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Kurzfassung 
Seit der Einführung des Konzepts Industrie 4.0 im Jahr 2011 lässt sich ein stetiger und 
nachhaltiger Paradigmenwechsel im industriellen Produktionsumfeld beobachten. Damit 
verbundene technologische Konzepte wurden häufig in der Literatur untersucht sowie in einer 
Vielzahl unterschiedlicher Industriesparten umgesetzt. Ein Großteil dieser Veröffentlichungen 
geht jedoch nicht ausreichend auf die umformtechnische Industrie ein.  

Um diesen Industriezweig bei der digitalen Transformation zu unterstützen, wurde in erster 
Instanz eine Literaturrecherche, ergänzt durch Experteninterviews, durchgeführt. Des Weiteren 
wurde eine repräsentative Befragung innerhalb der österreichischen Umformindustrie 
durchgeführt und ausgewertet. Als Ergebnis dieser Befragung kann festgehalten werden, dass 
der Digitalisierungsgrad im Vergleich zu anderen Branchensegmenten wesentlich geringer ist. 
Neben dem relativ hohen Anteil an KMUs ist ein oftmals nicht mehr zeitgemäßer 
Maschinenpark der Hauptgrund für diesen Umstand. Um diese Unternehmen mit 
entsprechenden Lösungen zu unterstützen, wurden drei Maschinensysteme unterschiedlichen 
digitalen Reifegrades digitalisiert und in eine eigens entwickelte Layer-Architektur integriert. 
Dazu wurden zwei verschiedene industrietaugliche Datenerfassungssysteme (DAQ) eingesetzt.  

Die Komplexität von Umformoperationen ergibt sich aus mikrostrukturellen Änderungen im 
jeweiligen Werkstück, basierend auf dem Einfluss von Temperatur, komplexen mechanischen 
Zuständen und dem umgebenden tribologischen System. Die Finite-Elemente-Analyse (FEA) 
ist ein weit verbreitetes Werkzeug zur Vorhersage von Prozessparametern, um kosten- und 
arbeitsintensive praktische Versuche zu reduzieren. Dennoch ist eine direkte Integration in die 
Produktion in der Mehrzahl der Umformprozesse nicht realisiert, da der Rechenaufwand oft zu 
hoch ist bzw. entsprechende Schnittstellen noch nicht ausreichend entwickelt sind. Um die 
Produktivität weiter zu steigern und mögliche Lösungen für dieses Problem aufzuzeigen, 
wurden drei Lösungsansätze entwickelt.  

In vielen Fällen kann die FEA durch nicht-komplexe Algorithmen ersetzt werden. Dieser 
Ansatz wurde am Versuchswalzwerk des Lehrstuhls für Umformtechnik umgesetzt, woraus ein 
Prädiktor für die teilautomatisierte Prozessanpassung resultierte. Zusätzlich wurde ein 
einfacher maschineller Lernalgorithmus (MLA) entwickelt, der die Vorhersagen entsprechend 
neuer Daten aus durchgeführten Walzprozessen anpasst.  

Um die Möglichkeiten der FEA-Integration in einen Produktionsprozess zu demonstrieren, 
wurde ein digitaler Schatten (DS) für den ECAP Prozess entwickelt. Dieser ist in der Lage, 
Reibungszustände in Abhängigkeit von vorgegebenen Eingabeparametern aus dem 
Maschinenbetriebssystem zu prognostizieren. Zusätzlich wurde ein FEA-basierter Python-
Algorithmus zur Vorhersage von Eigenspannungen nach dem Kugelstrahl-Prozess entwickelt. 
Dieser Algorithmus demonstriert, wie die FEA in Kombination mit Open-Source-
Programmierumgebungen und einfachen MLA den jeweiligen Mitarbeiter bei der Auswahl 
geeigneter Prozessparameter unterstützen kann.  

Umformtechnische Prozesse sind ein entscheidender Teil der industriellen 
Wertschöpfungskette. Um das Vernetzungspotential innerhalb dieser aufzuzeigen, wurde ein 
holistischer Integrationsansatz für die Einbettung verschiedener Prozesssimulationen in ein 
übergeordnetes Logistiksystem entwickelt.  
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Zusätzlich wurde eine Stakeholder-orientierte Vorlesung für die interdisziplinäre Ausbildung 
von Studierenden designt. Diese Vorlesung berücksichtigt moderne pädagogische Theorien und 
ist auf die Anforderungen der österreichischen Umformtechnikbranche zugeschnitten. Die 
entwickelte Layer Architektur, welche eine in Python programmierte Bearbeitungsebene 
enthält, bietet hierfür interessierten Studierenden die Möglichkeit, ihre Programmierkenntnisse 
in einer realistischen Fertigungsumgebung zu trainieren.  
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Abstract 
Since the introduction of the Industry 4.0 concept in 2011, a steady and persistent paradigm 
shift in the industrial production environment can be observed. Related technological concepts 
have been frequently studied in the literature as well as implemented in a variety of different 
industrial sectors. However, a majority of these publications do not sufficiently address the 
metal forming industry.  

In order to support this industry sector in its digital transformation, a literature review was 
conducted in the first instance, supplemented by expert interviews. Furthermore, a 
representative survey within the Austrian metal forming industry was executed and analyzed. 
As a result of this survey, it can be stated that the degree of digitization is significantly lower 
compared to other industry segments. In addition to the relatively high proportion of SMEs, one 
of the main reasons for this circumstance is often outdated production machinery. In order to 
support these companies with appropriate solutions, three machine systems with different levels 
of digital maturity were digitized and integrated into a newly developed layer architecture. Two 
different industry-standard data acquisition systems (DAQ) were used for this purpose.  

The complexity of forming operations results from microstructural changes in the respective 
workpiece, based on the influence of temperature, complex mechanical conditions and the 
surrounding tribological system. Finite element analysis (FEA) is a widely used tool for 
predicting process parameters to reduce costly and labor-intensive practical trials. Nevertheless, 
direct integration into production has not been realized in the majority of forming processes, as 
the computational effort is often too high or corresponding interfaces are not yet sufficiently 
developed. In order to further increase productivity and to identify possible solutions to this 
problem, three approaches have been elaborated.  

In many cases, FEA can be replaced by non-complex algorithms. This approach was carried 
out on the experimental rolling mill of the Chair of Metal Forming, resulting in a predictor for 
a semi-automated process adaptation. In addition, a simple machine learning algorithm (MLA) 
was established to adjust the predictions according to new data from performed rolling 
processes.  

To demonstrate the capabilities of FEA integration into a production process, a digital shadow 
(DS) for the ECAP process was devised. This DS is capable of predicting friction conditions as 
a function of given input parameters from the machine operating system. In addition, an FEA-
based Python algorithm was evolved to predict residual stresses after the shot peening process. 
This algorithm demonstrates how FEA, in combination with open-source programming 
environments and simple MLA can assist the respective operator in selecting appropriate 
process parameters.  

Forming processes are a critical part of the industrial value chain. In order to reveal the potential 
of open-interface networks within this, a holistic integration approach for embedding different 
process simulations into a higher-level logistics system has been developed.  

In addition, a stakeholder-oriented lecture was designed for the interdisciplinary education of 
students. This lecture takes into account modern pedagogical theories and is tailored to the 
requirements of the Austrian metal forming industry. The presented layer architecture, which 
includes a processing layer programmed in Python, offers interested students the opportunity 
to train their programming skills in a realistic manufacturing environment. 
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1 Introduction 
 

Metal forming is characterized as reshaping metallic components without adding or removing 
material. As a result, the forming process leads to a permanent deformation of the respective 
workpiece [1,2]. To achieve this objective, high loads and corresponding stresses are frequently 
required, which has a direct impact on the forming industry: to be able to sustain profitable, 
high volume production lines have to be executed in order to amortize the heavy and capital 
committing machinery necessary. In the past decades, an additional approach to achieve 
economic success was offshoring of production facilities to low-wage countries [3,4]. 

However, this strategy was not applicable for all parts of the metal forming industry. In 
highly-specialized sectors (e.g. aviation, aerospace, parts of the automotive sector), significant 
know-how about materials science, mechanical engineering and technical mechanics is 
necessary to achieve the superior material quality respective customers demand. As a result, a 
majority of these manufacturers extended their production capacity in high-wage countries. Due 
to these developments, this industry sector is heavily exposed to its business environment and 
other global impacts (e.g. the ongoing Covid-19 crisis, punitive tariffs) [5,6].  

The persistent digitalization and digital transformation, heavily accelerated during the last two 
decades, offers opportunities for these companies to significantly enhance their economic 
success and market position by increasing their operational efficiency. This paradigm change, 
often addressed by the terminology Industry 4.0 (I 4.0), which was introduced by the German 
government in 2011 [7], can, if properly applied, result in an improved Overall Equipment 
Effectiveness (OEE). Despite this positive advantage, the possibility of negative impacts by a 
decreasing necessity of human labour has to be addressed [8–11]. The sustainable shift in 
knowledge requirements for blue collar as well as engineering experts in a digitalized 
manufacturing environment cannot be neglected [12–15]. If the training of respective human 
capital can be executed successfully, this possible threat on employment can even be switched, 
as an increasing amount of metal processing companies decide to backshore their production 
facilities to high-wage countries [3,4,16,17]. As digitalization decreases the cost of manual 
labour for these companies, highly skilled experts and their know-how becomes more important 
[18–21]. Additionally, the required technical skills as well as job descriptions and 
corresponding roles of these experts change, which leads to a shift in engineering education at 
academic institutions as well as applicable life-long learning (LLL) concepts for already 
employed engineers and technicians mandatory [22–24].  

For these reasons, this thesis proposes a novel and holistic approach to address the possibilities 
and threats of this paradigm shift due to the fourth industrial revolution explicitly for the 
Austrian metal forming sector. To be able to accomplish this goal, a literature study as well as 
a quantitative survey to identify the degree of digitalization in this segment was executed. The 
results of this work are presented in section two and serve as a basis for further elaboration. 
From this analysis, the resulting research questions to be elaborated in this work were derived. 
Section three describes how these research questions were addressed, including the intended 
contributions of the published manuscripts to answer these questions. In section four, the 
contribution to the decrease of the defined research gap and scientific contribution by the 
respective work is pointed out and discussed, followed by a conclusion and an outlook in the 
fifth chapter.  
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2 State of the art, identified research gap and resulting research 
questions 

 

The impact of the fourth industrial revolution on manufacturing operations and the 
corresponding industry is elaborated widely in current literature [25–30]. However, there is still 
a lack of terminology standardization present [31]. Furthermore, the definition of key 
technologies varies depending on the industry sector. To be able to identify research gaps within 
the Austrian metal forming industry segment, an initial literature study was carried out [32]. 
This study was additionally complemented by personal interviews with domain experts from 
the Austrian metal forming environment, mainly conducted at the XXXVIII. Colloquium on 
Metal Forming1. The analysis of the current literature as well as these expert interviews revealed 
that the following key technologies are or will be important in the near future for this sector 
[32]: 

1.  Cyber Physical Production Systems (CPPS), 
 

2. Industrial Internet of Things (IIoT), 
 

3. Digital Models (DM), Digital Shadows (DS), Digital Twins (DT), 
 

4. Big Data Technologies and 
 

5. Cloud-Computing. 

In this work, CPPS are defined on the basis of the definition from Cardin [33], as this definition 
is the most accepted in this research field according to Wu et al. [34]. In Publication A 8, the 
author extended this definition for the specific needs of the Austrian metal forming industry by 
adding two additional components (Table 1, IV. And V.) [35]. 

Table 1. Definition of CPPS derived from [33,34]. The corresponding publication can be found in A 8 [35].  

No. Criteria 
 

I. 
 

CPPS are superordinate systems within systems. 
 

II. CPPS consist of cooperative elements, those connect with each other situationally 
appropriate, on and between all different levels within the production environment, 

from the processes itself, through involved machines up to overlaying networks, e.g. 
MES or ERP-systems. 

 
III. CPPS enhance decision making processes in real-time in a resilient and robust way, 

with respect to time as well as foreseen and unforeseen events 
 

IV. CPPS in the Austrian metal forming environment have to provide sufficient Human 
Machine Interfaces (HMIs), tailored to the requirements of the respective operator and 

coworkers 
 

                                                 
1 The XXXVIII. Colloquium on Metal Forming was conducted on March 23-27 2019 in Zauchensee Austria, 
whereas the author participated as organizational manager.  
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V. CPPS in the metal forming industry have to be especially resilient to harsh 
manufacturing environments (e.g. dirt, high temperatures) under consideration of 

relatively short amortization times 
 

 

IIoT suffers from the same lack of unified definition as CPPS. For the purpose of this work, the 
author defines this term according to Boyes et al. [36]:  

‘A system comprising networked smart objects, cyber-physical assets, associated generic 
information technologies and optional cloud or edge computing platforms, which enable real-
time, intelligent, and autonomous access, collection, analysis, communications, and exchange 
of process, product and/or service information, within the industrial environment, so as to 
optimise overall production value. This value may include; improving product or service 
delivery, boosting productivity, reducing labour costs, reducing energy consumption, and 
reducing the build-to-order cycle.’ 

The definition of the terms DM, DS and DT can be concretized, as the difference between these 
three definitions can be explained by the automated connectivity between a digital and physical 
entity, as illustrated in Figure 1 [37].  

 

 
Figure 1. Definition of DM, DS and DT by the dependability of automatic data transfer [32,37] 

Regardless of the level of connectivity, a differentiation has to be attained depending on the 
physical domain to be mirrored. While DTs on supply chain or MES level can be seen as state 
of the art, progress in dealing with complex process simulations (e.g. FEA, Finite Volume 
Analysis (FVA)) is right at the beginning in the metal processing environment [38]. Another 
important point to consider in this context is the amount of data available for the production 
process to be virtually mirrored. While data-driven models and corresponding ML algorithms 
can have major advantages and are therefore able to substitute complex, real-physics based 
(white-box) models in a significant amount of different processes, low-volume and high-variety 
metal forming operations can often not benefit from these advantages. Therefore, the integration 
of white-box models and their combination with data-driven approaches (grey-box models) are 
able to add significant advantage to these kind of operations. 
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Big Data Technologies are defined in a variety of publications, whereas the number of criteria 
that have to be fulfilled varies [39–41]. In this work, the author refers to data as Big Data if the 
definition according to Zikopoulos [42] and validated by Ghasemaghaei [43], whereas three 
conditions have to be accomplished in order to define a data set as Big Data, is fulfilled:  

 a data volume of at least one Petabyte, 
 a variety of data within the set including structured, unstructured and semi-structured 

data, 
 different velocities of data flow (discrete and continuous processing) [42]. 

Cloud computing is holistically defined according to the National Institute of Standard and 
Technology (NIST) as follows [44]:  

‘A model for enabling convenient, on-demand network access to a shared pool configurable 
computing resources (e.g. networks, servers, storage, application, and services) that can be 
rapidly provisioned and released with minimal management effort or service provider 
interaction.’ 

The metal forming industry in Austria can further be characterized as highly heterogeneous, 
with a huge variety of production processes, organizational structures and sizes. Nevertheless, 
potential challenges that arise in a majority of respective companies were identified and are 
summarized in Table 2 [32]. 

Table 2. Identified challenges in the Austrian metal forming environment to overcome for a successful and 
sustainable digital transformation [32].  

Definition Description Challenges for a successful digital 
transformation in Austrian’s metal 

forming industry 
 

 
Retrofitting 

 
Upgrading of machine systems 

for the integration into a 
digitalized production 

environment 
 

 
The upgrading process requires time and 

know-how; due to the high amount of 
SME’s the cost factor is crucial; the 

accuracy of existing sensors and actuators 
has to be validated initially 

 
HMI Interaction between humans and 

machine systems 
 

Developing tools (e.g. Graphical User 
Interfaces (GUIs)) that serve specific 
target groups in the manufacturing 

environment 
 

Digital twin 
integration 

(process level) 

Bilateral automated data 
communication between the 

digital and the physical domain 

Due to often complex process parameters, 
Finite Element Analysis (FEA) 

simulations are widely used as DMs. 
Transformation of these DMs to DSs and 
finally DTs requires specific skills; For a 
successful transformation, open interface 
based horizontal integration is required 

 
Vertical 

integration 
The connectivity between 
different data layers in a 

production environment (e.g. 
Manufacturing Execution 

The connectivity has to be ensured; 
reliability of gathered data has to be 
warranted; Change management and 
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System (MES), Supervisory 
Control and Data Acquisition 

(SCADA), Enterprise Resource 
Planning (ERP))  

 

commitment of respective employees is 
mandatory and must be trained 

Data security Appropriate data security 
approaches tailored to data type 

and sensitivity 

Data has to be categorized according to 
the grade of sensitivity; a sustainable data 

framework has to be implemented and 
maintained through all business levels; 

employees have to be trained and 
sensitized 

 
Interdisciplinarity 

and education 
Interdisciplinary know-how for 

the efficient communication 
above boundaries and to enable 

transdisciplinary high-
performance teams; required 

education to perform this 

Domain experts in the different 
engineering fields have to be able to 

communicate (e.g. mechanical engineers, 
material scientists, electrical engineers); 

due to digitalization, fundamentals of 
programming and network technologies 

have to be known to successfully 
transform the production operations on 

long term 
 

 

For a further concretization and knowledge gap identification, a quantitative survey was sent 
out to 200 Austrian companies operating in the metal forming field, whereas 32.00 % (64 
companies) were completed and categorized as valid due to no significant difference between 
early and late responses [45,46]. The result of this study is released in Publication 7 (A 7) and 
illustrated additionally in Table 3. The operationalization of the respective items was done by 
a five-point Likert scale from 1 (e.g. not agree) to 5 (e.g. fully agree).  

Table 3. Degree of digitalization in the Austrian metal forming industry: valid responses (A 7).  

Item Text     N Min. Max. Mean Std. 
Dev. 

 

DIG_1 

 

All production processes that occur are recorded by a higher-
level ERP system. 

 

64 

 

1 

 

5 

 

3.33 

 

1.574 

DIG_2 All production processes that occur are controlled and timed 
automatically using an MES system, PPS, or ERP system with 
similar functionality. 

64 1 5 2.69 1.457 

DIG_3 The machines used all have at least one interface to higher-
level systems (SCADA on MES/ERP). 

64 1 5 2.72 1.397 

DIG_4 Captured processes and general production data are stored and 
processed via cloud solutions. 

64 1 5 1.97 1.403 

DIG_5 Data can be made fully available through an interface for 
external use by other applications such as business 
intelligence. 

64 1 5 2.47 1.345 
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DIG_6 Internet of Things solutions are used on a large scale in 
production (e.g., IIoT gateways, transmission using IoT 
protocols such as MQTT). 

64 1 5 1.81 1.296 

DIG_7 Collected data is analyzed using big data technologies. 64 1 5 1.81 1.332 

DIG_8 Important production processes are modeled with simulation 
programs (e.g., finite element simulation). 

64 1 5 2.36 1.396 

DIG_9 The visual representation of production data is structured and 
user-friendly. 

64 1 5 2.64 1.289 

DIG_10 All production processes are fully described by means of 
standards. 

64 1 5 3.25 1.297 

DIG_11 Finite element simulations are used for troubleshooting as 
well as process optimization. 

64 1 5 2.23 1.488 

DIG_12 Simulations interact directly with a higher-level production 
system (e.g., SCADA, MES, ERP) 

64 1 5 1.80 1.311 

DAT_1 Process data is archived completely digitally. 64 1 5 3.45 1.126 

DAT_2 All production processes include controls and auditing bodies 
to ensure conformity with internal and external requirements. 

64 1 5 3.56 1.320 

DAT_3 Quality controls are fully digitized and archived. 64 1 5 3.17 1.279 

DAT_4 (Short-term) changes in the production plan are fully and 
transparently integrated into the existing control systems. 

64 1 5 2.97 1.357 

DAT_5 Process data is collected completely automatically. 64 1 5 2.42 1.206 

DAT_6 In the event of a failure of the production control system, 
production can be carried out completely manually if 
necessary (until repairs are made). 

64 1 5 3.78 1.362 

DAT_7 The provision of data for internal purposes is completely 
digital. 

64 1 5 3.25 1.113 

DAT_8 The data collected is transparent and used for analysis and 
comparison. 

64 1 5 3.00 1.141 

DAT_9 The value chain (purchasing, logistics, production, sales, 
after-sales service) is fully digitized and can be viewed 
transparently by all areas of the company. 

64 1 5 2.83 1.121 

DAT_10 Data is always the basis for improving the business process. 64 1 5 3.31 1.220 

DAT_11 Sufficient IT security is ensured at all digital levels (data 
security and protection of all systems). 

64 1 5 3.84 1.224 

ATT_1 There is a clearly defined digitization strategy in the company. 64 1 5 2.83 1.077 

ATT_2 There is a dedicated person responsible for digitization issues 
(internal or external). 

64 1 5 2.86 1.435 
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ATT_3 The management level promotes the digital transformation in 
the company in a credible manner and believes that 
progressive digitization will ensure the company's success in 
the long term. 

64 1 5 3.33 1.235 

ATT_4 Digitization solutions that have already been implemented 
make an important contribution to business success, 
especially during the ongoing Corona crisis. 

64 1 5 3.36 1.302 

ATT_5 Digitization solutions that have already been implemented 
have increasingly led to redundancies in your company in the 
past. 

64 1 5 2.09 1.519 

ATT_6 Workers and employees in the company fully welcome 
digitization and digital transformation in the company. 

64 1 5 3.13 .968 

ATT_7 The productivity of your company is much higher than that of 
your competitors. 

64 1 5 2.95 .785 

ATT_8 The economic success of your company (profit) is 
significantly higher than that of your competitors. 

64 1 5 2.92 .841 

DIG Mean from DIG_1 to DIG_12 64 1 5 2.42 .898 

DAT Mean from DAT_1 to DAT_11 64 1 5 3.24 .792 

ATT Mean from ATT_1 to ATT_8 64 1 5 2.93 .735 

 

The analysis and contextualization of this survey led the author to the following conclusion:  

1. Cloud solutions are not heavily used in this industry segment (DIG_4). 
2. IIoT and Big Data solutions are hardly applied in this industry segment (DIG_6, 

DIG_7). 
3. FEA is utilized in the industry segment (DIG_11), but rarely connected into 

superordinate layers, as well as other types of simulations (DIG_12). 
4. Management as well as technicians welcome the digital transformation and support the 

process. 

Based on the implications from the survey as well as the initial literature study and executed 
expert interviews, the author elaborated three research questions: 

I. How can existing machine systems and proprietary manufacturing-process-
related software solutions be efficiently and effectively integrated into a digitalized 
metal forming environment? 

II. How can metal forming related process simulations (e.g. based on FEA) be 
automated and integrated in a digitalized metal forming environment? 

III. How can the digital transformation in the Austrian metal forming industry be 
further enhanced and sustained? 

(II) is a direct result of conclusion (3). Due to the authors practical experience and 
communications with domain experts from this industry sector, the reason for this issue can be 
found in a lack of non-proprietary integration of machine systems as well as nonsufficient DAQ 
(e.g. due to a lack of adequate sensors). Therefore, in order to successfully create DSs and DTs, 
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(I) has to be answered first. In comparison to other industry segments, the metal forming sector 
has a considerably lower degree of digitalization. For this reason, the answer of (III) supports 
respective companies in decrease this gap and help them to remain profitable.  

 

3 Methodological approach 
 

Due to the complexity and interdisciplinarity of the topic elaborated in this work, a mixed 
methods approach was chosen [47]. As described in section 2, an initial quantitative and 
qualitative literature study was executed. Based on the implications of this study, qualitative 
expert interviews were carried out. For a further concretization, a quantitative survey based on 
the conclusions of the previous approaches was designed and executed. The identified research 
gaps where then formulized and transformed into the final research questions. Figure 2 
summarizes this approach graphically. 

 
Figure 2. Methodological approach: obtainment of resulting research questions (RQs). 

The following subsections describe the methodology and contribution of the publications A 2 
to A 9 to the answer of the elaborated research questions.  

 

3.1 Answering research question (I): contribution and methodology  
 

To be able to answer the first research question, three different case studies were developed, 
whereas each case study can be defined as an extension of the previous one, resulting in a 
comprehensible demonstration of possible solutions of the issues addressed by (I). The 
investigated aspects are summarized in Table 4.  
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Table 4. Contributions to the answer of (I). 

No. Case study Addressed issues Corresponding 
publications 

 
 

3.1.1 
 

Development of a framework 
for a smart factory including a 

proof of concept for the 
digitization of a metal forming 

aggregate based on high 
frequency DAQ and FEA 

 
Planning of a smart factory layout 

tailored to the metal forming 
environment; demonstration of 

possible disadvantages of proprietary 
software solutions; pointing out the 

advantage of a second open-interface 
DAQ to a system under special 

consideration of required sampling 
rates for metal forming and 

corresponding Quality Management 
(QM) processes; proposal for the 

integration of FEA based DTs into a 
smart factory environment 

 
A 2 

 
3.1.2 

 
Building a low-cost resilient 
six-layer architecture based 

smart factory: proof of concept 
by integrating a proprietary 

CNC-lathe machine system & 
integration of an additional 

high-frequency DAQ into the 
resulting smart factory layout 

 

 
Demonstration of a low-cost approach 
for metal forming processes that do not 
require high-frequency sampling rates; 
integration of a condition monitoring 

system (CMS) and an interactive 
project management tool; Integration 
of high-frequency measurements into 
this open interface layer architecture 

(based on 3.1.1); pointing out the 
possibilities of incorporating different 

DAQ systems into a superordinate low-
cost main processing layer 

 

 
A 5 

3.1.3 Transformation of a rolling mill 
into a CPPS 

Demonstration of a complete 
digitization and digitalization approach 
based on low-cost technologies: from 

sensor retrofitting to ML; validation of 
the smart factory architecture 

developed by connecting a rolling mill 
system into this framework 

 

A 8 

 

3.1.1 Development of a smart factory framework including an open interface digitization 
approach for a Thermo-mechanical treatment simulator based on high-frequency DAQ 
and the integration of FEA into the productive flow 

 

Within this case study the possibility of digitizing and digitalizing the thermo-mechanical 
treatment simulator (TMTS) Gleeble 3800 by using an iba DAQ system (ibaPDA) was 
demonstrated. In the industrial metal forming environment, a significant amount of processes 
require a high frequency DAQ to be able to operate with data in a sophisticated way. This 
circumstance is especially important within the QM or Research and Development (R&D), as 
microstructural characterization under consideration of forming conditions (e.g. high 
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temperature, complex stress states) is crucial for resulting quality assessment as well as process 
improvement. The presented DAQ is capable of up to 100 kHz sampling rate and is installed 
parallel to the proprietary DAQ of the machine system. In A 2, a comparison between both 
systems was carried out additionally, demonstrating the difference between raw data (data 
gathered by the iba DAQ without further processing) and the proprietary software initially used. 
This comparison is shown for the resulting data from a thermocouple by an exemplary tensile 
test [48].  

Furthermore, an initial framework for the implementation of a smart factory framework, based 
on the iba DAQ system is proposed. Within this initial proposal, the possibility of connecting 
FEA based process simulations into this system is additionally pointed out, illustrated for the 
Equal-Channel-Angular-Pressing (ECAP) machine system at the Chair of Metal Forming 
(Figure 3) [48].  

 
Figure 3. Initial DT framework for the integration of FEA-based simulations into the productive flow: exemplary 
demonstration for the ECAP machine system [48]. 

 

3.1.2 Building a low-cost resilient six-layer architecture based smart factory: proof of 
concept by integrating a proprietary CNC-lathe and further integration of an additional 
high-frequency DAQ system 

 

This case study shows the development of a six-layer architecture serving as a basis for a metal 
forming related smart factory. The DAQ system used is based on a low-cost industrial solution 
provided by Wago. In order to demonstrate the practicability of this framework, a CNC-lathe 
was integrated into this setup by the application of a three-phase current and voltage 
measurement, which automatically publishes captured data into a structured text (STS) 
programmed front end GUI and back-end pre-processor. The pre-processed data from the Wago 
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DAQ is published into the server architecture and embedded into an additional GUI using 
Python. Figure 4 illustrates the digitization and data flow from the current transformer to the 
refined data storage [49].  

 
Figure 4. Data flow from the added three-phase current and voltage measurement unit to the Python main 
processing layer [49]. 
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The resulting processed data is directly connected with the superordinate project management 
system, which is coupled to a MySQL database management system. The login to this tool is 
additionally restricted based on defined rights for different categories of users, taking into 
account data security and transparency issues [49]. Figure 5 illustrates the resulting layer 
architecture schematically. 

 

 
Figure 5. Resulting six-layer architecture [49]. 

Within this case study, the first focus was set on the possibility of integrating low-cost and most 
important, non-proprietary interfaces, which is mandatory for designing and upscaling a smart 
factory in practice [49]. 

Additionally, the open-interface high-frequency DAQ (3.1.1) was inserted into this layer-
architecture. Figure 6 illustrates the resulting data flow from the initial sensors to the iba system 
as well as the assimilation into the smart factory layout [49]. 
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Figure 6. Digitization and data flow from the Gleeble sensors to the superordinate Python layer and proprietary 
software [49]. 

 

3.1.3 Transformation of a rolling mill into a CPPS 
 

Based on the smart factory layout introduced in 3.1.2, this case study strives to present 
interested domain experts from industry and engineering students a framework on how to 
include outdated metal forming machines into a digitalized environment. For this purpose, the 
rolling mill aggregate at the Chair of Metal Forming, built in 1954, was retrofitted with 
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appropriate sensors (two load cells, a linear variable differential transformer (LVDT) and a 
magnetic multiturn encoder) and integrated into the network using the same Wago controller 
as in 3.1.2. Based on this digitization setup (Figure 7), a statistical experimental setup was 
planned and executed, resulting in more than 1900 process steps providing data for a further 
analysis by using a Python open source environment. The DAQ sampling rate in this case was 
capped to 500 Hz, providing sufficient data sets for further analysis. Within this experimental 
setup, three alternative rolling schedules with two different friction states and three varying 
widths each were executed [35].  

 
Figure 7. Digitization and data integration of the rolling mill system using the infrastructure introduced in 3.1.2 
(A 8) [35]. 



 

15 
 

To demonstrate the possibility of low-cost open source technologies, a rolling mill schedule 
predictor was developed. This predictor was initially calibrated on commercially pure 
aluminum, but can be extended for other materials based on the same logic. The Python logic 
uses linear interpolation and extrapolation based on given data points, leading to a 
comprehensive prediction for interested parties. For the sake of practicability, a corresponding 
open-source GUI was developed, demonstrating the algorithm for (future) domain experts 
(Figure 8). Furthermore, by implementing additional data sets from practical experiments, the 
system is able to learn and correct the prediction, resulting in a simple example for ML in the 
industrial context [35].  

 

 
Figure 8. Resulting GUI for the rolling mill schedule predictor. The green highlighted sequences imply that the 
user has entered additional data after the first sequence, leading to an automated adaption of upfollowing sequences 
(A 8) [35]. 

 

3.2 Answering research question (II): Methodology and contribution 
 

To be able to answer the second research question, two case studies for the integration of 
efficient FEA simulations into a production operation were created. The first study describes 
the development of a DS whereas the second development is a DM that can be used to increase 
overall manufacturing operation efficiency by decreasing the amount of practical experiment 
with supporting FEA. For both frameworks, a use case was developed to demonstrate 
practicability. Additionally, two different FEA programs were used for this exhibition, both 
widely utilized in industrial practice. In order to further consider a larger perspective, a third 
use case for the digitalization of the value chain, supported by FEA and Finite Volume Analysis 
(FVA) was developed. This case demonstrates the benefit of superordinate connection of the 
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integration of sophisticated numerical simulation tools for the product lifecycle of a metal good, 
from the initial casting to recycling. Table 5 shows the contributions of corresponding 
publications for these developments. 

Table 5. Contributions to the answer of (II). 

No. Case study Addressed issues Corresponding 
publications 

 
 

3.2.1 
 

Development of a DS for the 
friction factor quantification 

during the ECAP process 
 

 
Demonstration of the superior usage 
for the optimization of process steps 

 
A 3 

3.2.2 Residual stress prediction for the 
shot peening process using FEA 

and Python based ML 

Demonstration of the advantages of 
optimized FEA in combination with 

an open-source programming 
environment 

 

A 4 

3.2.3 MUL 4.0: systematic digitalization 
of a value chain – from raw 

material to recycling 

Demonstrating the advantages of 
non-proprietary interfaces and 

suitable numerical simulation tools 
for the optimization of the value 

chain 
 

A 9 

 

 

3.2.1 Development of a DS for the friction factor quantification during the ECAP process 
 

Within this case study, a grey-box approach for the determination of the resulting friction state 
after the ECAP process was developed. The focus was set on the integration of the FEA program 
Simufact® into a Python based preprocessor. Substantiated on input data (back pressure p, 
pressing velocity v, initial billet temperature Ts) provided by a Profinet interface, Python pre-
processes the resulting data and automatically triggers the prebuild FEA. The prebuild 
simulation operates with given input parameters and varying friction coefficients, until the 
mean value of the simulated force (Fsm) lies within a defined range of the actual force measured 
by the machine system (Fexm). The resulting information about the friction state during the 
process can then be further used for an adaption of lubrication. As the results are stored within 
the server infrastructure at the Chair of Metal Forming, a time dependent parameter comparison 
can additionally be made (e.g. for predictive maintenance algorithms). Figure 9 shows the 
concept for this DS schematically [50].  
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Figure 9. DS concept for the ECAP machine system [50]. 

 

3.2.2 Residual stress prediction for the shot peening process using FEA and Python  
 

This framework shows a different approach on the possible integration of FEA into a 
manufacturing environment. In this case, the user is able to insert desired results after a specific 
process, which triggers a Python logic to calculate the required input parameter based on a 
database developed with FEA. The method is similar to what is described in 3.1.3. The solely 
difference is, that underlying data for the logic comes from a numerical simulation instead of 
practical experiments. Furthermore, a different ML-algorithm was developed, which is capable 
of including data sets from practical experiments into the initially FEA based database. The 
procedure is practically demonstrated on the example of the shot peening process, which is 
widely used in the metal forming environment as a mechanical surface treatment [51]. As in 
3.1.3, a GUI for the prediction of desired material behavior after the respective process was 
developed, supporting domain experts and operators to decide which process parameters should 
be deployed. Additionally, a ML-algorithm based on the same Python environment as within 
the main processing layer was evolved. This algorithm is capable of implementing data sets 
from different practical experiments to increase the predictor’s accuracy [52]. Figure 10 
visualizes the generation of the initial database using the FEA program Abaqus® directly within 
the Python environment. For this initial development, the input parameters shot velocity, the 
underlying material model of the target workpiece as well as the radius and material of the 
spheres to be shot on the respective workpiece were varied, resulting in the automatic execution 
of over 350 simulations. Supplementary post-processing before the storage of the results in the 
database was also carried out within Python. 
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Figure 10. Automated FEA set-up and data analysis using Abaqus® and Python [52].  

For the respective GUI, a similar logic as in the rolling mill case study (3.1.3) was used. For 
the inclusion of data sets from practical experiments into the same database, a second order 
interpolation approach was chosen. The logical concept behind this approach is additionally 
visualized in Figure 11. This method can be used for the integration of all different kinds of 
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experimental data into a FEA based database. By adapting the initial overruling condition 
(Figure 11, section 1), the presented case can be directly extended for other more or less 
complex physical interrelationships. 
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Figure 11. Python based ML-approach for the integration of practical experiments into the FEA based database 
to increase the predictors’ accuracy [52].  

 

3.2.3 MUL 4.0: systematic digitalization of a value chain – from raw material to recycling 
 

The MUL 4.0 project is an interdisciplinary approach co-initiated by the author at the 
Montanuniversität Leoben (MUL). Within this project, three academic chairs at the MUL 
(Chair of Metal Forming (MF), Chair of Industrial Logistics (IL), Chair of Nonferrous 
Metallurgy (NFM)) and the Institute of Mechanics (M) developed a cooperative approach to 
digitalize the value chain. For a first use case an aluminum alloy, casted at the NFM, was 
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chosen. After the casting process, which will be supported by a FVA serving as a DT, the 
resulting billet is forehanded to the MF, where different forming and quality control related 
processes will be executed. At the MF, FEA based DTs will be included for each corresponding 
process step, supervised by M. After a simulated product life, the resulting part will be remelted 
at the NFM again, to conclude the cycle of the value chain. As a result, a DT for each involved 
process step should be implemented. To demonstrate the full potential of this process related 
DTs, the supply chain related data from theses simulations (e.g. estimated throughput time) will 
be extracted and inserted in a superordinate Cyber Physical Logistic System (CPLS), which is 
currently in establishment at the IL. Figure 12 shows a blueprint of this project proposal, 
including different HMIs for supervision, adaption and demonstration purposes [53]. 

 

 
Figure 12. Physical and functional domain blueprint for the MUL 4.0 project [53]. 
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3.3 Answering research question (III): Methodology and contribution 
 

For the answer of the third and from the authors point of view, most important research 
question, the work elaborated in the previous subsections has to be considered. The case studies 
described in section 3.1 and 3.2 result in a smart factory tailored to the metal forming industry, 
therefore entitled as Smart Forming Lab (SFL). Based on this evolvement, the transition to the 
industrial practice and therefore the acceleration of the digital transformation process in the 
Austrian metal forming environment can be achieved. Interested domain experts from industry 
are able to learn within the SFL by cooperation (e.g. joint projects). To reach a sustainable 
impact in the industry, engineering students who will possibly work as future domain experts 
in this field have to be sensitized about these new technologies. Moreover, by teaching these 
students in an interdisciplinary and modern way, the ability for LLL should be enhanced due to 
this framework, which is mandatory in this rapid developing environment [54]. Within case 
study 3.3.1, the initial framework for such an academic course, including scope and workload, 
was developed. In 3.3.2, an adaption based on the implications of the actual knowledge of 
students as well as the implications from the industry was executed. 

Table 6. Contributions to the answer of (III). 

No. Case study Addressed issues Corresponding 
publications 

 
 

3.3.1 
 

Development of an academic 
course for the 

transdisciplinary education of 
engineering students with 

special focus on digitalization 
and digital transformation in 

metal forming 

 
Demonstration of the implementation of 

a framework for transdisciplinary 
engineering education at the MUL by 

using state-of-the-art pedagogical 
approaches; definition of the respective 
scope for an efficient basics course on 

digitalization and digital transformation 
with special focus on the metal forming 

environment 
 

 
A 6 

 

 
3.3.2 

 
Implementation of a 

stakeholder oriented adaption 
of the lecture concept for the 
transdisciplinary engineering 

education 

 
Closing the knowledge gap for future 
domain experts to accelerate digital 
transformation in Austrian’s metal 

forming industry; inclusion of the LLL 
concept to support a sustainable and 

continuous improved knowledge transfer 
from participants to respective potential 

employers 
 

 
A 7 

 

3.3.1 Development of the lecture ‘Digitalization and Digital Transformation’: Definition of 

scope and initial framework 
 

As illustrated in Table 6, a framework for a transdisciplinary academic course was planned at 
the MUL. This lecture should instruct the fundamentals of the digitalization and digital 
transformation in metal forming [55]. The initial concept was derived from the author’s 
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knowledge and experience gained and described in section 2, 3.1 and 3.2. For the initial design, 
the lecture was split into four different modules, two theoretical and two practical parts. Table 7 
gives a brief overview about the scope and planned workload distribution, which is determined 
with 2.5 European Credit Transfer System (ECTS) points [55–57]. 

Table 7. Design of the initial framework for the lecture ‘Digitalization and Digital Transformation in Metal 

Forming’ [55]. 

Module I: Digitalization –Theoretical Part:  
Face to face and online (Timeframe: 4x1h, 2x2h, 1x3h, 1x6h, 1x15h) 

 
 

Topics: Introduction and enhancement of awareness for chances and issues of digitalization in the 
metal forming industry (1); Fundamentals of automation in the metal processing industry, including 
retrofitting and digitization (2); Fundamentals of networking technologies: state of the art protocols 

and data management, including retrofitting and IT-security (3); CPPS and HMI in the metal 
forming environment (4); DT and DS in metal forming related operations, including AI and  

Big Data (5) 
 

Objectives: Knowledge of the most important definitions and differences in metal forming related 
digitalization key technologies; Enhancement of the ability to communicate with IT-domain experts 

in the manufacturing environment; Understand the possible advantages of digitalization 
technologies 

 
Content 

 

 
Methods  

 
Material 

 
Duration 

(1) Face to face lecture;  
group discussion 

 

PPT; Handouts, video 1h 

(2) Moodle based e-learning; online 
script; actual research papers; 

videos 
 

PDFs, videos 2h 

(3) Moodle based e-learning; actual 
research papers; videos; practical 

tutorials 
 

Online tutorials; PDFs; videos 2h 

(4) Moodle based e-learning; online 
script; actual research papers; 

videos 
 

PDFs, videos 1h 

(5) Moodle based e-learning; online 
script; actual research papers; 

videos 
 

PDFs; Handouts, video 3h 

Module II: Digitalization – Practical Part:  
Face to face (Timeframe: 1x1h, 1x2h, 1x3h) 

 
 

Topics: Explanation and practical demonstration of the fundamentals of automation and networking 
technologies via a six-layer digitalization framework, including DS, DT and AI (6); Practical 

demonstration of a suitable implementation approach for CPPS and HMI, illustrated by the Chair’s 
retrofitted experimental cold rolling mill, using a variety of different software (7); Demonstration of 
practical open source IIoT solutions, demonstrated on operating machine hour counters and related 

project management implementations at different forming aggregates (8) 
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Objectives: Knowledge transaction from theory into practical implementation; Deepening the 

understanding for the purpose of knowing the fundamentals of digitalization as a future domain 
expert 

 
Content Methods Material Duration 

 
(6) 

 
Face to face lecture; 

group discussion 

 
Different forming aggregates 
and infrastructure at the Smart 

forming lab 
 

 
3h 

(7) Face to face lecture; group work; 
group discussion 

Smart forming labs 
digitalization environment, 

including cold milling aggregate 
and different software  

 

2h 
 
 

(8) Face to face lecture; 
group discussion 

Demonstration of the Smart 
forming lab’s six layer 

architecture and the advantages 
of digitalized project 

management 
 

1h 

Module III: Digital Transformation – Theoretical Part: 
Face to face (Timeframe: 1x2h) 

 
 

Topics: Major issues regarding the implementation of digitalization technologies in the metal 
forming environment (9); The importance of top-down and bottom-up change management (10); 

Practical change management approaches in the metal forming industry (11) 
 

Objectives: Understanding the fundamentals and purpose of change management in metal 
processing manufacturing; Raise awareness for the most important challenges arising with digital 
transformation on the different layers of management; Knowledge about practical approaches to 

overcome the most common resistance in a sustainable way 
 

Content Methods Material Duration 
 

(9) 
 

Face to face lecture; 
 

 
PPT; board 

 
1h 

 
(10) 

 
Interactive face to face lecture;  

group discussion 
 

 
PPT; board 

 
0.5h 

 
(11) 

 
Interactive face to face lecture; 

group discussion 
 

 
Board; 

 
0.5h 

Module IV: Digital Transformation – Practical Part: 
Face to face (Timeframe: 1x20h, 1x2.5h) 

 
 
Topics: Developing a strategy and operational approach to successfully run a digitalization project 
(12); Summarizing and presenting the elaborated solution in an appropriate way (13) 
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Objective: Participants are able to run a digitalization project in the metal forming industry 
successfully 

 
Content 

 
Methods Material Duration 

(12) 
 

E-learning, group work; Lecture material; 20h 

(13) 
 

Presentation PPT, board, video 2.5h 

 

3.3.2 Further adaption and redesign of the initial lecture design based on initial student’s 

knowledge and requirements from industry 
 

To tailor the learning objectives to the requirements of the industry, the survey described in 
Table 3 was used for a focus shift on current issues in the metal forming environment and thus 
increasing employability of respective students. Furthermore, a second quantitative survey was 
sent to students at the MUL, in order to gather data about their knowledge on recent 
developments in digitalization and digital transformation (A 7). The results showed a significant 
knowledge gap between industry requirements and initial knowledge of participants. 
Furthermore, the difference between distinct engineering disciplines at the MUL as well as 
studying progress (e.g. bachelor vs. master students) is not significant for this purpose and can 
therefore be neglected (A 7). For this reason, the lecture is accessible for all interested students 
in the engineering field. This approach results in an additional benefit for the core disciplines 
in the metal forming environment, as different point of views and lessons learned from other 
technical fields (e.g. mining, applied geosciences) can point out out-of-the-box solutions. 
Figure 13 visualizes the concretized pedagogical approach of the redesigned lecture.  

 

 
Figure 13. Definition of modules and corresponding learning outcomes of the redesigned lecture (A 7). 
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To ensure a continuous improvement of this teaching framework in terms of education 
techniques and scope, a methodology was developed (Figure 14), which can further be used for 
updating other lectures in a transdisciplinary field (A 7). 

 

 
Figure 14. 11 step PDSA cycle for the continuous improvement of a transdisciplinary lecture, derived from the 
work of Deming [58] and Shewhart [59] (A 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 
 

4 Results and discussion 
 

This thesis strives to support the scientific research field of digitalization and digital 
transformation by answering three research questions elaborated from current literature, expert 
interviews and practical developments in Austria’s metal forming industry. For this purpose, 
eight case studies, two quantitative surveys and a proposed framework for the interdisciplinary 
connection of digitalization technologies were developed. To answer research question (I), a 
SFL was established, which points out different possibilities of integrating machine systems of 
different age, degree of automation and digitalization as well as complexity into a digitalized 
production environment. For the purpose of practicability, two different DAQ systems were 
developed initially, both operating on industry standards and extendable by simple adaptions. 
These progressions are crucial in first instance, as production architectures are often proprietary 
solutions, resulting in an artificial threshold for a truly efficient digitalized production 
system [49]. To overcome these barriers and demonstrate the advantages of open-interfaces, 
Python was used wherever applicable as a main processing layer for further data processing. 
Based on the conceived Python layer, further low-cost open-source technologies for the 
integration of a directly connected project management tool and database management system 
were integrated, serving as a basis for the demonstration of advantages of open-source 
technologies. Finally, a low-cost user-friendly CPPS was elaborated, highlighting the 
possibilities of open-source technologies (A 8) [35]. In conclusion, the resulting SFL shows 
solution approaches for a majority of practical challenges in the Austrian metal forming sector.  

Due to the heavy usage of FEA in this industry segment, the answer of research question (II) is 
another important contribution to the research field. Within this thesis, three different 
approaches for the automated integration of complex numerical simulations into the metal 
forming environment were proposed: 

 The integration of FEA into a DS for the optimization of a complex metal forming 
process, demonstrated by a simplified FEA on an ECAP process machine system [50]; 

 The integration of FEA for optimizing initial process parameters and reduce costs by 
decreasing the required amount of practical experiments, demonstrated by a prevalent 
mechanical surface treatment process with a supporting ML algorithm formulated 
within the Python environment [52]; 

 A proposal of how FEA and FVA can be utilized on a superordinate supply chain level 
to further optimize the product-manufacturing lifecycle, demonstrated on the MUL 4.0 
project from the casting of a nonferrous material to its recycling (A 9). 

The developments resulting from these case studies significantly contribute to the acceleration 
of the digital transformation process, as they point out a variety of possibilities which can be 
directly applied in industrial practice. The hardware and software implemented was chosen 
based on the following requirements: 

 Industrial standards in terms of resilience in a harsh manufacturing environment; 
 Easy-to-use for respective workers and domain experts by parallel development of 

corresponding front-end and back-end GUIs; 
 Open-interface and open-source solutions wherever applicable under consideration of 

other postulated requirements; 
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 As low-cost as possible to reduce the financial barrier for the implementation of these 
digitalization solutions [49]. 

Despite the technical solutions developed within this work, a sustainable way for the knowledge 
transfer from the SFL into the industrial practice has to be ensured. For this purpose, a 
transdisciplinary lecture was designed, taking into account recent developments of Austria’s 

metal forming industry and initial knowledge of potential participants. Within these lecture, 
future domain experts are trained and educated in the field of digitalization. Due to the use of 
mainly open-source software in the SFL, respective students are able to work alongside with 
domain experts from industry to further develop the framework and include additional machine 
systems and complementary software solutions, resulting in an increase of theoretical and 
practical knowledge [49].  
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5 Conclusion and outlook 
 

This thesis describes the development and implementation of a six-layer architecture for the 
development of a SFL at the MUL. To accomplish this architecture, two different open-
interface DAQ systems were introduced and connected by using the open-source programming 
environment of Python. To consider the specific challenges of the Austrian metal forming 
industry segment, a special focus is set on the integration of machine systems of different 
degrees of automation and complexity into this framework. To support the digitalization in this 
specific sector, comprehensible ML algorithms were devised, supporting the integration of FEA 
into the productive flow on different levels. To transfer the gathered knowledge from the 
academic into the industrial environment, a transdisciplinary academic course was planned and 
adapted to the requirements of the industry as well as potential participants from academic 
institutions.  

In order to take full advantage from the architecture and engineering education framework, the 
platforms introduced offer the possibility of a further development from the academic as well 
as industrial position. Additionally, the introduced architecture with embedded case studies 
offer industrial experts the possibility to learn and improve in a non-critical environment, e.g. 
without having to worry about producing errors in their operating system at work. This 
possibility is especially important for SMEs in the metal forming sector, as adequate practical 
learning possibilities are rarely given in this working environment. The educational framework 
developed within this work can be further adjusted as training courses for respective employees 
on different levels, supporting their companies by building up the knowledge of their key 
personnel for an efficient planning, implementation and operation of a digitalized production 
chain. By using relatively low-cost industrial standard components and mainly open-source and 
open-interface software solutions, the smart forming layer architecture created can be 
transferred to industrial practice without high implementation costs. The combination of 
demonstrating reasonable priced hardware and showing how this hardware can be used 
adequately in a comprehensible way can therefore significantly contribute to a successful digital 
transformation in this industry sector.  

 The digitalized supply chain proposal developed within the MUL 4.0 framework will be 
pursued in the near future, extending the potential advantages of digitalization technologies. As 
the proposed CPLS is based on purely open-interface technology, additional supply chain 
domains, e.g. mining, conveying technology, can be integrated into this system. After the initial 
go-live, a further enhancement of already included processes and operations can be executed, 
e.g. a variety of different alloys, produced within different casting processes or additional 
material testing methods. The network itself, as well as the underlying open-interface programs 
can be further expanded and increased in terms of efficiency and effectiveness. While the initial 
objective of the implemented ML-logic was to create a comprehensible and therefore easy-to-
learn environment for unexperienced parties, the Python environment used is capable of 
implementing more complex algorithms. This condition, paired with the high amount of data 
obtainable from real industrial processes at the different chairs and institutes of the MUL, can 
further be used for the training of (future) data scientists.  

The concepts and case studies executed within this work therefore serve as a reliable fundament 
for further digitalization and digital transformation activities in and beyond the metal processing 
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environment and additionally contribute significantly to a future-proof transdisciplinary 
engineering education in Austria.  
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A Associated publications 
 

The following chapter contains the publications A 1 to A 9, according to the chapters 
1 - 5.Within each subsection, a table describing the authors contribution to the respective 
manuscript is provided.  
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ABSTRACT: The conception of Industry 4.0 in 2011 marked the beginning of a new era of industrial manufacturing. 
Since then, data-driven decision making and smart networks supported by artificial intelligence have led to a continuous 
change in working environments in production. Nevertheless, there are many companies that have not fully exploit the 
potential of the fourth industrial revolution. To a considerable extent, this can be attributed to a low level of automation. 
This circumstance often results from financial or process-related restrictions and affects not only the production 
facilities but also the sensitive IT infrastructure. The lack of automation is therefore often compensated by expert 
knowledge and experience. The fear of job loss due to disruptive technologies is a further contribution to the significant 
delay in the digital transformation of such companies. Companies in the metal forming industry are particularly affected 
by this development. This paper describes the key technologies of digitalization and provides an outlook to possible 
solutions for specific challenges during the next years in the manufacturing and especially metal forming industry 
environment. 

 
KEYWORDS: Industry 4.0; Metal Forming; Smart Production; Digital Factory; Cyber Physical Production Systems; 
Industrial Internet of Things; Big Data; Cloud Computing; Digital Twin; Finite Element Analysis;  
 
 
1 INTRODUCTION 
Since the German government introduced the term 
“Industry 4.0” in 2011, a lot of scientific research 
focused on the development and forms of its key 
components [1,2]. In most of these works, several 
problems arise with regard to the practical application of 
Industry 4.0 (I 4.0) technologies in the metal forming 
industry. In summary, there is a clear incoherence 
between theoretical digital maturity levels and practical 
work validated by case studies. Especially for smaller 
batch sizes, apart from conventional mass production, 
many recommended implementation approaches are not 
feasible at the current state of the art [3]. In addition, 
there are hardly any publications that significantly 
consider the integration of complex numerical 
simulations, which are widely used in forming 
technology practice, into such I 4.0 strategies. This paper 
gives an overview of current digitalization technologies 
which are already used in forming technology or at least 
have the potential to be implemented in the near future. 
In addition, the potential challenges in this industry 
sector are discussed. 
 
2 KEY TECHNOLOGIES 
The following subchapters are dedicated to core 
technologies of the fourth industrial revolution that are 
of the highest relevance from the perspective of current 
scientific publications [1,2,3,4,5,6,7]. Despite the large 

number of publications concerning these technologies, 
there is still no uniform terminology [8]. For this reason, 
the most recent scientific publications in sophisticated 
journals are cited for the definition of the terms. 
Although Additive Manufacturing (AM) is considered a 
part of I 4.0 in most current publications [9], it will not 
be discussed in detail in this paper. From the metal 
forming point of view, additive manufacturing is a 
special production technique, which was strongly driven 
by I 4.0 technologies, but is not absolutely necessary in 
order to completely digitalize forming technology 
companies. 
 
2.1 GENERIC INFRASTRUCTURE 
To create a uniform operationalization of the I 4.0 
concepts, various reference models were developed. One 
of the most comprehensive and promising for further 
adaptations is the Reference Architectural Model 
Industrie 4.0 (RAMI 4.0) [10]. This model is an 
extension of the Smart Grid Architecture Model 
(SGAM) and takes into account the often complex 
requirements of planning, implementation and operation 
of a smart factory [11]. In addition to the consideration 
of the hierarchical level and the layer level known from 
classic automation technology, this model also considers 
value stream and asset life cycle in the third dimension 
[10]. Fig. 1 schematically shows the basic configuration 
of this concept. 
 



 

 

 
Figure 1: RAMI 4.0 concept [12] 
 
An essential aspect of the digital transformation and thus 
of I 4.0 is the vertical as well as the horizontal 
integration along the supply chain. These are described 
by the hierarchy levels (horizontal integration) and 
layers (vertical integration). In the Life Cycle and Value 
Stream dimension, both the initial implementation and 
further optimization can be quickly visualized and 
discussed, as required [12]. Depending on requirements, 
this model can be adapted at will and is therefore 
suitable for all types of production processes and 
manufacturing companies [10,13,14]. 
 
2.2 CYBER PHYSICAL PRODUCTION SYSTEMS 

(CPPS) 
Cyber Physical Systems (CPS) were first mentioned in a 
workshop of the American National Science Foundation 
in 2006 [15]. The terminology of this concept has been 
concretized several times in recent years. In general, 
CPS refers to systems that acquire, store, analyze and 
process data via Internet technologies (Internet of Things 
(IoT)) and in the context of the integration of the real 
physical and virtual world, including human machine 
interaction. It is also seen as one of the essential building 
blocks of the fourth industrial revolution [1,2]. A further 
development and specially adapted extension for 
production is the so-called CPPS. In addition to the 
interaction of computer science, information and 
communication technologies as well as human machine 
interface known from the CPS concept, automation 
technology is also taken into account more explicitly 
[16]. For this purpose, instruments of classical 
automation technology, e.g. sensors, actuators or 
fieldbus interfaces are combined with modern 
information technology hardware and software 
[17,18,19]. The classic hierarchical structure of the well-
known automation pyramid is replaced by a 
decentralized structure [20], starting above the field and 
control level (Fig. 2).  
 

 
Figure 2: CPPS – Scheme [22] 
 
Due to the increasing spread of in memory technologies 
on the Enterprise Resource Planning (ERP) and Business 
Intelligence (BI) level as well as more sophisticated 
Management Executions Systems (MES) in the metal 
forming Industry, the use of this technology will also 
increase in the future [21]. The challenge regarding the 
high amount of different interfaces plays an important 
role in this context. According to the current state of 
research, OPC Unified Architecture (OPC UA) seems to 
be the first standard communication protocol framework 
for communication in the mostly heterogeneous machine 
data environment. This format is open source, constantly 
developing and compatible with almost all file formats. 
Furthermore, adaptations can be made via a 
corresponding Graphical User Interface (GUI) using 
Python or C++ [23]. OPC UA is therefore seen as key 
technology of Industrial Internet of Things (IIoT), which 
can be seen as one of the main enabler of CPPS (2.3). 
The inconsistency of scientific publications concerning I 
4.0, HMI, CPS and CPPS can be illustrated by the 
following Figure 3. While publications on the theory and 
terminology of CPS almost exclusively see Human 
Machine Interface (HMI) as an integral part, this topic is 
often seen as a separate focus and therefore outstanding 
add-on (3.2). Also the definition of CPPS is often 
difficult to differentiate from CPS. In this paper, with 
reference to the metal forming industry, CPPS is 
nevertheless considered as a superordinate system, 
which adds sophisticated HMI Technologies and 
simulations to the CPS.  
 

 
Figure 3:Commonly used definition of CPS [16] 
 



 

 

Within the context of the metal forming industry, this 
would imply that CPPS takes into account digital 
shadows and digital twins in addition to HMI 
technologies [24]. 
 
2.3 INDUSTRIAL INTERNET OF THINGS (IIOT) 
According to the current state of research, the term IIoT 
can be regarded as an evolution of the IoT concept [25]. 
Starting with the first significant mention in recognized 
journals in 2013, there has been an exponential increase 
in publications over the years, as demonstrated by Liao 
et al. [26] until 2017, whereby articles from the Scopus, 
IEEE Xplore and Science Direct databases were 
collected in detail and analyzed using data denoising, 
data confirmation, data enrichment and data 
categorization. Despite this, there are still various 
definitions of IoT in 2018 [26]. The underlying reasons 
for this can often be attributed to different approaches 
due to the interdisciplinary nature of digitalization. In 
general, it can be postulated that the term IoT has 
developed in most cases from the Fieldbus technology 
known from automation technology. These process 
automation protocols were and are still partly used today 
for the implementation of the Supervisory Control and 
Data Acquisition (SCADA) control level (Fig. 2, Process 
Control Level), which then forwards agglomerated 
information to the MES level above. This interface is 
also one of the main drivers for the development of the 
fourth industrial revolution. SCADA systems in most 
cases include not only simple sensors and actuators but 
also Programmable Logic Controllers (PLCs), 
management consoles and Proportional-Integral-
Derivative (PID) controllers. These were passed on and 
processed using the Fieldbus protocol format. The main 
challenge in this case is the heterogeneity of these 
protocols. The IEC-61158-1 and other known standards 
include over 18 different families of fieldbus protocols, 
e.g. modBus, ProfiNet, CANbus, EtherCAT and many 
more. This heterogeneous protocol landscape leads to 
extremely complex systems, especially for companies 
with long system life and machine heterogeneity. Due to 
the spread of the Internet in the industrial context, it was 
also necessary to include Internet protocol standards in 
this mostly already complex system. For the 
manufacturing industry, the term IoT can therefore be 
seen as a structured and standardized layer architecture 
that provides standardized Internet protocols (IPv4 and 
IPv6) as a superior instance for further processing while 
simplifying complex SCADA systems as much as 
possible. This abstraction is made possible by the 
integration of gateways or data transformation using, for 
example, IPv6 over Low Power Wireless Personal Area 
Networks (6LoWPAN7) [27]. One of the most 
promising recommended data protocol format for pure 
machine communication in production is Message 
Queuing Telemetry Transport (MQTT), as it provides 
particularly efficient storage and thus reduces the 
resulting amount of data. Another example is the 
Extensible Messaging and Presence Protocol (XMPP), 

which was designed specifically for HMI 
communication [28]. Fig. 4 shows some further file 
formats which are currently in use according to the 
current state of literature on all levels of a fully 
digitalized factory [29]. 
 

 
Figure 4: Smart Manufacturing systems and various data 
formats [29] 
 
2.3.1 Tracking Technologies 
The basic prerequisite for the use of an IIoT environment 
are so-called Smart Parts. These subsystems, which are 
often also often referred to as Intelligent Parts, Products 
or Machines, refer to sensors and/or actuators mounted 
directly on the product or machine, which enable the 
localisation of all entities involved in the production 
process. While machines are usually integrated via 
integrated controllers and gateways based on them, this 
approach is often difficult to execute for semi-finished 
products or starting materials. For this application, a 
variety of different technologies are used, from 
intelligent image recognition to Radio Frequency 
Identification (RFID) [30], Bluetooth and WiFi 
technologies [31], or (for mostly smaller quantities) 
manual input into the system via HMI. It is important to 
note that the full potential can hardly be exploited 
without supply chain-wide tracking technologies. This 
concept is also often referred to as Logistics 4.0 [32], but 
in terms of the technologies used and the purpose, it can 
be considered a subset of I 4.0 [33,34]. The full potential 
of I 4.0 and the Smart Production concept can only be 
achieved by fulfilling these technologies, so a separate 
consideration and naming from the metal forming 
industry´s point of view does not seem necessary. 
 
2.3.2 IT Security 
Cyberattacks have been common practice since the mass 
suitability of the Internet. Parallel to the increasing use 
of IIoT technology in manufacturing companies, attacks 
on their IT infrastructure are also on the increase. 
Already 2014, the manufacturing industry was the main 
target of spear pishing attacks [35]. Another well-known 
example of cyber physical attacks is the "WannaCry" 
ransomware virus, which drove a large number of 
automotive factories to a standstill in 2017 [36]. Such 
cyberattacks range from theft and manipulation to the 
deletion of sensitive production data. Intellectual 
property is also affected [37]. Especially in European 
and American metal forming industry, in which internal 



 

 

know-how is in many cases an essential component of 
competitiveness, such an attack can threaten the 
existence of a company. It should also be noted that the 
legal basis for successfully defending against data 
transfer is often not sufficient to protect intellectual 
property rights [38]. Sensitization and the involvement 
of IT security experts can help companies to identify and 
avoid potential dangers through well thought-out IT risk 
management. Additionally, there are several frameworks 
developed by experts, which support the development 
and implementation of cybersecurity solutions, e.g. as 
part of or under consideration of the RAMI 4.0 concept 
[39]. 
 
2.4 DIGITAL TWINS  
The terminology of Digital Twins, like most of the 
technologies mentioned above, is not always clear 
defined. Originally first mentioned in 2002 in the context 
of Product Lifecycle Management (PLM), various fields 
of application and interpretations have led to a diverse 
development in the use of this term. In general, a Digital 
Twin is defined as the virtual, digital equivalent of a 
physical existing product [40]. However, this definition 
is insufficient for practical applications in the metal 
forming industry. 
The first differentiation is based on the field of 
application. In metal forming technology there are two 
main application areas for this concept: i.) Digital twins 
as a representation of the production process over parts 
or the entire production chain, and ii.) Digital twins as a 
representation of one or a manageable number of process 
steps for the production of a semi-finished or finished 
product. In ii.) the focus is mainly on numerical 
simulation, e.g. Finite Element Analysis (FEA). The 
mapping of the process chain according to definition i.) 
is an important aspect in production plan optimization, 
but does not differ significantly from the general 
manufacturing industry. There are also a large number of 
large-scale industrial solutions, often coupled or as an 
integral part of modern MES systems. Definition ii.) is 
of particular interest. In this case a Digital Twin can be 
defined as a digital representation of processes, which 
are often based on complex material science and process 
engineering interactions [24]. For this reason, this article 
will refer to definition ii.) when using Digital Twin 
terminology.  
 
2.4.1 Degree of Process Intervention 
Another necessary differentiation is the distinction 
between "actual" Digital Twins (DT), Digital Shadows 
(DS) and Digital Models (DM). A Digital Model is a 
digital copy of a real physical entity, but completely 
without automatic data exchange between the virtual and 
the real object [41], e.g. an FEA of an existing forming 
process. This definition is mostly unambiguous in 
current literature and therefore needs no further 
concretization. 
There are different definitions for DS in comparison. In 
general, it can be postulated that at least one of the two 

data connections between real and virtual objects is 
automated [41]. However, there are definitions where 
one of the two connections is explicitly defined as 
manual and the other as automatic [42]. Due to the lack 
of traceability and for reasons of generalizability, the 
first definition will be chosen as the basis for further 
considerations.  
A Digital Twin is therefore a digital image of a real 
physical entity, which automatically transfers data 
bidirectional between both instances [41]. The 
differences between these three definitions are 
schematically visualized in Fig. 5. 
 
 

 
 
 Automatic Transfer  DM 

 Manual Transfer  DS 
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Figure 5: Comparison of Data Connectivity: DM/DS/DT 
 
A large number of scientific publications define DT as 
virtual objects, which are in some way connected to a 
real object. This approach is mainly used for case studies 
and implementation approaches [41,42,43]. From this it 
can be concluded that especially in the field of modeling 
in manufacturing, theoretical progress and practical 
implementation diverge substantially. 
 
2.4.2 Modeling Techniques 
Furthermore, a distinction must be made between the 
origin of data used to model a DM, DS or DT. The 
consideration of digital twins on the basis of real 
material-physical laws is only one of two general 
approaches in the metal forming industry. Another 
approach, but one that is rather rarely used in the 
development of companies in heavy industry, is the 
creation of such a twin with strongly restricted or, in 
extreme cases, without the inclusion of material physics. 
Such approaches are based on stochastic methods and 
find correlations and thus descriptive variables directly 
from process and sensor data analysis.  Multiple 
digitalization solutions, which e.g. connect on the 
SCADA level in production control, use a mixture of 
both approaches: complex material-physical models are 
coupled to the process and existing material models are 
optimized under the supervision of experts with the 
support of Artificial Intelligence (AI). In this case the 
stochastic part of process modelling consists primarily in 



 

 

the reduction of the complex real-physical models. 
Nevertheless, it should be the ambition of the metal 
forming industry to understand the underlying scientific 
relationships even after abstraction.  In the context of I 
4.0 and Smart Production, the mixture of real-physical 
laws and thus comprehensible calculations, called White 
Box Modeling (WBM), and calculations that are no 
longer comprehensible for a domain expert 
(stochastically calculated modelling that is decoupled 
from the physical problem, called Black Box Modeling 
(BBM)) is referred to as Grey Box Modeling (GBM). 
GBM approaches are becoming increasingly popular and 
represent the tool of choice for many manufacturing 
companies, in which also the greatest (near) future 
potential with regard to the further spread of DS and DT 
in production is represented [24,44]. Fig. 6 shows the 
GBM approach schematically. 
 

 
Figure 6: GBM approach for the metal forming industry 
[24] 
 
2.5 BIG DATA AND ANALYTICS 
Data is the fundamental basis of all I 4.0 technologies. In 
order for effective usage of data generated in a 
production process, it must meet certain criteria. The big 
data concept summarizes the problems that arise when 
handling recorded data in an industrial context in defined 
criteria. The number of these criteria again varies 
depending on the scientific publication [45,46,47], but in 
general production is based on three criteria, the 3 V of 
Big Data (Fig. 6), which is lately scientifically 
substantiated from M. Ghasemaghaei [48]. If these 
criteria are fulfilled, the term Big Data is accurate.  

 
Figure 7: IBM Big Data characteristics [49] 

 
Volume refers to the continuously increasing amount of 
data, whereby in most cases only from petabytes 
(equivalent to 1000 terabytes) onward, a truly large 
amount of data is assumed. Considering a fully 
digitalized factory in which all machines and the entire 
logistics communicate with each other using IIoT, CPPS, 
MES and an ERP System, data volumes of this 
magnitude can be reached even in medium-sized 
companies [50]. 
Considering the volume, the variety of the data is also a 
challenge. Data from different heterogeneous resources, 
e.g. IIoT Gateways, Customer Relationship Management 
(CRM) or Supplier Relationship Management (SRM) 
Tools, in most cases lead to a data structure that is 
difficult to handle [51]. In heavy industry in particular, 
offline parallel structures are also a problem, as data is 
often not entered into the digitalization system at all or 
only insufficiently (e.g. missing database maintenance). 
The third challenge is to provide the required data at the 
required velocity. This problem seems to be the biggest 
challenge especially in the forming technology practice, 
considering e.g. DS or DT approaches. Also with regard 
to innovation this point seems to be the most critical one 
[52]. 
A variety of infrastructures have also been developed for 
Big Data applications. In general, the necessary 
architecture can be divided into six different layers. For 
each of these layers, different software and database 
developments should be preferred.  
Among the most widely used is the Apache Hadoop 
framework developed in Java. This is a scalable tool for 
centrally operating software applications and is based on 
Google's MapReduce algorithm, which enables the 
efficient clustering of computing processes for 
processing large amounts of data. Fig. 8 shows an 
example of the process from tapping data from coupled 
machines to visualization of the analyzed data via HMI. 
 

 
 
Figure 8: Example of a big data architecture framework 
[53] 



 

 

The data from e.g. IIoT Gateways or directly from the 
machine controller is sent to the Hadoop Distributed File 
System (HDFS). The second step is a real-time 
monitoring of the file systems using e.g. Apache Flume. 
These are then collected in real-time and sent to (in this 
example) Apache Kafka in agglomerated form. Apache 
Kafka then acts as an interface for loading and exporting 
data streams to preferred third party systems. In the 
following layer, e.g. Yarn or Apache SPARK can be 
used for package management of JavaScript and Node.js. 
This layer is also responsible for the actual data analysis. 
Besides e.g. streaming functionality they also include 
machine learning, deep learning and graph processing 
tools. Applications can be written directly with Java, 
Scala, Python, R or SQL. The fact that SPARK and 
Hadoop (HDFS, Yarn) applications have partially 
overlapping functions must be considered. On one hand, 
SPARK does not have its own file management and is 
therefore relying on HFDS or similar technology (e.g. 
Cassandra, HBase). On the other hand, SPARK can 
perform most calculations in memory, which leads to an 
outperformance of traditional Hadoop MapReduce 
platforms in most cases [54]. Nevertheless, which 
architecture is chosen depends on the preference of those 
responsible for implementation and the specific use case.  
The results in this use case are then stored in 
ElasticSearch as NoSQL. Kibana is a browser-based, 
open-source analysis platform, and a practical example 
for a program in the final big data layer that allows to 
search and visualize the data stored in e. g. ElasticSearch 
[53,54].  
 
2.6 CLOUD COMPUTING 
The definition of cloud computing varies depending on 
considered application area. The National Institute of 
Standard and Technology (NIST) refers in a very general 
way to the following definition to the cloud computing 
terminology, as “a model for enabling convenient, on-
demand network access to a shared pool configurable 
computing resources (e.g. networks, servers, storage, 
application, and services) that can be rapidly 
provisioned and released with minimal management 
effort or service provider interaction” [55]. According to 
Mell and Grants [55], the common architecture of a 
cloud solution consists of five essential characteristics, 
three service models and four deployment models (Fig. 
9). It is considered outsourcing of data storage, usually 
accompanied by corresponding Service Level 
Agreements (SLAs).  
On demand self-service is the definition for the 
possibility of customers of a cloud service to 
automatically access required resources, e.g. storage 
capacities, without additional human interaction. Broad 
network access enables customers to access all agreed 
resources with a variety of heterogeneous client 
platforms (e.g. smartphones, tablets, workstations). The 
resources provided by the provider are used by a large 
number of customers, who have limited possibilities to 
localize the physical data storage (resource pooling). 

Rapid elasticity refers to the ability of the provider to 
adapt its provided resources highly flexibly to the 
requirements of customers (e.g. upscaling). Another part 
of the essential characteristics is the possibility for the 
user to monitor and analyze his provided data streams 
and to request reports (measured service). As usual in 
many sub-areas of IT services, pay-per-use models are 
usually used for this purpose (e.g. for extended reporting 
possibilities, data volume (per time unit)). 
 In order to be able to use the advantages of such a 
service offer as effectively as possible, some providers 
also offer to adopt a corresponding big data architecture 
(SaaS, PaaS). The advantages, especially for smaller 
manufacturing companies, lie in the reduced in house 
expert know-how and required infrastructure (IaaS) 
required in this area [55, 56]. 
Private clouds are exclusively used by one organization, 
divided into e. g. business units, managed by internal IT, 
external organizations or a combination of both. 
Community clouds are provided for a defined 
community that share common interests, e.g. security 
requirements. It can be operated and owned by one or 
more organizations in the community, a third party, or a 
combination of both. Public clouds are infrastructures 
which are provided for open use by GOs, NGOs or 
academic organizations. Hybrid clouds consist of two or 
more different cloud infrastructures (public, community, 
private) that remain unique entities, but are connected by 
a single standardized framework technology. This 
enables a fast and relatively simple exchange of data 
between individual entities involved [55]. 
 

 
Figure 9: Cloud computing terminology after NIST [55] 
 
 
3 POTENTIAL CHALLENGES 
The metal forming industry in general is characterized 
by a high degree of heterogeneity. It includes a variety of 
production processes, materials, machine systems, but 
also organizational structures and sizes. In addition, 
there is currently no Austria-wide umbrella organization 
which represents companies assigned to this industrial 
sector as a unit. The heterogeneity in all these cases also 



 

 

results in a reduced number of publications that address 
the requirements within this technical discipline. 
Digitalization and digital transformation are topics that 
have been in the focus of a large number of interest 
groups in recent years. Nevertheless, a large number of 
developed concepts and case studies are not applicable to 
a significant part of the metal forming industry. For this 
reason, this chapter deals with what the author believes 
to be the greatest challenges in metal forming technology 
in relation to digitalization and digital transformation, 
supported by current scientific publications. Despite the 
technical component, also industrial-economical and 
partly also legal components are considered. 
 
3.1 RETROFITTING 
Retrofitting in the context of the fourth industrial 
revolution is defined as the upgrading of machine 
systems to make them viable for I 4.0 applications. In 
scientific publications, this process is usually based on 
the planning, implementation and validation of suitable 
infrastructure, communication and applications. In 
general, the goal of these procedures is to turn machines 
with older technologies into fully functional CPPS. This 
enables them to connect to existing IIoT networks and 
big data applications. Considering the high degree of 
heterogeneity, especially in metal forming industry, this 
seems to be one of the main challenges in implementing 
a smart production unit (fully digitalized production). 
Some work in this field deals with the creation of 
standardized frameworks, which should allow a 
structured approach for retrofitting. However, in the case 
of forming technology, these frameworks are either too 
general to directly initiate necessary steps (e.g. no 
suitable recommendation of defined interfaces, 
hardware, software (SW)) [57] or too specific (only 
suitable for a defined use case [58]). Based on renowned 
publications between 2014 and 2018 [59,60,61], Lins et 
al. [57] summarized the requirements for successful 
conversion of older systems to full CPPS, by retrofitting 
in a partially digitalized environment, in 13 points (Table 
1, modified by the author). For the first-time 
digitalization in a non-industry 4.0 environment, a 
similar procedure can be followed once at least IIoT 
technology has been implemented. Recommendations 
for a first-time introduction of IIoT are the provision of 
high speed internet coverage and the server architecture 
required for local data processing. Sufficient resources 
for sustainable IT security should also be considered. 
Big data applications and mostly embedded artificial 
intelligence systems as well as the associated data 
expenditure must be taken into account in the planning 
stage. The storage location of the data volume should 
also be defined in the planning phase (locally or via 
cloud (2.6)). An essential point is also the choice of IT 
standards used (e.g. MQTT, OPC UA, MES, general 
layer architecture). Appropriately trained personnel must 
be considered if not available in the own company (for 
planning, implementation and also ongoing operation 
and maintenance). 

 
Table 1: Retrofit approach for the development of a 
CPPS for an existing I 4.0 environment [57] 
 Infrastructure 
1 Identification and visualization of requirements 

and potential improvements, for each sub-process 
and machinery to retrofit 

2 Adding of suitable IIoT Devices directly to the 
selected machinery (e.g. smart sensors) 

3 Adding associated, but not directly connected IIoT 
Devices to the machinery (e.g. IIoT gateways) 

 Communication 

4 Identification and visualization of existing 
communication technologies and protocols with I 
4.0 standard, if applicable (e.g. MQTT protocols) 

5 Integration of existing not integrated 
communication technologies in an I 4.0 network 
(e. g. through IIoT gateways ) 

6 Integration of communication management, 
avoiding usage of a network manager for different 
communication types 

7 Support for IIoT networks (e.g. I 4.0 specialists) 

8 Implementation of real-time communication 
between all production levels (most important 
between SCADA and MES level) 

 Application 

9 Identification and visualization of existing, 
implemented software and applications and 
required software/applications for running I 4.0 
applications on the system to retrofit 

10 Adding of interfaces for the connection of not I 
4.0 SW and applications to I 4.0 SW and 
applications (e.g. connections to cloud) 

11 Integration of existing not I 4.0 ready SW to I 4.0 
applications which are part of existing CPPS (e.g. 
OPC UA interfaces from SPS) 

12 Implementation of monitoring applications for the 
supervising of all generated data of the 
retrofitting system in conjunction with added IIoT 
devices (HMI via various GUIs) 

13 Implementation of remote access technology for 
the users of the CPPS 

 
 
3.2 HUMAN MACHINE INTERACTION 

(INDUSTRY 5.0) 
HMI technologies are in the focus of current research. 
Some recognized researchers in the field of digitalization 
also refer to this focus as Industry 5.0 [62]. In this case it 
is not only about the purely technical component, but 
primarily about interaction challenges in human-robot 
collaboration. In the metal forming industry, the author 
believes that the interaction between complex process-
optimizing algorithms and employees involved is a 
particular challenge in this context, which must be 



 

 

considered when implementing an I 4.0 solution in the 
manufacturing process [63,64]. 
 
3.3 DIGITAL TWIN INTEGRATION 
In the metal forming industry, the simulation of 
processes and the resulting material behavior is of high 
importance. Important process parameters (e.g. material 
flow, temperature range, force required) as well as the 
resulting material characteristics (e.g. strength, residual 
stress, temperature resistance) can be supported by the 
use of FEA to replace costly and uneconomical practical 
tests. Furthermore, theoretical process planning and 
process optimization can be investigated and validated 
quickly and cost-effectively. Due to the advancing 
digitalization and the use of I 4.0 technologies, it is also 
possible to use FEA in the form of digital twins for in 
situ process optimization. The biggest challenges are the 
efficient programming and abstraction of corresponding 
FEAs to make such a process synchronous calculation 
possible. Furthermore, the automated integration of FE 
programs into the IT architecture of a digital factory is 
only possible by means of standardized interfaces. 
However, the difficulty of programming such interfaces 
can vary greatly depending on the supplier [24]. 
 
3.4 VERTICAL INTEGRATION 
From a purely production engineering perspective, 
vertical integration offers one of the greatest potentials 
for optimizing production processes. Successfully 
considered already in the planning phase, it can support 
greenfield approaches (completely new planning of 
digital factories) to make economic sense in the first 
place. When it comes to the digitalization of existing 
factories (brownfield approach), a transparent vertical, 
but also horizontal integration can quickly become 
complex. This is caused, among other aspects, by 
historically grown IT and machine infrastructure, but 
also by organizational structures. For this reason, in 
many cases a multitude of measures are necessary to 
successfully implement a transparent integration. In 
addition to the selection of suitable personnel, suitable 
hardware and software, the accompanying use of change 
management techniques is also unavoidable in most 
cases. 
 
3.5 DATA SECURITY AND LEGAL ASPECTS 
The use of big data and artificial intelligence 
applications in the metal forming industry may be 
outsourced to external providers, if there is a lack of 
human resources. Many of these providers also include 
in their scope of services the physical storage of data to 
be analyzed from the production process. In addition to 
the advantages of lower administrative and personnel 
costs, there are numerous risks associated with this 
approach. In many cases the physical storage of data 
takes place in specially designed server farms, which are 
often operated in countries that are subject to 
fundamentally different legal obligations. For this 

reason, a legal examination of contracts with third party 
providers regarding data security and also data 
ownership rights must be taken into account when 
implementing such applications (2.5, 2.6). 
 
3.6 INTERDISCIPLINARITY AND EDUCATION 
The implementation of a holistic digitalization solution 
generally requires a high level of interdisciplinary 
expertise. In addition to traditional engineering 
knowledge of forming processes, basic knowledge of 
network technology, programming languages, 
production logistics and industrial economics is required, 
even when outsourcing to third parties. Smart Production 
concepts also require a change in the organizational 
structure. According to a personal interview of the 
author with a well-known consulting company in heavy 
industry, the greatest challenges in the implementation of 
Industry 4.0 technologies are not the provision and use 
of modern technologies, but rather the inadequate 
coordination of those responsible for production and the 
internal IT department. These departments often have 
too limited resources to plan, implement and maintain a 
digitalization solution. It is therefore recommended to 
involve the responsible persons as early as possible. 
Depending on the size of the company, more and more 
companies are also using a separate instance for the 
digital transformation of production. The most 
prominent example of this approach is the role of the 
Chief Digital Officer (CDO). In most cases, the CDO 
does not replace the IT manager, but is deployed in 
parallel to him specifically for innovations in the area of 
the fourth industrial revolution. The combination of top-
down commitment through the implementation of such 
functions in the organizational structure, and the 
promotion of bottom-up commitment through the use of 
change management at all hierarchical levels, 
significantly increases the probability of a company's 
successful digital transformation. In order to be able to 
meet the increasing demand for qualified specialists in 
the future from today's perspective, appropriate training 
and further training measures must be developed. Figure 
10 shows an example of the knowledge required in the 
field of digital and advanced analytics (DnA) for a 
company in heavy industry [65]. 

 
Figure 10: Required Skills for Data Analytics in heavy 
industry [65]. 



 

 

4 CONCLUSION AND OUTLOOK 
The challenges listed in Chapter 3 represent major 
obstacles to the success and competitiveness of the 
Austrian metal forming industry. In addition, it must 
always be taken into account that even the simplest form 
of digitization can only bring an advantage if the 
preceding process is mastered and capable. Traditional 
concepts of Lean Management must therefore always be 
considered as an initial instance. It should also be 
ensured in advance that manual and automated data, 
which are digitized or fed into a digitalization system, 
are complete and valid. 
 Digitalization and digital transformation are research 
priorities of a large number of academic and private 
research institutions. For this reason, several research 
priorities regarding digitalization were set at the Chair of 
Metalforming. Since 2019, in cooperation with the 
company ibaAG, the Chair of Metalforming has been 
working on the networking of the most important in-
house forming technology aggregates [66]. Furthermore, 
the possibilities of integrating an FEA-based digital twin 
into a Smart Production Lab are being investigated in the 
context of a dissertation. This is done in cooperation of 
the University of Leoben and the FH Joanneum, 
University of Applied Sciences. In 2020, the Chair of 
Metalforming will also develop a digital shadow at 
SCADA level using Simatic S7 1200 control and 
Simufact FEA. Furthermore, a quantitative survey of the 
digital maturity level of the metal forming industry in 
Austria will be carried out by 2021. Within the 
framework of this survey, potential correlations between 
economic success and the degree of digitalization will 
also be determined. In the field of academic education, 
digitalization in the context of the metal forming 
industry will also be a major focus in 2021. In this 
context, the digitalization projects at the chair, for 
practical illustration of theory, will also be included. 
These projects should make an important contribution to 
preserve and expand the competitiveness of the Austrian 
metal forming industry. 
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area of the respective institution. This paper provides an approach for the planning and implementation of such a factory, specifically 
tailored to the requirements of the metal forming industry. This learning factory will then be operated at the Chair of Metalforming 
at the Montanuniversität Leoben (MUL). The objective is to monitor and control forming units of different technological maturity 
in a common system. The industrial software used, ibaPDA for data logging and ibaAnalyzer for automated further processing, is 
widespread in practice and enables students to learn the required skills as close to practice as possible. In addition, Analog to Digital 
(A/D) converters and machine hour counters will be implemented to illustrate the retrofitting approach in practice. For the planning 
and implementation of Digital Shadows and Digital Twins, common Finite Element (FE) simulation programs will be used and the 
possibilities of connectivity between machines, simulation programs and automation software will be demonstrated. The project 
presented here should thus make an important contribution to the training of future specialists with special consideration of the 
increasing interdisciplinarity in manufacturing technology. 
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1. Introduction 

Due to the increasing complexity in manufacturing technology, the share of required interdisciplinary expertise in 
the field of academics is increasing [1]. In most cases, understanding of the fundamentals of mechanical engineering 
and materials science is no longer sufficient in industrial practice. Future engineers also need a broad understanding 
of information technology and, above all, network technology interrelationships [2]. For this reason, more and more 
universities are deciding to implement learning factories, which should make it easier for future experts to acquire the 
interdisciplinary core competencies addressed and thus prepare them for future professional challenges [3]. In order 
to cope with this development, the Chair of Metalforming at the Montanuniversität Leoben (MUL) is developing such 
a factory within the framework of a digitization and digitalization project, specially tailored to the needs of the metal 
forming industry. The primary aim of this learning factory is to network the most important forming aggregates, from 
the servo-hydraulic press to the Thermo-Mechanical Treatment Simulator (TMTS). In addition, the latest laser 
ultrasonic technology for the quantification of microstructural changes in formed material samples is to be integrated 
into this network. The main objective is to show interested students the optimization potentials which result from the 
coupling of such a system. Furthermore, it will be possible to create Digital Shadows (DS) and, in long term, Digital 
Twins (DT) [4] by in-situ coupled FE simulation. Another essential aspect of this project is to demonstrate the 
possibility of numerical and statistical evaluation to students and other interested parties. In the following chapters, 
the steps required for the successful planning and implementation of such a factory are explained. The first step is to 
determine the required IT infrastructure based on the machine systems to be networked. Second, the planned or already 
implemented software packages and interfaces are described. Finally, the possible coupling of an FE simulation and 
thus the creation of a DS and DT is discussed. Referring to the morphology of learning factories described by Abele 
et al. [5], the system presented in this paper should have the characteristics shown in Table 1 after completion.  

     Table 1. Characterization of the presented Learning Factory, adopted from Abele et al. [5]. 

Four characteristics of Learning Factory 
morphology 

Type of the Learning Factory at the Chair of Metalforming 

Operating model Academic usage, internal funds, teaching by teaching staff at the chair 

Purpose and targets Education of mechanical engineering, metallurgy, industrial logistics and industrial 
data science students, academic research focused on metal forming  

Process Development of new production processes, from casted semi-finished product to the 
finished product, process optimization using FE simulation 

Didactics Main focus of teaching: brownfield approach (retrofitting), network technology, 
integration of FE simulation in a digital factory environment. 

2. Infrastructure 

A feasibility study was carried out in the first planning phase to ensure the most efficient and effective 
implementation possible. In the first instance, those machines were selected which are expected to have the highest 
impact on teaching operations and future-oriented research. The assessment favored the forming simulators (FS) 
Servotest TMTS and the DSI Gleeble 3800 system. In order to facilitate internal project planning, machines with high 
capacity utilization were selected for connection by means of an operating hour counter (OHC). This should give 
students and other interested parties an insight into production planning and the basics of data acquisition for efficient 
project management. The Band Saw Machine (BSM), Electric Wire Discharge Machine (EWDM), Water Jet 
Trimming System (WJTS), Milling Machine and Computerized Numerical Control (CNC) controlled lathe were 
selected for this purpose. In addition, two machine systems were considered, both of which are currently in the final 
design phase. The first one is a laser ultrasonic measuring system (LUS) which, coupled to the DSI Gleeble hot forming 
simulator, enables in situ (i. s.) evaluation of the change in the microstructure of the tested material. The second 
machine system is a specially designed system for the practical application of Equal Channel Angular Pressing (ECAP) 
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technology. Table 2 lists all machines considered in the first planning phase. The type of connection from the machine 
specific Control System (CS) is also defined.  

             Table 2. Selected machine systems and type of connection for integration into the digitalization network. 

Machine System Description Connection Type 

Servotest TMTS HSCT (T, t, Φ, Φ̇) A/D, directly from CS 

DSI Gleeble 3800 FS (T, t, Φ, Φ̇ ) A/D, directly from CS 

LUS i. s. MS (T, t, Φ, Φ̇) LabVIEW 

ECAP-System MS (T, t, Φ, Φ̇) SIMATEC S7 1200 

WJTS Cutting Operations (t) OHC (A/D) 

Emco Turn E 65 CNC Lathe (t) OHC (A/D) 

Fanuc Robocut EWDM (t) OHC (A/D) 

Deckel FP 2 Milling Machine (t) OHC (A/D) 

MEP BSM (t) OHC (A/D) 

 
The systems shown in Table 2 are connected to the iba main computation and storage unit by means of the defined 

connections. This server system operates independently of the internal server structure of the chair of Metalforming 
and is able to automatically forward evaluations and, depending on the type of connection, to intervene and regulate 
the current process.  

3. Scheduling and Implementation Approach 

After selecting the machines to be connected, the sequence was defined. This was done under consideration of 
complexity, availability and the planned usage of the considered systems for current and upcoming projects in the near 
future. After successful commissioning of the measuring control computer, the DSI Gleeble system was selected in 
the first instance. The A/D connection was made primary via analog measuring boards of the DSI Server System. In 
case of the temperature signal, which is absolutely necessary for the recording, there was no analog measuring board 
available. Therefore, the signal was tapped directly at the input signal of the system computer. In any case, sufficient 
shielding of the cable connection used must be ensured. In this case, insufficient shielding leads to significant scattering 
in the measurements, which cannot be fully compensated by using suitable statistical methods. Fig. 1. (a) shows the 
comparison of a dilatometer curve, captured directly on the DSI testing machine using an A/D converter and post-
processed with the digitizing software (red) and captured and post-processed with DSI's own software (blue). Fig. 1. 
(b) shows a hot tensile test recorded in the same configuration. Both tests work with different analog input signals, 
therefore the entire bandwidth of the digitized signals can be displayed in these evaluations.  

 
 
 
 
 
 
 
 
 

 

Fig. 1. (a) Dilation Curve for a bainitic steel; (b) Hot tensile test for a bainitic steel. Blue line: Original Gleeble. Red Line: Iba system. 
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The analog signal output of temperature and dilation leads to strong noise (Fig. 1. (a), green frame), while the force 
and displacement signals correlate significantly. This noise is a result of the relatively strong fluctuations of the voltage 
tapped on the DSI server system. In order to be able to prove the validity of the measurement, this section (Fig. 1. (a), 
green frame), is again examined in detail for correlation in Fig. 2. The electrical voltage generated by the temperature 
change on the test specimen is in the single-digit millivolt range. A measuring range of up to 2000 °C must be covered 
from this very small analog measuring range. As a result, voltage fluctuations in the range of 10−3  Volt lead to 
temperature fluctuations of  250−

+  °C.  
 

 
 
 
 
 
 
 
 
 

Fig. 2. Scatter of the holding range; (a) without post-processing; (b) with post-processing; (c) Comparison between (b) with the DSI evaluation. 

In order to minimize the influence of measurement errors, calibrations at different temperatures were repeatedly 
carried out. In spite of these measures, the dispersion in the range mentioned in Fig. 1. (a) cannot be completely 
eliminated due to the necessity of keeping the temperature constant in this area for almost two minutes during the 
experiment, leading to a significantly larger number of data pairs in this range. In order to evaluate whether the 
dispersion shown in Fig. 2. (a) can be detected due to the voltage signal fluctuations only or if there is also a deviation 
of the mean value, the moving mean value was calculated in Fig. 2. (b) over all entries of the [11821 x 2] data matrix. 
The first minimum of the smallest scatter band results from the moving average over 2000 points (Fig. 2. (b)). By 
plotting this modified data curve in direct comparison with the evaluation of the DSI software (Fig. 2. (c)), maximum 
temperature deviations of 0.9 °C can be detected.  

Fig. 3 shows an overview of the planned learning factory. The two machine systems which are currently in the final 
construction phase were considered as mentioned before.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Learning Factory Concept on the Chair of Metalforming, MUL. Green: in use. Red: in construction. Yellow: Not yet implemented. 
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A major advantage of using the central digitizing unit is the possibility of fully automated processing of raw data. 
These data can also be forwarded fully automatically to predefined users via email or other web technologies. These 
functions are independent of the specific machine software and thus guarantee full compatibility also in the future. In 
addition, both the maintenance and the learning of the operation are considerably simplified due to the reduction to 
one main system. Furthermore, the integrated software is able to assign important budgeting data for the accounting 
of specific work packages by means of the OHC shown in Fig. 3 and the possible assignment of project data and 
involved employees. The calculation of machine hour rates for involved systems for example can be carried out 
automatically due to the higher accuracy of data obtained. Other important key production figures such as Overall 
Equipment Effectiveness (OEE) can be made transparent too, another advantage is the systematic data storage of all 
process data. The automated allocation to defined storage locations leads to the reduction of memory redundancies. 
The increased memory requirement due to continuous process data recording can thus be compensated to a significant 
extent by more efficient data management. 

4. Digital Twin Approach and General Usage of Finite Element Analysis 

On the basis of the digital learning factory, it is also possible to model DT. The basic prerequisite for this is a data 
transfer rate and data processing which, including all latencies and other loss times, functions faster than the process 
to be simulated. The biggest challenge in this case is the data processing, since it includes not only the processing of 
the input measurement signals, but also the automated calculation of a coupled simulation and the return of the 
calculations to the original system. For this reason, the efficient programming of such a model is of utmost importance. 
The reduction of complexity must be carried out until this restriction is met, without losing the required accuracy [6]. 
For the modeling of a DT for the automated process control of the ECAP system, the Grey Box modeling approach is 
used [7]. In the metal forming industry, the white box approach for the simulation of processes and material properties 
is currently used mainly. In this case, all input data and process parameters are based on physical relationships. In 
contrast, a black box approach only uses statistically generated data without a physical background [8]. Although there 
is a high level of material and process-specific know-how in forming technology, there are still parameters which are 
too complex to be defined precisely enough with white box models due to the multitude of influencing factors [9], e.g. 
the coefficient of friction. This coefficient is complex in almost all cases in a real process environment [10]. The 
determination of such core parameters using real-time coupled process data acquisition can thus make an important 
contribution to more efficient and effective simulation. 

In this case, parameters that cannot be calculated directly from scientific contexts are calculated via the automated 
data evaluation of the iba system and transferred to the coupled finite element analysis as input variables. Fig. 4 
schematically illustrates the Grey Box approach for the creation of a DT for the ECAP system.  
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 4. DT concept for the ECAP system under consideration of the Grey Box modelling approach. 
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The corresponding Finite Element Analysis (FEA) is created in the FE simulation program Simufact forming, which 
is also widely used in industrial practice. The handling is relatively intuitive, which accelerates the learning of required 
skills for prospective experts. In order to create a complete and valid DT, it is also necessary to include a model of the 
microstructure of the tested material in the calculation. Particularly in the ECAP process, the structural change in the 
course of forming makes a significant contribution to a valid calculation.  

As a preliminary stage for the DT, a DS is created. In contrast to the DT, the in situ parameter adaptation is not 
used in first instance. In order to ensure the general validity and required accuracy of the data obtained from the 
digitalization system, a manual check will be first performed by comparing the simulation result with the 
corresponding test. If the results of the FEA are valid, the feedback, still missing for a DT, will be implemented 
subsequently. 

5. Conclusion and Outlook 

The development of academic learning factories in the metal forming industry is still in its initial state. The concepts 
presented here are intended to generate an important contribution to the training and deepening of interdisciplinary 
knowledge. Engineering students receive an insight into the potentials of digitization and digitalization through 
specially designed courses. Starting with IT-supported shop floor project management, which is implemented with the 
help of iba software solutions, the planning, allocation and accounting of work packages can be made transparent. 
Using the example of the DSI Gleeble System's analog measurement signal sampling and the subsequent automated 
data processing with the iba system, essential contents and special features in the connection of analog measurement 
signals can also be examined with special consideration of interference influences. In combination with the following 
coupling of the Servotest TMTS, the retrofitting approach can be illustrated. The connection of the ECAP machine 
system based on the SIMATIC S 7 1200 control system is also intended to illustrate the connection of modern control 
systems to a digital network. The possibility of intervening in an ongoing process and the resulting potentials will also 
be illustrated using DT. Special emphasis will be placed on the underlying programming, FEA and the selection of 
suitable software programs that are relevant in practice. By explaining the theory behind this Academic Learning 
Factory, as well as practical exercises in the field of modeling, programming, control, design and project planning, 
future graduates and other interested parties from research and industry will gain a broad spectrum of knowledge about 
current concepts of digitalization in the metal forming industry. 

References 

[1] A. Ma, A. Nassehi, C. Snider, Embracing complicatedness and complexity with Anarchic Manufacturing, Procedia Manufacturing, 28 (2019) 
51-56. 

[2] A. Barbu, G. Militaru, Value Co-Creation between Manufacturing Companies and Customers. The Role of Information Technology Competency, 
Procedia Manufacturing, 32 (2019) 1069-1076.  

[3] D. Centea, I. Singh, M. Elbestawi, SEPT Approaches for Education and Training using a Learning Factory, Procedia Manufacturing, 31 (2019) 
109-115. 

[4] W. Kritzinger, M. Karner, G. Traar, J. Henjes, W. Sihn, Digital Twin in manufacturing: A categorical literature review and classification, IFAC-
PapersOnLine, 51 (2018) 1016-1022. 

[5] E. Abele, J. Metternich, M. Tisch, G. Chryssolouris, W. Sihn, H. ElMaraghy, V. Hummel, F. Ranz, Learning Factories for research, education, 
and training, Procedia CIRP, 32 (2015) 1-6. 

[6] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, F. Sui, Digital twin-driven product design, manufacturing and service with big data, The 
International Journal of Advanced Manufacturing Technology, 94 (2018) 3563-3576. 

[7] G. Reynders, J. Diriken, D. Saelens, Quality of grey-box models and identified parameters as function of the accuracy of input and observation 
signals, Energy and Buildings, 82 (2014) 263-274. 

[8] A. Lenzen, H. Waller, From Black Box to White Box Models in Structural Mechanics, ICLODC 2nd International Conference Lifetime Oriented 
Design Concepts, (2004) 1-10. 

[9] J.-P. Ponthot, J.-P. Kleinermann, A cascade optimization methodology for automatic parameter identification and shape/process optimization in 
metal forming simulation, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 5472-5508. 

[10] T. Yue, M. A. Wahab, Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes, Tribology 
International, 107 (2017) 274-282. 



 

57 
 

A 3 Publication 3 
 

 

 

A. Schwarz, B. J. Ralph, M. Stockinger: ‘Planning and implementation of a digital shadow for 
the friction factor quantification of the ECAP process using a grey box modeling approach and 
finite element analysis’, in: Procedia CIRP, 99, pp. 237-241, 01.2021, DOI: 
https://doi.org/10.1016/j.procir.2021.03.035. 

 

Author contributions 

1. A. Schwarz: experimental setup, conceptualization, methodology, data curation, 
writing – initial draft preparation, writing – review and editing 
 

2. B. J. Ralph: literature study, conceptualization, methodology, project administration, 
writing – initial draft preparation, writing – review and editing 
 

3. M. Stockinger: resources, writing – review and editing 
 
 

 

 
 
 
 
 
 
 
 

https://doi.org/10.1016/j.procir.2021.03.035


ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

This paper describes the possibility of analytical friction factor generation using a Grey Box modelling approach. A preprocessor is used, which 
automatically collects measured data via a Smart Production Network and calculates the effective friction coefficient as a function of all 
significant process parameters of the Equal-Channel-Angular-Pressing (ECAP) process using a data-driven evaluation algorithm. The results of 
this calculation are then automatically implemented in an efficiently programmed finite element analysis. This Digital Shadow then serves as 
the basis for the implementation of a Digital Twin, which is described shortly at the end. 
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Nomenclature 

ECAP  equal channel angular pressing 
FEA  finite element analysis 
DS  digital shadow 
SPD   severe plastic deformation 

1. Introduction 

In recent years, the demands for improved mechanical 
properties of construction materials, especially in the areas of 
lightweight design, have increased considerably. In addition to 
conventional methods for improving mechanical properties 
such as alloying or heat treatment, severe plastic deformation 
(SPD) is also researched intensively in the last four decades 
[1–4]. Processing materials by SPD technologies leads to a 
significant reduction in grain size, which results in improved 
mechanical properties like yield strength or ultimate tensile 
strength. One of the most prominent SPD methods is equal 

channel angular pressing (ECAP) [5]. With this method, it is 
possible to produce bulk material with a considerably refined 
grain-sized. A well-lubricated billet is inserted into a die and 
repeatedly pressed through two intersecting channels. The 
square section of the workpiece does not change in the 
process. The deformation in the narrow plastic zone through 
simple shear leads to shear banding in the material. These 
localised shear bands firstly develop into subgrains, and with 
further plastic deformation turn into a homogeneous refined 
grain structure [6] 
There are various parameters such as die geometry, chemical 
composition and temperature, which affects the resulting 
microstructure of the processed workpiece [7]. Additionally, 
the friction between die and workpiece is of high importance, 
because it strongly affects the resulting deformation mode and 
therefore the homogeneity of the microstructure as well as the 
final grain size. Furthermore, the necessary force to press the 
billet through the die is also critically affected by the friction 
[8]. There are many experimental methods to determine 
friction coefficients for different friction models. Ideally, the 
friction coefficients should be determined in an experiment 
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possible to produce bulk material with a considerably refined 
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repeatedly pressed through two intersecting channels. The 
square section of the workpiece does not change in the 
process. The deformation in the narrow plastic zone through 
simple shear leads to shear banding in the material. These 
localised shear bands firstly develop into subgrains, and with 
further plastic deformation turn into a homogeneous refined 
grain structure [6] 
There are various parameters such as die geometry, chemical 
composition and temperature, which affects the resulting 
microstructure of the processed workpiece [7]. Additionally, 
the friction between die and workpiece is of high importance, 
because it strongly affects the resulting deformation mode and 
therefore the homogeneity of the microstructure as well as the 
final grain size. Furthermore, the necessary force to press the 
billet through the die is also critically affected by the friction 
[8]. There are many experimental methods to determine 
friction coefficients for different friction models. Ideally, the 
friction coefficients should be determined in an experiment 
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which simulates similar conditions than the real process, for 
example, sliding distance and normal pressure [9, 10]. This 
fact makes it difficult to determine generally valid coefficients 
of friction for different processes, which is especially 
important as they are necessary for accurate finite element 
analysis. 
Digitalisation in manufacturing processes becomes more 
prominent every day. The possibility to achieve higher levels 
of productivity through the utilisation of the newest sensor 
technologies and the vast amount of data they deliver is in the 
manufacturers best interest [11]. A digital shadow can be 
defined as a digital model coupled to the state of an existing 
physical process. A one-way data flow is realised, which 
means a change of state in the physical process leads to a 
change of state in the digital model[12]. These systems offer 
various applications for manufacturing processes, for example, 
improved maintenance prediction [13] and production 
planning [14].  
This paper focuses on the proof of concept to automatically 
determine the friction coefficient with the use of a finite 
element analysis of the ECAP process coupled to a digital 
shadow. First, the reference FEA model used for the digital 
shadow is described. Secondly, the conception and 
implementation of the digital shadow are discussed. Finally, 
the results of the automatic determination of the friction 
coefficient, and the future prospects of this project are shown.  

2. Finite element analysis of the ECAP process 

A reduced thermomechanically coupled finite element 
model of the ECAP process was developed in the simulation 
software SimufactForming 15. The model resembles a new 
ECAP testing rig, which is currently under construction at the 
chair of metal forming. This machine has two individually 
controllable hydraulic cylinders with a pressing force of 50 
tons each.  One of them acts as the main plunger while the 
second one is used for a defined back pressure on the 
specimen (back-pressure plunger). The latter offers the 
possibility to improve the homogeneity of the resulting 
microstructure as well as the processability of the material 
[15]. Furthermore, the back-pressure plunger acts as a 
moveable bottom wall inside the die. This design of the ECAP 
process leads to reduced friction on the bottom side of the 
specimen. In the new machine, the pressing speed can be 
varied between 0.1 and14.5 mm/s  while the tools can be 
heated up to a maximum temperature of 450°C.  

The simulation setup was realised in 3D as a 2D model 
leads to non-tolerable inaccuracies because of the different 
frictional conditions between the specimen and the die walls 
[16]. The main plunger presses the workpiece from the square 
entry canal into the exit canal with an angle between the 
canals of 90°. The cross-section of the billet is 15x15 mm, the 
length is 145 mm. The age hardenable aluminium alloy EN-
AW-6082 was used as reference material for the simulations. 
The flow curves used for these calculations are determined 
using the thermo-kinetic software package MatCalc. The 
friction is described by the shear friction model: 
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where τR is the frictional shear stress, m the constant friction 
factor and kf the yield stress of the deformed material. As a 
consequence of the moving bottom wall, the relative velocity 
between the billet and the bottom wall is zero, which results 
in a frictionless contact. The contact between the back-
pressure plunger and the specimen was defined as glued and 
the friction coefficient was set to zero, to model this 
behaviour adequately. 
Besides the friction factor, the pressing speed (v), the applied 
back pressure (p) and the initial billet temperature are the 
critical process parameters for this FEA. The specimen has 
been meshed with hexahedron elements with an element size 
of 1.5 mm. An automatic remeshing criterion was defined to 
avoid problems with strongly distorted elements during the 
calculation. Figure 1 shows the FEA model at 50% process 
time, indicating the effective plastic strain of the workpiece.  
The values used for the reference simulation for this study can 
be found in table 1. The total run time for one simulation was 
about 40 minutes. This model serves as the starting point for 
the digital shadow. 

Table 1. Input values of the reference simulation 
Parameter Value 

Constant back pressure p 30 MPa 

Constant pressing speed v 5 mm/s 

Displacement of the main plunger 130 mm 

Initial temperature T 20 °C 

Friction coefficient m 0.16 

 

3. Digital Shadow 

The digital shadow (DS) is realised via Python. For the data 
handling the Pandas package is used within the python script. 
An overview of the functionality of the DS can be seen in 
figure 2. As soon as an experiment on the ECAP machine is 
started the Siemens Simatic 1200 PLC sends the input data 
(pressing speed, back-pressure, initial billet temperature, 
lubricant and material) via Profinet to a directory in the 
institute's smart factory database. The principle design of the 
smart factory of the organisation is described in [17]. The DS 
automatically reads the input data and generates a new finite 
element  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig 1. FEA model of the ECAP process at 50% process time 
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Fig 4. Determination of the friction coefficient with the force displacement 
curves of the experiment and simulations 

Fig 3. Comparison between the original and smoothed curve of a simulation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
simulation based upon the model described before, but 
including the input parameters from the experiment. After the 
initialisation, the DS transfers the input files of the calculation 
to the smart factory's database and starts the calculation.  
After the finished simulation, the DS generates the force-
displacement curves, smoothes them, using the rolling 
average method with a boxcar window, and calculates the 
mean value of the resulting force values. The smoothing is 
crucial due to excessive noise in the data, which results from 
necessary remeshing during the simulation, as well as 
unstable contact conditions between the workpiece and the 
canal edge in the die. Figure 3 shows the original and the 
smoothed curve of the reference simulation. 
The mean value of the force-displacement curves derived 
from the smoothed simulation Fsm and the actual experiment 
Fexm are compared between each other. An abort criterion is 
introduced:  
 
0.925* 1.075*exm sm exmF F F    (2) 
If the abort criterion is met, the actual friction coefficient was 
found during the simulation. Otherwise, the DS generates a 
new calculation with the same input parameters except for a 
changed friction coefficient. The new friction coefficient is 
reduced if the mean force of the simulation was too high to 
meet the abort criterion, or increased if the force values were 
too low. The DS keeps iterating the simulation with new 
friction values until the abort criterion is met, and the ideal 
friction coefficient was found. Depending on the difference 
between the two compared values, the program decides how 
strongly the new friction coefficient should be changed in 
order to keep the number of iterations to a minimum and to 
speed up the process. After every iteration, the generated 
force-displacement data, as well as the newly assigned friction 
coefficient, are transferred to the database for further analysis. 
This setup produces a vast amount of data from one single  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
experiment, which gets collectively stored on the centralised 
database of the organisation: 
 
 Experimental input parameters and specimen description 
 Experimental values (force-displacement curves, 

temperature-time curves) 
 Simulation input files of every iteration 
 Force displacement curves of every iteration 
 Determined friction coefficient  

4. Results 

   Since the ECAP machine is not yet fully operational, a 
generic force-displacement curve was generated to serve as 
experimental test data for this study. With this data, a proof of 
concept of the friction factor quantification was investigated. 
The generic force-displacement curve, as well as the resulting 
curves from the different simulations, can be seen in Figure 4. 
After five iterations, the abort criterion was met, and a best-
fitting friction factor of m = 0.08 was determined. Table 2 
shows the collected values of the generated friction 
coefficients, as well as the corresponding force mean values 
for the different simulations. It can be seen that the coefficient  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Concept of the digital shadow 
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which simulates similar conditions than the real process, for 
example, sliding distance and normal pressure [9, 10]. This 
fact makes it difficult to determine generally valid coefficients 
of friction for different processes, which is especially 
important as they are necessary for accurate finite element 
analysis. 
Digitalisation in manufacturing processes becomes more 
prominent every day. The possibility to achieve higher levels 
of productivity through the utilisation of the newest sensor 
technologies and the vast amount of data they deliver is in the 
manufacturers best interest [11]. A digital shadow can be 
defined as a digital model coupled to the state of an existing 
physical process. A one-way data flow is realised, which 
means a change of state in the physical process leads to a 
change of state in the digital model[12]. These systems offer 
various applications for manufacturing processes, for example, 
improved maintenance prediction [13] and production 
planning [14].  
This paper focuses on the proof of concept to automatically 
determine the friction coefficient with the use of a finite 
element analysis of the ECAP process coupled to a digital 
shadow. First, the reference FEA model used for the digital 
shadow is described. Secondly, the conception and 
implementation of the digital shadow are discussed. Finally, 
the results of the automatic determination of the friction 
coefficient, and the future prospects of this project are shown.  

2. Finite element analysis of the ECAP process 

A reduced thermomechanically coupled finite element 
model of the ECAP process was developed in the simulation 
software SimufactForming 15. The model resembles a new 
ECAP testing rig, which is currently under construction at the 
chair of metal forming. This machine has two individually 
controllable hydraulic cylinders with a pressing force of 50 
tons each.  One of them acts as the main plunger while the 
second one is used for a defined back pressure on the 
specimen (back-pressure plunger). The latter offers the 
possibility to improve the homogeneity of the resulting 
microstructure as well as the processability of the material 
[15]. Furthermore, the back-pressure plunger acts as a 
moveable bottom wall inside the die. This design of the ECAP 
process leads to reduced friction on the bottom side of the 
specimen. In the new machine, the pressing speed can be 
varied between 0.1 and14.5 mm/s  while the tools can be 
heated up to a maximum temperature of 450°C.  

The simulation setup was realised in 3D as a 2D model 
leads to non-tolerable inaccuracies because of the different 
frictional conditions between the specimen and the die walls 
[16]. The main plunger presses the workpiece from the square 
entry canal into the exit canal with an angle between the 
canals of 90°. The cross-section of the billet is 15x15 mm, the 
length is 145 mm. The age hardenable aluminium alloy EN-
AW-6082 was used as reference material for the simulations. 
The flow curves used for these calculations are determined 
using the thermo-kinetic software package MatCalc. The 
friction is described by the shear friction model: 
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where τR is the frictional shear stress, m the constant friction 
factor and kf the yield stress of the deformed material. As a 
consequence of the moving bottom wall, the relative velocity 
between the billet and the bottom wall is zero, which results 
in a frictionless contact. The contact between the back-
pressure plunger and the specimen was defined as glued and 
the friction coefficient was set to zero, to model this 
behaviour adequately. 
Besides the friction factor, the pressing speed (v), the applied 
back pressure (p) and the initial billet temperature are the 
critical process parameters for this FEA. The specimen has 
been meshed with hexahedron elements with an element size 
of 1.5 mm. An automatic remeshing criterion was defined to 
avoid problems with strongly distorted elements during the 
calculation. Figure 1 shows the FEA model at 50% process 
time, indicating the effective plastic strain of the workpiece.  
The values used for the reference simulation for this study can 
be found in table 1. The total run time for one simulation was 
about 40 minutes. This model serves as the starting point for 
the digital shadow. 

Table 1. Input values of the reference simulation 
Parameter Value 

Constant back pressure p 30 MPa 

Constant pressing speed v 5 mm/s 

Displacement of the main plunger 130 mm 

Initial temperature T 20 °C 

Friction coefficient m 0.16 

 

3. Digital Shadow 

The digital shadow (DS) is realised via Python. For the data 
handling the Pandas package is used within the python script. 
An overview of the functionality of the DS can be seen in 
figure 2. As soon as an experiment on the ECAP machine is 
started the Siemens Simatic 1200 PLC sends the input data 
(pressing speed, back-pressure, initial billet temperature, 
lubricant and material) via Profinet to a directory in the 
institute's smart factory database. The principle design of the 
smart factory of the organisation is described in [17]. The DS 
automatically reads the input data and generates a new finite 
element  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig 1. FEA model of the ECAP process at 50% process time 
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Fig 4. Determination of the friction coefficient with the force displacement 
curves of the experiment and simulations 

Fig 3. Comparison between the original and smoothed curve of a simulation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
simulation based upon the model described before, but 
including the input parameters from the experiment. After the 
initialisation, the DS transfers the input files of the calculation 
to the smart factory's database and starts the calculation.  
After the finished simulation, the DS generates the force-
displacement curves, smoothes them, using the rolling 
average method with a boxcar window, and calculates the 
mean value of the resulting force values. The smoothing is 
crucial due to excessive noise in the data, which results from 
necessary remeshing during the simulation, as well as 
unstable contact conditions between the workpiece and the 
canal edge in the die. Figure 3 shows the original and the 
smoothed curve of the reference simulation. 
The mean value of the force-displacement curves derived 
from the smoothed simulation Fsm and the actual experiment 
Fexm are compared between each other. An abort criterion is 
introduced:  
 
0.925* 1.075*exm sm exmF F F    (2) 
If the abort criterion is met, the actual friction coefficient was 
found during the simulation. Otherwise, the DS generates a 
new calculation with the same input parameters except for a 
changed friction coefficient. The new friction coefficient is 
reduced if the mean force of the simulation was too high to 
meet the abort criterion, or increased if the force values were 
too low. The DS keeps iterating the simulation with new 
friction values until the abort criterion is met, and the ideal 
friction coefficient was found. Depending on the difference 
between the two compared values, the program decides how 
strongly the new friction coefficient should be changed in 
order to keep the number of iterations to a minimum and to 
speed up the process. After every iteration, the generated 
force-displacement data, as well as the newly assigned friction 
coefficient, are transferred to the database for further analysis. 
This setup produces a vast amount of data from one single  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
experiment, which gets collectively stored on the centralised 
database of the organisation: 
 
 Experimental input parameters and specimen description 
 Experimental values (force-displacement curves, 

temperature-time curves) 
 Simulation input files of every iteration 
 Force displacement curves of every iteration 
 Determined friction coefficient  

4. Results 

   Since the ECAP machine is not yet fully operational, a 
generic force-displacement curve was generated to serve as 
experimental test data for this study. With this data, a proof of 
concept of the friction factor quantification was investigated. 
The generic force-displacement curve, as well as the resulting 
curves from the different simulations, can be seen in Figure 4. 
After five iterations, the abort criterion was met, and a best-
fitting friction factor of m = 0.08 was determined. Table 2 
shows the collected values of the generated friction 
coefficients, as well as the corresponding force mean values 
for the different simulations. It can be seen that the coefficient  
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 value change per iteration is reduced from 0.3 per iteration to 
0.1, the closer the simulation data is to the specified force 
values.  
Furthermore, the results from figure 4 and table 2 clearly 
show the influence of the friction factor on the necessary 
force to press the billet through the die. The reduction of m 
from initially 0.16 to the final value of 0.08 shows a reduction 
of mean force from 141.81 to 101.95 kN.  The deviation 
between the quasi-experiment and the final simulation is 5.32 
kN which equals a difference of 5.5%. The reason for this 
strong friction dependence is the large surface area of the 
processed billet, which is continuously in contact with the die. 
The considerable high frictional force acts in the opposite 
direction as the primary hydraulic plunger and thus the 
pressing force increases rapidly with increased friction. After 
an initial peak, the force quickly saturates at a constant level. 
This characteristic is in contrast to the force-displacement 
curves of the ECAP process without applied back-pressure. 
They show a decrease after the peak load before the required 
load rises again. This is because of geometrical disorders (e.g. 
dead zone at the lower conjunction of the entry and exit canal) 
and different contact behavior on the top and bottom side of 
the billet because of different frictional effects [18]. In this 
model, the applied back-pressure prevents the dead zone 
formation in the die and assures that the billet is in contact 
with the die in the exit channel throughout the whole process. 
Consequently, the pressing force quickly settles on a specific 
level. 

Table 2. Mean values and friction coefficients of the simulations and the 
experiment 

Data Friction coefficient Mean force value [kN] 

    Experiment - 96.63 

Simulation #1 m= 0.16 141.81 

Simulation #2 m= 0.13 128.74 

Simulation #3 m=0.1 111.72 

Simulation #4 m=0.09 107.46 

Simulation #5 m=0.08 101.95 

5. Conclusion 

This study showed a practical use of a digital shadow in 
manufacturing. A proof of concept of generating the 
corresponding friction factor of a specific tribological setup 
was investigated, using a finite element analysis model for the 
ECAP process with applied back-pressure and moveable 
bottom wall, coupled with a digital shadow. This system 
enables the determination of the friction coefficient in a 
process-specific manner, and therefore reduces time-
consuming and expensive tests. The data generated during one 
experiment, gets stored collectively on the centralised 
database of the smart factory The vast amount of available 
data is an optimal prerequisite for further investigations 
regarding predictive maintenance and big data handling.  

6. Outlook 

The system described in this study serves as a starting 
point for further digitalisation of the process. Several steps to 
upgrade and improve the models are:  

6.1. Verification of the results 

The FEA model shall be verified, as soon as there is data 
from the finished ECAP machine. For this verification, billets 
of the alloy used in the simulations (EN-AW-6082) will be 
processed, and the acquired data will be compared to the 
results of the simulations of the finite element model.  

6.2. Specification of different tribological systems 

After the verification, different tribological systems can be 
specified using the described digital shadow. The friction 
coefficient depends on the pairings of alloys and lubricants, as 
well as on the process parameters. With careful analysis of the 
microstructure and the force-displacement curves, optimal 
lubricants can be found for the ECAP process.  

6.3. Extending the functionality of the simulation model 

For experiments at elevated temperatures, six heating 
elements are placed at the entry canal of the die. This ensures 
reduced energy consumption during the process because not 
the whole die has to be heated. The drawback of this setup is 
that the heating time, as well as the power input to completely 
heat through the workpiece, is difficult to determine. The 
finite element model shall be expanded, thus it is able to 
calculate the heating of the specimen inside die. 

A microstructural model for the ECAP process is in 
development as well. With this model, the development of the 
grain structure during the pressing is simulated, and 
mechanical properties, as well as the mean final grain size of 
the processed billets can be evaluated.   

6.4. Predictive maintenance 

The collected data on the database shall be used for 
forecasting ongoing tool damage and therefore allow 
predictive maintenance applications. When a new billet is 
pressed through the ECAP die, the digital shadow will check 
the database for already conducted simulations and 
experimental data. If relevant data is available, the script can 
detect significant differences between the force-displacement 
curves, which can be indicated as a sign of beginning tool 
damage. A warning will then be sent to the machine operator. 

6.5. Further automatic analysis of simulation results 

Besides the determination of the friction coefficient, the 
digital shadow can be improved to analyse other simulation 
results than the force-displacement data. This includes for 
example strain and stress analysis as well as temperature 
development of the billet during the pressing.  
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6.6. Digital Twin  

This digital shadow serves as a preparation for the future 
implementation of a digital twin for the ECAP machine. A 
digital twin allows the two-way data flow between the 
physical and digital object, which results in a direct model-
based control of the machine. The optimisation of the current 
FE model is the first step to achieve a Digital Twin because 
currently, the calculation time is too long for in-line 
modelling. One possibility to use an in-line model as a digital 
twin is to simulate the heating of the sample while the sample 
is actually heated in the tool. Direct measurement of the 
workpiece temperature is not possible in the experiment, so 
the required heating time and power can be determined from a 
verified simulation model. Finally the Digital Twin can start 
the physical experiment as soon as the desired starting 
temperature is reached.  

In addition, further optimisations can be carried out on the 
basis of this digital twin, such as the inclusion of 
microstructure material models. Through bilateral coupling 
and through metallographic methods and quickly verifiable 
analysis of the material parameters, it will also be possible to 
optimise existing simulation parameters for FEAs for 
numerous metallic materials. For these reasons, this approach 
can not only help to optimise the ECAP process but also to 
optimise the numerical simulation of various materials. 
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 value change per iteration is reduced from 0.3 per iteration to 
0.1, the closer the simulation data is to the specified force 
values.  
Furthermore, the results from figure 4 and table 2 clearly 
show the influence of the friction factor on the necessary 
force to press the billet through the die. The reduction of m 
from initially 0.16 to the final value of 0.08 shows a reduction 
of mean force from 141.81 to 101.95 kN.  The deviation 
between the quasi-experiment and the final simulation is 5.32 
kN which equals a difference of 5.5%. The reason for this 
strong friction dependence is the large surface area of the 
processed billet, which is continuously in contact with the die. 
The considerable high frictional force acts in the opposite 
direction as the primary hydraulic plunger and thus the 
pressing force increases rapidly with increased friction. After 
an initial peak, the force quickly saturates at a constant level. 
This characteristic is in contrast to the force-displacement 
curves of the ECAP process without applied back-pressure. 
They show a decrease after the peak load before the required 
load rises again. This is because of geometrical disorders (e.g. 
dead zone at the lower conjunction of the entry and exit canal) 
and different contact behavior on the top and bottom side of 
the billet because of different frictional effects [18]. In this 
model, the applied back-pressure prevents the dead zone 
formation in the die and assures that the billet is in contact 
with the die in the exit channel throughout the whole process. 
Consequently, the pressing force quickly settles on a specific 
level. 

Table 2. Mean values and friction coefficients of the simulations and the 
experiment 

Data Friction coefficient Mean force value [kN] 

    Experiment - 96.63 

Simulation #1 m= 0.16 141.81 

Simulation #2 m= 0.13 128.74 

Simulation #3 m=0.1 111.72 

Simulation #4 m=0.09 107.46 

Simulation #5 m=0.08 101.95 

5. Conclusion 

This study showed a practical use of a digital shadow in 
manufacturing. A proof of concept of generating the 
corresponding friction factor of a specific tribological setup 
was investigated, using a finite element analysis model for the 
ECAP process with applied back-pressure and moveable 
bottom wall, coupled with a digital shadow. This system 
enables the determination of the friction coefficient in a 
process-specific manner, and therefore reduces time-
consuming and expensive tests. The data generated during one 
experiment, gets stored collectively on the centralised 
database of the smart factory The vast amount of available 
data is an optimal prerequisite for further investigations 
regarding predictive maintenance and big data handling.  

6. Outlook 

The system described in this study serves as a starting 
point for further digitalisation of the process. Several steps to 
upgrade and improve the models are:  

6.1. Verification of the results 

The FEA model shall be verified, as soon as there is data 
from the finished ECAP machine. For this verification, billets 
of the alloy used in the simulations (EN-AW-6082) will be 
processed, and the acquired data will be compared to the 
results of the simulations of the finite element model.  

6.2. Specification of different tribological systems 

After the verification, different tribological systems can be 
specified using the described digital shadow. The friction 
coefficient depends on the pairings of alloys and lubricants, as 
well as on the process parameters. With careful analysis of the 
microstructure and the force-displacement curves, optimal 
lubricants can be found for the ECAP process.  

6.3. Extending the functionality of the simulation model 

For experiments at elevated temperatures, six heating 
elements are placed at the entry canal of the die. This ensures 
reduced energy consumption during the process because not 
the whole die has to be heated. The drawback of this setup is 
that the heating time, as well as the power input to completely 
heat through the workpiece, is difficult to determine. The 
finite element model shall be expanded, thus it is able to 
calculate the heating of the specimen inside die. 

A microstructural model for the ECAP process is in 
development as well. With this model, the development of the 
grain structure during the pressing is simulated, and 
mechanical properties, as well as the mean final grain size of 
the processed billets can be evaluated.   

6.4. Predictive maintenance 

The collected data on the database shall be used for 
forecasting ongoing tool damage and therefore allow 
predictive maintenance applications. When a new billet is 
pressed through the ECAP die, the digital shadow will check 
the database for already conducted simulations and 
experimental data. If relevant data is available, the script can 
detect significant differences between the force-displacement 
curves, which can be indicated as a sign of beginning tool 
damage. A warning will then be sent to the machine operator. 

6.5. Further automatic analysis of simulation results 

Besides the determination of the friction coefficient, the 
digital shadow can be improved to analyse other simulation 
results than the force-displacement data. This includes for 
example strain and stress analysis as well as temperature 
development of the billet during the pressing.  
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6.6. Digital Twin  

This digital shadow serves as a preparation for the future 
implementation of a digital twin for the ECAP machine. A 
digital twin allows the two-way data flow between the 
physical and digital object, which results in a direct model-
based control of the machine. The optimisation of the current 
FE model is the first step to achieve a Digital Twin because 
currently, the calculation time is too long for in-line 
modelling. One possibility to use an in-line model as a digital 
twin is to simulate the heating of the sample while the sample 
is actually heated in the tool. Direct measurement of the 
workpiece temperature is not possible in the experiment, so 
the required heating time and power can be determined from a 
verified simulation model. Finally the Digital Twin can start 
the physical experiment as soon as the desired starting 
temperature is reached.  

In addition, further optimisations can be carried out on the 
basis of this digital twin, such as the inclusion of 
microstructure material models. Through bilateral coupling 
and through metallographic methods and quickly verifiable 
analysis of the material parameters, it will also be possible to 
optimise existing simulation parameters for FEAs for 
numerous metallic materials. For these reasons, this approach 
can not only help to optimise the ECAP process but also to 
optimise the numerical simulation of various materials. 
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Abstract: The shot peening process is a common procedure to enhance fatigue strength on load-
bearing components in the metal processing environment. The determination of optimal process
parameters is often carried out by costly practical experiments. An efficient method to predict the
resulting residual stress profile using different parameters is finite element analysis. However, it is
not possible to include all influencing factors of the materials’ physical behavior and the process con-
ditions in a reasonable simulation. Therefore, data-driven models in combination with experimental
data tend to generate a significant advantage for the accuracy of the resulting process model. For this
reason, this paper describes the development of a grey-box model, using a two-dimensional geometry
finite element modeling approach. Based on this model, a Python framework was developed, which
is capable of predicting residual stresses for common shot peening scenarios. This white-box-based
model serves as an initial state for the machine learning technique introduced in this work. The
resulting algorithm is able to add input data from practical residual stress experiments by adapting
the initial model, resulting in a steady increase of accuracy. To demonstrate the practical usage, a
corresponding Graphical User Interface capable of recommending shot peening parameters based on
user-required residual stresses was developed.

Keywords: python scripting; residual stresses; shot peening; finite element analysis; digitalization;
machine learning; smart factory

1. Introduction

For the design of dynamically load-bearing components, a certain safety risk is min-
imized by increasing the service life and improving its estimation. A key aspect in this
context is the selected material and its long-term stability under dynamically oscillating
loads [1–3]. Numerous machining end contour processes included in the manufacturing of
critical components such as milling, turning, or drilling lead to residual tensile residual
stresses on the surface. These stresses are counterproductive for the fatigue resistance;
therefore, further surface treatment is essential for these components.

There are several mechanical surface treatment technologies available today, pursuing
the objectives of implementing residual compressive stresses close to the surface, as well
as introducing a work hardened layer. A well-known example is deep rolling, a low-
cost method that achieves a comparatively smooth surface, but is limited to elementary,
usually rotation-symmetrical geometries [4]. This technique is mainly used for components
that require frictionless sliding, where good surface quality is critical for wear. Another
alternative is laser shock peening, an efficient method to introduce compressive residual
stresses at four times the depth of shot peening [5]. This is achieved by high-energy laser
pulses that introduce a shock wave into the material that exceeds the material’s yield
strength and causes localized deformation. Although this method is gaining popularity, the
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investment in such a system is a high-cost proposition. Moreover, the long process times
are currently not suitable for an efficient application in production [6]. Additionally, the
ball burnishing or roller burnishing method produces a particularly smooth surface [5,7–9].
A related method developed by Lambda Technologies Group is low plasticity burnishing,
which is capable to introduce significant residual compressive stresses while initiating
comparatively low work hardening. This assists in ensuring permanent compressive
stresses when components are used in higher temperature applications. This method has
the further advantage that it can be integrated into a variety of machining systems, e.g.,
CNC lathes [10–14].

Even though there is a strong effort in establishing new and optimizing well-known
surface treatment methods, shot peening still is the standard procedure in the manufac-
turing environment. Irrespective of the mechanical surface treatment chosen, specific
knowledge and therefore respective data about suitable process parameters is mandatory
to obtain the required results.

To receive a comprehensive data set for the shot peening process, it is mandatory
to obtain a significant amount of valid data. This approach requires the execution of
an unreasonable amount of practical experiments per workpiece material/sphere mate-
rial combination. Furthermore, the same amount of upfollowing experiments to receive
valid residual stress profiles would have to be carried out. By substituting practical tests
with Finite Element Analysis (FEA)-based simulations, this disproportionate effort can
be avoided.

The effectiveness of FEA for production processes can be further increased by using
state of the art digitalization technologies, taking into account user, processes, and ma-
terials [15–17]. One possibility to achieve this objective is the implementation of robust
machine learning algorithms. In order to do so, a first decision has to be made regarding
the nature of the respective algorithm. In general, three methods are defined: reinforcement
learning (RL), unsupervised learning (UL), and supervised learning (SL) [18]. According to
more recent work, there are different subordinate algorithms available, which can be used
within one or more of these three main techniques [19,20]:

RL: Genetic Algorithms, Simulated Annealing, and Estimated Value Functions;
UL: Decision Tree Analysis (DTA), Rule-Based Learners, Instance-Based Learners,

Artificial and Bayesian Neural Networks (NN), as well as Naïve Bayesian Approaches;
SL: Support Vector Machines, DTA, Rule-Based Learners, Instance-Based Learners,

Genetic Algorithms, Artificial and Bayesian NN, and Naïve Bayesian Approaches.
For the prediction of residual stresses after the shot peening process, the authors

decided to use a SL algorithm, as the nature of this technique is a continuous learning
from data provided by an external knowledgeable source. The accuracy of this algo-
rithm depends on internal knowledge about the expected results and, most important,
comprehensible input data [19,21,22].

To achieve accurate data sets serving as an input for this kind of simulation, a suitable
material model based on reliable material data from practical experiments must be chosen.
Therefore, it is essential to implement real-physics-based input variables, which must be
obtained under similar conditions as the process to be modeled.

2. Fundamentals of the Shot Peening Process and Corresponding FEA

In order to increase the fatigue strength, shot peening is applied as a standard pro-
cedure in the production process for structural materials. This method contributes to the
service life enhancement of cyclic loaded components [23]. The most notable advantages
of shot peening compared to other surface hardening treatments are the good process
quality, reproducibility, and applicability to a wide range of materials and component
geometries [3]. During the process, the surface of the component is impacted by spheres at
high velocities. As a result of the momentum transfer, work hardening is increased directly
on the surface which reduces the probability of crack initiation. The plastic deformations in-
duced by the spheres also generate residual compressive stresses in the material to a certain
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depth. These stresses are the main inhibitors of crack propagation due to the prevention of
crack tip opening and thus increase the fatigue strength. However, this surface treatment
does not always contribute to a work piece’s service life extension rather than a reduction,
as König investigated for Waspalloy in [24]. Although increasing the degree of coverage
from the impacting spheres can increase the magnitude of resulting residual stresses, this
additional loading for higher strength materials at the surface may contribute to a higher
probability of initiating cracks. Therefore, it is crucial to be aware of the influential variables
of the process before it is applied in practice. The process itself is variable in numerous
aspects, such as the sphere’s material and geometry, as well as the impact velocity and
the coverage [25,26]. The average sphere radius is about 0.4 mm and they are commonly
made of glass, ceramic, cast iron, or steel. A prerequisite for the sphere’s material is the
higher hardness compared to the shot-peened material. A higher difference between the
sphere’s and the target’s hardness yield higher resulting residual compressive stresses [27].
Additionally, larger sphere radii result in the maximum compressive stresses occurring
deeper in the material [28].

In order to achieve the maximum effect on service life extension through this process,
these parameters must be optimally adjusted to the material. The maximum achievable
residual compressive stresses and the depth of penetration into the material are decisive,
since the residual compressive stresses inside the material are balanced by tensile residual
stresses in a certain depth. Additionally, the dislocation density introduced by this surface
treatment needs to be observed concerning the resulting material behavior. On the one
hand, this can prevent the crack initiation [29], on the other hand, it may contribute to the
brittleness of certain materials and thus drastically reduce their service life, especially in
corrosive environments [30]. To experimentally analyze the residual stresses inside the
material, destructive and therefore expensive examinations based on X-ray diffraction
(XRD) or using the hole drilling method have to be performed in practice. A time and
cost-saving alternative to physical experiments is the numerical simulation, which allows
the determination of favorable parameters for the optimal result in advance. In addition,
stresses on the surface and in depth of the material can be analyzed to provide a better
comprehension of the effectiveness of the process. Several studies have been carried out
using FEA to simulate the shot peening treatment. The approaches to simulate this process
vary widely in different publications. In [31], Edberg et al. designed a three-dimensional
FEA simulation, comparing a visco-plastic strain hardening formulation to a elasto-plastic
one analyzing a single shot. This study revealed that the visco-plastic model overestimated
the resulting residual stresses by a factor of 1.5. In [32], Majzoobi et al. used a three-
dimensional set up applying multiple shot impacts and investigated the shot velocity and
coverage effects on the resulting residual stresses. The investigations of Meguid et al.
in [33] included the separation distance of the spheres and its impact on the residual stress
profile as well as the frictional behavior of AISI 4340. A comparison between the resulting
values of an axisymmetric and a three-dimensional numeric model on an aluminum target
was conducted by Han et al. in [34] where high emphasis was attached to the interaction
of the sphere and the target as well as suitable boundary conditions for the FEA. In [35],
Schwarzer et al. investigated the influence of the sphere’s impact angle on the resulting
residual stresses while Hong et al. focused on the loss of kinetic energy of the spheres
as a result of alternating impact angles in [36]. In [37], Mylonas and Labeas addressed a
reasonable relation between the quantity of impacts needed in order to receive the results
of experimentally obtained residual stress profiles but still reduce computational time. The
approach of reducing computational time is also applied in this study by the usage of
a two-dimensional setup for the simulation, in order to provide a beneficial tool for the
industry, taking into account the results of previous works mentioned in this section.

3. Fundamentals and Behavior of EN-AW-6082 T6 under Dynamic Conditions

The material investigated in this study is the age-hardenable EN-AW-6082 aluminum
alloy, which is one of the most essential alloying systems for the usage in lightweight
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construction due to its balanced properties and good formability. The chemical composition
of the used alloy is shown in Table 1.

Table 1. Chemical composition of examined aluminum alloy EN-AW-6082.

Chemical Composition of EN-AW-6082 (wt. %)

Si Fe Cu Mn Mg Cr Zn Ti

0.87 0.42 0.08 0.57 0.66 0.02 0.2 0.02

The alloy achieves its strength values primarily through the precipitation of the so-
called β-Phase Mg2Si, and further phases such as AlSi6Mg3Fe and Al15(FeMn)3Si2 with
suitable ageing after solution heat treatment. Since particularly Mn particles increase the
strength of the alloy, while negatively influencing ductility, a homogenization annealing
is carried out before forming in practice [38]. The duration of homogenization annealing
increases the effect on the reshaping and distribution of particles and therefore reduces
the yield stress for extrusion [39]. The highest strength is achieved with the T6 treatment,
which consists of a solution heat treatment between 793 K and 813 K for 30 min to one hour
in order to dissolute the alloying elements in the matrix. Subsequent quenching creates a
supersaturated condition which is immediately followed by the artificial heating treatment,
ranging between 423 K and 443 K for 5–20 h, resulting in a peak of precipitation [40–45]. It is
common to consider strain-rate sensitivity for the determination of processing parameters
and processing maps, as it has a significant impact on fracture behavior [46]. However,
the existence of metastable precipitates causes a change in mechanical properties to higher
strength values with a reduction in ductility.

EN-AW-6082 also exhibits deficiencies, especially with regard to fatigue resistance
under cyclic loading. When used as a component in a chlorine-containing environment
such as near industrial production facilities, the corrosion-resistant passive coating cannot
withstand the incorporation of chlorine ions in the passive layer. This increases the proba-
bility of pitting corrosion. The crack initiation enhanced by this effect leads to a facilitated
crack growth under dynamic loading [2]. In order to increase the fatigue strength, shot
peening is applied as a standard procedure in the production process for this alloy.

The initial microstructure of the investigated material is shown in Figure 1. The
specimen was prepared by electrolytic polishing using the Barker etching method [47]. The
microstructure shows a non-textured grain structure with uniform grain size. The emphasis
on the age-hardened condition, which is investigated in the present case, is essential in
the case of shot peening, since this treatment is applied as a last processing step after heat
treatment.

Figure 1. Initial microstructure of the EN-AW-6082 specimens investigated.
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4. The Johnson–Cook Material Model

In order to simulate impact problems such as shot peening, material models are
commonly used to represent the material’s behavior in the most accurate possible way.
Especially for high dynamic impacts, using FEA to model this process is an efficient and
effective solution. The most important aspect in this context is the strain rate dependency
of a material. Many constitutive models deal with material behavior by dislocation mo-
tions and their interactions with lattice defects. For many industrial processing related
applications, these models are exceedingly complex and require material data with limited
accessibility. Others, such as the Zerilli–Armstrong model, contain a simpler structure, but
still include factors that are elaborate to determine, such as initial grain size [48]. In order
to provide simplicity and convenience to the user, the Johnson–Cook (JC) material model
is establishing itself as the most commonly used material model for impact problems, since
it takes both strain rate and thermal softening behavior into account. Nevertheless, it is
kept simple, consisting of three terms and five material parameters which are arranged as
visualized in (1) [49].

σ =
(

A + Bεn
p

)[
1 + C ln

( .
εp
.
ε0

)][
1 −

(
T − Tt

Tm − Tt

)m]
(1)

The first term refers to strain hardening during plastic deformation including the
plastic strain εp, the yield strength of the quasi-static condition A, the strain hardening
constant B, as well as strain hardening exponent n. The second term relates to the material’s
behavior under different strain rates with the strain rate sensitivity coefficient C as a result
of different strain rates

.
εp normalized to a quasi-static strain rate

.
ε0. The third term describes

the material behavior under temperature influence including the reference temperature
Tt, the melting temperature Tm, and the thermal softening exponent m [49]. The localized
strain acquired through the shot peening process is limited, resulting in a small energy
input due to the deformation process, even at high strain rates. For this reason, the thermal
input due to the plastic deformation of the impinging spheres at the surface is neglected in
the JC material model for this framework. Therefore, (1) can be reduced by the third term,
resulting in (2).

σ =
(

A + Bεn
p

)[
1 + C ln

( .
εp
.
ε0

)]
(2)

The parameters of the first term can be determined by using (3).

ln(σ − A) = n· ln(Bε) (3)

A can be derived from the initial flow curve under quasi-static conditions. The slope n
can be determined graphically by plotting a trend line while B can be expressed by solving
the exponential function. The parameter C includes tests for higher strain rates. To receive
C, (2) has to be arranged as demonstrated in (4).

σ

(A + Bεn)
= 1 + C·ln

( .
ε
.
ε0

)
(4)

By plotting the left term of (4) against the logarithmic strain rate ratio, C can be
obtained directly from the resulting trend line.

Particular attention is required for the comparison of the determined material param-
eters with literature values, especially the quasi-static strain rate used (

.
ε0), as this value

often varies in a range between 10−4 and 1 s−1. Another disadvantage regarding literature-
based JC parameters is the test setup used to determine these values. For quasi-static
stresses, the tensile test is usually selected in literature for the simplicity of the method.
For particularly high strain rates, the strain rate sensitivity is frequently determined using
the Split-Hopkinson pressure or tensile bar [50]. It should be noted that the stress states
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differ in these test methods. The main disadvantage of tensile tests is the instability of
the deformation due to geometric deconsolidation processes after the ultimate tensile
strength is reached. In contrast, the upsetting test provides steady strain hardening. The
critical aspect here, in addition to the frictional conditions at the dies, is the barreling of the
specimen. As a result of this phenomenon, the uniaxial load state cannot be ensured [51].
The comparison of the determined material parameters with those from literature revealed
deviations in the values. One reason might be that some of the tests performed were
carried out under tensile stress conditions. Besides, there might be differences between the
chemical compositions of the materials studied. Slight differences in the heat treatment
route for the T6 condition could also be responsible for these divergences. For this reason,
separate tests should be carried out with the specific material used, in order to eliminate
these variations. The different parameters from the literature are listed in Table 2, whereas
temperature is not listed due to the lack of definition within the investigated publications.
Accordingly, it is essential to arrange the test setup in such a way that it comes closest to
real conditions of usage. For the simulation of shot peening processes, the upsetting test
is most similar to the compressive stresses introduced by the spheres at the surface. For
low degrees of deformation, uniaxial deformation can be also provided, which is why the
experiments carried out in this study are based on this principle.

Table 2. Material parameters for the JC model for EN-AW-6082 T6 from literature sources.

A
[MPa]

B
[MPa]

C
[-]

n
[-]

m
[-]

.
ε0

[s−1]

[52] 250.00 243.60 7.47 × 103 0.17 1.31 1.0

[53] 305.72 304.90 4.37 × 103 0.68 - 10−3

[50] 277.33 307.93 3.2 × 103 0.69 1.28 10−4

5. Experimental Setup

For the determination of the material parameter of the investigated alloy EN-AW-6082
T6, cylindrical samples with a diameter of 8 mm and an initial height of 12 mm were
obtained from an extruded rod material. To receive the T6 condition, all specimens were
solution-annealed at 803 K for one hour, followed by water quenching. After these steps,
age hardening at 443 K for another five hours was carried out. For the determination of
realistic material parameters, the specimens were compressed longitudinal to the extrusion
direction at room temperature on the Gleeble 3800 thermal-mechanical Simulator, using the
Hydrawedge module at constant strain rates of 1 s−1, 10 s−1, and 100 s−1. The Hydrawedge
module is especially designed for the simulation of forging and forming processes requiring
a high strain rate, as it is capable of significantly reducing ringing of the hydraulic ram.
The capability of high-speed deformations allows the generation of flow curves, which
are relevant for the shot peening process. As shown within Figure 2, a graphite foil was
additionally placed between both contact surfaces to reduce the friction between specimen
and anvil, thus ensuring a uniform stress state during compression.

Figure 2. Experimental setup for the obtainment of JC material parameters.
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Table 3 shows the resulting JC parameters, derived from the practical experiments
and calculated according to Section 4. The experiments were carried out until a strain of
0.035 was reached, as higher strains are not relevant considering the shot peening process.

Table 3. Material parameters for the JC model for EN-AW-6082 T6 obtained from practical experi-
ments.

A
[MPa]

B
[MPa]

C
[-]

n
[-]

m
[-]

.
ε0

[s−1]

385.02 116.01 7.97 × 103 0.50 - 1.0

6. FEA Setup and Resulting Data Mining Algorithm

For the implementation of the initial state white box model, a fundamental Abaqus
input script was defined in first instance. This script contains all necessary input parameters
for the simulation model to be automated and is scripted within the Abaqus Python
environment. Table 4 shows a brief overview of the most important variables changeable
within this input script.

Table 4. Variables changeable within the Python input script.

Input Variable Functionality

Radius Possible variation in sphere radius
x_specimen Width of investigated specimen
y_specimen Depth of investigated specimen

rows Number of rows of spheres
angle Angle of sphere impact (initially 90◦)

number_spheres Number of spheres (per defined rows)
delta_x Horizontal distance between each sphere
delta_y Vertical distance between each sphere

row_offset Offset between different rows
step_time_shot Step time related to the impact phase

dens_mat; YM; pois; Density and elastic behavior of investigated material
A; B; n; JC material parameters for the investigated material

C; eps_dot_0 Strain hardening parameters according to the JC model
damping_time Additional step time for stress oscillation analysis

friction_coefficient Defined friction state between specimens and impacting spheres
field frames Number of field output frames within each step

v_shot Shot velocity of spheres
mat Density of spheres (depending on the material)

fine_mesh_region Mesh size of direct impact zone
ground_mesh_region Mesh size of the remaining geometry

RS_node Node set definition for the residual stress analysis

In order to keep the number of degrees of freedom (dof) for the upstream data
analysis reasonable, only the variables v_shot, radius, mat, elastic, and JC parameters of the
investigated material (Section 3) were changed. For a further extending of simulation dof,
a link between the Python input script and the overlaying automation layer is prepared.
The fundamental FEA is defined as dynamically explicit, with widely used element type
CPS4R (mesh size 0.01 mm) and a steady friction coefficient of 0.3. To achieve a high shot
peening coverage rate on the specimen’s surface, 90 spheres within three different rows
were created, with a horizontal and vertical distance of 0.025 mm and a vertical offset
between each row of 0.02 mm. The specimen’s length as well as width was defined with
1.0 mm. Additionally, the impact angle was set to 90◦ and not changed in this study. To
avoid contact definition dependent errors, a loop within the script automatically defined a
surface-to-surface contact between each sphere and the target. Table 5 shows the resulting
parameters varied within this paper.
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Table 5. Varied variables within this case study.

Varied Input Variable Range (Step)

mat Mat 1.0 (steel spheres)/Mat 2.0 (glass beads)
Radius 0.1–0.5 mm (0.05)
v_shot 30–200 m/s (10)
A; B; n;

C; eps_dot_0 Literature value (Table 2, [53]) and values obtained (Table 3)

Figure 3 shows the visualization of an exemplary setup for one defined sphere radius.
Depending on the varying radii of the respective spheres, the resulting point mass of each
sphere changes. To reduce computational time for the required simulations, the spheres
were defined as rigid. For the automated data generation, the Abaqus GUI was excluded
from the solver operation.

Figure 3. Visualization of the experimental setup and definition of geometric variables.

For the development of the white-box model, an initial database with all resulting
residual stresses for each node included in the RS_node node set has to be created. This
database also includes the different impact velocities and sphere diameters and serves as a
basis for the initial GUI. In order to receive the steady-state residual stresses, the resulting
amplitude at each respective node within the node set was analyzed. To consider a residual
stress value for a node within RS_node as steady, the residual stress amplitude ∆σ for this
node at a specific time increment has to be underneath 10 MPa (Figure 4). The fulfillment
of this condition is checked within the initial Python algorithm. In this case, for a step
time of 10−3 s, the condition is valid for each node within all performed simulations. The
steady-state residual stress was returned and stored in the master database. As a result,
one stress value for every 10 µm in each simulation is obtained.

Figure 5 visualizes the programming logic for the creation of this database, starting by
the initial input script.
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Figure 4. Exemplary residual stress amplitudes over step time with included nodes in RS_node.

Figure 5. Programming logic for the obtainment of the database and master data frame from FEA data.
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The master data frame extracted from the steady-state database contains all necessary
information for further analysis and implementing the initial white-box-model-based logic.
Figure 6 shows the comparison between different velocities for one exemplary sphere
diameter (0.4 mm), whereas both investigated sphere materials (steel (red) and glass beads
(blue)) are visualized. Additionally, the results for the JC material parameters from [53] are
shown (steel spheres (green) and glass beads (orange)).

Figure 6. Resulting residual stress profile for a defined sphere diameter (0.4 mm) for the JC parameters
obtained experimentally (steel spheres (red), glass beads (blue)) and alternative parameters derived
from [53] (steel spheres (green), glass beads (orange)).

As demonstrated in Figure 6, a significant difference between the JC parameters
determined from literature and own experiments can be seen, for the reasons explained
previously in Section 4. In general, the impact of steel spheres results in higher residual
stresses within comparable velocities and diameters. This effect can be explained by the
higher resulting momentum of the iron-based sphere material, as the density is 3.1 times
higher than the density of glass. The observed tensile stresses at the surface are a result
of the material flow through adjacent impacts. This effect can be enhanced by the rigid
definition of the spheres as well as the chosen mesh size. As the main objective of this
framework is to obtain valid residual stress minima under reasonable computational time,
this divergence was not considered any further [54].

Figure 7 shows the same sphere material and material parameter variation for a steady
velocity (100 m/s) with varying sphere diameters (0.2–1.0 mm). The increase in maximum
negative residual stresses with bigger sphere diameter can be explained again by the higher
resulting momentum for a steady velocity [28].
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Figure 7. Resulting residual stress profiles for a defined velocity (100 m/s) for the same variations
defined within Figure 7.

Figure 8 illustrates the difference between literature values and the data obtained from
the experiment exemplarily.

Figure 8. Resulting residual stress profiles for velocity = 60 m/s and a sphere diameter of 0.4 mm for
literature and experimental data.
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7. Development of the Initial White-Box Model for the Residual Stress Prediction

Figure 9 visualizes the initial white-box logic, beginning with the input parameters
defined by the respective user to the final values returned from the algorithm.

Figure 9. Algorithm for the transformation of user input data (real sphere diameter and desired
residual stress, optionally required depth) into shot peening parameters (velocity options suitable for
the defined input) by using the master data frame defined in Figure 6.
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For the user to be able to adapt the initial sphere diameter to the real value, the model
has to be capable of interpolating within the given data set. To achieve this, an interpolation
scheme, including a linear weighting factor α which interpolates between given boundaries
of the initial (FEA-based) data set, was defined. For the practical usage, the respective user
is able to define the desired residual stress required for the individual case. Additionally, it
is possible to define the desired depth in which the specified stress value should be obtained.
If no depth is defined, the user gets a data frame which includes all shot velocities fulfilling
the defined input value, including the depth in which the residual stress is reached first. To
ensure that the calculated value will be reached in practice, a security factor s was set in
the back end, which multiplies the input stress value with the factor 0.2.

8. Experimental Data-Driven Machine Learning Algorithm

As within every simulation, a deviation between the calculated results and experi-
mentally determined data occurs. To close this gap in an efficient and sustainable way,
the possibility of including actual test data in the model is considered, whereas the ac-
tual test data can be gained from different experiments (e.g., XRD measurements). In
general, these results contain a few data points for each experiment carried out. To be
able to adapt the initial FEA-based data cloud within the master data frame, at least four
experiments have to be executed, analyzed, and transferred into the Python environment.
These experiments have to be within a defined range of velocities (∆v < = 30 m/s) and
sphere radii (∆r < = 0.2 mm). Based on this data set, non-linear functions with a sufficient
amount of respective supporting grid points (initially 100 per three original data points)
are created. For more complicated residual stress profiles, this range must be decreased to
ensure accuracy. Based on this additional data, the curves received from the FEA within
the range of the experimental data sets are overruled and excluded from the master data
frame and steady-state database. Furthermore, interpolations that include experimentally
obtained curves change significantly. This procedure is carried out automatically within a
Python algorithm, which leads to a steady increase of data-driven analytics. This data is not
directly connected to real-physics, which includes black-box approaches within the initially
white-box model, resulting in a grey-box model. Figure 10 demonstrates this paradigm
change over increasing experimental data infeed.

Figure 10. Change of model characteristics with increase of infeed data: the original FEA and
real-physics-based model is overruled with more data from practical experiments.

Figure 11 shows the logic behind this machine learning approach, programmed within
the same Python environment. To smoothen the resulting experimental data points without
producing overfitting and therefore unrealistic behavior, a non-linear, second-order fitting
approach between experimental data points was chosen. For the same purpose, a mean
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value between two overlapping functions for the same data point was used. The resulting
second order functions serve as boundaries for the creation of support data points, to be
able to interpolate between the new resulting data sets with the same algorithm as for the
initial white-box model.

Figure 11. Cont.



J. Manuf. Mater. Process. 2021, 5, 39 15 of 21

Figure 11. Python logic implemented to adapt the initial FEA based white-box model by adding
data from residual stress experiments. 1: Import data; 2: generation of support data points from
experimental data and storage in a new data frame; 3: loading master data frame; 4: import data
points from 2 and overrule data points of the master data frame to increase prediction efficiency; 5:
overwrite master database with new data points.

9. Graphical User Interface

Based on the logic explained in Sections 7 and 8, a simple and user-friendly GUI
was developed, using a C++ based open-source visualization environment. Due to an
included library package within the Python environment, a direct programming within the
same environment is possible. Figure 12 visualizes the automatic interaction between the
resulting GUI and the algorithm developed.
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Figure 12. Interaction between the developed residual stress algorithm and GUI. To avoid confusion
of respective users, the input of experimental data from practical experiments is excluded from this
visualization.

Figure 13 shows the implemented GUI without optional definition of desired depth.

Figure 13. GUI with exemplary values for the prediction of residual stresses (without user-defined
stress-corresponding depth).

As can be seen in Figure 13, a range of different velocities for the user-required residual
stress is returned. If the stress value is necessary within a certain depth, the back-end
algorithm changes, resulting in a recommendation for only those shot peening parameters,
which result in a smaller depth while fulfilling the required stress (according to Figure 9).
Figure 14 demonstrates this by using the same exemplary variables as in Figure 13.

Figure 14. GUI with exemplary values for the prediction of residual stresses (with user-defined
stress-corresponding depth).
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10. Results

This paper describes the development of a residual stress prediction module for
the shot peening process. In order to demonstrate the logic implemented, an EN-AW
6082 T6 alloy was examined to obtain valid input parameters for the FEA simulation.
This FEA model is set up according to literature [26,32,54–56], whereas the reduction of
computational time without losing required accuracy was focused on. As a result, over
350 simulations with varying input parameters were automatically executed, resulting in
residual stress profiles within common shot peening process ranges for two different sphere
materials, 18 different velocities, and ten different sphere sizes. These simulations serve as
a basis for the data mining algorithm introduced in Section 7. To enhance the predictor’s
accuracy, an algorithm for the implementation of experimental data from residual stress
tests was additionally implemented. This algorithm is capable of overwriting the initial
database within a defined range. For the usage in a production environment and for
demonstration to interested parties, a user-friendly, front-end GUI was created, using the
same open-source environment as for the logic introduced by the authors.

11. Discussion

Due to the ongoing fourth industrial revolution, the technologies implemented in
the metal processing and manufacturing environment change significantly. Recent devel-
opments in automatic data exchange between production systems do not just increase
the productivity within the production operation. The implementation of standardized
interfaces additionally offers new possibilities to include other technologies into the process
chain with reasonable effort. Numerical simulation, especially FEA, is a common tool in
research and development, whereas the direct integration into the process chain is not
state-of-the-art in practice. Nevertheless, the possibilities and potential advantages of FEA
are pointed out recently in current literature [57,58]. The framework developed by the
authors offers the possibility to be implemented into a digitalized production network. The
algorithms introduced are programmed completely open-source, which allows interested
companies the implementation without high economic barriers. Furthermore, the FEA
solver used can be exchanged with every other software package suitable, as long as an
interface to an open-source programming language is available. Despite the advantages of
the ongoing digitalization and data-driven modeling, real-physics-based engineering has
to be included to a certain extent. For the shot peening process, the relationship between
workpiece and shot peening material as well as process parameters is complex. Using
only black-box approaches would result in an unreasonable amount of required data from
practical experiments to be obtained. On the other hand, using only real-physics-driven
models often do not consider influences occurring in the manufacturing environment
(e.g., sensor offset of respective aggregates, deviations from executed experiments due to
different users). The combination of both techniques, although, can reduce the effort as
well as deviations, offering an efficient and effective possibility to enhance the production
process. Another advantage of the framework introduced in this work is the possibility
of extension for all kinds of materials as well as according varieties in heat treatments,
as already implemented in the respective GUI. Due to the possibility of changing the
interpolation range within the machine learning algorithm, more complex residual stress
profiles can be predicted with similar accuracy. However, it is important to note that
smaller interpolation ranges result in a higher amount of required input data.

The GUI is designed under special consideration of user-friendliness, giving respective
technicians the possibility to choose between two different initial options. Furthermore, the
back-end programming carried out in Python ensures fast understanding and can therefore
be used for educational purposes. The high connectivity provided within the Python
environment allows easy coupling to superordinate networks, enabling users to connect
the process simulation easily into a digitalized production system. For this purpose, the
two-dimensional setup of the described FEA model should be the optimal compromise
between accuracy and efficiency. Nevertheless, for more complex geometry (e.g., bevel,
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material steps), a three-dimensional approach is recommended, as the difference between
experiments and simulations for more complex geometries cannot be neglected. As the
simulation model is based on Python, the implementation of such variations as well as the
transformation to a 3-D model can be done shortly. Furthermore, by slightly adapting the
initial post-processing, the resulting three-dimensional stress state can be easily obtained.

12. Conclusions and Outlook

In this article, a white-box-based framework for the prediction of residual stress
profiles after shot peening treatments based on FEA simulations is presented. To include
decisive influencing factors, the shot velocity, the sphere’s diameter, and the material
parameters were varied. According to this framework, a GUI was developed that enables
the user in industrial environments to insert preferred residual stresses that should be
obtained, receiving the optimal process conditions for this case. Due to the reduction of
the simulation setup by using a two-dimensional FEA simulation that is based on the JC
material model, the underlying algorithm presents a reasonable fit between efficiency and
accuracy. The entries of the JC model can be extended for different materials based on a few
practical experiments. The possibility to enhance accuracy of the predictions is given by
the ability of the user to insert experimentally investigated resulting stress profiles, which
the model adopts while cancelling imprecise entries.

To enhance the usage of the introduced algorithm, additional experiments to obtain
valid input parameters from different materials are planned. Based on this additional
data, other materials of interest will be inserted into the database. Further results from
XRD-based residual stress experiments will also be included for the investigated material as
well as additional materials, resulting in a significant increase of accuracy of the algorithm.

The model presented will be implemented within the Smart Forming Lab at the
Chair of Metal Forming, connected with different types of Cyber Physical Production
Systems by an open-source based MES. The main objective for this specific algorithm is to
calculate accurate process parameters for processed workpieces, in order to increase the
effectiveness and efficiency of the value chain, from casting to recycling. A possibility to
extend this model is the incorporation of the resulting topology. This can be achieved by
using the approach of Zeng et al. through comparative measurements, calculations, and
adapted simulations [59]. Including the resulting mechanical properties and the expected
hardness after shot peening would improve the model considerably. Due to the easy-to-
implement logic of this framework, it is possible to apply this model to further mechanical
surface treatments. Uprising technologies that are currently heavily investigated such as
laser shock peening could be considered. A comparison of the three-dimensional FEA
carried out by Li et al., also using the JC model to the two-dimensional model, will be
considered [60]. Recent work from Dong et al. describes the development of a FEA for
machining operations [61]. In this work, the effect on residual (tensile) stresses combined
with a bimodal Gaussian function is used to predict existing stresses after machining and
before mechanical surface treatment. This approach can be used to integrate the initial
stress state of components to be shot peened. As a result, the accuracy of the initial white-
box model presented in this work can be increased. Based on this combination, the number
of practical experiments for the calibration of the algorithm can be further reduced. Recent
work from Bock et al. [62] can additionally serve as a basis for the training of a physical
data-driven artificial neural network.
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Abstract: Smart factories are an integral element of the manufacturing infrastructure in the context
of the fourth industrial revolution. Nevertheless, there is frequently a deficiency of adequate training
facilities for future engineering experts in the academic environment. For this reason, this paper
describes the development and implementation of two different layer architectures for the metal
processing environment. The first architecture is based on low-cost but resilient devices, allowing
interested parties to work with mostly open-source interfaces and standard back-end programming
environments. Additionally, one proprietary and two open-source graphical user interfaces (GUIs)
were developed. Those interfaces can be adapted front-end as well as back-end, ensuring a holistic
comprehension of their capabilities and limits. As a result, a six-layer architecture, from digitization
to an interactive project management tool, was designed and implemented in the practical workflow
at the academic institution. To take the complexity of thermo-mechanical processing in the metal
processing field into account, an alternative layer, connected with the thermo-mechanical treatment
simulator Gleeble 3800, was designed. This framework is capable of transferring sensor data with
high frequency, enabling data collection for the numerical simulation of complex material behavior
under high temperature processing. Finally, the possibility of connecting both systems by using
open-source software packages is demonstrated.

Keywords: engineering education; smart factory; digitalization; industry 4.0; metal processing;
layer architecture

1. Introduction

Since the beginning of the fourth industrial revolution, a paradigm change within the
manufacturing environment can be observed [1–6]. As an integral part of this revolution,
the Reference Architecture Model Industry 4.0 (RAMI 4.0) was introduced [7]. RAMI 4.0 is
an extension of the Smart Grid Architecture Model (SGAM) to meet the initial requirements
of Industry 4.0 [8,9]. Within this model, information type, system hierarchy as well as asset
lifecycle is considered within an administration shell, responsible for the communication
between these sections [10]. The inclusion of these key factors is especially important
for the development of a smart factory [8,11]. This kind of abstract reference model for
layer architectures is not a new concept [12–14], but it has a superior advantage due to
international standardization. The high amount of the current literature regarding layer
architectures demonstrates the importance of this topic among different disciplines in the
manufacturing environment, e.g., in [15], Zyrianoff et al. focused the implementation of
layered internet of things (IoT) solutions for the development and further enhancement
of smart agriculture and smart cities; in [16], Ungurean and Gaitan describe a further con-
cretization of the reference model with a special focus on industrial internet of things (IIoT)
solutions; in [17], Gonzalez et al. present the utilization of Modbus TCP to overcome propri-
etary automation solutions for smart microgrids in the photovoltaic sector. Despite the high
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academic as well as industrial research activities within the last years [1,2,18], numerous
new concepts and developments are not suitable for small and medium sized enterprises
(SMEs) operating in the manufacturing environment [19,20]. High investment costs, a high
level of standardization in conducted processes (e.g., by lean management approaches) as
well as advanced internal IT and data management/digitalization know-how is required
for a majority of solutions recommended in the literature [21–27]. The vast majority of high
specialized SMEs do not fulfill these requirements because they have a huge variety as well
as low volumes within the production plans. Another characteristic of these businesses is a
lower degree of process automation, combined with generally less standardized process
management [28,29]. Nevertheless, the economic contribution of SMEs in this sector is not
negligible and provides employment opportunities for many current and future graduates
of academic institutions [30–32]. To ensure sustainable economic development in these
companies, variable low-cost digitalization solutions can add major advantages [33,34].
Therefore, interdisciplinary expertise from current and future employees is required in
order to achieve this objective [35–37]. For this reason, an academic smart factory en-
vironment [38] was developed, which serves students and therefore future experts as a
practical learning environment to deepen their knowledge in digitalization technologies. In
comparison to similar learning factories [39–44], the framework discussed in this paper has
the advantage of consideration of real physical processes and material parameters (e.g., the
possibility of integrating numerical simulation, prediction of microstructure of examined
specimens). Furthermore, it supports SMEs by demonstrating low-cost possibilities of
digitization and digitalization approaches within the metal processing industry. Despite
the hardware solutions, the usage of open source and, more importantly, highly integrative
software solutions is of crucial significance. Furthermore, the effort of learning, implement-
ing and updating of such a programming environment must be reasonable. For this reason,
Python (Version 3.8) was chosen for the majority of data processing operations described
in this case study, using the open source PyCharm Integrated Development Environment
(IDE). Python’s increasing popularity in the manufacturing as well as academic world
was an additional driver for this decision [45,46]. In addition to the free availability as an
open-source product, the increasing popularity is due to the multitude and diversity of the
frameworks and their continuous improvement and expansion. Popular frameworks such
as pandas enable the preprocessing and manipulation of data [47], Matplotlib visualizes the
data [48], and Numpy as well as Scipy allow the elaboration of mathematical operations
and machine learning algorithms [49]. Additional frameworks permit the fast assembly of
versatile GUIs, e.g., PyQt [50].

For the development of a smart factory layer architecture, efficient and effective data
management is key. Digital data storage allows a more efficient, secure and accessible data
administration and preservation. Databases are practical for storing and managing data
and facilitating the retrieval of specific information. In addition, many databases determine
which people or programs can access data depending on the respective permissions. In or-
der to facilitate such a permission system, a database management system (DBMS) is used.
For this case, the Structured Query Language (SQL)-based relational DBMS MySQL (Ver-
sion 8.0.23) was chosen because it is an open source product exhibiting a high compatibility
with Python and is simple to learn for engineering students [51]. Furthermore, it provides
a straightforward connection to Hypertext Preprocessor (PHP), another widely used open
source language for the development of advanced Web applications [52]. Additionally, the
hosting can be outsourced to an external server provider or done on in-house servers.

Because there is no all-encompassing solution available for the implementation, suit-
able for the majority of entrepreneurs, two different layer architectures were developed,
depending on the existing IT-infrastructure as well as degree of automation within the
respective machine systems. Despite retrofitting approaches, which involve a major pro-
portion of old machine systems with a poor degree of automation, the integration of state
of the art machines that already possess a specific digital interface into a not-proprietary
IT-framework is of utmost importance [34]. A lot of these systems do not exhibit a stan-
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dardized open source interface, leading to highly functional, but in most cases isolated,
applications [53]. Because the full potential of digitalization and digital transformation lies
in the integration of these stand-alone solutions, machine manufacturers commonly offer
high cost solutions for the coupling of their individual data acquisition (DAQ) system with
other foreign applications [54]. Especially for small and medium-sized enterprises, it is
common to avoid these cost-intensive solutions by independently developing efficient so-
lutions.

The following work shows two possibilities of methods capable of gathering and
processing necessary data for condition monitoring, maintenance interval optimization and
machine learning approaches for engineering education purposes. A special focus lies on
the integration of different heterogeneous interfaces as well as easy-to-use human machine
interfaces (HMIs) [55–57]. Another important attribute of the presented layer architectures
is the resilience regarding a harsh manufacturing environment, achieved with the inclusion
of data mirroring and strict access right policy [58]. The possibility of adding new layers,
e.g., real time numerical simulation as well as a possible interface to an enterprise resource
planning (ERP) system was additionally considered.

2. Transdisciplinary Engineering Education 4.0: Target Groups and Learning
Outcomes

As a result of the fourth industrial revolution and corresponding digitalization and
digital transformation in the metal processing environment, required competencies and
skills for engineers in this field have changed significantly [59–61]. The increase in inter-
and transdisciplinary skills necessary to work within this digitalized manufacturing en-
vironment must substantially affect the curricula of traditional secondary and tertiary
engineering education in order to ensure long-term employability [62–64]. For this reason,
a new transdisciplinary lecture at the Montanuniversität Leoben was designed. This lecture
aims to introduce engineering students of different disciplines into the fundamentals of
digitalization and digital transformation in the metal processing environment. Table 1
gives a general overview about affected disciplines at the academic institution.

Table 1. Main target engineering disciplines at the Montanuniversität Leoben.

Engineering Focus Associated Programs at the Montanuniversität Leoben

Energy Industrial Energy Technology
Materials Materials Science

Process and Product Metallurgy; Mechanical Engineering; Industrial Logistics
Recycling Industrial Environmental Protection and Process Technology; Recycling

Students of industrial energy technology, mechanical engineering, industrial logistics,
recycling and process technology are heavily affected by the changes in the process and
production environment. Therefore, fundamentals of smart-factory-related layer architec-
tures are mandatory for their future careers. Material scientists additionally need to be
aware of digitalization in the research and development field. This especially includes
know-how about technology-enabled advances in material testing and how this discipline
can profit from recent Industry 4.0 related technologies and corresponding advances in
sensor technologies. Metallurgists and materials-science-interested mechanical engineers
should be aware of developments in both sectors mentioned.

As an integral part to fulfill these requirements, two different layer architectures
were developed. The first development focuses on the fundamentals of digitization and
digitalization and is based on a low-cost layer architecture, often used in an SME envi-
ronment (Section 3). Additionally, to point out the importance of such a framework for
material scientists, mechanical engineers and metallurgists, the possibilities of including
complex FEA into this architecture is elaborated in Section 5. To also demonstrate the
potentials and advantages of higher frequency measurement methods for material testing
and characterization, a second layer system including fiber optic measurement technolo-
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gies is implemented on a state-of-the-art thermomechanical treatment simulator. Both
architectures transmit data by the Modbus TCP/IP protocol widely used in industrial
practice to the internal server system.

3. Digitalization and Low-Cost Layer Architecture: Structure and CNC-Lathe
Integration

The DAQ is performed by a Wago PFC200 G2 2ETH RS controller, which executes PLC
control tasks and internally processes analog and digital signals supplied by input/output
(I/O) modules. The I/O modules used are analog input modules that receive analog signals
from the CNC-lathe and forward them to the controller in order to convert these analog
signals into digital ones that are required for further computer-aided processing (Figure 1).

Figure 1. Circuit diagram for the connection of the CNC-lathe to the superordinate system.

By connecting three-phase currents measured by a current transformer as well as
voltages, the Wago 750-494 analog input module, a three-phase power measurement
module, enables real-time measurement of reactive power, apparent power, active power,
energy consumption, power factor, phase angle and frequency. The corresponding circuit
diagram from the power module point of view is visualized in Figure 2.

Figure 2. Circuit diagram: power module side.

Figure 3 shows the implemented measurement and DAQ module. The selected
controller is further capable of storing data directly on a SDHC device, serving as an
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additional security layer. If network transfer would fail, e.g., due to a server maintenance
or other, nonplanned downtimes, the processing data is still automatically stored within
the memory device.

Figure 3. Controller (left) and terminal block (right) with wiring.

While the analog module automatically stores the measurement data, additional
measurements can be manually added for the purpose of calibration or further specific
analysis of defined indicators (e.g., with higher frequency). These measurements can be
started and stopped with a graphical user interface (GUI), (Figure 4, dash button ‘Electrical
Measurement’), created with the Wago e!Cockpit software suite, which, moreover, allows
real-time monitoring of the system parameters.

To apply various data processing programs to acquired data and minimize storage
space to a reasonable size, all signals are converted and saved as pre-sorted text-files by
an automatically working data transfer protocol, running simultaneously on two local
computers. The SD-memory is checked for differences between its storage and the server
storage every 24 h. If a deviation is detected (more/different data on the SDHC in com-
parison to the local raw data file storage), the raw data will be overwritten. In order to
avoid a malfunction in the SDHC device, the stored raw data on the server is automatically
mirrored, enabling the administrator to investigate potential errors after their occurrence.
Because space on the memory card is limited to 32 GB, the card is automatically cleared
after exceeding of 80% internal memory space. To guarantee no loss of data, the server
storage is mirrored within each 24 h and stored to a SQL database, which operates on a
different server partition.

The recorded data set contains the timestamp, active, reactive and apparent powers,
currents, voltages, power factors and the quadrants of the three phases (Figure 4, yellow
frame). The automatic measurement data recording is realized with a sampling frequency
of 2 Hz, which was found to be sufficient from previous evaluations. A preprocessing
algorithm also calculates the resulting machine costs according to the consumed apparent
power (Figure 4, red frame), serving as a basis for the project management tool.
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Figure 4. Wago GUI for measurement control (CNC-lathe).
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Figure 5 shows the main GUI for the Python processing layer, which visualizes the
non-idle machine hours from the recorded data, analyzed by the embedded programming
algorithm [65]. In order to minimize data access time, previously refined data is stored
for accounting and general project management purposes in the network within a second
mySQL database, and it is made available to technicians and students.

Figure 5. Python logic for machine hour counting: (a) visualization, programmed in QtPy; (b) back
end logic for the GUI.

Figure 6 summarizes the first four layers of the low-cost layer architecture for the
CNC-lathe, from implemented sensors to the main processing layer.

Table 2 shows the implemented roles and corresponding rights regarding viewing
and changing settings within the PHP GUI for an exemplary project. The second SQL
database, including the refined data as a result of the main processing layer, serves as
an underlying fundamental for this GUI. Within the Python programming environment,
input data from the PHP GUI (e.g., new projects or involved coworkers within a specific
project) is stored automatically within the refined SQL-database. For the education of
engineering students, the developed PHP GUI was duplicated and set up with realistic
values to enable a comprehensive experimental setup without disturbing the workflow of
respective employees. For this replica, students receive logins for every role, thus enabling
them to work with existing roles and corresponding rights. This approach also enables the
possibility to change the underlying logic in the back-end of the project management tool,
giving deeper insights into PHP-based programming.
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Figure 6. Data flowchart for the integration of the CNC-lathe into the low-cost layer architecture.

Table 2. Project management GUI: implemented roles and corresponding rights (E = employees/M = machines/P = project).

Role Admin Project Leader Project Member Technician Other Personnel

Overview X X X X X
Detail view E/M/P E/M/P M/P M -

Set new project activities X X - - -
Budget & cost details X X - - -

Employee details X X - - -
Change milestones X X - - -

Change budget X - - - -
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The visualization and publishing of refined data for the interactive project manage-
ment tool is done within the internal network using PHP programming, with a special
focus on IT security due to the implementation of different roles with different rights within
the PHP GUI (Figure 7).

Figure 7. Interactive project management tool, programmed in PHP and directly coupled to an
underlying MySQL database. The SQL database is coupled within the Python logic presented in
this work.

Figure 8 illustrates the resulting six-layer architecture. To sustain a resilient, adaptive
and smooth working system, the machine park and corresponding machine sensors are
divided into different nodes. The number of machines coupled to one node is depending on
the number of sensors and therefore data transferred, as well as the frequency required. For
node 1, two heterogeneous aggregates are coupled to controller 1, whereas the CNC-lathe
transfers 25 different indicators with a frequency of 2 Hz, running continuously. This
results in a low and steady CPU usage on the respective controller. The second aggregate
submitting data through node 1 is a retrofitted cold rolling mill, which transfers data from
four different sensors with a frequency of over 500 Hz when operating. This frequency
is only achievable through writing data directly on the RAM of the controlling device,
resulting in a temporary additional CPU load of more than 80% on the controlling unit. This
load peak must be considered when planning digitalization solutions because an overload
cannot be avoided persistently in most of low cost controllers. In this case, the necessary
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algorithm, programmed in structured text format, must also be implemented separately as
the used controller initially merely provides up to 1 Hz of acquisition frequency.

Figure 8. Resulting low-cost six-layer architecture.

4. Data Gathering for Initial Condition Monitoring and Further Analysis: A Case
Study

As data science fundamentals become more important for future manufacturing
experts, a simple case for the reproducible DAQ was defined and carried out. The objective
of this approach was to collect data sets which can be easily edited by students on a basic
level. Additionally, a simple state-of-the-art logic was implemented, serving as a basis for
more sophisticated programming efforts within a supportive learning environment. The
respective logic is initially able to distinguish between three states of the lathe system:

• Off;
• On but not working (idle time);
• Working (real machining time).

To be able to differentiate between real machining time (the CNC-lathe operates on a
workpiece) and idle machine time (e.g., calibration, adjustment between two machining
steps, set-up times), a pretest was carried out. In this pretest, idle mode, tool changer move-
ments and main spindle rotations with different rpm without actually operating on a work
piece were performed and analyzed to gain knowledge about the behavior of all recorded
electrical parameters. This pretest exhibits the advantage of a low time consumption, allow-
ing lecturers to demonstrate the data collection quickly and therefore enhance awareness
of the comprehensive matter. Table 3 shows the 15 different settings investigated.
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Table 3. Testing program for the identification of idle related change in electrical indicators.

Test No. Type of Testing

1 X− transition of tool turret
2 X+ transition of tool turret
3 Z− transition of tool turret
4 Z+ transition of tool turret
5 Z− transition of tailstock
6 Z+ transition of tailstock
7 Counterclockwise rotation with 1000 rpm of main spindle
8 Clockwise rotation with 1000 rpm of main spindle
9 Counterclockwise rotation with 2000 rpm of main spindle

10 Clockwise rotation with 2000 rpm of main spindle
11 Counterclockwise rotation with 3000 rpm of main spindle
12 Clockwise rotation with 3000 rpm of main spindle
13 Counterclockwise rotation with 4200 rpm of main spindle
14 Clockwise rotation with 4200 rpm of main spindle
15 Full 360◦rotation of tool turret

To analyze real machining time, a cylindrical workpiece (alloy steel, type 708M40)
with a length of 250 mm and an initial diameter of 68 mm was axially turned at constant
speed using a new cutting blade XMGC30 with an infeed of 0.5 mm per process step. An
additional testing plan was created, consisting of constant machining parameters and using
axial machining operations to reduce the base material in diameter (Table 4). In order to
evaluate the influence of cooling on the power consumption of the machine, tests number
20 and 21 were carried out without the usage of the internal cooling system.

Table 4. Calibration plan and parameters for machining.

Test No. Initial Diameter
(mm)

End Diameter
(mm) Cooling Rotational

Speed (1/s) Feed in (mm) Cutting Speed
(mm/s)

16 68.0 62.0 Yes 10 0.5 1.5
17 62.0 55.0 Yes 10 0.5 1.5
18 55.0 45.0 Yes 10 0.5 1.5
19 45.0 35.0 Yes 10 0.5 1.5
20 35.0 25.0 No 10 0.5 1.5
21 25.0 18.0 No 10 0.5 1.5
22 18.0 10.0 Yes 10 0.5 1.5

During the entire machining process, the measured sensor data was likewise recorded
to identify the corresponding test data faster and figure out correlations between the
machining time and the measured values. Another advantage of the control scheme
is the opportunity to increase the frequency (simultaneously) while processing without
interrupting the continuous DAQ process.

The analysis of all different types of electrical indicators shows that the total active
power is the best suited indicator to distinguish between idle time and actual working time.
Figure 9 shows the performed testing program according to Table 4, visualized using the
Python matplotlib.py extension package.
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Figure 9. Total active power of idle tests carried out.

Figure 10 illustrates the total active power of test 13 and 14, a rotation of the main
spindle with 4200 rpm. The power consumption does not significantly deviate for clockwise
and counterclockwise rotation. For these tests, the average active power consumptions
sum up to about 5100 W. This trend is also consistent with the results of paired tests at
other speeds, i.e., test 7 and 8, 9 and 10, 11 and 12.

Figure 10. Total active power of tests 13 and 14.

Figure 11 shows the results of the tests with counterclockwise rotation at different
speeds. As already shown in Figure 10, the power consumption remains constant after
an initial peak. These plateaus increase in magnitude with speed. By analyzing the
measurement data with Python, no trivial correlations or patterns were determined by
reactive power, apparent power, phase current, phase voltage, power factor or phase angle.
Through the visualization of the total active power, a comprehensible relationship can be
established between the machining operation and the evaluated parameters.
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Figure 11. Total active power of tests 7, 9, 11 and 13.

As Figure 12 illustrates, a trend displayed by the dashed green line can be observed,
which is a representative of the diameter and machined length. The negative measurement
peaks, ranging from 50 to 550 W apart from the green trend line in terms of magnitude,
represent the tool being set down from the workpiece and returned to the starting position
to perform the next programmed process step.

Figure 12. Total active power during axial machining.

To demonstrate the influence of adequate cooling, test numbers 20 and 21 were
performed without cooling (Figure 12, red dashed line), resulting in a lower total active
power in comparison to other test samples. The constant deviation from the green dashed
trend line by an offset in magnitude can be explained as a result of decreasing power
consumption due to unused aggregates for coolant supply. The number of negative peaks
within Figure 12 is equivalent to the number of process steps for each test.

Figure 13 shows six of these smaller negative peaks that are equivalent to the number
of processing steps of test number 16. If negative peaks fall below a total active power
of 1500 W, the machinery is not operating—the time during which the total active power
falls below this value does not contribute to machining and can be excluded from the
machine-hours-counting algorithm.
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Figure 13. Total active power of test number 9.

Table 5 demonstrates the accuracy of the investigated behavior. A wrong classification
of machining parameter data points is below 0.03%, which is not significant in terms of
maintenance or machine hour calculations, and therefore, it is an activity-cost-based project
management approach. If these tests were conducted more frequently, a higher number
of heterogeneous datasets would be generated and simple machine learning algorithms
for the classification of the respective data (e.g., Support Vector Machines, Decision Tree
Analysis) can be instructed [66,67].

Table 5. Data point classification.

Data Points Real Machining Data Points Idle Machining

Sum 19,960 174
Right 19,440 173

Wrong 520 1
% Wrong 0.026 0.0057

Due to the relatively short recording time for test numbers 7 to 14 (20–30 s), higher
mean values and standard deviations arise compared to machining tests 16 to 18. The
shorter the recording time, the higher the influence of peaks at the beginning and the drop
at the end of the data set (Figures 9 and 10), leading to the resulting deviation. This diver-
gence also demonstrates the significance of encompassing statistics behind data-driven
technology and the relationship between the amount of data and prediction accuracy.

Table 6 shows the calculated peak values, the mean values as well as the standard
deviations of all test numbers listed in Tables 3 and 4. The precise identification of real
machining and therefore actual wearing of the analyzed aggregate has several advantages.
Before the development of the discussed architecture, ordinary maintenance was executed
after specific time intervals, instead of considering the effective wear of the machine system.
The implementation of this framework enables maintenance intervals to be determined on
the basis of actual machine hours. This approach leads to lower maintenance costs because
unnecessary servicing is minimized and additional necessary maintenance is recommended.
As a result, periods with higher machine utilization are identified automatically and
quantitatively. For a more efficient scheduling, the residual time until the next external
service is calculated as a moving average. The exact predictability increases with the
duration of the system’s utilization. For a further cost reduction, a standardized internal
calibration test was developed. After exceeding 25% of calculated machine hours until
next external service, a standardized test, serving as an indicator for possible malfunctions
within the aggregate will be executed. The machining time left until the next internal
service is implemented within the project management GUI (PHP/Python) as well as
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programmed Wago GUI (structured text). After internal or external service, the calculation
can be reset within the corresponding GUI.

Table 6. Analysis of peak values, mean values and standard deviation of all tests.

Test No. Peak (W) Mean (W) Standard Deviation (W)

1 1400.52 1373.97 22.45
2 1506.73 14,447.17 41.40
3 1470.10 1453.34 11.17
4 1497.68 1417.77 23.17
5 1480.63 1416.03 39.87
6 1394.20 1379.81 11.69
7 5081.58 2053.05 2198.34
8 10,064.27 2586.07 1864.12
9 20,644.23 1979.91 5508.34

10 20,754.51 2997.70 6094.99
11 20,723.80 4685.71 8261.15
12 20,752.01 607.02 10,746.6
13 21,175.08 5664.18 7751.18
14 22,137.44 3658.69 11,133.24
15 3374.98 1949.28 864.02
16 6879.55 2840.18 403.78
17 4655.05 2731.31 406.98
18 4590.80 2676.75 405.01
19 4929.11 2599.64 423.23
12 6070.17 2140.74 409.52
21 4245.32 2035.68 449.24
22 4556.87 2270.27 717.81

A substantially more precise calculation can be achieved by the developed project
management GUI. As the system provides the real power consumption of the aggregate,
internal as well as external projects can be calculated on a more reality-based manner.
While the PHP interface authorizes respective project leaders to set up new projects and
enter personnel costs with or without the usage of machines, the system also substitutes
different manual working hour recordings, which were carried out for internal projects
individually and more qualitatively until the implementation.

To ensure a learning experience that is as close to reality as possible by a reasonable
data set from machine systems as well as the developed project management tool, the
initial framework is also used on a daily basis by the personnel at the institution. When
implementing new IT infrastructures with a higher level of automation, it is essential
to involve the staff and identify their preferences at an early stage of the introduction.
Therefore, all co-workers were briefed and asked about their opinion towards a project
management system and what it is supposed to contain to facilitate the daily workflow. As
a result, the PHP GUI was adapted several times, considering the preferences of respective
employees. Moreover, the Wago as well as PHP GUI is available on every computer
device within the local network of the academic institution, which allows all involved
personnel to start measurements, overview specific machines and create or update projects
independently from their specific location (depending on individual rights). Through
secured VPN access, a completely remote condition monitoring is possible. This degree of
freedom also offers students the possibility to engage with and refine the system remotely
if access is given by respective lecturers.

5. Integration of Numerical Simulation and Implementation of a High Frequency
DAQ Architecture

Due to the rise in computational capacity and speed within the last decades, the
possibility of integrating real-time numerical simulation within the actual production
process becomes more and more suitable among the manufacturing environment [68].
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Therefore, the presented framework can be extended to include numerical simulation
(near) real time in a variety of production processes.

Figure 14 visualizes the additional integration of a finite element analysis (FEA)
program within the developed framework. In this example the Python GUI adapts different
rolling steps within one rolling operation based on the results of a FEA, calculated during
the time required for the previous process within the production operation and under
consideration of processing and material properties.

Figure 14. Six-layer architecture with integrated numerical simulation: FEA digital shadow for semi
automatized process adaption (example rolling mill).

Based on the knowledge gained from the case study in Section 4, the integration of
sophisticated numerical simulations into the framework derives in a broader understanding
of the possible advantages of these technologies. Nevertheless, most material processing
operations, especially high temperature forming processes, require constant surveillance
of the material behavior under enhanced temperature and forming conditions. In order
to be able to handle a forming process of a particular material, it is necessary to have a
certain comprehension of microstructural changes. In general, extensive material parameter
studies are indispensable for predicting the final microstructure resulting from the forming
process, such as anisotropy and the resulting grain size or grain size distributions, as well
as possible material damage influencing variables [69].

In an increasing number of cases, integrated microstructure models are used in the nu-
merical simulation of a forming process as accompaniment, relating the occurring forming
parameters (e.g., temperature gradient, strain rate) to the resulting microstructure changes
such as static or (meta-) dynamic recrystallization as well as grain growth [70]. The required
material parameters are commonly obtained in suitable thermomechanical simulators, that
operate on a laboratory scale [71–75]. Since the processes proceed expeditiously, especially
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in the case of simultaneous forming at high strain rates, it is essential for material data ac-
quisition to ensure a significantly higher sampling frequency of the system [76,77]. For this
reason, an additional DAQ system provided by iba was implemented at the institution’s
thermo-mechanical treatment simulator (Type Gleeble 3800). This DAQ is widely used in
industrial practice, offering different software packages and the possibility of significantly
higher sensor sampling rates for further processing [78,79]. The connection between the
sensors and the system is realized with a proprietary A/D converter, transferring digitized
data by a fiber optic line with up to 100 kHz on four channels:

1. Temperature;
2. Dilation of the respective specimen;
3. Resulting Force;
4. Displacement.

The gathered data is preprocessed directly within the ibaAnalyzer software package
and automatically submitted to a file system hosted by the internal server architecture of
the institution.

The high sampling rate offers the possibility of investigating the influence of time-
dependent changes in material behavior by measured values. The resulting data sets can
be further used to develop and adapt numerical models to digital shadows and, in long
instances, digital twins [80,81].

The Gleeble system, like a majority of highly specialized material testing aggregates,
offers a proprietary software solution for resulting data analysis. By recording a hot tensile
test of bainitic steel and comparing the results of both data sets, previous work of the
authors revealed a significant difference in the gathered temperature data, which indicates
an internal data preprocessing and correction of the proprietary software unit [38]. Due to
the low output voltage signal of thermocouples used, a voltage fluctuation within 10−3 V
results in a temperature deviation of 250 K. Figure 15 illustrates this deviation. These
examples can be used to raise awareness about these kinds of potential inaccuracies.

Figure 15. Dilation curve for a tensile test of bainitic steel, carried out with the Gleeble system [38]: (a) temperature change
with respect to dilation, blue line: Gleeble data set, red line: iba data set; (b) cutout area of deviation between both data sets
from (a).

Figure 16 visualizes the resulting architecture, from the applied sensors to the (refined)
data storage at the internal server.



Sensors 2021, 21, 2944 18 of 24

Figure 16. High frequency DAQ and data storage.

6. Results and Discussion

As a result of this work, a six-layer architecture was designed, concentrating delib-
erately on the use of a few selected products (open source if possible) in order to make
application and modification by interested parties as simple as possible. Additionally, a
second DAQ system was developed to give this group the opportunity to gain data for real
physics-based numerical simulations. Besides, the most important objective was to create
a smart factory layout that enables students and practitioners from the metal processing
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field to engage with different levels of digitization and digitalization, reaching from analog
signal to numerical simulation integration. The resulting layer architecture is highly adapt-
able in terms of the used programming languages (e.g., Python can be substituted with
C++ or Java if preferred; mySQL can be substituted with flux). This architecture fulfills
three purposes. First, a technical fundament for teaching students in manufacturing related
disciplines was created, which allows the following:

• To gain an overview about the most important fundamentals of networking technolo-
gies and corresponding protocols in the manufacturing environment;

• To deepen knowledge on manufacturing related data science by working with different
amounts and homogeneous as well as heterogeneous data sets;

• To be able to work with different types of DAQ systems used in industrial practice;
• To optimize interfaces and investigate interface-related efficiency and effectivity con-

cerns in-person or remotely;
• To enhance knowledge about common programming languages and machine learning

technologies in manufacturing by working with real data from machining processes;
• To obtain an overview of interactive project management and how (near) real-time

adaption of required parameters (e.g., cost changes) can affect project outcomes;
• To raise awareness about the importance of transdisciplinary communication and

education in the manufacturing field.

The second operational area of the implemented framework is the research and
development of state-of-the-art digitalization technologies, based on this initial work by
the following:

• Extending the framework with other, more complex machine systems (e.g., hydraulic
presses, ovens);

• Extending the framework with more complex machine systems by developing pre-
dicting algorithms including thermo-mechanical properties of materials;

• Using this algorithms for the transformation of existing machine systems to Cyber
Physical Production Systems (CPPS) based on the brownfield approach [82,83];

• Integrating further open-source-based logic between these CPPS, resulting in a super-
ordinate Cyber Physical Logistic System [84–86].

The third purpose is the collaboration with interested parties from the industry,
especially SMEs, who can use this framework within interdisciplinary projects. This
approach has the main advantage of giving industrial experts the opportunity to deepen
their knowledge or perform highly experimental tests. Additionally, engineering students
are given the possibility to collaborate with these companies from an early stage, gaining
additional practice and establishing networks already during their studies.

The presented architecture in Section 3 is an efficient and effective way of taking
advantage of current information and communication technologies within a small volume
and high-variety production environment. The tools and programs used are either low-cost
or even completely free-of-charge, therefore providing an ideal basis for digitalization of
small production facilities from scratch. To build up such a low-cost, resilient system, the
following points must be considered:

1. How many different channels (different values from sensors, e.g., pressure, force,
dilation, temperature) are needed for each respective machine system? (specification
of needed input modules);

2. Which frequency is needed for each channel? (avoidance of aliasing, dependent on
the process and respective material characteristics);

3. What kind of database is applicable within the respective company? (considering
internal know-how and experience);

4. How resilient does the physical hardware and software have to be? (dirt, dust,
temperature, accessibility, space);

5. What IT-infrastructure serves as a basis for the framework? (Windows, Linux, other
server—OS);



Sensors 2021, 21, 2944 20 of 24

6. What kind of GUI/HMI do respective employees favor?

The individual answer to (1) implies knowledge about all respective machine systems.
In general, one can recommend starting with one system where all (from a present point of
view) required sensors are already applied and the resulting data is understood.

Answering (2) seems more complex because the required frequency depends on the
purpose. In the case of the rolling mill at the academic institution, a medium frequency is
needed. In case of the discussed CNC lathe, a much lower frequency is applicable because
the process itself is highly standardized trough the internal machine control unit. For high
temperature or high-speed forming processes, a significantly higher sampling rate has to be
ensured. In general, if the material behavior itself should be analyzed, higher frequencies
are mandatory (e.g., considering microstructural changes due to applied or internal forces
or as a function of the temperature gradient in case of an involved heat treatment).

Question (3) is dependent on the internal knowledge. If no specific database system is
used, open-source programs can be recommended.

Question (4) is heavily dependent on the specific environment. If existing sensors
are working within the environment, the sole important point to consider in this case is
the resilience of the respective controller. Most Supervisory Control and Data Acquisition
(SCADA) suppliers offer specific, more robust solutions (e.g., Wago XTR series).

Regarding (5), an efficient and stable interface between the resulting storage solution
(server or PC) must be programmed. In this study, a regular windows system was used.
One of the advantages that Python and its various extension packages offer is the very
broad possibility of interface programming. There are different types of extensions for the
coupling of different IT-systems to the controller system available. The controller system
itself in this case produces txt-files, which then were automatically implemented in the
SQL based database system as well as stored parallel on the used windows server system.

The answer to (6) is crucial for a successful implementation. Without considering
the experience and preferences of involved employees on the shop floor, a well-planned
digitalization solution is likely to fail. Including respective workers in the development of
user interfaces at the earliest possible stage helps to successfully implement and sustain
the change in working environment.

The second architecture should serve as an additional expansion to higher frequency
DAQ technologies with a special focus on data gathering for numerical simulations. From a
network technology and data science point of view, the most essential questions to answer,
additionally, are as follows:

7. What sampling rate is sufficient to obtain enough data for an accurate material
behavior prediction? (e.g., recrystallization behavior of the investigated material
under defined process parameters)

8. How accurate are implemented DAQ systems? Is it possible to confirm resulting
data?

These points should be considered intrinsic by each engineering student who strives
for a career in a digitalized metal processing environment. This work should therefore give
an experimental basis to concretize the answers given by the author for specific cases.

7. Conclusions and Outlook

This paper describes the development of a six-layer smart manufacturing architecture
for the transdisciplinary engineering education. For this purpose, two DAQ systems—
one to demonstrate fundamentals and possibilities of open-source low-cost digitalization
solutions and a second for high frequency measurement applications—were developed
and implemented. For both architectures, case studies were provided to enhance com-
prehensible teaching in a digitalized manufacturing environment. A major advantage
of the proposed structure is the open-source components used wherever possible. The
selected technologies are already common in industrial practice, due to the high degree of
connectivity, cost efficiency and practicability in the metal processing environment.
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As measurement results of the high frequency architecture are stored within the same
server architecture as the Wago DAQ system, respective data can be analyzed and further
processed in the same Python environment. The Gleeble system coupled in this network
is also a widely used simulators in the industrial practice, especially in the research and
development field. By including this system into the layer architecture and coupling this ar-
chitecture with a superordinate MES, the horizontal integration of different departments in
the manufacturing environment can be simulated. Because the complexity in the academic
institution’s learning factory (14 heterogeneous machine systems with different initial
degree of automation) can be defined as similar to those in SMEs, a low-cost open-source
solution can be programmed and implemented to serve as MES. By using Python for this
purpose, already-existing extensions for the coupling with an ERP program can be realized
efficiently, allowing students and future manufacturing experts to use this framework for
the simulation of manufacturing processes from initial digitization to the coupling with,
e.g., corporate accounting or procurement. The Montanuniversität Leoben additionally
launched the new bachelor’s program Industrial Data Science, focusing on the transdis-
ciplinary engineering education with special emphasis on data gathering and processing
within the material processing environment. As additional machine systems are integrated
within the frameworks, machine learning algorithms can be further implemented and
optimized by interested engineers for data monitoring applications. The monitoring and
malfunction detection as well as related IT-security issues, highly discussed in the cur-
rent literature [87–89], can further be used for the deeper education of future industrial
data scientists.
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Abstract 
 
In the modern world, the economy and society are affected by ongoing changes triggered by a multitude of influencing 
factors, e.g., digitalization, (g)localization, and global pandemics. Therefore, industrial engineering education needs 
to focus on the ongoing evaluation and the continuous development of new, respectively adapted, teaching and 
learning approaches to contribute to the continuous development of abilities, skills, and competences of the human 
workforce. Based on the implications of current teaching and learning theories, this paper focuses on the 
conceptualization of the lecture ‘digitalization and digital transformation in metal forming’. As a result, the authors 
present a module-based structure that includes theoretical lectures, practical demonstrations, group discussions, and 
industrial case studies. The developed teaching and learning concept can be used as a reference guideline to contribute 
to professionalization and lifelong learning for the industrial engineering profession. 

1 Introduction 
Industry 4.0 approaches offer a multitude of new concepts and technologies to increase the competitiveness of 
manufacturing enterprises by relying on the basic principles of digital interconnectivity, autonomization, self-control 
of systems, and big-data analysis (Bosch et al., 2017; Woschank and Zsifkovits, 2021). Thereby, the usage of new 
technologies like artificial intelligence, machine learning, deep learning, as well as other IT-related innovations, will 
have a significant impact on the many fields of action within a manufacturing enterprise, e.g., on the strategic and 
tactical process optimization, cyber-physical systems, predictive maintenance, hybrid decision support systems, 
production planning and control systems, and the improvement of operational processes (Woschank et al., 2020).  
 
In this context, the systematic evaluation of potential barriers and necessary requirements for a successful 
implementation of Industry 4.0 initiatives indicates a tremendous need for the realignment of current learning and 
teaching approaches in industrial engineering education (Dallasega et al., 2019; 2020; Woschank and Pacher, 2020).  
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Up to now, only a few studies have dealt with the design of new lectures based on empirically validated success factors 
for the further development of human skills and competences in the modern industrial environment. Additionally, 
current initiatives regarding the development of teaching and learning in industrial engineering education seem to 
ignore a multitude of potential exogenous and endogenous influencing factors in professionalization processes, leading 
to low efficiency in the proposed achievement of the established learning outcomes.  
 
Therefore, this paper reflects current teaching and learning approaches that are applied to the new conception of the 
lecture ‘digitalization and digital transformation in metal forming’. The lecture will be further divided into four 
modules, ‘Module I: Digitalization – Theoretical Part’, ‘Module II: Digitalization – Practical Part’, ‘Module III: 
Digital Transformation – Theoretical Part’, ‘Module IV: Digital Transformation – Practical Part’ and contains a 
balanced mixture of theoretical lectures, practical demonstrations, group discussions, and industrial case studies by 
using a hybrid approach of both online and offline settings supported by state-of-the-art technology. Finally, the 
concept lecture can be seen as a starting point for the systematic development of competences regarding the areas of 
digitalization and digital transformation in metal-forming-related production systems. 

2 Teaching and learning theory approaches 
Learning can be defined as a lifelong process that is based on continuous reflection and change processes in 
confrontation with oneself and with the environment. Thereby, exemplary learning environments are work, education, 
leisure, further education, family, and friends. Learning takes place any in these learning environments or within the 
framework of transitions between them. In this context, the concept of lifelong learning (LLL) describes the necessity 
to learn during the entire life based on structured educational and learning processes, due to the ongoing changes in 
the knowledge society (keywords: industrialization 4.0, the half-life of knowledge, etc.) and the associated need for 
action. These targeted learning activities aim at the continuous improvement of subjective abilities, skills, and 
competences. The approach of LLL leads to a delimitation of learning and, thus, to massive changes at the institutional 
level. Accordingly, the pedagogical focus should not only be placed on the design of appropriate learning 
environments, but also on the creation of appropriate institutional frameworks. Thereby, the modularization of 
educational offerings can be regarded as one way to create flexibility and achieve the goals of LLL initiatives. In any 
case, networking and cooperation are essential on all levels. Educational institutions on various educational levels 
must be more closely coordinated to develop the so-called transversal competences. Also, the forms of learning must 
be expanded to include informal and non-formal learning processes. Thus, previous learning experiences must be 
interlinked with subsequent individual and organizational learning experiences. This should influence not only the 
micro-level, but also the meso- and macro-level of LLL (Hof, 2013). Moreover, the perception of transitions must be 
more strongly focused on both the individual and the institutional side. A precise framework of educational needs and 
educational necessities must be defined and, therefore, operationalized, on the institutional level, as well.  
 
2.1 Teaching and learning processes in transitions 
Due to the current characteristics of modern societies, the decoupling of standardized curricula vitae, flexibilization, 
and the focus on learning within the curriculum vitae becomes necessary. However, lifelong learning activities are not 
linear and continuous, thus they are determined by transitions, i.e., situations of upheaval or transitions with challenges 
for new- or re-learning. Transitions can be defined as social processes that enable changes in habits, patterns of action, 
and behavior (Felden, 2014). Particularly, in the current situation of social upheaval, every transition triggers 
subjective learning experiences and learning processes that transform the unknown into the known, and vice versa. In 
these transformations, not only is new knowledge acquired but also a new perception of the world is generated. In this 
context, Marotzki and Koller refer to the framework of ‘transformative educational processes’ (Hof, 2013). Mezirow 
further argues that, in line with the theoretical considerations of Habermas, learning always takes place through 
interaction and that, in the context of transformative learning processes, a reflexive discourse is needed as an essential 
dimension for achieving a mutual understanding and a change in subjective attitudes (Zeuner, 2014). Moreover, 
challenges in transitions require a closer look at learning and educational processes. In the sense of a 
phenomenological or socio-constructive view of learning, this can be generated by experiences, for example in the 
daily life. The social constructivist theory of learning assumes that learning interlinks new and existing experiences 
and then creates a subjective perception of the world that is determined by cultural, normative, and social 
interpretations. Accordingly, learning starts from the individual and subjective human experience within their ‘worlds 
of learning’ (Felden, 2014). The goal of the transformative learning approach is the individual as well as the collective 
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development of the ability to act in the respective living environments, both from a social and a political perspective. 
This implies an ongoing change and/or further development of changes in all life situations.  
 
Therefore, the current teaching and learning theory approaches and frameworks must be modified and/or extended 
according to the current trends described above to generate new strategies for action. For students and future experts, 
it is essential that the learning processes during the selected curricula are to be regarded as ‘useful’. Accordingly, 
learning as a societal requirement further involves the removal of boundaries at all levels (e.g., forms of learning, 
places of learning, learning media, and learning times) (Maier-Gutheil, 2015). In this context, the implications of 
Woschank and Pacher (2020) will be used for the professional planning and monitoring of teaching and learning 
processes in the context of ILEE by developing a new conception of a lecture in the following chapter. 

3 Lecture ‘Digitalization and Digital Transformation in Metal Forming’ 
This lecture deals with the fundamentals of the fourth industrial revolution, under special consideration of issues 
regarding the metal forming industry. Especially in metal forming, which can mainly be divided into forging and sheet 
forming, specific issues arise when state-of-the-art holistic digitalization frameworks are applied. Complex processes, 
and, in general, a low degree of automation make it difficult to apply real-physical decoupled, data-driven 
digitalization solutions to this industry field. During research carried out at the Chair of Metal Forming at the 
Montanuniversitaet Leoben in 2019, the following concepts and key technologies were identified as an enabler for a 
successful digitalization and digital transformation in this industry segment: 1) Cyber Physical Production Systems 
(CPPS) with special focus on their Human Machine Interface (HMI) on the shop floor; 2) Industrial Internet of Things 
(IIoT), related transfer protocol technologies and corresponding IT-security approaches; 3) Finite Element based 
Digital Shadows (DS), Digital Twins (DT), and their connection to Artificial Intelligence (AI) and Big Data 
Applications; 4) Change Management, especially bottom-up commitment (Ralph and Stockinger, 2020; Zsifkovits 
and Woschank, 2019; Rauch et al., 2020). 
 
3.1 Objectives 
This lecture aims to get to know the potentials and challenges of the fourth industrial revolution in the field of metal 
forming. The theory learned is demonstrated using practical developments at the Chair of Metal Forming.  
 
After successful completion of this lecture, students should be able:  
 

• to create and evaluate concepts for the digitalization in metal-forming-related production systems 
• to apply the theoretical concepts in the case study 
• to apply and implement them together with experts from different disciplines 
• to understand and implement the applied procedures in practice based on the theoretical and practical 

knowledge acquired 
 
3.2 Main schedule and assessment 
The lecture is characterized as an integrated lecture (IL) and will be supported by Moodle in a flipped classroom style. 
During the attendance times, the respective valid hygiene measures and guidelines are included in the execution. The 
lecture will be implemented in summer semester 2021 with a workload of 2.5 ECTS within the following timeline of 
the modules: 
 

• Module I: February-March 
• Module II: April 
• Module III: May 
• Module IV: May-June 

 
3.3 Assessment criteria  
Due to the focus on measurable and comparable learning outcomes, the ‘learning outcome approach’ was applied. 
According to Adam (2004), this approach includes “[…] what a learner is expected to know, understand and/or able 
to demonstrate at the end of a period of learning. They are usually defined in terms of a mixture of knowledge, skills, 
abilities, and understanding, that an individual will attain as a result of his or her successful engagement in a particular 
set of higher education experiences.” The learning outcome orientation should aim at the quality development of 
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educational measures as well as make learning outcomes visible and above all comparable.  The challenge is “how 
learning outcomes can be systematically achieved, described, recorded, and compared” (Schlögl, 2012). According to 
this, however, learning outcomes can only be determined ‘pragmatically’, since both the learners and the teachers and 
the entire teaching and learning process influence the ‘learning outcome’ (Pacher, 2019). The more accurately these 
learning outcomes reflect real learning achievements, the greater the success (Zürcher, 2012). 
 
Different measurement methods are used to evaluate the students' performance and are shown with percentages, as 
the following overview shows: 
 

• Module I:  Written exam, 60% of grade 
• Module II:  Cooperation during the practical demonstration, 5% of grade 
• Module III:  Contribution during the discussion, 5% of grade 
• Module IV:  Presentation, 30% of grade 

 
The first module concludes with a written test to assess the students' theoretical knowledge. This basic knowledge is 
an essential prerequisite for the following modules and practical training. In further modules, the focus is also on 
cooperation and active participation in various practical training courses. Accordingly, the respective cooperation is 
documented by the lecturer throughout the lecture and then included in the overall evaluation. At the end of the lecture, 
the theoretical and practical contents worked out in the modules are presented to the plenum. The students have the 
task to present a strategy and an operational approach for a digitalization project. 
 
3.4 Grading 
The grading follows the following 5-part scale:  
 

• Not sufficient (5); < 50%    
• Sufficient (4); ≥50 - <62.5%    
• Satisfactory (3); ≥62.5 % - <75%   
• Good (2); ≥75% - <87.5%    
• Excellent (1); ≥87.5% 

  
3.5 A generic overview of the structure 
This lecture will be mainly divided into four parts: 1) Theory of fundamentals in digitalization: A face-to-face 
introduction in the lecture structure followed by Moodle supported self-study of the theory; 2) Practical demonstration 
on digitization and digitalization technologies at the Smart Forming Lab at the Chair of Metal Forming (Ralph et al., 
2020); 3) Digital transformation in metal forming: Face-to-face discussion of practical issues regarding 
implementation of digitalization technologies in the metal forming industry (Change Management); 4) Case study 
about a typical digitalization project in the industrial environment. 
 
3.5.1 Module I: Digitalization – Theoretical Part 
As depicted in Table 1, the first part of this lecture will mainly be taught via e-learning powered by Moodle. The most 
important approaches and key technologies of digitalization in the metal forming sector are included and will be 
provided via four digital chapters. Students can learn independently. To give all participants an appropriate framework, 
each sector of this module starts with the learning objectives, which should be achieved after the complete elaboration 
of the provided course material. Due to the lack of homogeneity in academic literature, prepared scripts for content 
(2), (4), and (5) will be provided. Furthermore, the most important state-of-the-art academic research papers will be 
accessible. For students who want to deepen their knowledge in specific areas of module I, additional book chapters 
will be provided. At the end of each section, possible exam questions related to the scope of the specific part will be 
visible, which should support every student in their exam preparation and avoid misunderstandings regarding the 
scope of the exam. Additionally, at least two questioning hours will be provided to support students during the 
preparation process. 
At the end of module I, a written exam will take place. This exam is crucial, as a minimum of knowledge in theory 
and nomenclature is necessary to be able to understand the upcoming modules of this lecture and contributes 60% to 
the final grade.   
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Table 1. Module I: Digitalization – Theoretical Part. 

Module I: Digitalization –Theoretical Part:  
Face-to-face and online 

Timeframe: 4x1h, 2x2h, 1x3h, 1x6h, 1x15h 

Topic(s): Introduction and arising of awareness for chances and issues of digitalization in the metal forming 
industry (1); Fundamentals of automation in the metal processing industry, including retrofitting and digitization 
(2); Fundamentals of networking technologies: state-of-the-art protocols and data management, including 
retrofitting and IT-security (3); CPPS and HMI in the metal forming environment (4); DT and DS in metal forming 
related operations, including AI and big data (5) 
Objective(s): Knowing the most important definitions and differences in metal forming related digitalization key 
technologies; Raising the ability to communicate with IT-domain experts in the manufacturing environment; 
Understand the possible advantages of digitalization technologies 
Content: Methods:  Material: Duration: 
(1) Face-to-face lecture;  

group discussion 
PPT; handouts; videos 1h 

(2) Moodle-based e-learning; online script; 
actual research papers; videos 

PDFs; videos 2h 

(3) Moodle-based e-learning; actual research 
papers; videos; practical tutorials 

Online tutorials; PDFs; videos 2h 

(4) Moodle-based e-learning; online script; 
actual research papers; videos 

PDFs; videos 1h 

(5) Moodle-based e-learning; online script; 
actual research papers; videos 

PDFs; Handouts; videos 3h 

Remarks: Additional case studies for deepening of gained knowledge provided at Moodle, including additional 
book (chapter) recommendations (6h); Exam preparation: Predefined possible exam questions for elaboration, 
published via Moodle (15 h); Written exam to demonstrate necessary knowledge for the upcoming practical part 
(1h); Total 60% of the final grade 

 
3.5.2 Module II: Digitalization – Practical Part 
Table 2 displays the concept of the second module which is used to deepen the theoretical knowledge gained in module 
I. A division in an equally sized group of eight will be carried out in the first instance. Every group will then attend 
three practical units at the Smart Forming Lab at the Chair of Metal Forming. Parts (1) and (3) will include face-to-
face lectures and rely heavily on interest-driven group discussion. In part (2) of this module, every group will 
additionally program its methods in Python, which then will be transferred into the four-layer digitalization 
architecture at the lab. The cooperation of each participant during the parts will contribute five percent to the final 
grade of this lecture. The contribution will be measured inversely. Initially, every student will start with a full five 
percent, students who show no effort in contributing productively or disturb the workflow or group discussion 
inappropriately will be graded with zero percent for this module.   
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Table 2. Module II: Digitalization – Practical Part. 

Module II: Digitalization – Practical Part:  
Face-to-face 

Timeframe: 1x1h, 1x2h, 1x3h 

Topic(s): Explanation and practical demonstration of the fundamentals of automation and networking technologies 
via a four-layer digitalization approach, including DS, DT, and AI (1); Practical demonstration of a suitable 
implementation approach for CPPS and HMI, demonstrated by the Chairs retrofitted experimental cold rolling mill, 
using a variety of different software (2); Showing practical open-source IIoT solutions, demonstrated on operating 
machine hour counters and related project management implementations at different forming aggregates (3) 
Objective(s): Knowledge transaction from theory into practical implementation; Deepening the understanding to 
know the fundamentals of digitalization as a future domain expert 
Content: Methods:  Material: Duration: 
(1) Face-to-face lecture; 

group discussion 
Different forming aggregates and 
infrastructure at the Smart Forming 
Lab 

3h 

(2) Face-to-face lecture; group work; 
group discussion 

Demonstrating the digitalization 
environment of the Smart Forming 
Lab, including cold milling 
aggregate and different software  

2h 
 
 

(3) Face-to-face lecture; 
group discussion 

Showing the four-layer architecture 
and the advantages in digitalized 
project management by using the 
Smart Forming Lab 

1h 

Remarks: Total 5% of the final grade 
 
3.5.3 Module III: Digital Transformation – Theoretical Part 
As outlined in Table 3, the third module deals with the specific issues related to the implementation of digitalization 
technologies as part of a digital transformation framework in the metal forming environment. During a two-hour face-
to-face meeting, the participants should realize the importance of corporate culture and human coworkers as part of 
the digital transformation process. This knowledge will be gained through practical case studies related to change 
management and metal forming related companies. To be able to use the gained knowledge through the practical 
examples given in part (2) and (3), in the first instance, a theoretical background about the fundamentals of corporate 
culture and change management will be provided. This part will contribute five percent to the final grade and grading 
will be underlying the same restrictions as in module II. 
 

Table 3. Module III: Digital Transformation – Theoretical Part. 

Module III: Digital Transformation – Theoretical 
Part: Face-to-face 

Timeframe: 1x2h 

Topics: Major issues regarding the implementation of digitalization technologies in the metal forming environment 
(1); The importance of top-down and bottom-up change management (2); Practical change management approaches 
in the metal forming industry (3) 
Objective(s): Understanding the fundamentals and purpose of change management in metal processing 
manufacturing; Generating awareness for the most important challenges arising with digital transformation on the 
different layers of management; Knowledge about practical approaches to overcome the most common resistance 
in a sustainable way 
Content: Methods:  Material: Duration: 
(1) Face-to-face lecture; PPT; board 1h 
(2) Interactive face-to-face lecture;  

group discussion 
PPT; board 0.5h 

(3) Interactive face-to-face lecture; 
group discussion 

Board 0.5h 

Remarks: 
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3.5.4 Module IV: Digital transformation – practical part 
Table 4 provides information about the fourth and final module of this lecture. This module will summarize the 
theoretical and practical inputs participants acquired during the lecture. Each group, as defined in module II, has to 
elaborate on a different case study. The scope of the studies will be the implementation of a specific digitalization 
technology in a fictive metal forming company, under special consideration of issues regarding the digital 
transformation strategy to achieve the primary goal. The variation of at least one factor (e.g., company size, budget, 
degree of automation) will be carried out to avoid the same results from more than one group. The individual solution 
of each group will then be assessed by a short presentation (maximum 10 minutes), considering the solution provided 
as well as the presentation style. This module has an estimated workload of 22.5 hours and contributes to the final 
grade with 30 percent.  
 

Table 4. Module IV: Digital Transformation – Practical Part. 

Module IV: Digital Transformation – Practical Part: 
Face-to-face 

Timeframe: 1x20h, 1x2.5h 

Topics: Developing a strategy and operational approach to successfully run a digitalization project (1);  
Summarizing and presenting the elaborated solution in an appropriate way (2) 
Objective(s): Participants can run a digitalization project in the metal forming industry successful 
Content: Methods:  Material: Duration: 
(1) E-learning, group work Lecture material 20h 
(2) Presentation PPT; board; video 2.5h 
Remarks: 

4 Conclusion 
 
In summary, it can be stated that, in the future, a major focus in the formal education and training sector should be 
placed on improving quality assurance and on professionalization processes. Hereby, the main goal is to strengthen 
the individual position and competence to contribute to the professionalization of the entire sector and to establish the 
engineering profession as an essentially necessary component in the sense of the demand for lifelong learning (LLL). 
In addition to the development of individual professionalism, collective professionalism development must also be 
promoted by implementing standardized frameworks and pre-defined procedures. 
 
Based on current teaching and learning theories, this paper has introduced a module-based concept for the lecture 
‘digitalization and digital transformation in metal forming’ as an example for modern industrial engineering education. 
Thereby, the authors placed a special emphasis on current Industry 4.0-requirements of manufacturing companies by 
focusing on the usage of modern technologies such as cyber-physical production systems, the Industrial Internet of 
Things, human-machine interfaces, and augmented reality. To guarantee an efficient knowledge transfer, the students 
will be actively involved during the lecture through participant-based teaching and learning methods, e.g., group 
discussions or industrial case studies.  
 
Future research should further focus on the systematic evaluation regarding the impact of potential success factors of 
modern teaching and learning methods on learning outcomes by using multivariate statistical procedures. Moreover, 
the gap between offered and required educational services should be further reduced by incorporating recent scientific 
findings as well as company-orientated requirements into the educational programs of future industrial engineering 
education. 
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Abstract 
 
While the fourth industrial revolution continues to change manufacturing facilities all over the world, not all enabling 
key technologies are taught sufficiently at universities. As engineering disciplines have further diverged in different 
specializations over time, digitalization strives for the opposite: transdisciplinary education in the fundamentals of 
digital transformation is necessary to remain competitive. In specialized European technical universities, the 
manufacturing industry became the pacemaker when it comes to technical innovations. To provide engineering 
students with knowledge to succeed in a modern manufacturing environment, it is mandatory to know the state-of-
the-art requirements of the industry. For this purpose, a new lecture was designed, teaching engineering students the 
fundamentals of digital transformation. To elevate the requirements for employability, a statistically representative 
part of Austrians’ metal forming companies were asked about their degree of maturity regarding digital transformation. 
For the sake of teaching efficiency, a survey revealing students’ knowledge of digital transformation and preferred 
learning methods was carried out. As a result, a stakeholder-oriented lecture was developed. Furthermore, a general 
framework on how innovative transdisciplinary academic courses in the engineering environment can be developed 
in an effective and practical way was derived, closing the gap between modern engineering education and required 
practical skills.  
 

1 Introduction 
 
Since the official introduction of Industry 4.0 in 2011 from the German government, thousands of 
publications regarding the corresponding key technologies, as well as necessary changes in the working 
environment were carried out (Kaur et al., 2020; Oztemel and Gursev, 2020; Zheng et al., 2020). While a 
majority of this literature indicates that key components (e.g., Cyber Physical Production Systems (CPPS), 
Industrial Internet of Things (IIoT), Big Data, Human Machine Interfaces (HMI)) are implemented in parts 
of the European manufacturing environment (Grzybowska et al., 2020), the degree of integration of those 
technologies significantly varies within different sectors of this industry. As a result, highly standardized 
sectors, characterized through high volume and repetitive robust processes within the manufacturing 
operation, can be described as leaders in the digitalization and digital transformation process, while 
segments that don’t fulfil these requirements remain behind (Matt et al., 2020; Peukert et al., 2020). Another 
important development to consider is the increasing backshoring trend of high-quality manufacturers from 
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low-wage countries to Europe and the U.S. (Ancarani and Di Mauro, 2018; Foerstl et al., 2016; Gray et al., 
2017; Johansson and Olhager, 2018a, 2018b). This trend contradicts the Industry 4.0 related relative (fear 
of) job rationalization in manufacturing companies from an employee’s point of view (Fomunyam, 2019; 
Kovacs, 2018; Müller, 2019). 
 As a result, the future human workforce role, especially on shopfloor level, is not completely clear. While 
a majority of current literature implies the importance of human factors in an Industry 4.0 environment 
(Kadir et al., 2019), there are often empirical based studies that indicate that current decision makers in 
industrial practice decline this hypothesis (Vuksanović Herceg et al., 2020). Nevertheless, a significant 
change in future worker’s requirements cannot be neglected (Kiel et al., 2017; Sony, 2018), whereas the 
majority of current research states that a general shift to more complex and less repetitive work evolves 
(Kadir et al., 2018; Müller et al., 2018; Pfeiffer, 2016, 2018). This paradigm shift not only affects basic 
shopfloor activities but also results in a change in skill requirements for engineering academics in the 
manufacturing sector. Before the start of the fourth industrial revolution, specialized engineers from 
different sectors (e.g., mechanical engineering, materials science, automation technologies, IT) mainly 
operated within small, specialized groups. As one of the main advantages of the digitalization and digital 
transformation in manufacturing is the interoperability between different manufacturing, as well as, 
business intelligence layers, these experts are forced to work in a much more interdisciplinary way 
(Brougham and Haar, 2018; Ghobakhloo, 2020). Responsibilities and resulting boundaries between 
different disciplines dilute. As a result, engineering experts have to be able more than ever to communicate 
outside these socio-cultural boundaries. Manufacturing companies acknowledge these developments by 
creating new jobs (e.g., Chief Digitalization Officer) or extending existing job roles (e.g., IT-managers are 
additionally responsible for parts of the digital transformation efforts within the company) (Culot et al., 
2019; Horlacher and Hess, 12016; Tumbas et al., 2017, 2018). Some concerns even extend their 
organizational structure by creating new companies that focus on the digital transformation of the whole 
concern (Rotter and Eder, 2017).  
Regarding job perspective for engineering students, these developments result in mainly two contradicting 
effects: i.) there are effectively less jobs in the classic manufacturing environment; ii.) new jobs in 
specialized engineering fields that include digitalization related knowledge are created (Adam et al., 2019; 
Vermeulen et al., 2018).  To prepare potential engineering experts for their future in the field of ii.), it is 
crucial for their educating universities to ensure that adequate knowledge tailored to the industries 
requirements for a successful job entrance phase is provided. While recent literature suggests that 
continuous adaptions in respective curricula are made, the basis of these adaptions is, to a major extent, 
only related to specific requirements from a few industry partners (Andersen et al., 2019; Büth et al., 2018; 
Jeganathan et al., 112018; Umeda et al., 2019). Furthermore, the initial knowledge of respective students is 
often not considered, leading to adaptions mainly based on the experience of responsible lecturers and 
respective external partners.  
For this reason, this paper describes the development and adaption of a lecture for the transdisciplinary 
education of engineering students. The respective academic course focusses on the Austrian metal forming 
environment, giving students of various manufacturing related engineering disciplines the opportunity to 
learn the fundaments of digitalization and digital transformation in the metal forming industry. Beginning 
with section 2, the teaching and learning methodology for this development is explained. In section 3, the 
first concept of the lecture, based on recent literature, industry expert interviews and practical experiences 
of the authors is defined. Derived from this initial concept, section 4 describes the adaption of the literature, 
as well as, internal and external knowledge-based drafted by a descriptive statistics-based analysis of 
requirements of Austrian’s metal forming industry (section 4.1). Furthermore, actual knowledge of potential 

participants from different disciplines was analyzed, based on a quantitative survey (section 4.2). Derived 
from results from previous subsections, section 4.3 examines the identified gap between the learning 
objectives of the first concept and the required skills from the respective industry. Based on this gap, the 
initial objectives are shifted in order to enable a practice-orientated education. Furthermore, as a result of 
the statistical analysis of initial student knowledge, the workload per topic is additionally changed to ensure 
comprehensibility and avoid participants from being overchallenged or underchallenged. Section 5 



 

additionally includes adaptions to the initial pedagogical approaches with respect to actual developments 
of the educational engineering 4.0 approach resulting in a content and state-of-the-art engineering education 
experience.   

2 Realignment of engineering education concepts towards Engineering Education 4.0 
 
The advancing technology and digitalization thrusts, enhanced by the global COVID-19 pandemic 
restrictions, have not only led to new markets and also challenges in industry but also, and especially in, 
the entire education system. The transformative educational processes triggered by the pandemic across all 
societal sectors, institutions, as well as, life spans, now requires long-term inclusion. The explosive 
adaptation of learning and educational processes to the micro, meso, and macro levels of human learning 
in terms of the use of digital media and tools opens up unprecedented learning spaces and opportunities. 
These transformation processes are flowing into all areas of social life and are being massively advanced 
by the rapidly progressing implementation of Industry 4.0 concepts. These new approaches require not only 
a transformation of teaching and learning methods but also a new conceptualization of learning content and 
imparted competencies, especially in higher education for the experts of tomorrow. The new technologies 
resulting, require new and extended qualifications, knowledge and competences of future engineers. Above 
all, it also requires an adapted mindset with regard to the willingness and necessity to flexibly engage with 
new things (e.g., approaches, programs, work steps) and to continue learning throughout one's life and to 
further educate oneself both professionally and privately. Thus, two major transformation processes and 
implications for engineering education in the tertiary sector can be derived from the current trends. On the 
one hand, the expansion of the understanding of education to the entire lifespan and the focus on the 
individual educational trajectories, which forces the resulting participant-centeredness, is mandatory. 
Accordingly, the increasing shift from teacher-centeredness to participant-centeredness must be made, 
especially in the higher education sector. On the other hand, with regard to innovations through the 
implementation of new (digital) concepts in industry, the increasing value of the human capital of a 
company and the entire industry can be observed. As a result, the education and training of employees is 
increasingly seen as an innovative force and thus constitutes a key competitive criterion (Zsifkovits et al., 
2021).  
 

 
 
Figure 1. Influences on Engineering Education.  

Figure 1 illustrates the factors influencing the engineering education of tomorrow. The universities are now 
challenged to successfully implement the tendencies/demands and thus to ensure the ability to work, the 
understanding of the role of engineers and the competitiveness of future generations (Ramirez-Mendoza et 
al., 42018). This transformation requires a new conceptualization or adaptation in a holistic way, i.e. both 
on the institutional level and with regard to transdisciplinary cooperation with industry, as well as, a push 
towards national and international cooperation (Fomunyam, 2019). 



 

Education can be considered as a central investment in the future, especially in, what (Schäffter, 1998, 
2001) defines as today's transformation society. Thereby, one of the essential goals is the ongoing 
development and necessity of lifelong learning (LLL) to ensure skills development, employability and long-
term competitiveness .  
The teaching of relevant and up-to-date skills is indispensable and represents a central element of the 
European pillar of social rights. Thus, transnational high-quality education should be made available to all 
people, so that they can actively and self-confidently make a significant contribution as citizens to further 
development and ongoing innovation. The European Competence Agenda of the European Parliament 
(Soldi et al., 2016) clarifies that Europe needs to narrow the gap in this respect since around 70 million 
people are neither able to read and write properly, nor do arithmetic, nor do they have digital skills and are, 
therefore, at risk of poverty, unemployment or social exclusion. The demand here lies in fundamental 
reforms of European education systems and their positioning towards future-oriented knowledge, skills, 
and competencies ‘adapted to the digital age’ (European Council, 2017). Since technological progress - 
keywords: artificial intelligence, robotics, IoT - is developing rapidly, lifelong investment in key skills and 
above all, digital skills are required. The tertiary sector is particularly called upon to push ahead with 
sustainable reforms in terms of skills development and the incorporation of labor market trends to ensure 
the availability of next-generation professionals. Practical experience, new learning instruments and 
materials, the use of digital technologies and a lifeworld orientation must be incorporated into modern 
curricula (European Commission, 2018). Under the postulate ‘Industry 4.0’, the permanently and rapidly 

developing digitalization of the working world through the penetration of new technologies such as 
Augmented Reality, Virtual Reality, Cyber Physical Systems, Digital Twins, etc. requires the 
implementation of new methodological-didactic teaching and learning settings, so to speak, ‘Education 

4.0’. 
The aforementioned demands on individuals and society as a whole, require the continuous acquisition of 
new knowledge, qualifications and competencies over the entire lifespan. Ergo, learning over the entire 
lifespan has a double meaning. On the one hand, LLL means for the educational subjects the chance for 
personal and professional development and change over the entire life span. On the other hand, the necessity 
of LLL implies the permanent challenge for subjects, but also for society as a whole, to maintain and further 
develop work and competitiveness. LLL thus influences both the individual and the societal dimension and 
consequently leads to the dissolution of learning boundaries in terms of time, space and content. Thus, 
engagement with learning and educational processes must be considered across the lifespan and therefore, 
permeate through all phases and domains of life. In other words, learning is implicated in the biography of 
each individual (Hof et al., 2014; Schröer et al., 2013). To ensure the necessity of implementing the LLL 
approach, the following concept of circular education will be used to divide the life-span into 4 main 
dimensions (Figure 2). 
 

 
Figure 2. The circular education model. 



 

According to the circular education approach, the lifespan is divided into a total of 4 dimensions and ranges 
from earliest childhood to high adulthood. Due to the increasingly blurred boundaries between life stages 
and ages, these 4 areas are to be understood as dimensions with fluid transitions and not every person passes 
through each dimension, these can also be skipped or dealt with at a later point in time. The first dimension 
covers the period from early childhood to the end of basic education. In the second dimension, higher 
education and all related educational formats are included. Gainful employment and its educational 
activities are located in the third dimension (VET). The fourth dimension includes all adult education 
activities, whether formally, non-formally or informally acquired.  
A professional and successful design of educational activities requires the inclusion of essential core aspects 
in planning, implementation and evaluation phases. Transferred to pedagogical practice in higher education, 
this implies a reorientation to the entire institutional level. First, the concept of LLL and the accompanying 
de-standardization of learning and life phases and topics necessitates the adaptation of institutional 
frameworks. Ergo, the learning dimensions must be expanded to include informal and non-formal aspects, 
which in turn affects the macro, meso and micro levels of learning. Thus, the focus of learning efforts also 
shifts to the individual level and must be adapted to the situation. This means the participant and their 
respective life context must be considered when planning educational measures. Through the concept of 
LLL and the accompanying shifts in learning and educational processes, the following didactic guiding 
principles for pedagogical practice in adult education can be derived: 
 
 Participant-orientation;  
 Case reference; 
 Practical relevance; 
 Group dynamics; 
 Orientation to everyday life; 
 Self-determination; 
 Biography orientation. 
 
To offer high-quality courses at the Montanuniversität Leoben, the aspects described above must be 
included in the program planning in advance and current contexts such as practical requirements must be 
considered to guarantee educational success. According to (Tietgens, 1992), expectations, needs or wishes 
of all key stakeholders involved in the learning process in the respective discipline can be emphasized as 
an essential success factor. Only in this way it is possible to respond to current trends and challenges in 
practice and to equip future engineers with the necessary knowledge, qualifications and competencies. 
These must then in turn be fed back into the didactic guiding principles and maxims of higher education, 
in order to be able to guarantee professional methodological-didactic training programs. 
Furthermore, (Pacher et al., 2020) investigated the educational needs in the extractive sector on the basis of 
an extensive study within the framework of an EU project and concluded that the focus of higher education 
should be on the training of transversal competencies such as soft skills, decision-making skills, or digital 
competencies. In addition, practical testing of the technical competencies acquired during studies is 
essential for future careers. (Bauer et al., 2014) also state the need to develop language skills, especially 
with regard to the English language, due to the advancing internationalization efforts. 
Accordingly, an expansion of the essential transversal key competencies is required to prepare the future 
experts of tomorrow for the challenges in their daily private and professional lives. The educational systems 
at universities should include new learning materials, systems, instruments and resources that strengthen 
(online) cooperation on the one hand and include the lifeworld-orientation of the learners on the other hand, 
thus levelling supposed socio-economic performance differences. Additionally, this approach can increase 
equal opportunities, as well as, learning efficiency through a subjective reference to the motives and 
interests of the target group (European Commission, 2020).  
In order to ascertain further requirements and expectations of the course, the authors of this article carried 
out an additional extensive study in addition to the literature research, to be able to further advance the 



 

professionalism development of teaching at the Montanuniversität Leoben and thus, guarantee an essential 
contribution to competitiveness in the metal forming sector on the one hand and the employability of future 
experts on the other. The course was already designed in advance, according to the principle of constructive 
alignment (Biggs and Tang, 2011) and will now be adapted based on the research results from the study 
and the implications of the COVID-19 pandemic. The authors follow the PDSA- circle (Deming, 1998; 
Shewhart, 1986) and adapt the course planning based on feedback loops. 
As a result, the final lecture described in this work should consider all points illustrated in Figure 3 and 
therefore, serve as a pilot project for upcoming lectures and curricular adaptions at the Montanuniversität 
Leoben, following the Transdisciplinary Engineering Education approach. 
 

 
Figure 3. Transdisciplinary Engineering Education Approach: the inclusion of all parties and methods is mandatory for the 
development, planning and implementation of an Industry 4.0 related lecture.  

3 First concept development  
 
To be able to include students’, as well as, industries’ preferences and requirements during the developing 

phase, a first concept including the core technologies and frameworks of digital transformation was 
designed (Ralph et al., 2020). This concept is based on state-of-the-art learning techniques and was initially 
designed without Covid-19 based restrictions. In the sense of "constructive alignment" according to (Biggs 
and Tang, 2011), the teaching and learning concept is aligned with the learning outcomes, the teaching and 
learning activities and the final assessment. The focus of the concept is participant orientation by using the 
method of (Cohn, 1989) (topic-centered interaction is used to place topics, questions or ideas in the center 
elaborated on by the participants in mutual exchange). Accordingly, all teaching and learning materials are 
designed to meet the needs of the target group.  
Through the experience and competence of the lecturers, the integrated course conveys fundamentals and 
in-depth knowledge that are essential for understanding and assessing current digitization processes in 
industrial practice. Fundamentals and theory are illustrated and reflected by concrete practical examples 
(Coşkun et al., 2019; Edward, 2002). 
 
The course is built up modular in a blended-learning format. In modules I to III, the teaching content is 
essentially conveyed through compact lectures with the help of multimedia support, as well as, interactive 
phases (workshops, question rounds, etc.). The four modules are coupled and are each held in the summer 
semester and over a period of one month. Blocks 2 and 4 are held as classroom sessions and blocks 1 and 
3 as online learning via the platform CISCO WEBEX. In addition, the theory blocks are supported by 
synchronous and asynchronous teaching methods. This supports the more flexible scheduling of the 



 

learning content for students. Derived from current literature, as well as, the authors’ experience, after 
successful completion of the lecture the students should be able to: 
 

 create and evaluate concepts for digitalization in metal forming related production systems; 
 apply the theoretical concepts in a case study; 
 implement them together with experts from different disciplines; 
 understand and implement the applied procedures in practice based on the theoretical and practical 

knowledge acquired. 
 
Figure 4 illustrates the fundamental scope and module dependent learning objectives of the lecture. 
 

 
Figure 4. Module definition and corresponding learning outcomes for the lecture. 

Another restriction to consider is the strategic fit within the curricula of potential participants. For the first 
implementation, a workload of 2.5 European Credit Transfer System (ECTS) credit points (CP) was set up, 
resulting in a maximum overall workload of 75 hours (Directorate-General for Education and Culture, 2005; 
European Commission, 2008; Grosges and Barchiesi, 2007). Based on all mentioned requirements and 
restrictions, the following tables summarize the initial module definitions.  

Table 1. Initial lecture definition for the first module, adapted from (Ralph et al., 2020) 
 

Module I: 
Scope and duration (h) 

 

 
Applied methods 

 
Used materials 

 
Learning objectives 

Introduction into opportunities 
and issues of digitalization 

technologies in the metal forming 
environment (2) 

Icebreaker and 
subsequent 

presentation; 
Group discussion 

 

PPT; 
Handouts; 

Videos 

Awareness of the potential impact of 
key technologies of the fourth 

industrial revolution 

Fundamentals of digitization, 
including sensor and actuator 

technologies (7) 

Self-study using e-
learning platform 

 

Online script; 
State of the art research 

papers; 

Knowledge about the basics of state-
of-the-art digitization technologies in 

the metal forming environment 



 

videos 
Fundamentals of digitalization, 

including networking 
technologies, state of the art 
protocols, interfaces, data 

management and IT-security (7) 

Self-study using e-
learning platform and 

external tutorials 
 

Script; 
State of the art research 

papers; 
Videos; 

Prepared scripting 
examples 

Understanding the potential of 
sophisticated and non-proprietary 
networking solutions; Ability to 

connect requirements of digitization 
to a digitalization framework 

The importance of CPPS and 
corresponding HMI in the metal 

forming environment (7) 
 

Self-study using e-
learning platform and 

external tutorials 
 

Script; 
State of the art research 

papers; 
Case study videos from 

the SFL 

Ability to define and understand 
CPPS in the metal forming 

environment; Realization of the 
importance of accurate HMI options 

 
Definition of Big Data, AI, DT 

and DS within the metal forming 
industry (7) 

Self-study using e-
learning platform 

 

Script; 
State of the art research 

papers; 
Case study videos from 

the SFL 

Accurate definition of DT, DS, AI 
and Big Data;  

Awareness of the connection between 
simulation engineering, digitalization 

and data management 

Table 2. Initial lecture definition for the second module, including practical exercises, adapted from (Ralph et al., 2020). 
 

Module II: 
Scope and duration (h) 

 

 
Applied methods 

 
Used materials 

 
Learning objectives 

Practical demonstration of the 
fundamentals of networking 
technologies, state of the art 
programming languages and 

resulting layer architecture at the 
SFL (2) 

Face to face lecture; 
group discussion 

Digitalized forming 
machine systems at the 
SFL; corresponding IT-

infrastructure 

Knowledge transfer from theory to 
practice on a holistic basis 

Practical demonstration of a 
developed CPPS and corresponding 

HMI at the SFL (2) 

Face to face lecture; 
group discussion 

 

Digitalized and 
retrofitted rolling mill 
aggregate at the SFL 

Knowledge transfer of CPPS and 
HMI and underlying technologies 

from theory to practice 
Demonstration of different 

possibilities of interface design and 
layer architectures at the SFL (2) 

Face to face lecture; 
group discussion 

 

SFL infrastructure; 
Case study of 

digitalized CNC-lathe 

Awareness of benefits and downsides 
of different commonly used interfaces 
within a manufacturing digitalization 

environment in practice 

 

 

Table 3. Initial lecture definition for the third module, adapted from (Ralph et al., 2020). 
 

Module III: 
Scope and duration (h) 

 

 
Applied methods 

 
Used materials 

 
Learning objectives 

Recap block (0.5) World Café (break 
out session) 

Miro material (MIRO) Stepping up and deepening the 
learning process for information 

provided in module I and II 
Discussion of major issues arising 

within the implementation of 
digitalization approaches within an 

industrial environment (0.5) 

Face to face lecture; 
group discussion 

 

PPT; 
Board 

Realization of importance of social-
cultural aspects within a digitalization 

project 

Introduction in appropriate 
frameworks to overcome social-

cultural tensions within the 
manufacturing environment (0.5) 

Face to face lecture; 
group discussion 

 

PPT; 
Board 

Awareness of the most common 
frameworks of change management 

Possibilities of implementation of 
change approaches in the 

manufacturing environment (0.75) 

Face to face lecture; 
group discussion 

 

PPT; 
Board 

Deepened theoretical knowhow 
regarding overcoming of change 

based resistance 
 



 

Table 4. Initial lecture definition for the fourth module, including final examination, adapted from (Ralph et al., 2020). 
 

Module IV: 
Scope and duration (h) 

 

 
Applied methods 

 
Used materials 

 
Learning objectives 

Handing out and guidance for 
elaborating on prepared case 

study (1) 

Face to face lecture; 
Self-study using e-
learning platform 

Prepared case studies 
 

Know how to elaborate a given 
project (case study) 

 
Preparation for final group 

presentation (20) 
 

Individual group 
lectures; 

 

Prepared case studies; 
Script and external sources 

Know how to transfer gained 
knowledge into a practical case 

Final group presentation (1) 
 

Presentation; 
feedback loop 

 

PPT; 
Board; 

Other available media sources 

Know how to present results as a 
project leader within a 

presentation to superiors in a 
clear and professional way 

 
The workload determined by the scope of the module blocks sums up to a total of 61 work hours. Leaving 
an additional 14 work hours for self-study activities, where the scope of this activity is not exactly defined. 
Furthermore, recommended comprehensive literature is made available to all participants by the used online 
platform Moodle, giving students the opportunity to elaborate on a specific topic of interest more deeply.   

4 Stakeholder analysis and knowledge gap identification 
 
To provide the most efficient and effective educational experience, it is necessary to know the main 
stakeholders and their needs as to involve them in the development. Table 5 shows a comprehensive 
overview of the identified stakeholders, derived from (Meyer and Bushney, 2009). 

Table 5. Identified stakeholders for the lecture (re-)design (Meyer and Bushney, 2009). 
 

Stakeholders 
 

 
Reason for inclusion 

 
Way of inclusion in the lecture development 

Participating engineering 
students 

 

The most important stakeholders 
are at the center of attention 

Representative survey; adaption of initial teaching 
methods scope 

Employers Provide jobs for graduated students; 
know what skills are important to 

become successful  

Representative survey; adaption of weighting of 
different module parts within the lecture 

Alumni and experts (have 
worked, or are currently 

working, in the metal forming 
environment with an 

engineering or IT background) 
 

Know which skills are important in 
industrial practice for their specific 

engineering discipline 

Personal interviews; recommendations were 
included in the development of the first structure 

Local universities Possibility of using external 
knowhow and lessons learned from 

their local initiatives 

Personal interviews with academic staff from other 
technical universities within Austria; gathered 

information was included in the development of the 
first structure of the lecture  

International universities Comparing of other international 
curricula to the planned initiative 

Research about similar engineering programs and 
how they included digital transformation in their 

curricula; gathered information was included in the 
development of the first structure 

Government departments Legal basis; special consideration 
of restrictions due to ongoing 

Covid-19 crisis (e.g., limitation of 
students; mandatory distance 

learning) 

Including a variety of different teaching techniques 
for each part of a module to sustain a proper 

educational experience for all participating students 
regardless of actual restrictions (from face-to-face 

to completely online) 



 

Lecturers Mainly responsible for creating a 
stimulating environment for the 

best possible knowledge transfer to 
lectures’ participants 

Did the development of the first structure and 
carried out the research, personal interviews and 
surveys; adapt the first structure of the lecture 

based on the results of the gathered information 
 
The main objective of the empirical study is to develop evidence-based implications for the redesign of 
engineering education lectures which are focused on the topics of digitization and digital transformation. 
Therefore, two independent surveys were conducted to increase understanding regarding the systematic 
development of the competencies for the engineers of tomorrow. For the data collection, the authors used 
a triangulated approach whereby random sampling was used within the student’s survey and theoretical 

sampling was applied to the company´s survey in the timeframe between September 2020 and November 
2020. Within this combined approach, theoretical sampling is applied to decrease potential difficulties in 
obtaining relevant data, to avoid misunderstandings of the survey items by the target population, and to 
isolate confounding variables, while random sampling was chosen to compensate potential shortcomings 
in terms of validity and generalizability from the theoretical sampling approach (Zhu et al., 2008).  
 

4.1 Research methodology and results: Questioning companies from Austrian’s metal forming 

industry 
To adapt the learning outcomes to fit to the requirements of the industry, a total of 200 companies from 
Austrian’s metal forming industry segment were surveyed. From the total number contacted, 64 
questionnaires (32.00 %) were completed, valid, and therefore, usable for the subsequent statistical 
procedures. Again, a non-response bias test (Armstrong and Overton, 1977) did not show any significant 
differences between early and late respondents, which additionally indicates a high degree of transferability, 
respectively representatively, of the established research results (Lippe, 2011). All items were 
operationalized by using 5-point LIKERT scale from 1 (e.g., not agree) to 5 (e.g., fully agree).  
The resulting questionnaire contains three major theme blocks: i.) DIG: asking for the digital maturity of 
the respective company; ii.) DAT: evaluating the gathering and processing of internal data; iii.) ATT: 
analyzing the attitude of the respective companies regarding the fourth industrial revolution and 
corresponding organizational changes. The questions were derived from the authors’ experience, as well 
as, expert interviews carried out in advance, to ensure comprehensibility of potential participants.  
The scope and results of the survey are illustrated in Table 6. 

Table 6. The Austrian metal forming industry: Survey scope and results from valid responses. 
 

Item 
 

 
Text 

 
N 
 

Min. 
 

Max. 
 

Mean 
 

Std.Dev. 
 

DIG_1 All production processes that occur are recorded by a higher-level ERP system. 64 1 5 3.33 1.574 
DIG_2 All production processes that occur are controlled and timed automatically 

using an MES system, PPS, or ERP system with similar functionality. 
64 1 5 2.69 1.457 

DIG_3 The machines used all have at least one interface to higher-level systems 
(SCADA on MES/ERP). 

64 1 5 2.72 1.397 

DIG_4 Captured processes and general production data are stored and processed via 
cloud solutions. 

64 1 5 1.97 1.403 

DIG_5 Data can be made fully available through an interface for external use by other 
applications such as business intelligence. 

64 1 5 2.47 1.345 

DIG_6 Internet of Things solutions are used on a large scale in production (e.g., IIoT 
gateways, transmission using IoT protocols such as MQTT). 

64 1 5 1.81 1.296 

DIG_7 Collected data is analyzed using big data technologies. 64 1 5 1.81 1.332 
DIG_8 Important production processes are modeled with simulation programs (e.g., 

finite element simulation). 
64 1 5 2.36 1.396 

DIG_9 The visual representation of production data is structured and user-friendly. 64 1 5 2.64 1.289 
DIG_10 All production processes are fully described by means of standards. 64 1 5 3.25 1.297 
DIG_11 Finite element simulations are used for troubleshooting as well as process 

optimization. 
64 1 5 2.23 1.488 



 

DIG_12 Simulations interact directly with a higher-level production system (e.g., 
SCADA, MES, ERP) 

64 1 5 1.80 1.311 

DAT_1 Process data is archived completely digitally. 64 1 5 3.45 1.126 
DAT_2 All production processes include controls and auditing bodies to ensure 

conformity with internal and external requirements. 
64 1 5 3.56 1.320 

DAT_3 Quality controls are fully digitized and archived. 64 1 5 3.17 1.279 
DAT_4 (Short-term) changes in the production plan are fully and transparently 

integrated into the existing control systems. 
64 1 5 2.97 1.357 

DAT_5 Process data is collected completely automatically. 64 1 5 2.42 1.206 
DAT_6 In the event of a failure of the production control system, production can be 

carried out completely manually if necessary (until repairs are made). 
64 1 5 3.78 1.362 

DAT_7 The provision of data for internal purposes is completely digital. 64 1 5 3.25 1.113 
DAT_8 The data collected is transparent and used for analysis and comparison. 64 1 5 3.00 1.141 
DAT_9 The value chain (purchasing, logistics, production, sales, after-sales service) is 

fully digitized and can be viewed transparently by all areas of the company. 
64 1 5 2.83 1.121 

DAT_10 Data is always the basis for improving the business process. 64 1 5 3.31 1.220 
DAT_11 Sufficient IT security is ensured at all digital levels (data security and protection 

of all systems). 
64 1 5 3.84 1.224 

ATT_1 There is a clearly defined digitization strategy in the company. 64 1 5 2.83 1.077 
ATT_2 There is a dedicated person responsible for digitization issues (internal or 

external). 
64 1 5 2.86 1.435 

ATT_3 The management level promotes the digital transformation in the company in a 
credible manner and believes that progressive digitization will ensure the 
company's success in the long term. 

64 1 5 3.33 1.235 

ATT_4 Digitization solutions that have already been implemented make an important 
contribution to business success, especially during the ongoing Corona crisis. 

64 1 5 3.36 1.302 

ATT_5 Digitization solutions that have already been implemented have increasingly 
led to redundancies in your company in the past. 

64 1 5 2.09 1.519 

ATT_6 Workers and employees in the company fully welcome digitization and digital 
transformation in the company. 

64 1 5 3.13 .968 

ATT_7 The productivity of your company is much higher than that of your competitors. 64 1 5 2.95 .785 
ATT_8 The economic success of your company (profit) is significantly higher than that 

of your competitors. 
64 1 5 2.92 .841 

DIG Mean from DIG_1 to DIG_12 64 1 5 2.42 .898 
DAT Mean from DAT_1 to DAT_11 64 1 5 3.24 .792 
ATT Mean from ATT_1 to ATT_8 64 1 5 2.93 .735 

 
In the next step, the variables DIG, DAT, and ATT were computed as an amalgamation of the underlying 
indicators. The resulting Cronbach´s alpha values (CBA_DIG=.875; CBA_DAT=.860; CBA_ATT=.779) 
are above the recommended threshold of 0.600 and therefore, ensure the internal consistency of the 
respective scales (Hair Jr. et al., 2014; Heath and Jean, 1997).  
Table 7 shows the result of the correlation analysis. Thereby, the results showed no significant correlations 
between DIG and DAT (.212), highly significant correlations between DIG and ATT (.435**), and highly 
significant correlations between DAT and ATT (.583**). 

Table 7. The Austrian metal forming industry: Correlations between DIG, DAT and ATT. 

 

 
DIG 

 
DATA 

 
ATT 

 
DIG Correlations (Pearson) 1 .212 .435** 

Significance (2-tailed)  .093 .000 
N 64 64 64 

DAT Correlations (Pearson) .212 1 .583** 
Significance (2-tailed) .093  .000 

N 64 64 64 
ATT Correlations (Pearson) .435** .583** 1 

Significance (2-tailed) .000 .000  
N 64 64 64 

The statistical analysis of the conducted survey demonstrates the differences between theoretical and 
practical state-of-the-art in this specific industry segment. Reviewing the degree of automation and 



 

digitalization (DIG), a majority of participating companies did not fulfill the requirements for the 
implementation of Industry 4.0 technologies according to the literature (e.g., CPPS, DT). This hypothesis 
is supported by the results of the DAT block, which reveals a lack of effective data gathering and, as a 
result, intransparency of a majority of production process outside the main domain. Despite this, data 
visualization and user-friendly HMIs are already standard. In contrary, commitment and therefore, 
willingness to change from involved staff on different levels can be observed. For the adaption of the first 
lecture concept, the following main outcomes can be stated: 
 

 Basic knowledge about ERP/MES/PPS systems are mandatory; 
 Knowhow about SCADA related technologies and tools are a requirement to work in this industry 

segment; 
 Enhancing valid data gathering can add significant value to a majority of participating companies, 

although the importance of this skill is not recognized by most of them; 
 Numerical simulation of production processes, IIoT, Big Data solutions, as well as, the ability to 

integrate (numerical) simulations into the production network are a distinguishing factor for 
potential employees and can therefore, be seen as an asset for applicants that are capable of using 
these tools.  

 
4.2 Research methodology and results: Questioning participating engineering students 

 
For the design of the respective survey for students, the third block (for companies ATT) was changed to 
LEC (lecture: what requirements students actually have on a transdisciplinary lecture?). Additionally, 
questions within the item blocks DIG and DAT were adapted according to more accurate scientific 
definitions and extended with upcoming technologies that have the potential to become future standards in 
the metal forming industry segment. This approach should ensure that future engineering experts also have 
the fundamental knowledge to execute independent LLL in this field of interest if necessary. For an 
upcoming analysis of potential deviations between students from different engineering disciplines and study 
progress, the enrolled field of study, as well as, study progress (bachelor, master or PhD) were additionally 
surveyed.   
In order to gain a valid overview about student’s actual knowledge and abilities, a total of 3495 students 
from the Montanuniversität Leoben in Austria were surveyed. From the total number contacted, 234 
questionnaires (6.70%) were completed, valid, and therefore, usable for the subsequent statistical 
procedures.  Following the same tests for representativeness as in section 4.1, the results can be seen as 
valid. For the operationalization, the same LIKERT scale as for the company survey was used (Armstrong 
and Overton, 1977; Lippe, 2011).  

Table 8. Engineering students at the Montanuniversität Leoben: Survey scope and results from valid responses. 
 

Item 
 

 
Text N 

 
Min. 

 
Max. 

 
Mean 

 
Std.Dev. 

 
DIG_1 Can you distinguish between the terms ‘digitization’ and ‘digital transformation’? 233 1 5 2.41 1.122 
DIG_2 Can you define the term ‘digitization”? 232 1 5 2.91 1.155 
DIG_3 Are you familiar with the term ‘internet of things’ or ‘industrial internet of things’ 

and can you define it? 
232 1 5 2.88 1.429 

DIG_4 Are you familiar with and able to define the term ‘cyber physical systems’ or 

‘cyber physical production systems’? 
233 1 5 2.23 1.335 

DIG_5 Can you define the term ‘human machine interface’ and do you know what is 

meant by it in industrial practice? 
230 1 5 2.56 1.296 

DIG_6 Are they familiar with the definition and distinction of ‘big data’ in an industrial 

context? 
234 1 5 3.13 1.243 

DIG_7 Can you define the term ‘digital twin’? 231 1 5 2.64 1.465 
DIG_8 Do you know the difference between a ‘digital model’, ‘digital shadow’ and 

‘digital twin’? 
232 1 5 1.76 1.196 

DIG_9 Do you know what exactly is meant by ‘retrofitting’ in the context of digitization? 232 1 5 1.69 1.205 



 

DIG_10 Can you define the terms ‘vertical and horizontal integration’ in production? 234 1 5 2.31 1.462 
DIG_11 Are you familiar with the basic concepts of IT security in an industrial context? 232 1 5 2.27 1.252 
DIG_12 Do you know the ‘OSI reference model’? 233 1 5 1.58 1.150 
DIG_13 Are you familiar with the term ‘cloud computing’ and do you know what it 

means? 
231 1 5 3.06 1.360 

DIG_14 Are you familiar with the concepts of change management in the industry? 231 1 5 2.44 1.422 
DIG_15 Are you familiar with the basics of data and database management? 232 1 5 3.04 1.383 
DAT_1 Are you familiar with the different levels of the automation pyramid? 234 1 5 2.11 1.203 
DAT_2 Do you know one or more of the following programming languages: Python, R, 

C, C++, Java? 
234 1 5 3.44 1.479 

DAT_3 Can you define the term ‘MES’? 232 1 5 1.76 1.299 
DAT_4 Can you define the term ‘ERP System’? 233 1 5 2.21 1.572 
DAT_5 Can you define the term ‘SCADA’ in the context of production? 232 1 5 1.62 1.106 
DAT_6 Do you know the most common protocol formats in the context of production 

planning and control? 
232 1 5 1.65 1.062 

LEC_1 In general, would you be interested in your own course on the fundamentals of 
digitization and digital transformation in industrial practice? 

226 1 5 4.43 .837 

LEC_2 Would you like to see most of the required theory taught via the Moodle platform 
(anytime access, text, image and video material)? 

225 1 5 4.31 1.000 

LEC_3 Would you like a significant portion of the course to include practical components 
(demonstration of various technologies in a digital factory)? 

227 1 5 4.57 .786 

LEC_4 Would you welcome the opportunity to work on a case based on reality as a 
project manager? (Management of a digitalization project)? 

226 1 5 3.96 1.082 

LEC_5 Would you welcome the opportunity to briefly present such a project as part of 
the course? (Presentation technique in practice)? 

227 1 5 3.60 1.220 

LEC_6 Do you feel able to take over project management or assistance in a digitization 
project in industrial practice? 

223 1 5 2.78 1.299 

DIG Mean from DIG_1 to DIG_15 234 1 5 2.46 .837 
DAT Mean from DAT_1 to DAT_6 234 1 5 2.14 .927 
LEC Mean from LEC_1 to LEC_6 227 1 5 3.94 .655 

 
As with the company survey, the variables DIG, DAT, and LEC were computed as an amalgamation of the 
underlying indicators. Similarly, the resulting Cronbach´s alpha values (CBA_DIG=.899; 
CBA_DAT=.811; CBA_LEC=.688) are above the recommended threshold of .600 and therefore, ensure 
the internal consistency (Hair Jr. et al., 2014; Heath and Jean, 1997). Table 9 shows the results of the 
correlation analysis. Thereby, highly significant correlations were found between DIG and DAT (.788**) 
and DIG and LEC (.222**). However, the results showed no significant correlations between DAT and 
LEC (.106).   

Table 9. Participating engineering students at the Montanuniversität Leoben: Correlations between DIG, DAT and LEC. 

 

 
DIG 

 
DAT 

 
LEC 

 
DIG Correlations (Pearson) 1 .778** .222** 

Significance (2-tailed)  .000 .001 
N 234 234 227 

DAT Correlations (Pearson) .778** 1 .106 
Significance (2-tailed) .000  .110 

N 234 234 227 
LEC Correlations (Pearson) .222** .106 1 

Significance (2-tailed) .001 .110  
N 227 227 227 

 
The analysis of the questionnaire’s results reveals a very low degree of knowledge regarding Industry 4.0 
enabling and corresponding technologies. Furthermore, knowhow defined as mandatory from the industry’s 

point of view is specifically lacking within the majority of the participants. This evaluation indicates a 
fundamental change in the scope of the first concept of the lecture, changing the weighting of the topics of 
module I to more fundamental technologies topics (e.g., automation technologies, SCADA, MES).  



 

Additionally, the authors used an ANOVA to calculate significant differences in the variables DIG, DAT, 
and LEC between the bachelor, master, and PhD students (Figure 5). The results showed highly significant 
differences in the variable DIG (F=4.248; Sign.=.001), significant differences in the variable DAT 
(F=4.248; Sign.=.015), but no significant differences in the variable LEC (F=.393; Sign.=.676).  
These results implicate that the lecture can be executed similarly for all students, without considering their 
academic study progress. Furthermore, this study reveals that in the past, no educational efforts at the 
university, independent from the degree level, were able to successfully build up knowledge in a majority 
of Industry 4.0-related topics, especially data management, to engineering students. 
 

 
Figure 5. Differences in the mean value of the defined item blocks: comparison between bachelor, master and PhD 
students. 

To identify potential differences in initial knowledge about the lecture’s topics, students were grouped 

according to two summary disciplines:  
 
 Core manufacturing disciplines (CMD): engineering disciplines that have a direct connection to 

manufacturing processes (e.g., mechanical engineering, metallurgy and materials science, industrial 
logistics, industrial energy technology) 

 Supportive manufacturing disciplines (SMD): engineering disciplines that are indirectly related to 
manufacturing processes or the metal forming environment (e.g., raw materials engineering, recycling) 

 
In this case, the results showed no significant differences in the variable DIG (T-value=-.715; p-
value=.475), no significant differences in the variable DAT (T-value=-.203; p-value=.839), and no 
significant differences in the variable LEC (T-value=-.249; p-value=.804) between the CMD and SMD 
groups. Therefore, additional analysis of single disciplines was not executed. The results of this analysis 
are illustrated in Table 10. 
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Table 10. Correlation between CMD and SMD.  
  

Sample 
 

N 
 

Mean 
 

Std.Dev. 
 

Std.Err. 
 

DIG CMD 189 2.401 .790 .058 
 SMD 26 2.522 .917 .180 

DAT CMD 189 2.090 .872 .064 
 SMD 26 2.128 1.117 .219 

LEC CMD 185 3.927 .646 .048 
 SMD 23 3.964 .782 .163 

 
The feedback from participating students regarding the lecture design leads to the conclusion that the 
general scope, as well as, proposed learning methodologies are reasonable and will result in proper 
engagement from participating students. The relatively low score regarding question LEC_6, as well as, 
within the DIG and DAT item block implies that the learning objectives initially defined (section 3) are 
suitable.  
 

4.3 Identified knowledge gap: engineering students vs. Austrian’s metal forming industry 
 
The authors evaluated significant differences between the student sample and the company sample in the 
variables DIG and DAT. The results showed no significant differences in the variable DIG (T-value=.296; 
p-value=.768) but highly significant differences in the variable DAT (T-value=-8.668; p-value=.000) 
between the student sample and the company sample. The descriptive results are displayed in Table 11.   

Table 11. T-Test – Descriptive Statistics: correlation between industry segment and engineering students.  

 

 
N 
 

Minimum 
 

Maximum 
 

Mean 
 

Std.Dev. 
 

DIG 298 1 5 2.451 .849 
DAT 298 1 5 2.372 1.006 

  
Sample 

 
N 
 

Mean 
 

Std.Dev. 
 

Std.Err. 
 

DIG Students 234 2.459 .837 .055 
 Companies 64 2.423 .898 .112 

DAT Students 234 2.135 .927 .061 
 Companies 64 3.236 .792 .099 

 
Especially in the data segment, a significant gap between actual knowledge of engineering students and 
requirements from potential employers can be seen. This result is particularly interesting, as companies 
from the Austrian’s metal forming sector are already behind in terms of effective and efficient data 
management for Industry 4.0 purposes compared to literature.  This context will be considered in the final 
lecture redesign, to be able to prepare future experts in the metal forming field for their career and thus 
enhance respective companies’ performance in a digitalized working environment. 

5 Result based lecture redesign – didactical concept 
 
For the sake of comprehensibility, the result section is divided into three parts. In subsection 5.1, the 
adaptions regarding scope based on results from 4.1 and 4.2 for the initial concept (section 3) are 
demonstrated. In 5.2, the changes in learning methods as a result of the adaptions made are described. In 
5.3, the further improvement of the initial lecture based on the PDSA cycle is defined, ensuring 
competitiveness and ergo, enable the University to use this didactical framework and corresponding lecture 
as a basis for the successful transformation or creation of other transdisciplinary lectures. 
Figure 6 shows the resulting redesign approach, based on the implications from sections 2, 3 and 4. 



 

 
Figure 6. (Re)design approach of a state-of-the-art digitalization and digital transformation lecture: a stakeholder-
oriented approach.   

 
5.1 Lecture redesign: Adaptions in scope 

 
The technical fundamentals of the fourth industrial revolution are mainly the scope of the first two modules 
of the initial lecture design (Figure 4, Table 1, Table 2). Based on the analysis of participated engineering 
students and metal forming companies, adaptions in scope and scope weighting within these two modules 
were conducted, as illustrated in Table 12 (module I) and Table 13 (module II). 

Table 12. Adaptions made in module I based on results of the executed stakeholder analysis 
 

Module I: 
Initial scope  

 

 
Initial 

duration (h) 
 

 
Adapted scope 

 
Adopted 

duration (h) 

Introduction into opportunities and issues 
of digitalization technologies in the metal 

forming environment 

2 
 

Introduction into fundamentals of automation 
and networking technologies and the 

correlation with digitalization technologies in 
the metal forming environment 

3 (+1) 

Fundamentals of digitization, including 
sensor and actuator technologies  

7 
 

No adaption 7 (-) 

Fundamentals of digitalization, including 
networking technologies, state of the art 
protocols, interfaces, data management 

and IT-security  

7  
 

Additional fundamentals of Computer 
Integrated Manufacturing (CIM), MES and 

ERP 

15 (+8) 

The importance of CPPS and 
corresponding HMI in the metal forming 

environment 
 

7 
 

Fundamentals of CPPS and HMI  5 (-2) 
 

Definition of Big Data, AI, DT and DS 
within the metal forming industry  

7 
 

No adaption 7 (-) 

 



 

Table 13. Adaptions made in module II based on results of the executed stakeholder analysis 
Module I: 

Initial scope  
 

 
Initial 

duration (h) 

 
Adapted scope 

 
Adopted 

duration (h) 
Practical demonstration of the 

fundamentals of networking technologies, 
state of the art programming languages 

and resulting layer architecture at the SFL  

2 
 

No adaption 4 (+2) 

Practical demonstration of a developed 
CPPS and corresponding HMI at the SFL  

2 
 

No adaption 2 (-) 

 
The identified lack of knowledge about fundamentals in production technologies, as well as, industry 
requirements on knowledge about SCADA systems lead the authors to the conclusion to increase the 
workload on the fundamentals of these technologies, in theory (Table 12) and practice (Table 13). As CPPS 
are not focus of the industry and due to the lack of required knowledge from potential participants point of 
view, a decrease in focus on this Industry 4.0 concept was defined.   
As a result of the higher amount of required workload (9 hours), the preparation time for the final 
examination (initially 20 hours), based on a group presentation (Table 4) will be adapted. To ensure fair 
grading, a new concept for the performance examination was developed.  
 

5.2 Lecture redesign: Adapted didactical concept 
 

Prerequisites & Admission 
The language of instruction is English. The selection procedure is based, on the one hand, on submitted 
qualification certificates (diploma, work certificate) and on the other hand, on the respective positions in 
the curriculum.  
Prerequisite for admission to the course is the fulfillment of one of the following qualifications: 
 
- Completed bachelor's degree or degree from a university of applied sciences in a relevant field of study 
- Prerequisites and position of the course in the respective curriculum 
- Freely accessible for all enrolled students at the Montanuniversität Leoben  
 
The decision on admission is made by the scientific management on the basis of the submitted 
qualifications. 
 
Number of participants 
The maximum number of participants is 100. Two lecturers take turns in the practical part, due to 
COVID-19 divided into groups of 5 students each, i.e. 10 groups per lecturer in the practical, 2 hours 
each, divided into 3 days per unit (currently one practical unit per group is planned). Depending on the 
current pandemic restrictions, the delivery of the practical sessions will be adapted to ensure the safety 
and health of all participants. 
 
Target group 
This compact course is aimed at students from all fields of study who are interested in digitization concepts 
and their practical implementation. In addition, a certain affinity for the development of innovative solution 
approaches with regard to the challenges in the digital transformation is essential. 
 
Learning outcomes 
After successful completion of this lecture, students should be able to:  

 
(i) create and evaluate concepts for the digitalization in metal-forming-related production systems 
(ii) apply the theoretical concepts in a case study 



 

(iii) apply and implement them together with experts from different disciplines 
(iv) understand and implement the applied procedures in practice based on the theoretical and practical 

knowledge acquired. 
 
Teaching and learning concept 
In the sense of "constructive alignment" according to Biggs, the teaching and learning concept is 
aligned with the learning outcomes, the teaching and learning activities and the final assessment. The 
focus of the concept is participant orientation and for this the method of Ruth Cohn of topic-centered 
interaction is used to place topics, questions or ideas in the center and these are worked on by the 
participants in mutual exchange. Accordingly, all teaching and learning materials are designed to meet 
the needs of the target group. The selection of the main topics was made by means of an extensive 
survey of potential students and industry needs. The conceptual design, implementation and results of 
the surveys are described in Chapter 4. 
 
Through the experience and competence of the lecturer, the integrated course conveys, on the one hand, 
fundamentals and in-depth knowledge that are essential for understanding and assessing current 
digitization processes in industrial practice. Fundamentals and theory are illustrated and reflected by 
concrete practical examples. 
 
The course is modular in a blended-learning format. In modules I to III, the teaching content is 
essentially conveyed through compact lectures with the help of multimedia support, as well as, in 
interactive phases (workshops, question rounds, etc.). The four modules are coupled and are each held 
in the summer semester over a period of 2 months. Blocks 2 and 4 are held as classroom sessions and 
blocks 1 and 3 as online learning via the platform CISCO WEBEX. In addition, the theory blocks are 
supported by synchronous and asynchronous teaching methods. This supports the more flexible 
scheduling of the learning content for students. 
 
For the conclusion, a presentation "Elevator Pitch" (Module IV), as well as, a final discussion on the 
chosen methods and theories will be held, to ensure the highest possible practical relevance. 
 
Duration, structure and scope 
The university course consists of a total of 4 blocks and includes 2 semester hours of 50 contact hours and 
25 hours of self-study, for a total of 2.5 ECTS credits. 
 
Assessment 
The assessment includes the active participation in the course, as well as, the contribution and 
presentation of the case study and a short final discussion on the chosen methods and theories in the 
case study. To reduce the workload for the final examination and further enhance fairness and 
transparency in final grading, the group presentation initially developed is replaced by a short stand-
alone version. Within this presentation, which should not exceed five minutes (‘Elevator Pitch’ (EP)), 
participants should demonstrate a possible solution to a case study previously handed out within 
module III. The prepared case study will include different aspects from all previous modules, whereas 
the given information within ensures that a suitable outcome can be realized within the calculated 
(reduced) preparation time of 11 hours. The case studies prepared are slightly different for each 
participant, ensuring comparable but not identical solutions are proposed. The style, as well as, media 
mix used for the presentation is not restricted in any direction, allowing each candidate to choose what 
fits best to her/his needs. In order to actively involve the participants in the evaluation process and the 
results, each student is asked to evaluate his or her fellow for the performance in the EP scenario 
according to the criteria listed in Figure 7 (Peer assessment). Consequently, both technical and soft 
skills knowledge should be deepened and reflected upon by following this approach.  



 

 

 
Figure 7. Fellow evaluation of a student’s performance on the final elevator pitch. 

 
Assessment regulations 
This presentation contributes to 75 % of the final grade. After the presentation, a short discussion with the 
respective teacher is carried out, in which related theory to the presented topic is discussed. The students´ 
performance within this discussion is also part of the peer review process. Additionally, the performance 
of the candidate within this discussion contributes to an additional 25 % and is the only contribution to the 
final grade awarded by the corresponding teacher.  
 
Students are required to work independently on a case study (beginning of module 3) from an industrial 
context. The example will be handed out to the students by the instructor. In the final presentation, the 
results, including reflection and subsequent discussion, must be presented in the form of a so-called 
"elevator pitch" of max. five minutes. The presentation of the case study, as well as, the presentation itself, 
will be written down in advance and submitted to the course instructor. The medium of the presentation is 
open, different forms are desired (e.g., film, PowerPoint presentation, cards, ...). The form of presentation 
must be agreed upon in advance with the instructor. 
 
The following explanations of the elevator pitch method should be presented to the students during the 
introduction in the first module (Denning and Dew, 2012): 

 What is an elevator pitch? 
An elevator pitch is a short speech (verbal presentation) that is typically carried out within 1-5 
minutes. The pitch outlines the most pertinent information and was devised around the concept 
that you could sell your idea in the time that it took for an elevator to reach its’ designated floor. 
So how much could be said in a typical elevator journey could depend on how many floors the 
elevator needs to travel, but in most cases, it is not too long and ergo, not too much can be said. 
So, you need to make what you say count! 

 What are the typical components of an elevator pitch? 
o Introduction: Who are you and what do you do? 
o Services: What can you offer? 
o Target audience: Who is your target audience? 
o Unique Value Proposition: How can you help your target audience and why? 
o And now (next steps): What are you going to / How can you help them and what do you 

need from them? 
  
Afterwards, the applied theories and methods, as well as, their fundamentals will be summarized and 
briefly reflected upon in a short final discussion. 
 
 



 

5.3 Continuous improvement and further generalizability  
 
According to the PDSA circle (Deming, 1998; Shewhart, 1986), a continuous improvement of the lectures 
scope and teaching methods is planned. Figure 8 illustrates the methodology, where one adaptation phase 
per semester will be executed. 
 

 
Figure 8. Developed 11 steps PDSA circle for the continuous improvement process of the developed lecture. 

 
The frameworks visualized in Figure 6 and 8 can also be used for a general concept of adapting 
transdisciplinary lectures. If a new lecture has to be developed, both frameworks should be applied. If an 
existing lecture should be adapted in terms of scope or teaching methods, the developed framework shown 
in Figure 8 can be used.  

6 Conclusion and discussion 
 
The approach demonstrated in this paper has several advantages. As it was derived from a practical case, 
the usability of the framework for a transdisciplinary engineering education approach with focus on one 
specific industry segment can already be validated. However, the success of this stakeholder-oriented 
approach depends on the quality of resulting data from potential employers (the respective industry 
segment) and their potential employees (the potential participants). If no valid information gathering from 
these groups can be maintained, the resulting (re)design can be inefficient or not in scope, especially when 
data from the respective industry field is not valid. For this reason, it is mandatory for responsible lecturers 
to know their stakeholders before starting with the proposed (re)design. If this requirement is fulfilled, a 
suitable method for data gathering must be defined, where suitability depends on the target group within 
identified stakeholders (e.g., which industry segment replies to which data gathering instruments, how must 
a questionnaire be designed to reach target auditorium in the practical field, which engineering disciplines 
should participate in the academic course). Additionally, the learning methods must be aligned to the 
respective scope (e.g., grade of practical experiments within the course, estimated course size, available 
human and physical resources). 
Another advantage of the developed framework is the consideration of further improvements by an adapted 
PDSA circle, which frequently carried out allows a proactive reaction of involved teaching personnel on 
changes in the stakeholder environment. Furthermore, by requiring continuous feedback from participants 



 

during the different modules of the course, it is possible to rapidly implement changes. This approach 
ensures a higher satisfaction of participating engineering students, as their contribution to enhancing the 
quality of the lecture is clearly visible to them. As a result, a ‘PDSA-light’ is developed, beginning with the 

fourth step (Figure 8; Plan - 4.) based on given recommendations from students during the lecture(s).  
Based on the methods and framework introduced in this paper, a state-of-the-art approach for the 
development of a transdisciplinary engineering lecture, including modern teaching methods, was developed 
and by the example of a digitalization and digital transformation lecture for engineers in the metal forming 
field, successfully implemented.  

7 Outlook and Implications 
 
In today’s globalised world the topic of digital education in higher engineering education can no longer be 
detached from the idea of teaching students in a classroom, as a blended/hybrid or fully online format. It 
opens up a whole new world of comprehension and methodological flexibility. This is the reason for the 
realignment of this lecture at the Montanuniversität Leoben, to take initiative and enhance teaching 
standards in Europe to a digital and much needed level. Only through the integration of digital concepts 
into teaching can lasting solutions for the industry be created. It can thus, provide the required expertise to 
create a new digital top-notch education system for the Montanuniversität Leoben, as well as, a noteworthy 
contribution for the European Higher Education Area. 
Moreover, there is a need for uniform learning analytics in Europe and at a national level as well for 
collecting, evaluating, and making use of data based on the development of skills and knowledge in a 
targeted manner so that education systems and content can be adapted to subjective educational needs. In 
many cases, however, this approach is only in a pilot phase and for this reason, further approaches and 
holistic reforms at the university level are essential (European Commission, 2020).  
To be adequately trained for the future and to be able to design appropriate Engineering curricula, the 
educational needs and key-competencies for future Engineers must first be defined. In this regard, targeted, 
up-to-date skills intelligence (European Commission, 2020) is needed, which must be embedded in national 
competence strategies and educational systems. This will ensure that future experts have the essential skills 
and expertise to develop and implement measures for everyday challenges, such as climate change or 
resource-saving initiatives, in a sustainable world. In addition, a significant contribution can thus be made 
to cross-regional exchange to counteract the brain-drain phenomenon and to legal migration. 
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Abstract:  
 
This paper describes the transformation of a rolling mill aggregate from a stand-alone solution to a fully integrated cyber 
physical production system. Within this process, already existing load cells were substituted and additional inductive and 
magnetic displacement sensors were applied. After calibration, those were fully integrated into a six-layer digitalization 
architecture at the Smart Forming Lab at the Chair of Metal Forming (Montanuniversitaet Leoben). Within this 
framework, two front end human machine interfaces were designed, where the first one serves as a condition monitoring 
system during the rolling process. The second user interface visualizes the result of a resilient machine learning algorithm, 
which was designed using Python and is not just able to predict and adapt the resulting rolling schedule of a defined metal 
sheet, but also to learn from additional rolling mill schedules carried out. This algorithm was created on the basis of a 
black box approach, using data from more than 1900 milling steps with varying roll gap height, sheet width and friction 
conditions. As a result, the developed program is able to interpolate and extrapolate between these parameters as well as 
different initial sheet thicknesses, serving as a digital twin for data-based recommendations on schedule changes between 
different rolling process steps. Furthermore, via the second user interface, it is possible to visualize the influence of this 
parameters on the result of the milling process. As the whole layer system runs on an internal server at the university, 
students and other interested parties are able to access the visualization and can therefore use the environment to deepen 
their knowledge within the characteristics and influence of the sheet metal rolling process as well as data science and 
especially fundamentals of machine learning. This algorithm also serves as a basis for further integration of materials 
science based data for the prediction of the influence of different materials on the rolling result. To do so, the rolled 
specimens were also analyzed regarding the influence of the plastic strain path on their mechanical properties, including 
anisotropy and materials’ strength.    
 
 

 
KEYWORDS: Cyber Physical Production System; Retrofitting; Digitalization; Digital Twin; Machine Learning; 
Smart Forming Lab; Industry 4.0; 

 
 
1 Introduction 
The ongoing fourth industrial revolution forces 
manufacturers around the globe to face significant 
changes in their possibilities to plan and steer production 
processes and overlying operations (Zhong et al. 2017). 
Despite all the advantages the connection and network 
technologies offer (e.g. digital value chain, one-piece flow 
concept), there are crucial thresholds to overcome in order 
to implement digitalization technologies in a successful 
and sustainable way. These thresholds can be divided into 
investment (economic related) and socio-cultural 
(management and psychology related) challenges. 
Regarding investment issues, especially SMEs face a 
serious problem, as most digitalization approaches are 
highly scalable, making the amortization time for 

necessary investments much longer for this kind of 
businesses (Müller et al. 2018). This also includes the 
required human capital to implement infrastructural 
changes within a company. To sustain the digital change 
in the manufacturing environment, responsible managers 
must be aware of potentials and possible threats on the 
technical as well as working environment layer      
(Akkaya 2019). 
To contribute to the solution of this issues, this paper 
focusses on two main objectives:  
 
a. Reducing the investment costs for smaller companies 

by using mainly open source software (SW) and cost-
effective but suitable hardware (HW), 

b. Development of a resilient Cyber Physical 
Production System (CPPS), which can be used to 
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educate engineering students and therefore future 
production managers as well as other interested 
parties from the manufacturing industry segment in 
the topic of digitalization and associated 
technologies. 

 
In order to create a case study which fulfills the 
requirements of (a) and (b), an already existing metal 
forming aggregate at the Smart Forming Lab (SFL) at the 
Chair of Metal Forming (CMF) of the Montanuniversitaet 
Leoben was chosen (Ralph et al. 2020). For this purpose, 
the CMFs rolling mill aggregate was used, as it can serve 
as an ideal example of how retrofitting from sensor 
application up to implemented machine learning 
algorithms can be integrated successfully in a low cost 
(LC) resilient digitalization layer architecture (Ralph, 
Woschank et al. 2021). This brownfield approach is also 
a common initial state within the metal forming and 
metallurgical environment, as the production asset life 
span tends to be significantly higher than in other industry 
segments (Ball et al. 2020; Elkins et al. 2004). Especially 
considering SMEs and their lower investment budget, 
brownfield approaches dominate when it comes to 
digitalization approaches in comparison to corresponding 
greenfield investments (Sorensen et al. 2019). 
 
2 Fundamentals of the rolling process and 

CPPS 
Within this chapter, the most important characteristics of 
the rolling process as well as a common definition of a 
CPPS is introduced. Based on these definitions, the case 
study will be elaborated, beginning with the initial state 
(3), followed by digitization (4) and digitalization (5) and 
the developed data driven (black box) digital twin setup 
(6) (Ralph and Stockinger 2020).  
 
2.1 The rolling process 
According to DIN 8580, rolling belongs to the 
manufacturing processes of forming under compressive 
loads and to the group of direct forming processes. During 
the process, a sheet material is formed through the roll gap 
between at least two rotating rolls, leading to a reduction 
in the cross-section of the rolled material (fig.1) (German 
Institute for Standardization). 
 
During the rolling process, a force flow occurs through 
the roll stand as a result of the load applied to the 
processed material. All parts of the roll stand, that are 
directly or indirectly affected from the force flow, 
undergo an elastic deformation (Wang et al. 2017). 
Affected parts are the rolls, roll bearings, load cells, 
adjusting elements and the roll stand itself. This elastic 
deformation causes the roll gap to increase, from the 
initial (set) gap s0 to s1, whereas the difference between is 
defined as ∆s (fig. 1). 
 

 ∆𝑠 = 𝑠1 − 𝑠0  (1) 
 

 
Fig. 1   Geometry change during rolling 
 
The end thickness of the rolled sheet h1 can be calculated 
according to the Gage-meter equation (Lee and Lee 
1999). The Gage-meter equation specifies the expected 
exit thickness of the rolled material h1 depending on the 
initial roll gap height s0 and the elastic deformation, which 
depends on the rolling force FR and the stand modulus C. 
The elastic deformation of the aggregate is characterized 
by C and corresponds to the slope of the roll stand module 
in the rolling gap diagram. 
 

 
ℎ1 = 𝑠0 +  

𝐹𝑅

𝐶
 (2) 

 
The rolling gap diagram shows the rolling force FR over 
s0 and initial material thickness h0 (fig. 2). The point of 
intersection between the roll stand characteristic curve, 
defined by slope C, and the materials characteristic curve, 
the material module in the rolling gap diagram is called 
the working point (A). A provides information on the exit 
height of the rolled sheet h1 as a function of FR (Fig 2).  
It is important to note that the influence of sheet metal 
width is not considered as influencing factor of C, but 
included in the material module. One hypothesis of this 
paper is, that the friction state and resulting rolling force 
differences mainly depend on the sheet geometry. 
Therefore, the contact surface in the roll gap increases the 
resulting rolling force significantly more than the effect of 
a rougher surface topology. In addition, the approximated 
linear behavior of C is given for one s0. The second 
hypothesis stated and to be elaborate more deeply in 
section 6 is the non-linear behavior of C with different s0 
and overall difference between h0 and h1, ∆h. 
 

 ∆ℎ = ℎ0 −  ℎ1  (3) 
 
 Similar to hypothesis 1, an influence on the material 
behavior (e.g. due to work hardening) can be observed, 
although the authors state that the force flow through the 



 

 

machine system also contributes significantly to the 
change in h1, which as a consequence results in a 
dependency of C on ∆h. 
 
 

 
Fig. 2   Work diagram for rolling for a defined s0. 
 
 
2.2 Cyber Physical Production Systems (CPPS) 
CPPS can be defined as a derivative from Cyber Physical 
Systems (CPS), especially tailored to the production 
segment. Although CPS and CPPS are heavily researched 
in the past years, there is still no standardized definition 
for this technology framework (Wu et al. 2020).  
According to Wu et al. (2020), the most accepted 
definition can be derived from the work of Cardin (2019) 
who extended a previous definition from Monostori et al. 
(2016) to the following statements: 
 

i. CPPS are superordinate systems within systems. 
 

ii. CPPS consist of cooperative elements, those 
connect with each other situationally 
appropriate, on and between all different levels 
within the production environment, from the 
processes itself, through involved machines up 
to overlaying networks, e.g. MES or ERP-
systems. 

 
iii. CPPS enhance decision making processes in 

real-time in a resilient and robust way, with 
respect to time as well as foreseen and 
unforeseen events (Wu et al. 2020). 

 
The fulfillment of i.), ii.) and iii.) for the case study 
presented in this paper will be demonstrated in the 
following chapters. In order to do so, these very broad 
conditions have to be concretized. Despite this 
requirements, the practicability for learning purposes as 

well as financial restrictions (e.g. for the implementation 
in a SME or academic learning environment) were 
considered. Most important, the user friendliness of a 
CPPS will also be in focus of this study. Therefore, the 
development of shop-floor friendly, intuitive Human 
Machine Interfaces (HMIs) are a central point in this 
work. Additionally, low-cost solutions to avoid expensive 
maintenance and update plans were used wherever 
possible. Table 1 summarizes the specifications of the LC 
user centered CPPS developed within this paper. 
 
Table 1   LC user centered CPPS: further adaption and 
concretization (Wu et al. 2020) 

 Criteria Concretization 
I. System in a 

system 
Data exchange and process 
adaptions on other upcoming 
process steps based on 
gathered data from the rolling 
mill through a unified 
network layer 
 

II. Situationally 
appropriate 
connection and 
data transfer on 
different layers 

Change in data storage 
frequency based on actual 
machine status (on/off) and 
state dependent data 
publishing route within the 
layer system 
 

III. Enhance 
decision making 
process in real 
time and state 
dependent 

Implementation of a machine 
learning algorithm that 
predicts results of the actual 
process step and upcoming 
process steps in near real time 
including the capability of 
adaption of the prediction due 
to foreseen and unforeseen 
events 
 

IV. User centered 
GUI 

Two user friendly front end 
and two (IT-skilled) user 
friendly back end interfaces 
 

V. Low-cost and 
resilient design 

Finding the optimum of cost-
effective HW and SW 
solutions under the restriction 
of resilient, robust and easy to 
use solutions  

 
3 Initial machine and digitalization set up 
This chapter describes the initial state of the existing 
infrastructure at the SFL, whereas (3.1) focusses on the 
IT-layer structure and (3.2) shows the initial state of the 
rolling mill system to integrate into the layer architecture.  
 
3.1 The six-layer architecture at the SFL 
Figure 3 shows the initial layer system implemented at the 
SFL. Before the integration of the milling system, a CNC 
lathe (type EMCOTURN E65) was connected with a 



 

 

power measurement unit into a condition monitoring 
system, powered by a WAGO controller with integrated 
warm memory storage (type PFC200 G2 2ETH RS). The 
unrefined data (e.g. phase currents, voltages) is pre-
processed, agglomerated and uploaded on the internal 
server structure at the SFL, using the structured text (STS) 
based WAGO e-cockpit SW, after A/D transmission via 
additional modules (type WAGO 750-494). Within the 
STS environment, an additional condition monitoring 
system and corresponding GUI was programmed. The 
server-stored data is extracted autonomously with a 
Python based script, running on the same server 
environment. This script extracts and transforms the data 
into a set up SQL database, from which most important 
project management (PM) data is published near real time 
on a PHP based PM tool (Ralph, Sorger et al. 2021).  
The layer architecture was initially created with the 
purpose of connecting different machine systems at the 
SFL step by step, including not only condition monitoring 
and PM-related data, but also process data and, as final 
objective, resulting in different LC user centered CPPS. 
Therefore, the five criteria defined in table 1 were already 
considered within the planning and development of this 
structure. 
 

 
Fig. 3   Initial state of the six-layer architecture at the SFL 
(Ralph, Sorger et al. 2021) 
 
3.2 The rolling mill system 
The rolling mill system at the SFL at the CMF is a duo 
rolling mill and was built and put into operation in 1954. 
The hand wheel at the top of the rolling mill is used to 
adjust the height of the roll gap (fig. 4) and rotates the 
guide spindle via gears, which increases or decreases the 
height of the rolling gap depending on the direction of 
rotation. An adjustment of 0.07 mm per gear tooth was 
used as a parameter for adjusting the roll gap height. 

 

 
Fig. 4   Rolling mill system: initial state 

 
More than a decade ago, the machine was equipped with 
two load cells to measure the rolling force on the left and 
right guide spindle. Figure 5 shows the initial load cell 
mounted between the left guide spindle and the roll chock. 
The data acquisition during a milling process, in order to 
obtain the actual FR with corresponding time increments, 
was done with a proprietary Windows XP based DAQ 
system, with a maximum data transmission frequency of 
22.5 Hz. 
 

 
Fig. 5   Load cell of the left guide spindle: initial state  



 

 

4 Retrofitting and Digitization 
The following subchapters describe the sensor retrofitting 
(4.1) as well as corresponding digitization (4.2) and 
therefore coupling of the calibrated sensors to the SFLs 
six-layer architecture.  
 
4.1 Sensor retrofitting 
In order to choose appropriate sensors to meet the criteria 
of a LC user centered CPPS, the required specifications 
were defined in first instance. Based on these 
requirements, the sensor technology was selected. In 
addition to the required magnitude of the sensors, 
parameters such as linearity and resolution play a major 
role in the resulting quality of the recorded data and in the 
selection of suitable sensor technologies. Furthermore, the 
maximum resolution of the DAQ system must be taken 
into account, as in most terms the bottleneck is not the 
measurement of an analog signal or the signal transfer 
through an A/D converter but the buffering and writing of 
gathered data on the controlling unit (fig. 3, data 
acquisition layer). In order to implement a machine 
learning algorithm based on eq. 1 and eq. 2, table 2 shows 
the minimum quantities to be measured to achieve such a 
system. The measurement range is a result of the rolling 
mill systems specifications.  
 
Table 2   Necessary quantities and corresponding range to be 
measured 

System Parameter Measurement range 
FR 0-400 kN 
s0 0-20 mm 

 
For the measurement of FR, the already existing load cells 
had to be replaced, as the maximum measurement range 
of each cell was defined with 150 kN. Furthermore, after 
calibration and analysis of the resulting data, a significant 
deviation between both cells and high non-linearity in 
each measurement system was detected, indicating a 
malfunction within at least one of them. 
For the new load cell measurement system, despite the 
specified range, the following requirements had to be 
fulfilled:  

a) The measuring system must be able to withstand 
an overload to avoid measuring errors and 
shortened lifespan. 

b) The load cells must have a high linearity in order 
to be able to resolve the rolling force to a 
sufficient degree during the rolling process. 

 
Additionally, the initial roll gap s0 and with it, the change 
of the gap during the rolling process had to be measured 
with sufficient linearity and within the defined range. 
Based on heuristic knowledge and basic calculations, the 
deflection of the roll gap could be defined in the range of 
tenths of a millimeter, while the maximum height of the 
roll gap is constricted by the machines’ geometry to 
20 mm. Since the linearity of a sensor is specified as a 

percentage of the measuring range, two conditions must 
be met:  

c) The sensor must be able to measure a distance 
greater than the maximum adjustable roll gap 
and  

d) must have a high linearity in order to be able to 
resolve the deflection of the roll gap to a 
sufficient degree during rolling. 

 
To meet the requirements of c), d), and the defined 
measurement range in a cost-effective manner, a linear 
variable differential transformer (LVDT) sensor was 
chosen. In addition, an angle sensor was attached to the 
gear of the hand wheel for demonstration purposes to 
students and other interested parties at the SFL.  
Table 3 shows the finally selected sensors and their 
specifications. 
 
Table 3    Selected sensors and their specifications  

Sensor Type Range Linea
rity 

Output 
signal 

Kern CR 
20000-
1Q1 
 

Load cell 0-200kN 0,1% 2mV/V 

Waycon 
LV-S-
25-300-
KA05-
L10 
 

LVDT 0-25mm 0,1% n/a 

ASM 
PH36 

Magnetic 
multiturn 
encoder 

31x360° ± (2°+ 
0.015
%) 

4-
20mA 

 
Table 4 defines the external electronics used to transfer 
the sensor signals into a suitable analog signal for the 
DAQ system. For the LVDT sensor, the external 
electronics from the same manufacturer was used. 
External electronics from a third-party supplier were 
installed for the load cells. These mV transmitters can be 
individually configured to the specifications and 
requirements of the load cell and can therefore also be 
used if the load cells are replaced. 
 
Table 4   External electronics and specifications  

External 
electronics 

Type Sensor Output 

PR Electronics 
2261 
 

mV 
transmitter 

Load cell 0-20mA 

Waycon LV-S-
25-300-KA05-
L10 

integrated  
electronic 
(n/a) 

LVDT 4-20mA 

 
In order to mount the selected sensors on the rolling mill, 
mechanical adaptions had to be made. Since the diameter 
of the new load cells is larger than the width of the roller 
supports, the entire contact surface at the bottom of the 



 

 

load cell cannot be supported. This could lead to a 
falsification of the measurement results. In order to be 
able to use the entire contact surface of the new load cell, 
an intermediate plate was installed between the roll chock 
and the load cell. To connect the guide spindle with the 
load cell, an additional adaptor was designed to transmit 
the rolling force coaxially (fig. 6, fig. 7). 
 
 

 
 
Fig. 6 Construction scheme of the new designed load 
measurement unit 
 

 
Fig. 7 Resulting implementation of the new designed load 
measurement unit 
 
The LVDT sensor was mounted between the two roll 
chocks. In order to prevent interferences with the 
inductive measuring principle, the sensor holder is made 
of non-magnetic material (fig 8). 
 

 
Fig. 8   Mounted LVDT sensor 
 
The multiturn encoder was mounted directly on the 
machine rack. The resulting angle after manual roll gap 
changing is derived via the connection of the sensor with 
one of the two main gears at the mill, which are connected 
to the hand wheel via a defined gear transmission ratio. 
To consider the surface roughness of the gear and 
therefore ensure contact between the sensor and the gear, 
a pre-stressed spring is applied to ensure continuous 
contact (fig. 9). 
 

 
Fig. 9   Mounted multiturn encoder 
 
4.2 Digitization 
In order to convert the analog signals from the external 
electronics (table 4) into signals suitable for computer-
aided processing, the devices were connected to the 
already existing WAGO node 1 (fig. 3, data acquisition 
layer). This node consists of a WAGO PFC200 G2 2ETH 
RS controller coupled with I/O modules (fig. 10). The I/O 
modules used are from the same supplier (type 750-453) 
and are designed for transforming analog signals in the 
range of 0 to 20 mA. As already mentioned, the resolution 
depends on the DAQ, which can resolve the analog 
signals of the sensors in 15 bit, therefore the analog signal 
of each sensor can be resolved in 215 equivalent steps. 



 

 

 
Fig. 10   Controller and I/O modules 
 
Figure 11 shows the corresponding connections of the 
three mill sensors with the used I/O module.  
 

 
Fig. 11 Circuit diagram of the connection rolling mill 
sensors/DAQ 
 
Figure 12 shows the final digitization framework for all 
three sensor types, from the physical measurement entity 
to the implementation into the layer framework. It is 
important to note that the used WAGO DAQ system isn’t 

the most cost efficient possibility to connect the machine 
within such a system (e.g. Arduino based microcontroller 
would have been a more low-cost alternative). Under 
consideration of practicability and longtime 
maintainability, the use of a standardized framework 
which operates on industrial standards like the WAGO 
system or other comparable solutions was chosen. 
Another reason for this decision is the user friendly back 
end GUI, that comes within the SW and that allows non 
IT-personnel to supervise and even extend programmed 
functionalities with basic IT knowledge (e.g. the usage of 
predefined module blocks within the SW instead of STS 
coding). This advantages also apply for the first 
developed front end GUI, which is also based on the same 
framework.   

Fig. 12   Sensor connection and A/D conversion 



 

 

5 Digitalization 
This chapter describes the transformation of digitalized 
sensor data within the layer architecture. After A/D 
conversion, resulting digital signals have to be 
transformed into real physical quantities. This is done 
within the data preprocessing layer (fig. 3) using STS 
based programming and an additional Python script. 
Additionally, state dependent data gathering frequency is 
set within this layer (subsection 5.1). Subsection 5.2 
describes the adaption of the first front-end GUI for the 
rolling mill setup.  
 
5.1 Data pre-processing layer 
Before working with the digitized signal data is possible, 
transformation of the resulting data into corresponding 
physical quantities has to be done. This operation is 
carried out within the data pre-processing layer (fig. 3) 
using the STS environment provided by the WAGO SW. 
All three sensor types can be calibrated linearly under 
consideration of their characteristic linearity (table 3). As 
a result, a linear equation was programmed for each input 
channel, whereas the two individual coefficients were 
derived as a result of the range restriction of the specific 
device.  
 

𝑓(𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦) = 𝑎 + 𝑏 ∗ 𝑏𝑖𝑡_𝑣𝑎𝑙𝑢𝑒  (4) 
 
 Figure 13 visualizes the transformation of the current 
signal into its physical value on the example of the load 
cells used schematically.  
 
 

 
Fig. 13   A/D input signal to physical quantity transformation: 
example rolling mill 
 
Table 5 displays the resulting coefficients for all three 
sensor types on the basis of eq. (4). 
 
 
 

Table 5   Coefficients for the linear characteristic curve of 
implemented sensors 

Physical 
quantity 

a b Range 

FR [kN] 
 

0.0 6.104E-3 0-200 kN  

s0, s1 [mm] 6.5536E+3 
 

9.537E-4 0-25 mm 

deg [°] 6.5536E+3 4.257E-1 0-31x360° 
 
The resulting FR is then obtained summarizing the values 
from both load cells within the STS environment. This 
approach also ensures that eccentric sheet insertion can be 
measured and do not result in a higher measurement error. 
To fulfill requirement II. (table 1), two different sampling 
rates for all rolling mill channels were defined. The first 
one is enabled continuously. In this case, 1 Hz was set 
within the STS. This low frequency is used to work as a 
simple condition monitoring system, giving warnings 
over the WAGO GUI (section 5.2) whenever sensor 
values are out of calibrated range. For the actual 
processing, via a trigger that can be manually turned on 
within the GUI, a sampling frequency of 500 Hz was 
determined. In this case a Boolean variable is turned 
TRUE, which activates the higher rate, whereas the lower 
frequency stays enabled. After the actual process, the user 
can end the measurement again manually through the 
GUI, which sets the Boolean equal FALSE again. The 
major advantage through the manual activation is the 
possibility of measuring unconventional processes or 
trials, which would not be measured if the higher 
sampling rate would be activated by a force or dilation 
triggered algorithm (e.g. very thin sheets with low 
resulting FR, very soft material with low ∆s).While the 

continuous data gathered is directly stored on the CMFs’ 
internal server, the actual 500Hz measurements have to be 
refined additionally before data science and machine 
learning algorithms can be used on it. This refinement 
algorithm is carried out within a simple Python script, 
which deletes numerical artefacts and duplicates from the 
given raw data. Numerical artefacts are lines that may 
occur due to buffering issues on the used controller unit. 
As the controller is initially not able to obtain frequency 
rates above 100Hz, a script that uses the controllers’ RAM 

instead of warm memory was written and implemented in 
the STS environment. Nevertheless, the buffering 
operation stores data points until a defined extend, before 
submitting these data points to be actually written on the 
controllers’ internal memory. During the writing process, 
doubled data points within the same time stamp occur. 
Additionally, lines with zeros or NaN values are a result 
of this procedure. To avoid errors at upcoming 
mathematical operations (6.2, 6.3), these data points and 
corresponding rows have to be filtered first.  
 
5.2 WAGO based GUI 
The already existing WAGO GUI was extended with an 
additional layer for the rolling mill system, taking into 
account the preferences of involved technicians on the 



 

 

shop-floor level. The GUI runs on the controlling unit and 
is available through the corresponding IPv4 address with 
all computing devices within the SFL network. Figure 14 
shows the STS programmed rolling mill layer within the 
GUI. Additional to the two resulting loading force values 
and sum of both, another variable is visualized, which is 
named “max load until reset”. This variable returns the 

maximum value stored at a current measurement. If the 
“Max Reset” button is pressed, the variable is set to 0. The 
same function is given for the variable “max roll gap until 

reset”, to be able to see the maximum height and force 

within a measurement, whereas all other variables defined 
return the real time value from the respective sensors. 
Depending on the status of the Boolean “Run 

Measurement”, the sampling rate is whether 1 Hz 

(Boolean = FALSE, button=GREEN (fig. 14) or 500 Hz 
(Boolean = TRUE, button = RED). The parenthesized 
integer next is coupled with a counter in the STS, which 
counts up for each measurement executed within the same 
day. If the day within the timestamp changes, the counter 
is reset to 0. As the automatic export of high frequency 
measurement data is done in single files, named “YEAR-
MONTH-TRIAL-NR”, the Python filter algorithm can 
easily distinguish between appending files within the 
defined folder. In order to prevent overloading of the 
rolling stand and power train, the visualization of force 
only contains a range of 0-300 kN. This ensures that the 
aggregate is not permanently operated at its load limit.  
 

     
Fig. 14   Rolling mill layer of the WAGO GUI  
 
As mentioned in 5.2, the data storage from the I/O module 
is executed directly in the hot memory of the controller. 
Therefore, another layer was developed, which shows the 
actual CPU load of the respective controller. If this load 
exceeds 60 %, writing and therefore accurate data 
gathering from connected sensors cannot be guaranteed. 
This value is reached within this setup if both connected 
aggregates are activated and the sampling frequency of 
the rolling mill exceeds about 0.560 kHz. If 60 % are 
reached, another Boolean in the STS is set TRUE and a 
warning signal is shown at the main display. Figure 15 
shows the CPU load GUI both connected machines 
disabled. 
 
 

 
Fig. 15   CPU load layer of Node 1: connected machines turned 
off  
 
6 Machine learning algorithm and decision 

enhancing digital twin 
After successful digitization (section 4) and digitalization 
(section 5), requirement III. (table 1) has to be 
implemented. For this purpose, the connected rolling mill 
system had to be equipped with a suitable and efficient 
algorithm to support decision making within the milling 
process. As the correlation between the most important 
variables (section 2.1) is rather complex in practice, a data 
driven modelling approach was chosen in first instance. 
This data driven model should be resilient, robust and 
easy to understand. Therefore, the complex and non-linear 
real-physical interrelationships between the machine 
system and processed material were discretized and 
transformed into a system of interdependent linear 
equations, calculated within the Python environment 
(section 6.4). To avoid unrealistic or unreproducible 
results, a statistical approach was chosen (section 6.1). 
Additionally, as the focus in this work lies on the 
calibration of the stand module C with all relevant 
dependencies, a well characterized material (section 6.2) 
was chosen for the first setup. As a result, the second 
front-end GUI mentioned initially in this paper is 
presented and explained (section 6.5). 
 
6.1 Experimental setup 
According to hypothesis 1 and 2 (section 2.1), the stand 
module C is a function of the processed sheet width b as 
well as ∆h and s0. Despite this statement, another 
important influencing factor in practice is the usage of an 
appropriate lubricant. Therefore, the following 
dependencies have been investigated within this 
experiment:  
 

𝐶 = 𝐶(𝑠0, 𝑏, ∆ℎ, µ𝑙𝑢𝑏𝑟𝑖𝑐𝑎𝑛𝑡)  (5) 
 
For the initial calibration, µlubricant describes the change 
between sufficient lubrication and no lubrication. To be 
able to develop a data driven prediction model for the 
rolling process, three different rolling schedules (V1, V2 
and V3) were defined (table 6). The main objective of this 
setup was to get a broad set of data points for different 
s0(∆h), to investigate the influence of different 



 

 

combinations of these variables. To ensure comparability, 
an initial thickness of 6mm and a final s0 of 0.5mm was 
defined for each rolling schedule. 
 
Table 6 Defined rolling schedules for data gathering 

Nr. s0(V1) 
[mm] 

s0(V2) 
[mm] 

s0(V3) 
[mm] 

1 4.50 5.00 5.00 
2 3.50 4.00 4.50 
3 2.75 3.50 4.00 
4 1.75 2.50 3.50 
5 1.00 1.50 3.00 
6 0.75 1.00 2.50 
7 0.50 0.50 2.00 
8 - - 1.50 
9 - - 1.00 
10 - - 0.50 

 
By varying the rolling schedules according to table 6, it is 
possible to investigate if different cumulated strain paths 
(eq. 6) have an influence on the elastic behaviour of the 
mill stand and therefore C. 
  

 𝐶 (∆ℎ𝑖𝑗 , 𝑠0𝑘
) = ! 𝐶 (∆ℎ𝑙𝑚 , 𝑠0𝑛

) (6) 
 
For the investigation of the influence of b, three widths 
for the initial test and calibration data setup were chosen. 
For the validation of the resulting equation system, two 
additional widths were defined, one between the three 
first and one out of initial range, to be able to proof 
interpolation as well as extrapolation capabilities of the 
system (table 7). For this validation experiments, rolling 
steps 1-4 from V1 were used, followed by a direct height 
reduction from 1.75 to 0.75 mm (table 6, s0(V1)). The fifth 
step was spared out to be able to see if the interpolation 
between known s0 would obtain valid results within the 
developed machine learning algorithm. 
 
Table 7 Defined rolling schedules for data gathering 

Nr Width 
[mm] 

Test/ 
Calibration 

Validation 

B1 150.00 X  
B2 100.00 X  
B3 50.00 X  
B4 74.50  interpolation 
B5 30.10  extrapolation 

 
To investigate the influence of lubrication on C, two 
different test series were defined, whereas test and 
calibration data sets were mirrored for both process 
friction states (table 8). 
 
Table 8 Defined rolling schedules for data gathering 

Test 
series 

Description 

T1 full lubrication 
T2 no lubrication 

 

The sheet specimen for the rolling process has to be 
entered manually (fig. 4). To avoid measuring errors due 
to deviations in the reproducibility of single process steps 
within the rolling schedule, a statistical approach has been 
chosen. For this experiment, twelve sheets for each tested 
rolling schedule, test series and width were cut out of two 
identical raw sheets. In sum, 216 sheets for the creation of 
test and calibration data were used, split into three 
different rolling schedules, three different widths and to 
different test series (table 9). To ensure a smooth 
transition into the milling system, the initial length of each 
specimen was set to 135 mm. Additionally, each sheet was 
deburred and cleaned before treatment. 
 
Table 9 Specimen classification: test/calibration data 

Test  
series 

Specimen 
nr. 

Rolling 
schedule 

Sheet 
width 

T1 1-12 V2 B1 
 13-24 V3 B1 
 25-36 V2 B2 
 37-48 V3 B2 
 49-60 V2 B3 
 61-72 V3 B3 
 73-84 V1 B1 
 85-96 V1 B2 
 97-108 V1 B3 
 
T2 

 
1-12 

 
V2 

 
B1 

 13-24 V3 B1 
 25-36 V2 B2 
 37-48 V3 B2 
 49-60 V2 B3 
 61-72 V3 B3 
 73-84 V1 B1 
 85-96 V1 B2 
 97-108 V1 B3 

 
The configuration shown in table 9 for each test series 
ensures a continuous reduction of s0. In sum, 1736 milling 
process steps were carried out to gather the required test 
and calibration data. Figure 16 shows the processed 
specimens before and after rolling. 
 

 
Fig. 16   Processed sheet specimens: rolled (T1, top); initial (T2, 
bottom) 
  
Table 10 shows the setup for the gathering of validation 
data. For this purpose, only 36 additional specimens were 
used and processed within T1 (no lubrication) and rolling 
schedule V1, whereas back up material was kept if the 



 

 

validation attempt in the resulting algorithm would fail. 
Including all process steps, a total of 1904 milling 
operations delivered output for the data driven modelling 
of the corresponding machine learning algorithm (section 
6.4). 
 
 Table 10 Specimen classification: validation data 

Test  
series 

  Specimen 
  nr. 

Rolling 
schedule 

Sheet 
width 

T2     109-124 V1 B4 
(validation)        125-144 V1 B5 

 
6.2 Deformation behavior of used material under 

rolling conditions 
The material used in this study is EN AW-1050A, also 
referred to as Al 99.5, which is considered as technically 
pure aluminum due to its low content of constituents. Pure 
aluminum shows excellent ductility, exhibiting 
exceptionally good deformation behavior even after 
severe cold working. The hardening of the material 
introduced by forming can be attributed to the 
introduction and the multiplication of dislocations during 
their migration. For deformations such as in a cold rolling 
process, the face-centered cubic (fcc) crystal structure 
determines the slip systems: primarily, slip is observed on 
{111} <110>-slip systems since the Peierl’s stress is 
lowest in this direction. The stacking fault energy of about 
170 mJm-2 in pure aluminum, which is comparatively high 
for fcc-structured metals, determines the predominant 
deformation mechanism of slip, rather than developing 
deformation twins (J P Simon 1979).  
The increase in strength introduced by cold working can 
be described in terms of increasing dislocation density. As 
a rough estimate, the dislocation density can be 
approximated by the increase in strength using eq. 7. 
 

𝜎 = 0.5𝐺𝑏𝜌
1
2 (7) 

 
In eq. 7, σ is referred to as the strength, G is the shear 
modulus of the respective material, b is the burgers vector 
and ρ is the dislocation density. The higher the dislocation 
density, the lower the mean free path between the 
dislocations. As a result of their interaction, strength 
increases due to reduced mobility. The dislocation 
increase depends on the selected forming degrees, which 
are introduced into the material at certain height 
reductions ∆h due to the rolling schedule. This increase in 
dislocations is opposed by certain softening processes 
since the condition including a high dislocation density is 
thermodynamically unstable. The most essential softening 
mechanisms represent recrystallization and recovery, the 
latter being crucial for aluminum due to the high stacking 
fault energy. For recrystallization to occur, both a critical 
degree of deformation and an elevated temperature of 
about 40% of the melting temperature are required, 
whereas both conditions are not met within this 
experimental setup (Gottstein 2004). 
During the rolling of a pure aluminum sheet, part of the 
applied forming energy is stored as deformation energy, 

the other, much larger part, dissipates in heat, driven by 
two phenomena: i.) the plastic deformation itself and 
resulting internal friction and ii.) caused by tribological 
effects at the interface between the rolls and the sheet 
metal or the lubricant. These conditions favor the 
recovery processes which are characterized by facilitated 
cross-slipping of screw dislocations and climbing of step 
dislocations, thus causing annihilation of dislocations and 
therefore decreasing the dislocation density and the effect 
of cold working. These softening processes are diffusion-
dependent, which occur at an accelerated rate under 
temperature increase, although room temperature is 
already sufficient to continue these processes to 
equilibrium when considering pure aluminum (Hasegawa 
and Kocks 1979).  
Therefore, strengthening due to cold working is already 
reduced at short time periods, leading to the conclusion 
that these processes do not have an effect on the 
corresponding strength values. Despite the recovery 
effect, the heat transfer within the tribology system is of 
utmost importance for the rolling process within this case 
study.  
Aluminum is furthermore characterized by its high 
thermal conductivity, which at approximately 220 
W(mK)-1 exceeds that of conventional steel grades by a 
factor of three. For this reason, the dissipated forming heat 
and heat generated by friction between the rolls and the 
sheet surface spreads rapidly over the entire specimen. As 
a result, the heat is more easily transferred to the lubricant 
and dissipated in this fluid. This phenomenon can have a 
substantial influence on the resulting behavior of the 
rolled specimen, especially considering different friction 
states (Ostermann 2014).  
 

 
Fig. 17 Elastic stiffness and corresponding effect on h1 during 
rolling 
 



 

 

Despite cold work hardening and thermal expansion, the 
elastic properties of the used material significantly 
contribute to the resulting process parameters in rolling. 
After the force is locally removed from the processed 
specimen, the elastic component of the strain applied 
results in an increase of the thickness h1. As a result, 
materials with a lower Young’s Modulus (YM) are 

increasing height after rolling significantly more than 
stiffer materials (fig. 17). 
 
6.3 Resulting experimental data 
As expected from plastic deformation fundamentals, the 
resulting geometry changes of the tested specimens after 
rolling varies. The maximum bearable local plastic 
deformation wasn’t exceeded at any specimen within the 

experiment, therefore the law of constant volume (eq. 8) 
applies. 
 

ln
𝑙1

𝑙0

+ ln
𝑏1

𝑏0

+ ln
ℎ1

ℎ0

=  𝜑𝑙 + 𝜑𝑏 +  𝜑ℎ  = 1 (8) 

 
According to eq. 8, l1 can be obtained if b1 and h1 as well 
as the initial geometry is known. Before the resulting test 
and calibration data is analyzed from a black box point of 
view, a first indication about whether there is a difference 
between the two data series can be made after measuring 
the resulting sheet width of each specimen. This was made 
on three reproducible locations at each specimen, 
according to figure 18. Table 11 shows the mean value at 
each measured point for each calibration and validation 
series, additionally divided into test series T1 and T2. 
 

 
Fig. 18   Sheet width measurement after rolling 

Table 11 Specimen classification: Calibration and validation 
data 

T1 Specimen 
nr. 

b1f 
[mm] 

b1m 
[mm] 

b1e 
[mm] 

test data 1-6 150.93 150.82 150.95 
calibr. data 7-12 151.10 150.84 151.13 
dev. [%]  0.11 0.01 0.12 
test data 13-18 151.02 150.90 151.02 
calibr. data 19-24 151.08 150.90 151.15 
dev. [%]  0.04 0.00 0.09 
test data 25-30 101.06 100.86 100.76 
calibr. data 31-36 100.98 100.93 101.15 
dev. [%]  0.08 0.07 0.39 
test data 37-42 101.27 100.99 101.23 
calibr. data 43-48 101.11 100.90 101.09 
dev. [%]  0.16 0.08 0.14 
test data 49-54 51.71 51.35 51.68 
calibr. data 55-60 51.56 51.34 51.56 
dev. [%]  0.29 0.02 0.24 
test data 61-66 51.19 51.00 51.22 
calibr. data 67-72 51.29 51.07 51.25 
dev. [%]  0.19 0.13 0.07 
test data 73-78 151.00 150.84 151.06 
calibr. data 79-84 151.00 150.8 150.97 
dev. [%]  0.00 0.02 0.06 
test data 85-90 101.10 100.89 101.11 
calibr. data 91-96 101.06 100.80 101.11 
dev. [%]  0.04 0.09 0.00 
test data 97-102 51.33 51.27 51.46 
calibr. data 103-108 51.33 51.27 51.59 
dev. [%]  0.00 0.01 0.24 
     
T2     
test data 1-6 151.42 151.14 151.51 
calibr. data 7-12 151.26 151.11 151.36 
dev. [%]  0.11 0.02 0.10 
test data 13-18 151.47 151.14 151.44 
calibr. data 19-24 151.45 151.10 151.53 
dev. [%]  0.01 0.03 0.06 
test data 25-30 101.08 100.79 101.24 
calibr. data 31-36 101.35 100.84 101.36 
dev. [%]  0.27 0.06 0.12 
test data 37-42 101.17 100.88 101.11 
calibr. data 43-48 101.25 100.97 101.18 
dev. [%]  0.08 0.09 0.07 
test data 49-54 51.55 51.11 51.45 
calibr. data 55-60 51.56 51.17 51.45 
dev. [%]  0.03 0.12 0.01 
test data 61-66 51.06 50.83 51.03 
calibr. data 67-72 51.15 50.79 51.01 
dev. [%]  0.17 0.07 0.03 
test data 73-78 151.54 151.14 151.53 
calibr. data 79-84 151.50 151.10 151.46 
dev. [%]  0.03 0.03 0.05 
test data 85-90 101.18 100.85 101.07 
calibr. data 91-96 101.28 100.95 101.16 
dev. [%]  0.11 0.10 0.09 
test data 97-102 51.70 51.25 51.65 
calibr. data 103-108 51.88 51.37 51.68 
dev. [%]  0.36 0.24 0.05 



 

 

As visualized in table 11, the highest deviation in sheet 
width is 0.36 %, which leads the authors to the statement 
that no differentiation between test and calibration data 
can be made. This also supports the theory, that the 
population of investigated specimens is valid. According 
to section 6.2 and from a materials science point of view, 
there should also be no significant difference between 
sheets of same initial width that were rolled in different 
rolling schedules. Table 12 shows the standard deviation 
of all widths within a test series (V1, V2 and V3). 
 
Table 12 Standard deviation of width for T1 and T2 

Test  
Series 

Dev(b1f) 
[mm] 

Dev(b1m) 
 [mm] 

Dev(b1e) 
 [mm] 

T1    
B1 0.17 0.16 0.22 
B2 0.22 0.14 0.25 
B3 

 

0.23 0.19 0.23 

T2    
B1 0.14 0.13 0.15 
B2 0.14 0.12 0.27 
B3 0.31 0.26 0.29 
B4

 0.22 0.14 0.30 
B5 0.15 0.15 0.09 
    
Dev(T1/T2)    
B1 0.26 0.20 0.28 
B2 0.19 0.13 0.26 
B3 0.28 0.24 0.26 

 
6.4 Additional material related tests 
The higher deviation between T1 and T2 within the same 
width indicates differences between the two test series, 
which, according to the authors, is the result of a changed 
tribology system. To investigate if this change 
significantly contributes to the resulting material 
behavior, tensile tests were carried out additionally. In 
order to characterize the mechanical anisotropy of the 
rolled sheets properly, a small but normed geometry was 
chosen to obtain stress-strain curves with 0°, 45° and 90° 
to the rolling direction for B1 and B2. For B3, only 0° 
specimens could be realized with scientific validity. It is 
important to note that the resulting h1 of each specimen 
varies as the final s0 was kept constant but the resulting 
cumulated force diverges significantly and therefore, the 
elastic spring back behavior as well as work hardening 
and force related heat expansion of the used Aluminum 
alloy contributes to the final thickness to different extends 
(fig. 19). Table 13 shows the initial properties of each 
specimen used for additional tensile tests. For each sheet, 
three tensile tests specimens for each examined direction 
were produced, one sheet per corresponding test data 
series for T1 and T2. Figure 19 shows the normed 
specimen geometry, according to DIN EN 10002-1 
(German Institute for Standardization), for the performed 
tensile tests. 

 
Fig. 19   Tensile test: initial geometry (German Institute for 
Standardization) 
 
Table 13 Statistical comparison of h1 and resulting cross section 
for all tensile test specimens 
Specimen 
nr./ 
Schedule 

Test 
Series 

Initial  
Width 
[mm] 

Thickness 
h1 [mm] 

Cross  
Section 
[mm2] 

  2 / V2 T1 B1 1.34 ±0.01 13.52 ±0.12 
  2 / V2 T2 B1 1.50 ±0.01 15.25 ±0.15 
14 / V3 T1 B1 1.33 ±0.01 13.39 ±0.09 
14 / V3 T2 B1 1.46 ±0.01 14.82 ±0.13 
26 / V2 T1 B2 1.20 ±0.01 12.10 ±0.10 
26 / V2 T2 B2 1.37 ±0.01 13.89 ±0.21 
38 / V3 T1 B2 1.20 ±0.01 12.14 ±0.18 
38 / V3 T2 B2 1.35 ±0.01 13.56 ±0.16 
50 / V2 T1 B3 1.01 ±0.00 10.23 ±0.06 
50 / V2 T2 B3 1.17 ±0.00 11.87 ±0.04 
62 / V3 T1 B3 1.01 ±0.01 10.24 ±0.10 
62 / V3 T2 B3 1.13 ±0.00 11.41 ±0.02 
74 / V1 T1 B1 1.22 ±0.00 12.30 ±0.12 
74 / V1 T2 B1 1.33 ±0.01 13.33 ±0.13 
86 / V1 T1 B2 1.10 ±0.00 11.05 ±0.11 
86 / V1 T2 B2 1.21 ±0.01 12.14 ±0.20 
98 / V1 T1 B3 0.95 ±0.01   9.58 ±0.16 
98 / V1 T2 B3 1.03 ±0.00 10.34 ±0.03 
 
The higher deviation in the cross section is a result of the 
sample production, which were cut out with a water jet 
cutter at the CMF. More important, it can be stated that 
the resulting h1 for sheets that undergo the same treatment, 
except friction state (T1, T2) vary significantly. For each 
state, the height of rolled sheets without lubrication is 
effectively higher than with.  As a result of the higher FR 
applied, the sum of elastic suspension of stand parts 
involved in the force flow during the rolling process is 
significantly higher. Therefore, the same degree of 
forming is not achieved as with the T1 series, and the plate 
thickness of the T2 series does not reach the same h1 as 
that with lubrication, especially when large height 
reductions within the process were set. Figures 20 and 21 
show the comparison of a specimen with B1 (fig. 20) and 
B2 (fig. 21) for both friction states. A small but 
reproducible effect on strength due to anisotropy can be 
observed.  



 

 

 

 
Fig. 20   Specimen nr. 14: mechanical anisotropy T1/T2 

 

 
Fig. 21   Specimen nr. 86: mechanical anisotropy T1/T2 

 
To investigate the influence of friction, the following 
figures 22 – 24 show the direct comparison between a 
specific rolling direction and both investigated test series. 
Figure 22 compares different tensile test specimens for 0°, 
45° and 90° to rolling direction, for specimen nr. 14 (B1). 
The same comparison was made in figure 23 for specimen 
nr. 86 (B2). In figure 24, the smallest width within the test 
and calibration series (specimen nr. 98, B3) is compared 
in rolling direction.  
 

 
 

 
 

 
Fig. 22   Direct comparison: specimen nr. 14 
 



 

 

 

 

 
Fig. 23   Direct comparison: specimen nr. 86 
 

 
Fig. 24   Direct comparison: specimen nr. 98 

The initial strip is commonly produced by hot rolling. 
This treatment already elongates the grains in the rolling 
direction, therefore the grains align themselves along a 
preferred orientation. The resulting microstructure 
exhibits a so-called rolling texture, as visualized in 
figure 25. The resulting anisotropy of the grain orientation 
also commonly affects the mechanical properties. The 
considerably larger number of grain boundaries to be 
overcome 90° to the rolling direction generally leads to an 
obstruction of the sliding processes. To determine the 
extent of anisotropy on sheet materials, tensile specimens 
are therefore regularly extracted and tested at 0°, 45° and 
90° to the rolling direction. The recovery discussed in 
section 6.2, however, leads to another phenomenon that is 
essential in explaining the low influence of anisotropy on 
macromechanical properties (fig. 20 and 21), namely the 
polygonization of small-angle grain boundaries. This 
effect results in a substructure that forms globular sub 
grains. In optical microscopy images (OMI), this 
rearrangement is difficult to detect. In this case, the Barker 
electrolytic etching was used to visualize the 
microstructure (figures 25-28), only showing the 
superposed deformation structure. It can be assumed that 
the progressed recovery stage in the pure aluminum used 
in this experimental setup is most likely responsible for 
the similar deformation properties between the directions 
in the tensile test (Humphreys and Hatherly 2007). 
 

 
Fig. 25 Exemplary OMI: initial microstructure in rolling 
direction (T1 /specimen nr. 86, 0°) 
 

 
Fig. 26 Exemplary OMI: microstructure after the rolling process 
(T1 /specimen nr. 86, 0°) 



 

 

 
Fig. 27 Exemplary OMI: microstructure after the rolling process 
(T1 /specimen nr. 86, 45°) 
 

 
Fig. 28 Exemplary OMI: microstructure after the rolling process 
(T1 /specimen nr. 86, 90°) 
 
Table 14 summarizes the resulting ultimate tensile 
strength (UTS) of each tested specimen under 
consideration of tested degree to rolling direction. 
 
Table 14 Statistical comparison of UTS for tensile test 
specimens 
Nr./ 
Test  
Series 

UTS 
(0°) 
[MPa] 

UTS 
(45 °) 
[MPa] 

UTS 
(90°) 
[MPa] 

  2 / T1 166.54 ±1.82 160.98 ±0.86 171.27 ±1.23 
  2 / T2 162.35 ±1.26 156.40 ±0.46 164.10 ±1.46 
14 / T1 162.21 ±1.48 159.41 ±0.64 170.82 ±0.45 
14 / T2 158.53 ±0.45 153.37 ±1.97 164.18 ±0.87 
26 / T1 165.22 ±1.28 162.41 ±1.26 172.05 ±0.56 
26 / T2 163.94 ±1.28 160.67 ±1.80 167.75 ±1.24 
38 / T1 167.75 ±1.02 160.28 ±1.22 171.86 ±0.41 
38 / T2 162.29 ±1.68 157.19 ±2.30 167.47 ±1.04 
50 / T1 167.56 ±0.64 - - 
50 / T2 170.85 ±1.11 - - 
62 / T1 169.02 ±1.24 - - 
62 / T2 169.76 ±0.42 - - 
74 / T1 165.02 ±0.93 163.23 ±0.53 172.00 ±0.72 
74 / T2 169.76 ±0.42 156.65 ±2.08 164.96 ±1.89 
86 / T1 167.95 ±1.45 164.54 ±1.00 173.38 ±1.13 
86 / T2 169.39 ±0.45 163.29 ±1.43 172.80 ±1.72 
98 / T1 169.32 ±2.15 - - 
98 / T2 177.61 ±0.98 - - 

 
The low but significant differences in UTS between 
different measured directions of one specimen can be 
explained as stated previously. The reproducible 
deviations in UTS between different specimens are a 
result of geometric differences, as specimens with 
different h1 and therefore initial cross sections have 
different damage mechanisms dominating. The thinner 
the respective specimen, the more the plane stress state 
dominates, which results in higher resistance against 
damage and therefore slightly higher UTS values.  
 
6.5 Data based experimental results 
As stated in section 6.4, the higher resulting friction 
within the tribological system of test series T2 result in a 
higher elastic suspension of the stand components of the 
rolling aggregate. This phenomenon leads to a higher 
increase of h0 as well as h1 in T2 compared to T1. Despite 
the resulting higher h1, the rolling mill and especially the 
mill stand has to apply higher forces than in the tribologic 
system with adequate lubrication. Figure 29 demonstrates 
this effect on the resulting FR on an exemplary rolling 
force hysteresis, where the same specimen from T1 is 
compared with T2. The effect of higher FR for T2 occurs 
in all different widths, as figure 30 (B2) and 31 (B3) 
demonstrate. 

 
Fig. 29   Example of a rolling hysteresis: B1 for s0 = 1.75mm 

 
Fig. 30   Example of a rolling hysteresis: B2 for s0 = 1.75mm 



 

 

 
Fig. 31   Example of a rolling hysteresis: B3 for s0 = 1.75mm 
 
Figure 32 shows a direct comparison between B1, B2 
andB3 from the same rolling schedule and s0, for T1 (fig. 
32, top) and T2 (fig. 32, bottom). 

 

 
Fig. 32   Rolling hysteresis: resulting FR as a function of initial 
sheet width: comparison between T1 (top) and T2 (bottom) 
 
The unnatural angular curve progression is a result of the 
sample rate during rolling (500 Hz). To obtain smoother 

results, a controlling unit (section 4.2, fig. 10) capable of 
higher frequency would have to be implemented. As this 
plot only serves as a complementary visualization and the 
maximum valid sample rate is sufficient for the 
development of the machine learning algorithm (section 
6.6), the controlling unit is not changed within this case 
study. 
For the development of the algorithm described in this 
paper, the maximum rolling force FR is of importance, 
whereas the curve progression is not relevant for the 
resulting digital twin. The usage of the maximum 
resulting force as FR can be seen as valid, as the deviation 
between this value and corresponding data points within 
the rolling process doesn`t exceed 0.05 %. Figure 33 
shows an exemplary FR(time) curve from a rolling process 
carried out. 
 

 
Fig. 33 Exemplary rolling force-time curve 
 
Figure 34 shows the resulting data points for each process 
step within the test and calibration data setup, divided in 
test series and initial widths. In this diagram, a clear 
correlation between FR, ∆h(s0), Bi and Ti can be identified. 
As expected, test and validation data points for the same 
B, V and T cannot be separated. Therefore, no difference 
between those sets will be made in the following 
visualizations. 

 
Fig. 34 Resulting data points (1736) from the test and calibration 
data series 



 

 

As described in section 6.4, a difference between the 
maximum roll gap (s) and the resulting h1 of a specimen 
occurs. This effect can be demonstrated by plotting the 
same data points as a function of the maximum s (fig. 35 
and 36, yellow surface) and h1 (fig. 35 and 36, blue 
surface). As visualized in figure 34, the difference 
between T1 (fig. 35) and T2 (fig. 36) can be seen due the 
offset of data points to higher FR with T2. The 
dependencies described in eq. 6 (section 6.1) and the 
effect of cold working (section 6.2) result in higher rolling 
forces with increasing ∆h and decreasing s0. As expected, 
the difference in the tribological system results in 
significantly higher FR in T2 in comparison to T1. Also, 
higher FR correlates with increasing initial sheet width. 
These effects are cumulative, resulting in a maximum 
offset of FR between B1/T2 and B3/T1 at maximum value 
of the product ∆h*s0. 

  
Fig. 35 Comparison between resulting s (yellow plane) and h1 
(blue plane) for B1, B2 and B3 within test series T1 
 

 
Fig. 36 Comparison between resulting s (yellow plane) and h1 
(blue plane) for B1, B2 and B3 within test series T2 

In order to validate the stated hypotheses regarding the 
correlation of introduced variables, the validation data 
were implemented into the T2 plane (fig. 37). For a better 
visualization, only the V1 rolling schedule for each 
introduced B was plotted within. The resulting diagram 
shows a clear linear correlation between different widths 
and the corresponding s0 of V1. Furthermore, the 
modification of V1 at s0 = 1.75 mm (with a following s0 of 
0.75 mm instead of 1.00 mm) also supports the 
correlations stated by the authors within this paper. 
 
 

 
 
Fig. 37 Implementation of validation data: comparison with V1 
of test and calibration data sets 
 
6.6 Result based machine learning algorithm 
 
According to the statements made in the last subsections 
of section 6, the developed machine learning algorithm 
operates on linear interpolation and extrapolation of given 
test, calibration and validation data (fig. 38). The first 
setup is based on the logic demonstrated in figure 2, 
whereas the material curve was also modeled linear. For 
each given FR and corresponding h1, the algorithm 
interpolates with linear weighting functions between the 
initial data to obtain the working point A. This results in 
a new h1, which is used as new input h1 within a loop. As 
a result, a complete rolling schedule is obtained and in situ 
adapted during a carried out rolling process. To develop 
this digital twin further and realize actual machine 
learning, final data of an executed rolling scheme is added 
to the respective initial data set (T1 or T2) resulting in an 
overall adaption of the linearized functions for the 
characteristic rolling mill and material curve. Although it 
would be possible to use predefined machine learning 
algorithms (e.g. using the sci.py kit available within the 
Python environment), this logic has the advantage of a 
simple adaptability for other materials. Furthermore, it is 
easy to understand and adapt for learning students and 
other interested parties within the SFL at the 
Montanuniversität Leoben.  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 38 Fundamental logic for the Python based rolling schedule iterator 
 



 

 

6.7 Machine learning GUI  
The logic visualized in figure 38 (section 6.6) serves as a 
basis for the second front end GUI. This GUI is also 
developed using the open source version of Qt Creator. 
The corresponding code was programmed using C++ and 
translated directly into Python within an appropriate 
translation framework (e.g. qtpy). As a result, the 
visualization can be started within the Python 
environment (e.g. using PyCharm or MS Visual Studio). 
Figure 39 shows the resulting GUI for an exemplary 
rolling mill schedule. The possibility of including other 
materials is also considered.  
 

 
Fig. 39 Resulting front end GUI for the rolling scheme iterator 
 
The highlighted sequence (fig. 39, green) indicates that no 
adaptions have been made and the generator calculated 
the complete scheme from the given input parameters (fig. 
39: Material, Rolling Force, h0, demanded final h1 after 
schedule, T1 or T2). After a rolling step, the real h1 can be 
measured on two points (fig. 39, End height front end h1, 
End height back end h1). Additionally, a change in width 
(according to eq. 8, section 6.3) or lubrication can be 
typed in, which also changes the result according to the 
fundamental logic (fig. 38). Figure 40 demonstrates the 
influence of varying these parameters after a rolling step. 
 

 
 Fig. 40 Changed parameters based on fig. 38 after the first 
rolling step: increased width and deviation between measured 
and predicted h1 
 
The user-given input parameters are triggering the 
machine logic. Furthermore, these parameters were also 
written into the initial database, which serves as 

fundament for the whole logic. Based on this data base 
extension, the logic is able to shift the boundaries for the 
extrapolation (if a B, s0 out of the initial widths is given) 
or generate new interpolation data points within the given 
boundaries. Regardless which condition is met, the 
algorithm changes its final interpolation logic by 
changing material and stand related slopes and intercepts. 
As this adaption is made via linear weighting functions 
between a small step increment, the influence on the 
change is rapidly decreasing with increasing distance 
from the generated data points. As the point cloud gets 
denser with every data input, the prediction gets more 
accurate with each rolling process carried out. Figure 41 
shows an overview of this loop. 

  
Fig. 41 Overview of the interaction between the database, the 
corresponding logic (back-end GUI) and visualization (front-
end GUI) 
 
7 Resulting LC user centered CPPS 
For the development of a low-cost user centered CPPS, 
the chosen forming equipment, a rolling mill aggregate 
built in 1954, was digitized and digitalized from the 
implementation of state of the art sensor technology to the 
integration of a self-learning digital twin with 
corresponding GUI. For all necessary development steps, 
cost efficient but robust solutions were chosen, in order to 
be able to use this case study as a possible framework for 
SMEs and (academic) learning factories to develop CPPS 
based on similar technologies. Another focus within this 
paper, a wide and high usability for all interested parties 
of the developed solution was realized with two different 
front end and two easy to understand back end GUIs. The 
usage of low-cost and mostly open source software 
solutions is another advantage of this framework, as 
continuous updates are made in the open source 
community and expensive software maintenance is not 
necessary. Figure 42 shows the final data flow at the 
rolling mill, from analog sensor signals to the Python 
logic.  



 

 

 

 
Fig. 42 Resulting data flow for the digitalized rolling mill 

To demonstrate the fulfilment of all criteria for a LC user-
centered CPPS according to table 1, figure 43 shows the 
final integration of the system in the layer architecture. 
 

 
Fig. 43 Resulting layer architecture for the developed CPPS 
 
Depending on the state of the machine (measurement on: 
500 Hz; measurement off: 1Hz) a data flow into the MES 
is automatically enabled or not (fig. 43, red arrow).  
 
8 Conclusion and Outlook 
This paper describes the successful transformation from a 
proprietary machine system to a low-cost user centered 
CPPS. Although the resulting integrated machine learning 
algorithm is based on a purely data-driven modeling 
approach, the respective material has to be and was 
considered. Without complementary experiments, the 
number of possible dependencies between input 
parameters would result in a far more complex system. 
The usage of a e.g. neural network based algorithms could 
be an alternative. A huge disadvantage of a more complex 
logic, however, would be the missing link between real 
physical effects and resulting prediction. Especially when 
considering different, more complex materials then the 
technical pure aluminum used in this case study, an 
overfitting effect could be the result. In general, a strict 
separation between material and machine parameters is 
not possible, as the dependencies and interactions are too 
complex to distinguish without a significant error. 
To extend the demonstrated framework for other 
material/process combinations, different alloys with 
different initial conditions will be implemented in the 
future. Furthermore, with the support of more advanced 
material characterization experiments (e.g. REM/EBSD), 



 

 

the prediction of grain size and corresponding anisotropy 
as a function of the thermomechanical treatment will be 
investigated. In general, the integration of temperature as 
an additional depended variable results in a far more 
complex equation system. To solve such a system in an 
adequate and reproducible way, the integration of finite 
element analysis connected to the framework within the 
Python logic will be investigated, whereas the reduction 
of computational time can be seen as most critical within 
such simulations. To decrease this parameter, direct 
coupling of Python based input and output files will be 
included. After successful coupling, the proposed 
extended algorithm will be able to predict 
micromechanical material properties as a function of the 
thermomechanical treatment. This information can be 
used to send recommendations into the MES-layer (fig. 
43), which can optimize necessary upstream or 
downstream heat treatment processes based on this 
information.  
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Abstract 

The digital revolution, also known as Industry 4.0, offers a variety of new technologies and technological concepts for the continuous optimization 
of production and logistics processes in manufacturing enterprises. Up to now, a multitude of scholars have investigated potential opportunities, 
barriers, threads, and necessary enablers of Industry 4.0 initiatives. However, most of the recent Industry 4.0 approaches can still not resist 
practical tests due to their limited view on a small range of relevant topics. This paper introduces the research project ‘MUL4.0’ which aims to 
digitalize an entire value chain, from raw material to recycling. Based on an action-research-orientated approach, the authors use a multi-case-
study design to investigate the potential of digitalization approaches within production and logistics processes. Furthermore, the authors present 
future research activities and discuss the therefore necessary prerequisites, from a materials science, mechanical engineering, metallurgical, 
logistics engineering, and management perspective. 
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1. Introduction 

Industry 4.0, as the ongoing revolution of the manufacturing 
industry around the world, focuses on the integration of 
emerging information and communication technologies in 
traditional production and logistics processes [1]. Thereby, 
according to recent literature, current studies on digitalization 
in production and logistics can be divided into the clusters of 
1) technologies and technologies concepts, 2) enablers of 
digitalization, 3) risks of digitalization, and 4) opportunities of 
digitalization. Thereby, cluster 1 listed data science, virtual 
environments, IoT devices, automatic identification, CPS, 
location (technologies), interfaces, and decentralized 
applications as the main technologies and technological 
concepts within the framework of Industry 4.0 [2]. However, 

from a methodological point of view, it must be noted that most 
studies can be assigned to the research type of conceptual 
studies, preliminary laboratory experiments, or single case 
studies leading to a limited external validity of the established 
research findings. Therefore, the authors conclude that, despite 
some fruitful insights, most studies provide only a limited view 
on the ‘realistic’ system behavior in economic practice.  

To increase the generalizability and transferability of 
research results to manufacturing enterprises, the authors 
introduce the research project ‘MUL 4.0’ which aims to 

investigate an entire value chain, from raw material to 
recycling, based on a combination of quantitative and 
qualitative research methods.  Moreover, this paper discusses 
the necessary prerequisites from a material science, mechanical 
engineering, metallurgical, logistics engineering and 

http://www.sciencedirect.com/science/journal/22128271
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management point of view and concludes with a summary of 
potential future research initiatives. 

2. Research methodology and concept overview: MUL 4.0 

Based on the implications of relevant strategy papers from 
the European Commission, which are generally aiming at 
increasing the competitiveness of companies as micro-
economic entities through the implementation of Industry 4.0 
technologies, Austria's first digital learning factory is to be 
established in a cooperative project of four institutes or chairs 
of the Montanuniversitaet Leoben within the framework of a 
multitude of research projects. This learning factory represents 
an isomorphic representation of a fully digitalized value chain 
and should also be able to dynamically optimize processes 
based on the latest Industry 4.0 technologies. For the first time, 
in contrast to the mostly isolated basic concepts of Industry 4.0, 
holistic and sustainable measures of a digital learning factory 
derived from the fields of action 1) digitization and artificial 
intelligence, 2) resource-efficient production-oriented to 
concepts of the circular economy, and 3) human-machine 
interaction will be designed, implemented, and scientifically 
investigated. Therefore, Fig. 1 shows an overview of the 
production process and involved parties within this project. 
 

 

Fig. 1. Overview and responsibilities of respective process steps in the                      
MUL 4.0 concept [3]. 

The starting point of the digital learning factory is the 
continuous casting plant at the Chair of Nonferrous Metallurgy 
(NFM). At the NFM, a previously specified aluminum alloy is 
casted with varying process parameters and geometries and 
prepared for subsequent process steps (Fig. 1, green). From the 
beginning of the casting process, continuous identification and 
automated data acquisition (DAQ) is performed by the higher-
level tracking system, which processes the product, process, 
and logistics data (e.g., location, throughput time, etc.) and 
passes on information to the subsequent process steps. The 
processed workpiece is then transported from the NFM to the 
Chair of Metal Forming (MF), where it is first preheated and 
then formed into its final shape in two or more subsequent 
forming processes, with the possibility of reheating between 
each step. The transport itself from the NFM to the MF will be 
captured in real-time by the implemented tracking software. 

The most important process steps in terms of mechanical 
engineering, metallurgy, and materials science are mapped in 
real-time using finite element analysis (FEA) and finite volume 
analysis (FVA). Based on this FEA and FVA, real-time 
adaptations for active intervention in involved processes should 
then be possible. The Institute of Mechanics (M) (Fig. 1, violet) 
is mainly responsible for the development of the FEA-based 
digital twins based on real physical data together with the MF. 
Here, attention is also paid to the influence of thermo-kinetics, 
which leads to highly informative and accurate results about 
the current condition of the respective workpiece. The results 
of these simulations are validated and calibrated with the aid of 
appropriate quality management carried out at the NFM and 
MF. The adapted process data is fully automated and 
continuously transmitted to a Supervisory Control and Data 
Acquisition (SCADA) system already implemented at the MF, 
pre-processed, and then transferred to the higher-level tracking 
system. A similar suitable SCADA system is currently in 
development at the NFM.  

After quality management has been carried out (on a 
statistical basis and as far as possible on a practical basis), the 
finished components can be put to further use. During almost 
all process steps, there is material waste, which is also fully 
tracked from the point of origin and systematically returned to 
the NFM. This closes the cycle of the (digitalized) value chain. 

Besides the tracking system, additional simulations are 
carried out in logistics processes to be able to continuously 
optimize inventories, throughput times, adherence to 
schedules, and machine utilization. As a result, an ideal 
maintenance strategy can be systematically derived based on 
the system's behavior. The discrete event simulation used for 
this purpose can also be displayed three-dimensionally and, in 
combination with modern augmented reality technologies, is, 
thus, an important component of advanced teaching. The Chair 
of Industrial Logistics (IL) is mainly responsible for this image 
of the digital learning factory as well as the implementation, 
maintenance, and optimization of the tracking and condition 
monitoring system (Fig. 1, blue). The mainly used open-source 
and low-cost hardware and software also offers the possibility 
to educate a broad variety of engineering students of different 
disciplines as well as external parties under the premise of the 
transdisciplinary engineering education concept, which is 
displayed in Fig. 2 [4,5,6]. 

 

 

Fig. 2. Transdisciplinary Engineering Education concept [4,5,6]. 
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Fig. 2 illustrates the variety of complex influencing factors 
that affect transdisciplinary learning processes. Different 
causal mechanisms intervene in teaching and learning 
processes, and, therefore, must be considered when planning, 
implementing, and evaluating it. On the one hand, endogenous 
factors, such as previous experience, expectations, or 
motivation of teachers and participants, affect the micro-level, 
as the respective learning unit. On the other hand, exogenous 
factors, such as legal foundations, living conditions, or higher-
level goals at the meso- and macro-levels, further have a 
significant impact on the learning process. This 
transdisciplinary engineering concept will also be an integral 
part of a transdisciplinary engineering lecture, which mainly 
focuses on digitalization and its underlying technologies 
[4,5,6]. 

3. Process value chain: Holistic concept 

In a prior analysis, several gaps in current research about 
digitization and digitalization in industrial logistics were found 
[1]: 

 Many approaches to use new technologies or 
technological concepts in logistics processes do not go 
beyond a conceptual stage or theoretical validation 
and, thus, open up the demand for implementation and 
validation of the concepts in practice. 

 A common method for examining the complex 
behavior of logistical processes is the usage of discrete 
event simulation. However, the literature review 
shows a lack of attention to the use of digital twins in 
the field of industrial logistics. The combination of 
real-time production data and a discrete event 
simulation can fill this gap. Nevertheless, the potential 
benefits of such systems, as well as development 
challenges, need to be addressed. 

 The authors state that, even though current literature 
agrees on the positive impact of digitization on 
sustainability performance, research does not focus on 
the achievement of general objectives such as the 
Sustainable Development Goals (SDGs). In addition 
to this, small- and medium-sized enterprises (SMEs) 
face several barriers when implementing 
sustainability reporting (SR) in general [7]. Due to a 
lower market value, SMEs seem to have a lower SR 
quality. This circumstance is a result of an existing 
positive correlation between a company´s market 
value and the quality of SR [8]. 

 In physical as well as in digital processes, (IT-) 
security issues are a widely discussed topic [9]. 
Increased data sharing involves risks of cyber-attacks 
and the interest of certain parties to manipulate data. 

 
The MUL 4.0 lab offers several opportunities to 

implement and assess newly developed models, 
frameworks, or technologies, which have only been 
theoretically approved in the examined literature. 
According to the authors, the main contribution to research 
is the development and implementation of a holistic near-
real-time digital twin that extends material science and 

engineering-based simulations with simulation and 
visualization of the logistical processes.  

Potentially, the above-mentioned research gaps can be 
closed due to practical implementation of the technologies 
in the laboratory to  

 use real-time data to simulate logistics processes 
and forecast their output, 

 use real-time data to evaluate different scenarios, 
based on the current status in the production, 
which enables the realization of decision support 
systems for logistical purposes, 

 use real-time data to assess the environmental 
impacts of the process as well as the products and 

 visualize real-time quality, sustainability, and 
process metrics in a production data cockpit. 

 
Due to the laboratory character of the manufacturing 

system, the comparability and implementation of the gathered 
results into industrial environments with large-scale production 
and highly automated systems would lack of accuracy. Instead, 
the authors expect a similarity to environments of 
manufacturing SMEs, whose production resembles semi-
automated workshop production. 

The implementation of the near-real-time digital twin 
described above offers new possibilities to evaluate production 
plans and schedules on the fly, more precise forecasting, and 
faster exception handling during the manufacturing process, 
resulting in a more realistic factory planning.  Furthermore, 
both a dynamic allocation of transport tasks and a dynamic 
routing through the production can be achieved. Due to the 
virtual environment of the production, reinforcement learning 
algorithms can be used.  

An environment to assess and visualize sustainability and 
quality indicators of the production on the product-level in near 
real-time in workshop manufacturing could enable higher SR 
quality and shorter reaction times in case of an exceptional 
waste of energy or material. Furthermore, agent-based 
production planning and scheduling could be implemented, 
which focuses on the reduction of lead times of products with 
lower environmental impacts. Overall, material and energy 
efficiency could be increased due to new, realistic, and live 
insights in the production process and the creation of incentives 
to buy environmentally better products could be more feasible 
to potential customers due to reduced process-related costs. 

 Also, secure mechanisms to save and share recorded data 
across the supply chain could support efficient compliance with 
a potential supply chain act. 
 

To enable the proposed logistics digital twin, the assessment 
and the implementation of several technologies are necessary:  
 

 To create a valid 3D-simulation for simulating the 
material flow, a 3D-model of the laboratory setting 
must be generated. This could be achieved by new 3D-
scanning methods such as LIDAR-sensors or smart 
cameras (e.g., Azure Kinect).  

 Indoor Positioning Systems (IPS) have to be installed 
in the laboratory, including a continuous identification 
of the material flows by Auto-ID technologies. This 
should ensure the complete traceability of the material 
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flow and the localization of the means of 
transportation. 

 A suitable integration of logistics applications into the 
proposed layer structure of the FEA and FVA must be 
defined. The establishment of interfaces is necessary 
for fast and reliable information exchange between the 
applications.  

 The creation of a resilient software architecture for the 
integration of real-time data or a real-time 
initialization of discrete event simulations is crucial. 

 The scope of the sustainability assessment has to be 
defined. According to this scope, valid input data, 
emissions factors, etc., must be available. 

 Metrics that represent the environmental impact of the 
produced goods and IIoT-sensors to measure these 
metrics are to be found and implemented, e.g., GHG 
emissions during production, which arise because of 
energy usage. To capture this, electricity and gas 
meters have to be installed and integrated into the 
infrastructure. 

 Security of information sharing has to be guaranteed 
to create unalterable data that are available to all 
necessary parties in near real-time.  

 Recording production times for different products and 
their distributions, to create different production plans 
and for further investigations has to be carried out.  

4. SCADA and numerical simulation integration 

The following subchapters describe the data gathering at the 
most important aggregates within the digitalized supply chain. 
The focus lies on the interaction between the physical 
machining processes and resulting sensor data with near real-
time integration of corresponding numerical simulations. 
Therefore, the main objective is the prediction of material 
behavior with upcoming process steps, which allows the 
superordinate logistics digital twin system to optimize the 
logistic chain in terms of lead time and general production 
planning. To achieve this efficiently and effectively, a variety 
of numerical simulations were designed. Based on the results 
of these simulations, process steps will be automatically 
adapted. Despite the positive effect on logistics, desired 
material quality can be optimized, and out coming parts that 
don’t fulfill the quality requirements can be reduced [10]. 

 
4.1. Thermo-mechanical process route 

 
The numerical process chain starts at the continuous casting 

unit, which produces slabs with defined geometry made from 
raw material, followed by a cutting operation on another 
aggregate. The resulting workpieces are heated to a defined 
temperature and pre-formed in a hydraulic press or alternatively 
rolling mill aggregate, which results in either bulk or sheet 
metal-based products. 

 Depending on the desired final shape and mechanical 
material properties, additional reheating steps can be performed 
and additional forming steps within the same aggregates can be 
taken. After quality control and simulated usage, the specimen 
is transported to the NFM, refined, and finally re-melted (Fig. 
1). All machines are equipped with sensors matched to the 

measured parameters to be able to record the most important 
machine and process parameters qualitatively and 
quantitatively. 

 
4.2. Aggregates with coupled numerical simulations 

 
The Indutherm CC3000 continuous casting plant at the 

NFM is equipped ex works with a variety of different sensors 
(Fig. 3). These sensors record the crucible temperature, die 
temperature, draw path, time step of the draw path, reversing 
draw path, timestep of the reversing draw path, and resulting 
drawing force. 

 

 

Fig. 3. Continuous casting aggregate at the NFM [10]. 

Two die shapes with dimensions 6x75mm and 30x110mm 
can be distinguished to produce specimens with different 
dimensions. These determine the width b and height h of the 
specimen. The casted slab is then separated into several 
specimens of length l. The temperature in the crucible and the 
mold temperature are measured with a thermocouple of Type 
K (NiCr-Ni) or Type S (PtRh-Pt) (Tab. 1). 

 Table 1. Sensors of the continuous casting plant [11]. 

Measurement Sensor Range 

Crucible temperature 
[°C] 

Thermocouple Type K 
or Type S 

0-1200°C 

0-1500°C 

Die temperature [°C] Thermocouple Type K 
or Type S 

0-1200°C 

0-1500°C 

Draw path [mm] N/A N/A 

Timestep of draw path 
[s] 

N/A N/A 

Reversing draw path 
[mm] 

N/A N/A 

Timestep of reversing 
draw path [s] 

N/A N/A 

Draw force [N] Load cell N/A 

Process time [s] Processed by 
programming 

Processed by 
programming 
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Due to the separate location of the continuous casting plant 
and the aggregates for the next process steps, which are carried 
out at the MF (approximately eight minutes transportation 
time), there is a significant drop in the temperature of the 
specimens during transport. To achieve desired material 
behavior, the specimens are reheated in a furnace at the MF in 
the next process step to set the specimen temperature required 
for the following forming operations. To determine the 
necessary temperature and time, a Type K thermocouple (NiCr-
Ni) is added to the furnace by the retrofitting method, which 
has been adjusted to the maximum temperatures occurring in 
the furnace of up to 1200°C (Tab. 2).  

Table 2. Sensors of the furnace. 

Measured quantity Sensor Range 

Temperature [°C] Thermocouple Type K 0-1200°C 

Process time [s] Processed by 
programming 

Processed by 
programming 

 
The used main forming aggregate for bulk-forming, a 

hydraulic press, is placed next to the furnace to keep the 
transport distance and transport time and the associated 
temperature loss of the specimen as low as possible (Fig. 4). 
The sensor technology of this aggregate records the 
temperature of the specimen using a ratio pyrometer (also 
known as a comparison pyrometer) as well as the upsetting 
force applied during the upsetting process utilizing a load cell 
(Tab. 3).  

A special advantage of the ratio pyrometer is its ability to 
measure correct temperatures at the surface of the specimen 
without having to know the emission of the underlying 
material. By measuring with two different spectra, the 
temperature of the measured object can be determined from 
their quotient, the radiation ratio [12]. This principle results in 
a further advantage, which is particularly relevant for harsh 
operating and environmental conditions - the insensitivity to 
interference, e.g., smoke and dirt between the measuring object 
and the ratio pyrometer [13]. 
 

 

Fig. 4. Hydraulic press with control unit (left), furnace (right). 

 

Table 3. Sensors of the hydraulic press. 

Measured quantity Sensor Range 

Die force [N] Load cell 0-1MN 

Die position [mm] LVDT 0-600mm 

Temperature of 
specimen [°C] 

Pyrometer 0-1200°C 

Process time [s] Processed by 
programming 

Processed by 
programming 

 
The rolling mill at the MF (Fig. 5) was equipped with 

suitable sensor technology to record the process parameters 
relevant to the rolling process (Tab. 4). As a result, the mill can 
be incorporated into the process chain to roll specimens and 
collect further information on texture or formability. Two load 
cells, one on each side of the work rolls, measure the resulting 
rolling force and sum to give the total force, which has the 
advantage of collect data regarding eccentricity directly in the 
roll gap. A Linear Variable Differential Transformer (LVDT) 
sensor, which has a very high resolution and low deviation 
from linearity, measures the height of the roll gap as well as the 
deflection of the roll gap during forming. 

 

 

Fig. 5. Rolling mill system at the MF (300 kN). 

Table 4. Sensors of the rolling mill. 

Measured quantity Sensor Range 

Rolling force [N] 
(left guide rail) 

Load cell 0-150kN 

Rolling force [N] 
(right guide rail) 

Load cell 0-150kN 

Roll gap [mm] LVDT 0-25mm 

Gear angle [°] Magnetic multi turn 
encoder 

0-360° x 32 turns 

Process time [s] Processed by 
programming 

Processed by 
programming 

4.3. IT-infrastructure and integration of numerical simulation 

The DAQ of the sensors from the forming and heating 
aggregates is carried out within the CMs’ internal network 

using the Wago controller of the XTR-series suited for harsh 
environmental conditions. Due to the usage of compatible I/O 
modules, the DAQ can be easily and flexibly adapted to a 
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variety of analog and digital signals from the respective 
sensors, e.g., voltages, current, bits. The acquired signals are 
internally processed by the respective controller and converted 
into a digital signal that can be used for further computer-based 
processing and fed into a new set-up production network, 
which is accessible only for respective stakeholders of the 
MUL 4.0 project.  

After initial calibration of all respective sensors, calibration 
curves varying between third and sixth-order were directly 
programmed into the corresponding controller in structured 
text, which results in the direct conversion of sensor signals 
into corresponding physical quantity. 

For the connection of the aggregates used at the NFM, the 
proprietary software of the continuous caster will be used, 
resulting in txt files automatically stored at the MUL 4.0 
production network. 

The preparation and further processing of the process data 
from both chairs are carried out in an additional layer with the 
open-source programming language Python, which was chosen 
to prevent an isolated solution. Using suitable frameworks, the 
data in the network are collected, processed, and evaluated to 
make them available for analysis and automatic feeding into 
FVA and FEA-based simulations [14]. 

As soon as data are supplied from the continuous caster, the 
simulation of the upsetting forming process of the hydraulic 
press and/or rolling mill is automatically set up and started with 
Python. This provides the sample temperature to be set for the 
desired degree of forming. As a result, the temperature to be set 
as well as corresponding heating time will automatically be 
adapted. In the case of the bulk-forming processes, an 
additional thermal simulation of the temperature gradients 
within the specimen is carried out to ensure that all samples are 
heated thoroughly and homogeneously.  

The process steps ‘reheating’ and ‘forming’ can be repeated 
several times, with each of these process steps being 
automatically simulated again. Furthermore, text (txt) files 
containing the relevant time steps, such as process start, and 
end, are stored in the network to provide the most important 
results of the simulation for further processing at the IL. 

The obtained data are automatically fed into a SQL database 
using Python, which is shared between all cooperating chairs 
and institutes via the network. 

The simulation of continuous casting and the associated 
implementation of a digital twin (DT) will be carried out by the 
NFM. The simulation of the continuous casting process will be 
performed using common FVA programs. If the required 
computational time cannot be achieved using FVA, a 
sophisticated abstraction using FDM will be designed.  

The implementation of the three DTs and setup of the 
simulation using FEA for the furnace, rolling mill, and 
hydraulic press will be performed by the MF. Fig. 6 shows the 
resulting material and data flow within the numerical 
simulation optimized aggregates in the value chain. 

All numerical simulations are supplied with input 
parameters and deliver output parameters, which are passed on 
to the simulation of the next process step according to the 
process chain (Fig. 1), to digitally represent the process chain 
in the best possible way. Tab. 5 shows an overview of the 
resulting input and output parameters. 

 

Fig. 6. Overview of the material and data flow corresponding to the numerical 
simulation-based DTs’. 

Table 5. Input and output parameters of the coupled numerical simulations. 

Machine Type of Simulation Input Output 

Continuous 
Casting 

FVA (FDM) CP, MP tco, Tc, h, b, l 

Oven FEA CP, MP, tco, Tc, 
h, b, l, φ, φ̇   

to for Tp 

 

Press FEA tco, Tc, h, b, l, 
MP, φ, φ̇  

top, h, b, l, Tp  
for ϕ    

 
The automatic input data transfer and starting of the 

simulation is realized by Python (Fig. 7). 
 

 

Fig. 7. Scheme of automated FE-Simulation with Python. 
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As demonstrated in Fig. 7, a python script is written, which 
serves as the basis for the automatic creation of an input (inp) 
file for the simulation with the FE program Abaqus (abq). This 
inp file contains all required information and data, e.g., CP, 
MP, geometries, to perform an FEA. The inp file also 
determines the characteristic values to be calculated, e.g., 
stresses, strains, displacements, temperatures, to streamline the 
scope of the simulation, resulting in a significantly shorter 
computation time. With Python, the input data from the 
previous process step is automatically transferred into the inp 
file and the simulation is started. During calculation, Python 
checks in defined time increments if certain files are present in 
the working directory, e.g., the message (msg) file, which is 
only present during and automatically deleted after completion 
of the respective simulation. If the script cannot find such an 
msg file, it automatically reads out the output database (odb) 
file using another Python (py) script.  
It is important to note that the automated data extraction from 
the used FEA-program does not work within the used PyCharm 
IDE, as the extraction from the proprietary odb format must be 
carried out with a specific library only available within the abq 
environment. Therefore, the py Masterfile executes an abq-
specific py file with the imported library and underlying 
methods directly in the abq environment using the abq 
command window. 
The resulting abq odb file contains the output parameters 
defined in the inp file at all selected nodes, depending on the 
previous definition in the inp file. To make the resulting odb 
data usable for the simulation of the next process step, the 
master file transfers the odb data into a txt file and transfers it 
automatically into the next inp file, followed by the start of the 
upcoming simulation. A similar approach, depending on the 
decided FVA software will be carried out for the integration of 
FVA by the NFM.  

5. Results and discussion 

The cooperation between the involved chairs and institutes 
results in an interdisciplinary digitalization framework 
demonstrated in Fig. 8. 

One advantage of the presented framework was the 
transdisciplinary development approach used, considering 
different points of view from automation, mechanical 
engineering, materials science, metallurgy, and industrial 
logistics perspectives. Furthermore, every party was involved, 
from the initial conception to the following adaption phases, 
allowing each different discipline to include specific 
knowledge from the very beginning.  

Therefore, the resulting framework (Fig. 8) has the main 
advantage of being planned from scratch to create a low-cost 
open-source solution for the digitalization and digital 
transformation of low volume and high variety manufacturing 
environments. Proprietary solutions, resulting in 
heterogeneous data sources for the DAQ and functional 
domains, were avoided. The inclusion of numerical simulation 
domain experts from the beginning of this project avoided 
over-engineering in terms of (in practice not particularly 
needed) accuracy for the cost of higher computational times. 

 

 

Fig. 8. MUL 4.0: physical and functional domain blueprint. 

The exchange between logistics experts and involved 
process engineers leads to various adaptions in implemented 
sensor technology, as the integration of a logistics digital twin 
requires additional hardware, which to a significant extent must 
be implemented within the retrofitting process. The delocalized 
structure of the physical entities also made it necessary to 
include different IT-infrastructures from the beginning. 
Therefore, the implementation of a shared production network 
leading to a unified database structure was of utmost 
importance. 

The MF and NFM also included their respective shop floor 
workers in the concept, giving regular updates on the project 
status to avoid refusal from coworkers who will have to work 
with the introduced framework regularly soon.  

6. Conclusion and outlook 

The framework presented in this paper is already in the 
implementation phase. The necessary retrofitting of involved 
aggregates is determined and will be completely implemented 
within this year. One of the main aggregates, the rolling mill at 
the MF is already fully integrated within the superordinate 
DAQ and Python layer and serves as a case study for further 
implementation in the Wago DAQ environment at the MF. The 
designed production network is planned, and necessary IT 
infrastructure is implemented. The first numerical digital twin 
is already in the final development phase and should be 
completed within mid of this year. The designed databases are 
defined, and corresponding python interfaces are programmed. 
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Until next year, the complete implementation of the framework 
is planned, whereas potential delays, e.g., due to delivery 
delays, are included in the defined time horizon.   

To extend the transdisciplinary engineering education 
approach, an extension of the involved parties within the end 
of next year is planned. The main objective is to include further 
numerical simulation experts regarding FVA as well as ferrous 
metallurgists to be able to vary between nonferrous and ferrous 
input material for the upcoming forming processes, which adds 
more variety in the production planning and coupled numerical 
simulations. From a logistics point of view, the implementation 
of different materials also results in another location that must 
be tracked, as the production of casted steel grades, similar to 
the nonferrous counterpart, happens at a different location.   

From a techno-economics perspective, on the long term, the 
introduced digitalization approach aims to serve future 
engineering experts as well as manufacturing SMEs as a 
practical case study, supporting knowledge and know-how 
transfer from the academic to the practical manufacturing 
environment [15].  
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