19 T.

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

α ' deformed-hcp(sqs) T.

α ' deformed-bcc(sqs) T.

β deformed-bcc(sqs) T
.

stra
in energy-bcc(sqs) T

.

  δs=0.0     δs=1.0    

E-
E 0 [e

V
/a

t.]

β
α '

δc

bcc-sqs-δc(1.0)-δs(0.0)

hcp-sqs-δc(1.0)-δs(0.0)

hcp-sqs-δc(1.0)-δs(1.0)

bcc-sqs-δc(1.0)-δs(1.0)

bcc-sqs-δc(0.0)-δs(1.0)

hcp-sqs-δc(0.0)-δs(1.0)

hcp-sqs-δc(0.0)-δs(0.0)

bcc-sqs-δc(0.0)-δs(0.0)

β deformed-hcp(sqs) T.

strain energy-hcp(sqs) T.

Figure 9.4: The strain energy and deformation https://www.overleaf.com/project/60b4b903e75178389810c4d4energy
of a)βo →B19 and b) β → α′ in terms of cell shape changing.

Overall, the energy landscape for the cubic to hexagonal transformation can be approxi-

mated by the elastic strain energy fairly well, provided that the structures are mechani-

cally stable.
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9.2 Energy barrier for ternary martensitic TiAl+Mo sys-

tem

Figure 9.5a shows the transformation energy landscape along the path as a function of the

Mo content for the ordered phases. While the B19 structure is clearly preferred for the

Mo content of 0.0 and 4.16 at.% with no energy barrier between the βo and the B19 phase,

the situation is completely opposite for the 8.3 and 12.5 at.% Mo. There, the βo phase

is energetically preferred over the B19 phase without any transformation barrier which

could be a sign for spontaneous transformations. This is interesting, because by increasing

the Mo content, the spontaneous transformation βo →B19 changes to B19→ βo. The

prediction of the later transformation for the high Mo content was described in detail in

Sec. 4.3.2. Finally we not that in both 4.1 and 8.3 at.% cases, the overall energy minimum

along the transformation path is obtained for δc = 0.875 and δc = 0.5, respectively,

suggesting that the most stable configuration is somewhere “in-between” the cubic βo

and the hexagonal B19 structure.

Figure 9.5b shows energy changes along the β → α′ transformation path of several studied

Ti0.5Al0.5−xMox compositions. Unlike in the case of the ordered phases (Fig. 9.5a), the

disordered phases do not exhibits any clear trend as a function of Mo content. The β

structure is energetically slightly preferred for 0 at.% Mo, and this preference gradually

changes with increasing Mo content for a slight preference for the α′ phase for 8.3 at.%.

There is a small energy barrier for β → α′ 0 at.% Mo content, which diminishes with

increasing Mo content, almost flattening the PES along most of the transformation path

for 8.3 at.%. In contrary to this behavior, a clear preference for the β phase is predicted

for 12.5 at.% Mo, with no barrier for β ← α′ a spontaneous transformation.

Existence of the barriers and/or flat and rough energy landscape opens the possibility

of stabilizing both phases, i.e. the α′ (β) phase would become metastable in the 0 and

4.1 at.% (8.3 at.%) Mo cases. Consequently, the chemical disorder effectively prevents any

spontaneous phase transformations as predicted for the case of ordered βo and α′ phases,

except for the high Mo content of 12.5 at.%.
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Chapter 10

Conclusion and outlook

10.1 Summary of result

This thesis presents an overview of methods for modeling of phase transformations, and

cen be divide into three parts. The first part contains theoretical concepts and formalism

for simulating the structures and structural connections between bcc and fcc, and bcc

and hcp transformations. The second part deals with ab initio calculation of structural

and mechanical and some thermodynamic properties of binary and ternary TiAl(+Mo)

alloys. The last part brings the results of the phase transformations modeled using the

in the description introduced in the first part.

A summary of the concepts behind the bcc to fcc and bcc to hcp phase transformations

and the corresponding equations is given in the Chap. 3. The derived formula were

used for the investigation of how geometrical properties of bcc, fcc, and hcp unit cells

change along with the phase transformation path in terms of some internal parameters,

e.g., lattice changes, atomic positions or shuffling of atomic planes. In the fcc-to-bcc

study, the Bain’s path in which volume is not conserved, was innovatively employed.

Additionally to this tetragonal transformation, a structural connection of the initial and

final phases using a trigonal transformation was also studied. The second case focused on

bcc→hcp transformation path applied to ordered βo → B19/α′2 and disordered β → α′

phases, to study martensitic transformations in the TiAl system. The deformation during

the transformation is quantified in terms of two transformation parameters denoted as δc

and δs, which represent cell shape changes and shuffle displacements, respectively.

Presentation of calculated results starts with Chap. 4 by discussing structural properties

of binary and ternary TiAl(+Mo) alloys. The concepts of formation energy and phase

stability were employed in these studies. All structures and compositions are yielding

negative formation energies and hence are chemically stable. Nonetheless, allying Mo
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increases Ef and hence leads to chemical destabilization of all those phases except for

βo-Ti0.5Al0.5−xMox which is stabilized by Mo. This is inline with Mo being known as β-

stabilizer. Additionally, alloying Mo into any of the here considered intermetallic phases

leads to a decrease of specific volume, which means an increase of the mass density.

Those trends based on supercell SQS calculations were confirmed by the CPA method.

Analysis of single-crystalline elastic constants allowed to remove mechanically unstable

compositions from a further discussion. Those were low-Mo containing βo structures: to

achieve mechanical stability of the ordered βo phase, a minimum Mo content of ≈ 8 at.%

is necessary.

The single crystalline elastic constants and polycrystalline elastic properties are presented

in Chap. 5. Mo is shown to beneficially influence the ductility of TiAl intermetallic phases,

and to increase the elastic anisotropy. The here provided compositional trends provide

a basis for targeted, knowledge-based development of novel intermetallic alloys based on

the TiAl(+Mo) ternary system.

In Chap. 7, the focus was laid on comparing energies of ordered (βo, B19, partly-ordered

α′2) variants with their chemically disordered counterparts. Knowledge of the energy

differences related to the ordering enables establishing ordering temperatures via a simple

model. To do so, we assign the whole energy gain change upon ordering to the loss of

configurational entropy.

Two different concepts based on quasi-harmonic approximation (QHA) were employed

in Chap. 6 to see the temperature dependence of lattice parameters and coefficients of

thermal expansion of tetragonal γ-TiAl and hexagonal α2Ti3Al of binary TiAl system.

Our calculations show that in the case of the γ-TiAl phase, significant differences are

obtained when employing gs-cs (ground-state cell shape) or to-cs (temperature-optimized

cell shape) methods. Contrarily, comparable results are predicted for the hexagonal

α2Ti3Al phase. We propose that the to-cs method with the decouples the impact of

temperature and volume on the cell geometry (c/a ratio) gives better agreement for the

γ-TiAl phase. The present work, therefore, contributes to advancing the first principles

of thermodynamics beyond systems with cubic symmetry.

The energetics of a bcc-to-fcc trasnformation is predicted in Chap. 8. Energetic land-

scapes of structural connections between the bcc-based ordered βo and disordered β

phases on the one hand and fcc-based ordered γ and disordered γdis TiAl(+Mo) phases

on the other hand are discussed. In the case of the stoichiometric TiAl system, the or-

dered phase is predicted to transform spontaneously from the bcc βo to the tetragonally

distorted fcc γ phase. Unlike that, the disorder stabilizes the bcc-β phase and raises a

small barrier between the bcc and the fcc phases. The trigonal path, however, transforms

the ordered TiAl into a different structural type and exhibits a large energy barrier of
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≈ 500 meV/at. in the ordered case, effectively ruling such structural connection out. A

small barrier is predicted also for the transformation between disordered states. The

impact of Mo, a known stabilizer of the βo/β phase, was finally considered, too. It turns

out that the bcc phase becomes energetically preferred over the γ phase for Mo content

of ≈ 7.4 at.% and higher. Around this critical Mo content, a small energy barrier of

≈ 1 meV/at. is predicted. For all other compositions, the spontaneous (barrierless) na-

ture of the Bain’s path connecting the βo and γ phases are predicted to prevail. Unlike

that, Bain’s path connecting the disordered bcc β and fcc γdis phases exhibits a barrier

for all Mo concentrations considered here, effectively making it possible for both phases

to co-exist. Finally, the instability of the β-TiAl(+Mo) phase was linked to individual

atomic environments, exhibiting a strong tendency to locally resemble the tetragonally

distorted structure of the γdis-TiAl(+Mo) phase.

In the Chap. 9, the ab initio calculations of the martensitic bcc-to-hcp transformation for

binary and ternary TiAl(+Mo) alloys were reported. Since the PES clearly suggest that

the MEPs are not straight connections of the initial and final states, we have additionally

relaxed the ionic positions using our SQS supercells which yielded different result from the

EMTO-CPA method. We could show that the elastic energy is a decent approximation of

PES as a function of δc for fixed δs, provided the initial structure is mechanically stable.

Moreover, the transformation energy landscape as a function of Mo content predicts, that

adding Mo favors βo/β phase on the expense of B19/α′, eventually leading to spontaneous

barrierless transformations B19→ βo and α′ → β for 12.5 at.% Mo.

This work presents novel and consistent information on structural and elastic and thermo-

dynamic properties of binary TiAl and ternary TiAl+Mo systems. Energetics of possible

diffusion-less phase transformations in the ternary TiAl+Mo system are presented for the

first time. These results are expected to deepen understanding of this industrially impor-

tant intermetallic system and provide a basis for further knowledge-based development

of novel alloys based on TiAl+Mo.

10.2 Proposed future work

This work covers a wide range of problems. Consequently, the here reported results can

also serve as a motivation for further research. In this section are suggested some possible

directions of future studies based on the conclusions of this work.

For example, the machine-learned potentials and MD simulation could be used for an

explicit modeling of the transformation energetic at finite temperatures. Alternatively,

the Debye model using the elasticity restuls, shall be investigated as an approximation

of the PES at finite temperature effects.
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F. Barragán, and S. Alvarez, Dalton Transactions , 2832 (2008).

[107] J. C. Slater, The Journal of Chemical Physics 41, 3199 (1964).

[108] N. N. Greenwood and A. Earnshaw, Chemistry of the Elements 2nd Edition

(Butterworth-Heinemann, 1997).

[109] D. Holec, D. Legut, L. Isaeva, P. Souvatzis, H. Clemens, and S. Mayer, Inter-

metallics 61, 85 (2015).

113

http://dx.doi.org/1338-4252
http://dx.doi.org/1338-4252
http://dx.doi.org/ 10.1088/0965-0393/7/3/306
http://dx.doi.org/ 10.1088/0965-0393/7/3/306
http://dx.doi.org/10.1103/PhysRevB.63.052405
http://dx.doi.org/ 10.1016/j.msea.2003.10.376
http://dx.doi.org/ 10.1016/j.msea.2003.10.376
http://dx.doi.org/ 10.1103/PhysRevB.81.214118
http://dx.doi.org/10.1002/srin.201000264
http://dx.doi.org/10.1016/S0022-3697(02)00420-1
http://dx.doi.org/10.1016/S0022-3697(02)00420-1
http://dx.doi.org/10.1103/PhysRevB.94.184110
http://dx.doi.org/10.1088/1367-2630/9/1/005
http://dx.doi.org/10.1103/PhysRevLett.99.016402
http://dx.doi.org/ 10.1103/PhysRevB.83.184424
http://dx.doi.org/ 10.1103/PhysRevB.77.174117
http://dx.doi.org/ 10.1088/0965-0393/22/2/025007
http://dx.doi.org/ 10.1088/0965-0393/22/2/025007
http://dx.doi.org/10.1016/j.commatsci.2015.08.050
http://dx.doi.org/ 10.1039/b801115j
http://dx.doi.org/10.1063/1.1725697
http://dx.doi.org/9780080501093
http://dx.doi.org/ 10.1016/j.intermet.2015.03.001
http://dx.doi.org/ 10.1016/j.intermet.2015.03.001


[110] D. Holec, R. K. Reddy, T. Klein, and H. Clemens, Journal of Applied Physics 119,

205104 (2016).

[111] M. Moakher and A. N. Norris, Journal of Elasticity 85, 215 (2006).

[112] L.-Y. Tian, L.-H. Ye, Q.-M. Hu, S. Lu, J. Zhao, and L. Vitos, Computational

Materials Science 128, 302 (2017).

[113] S. Pugh, The London, Edinburgh, and Dublin Philosophical Magazine and Journal

of Science 45, 823 (1954).

[114] D. Pettifor, Materials Science and Technology 8, 345 (1992).

[115] S. Ranganathan and M. Ostoja-Starzewski, Physical Review Letters 101, 55504

(2008).

[116] L. Capolungo, I. J. Beyerlein, and Z. QWang, Modelling and Simulation in Mate-

rials Science and Engineering 18, 085002 (2010).
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