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Abstract

The core task of geo-monitoring is to find and employ suitable sensors and
methods to monitor natural and artificial structures for changes and to trigger an
alarm if necessary. In order to achieve this, reliable sensors and suitable evaluation
methods are required. A reliable alarm process and long-term storage of the recorded
data complete the requirements of such a system.

In the first part the inclination sensors commonly used in geo-monitoring are
investigated in detail. Due to the differential measuring principle, the inclination
sensors have a high temperature stability and the sensor noise is independent of
the inclination. It was shown, that the noise of the inclination sensor following a
differential measurement principle has a Cauchy Lorentz distribution. Therefore,
different statistical methods have to be applied than for a normal distribution. By
means of singular value decomposition it can be shown that the sensor elements have
a different gain factor to each other. If orthogonalisation is applied on the data the
confidence interval is improved by up to 34 %.

The second part of the work is dedicated to discrete basis functions, which
enable an advanced method for the reconstruction of structural displacements. Two
independent measurements which follow physically different principles, e.g. 3D
displacement measurements (total station) and slope measurements (inclinometer),
are combined with each other by means of sensor fusion. Thereby, more reliable
results can be achieved. Due to the efficiency of the analytical data processing, an
implementation on local battery-powered embedded systems is possible.

In the last part of this thesis, the "ASUA Urban Automation Reference Platform"
and the associated devices, which were (co-)developed in the Celtic-Next project
"Advanced Sensing for Urban Automation" (ASUA), are discussed. Due to the
continuous change in the requirements for geo-monitoring devices with regard to
networking, integration into heterogeneous systems and data availability, these
systems must also adapt. The developed devices enable local data processing for
complex problems (reconstruction), local alarms and control via a cloud-based control
system.

The solutions found in the work provide the basis for a new generation of connected
geo-monitoring devices that enable intelligent local data processing. The model-based
reconstruction allows a significant improvement of the results by data combination
and tolerates failures of single measurement sensors. The detailed sensor analysis
shows that the usual statistics fail for many sensors used in geo-monitoring. Thus,
other statistical methods and filters have to be applied to obtain reliable results.

Keywords

Geo-monitoring, inclinometers, basis functions, Cauchy-Lorentz distribution, model
based reconstruction, condition monitoring
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Kurzfassung

Die Kernaufgabe des Geomonitorings ist es, mit geeigneten Sensoren und Meth-
oden natürliche und künstliche Struktuen auf Veränderungen zu überwachen und
nötigenfalls Alarm auszulösen. Um dies bewerkstelligen zu können, werden neben
zuverlässigen Sensoren auch geeignete Auswertemethoden benötigt. Ein zuverlässiger
Alarmierungsweg und langfristige Speicherung der aufgenommenen Daten runden
das System ab.

Im ersten Teil werden die oft im Geomonitoring verwendeten Neigungssensoren de-
tailliert analysiert. Durch das differenzielle Messprinzip weisen die Neigungssensoren
eine sehr hohe Temperaturstabilität auf und das Sensorrauschen ist neigungsunab-
hängig. Es wurde gezeigt, dass das Rauschen des Neigungssensors, der nach einem
Differenzialmessprinzip arbeitet, eine Cauchy Lorentz Verteilung aufweist. Daher
müssen andere statistische Methoden als bei einer Normalverteilung angewendet
werden. Mittels Singulärwertzerlegung lässt sich zeigen, dass die Sensorelemente
einen unterschiedlichen Verstärkungsfaktor zueinander aufweisen. Korrigiert man
dies durch orthogonalisieren der Daten, verbessert sich das Konfidenzintervall um
bis zu 34 %.

Der zweite Teil der Arbeit widmet sich diskreten Basisfunktionen, die eine
fortgeschrittene Methode zum Rekonstruieren von Verformungen an Bauwerken
ermöglichen. Zwei voneinander unabhängige Messungen die physikalisch unter-
schiedlichen Prinzipien folgen, z.B. 3D Verschiebungsmessungen (Total station) und
Neigungsmessungen (Inklinometer), werden mittels Informationsfusion miteinander
kombiniert wobei verlässlichere Ergebnisse erreicht werden können. Durch die
Effizienz der analytischen Datenverarbeitungsmethoden ist eine Umsetzung auf
lokalen batteriebetriebenen Datenloggern mit eingebetteten Systemen möglich.

Im letzten Teil wird auf eine, während dieser Dissertation im Rahmen des Celtic-
Next Projekts "Advanced Sensing for Urban Automation" (ASUA), (mit-)entwickelte
"ASUA Urban Automation Reference Platform" und die damit verbundenen Geräte
eingegangen. Durch die laufende Änderung der Anforderungen an Geomonitoring
Geräte in Bezug auf Vernetzung, Integration in heterogene Systeme und Datenverfüg-
barkeit, müssen sich auch diese Geräte anpassen. Die gefundene Lösung ermöglicht
die lokale Datenverarbeitung bei komplexen Problemen (Rekonstruktion), lokale
Alarmierung und eine Steuerung über ein cloud-basiertes Kontrollsystem.

Die in der Arbeit gefundenen Lösungen bieten die Grundlage für eine neue
Generation von vernetzten Geomonitoring Geräten, die intelligente lokale Datenverar-
beitung ermöglichen. Die modellbasierte Rekonstruktion ermöglicht eine maßgebliche
Verbesserung der Ergebnisse durch Datenkombination und toleriert Ausfälle von
einzelnen Messsensoren. Die detaillierte Sensoranalyse zeigt, dass die üblicherweise
verwendete Statistik bei vielen der hier verwendeten Sensoren versagt und andere
statistische Methoden und Filter angewendet werden müssen um verlässliche Ergeb-
nisse zu erhalten.

Schlagwörter

Geomonitoring, Neigungssensoren, Basisfunktionen, Cauchy Lorentz Verteilung,
modellbasierte Rekonstruktion, Zustandsüberwachung
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Glossary

x, y . . . scalar
x̂, ŷ . . . estimator for scalar
x, y . . . vector
x̂, ŷ . . . estimator for vector
X, Y . . . matrix
xT, XT . . . transposed vector, transposed matrix

X−1, X+, X− . . . inverse, pseudoinverse, generalised inverse matrix
X ◦ Y . . . Hadamard product
X ⊗ Y . . . Kronecker product
x ∗ y . . . convolution
{x, y} . . . a set of variables
xi . . . ith element of x
xij . . . ith row / jth column element of X

i, j, k . . . indexing variables
m, n . . . number of rows, columns, samples, etc.
α, β, γ coefficients of a polynomial

0 . . . vector of zeros
1 . . . vector of ones
ei . . . unit vector in ith dimension
I . . . identity matrix

W . . . weighting matrix
J . . . Jacobian matrix
L . . . linear operator
B . . . general basis
G . . . discrete orthogonal polynomial basis
D . . . differentiating matrix
µx . . . expectation value of x
x̄ . . . sample mean of x
σ2
x . . . variance of x
s2
x . . . sample variance of x

Λx . . . covariance matrix of x
ν . . . degrees of freedom (d.f.)
t(ν) . . . Student distribution with ν d.f.
F(ν1,ν2) . . . Fisher distribution with ν1 and ν2 d.f.
χ2

(ν) . . . Chi-squared distribution with ν d.f.
i.i.d. . . . independent and identically distributed
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1 | Introduction

This PhD thesis addresses methods, algorithms and technologies that are suitable for
future tasks of distributed and modern geo-monitoring. Geo-monitoring deals with
the monitoring of natural and man-made objects to ensure the security of persons
or infrastructure. Especially during construction works and renovations different
sensors are mounted onto bridges, rails or buildings. Also during tunnel construction,
especially in urban areas, the surroundings and the infrastructure there must be
monitored.

To determine the deformation of a point on a surface or a tunnel wall, a 3D
deformation measurement is normally carried out using a robotic total station.
Other sensors are necessary for measurements below the surface. For example,
extensometers are used to measure displacements in the longitudinal axis of a
borehole [6]. Inclinometers allow the measurement of displacements perpendicular to
the bore axis in which the sensor is mounted [7]. They measure the tilt (or slope) of
the investigated object where the sensor is attached to. Currently, inclinometers are
used in many structural and geo-mechanical monitoring systems, see Machan and
Bennett [38] for a good overview. Further applications in the monitoring of rigid
structures can be found in literature [22, 66, 72, 73].

In many measurement applications various different types of sensors are used. Thus,
the data of the physically different measurement systems are merged into a combined
solution using data fusion. This approach allows a more accurate and stable solution
for a specific problem and also enables the detection of faulty sensors.

Geo-monitoring at a construction site extends over the period from a few months
before the start of construction until some time after the construction work has
been completed. Therefore, it is necessary that the used sensors provide stable and
reliable values over their entire period of use. A suitable processing of the raw data
provides more accurate data or allows the use of more cost-effective sensors.

The advances and developments in connected sensors and mobile devices also lead to
a need for construction companies to access measurement results in real time via the
Internet and to be able to react immediately in the event of an alarm. These emerging
needs are changing the requirements for sensor technology, data transmission and
data availability. The requirements for cloud-based, battery-powered measurement
systems in challenging environments such as mining and tunnelling are even more

1



1.1. Monitoring of Structure 2

specialised than the requirements in traditional IoT applications.

An increasingly important role of future geo-monitoring solutions is their integration
into larger urban monitoring solutions. The Smart City approach is a key enabler
for new technologies, new urban services and digital economy, whereby many smart
solutions of all sectors of society together make a smart city possible [67]. There are
several examples available, where geo-monitoring applications are used in smart cities,
e.g. smart construction sites [67] and Building Information Modeling (BIM) [41]
where an autonomous data exchange during the construction process is done and
meta data as well as dynamic sensor data is provided via a BIM interface [37]. This
BIM framework is further extended to City Information Modeling [11, 71], where
BIM is integrated into wider city planing and development.

The backend of the data exchange is managed in Urban Automation Networks (UAN),
which act as central service for Information and Communication Technologies (ICT)
to make the components and services of Smart Cities more interconnected, efficient
and intelligent [24]. To cope with the amount of data and the processing of the
data new strategies like open central data repositories are needed as well as the
performance of available and emerging databases need to be researched [25].

Many of the currently existing geo-monitoring systems and sensors are stand-alone
solutions or not even connected to a network. Thus, available sensors can often only
be used for specific applications and can only be integrated into third-party systems
at great expense.

Therefore, new sensors and devices should enable machine-to-machine (M2M) com-
munication. Furthermore, these end devices should be easily configurable in order to
be integratable into cloud-based monitoring systems.

1.1 Monitoring of Structure

Our modern civilisation relies on the safety and durability of our environment,
hence in the past buildings and infrastructure were constructed and built to last for
centuries; e.g. Hagia Sophia, in Istanbul, was built in 537 A.D. and after several
renovations it is still in good condition and hosts nowadays a mosque after being
a museum from 1935 to 2020. A newer, more technical, example is the London
Underground, which opened its first line in 1863 with steam powered trains. The
first electrified line followed in 1890. Due to the age of this tunnel system, this metro
system is a good example for existing urban infrastructure that has to be monitored
to ensure safe operation. Several guidelines for monitoring structures such as tunnels
can be found in literature [18, 70].

The main objectives of in-situ monitoring of structures can be defined as: 1) control
the deformation of the tunnel; 2) control the settlements on the surface; 3) measure
the development of stress in the structural members; 4) indicate the progressive
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deformation, which required immediate action to prevent collapse and 5) furnish
evidence for insurance claims [70].

Various methods and sensors are available to fulfil these five monitoring objec-
tives. The list of sensors ranges from extensometers, theodolites, accelerometers
to inclinometers etc., but it is not limited to these sensor examples. Inclinometer
sensors are handy to use and provide different possibilities for surveying land or
buildings, especially for the detection of deformation of structures and movements
of soil. The basic assumption for structural monitoring tasks with inclinometers
is to monitor a real physical system, e.g. a bridge or railway tracks, whereby the
observed system follows the laws of physics. When monitoring a larger structure, e.g.
a bridge, multiple tilt sensors are needed for capturing the actual condition during
observation.

Since any physical system abides by the law of physics it can be described using
differential equations for models of the structure; both ordinary differential equations
(ODE) and partial differential equations (PDE). Depending on the observed structure
different types of sensors are used for monitoring and the size of area that is monitored
determines the number of used sensors.

In some cases it is necessary to use different sensor systems to determine the
deformation of a system. For example, in a subway tunnel it is not possible to
perform continuous optical measurements due to subway trains, but inclination
sensors on the tracks enable a continuous monitoring. Since the inclinometer sensors
cannot detect horizontal displacement, optical measurements are performed in regular
intervals. To combine the data of both sensor systems the demand for suitable data
fusion algorithms is given. At over-constrained systems regularisation enables the
detection of faulty sensors and a validation of the acquired sensor data.

Monitoring sensors are used for detecting deformation of an object for a limited
period of time, e.g. during structural work on the engineering structure. The default
procedure is to mount the sensors on the structure and take a zero measurement
to gather a reference snapshot of the system where further reconstructions can be
compared with. Before work on the observed object starts it is advantageous
to monitor the system for a longer period of time to determine whether any
environmental factors have influence on the structure, e.g. temperature, load, etc.

The physical structure abides by the laws of physics and thus the deformation is
influenced by the design of the structure itself. Additionally, the structure has natural
constraints that have to be considered in the solution, e.g. the horizontal position
of pillars are considered stationary when measuring vertical displacements. This
a-priory knowledge associated with these constraints can be utilised to implement
a physics based regularisation. This results in an improved accuracy for the final
result.

When appropriate models for a specific problem are set up, the system can be
simulated prior to the real application to estimate, if the expected result meets the
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expectations. In addition, the optimal sensors for each application can be selected
with regard to accuracy, resolution and price. However, each sensor has his own
characteristics and the precision of sensors can be improved by applying additional
data processing like filtering. To find an algorithm to improve the accuracy of a
sensor, a detailed sensor analysis is necessary. Chapter 2 of this thesis presents
this analysis for the most commonly used high precision inclination sensor in the
geotechnical environment.

1.2 Outline of the Thesis

The thesis is divided into five sections, with a separate section dedicated to each
research focus of this thesis.

Detailed Analysis of Inclination Sensors

Section II deals with a detailed analysis of the most commonly used inclination
sensors in geo-monitoring. The calculation of the deformation of a structure, which
is monitored by inclination sensors, requires stable and highly precise sensors. A
detailed characterisation of different inclination sensors is performed to improve the
quality of the reconstruction and increase the estimation quality. Since statistical
distributions play a major role in the analysis of sensors and the presence of sensor
noise of Cauchy-Lorentzian type an additional section with a review of statistics is
appended to this thesis.

Model Based Reconstruction

In Section III the theory of model based reconstruction for monitoring problems
is introduced. Polynomials and basis functions with constraints are suitable to
model structural problems. Solving the inverse problem enables the computation
of the deformation of a structure from sensor data like inclination sensors. Optical
3D displacement measurements of control positions with a robotic total station
provide reference data to estimate the quality of the reconstruction. Data fusion of
inclination data and the data of optical reference measurements within this model
based reconstruction improves the quality and reliability of the result significantly.
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Future Urban Monitoring Infrastructure

Section VI presents the practical results and prototypes that were created for the
Celtic-Plus project Advanced Sensing for Urban Automation1 (ASUA) as part of
this work. The Urban Automation Reference Platform, developed together with the
ASUA project partners, is a framework that enables a generic integration of different
heterogeneous sensor systems with the same priority in a horizontal manner. The
specific prototype that has emerged from this work, a modular wireless monitoring
system with cloud support for monitoring tasks in urban domains as well as the
corresponding cloud infrastructure, is presented in detail. A robust design of the
hardware is required, low power and stand-alone modes are implemented, and remote
configuration updates via the cloud are possible.
The acquired and local processed sensor data is transmitted to the cloud based
supervisory system as well as the public ASUA IoT cloud.

1.3 Original Work

Apart from the development of the geo-monitoring system, the interfaces to the
cloud and the distributed system, this thesis contributes to the characterisation of
the monitoring sensors and the implementation of standard reconstruction problems
on distributed local monitoring devices. This includes:

1. The residual analysis of various inclination sensors and the interpretation of the
observed results is presented. It is shown that some inclination sensors can be
modelled more precisely by a Cauchy-Lorentz distribution than by a Gaussian.
Sensors that follow a differential measurement principle contain several sensor
elements. Typically, the same sensor gain is assumed for each sensor element.
A Singular Value Decomposition (SVD) is used to demonstrate, that this gain
is not identical in general. A SVD is suitable to determine this difference in
the gain and allows a more accurate estimation of the expectation value of a
sample.

2. The specific mathematical cases that regularly occur in geo-monitoring are
introduced and the corresponding numerical approaches for solving them are
presented. Constrained polynomials as well as constrained basis functions are
suitable for model based reconstruction of deformation of rigid structures.

3. Robust data acquisition systems were developed and built for use in geo-
monitoring tasks. These devices have sufficient computing power to enable
local data processing, e.g. model based reconstruction. The nodes organise

1The Celtic-Plus Project Advanced Sensing for Urban Monitoring (ASUA,
Project-ID: C2013/2-2) was an European research project between 2015 and 2017 in which the
Chair of Automation / University of Leoben participated and parts of the here presented work
arose from research for this project.



1.3. Original Work 6

their own meshed network, with a gateway serving as a connection to the
cloud. The devices have a black out mode, where local data storage, local data
processing, event detection and alarm triggering are performed.

4. The Urban Automation Reference Platform was developed together with an
international research group in the ASUA Project. The framework for urban
automation follows a generic approach enabling the integration of different
heterogeneous sensor systems and offers possibilities for finding and processing
geospatial data as well as rule processing and alarm triggering.

5. Model based reconstruction was implemented on a Linux-based embedded
system. Inclination sensors used for geo-monitoring tasks served as a data
source. The locally reconstructed data is transferred to a cloud, such as the
"Urban Automation Reference Platform", where the data is used for event
detection and alarm triggering.
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2 | Analysis of Inclination Sensing
Elements

Inclination sensors form the basis for deformation measurements right-angled to a
measurement axis, e.g. a deformation measurement of a borehole. The quality of
the sensor data affects the overall measurement result, therefore a good knowledge
about the sensor and the corresponding data processing is crucial. Since statistical
distributions play a key role in the analysis of the sensors used, a summary of
the most important properties of the occurring distributions has been prepared in
Appendix A.

In this thesis micro-electro-mechanical systems (MEMS) inclination sensors from
Murata Manufacturing Co., Ltd. are used to determine the tilt of specific points
[43]. The sensors can be classified according to different properties of the sensor.
For monitoring applications the resolution and accuracy are the most important
parameters. The stability of inclination sensors over a long time period and a wide
temperature range is also a basic requirement. For wireless sensor nodes the supply
voltage and a low power consumption are also important parameters.

2.1 MEMS technology for inclination sensors

Inclination sensors, or tilt sensors, are used to measure inclination of an object by
measuring the force of gravity. In the past analogue devices with weights or liquids
were used, nowadays MEMS are used to measure inclination. These MEMS sensors
are manufactured using nanotechnology [69].

There are multiple physical principles for measuring inclination in MEMS sensors such
as using the piezo-electric effect, where the acceleration stresses a crystal structure
that yields a voltage change indicating the inclination. The majority of the MEMS
inclination sensors detect changes of capacity when a proof mass is moved by the
acceleration. The proof mass, that is fixed between springs, can move in the sensor.
The design of the proof mass includes plates that move between two fixed outer
plates. Between the two outer plates and the moving plate are two electromagnetic
fields that change when the beam moves. The capacitance is measured and the

9
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acceleration and inclination derived from the changing capacitance. Figure 2.1 shows
a simplified model of the MEMS sensor.

FIXED OUTER PLATES

MASS SP
R

IN
G APPLIED

ACCELERATION

CAPACITANCE 1 ... C1
CAPACITANCE 2 ... C2

C2C1 C1
C2

Fig. 2.1 Simplified MEMS model: The sprung proof mass is moved by the acceleration
which causes the change of the two capacitances C1 and C2. This is used to derive the
acceleration and suitable signal conditioning and filtering yields the inclination. MEMS
sensors use multiple parallel-plate capacitors on one sensing element.

Another approach for MEMS sensors is to use the pull-in effect to measure the
inclination. Figure 2.2 shows a simplified model for the electromechanical system
consisting of two electrodes, whereby one electrode is connected to a spring and has
the possibility to move and the other one is fixed [57].

x
d

k

Stopper
V

xn = 1/3

Mechanical 
Force
kx

ε0AV2

2(d-x)2

Electrical
Force

Plate Area = A

Fig. 2.2 Sketch of a simplified basic electromechanical system of a pull-in MEMS [57].

If a voltage is applied the electric force of the resulting electrical fields pulls the
movable plate to the other one. The energy of the electric field and the energy of the
mechanical springs are in a stable position for low voltages. If the voltage exceeds a
certain voltage, the pull-in voltage Vpi the systems gets unstable and the proof mass
hits a stopper. This Vpi is used to derive the corresponding acceleration or inclination
from the deformation of the system. In MEMS sensors of this type multiple fingers
and parallel plate capacitors are implemented for gathering a higher sensitivity [57].
Figure 2.3 shows a Scanning Electron Microscope (SEM) image of a MEMS sensor
with parallel-plate capacitors and the fingers on the moving middle part.



2.2. Comparison of Different Inclination Sensors 11

Fig. 2.3 SEM image of a MEMS sensor for measuring acceleration and inclination. The
proof mass is placed on the back-side of the structure [9].

2.2 Comparison of Different Inclination Sensors

In this section an overview of the different inclination sensors is given and a detailed
sensor characterisation is presented. The Murata SCA103T receives the most
attention in this thesis, as it is currently used for many geo-monitoring tasks due to
its accuracy and stability.

Table 2.1 presents the different inclination sensors (and accelerometers) presented in
this chapter.

Model Nr. Axis Range [ ◦] ADC Res. Sensitivity Supply Voltage
SCA830-D07 1 ±90 ◦ (±1 g) 16 bit 0.00175 ◦/LSB 3.3V

SCA103T-D04 (int.) 1 ±15 ◦ (±0.26 g) 12 bit 0.009 ◦/LSB 5V
SCA103T-D04 (ext.) 1 ±7.5 ◦ (±0.13 g) 24 bit 8.9e− 7 ◦/LSB 24V

Tab. 2.1 Comparison of different inclination sensors.

Figure 2.4 depicts the resolution over the range of the single sensors. The SCA103T
with the external 24bit ADC provides a very high sensitivity, but at cost of a supply
voltage of 24V . Additionally, the solution with an external data processing unit is
quite expensive compared to the sensor’s internal processing circuit.
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Fig. 2.4 Comparison of range and sensitivity of different inclination sensors

2.3 SCA103T-D04 Inclination Sensor

The SCA103T inclination sensor was Murata’s most advanced high precision inclinometer
sensor available for testing during the phase of characterising these sensors. The
sensor itself has two individual sensing elements that are oriented in the mutually
opposite direction. The SCA103T provides both, a digital and an analogue output,
where the conditioned and filtered signal of the two internal MEMS sensing elements
is available. To benefit from the high precision of the sensor the analogue output
combined with an external high resolution ADC and suitable signal processing has
to be used. The schematic of the SCA103T is shown in Figure 2.5 [63].

Self test 2

Sensing
element 1

Sensing
element 2

SPI interface

Self test 1

Signal conditioning
and filtering

A/D conversion

Signal conditioning
and filtering

EEPROM
calibration
memory

9 ST_2

10 ST_1

12 VDD

6 GND

11 OUT_1

5 OUT_2

1 SCK

3 MISO

4 MOSI

7 CSB

Temperature
Sensor

Fig. 2.5 Schematic of the SCA103T inclinometer, [43] © Murata

For characterisation of the sensors, several sensors with suitable data acquisition
electronics with external analogue digital converter (ADC) were provided from
Geodata. This acquisition electronic board provides, beside signal filtering, a



2.3. SCA103T-D04 Inclination Sensor 13

RS485 bus interface to allow reliable data acquisition over long distances in rough
environments. The inclination sensors are protected by different stable steel covers
allowing different mounting options for individual applications. Figure 2.6 shows the
acquisition board and two inclination sensors in metal cylinders [63].

On the acquisition board an ADC acquires the sensor data from the analogue output
of the sensors, additionally a low pass filter is applied internally to the acquired data.
Via the RS485 bus the temperature of the acquisition board is provided, however
the temperature of the sensors, which would be required for additional temperature
compensation, is not provided [63].

Fig. 2.6 Photograph of a pair of inclinometers connected to the data acquisition electronics.
Each metal cylinder contains one MEMS sensor. In the implementation shown the Sensors
are connected using the analogue interfaces, i.e. using the signals VDD, GND, OUT_1
and OUT_2 [63] © 2017 IEEE.

The Murata SCA103T inclination sensor is, beside the analogue sensor output,
equipped with an internal ADC. The ADC has a resolution of 12 bit and a range of
±15 ◦ (±0.26 g). The data is accessible via a digital SPI [32] interface. In order to
operate the sensor, the chip has to be powered with a power supply of 5V . Since
the SCA103T sensor operates according to a differential measurement principle, the
raw data of both sensing elements, RDAX and RDAY, can be accessed via the SPI
interface with a maximum frequency of 5300 samples per sec/channel. Also the
temperature of the sensor can be accessed via SPI [43].

According to the manufacturers manual [43] the inclination in degrees can be
computed by,

α[mg] = Dout[LSB]−Dout@0 ◦ [LSB]
Sens[LSB/g] (2.1)

whereby Dout is defined as,

Dout = RDAX −RDAY. (2.2)

Commonly inclination or acceleration measurements from a sensor are provided in g
or mg. The conversion from mg to degree is computed as follows,
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α[ ◦] = arcsin(α[mg]). (2.3)

The temperature compensation for the internal inclination measurement is done
directly on the SCA103T, for external temperature compensation for an analogue
measurement (external ADC), the temperature data has to be acquired via the SPI
interface. The accuracy of the internal temperature sensing element is specified in
the datasheet with ±1 ◦C [63].

The two sensing elements of the SCA103T inclination sensor are arranged in the
mutually opposite direction. As described in section 2.1 these sensors are basically
accelerometers, where signal conditioning and filtering is applied to the signal of
each sensing element to optimize the signal for measuring inclination. The signals of
the two sensing elements are here defined as x(t) and y(t) and consist of following
components:

x(t) = g + i(t) + v(t) + nx(t), (2.4)
y(t) = g − i(t) + v(t) + ny(t) (2.5)

where g is due to gravitation, i(t) is the inclination as a function of time, v(t) is
the component due to ambient vibrational noise, nx(t) and ny(t) are the individual
noise components of each sensor. Defining the differential dm(t) and sum sm(t)
measurement signals as:

dm(t) = x(t)− y(t) = 2 i(t) + nx(t)− ny(t), (2.6)
sm(t) = x(t) + y(t) = 2 g + 2 v(t) + nx(t) + ny(t). (2.7)

Consequently, it is possible to determine both the extraneous vibrations and inclina-
tions from the sensor data.

2.4 Characterisation of the SCA103T

To characterize the inclination sensor under known conditions a laboratory setup
was designed. This enables the investigation of the behaviour and stability of the
sensors at given inclination angles and also the measurement of multiple sensors
in parallel under same conditions, see Figure 2.7. The sensor adapter allows the
mounting of individual manufactured stable sensor carriers. Figure 2.7 shows the
laboratory setup, the pointer and scale and the sensor adapter with a carrier and
the mounted SCA103T sensor in analogue and digital configuration [63].

This setup includes a rotatable body, a sensor adapter and a pointer that allows
the accurate adjustment of the desired angle. The angle can be set manually via
the pointer and scale by a resolution of 0.25 ◦ over a range of ±25 ◦. The accuracy
of ε = 1 was considered as sufficient, since the goal of the measurement was to
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characterize the noise at different deflections and not to determine the absolute
accuracy of the sensors.

Fig. 2.7 Laboratory set up to measure the stability of the inclinometer measurements.
Left top: detail view of the two sensors, the right one with the SPI and the left one with
analogue interface and additional data acquisition electronics included. Left bottom: detail
view of the the measurement scale. Right: overall view of the complete laboratory set up
[63] © 2017 IEEE.

The setup enabled the acquisition of various data sets for characterising the sen-
sors under different deflections. Figure 2.8 shows two data sets of the SCA103T
inclinometer with different deflections, the blue line from the analogue high precision
signal, the red line represents the raw SPI data. The vertical green bars indicate the
segmentation of the data for statistical evaluation [63].
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Fig. 2.8 Laboratory measurement to characterize the sensor performance: Top: The tilt
measured in [mm/m] for various angles, (blue) precision analogue measurement, (gray) raw
SPI data and (red) filtered SPI data 1 Hz bandwidth. The vertical green bars indicate the
segmentation of the data for statistical evaluation. Bottom: the measured accelerations [63]
© 2017 IEEE.

A statistical evaluation of the acceleration data a yielded a virtually perfect Gaussian
distribution with µ ≈ 0 and σa = 5.06mg± 14 µg with 95% certainty, when sampled
at fs = 452Hz and using no averaging. The Gaussian nature of the noise in the
acceleration data permits the use of filtering, e.g. sliding average, to obtain smaller
bandwidth and lower noise power. The noise power scales linearly with the reduction
in bandwidth. Consequently, at the bandwidth fbw,a = 0.0885Hz, as used for the
analogue data we obtain an effective noise-floor of σnfa = 36 µg [63].

The histogram for the acquired tilt signal is shown in Fig. 2.9. It reveals that the
statistics for the tilt data are better described by a three term Cauchy-Lorentz
distribution, that is defined as:

f(x;xm, γ, I) = I

{
γ2

(x− xm)2 + γ2 ,

}
. (2.8)

than a Gaussian. The parameter values obtained for the tilt data are: the median
xm = 60 µm/m, γ = 1.2883mm/m and I = 0.219. More details on estimating
parameters for a Cauchy-Lorentz distribution can be found in [19]. It is important
to note, that simple computing a sliding average will not necessarily yield a value
with a narrower confidence interval. There are no central moments existing for the
Cauchy-Lorentz distribution nor any other definition for a mean, therefore no mean
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value exists and can be computed [19]. It is possible to compute the medians or
the truncated mean with a 24% truncation interval (see [19]), if smaller confidence
intervals are required [63].
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Fig. 2.9 Histogram of the tilt measurements together with the maximum Likelihood
Gaussian (red) σt = 2.5765mm/m ± 7.2 µm/m with 95% certainty and the maximum
entropy Cauchy-Lorentz distribution (blue) with the parameters xm = 60 µm/m, γ =
1.2883mm/m and I = 0.219, [63] © 2017 IEEE.

For further investigations a data set for the SCA103T sensor was acquired. The
SCA103T was positioned at m = 11 different deflections and a total of n = 183 311
samples were acquired. The raw data1 and a filtered result are shown in Fig. 2.10 [63].

1A brief note on nomenclature: All data presented in the histograms have integer values
corresponding to the digital reading of the individual sensor. Consequently, the width of the
distributions are all in LSB.
PDF refers to probability distribution function and CDF to cumulative distribution function. The
notation p(α) refers to the probability of the variable α having a given value. The symbol σα refers
to the standard deviation of α and γα is the half-width at half-maximum value of the Cauchy
Lorentz distribution for α.
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Fig. 2.10 The signal acquired from the SCA103T sensor after evaluation to tilt: (black)
signal prior to filtering and (red) after filtering. A total of n = 183 311 samples are used
for the ensuing statistical analysis, [63] © 2017 IEEE.

The histograms for each of the m = 11 segments together with Gaussian and Cauchy-
Lorentz distribution approximations are shown in Fig. 2.11 and the numerical values
for the distribution parameters are given in Table 2.2. The χ2 test for the Cauchy-
Lorentz distribution in each of the n = 11 segments is an order of magnitude better
than the corresponding Gaussian approximation; this is consistent with the visual
inspection. These results justify the further and more detailed investigation of the
nature of the noise in the system. Furthermore, the data from the segments show that
the distribution width γ is independent of the specific inclination x0; consequently,
we may conclude that the distribution of the noise is independent of the deflection
angle.

2.4.1 Histograms and Distributions for x(t) and y(t)

Given the fact that there is no correlation between x0 and γ, it is permissible to
concatenate the median free data from each segment to obtain a larger sample size
for the determination of the noise characteristics. This has been performed for the
signals x(t) and y(t); their respective histograms and PDFs are shown in Fig. 2.12,
while the deviation from a Gaussian CDF is given in Fig. 2.13. Clearly, the signals
x(t) and y(t) are subject to Gaussian noise. It is important to note that σx = 17.4
and σy = 19.2 yield different values indicating that the sensor channels may have
different gains with respect to ambient vibrational noise [63].

Now proceeding to the computation of the statistics for dm(t) and sm(t): the
respective histograms and Gaussian models are shown in Fig. 2.14. In addition, a
Cauchy-Lorentz PDF was calculated for the signal dm(t). The fact that dm(t) has
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Fig. 2.11 Histogram for x− y in each of the segments i ∈ 1 . . . 11 denoted by si, as shown
in Fig. 2.10. The PDF for the Cauchy and Gaussian distributions are shown in red and
blue respectively. The corresponding coefficients for the distributions are given in Table 2.2.
The histograms have been centered around the median value of each segment, this simplifies
the comparison of the results in each segment, [63] © 2017 IEEE.

n xo γx−y Io χ2
C µ σ χ2

G

S1 19126 -650 7.89 4.56 1.42 -649.65 13.24 20.21
S2 14648 -529 10.00 3.67 2.07 -528.10 15.31 12.00
S3 13812 -416 8.51 4.23 1.76 -415.48 14.20 18.63
S4 14755 -305 8.27 4.23 2.68 -303.60 15.32 25.73
S5 7789 -191 10.21 3.66 2.35 -191.20 15.43 11.94
S6 15155 -84 9.18 4.16 3.11 -83.86 12.57 7.79
S7 11265 43 10.35 3.39 1.21 42.74 19.35 21.33
S8 11166 151 8.91 4.02 2.94 151.76 14.96 18.90
S9 9347 265 9.54 3.79 3.15 266.25 15.35 15.72
S10 32523 368 7.89 4.43 2.24 369.18 14.46 25.01
S11 33725 490 9.17 3.86 2.00 490.90 17.17 24.14

Tab. 2.2 Statistics for each of the n = 11 segments, as shown in Fig. 2.10. Whereby: n is
the number of samples in the segment, xo, γ and Io (scaled by ×100) are the parameters
of the Cauchy-Lorentz distribution, χ2

C for its PDF (scaled by ×1E4), µ and σ as the
coefficients for the Gaussian and χ2

G for the PDF (scaled by ×1E4), [63] © 2017 IEEE.
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Fig. 2.12 Histogram of the values x(t) and y(t) with their corresponding Gaussian
approximations with respective standard deviations, [63] © 2017 IEEE.
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Fig. 2.13 Deviation of the cumulative distribution functions P (x) and P (y) from their
ideal Gaussian models and the respective χ2 values, [63] © 2017 IEEE.
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Fig. 2.14 Histogram of the values p(x−y) and p(x+y) with Gaussian (red) approximations.
Additionally for p(x− y) a Cauchy-Lorenz (blue) distribution has been approximated, [63]
© 2017 IEEE.

Cauchy-Lorentz distribution implies that the perturbations of x(t) and y(t) must
be correlated, since the difference of two Gaussians is also a Gaussian if the signals
are not correlated. Furthermore, given σx = 17.4 and σy = 19.2 we would expect
σx+y ≈ 25.91; however, we observe σx+y ≈ 33.35, obviously ignoring the relative
gains of the sensor chains is degrading the quality of the result [63].

2.4.2 Correlation in the Perturbations of x(t) and y(t)

To investigate the correlations in the perturbations of x(t) and y(t) a bivariate
histogram has been computed, see Fig. 2.15. The correlation between the signals is
clearly visible. The orientation of the dominant axis is not at 45◦, a further indication
that the sensor chains have differing gains. If the gain of the sensor chains were
equal the dominant axis would be at 45◦ [63].

Singular value decomposition (SVD) is now used to determine the dominant axes
and the distributions of the data with respect to these axes. Defining the matrix
D , [x,y] where x is the column vector of the values of x(t) (similarly for y and
y(t)). The SVD for a matrix D is defined as,

D = U S VT. (2.9)

The matrix V forms an ortho-normal vector basis set for the span {D}, in the 2D case
this corresponds to a rotation matrix from which we can determine the orientation
of the major and minor axes. S is a diagonal matrix containing the singular values,
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Fig. 2.15 Bivariate histogram for x(t) and y(t), the color indicates the frequency and is
proportional to p(x, y), [63] © 2017 IEEE.

i.e., the 2-norm distance of the points in D to the vector basis set. U is the scale free
orthogonal projection of D onto V [63]. Consequently, we now obtain,

dSV D = U(:, 1) S(1, 1) (2.10)
sSV D = U(:, 2) S(2, 2) (2.11)

as orthogonalised estimates for dm and sm. The matrix V has the values,

V =
[

0.6530 0.7574
0.7574 −0.6530

]
. (2.12)

corresponding to the angle φ = 40.77◦ and a relative gain for the sensors of gr = 0.86.
The histograms and respective probability distribution functions for dSV D and sSV D
are shown in Figure 2.16 [63]. Note: the observed standard deviation σs = 23.64
now corresponds closely to the predicted value, if the relative gain gr is taken into
account,

σ =
√
σ2
x + (gr σy)2 = 24.01. (2.13)

This indicates that the application of SVD has performed the correct orthogonalisation
of the signals x(t) and y(t). Furthermore, the γ value for the Cauchy-Lorentz
distribution has also been reduced. These results indicate that both vibration and
inclination can be measured with a better confidence interval when orthogonalisation
is applied [63].

The results of computing γx−y and γd after applying orthogonalisation to each segment
of the data from Fig. 2.10 are shown in Table 2.3. A mean reduction in γ of rγ ≈ 0.66
has been achieved [63].
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Fig. 2.16 Histograms for the orthogonalised values dSV D and sSV D together with the
Gaussian (red) and Cauchy-Lorentz (blue) PDF, [63] © 2017 IEEE.

γx−y γd r

S1 7.89 5.01 0.63
S2 10.00 6.54 0.65
S3 8.51 5.47 0.64
S4 8.27 5.27 0.64
S5 10.21 6.97 0.68
S6 9.18 5.45 0.59
S7 10.35 6.94 0.67
S8 8.91 5.86 0.66
S9 9.54 6.42 0.67
S10 7.89 5.09 0.64
S11 9.17 6.09 0.66

Tab. 2.3 The results for γx−y and γd obtained after applying orthogonalisation to each
segment of the data shown in Figure 2.10. A mean reduction in γ of rγ = 0.66 has been
achieved, [63] © 2017 IEEE.
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(a) Inclination sensors mounted to wall (b) Embedded System for the Long Term Test

Fig. 2.17 Long Term Test stand in laboratory

Fig. 2.18 Graph of the data logged from two inclinometers measuring in mutually
orthogonal directions. This data was acquired with a measurement interval ts = 5 s:
tilt of sensor I1 (blue), tilt of sensor I2 (cyan) and temperature T (red). There are
approximately n = 105 samples, [63] © 2017 IEEE.

2.5 Long-term Laboratory Measurement

To determine the long term stability of the analogue tilt sensor and its temperature
sensitivity a laboratory set-up was made. Two inclination sensors, arranged in a
mutually orthogonal manner, were mounted to a wall over a period of 58 days. The
logged data, acquired with the sampling interval ts = 5 s, is shown in Fig. 2.18 [63].

The co-variance matrix ΛT,I1,I2 for temperature T , tilt I1 and I2 is,

ΛT,I1,I2 =

⎡
⎢⎣ 0.42 −10.72 −1.43
−10.72 309.10 34.66
−1.43 34.66 610.91

⎤
⎥⎦ . (2.14)

This indicates a temperature sensitivity st = −10.72 μm / m
dC for I2; however, some
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care is required during interpretation since there would appear to be some additional
periodic influence on the I1. A linear graphical estimate of the correlation is shown
in Figure 2.19, this yielded the result sl = −25.53 µm / m

dC . The divergence of these
two results obtained by independent means indicates that there may be an additional
mutual influence on the measurement [63].

It is important to note that the temperatures measured are not ambient temperatures,
these are the temperatures measured within the sensor unit. The ambient temperature
changes during this time were significantly larger. The determined temperature
sensitivity is indeed very low and irrelevant for the resolution required in construction
site monitoring [63].

Fig. 2.19 Linear estimation of the correlation between temperature and I2, the slope is
sl = −25.53 µm / m

dC , [63] © 2017 IEEE.

2.6 The SCA830 Single Axis Inclination Sensor

The second type of sensor that was observed is the Murata SCA830 sensor, see
Fig. 2.20 for the schematic diagram. This sensor is a single axis inclination sensor
with, compared to the SCA103T, just one sensing element. Consequently, it is not

MOSI
MISO
SCK
CSBC/V A/D Signal 

conditioning 
and 

filtering

SPI

Self diagnostics

PWM PWM

Temp
sensor

Fig. 2.20 Schematic of the SCA830-D07 MEM inclinometer sensor [1].

possible to perform orthogonalisation prior to signal processing. Data from this sensor
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Fig. 2.21 The full signal acquired with the SCA830 sensor over a period of approximately
one hour. The portions marked in red correspond to all values lying within 1 % (percentile).
This data set contains n = 400 693 samples. The values are in LSB acquired directly from
the ADC. The device features a 16-bit ADC with a range of ±1 g, [63] © 2017 IEEE.
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Fig. 2.22 Histogram of the SCA830 Signal, with the Gaussian (red) and Cauchy-Lorentz
(blue) models for the complete data set, [63] © 2017 IEEE.

was collected over prolonged periods of time. A sample data set collected over a
period of approximately one hour during laboratory testing is shown in Fig. 2.21 [63].

The peaks observed in Figure 2.21 caused much concern and lead to extensive testing
of the sensor at night during periods when there was little or no activity in the
building. We finally came to the conclusion that the observed peaks are due to
disturbances within the building, but are unavoidable in any real application. They
lead to wide tails in the probability distributions. In particular when working on
construction sites, as reported in [61], such perturbations must be considered [63].

The histogram, Gaussian and Cauchy-Lorenz approximations to the signal from the
SCA830 device are shown in Figure 2.22. This result has been obtained using the
complete data sequence. Once again the Cauchy-Lorentz distribution provides an
appropriate model for the noise behaviour.

Considering the statistics for p(x) in the range p(x) ∈ 1 . . . 99 %. This 98 percentile
signal is shown in Fig. 2.21 — it basically corresponds to eliminating local outliers.
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Fig. 2.23 Histogram of the SCA830 Signal, with the Gaussian (red) and Cauchy-Lorentz
(blue) models for the centered 98 % percentile of the data set, [63] © 2017 IEEE.

The histogram, Gaussian and Cauchy-Lorentz approximations for this signal are
shown in Fig. 2.23. This is an interesting result, since in this case the Gaussian
provides a possibly satisfactory noise model. Consequently, after eliminating outliers,
it would be possible to apply classical signal processing techniques — although they
implicitly assume Gaussian perturbations — to obtain satisfactory results. However,
for precision measurements modelling the Cauchy-Lorentz nature of the perturbations
is unavoidable [63].





3 | Model Based Reconstruction

In practice inclinometer sensors combined with a solid mathematical framework
are the go-to solution for several applications to measure deformation of structures
or monitoring foundation for heave, subsidence or settlement. With inclination
sensors the deformation cannot be measured directly, but changes in the slope or
inclination are used to derive the displacement of a point. Since the inclination
is the deviation with respect to the gravity field, inclinometers are best suited for
deflection measurements in the vertical or horizontal direction. However, appropriate
algorithms are needed to derive the deformations of inclinometer measurements.

The most common model to evaluate data from inclination sensors is a trigonometric
approach for inclination sensors, that are mounted to rods of defined length L. The
end of the rods are connected with the surrounding structure via e.g. bolts. To
enable the measurement of longer structures these rods are connected together via
joints and form a inclinometer chain, see Figure 3.1.

D=Σ L·sin(α)

L

L·sin(α)

.αInclination
sensor on
a rod with
length L

Tr
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e
v
e
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Fig. 3.1 Measurement principle for a vertical in place inclinometer measurement [42].

When acquiring the inclination αi for the ith inclinometer the horizontal displacement

29
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Di can be computed by
Di = L · sin(αi). (3.1)

Summing up all individual horizontal displacements

D =
m∑
i=1

L · sin(αi) (3.2)

yield the total horizontal displacement D for the complete vertical inclinometer
chain.

The evaluation of the deformation of an inclinometer chain is easy to handle because
only trigonometric correlations are used. Since only the inclinations of the rods have
an influence on the result and the measurements are independent of the environment,
they can also be used for almost all measuring tasks.

The downsides of this kind of measurement are, that the noise of each single sensor
spreads to all further evaluated displacements of points, and additional, if one sensing
element fails, all deformations of points after the failing sensor couldn’t be evaluated
either. Also at more complex measurement tasks e.g. no constraints can be taken
into account with this method.

When monitoring structures that abide the laws of physics it is possible to set up
admissible models to model their deformation.

3.1 Physical Deformation Model

Specific structures have a specific behaviour when they deform. The Euler-Bernoulli
equation [21], Equation 3.3, describes the relation between the deflection of a beam
and a static applied load q, whereby w is the describing curve of the beam, E the
elastic modulus and I the second moment of area for the cross-section.

d2

dx2

(
EI

d2w

dx2

)
= q (3.3)

The Euler-Bernoulli equation can be used as model for various problems with different
boundary conditions, e.g. one end of the beam is fixed or a specific point has a
certain inclination. To yield a unique solution Dirichlet- and Neuman boundary
conditions [55] are used to model constraints, i.e. supports, displacements, rotations,
etc.

The deformations that a bending beam can take up are determined by the bending
modes. Since a physical system assumes an equilibrium at the lowest energy content,
the actual bending is composed of the linear combination of the individual bending
modes which has the lowest potential under the given boundary conditions [5].
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The discrete orthonormal basis functions, presented in Chapter 3.4, are admissible
to represent the bending modes for elastic structures with a constant rigidity over
the complete length, i.e. a constant E and I [46].

The process of structural modelling of the problem is done prior to installing the
sensors on the physical object. The model of the structure combined with sensor
positions and the known sensor behaviour enables an estimation of the accuracy of
the later measurements. Through this pre-assessment it is possible to optimize the
measurement set-up yielding the optimal placement of the sensors.

As an example a beam with different boundary conditions is used, i.e. a cantilever, a
cantilever with additional support, a simply supported beam, a beam that is fixed
on both sides, etc. The models are shown in Table 3.1 in the left column. In the
right column the first four basis functions, that correspond to the problem on the
left, are shown.

physical model according basis functions

Tab. 3.1 Examples for standard bending problems of a beam. The plotted basis functions
are synthesised by constraint discrete orthogonal basis functions, see Chapter 3.4.

Examples of these physical deformations are found in various structures. For each
individual problem a unique mathematical model has to be developed. There are
different approaches to set up suitable models. In this thesis the framework is based
on constrained polynomials and constrained basis functions.
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3.2 Polynomials

Scientists and engineers are often faced with measurement data of different kinds.
To interpret the data correctly different aspects have to be considered, e.g. what
type of sensor is used, what is the accuracy and precision of the sensor or how does
the system, that is measured, react to changes of the input.

A-priori knowledge, that is available for most measurements, can be interpreted and
used to model the system. However, the aim is to find an analytical function which
describes the correlation of the input and the output in a specific system. The system
is described mathematically according to Figure 3.2 whereby the input vector is x,
the output vector is y and f(x) together with the parameters α are representing
the relation of input to output data.

Since throughout this work we are talking about measurement data, the following
functions are discrete functions. They map a set of inputs x to a set of outputs y,
i.e. f is a vector valued function of a vector.

model f(x)input
x

output
y

parameters α

Fig. 3.2 General mathematical model for a measurement system. The mapping between
input x and output y is defined by the model f(x) and the corresponding parameters α.

The process of System Identification is used to find a suitable model and the
appropriate parameters that describe a specific system. To choose a suitable model
f(·) a-priori knowledge of the system is beneficial. Additionally, a limited number
of measurements of input and appropriate output values are done, whereby the
measurements may be disturbed by noise. With the chosen model and the reference
measurements a calibration is performed, where the parameters α̂ are estimated via
linear regression, denoted here as g, from the input and output data according to:

α̂ = g(x,y). (3.4)

Once the model for a system is established and the input of the system is known,
the response can be simulated without performing real tests. In this case we are
talking about a forward problem.

ŷ = f(x). (3.5)

The opposite to the forward problem is the inverse problem, where a specific system
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degree of polynomial type of polynomial

1 linear
2 quadratic
3 cubic
4 quartic
5 quintic

Tab. 3.2 Naming of polynomials depending on the polynomial degree

response is wished and the model should deliver the input, that has to be applied
to the system. Systems often have several input variables, all of which influence
the output of the system. For a given output result, different combinations of input
variables may be valid, so there may be several correct solutions.

x̂ = f−1(y) (3.6)

Typically there is a differentiation between linear and non-linear models. Linear
models are numerically easy to handle since they can be described via Matrix vector
equations. Finding the parameters of linear models is normally done via linear
regression analysis. Non-Linear models can describe much more complex behaviour.
Finding the parameters of the model is normally an iterative process and time
consuming.

Polynomials are linear functions (linear in the parameters) and well established. Ad-
ditionally, according to Stone-Weierstrass’s approximation theorem [64] a polynomial
as mathematical model is in most cases a good starting point, due to the fact, that for
every continuous function in a closed interval the polynomial approximation yields a
uniform approximation as long as the degree of the polynomial is high enough [64].

3.2.1 Design of Polynomials

Polynomials are often suitable to model data that is based on physical principles.
They are also well known by engineers and appear in science and mathematics quite
often. Monomials consist of variables and coefficients, a concatenation of several
monomials form a polynomial, e.g.

y = a0 + a1x+ a2x
2 + . . .+ adx

d =
d∑
i=0

aix
i (3.7)

This equation 3.7 is called a design equation. For polynomials of low degrees special
names are used to describe their type [12], such as:
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A general notation for a polynomial of a specific degree d is,

pd(x, α1 . . . αd) =
d∑
i=0

αix
i, (3.8)

whereby x is the location, where the polynomial is evaluated and α1 . . . αd are the
coefficients of the polynomial. The given coefficients define the polynomial completely
and allow the evaluation of the polynomial on any arbitrary position.

The polynomial can be represented in vector or matrix form. The Vandermonde
vector vd is defined as,

vd(x) = [xd, xd−1, . . . , x2, x, 1], (3.9)

and the coefficient vector as

α = [αd, αd−1, . . . , α1, α0]T. (3.10)

Hence, the polynomial can be written as,

y = vd(x)α. (3.11)

If the polynomial gets evaluated on n points these points are combined to form the
vector xk = [x1, . . . , xn]T. Concatenating the Vandermonde vectors vd for xk yield
the Vandermonde matrix Vd,

Vd =


xd1 xd−1

1 . . . x1 1
xd2 xd−1

2 . . . x2 1
... ... ... ...
xdn xd−1

n . . . xn 1

 =


vd(x1)
vd(x2)

...
vd(xn)

 =
[
xdk, x

d−1
k , . . . x1

k,1
]

(3.12)

The Vandermonde matrix will be abbreviated as Vd and is referred to as the design
matrix for the polynomial. The matrix equation to evaluate all values of the
polynomial for xk is

y = Vd(x)α. (3.13)

3.2.2 Polynomial Regression

In general, a regression analysis yields an unconstrained least squares approximation
for a specific model, e.g. a polynomial. For more specific problems, such as those dealt
within this thesis, a-priori knowledge of a system can be used to define additional
constraints for the problem to enhance the solution. The approximation of constrained
polynomials is discussed in Section 3.3.
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If the degree d = 1, the polynomial regression yields a straight line. This is called
linear regression. Each data point pi of an observation consists of the value pair
[xi, ỹi]T , whereby the true ỹi value is perturbed by noise δyi , this results in the
measured value ŷi,

ŷi = yi + δyi . (3.14)

In most cases, independent and identically distributed (i.i.d.) Gaussian noise can
be assumed for several reasons [34]. The central limit theorem states, that for
a sufficiently large number of independent random variables, the normalised sum
of the values has the form of a Gaussian distribution, even when the underlying
variables are not normally distributed. Therefore, almost all common frameworks for
statistical analysis deal with maximum likelihood predictors based on least square
approximation, which is well known by scientists and engineers. Although, Gaussian
noise is common, other types of noise can also occur, see [63]. Therefore, some
care has to be taken and the type(s) of noise present in the system needs to be
investigated.

Due to the noise in the signal the data points are not lying exactly on the approximated
polynomial, yielding a residual ri associated with each point,

ri = yi − ŷi = yi −
d∑
i=0

aix
i. (3.15)

Writing this system of equations for n points yields,


r1
...
rn

 =


y1
...
yn

−

xd1 xd−1

1 . . . x1 1
... ... ... ... ...
xdn xd−1

n . . . xn 1




ad
ad−1
...
a1
a0

 (3.16)

Using vector notation for Equation 3.16 yields,

r = y − ŷ = y − Vd a (3.17)

To minimize the least square approach an optimisation problem is set up, whereby
the function, that has to be minimised, the cost or loss function ε, is set up as,

ε =
n∑
i=0

r2
i = rT r. (3.18)

Substituting for r and expanding yields,
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ε = (y − Va)T (y − Va)) (3.19)
ε = yT y − 2aT VT y + aT VT Va. (3.20)

Building the derivative with respect to a and equating to zero yields the optimised
coefficients a,

a =
(

VT V
)−1

VT y. (3.21)

The term
(

VT V
)−1

VT is known as the Moore and Penrose pseudo-inverse [54] and
is denoted by V+. It is a least squares approximation to the inverse of a rectangular
matrix. Equation 3.21 is also often expressed as:

a = V+ y. (3.22)

Now given the coefficient vector α the estimated values for ŷ can be computed as,

ŷ = Va (3.23)
= V V+ y. (3.24)

This review of polynomial regression and the resulting derivations reveal the funda-
mental algebraic structures needed for approximation by basis functions. The two
fundamental equations of polynomial regressions that should stick in memory are:

ŷ = Va and a = V+ y. (3.25)

The design matrix V is the Vandermonde matrix and represents this specific type of
polynomial vector basis set. But in general this method is also valid for approximating
functions with other vector basis sets, e.g. Fourier or discrete orthogonal basis sets.

3.2.3 Covariance Propagation

The observations of objects often require the use of multiple sensors. When planing
the observation the overall accuracy of the complete measurement system has to
be estimated. Covariance propagation yields an estimate for the confidence at each
computed point.

Let Λx be the covariance of the vector x. The general form of Λx for a total of n
sensors is
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Λx =


Cov(x1, x1) Cov(x1, x2) . . . Cov(x1, xn)
Cov(x2, x1) Cov(x2, x2) . . . Cov(x2, xn)

... ... ... ...
Cov(xn, x1) Cov(xn, x2) . . . Cov(xn, xn)

 . (3.26)

The covariance of one variable with itself is equal to the variance of the single variable
Cov(x1, x1) = V ar(x1) = σ2

x1 . These variances are located in the diagonal of Λx.

When the statistical data of the sensors is available and the sensors are not affecting
each other the covariance matrix can be set up by filling up the diagonal with the
variances of the sensors.

If the variance of the individual sensors varies a vector σ2, containing the specific
variances, has to be set up. The covariance matrix Λx is then defined as,

Λx = diag {σ2} =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
... ... ... ...
0 0 . . . σ2

n

 . (3.27)

If all sensors are of the same type, σ2
x1 = σ2

x2 = σ2
xn = σ2, the convolution matrix can

be generated by multiplying the variance σ2 with the identity matrix I,

Λx = σ2 I =


σ2 0 . . . 0
0 σ2 . . . 0
... ... ... ...
0 0 . . . σ2

 . (3.28)

If no statistical data for the sensors is available the covariance matrix has to
be determined with physical measurements. To get a sufficient amount of data
several measurements of all m sensors have to be performed. The values of the
ith measurement are stored in a vector xi = [x1,i, x2,i, . . . , xm,i]T, whereby all
measurements vectors are concatenated to the matrix X.

X = [x1,x2, . . . ,xn] =


x1,1 x1,2 . . . x1,n
x2,1 x2,2 . . . x2,n
... ... ... ...

xm,1 xm,2 . . . xm,n

 (3.29)

The covariance matrix Λx is now computed by

Λx = 1
m− 1

m∑
k=1

(xk − µx)(xk − µx)T, (3.30)
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whereby the vector µx = [µ1, µ2, . . . , µm]T contains the mean values of all measure-
ments for each sensor and xk = [x1,k, x2,k, . . . , xm,k]T contains all values of the kth
measurement.

To perform a covariance propagation a suitable mathematical model for the specific
problem has to be set up and the covariance matrix Λx containing the statistical
data has to be set up. Here the covariance propagation will be shown for the case of
a linear differential operator L, where the model is defined as:

y = Lx. (3.31)

Beside the model also the covariance matrix is needed. The covariance itself is
a measure for the relation between two random variables. If there is no mutual
influence between two random variables the covariance is zero. In the covariance
matrix the covariances between all variables and also the covariances of random
variables with themselfs are combined. The covariance Λ of a vector y is defined as,

Λy ≡ {y − E(y)} {y − E(y)}T, (3.32)

where E(y) is the expected value of y. Substituting Equation 3.31 results in:

Λy = {Lx− E(Lx)} {Lx− E(Lx)}T (3.33)
= L{x− E(x)}{x− E(x)}TLT (3.34)
= LΛxLT. (3.35)

If the model and the covariance matrix are available the covariance propagation can
be determined by,

Λy = L Λx LT (3.36)

With an appropriate system model and knowledge of the noise of each sensor the
covariance propagation can also be used to compute a prediction and a confidence
interval for derived data. To verify the correctness of the model a Monte-Carlo
simulation [15] can be used, whereby data sets with known random noise are generated
as input for the model computation. The output of the simulation yields data where
the statistics can be computed and the correctness of the prediction can be verified
[8].
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3.3 Constrained Polynomials

When a physical system is monitored, commonly a-priory knowledge is available,
since there is a reason to start the monitoring of this specific system. This knowledge
of the system is used to set up a suitable model [50]. In addition, a detailed knowledge
of a system allows the recognition and recording of boundary conditions which can
be used to further improve the result of a calculation, e.g. at sea level water freezes
at 0 ◦C and has its atmospheric boiling point at 100 ◦C. These constraints regularize
the solutions of the observed system, since they lower the degrees of freedom of the
system.

Common constraints are zero points, key value pairs or specific slopes at defined
points. Examples of constraints are shown in Figure 3.3.

Fig. 3.3 A polynomial with three different types of constraints. At location c1 a known
zero constraint is implemented, location c2 represents a known value pair and at location
c3 a constraint with a defined slope (derivative constraint) is shown [50].

There are different ways to define these constraints. The constraints on polynomials
are in the form,

y(c)(k) = a, (3.37)
whereby c represents the location of the constraint; k the order of the derivative
of the specific constraint and a the value of the constraint. A very general way to
define the constraints is to use a triplet of values t = [c, k, a], whereby all triplets of
constraints of a specific polynomial can be concatenated to the matrix T. Each row
in this matrix represents one generalised constraint of a total of m constraints:

T = [t1, t2, . . . , tm]T =


c1 k1 a1
c2 k2 a2
... ... ...
cm km am

 . (3.38)

This type for representing the constraints enables the implementation of initial and
boundary value constraints that are not only limited to positions of data points xi,
it is possible to locate the constraints at any desired position of the system [50].

Depending on the system following types of constraints can be applied:
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1. Polynomials with known roots, i.e. y(c) = 0, see Section 3.3.1;

2. Polynomials with known value pairs, i.e y(c) = a. This special form is called
Dirichlet boundary condition, see Section 3.3.2.

3. Polynomials with generalised constraints, i.e. differential constraint y(k)(x) = a,
whereby a is the value of the kth derivative of y(c). The special form of this
constraint where k = 1 is called the Neumann constraint, see Section 3.3.3.

3.3.1 Polynomials with Constraining Roots

A polynomial with known zeros has constraints of the type,

y(ci) = 0, (3.39)

whereby the locations of the zero constraints are summarised in the vector c =
[c1, . . . , cm]T. This type of constraint can be found in many physical and engineering
systems related to eigenfunctions that exhibit zero constraints. Especially, if the
mathematical problem can be described by Sturm-Liouville equations. E.g. a simple
supported cantilever has zero constraints at both supports, see Figure 3.4. In more
general problems the solution should also enable the approximation of a constraining
polynomial, where the constraining roots are located within or outside the supports
of the beam [50].

Fig. 3.4 Example for a physical problem with constraining roots: A simple supported
beam has zero constraints on both supports [50].

The goal is to approximate a polynomial, p(x,α) of degree d while the values of the
polynomial are zero at the known locations c. The approach to solve this problem is,
that the proposed polynomial, pd(x,α) is a product of two polynomials,

pd(x,α) = pm(x,γ)pd−m(x,β), (3.40)

whereby pm(x,γ) represents the polynomial defining the roots and pd−m(x,β) is the
polynomial approximation for the residual of pd(x,α) and pm(x,γ).
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Since the polynomial pm(x,γ) is defined by the roots this polynomial is known prior
to the approximation and can be computed by,

pm(x,γ) =
m∏
k=1

(x− ck) (3.41)

With the given coefficients γ the task of the approximation is to determine the
coefficients β that minimize the residual values in a least square sense. Then the
mapping of β to α to yield the required coefficients. Additionally, the covariance Γα
can be computed [50].

Algebraic Formulation

The model for the polynomial is,

y = Vα, (3.42)

whereby V is the Vandermonde Matrix and α are the coefficients resulting from
the product of the polynomials pm(x,γ) and pd−m(x,β). The coefficients γ for the
polynomial representing the zero constraints are derived by expanding the product,

m∏
k=1

(x− ck) = (x− c1)(x− c2) . . . (x− cm). (3.43)

There are several methods available to multiply two polynomials. The convolution
can be applied directly as α = γ ∗ β or the coefficients of γ are used to form the
convolution matrix Γ,

Γ =


γ1 0 0
γ0 γ1 0
0 γ0 γ1
0 0 γ0

 . (3.44)

The use of the convolution matrix Γ is necessary in this case, since it enables setting
up an optimisation problem to minimize the residual r. If β = [β2, β1, β0]T and
γ = [γ1, γ0]T then α is computed as,

α = Γβ =


γ1 0 0
γ0 γ1 0
0 γ0 γ1
0 0 γ0


 β2
β1
β0

 (3.45)

Substituting this term into Equation 3.42 results in,

y = VΓβ. (3.46)
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The residual r is computed by,

r = ŷ − y (3.47)
r = ŷ − VΓβ (3.48)

The cost function can now be defined by,

ε = {ŷ − VΓβ}T{ŷ − VΓβ} (3.49)

Solving this cost function ε in a least square sense delivers,

β = (VΓ)+ŷ, (3.50)

whereby (VΓ+) denotes the Moore-Penrose pseudo-inverse of the matrix (VΓ). Instead
of computing the pseudo-inverse of (VΓ) it is also possible to compute the inverse
via QR decomposition [23],

QR = qr(VΓ), (3.51)
β = R+QTŷ. (3.52)

The coefficients α can now be computed by α = Γβ.

3.3.2 Polynomial with Constraining Value Pairs

The next type of constraints are polynomials with known value pairs, where for
specific x values the corresponding y values are defined. The constraints are in the
form of,

y(ci) = ai (3.53)
These known value pairs (ci, ai) are contained in the vectors xc = [c0, . . . , cm] and
yc = [a0, . . . , am], the noisy data is contained in the vector y. This problem is the
natural extension of the polynomial approximation with known zeros, but in this
case instead of the zeros values are given [50].

In Figure 3.5 a polynomial with the according value constraints xc and yc (red dots)
are shown.

The first task is to find a polynomial yp(x) of degree m − 1 that fulfils all m
constraints. This polynomial can be found via polynomial interpolation and yields
the coefficients δ which follows pm−1(ci, δ) = ai. Evaluating the polynomial for all x
we get yp(x) = pm−1(x, δ). This portion is the particular solution for the problem,
since it is dependent from the particular values of the constraints ai. The particular
solution yp for the in Figure 3.5 presented data is shown in Figure 3.6.

After the particular solution is found, the residual for the observation ŷ w.r.t. yp is
computed by,

ŷh = ŷ − yp. (3.54)
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Fig. 3.5 Dataset with constraint value pairs: The black dots represent the noisy data, the
red dots the constraining value pairs xc = [−0.8, 0.3, 1]T and yc = [−0.5, 0.3,−0.5]T.

Fig. 3.6 Particular solution for a value constrained polynomial.

The residual ŷh is shown in Figure 3.7. Note that the value pair constraints in the
residual turned into zero constraints.

The coefficients for a polynomial, that fulfils the constraints in a homogeneous manner
can be found via polynomial approximation of ŷh; this is the same task as done for
polynomials with zero constraints, see Section 3.3.1. This portion of the solution,
that represents yh is independent of the values of the constraints and defined as
homogeneous solution [50]:

yh(x) = pm(x,γ)pd−m(x,β) (3.55)

The polynomial consisting of the homogeneous and the particular solution is defined
as:
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Fig. 3.7 Homogeneous solution for a value constraint polynomial. The homogeneous
solution is the residual of the observed data and the particular solution.

pd(x,α) = pm(x,γ) pd−m(x,β)︸ ︷︷ ︸
yh(x)

+ pm−1(x, δ)︸ ︷︷ ︸
yp(x)

. (3.56)

The sum of the homogeneous and the particular solution yield the approximation
for the observed data with the constraining key value pairs. The approximation for
the original observed data with the a-priori known value constraints is shown in
Figure 3.8.

Fig. 3.8 The final approximation for the value constrained data yielded from the sum of
the homogeneous and the particular solution.

The functions generated for solving the problem are presented in Figure 3.9.

The approximation of the polynomial can be summarised into the following simple
algebraic steps:
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Fig. 3.9 The final approximation for the value constrained data yielded from the sum of
the homogeneous and the particular solution.

1. Determine the coefficients δ of the particular polynomial p(xi, δ) via interpola-
tion, whereby any algorithm, that yields a polynomial consisting of monomials
that fulfils the constraints, is suitable.

2. Next we compute the homogeneous data, ŷh(xi) = ŷi − p(xi, δ) and use
polynomial interpolation to yield the coefficients γ of the polynomial that
fulfils the zero constraints of the residual, i.e. pm(x,α).

3. Use polynomial approximation as presented in 3.3.1 for the homogeneous
portion of the problem.

4. Compute α from γ,β and δ according to,

α = γ ∗ β + δ, (3.57)

whereby the ∗ operator denotes a convolution for polynomial multiplication [31, 50].

3.3.3 Polynomial Approximation with Generalised Constraints

Since the constraints in physical problems are not limited to known roots or known
value pairs it is also necessary to be able to compute solutions for problems with a
more general type of constraints. Considering a cantilever with constraints just on
one side. To fully describe such a system, derivative constraints up to order three
have to be taken into account, see Figure 3.10.
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Fig. 3.10 Normal and derivative constraints on a cantilever.

A more general form to describe the constraints is,

dk y(x)
dxk

∣∣∣∣∣
c

= y(k)(c) = a. (3.58)

This allows the structured implementation of multiple constraints at defined locations
ci with different orders ki of the derivatives and also different corresponding values
ai of the constraint. These values can be combined to a triplet ti of values to enable
a structured description of the constraints,

ti = [ci, ki, ai], (3.59)

whereby the triplets are concatenated to the Matrix T , [t1, . . . , tm]T. This possibility
for defining the constraints in such a general way enables the definition of more
complex problems that can be solved with this approach. A large family of inverse
problems related to systems governed by ordinary differential equations, that can be
formulated as e.g. initial value or boundary value problems, have such derivative
constraints that are known a-priori [50].

The use of this approach also enables the generation of a vector basis set, that spans
a sub-space of functions that fulfil the constraints at this location. These functions,
that are represented by the sub-space, are called admissible functions.

Being able to describe where the constraint i with the derivative order of ki with the
value ai is located at the position ci we need a suitable method to implement these
constraints in a manner that enables the computation of a solution for the specific
problem.

The problem can be separated into a homogeneous and a particular solution,
whereby the particular solution fulfils the constraints and the homogeneous solution
approximates the noisy data of the residual of the particular solution. To find the
particular solution a polynomial has to be found, that fulfils all the constraints,
including the kth derivative ones.

To fit a polynomial to normal and derivative constraints a specific design matrix C is
set up, where each concatenated row defines the solution to one specific constraint.
For normal constraints the Vandermonde vector vd is used, for derivative constraints
the Vandermonde vector is derived according to the degree of derivation k of the
constraint [50].
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The derivation of a polynomial is straight forward, since the derivative of each term
can be computed by,

d
dx

n∑
k=0

akx
k =

n∑
k=1

k · akxk−1 (3.60)

The equation to compute a value with the Vandermonde vector vd and the coefficients
α is

y(x) = vdα = αdx
d + αd−1x

d−1 + . . .+ α1x+ α0. (3.61)
The first derivative of the polynomial in Equation 3.61 is

ẏ(x) = dαd x
d−1 + (d− 1)αd−1 x

d−2 + . . .+ 2α2 x+ α1 (3.62)

There are two possibilities to define the derivative of the polynomial to enable the
following computations. The first possible definition of the derivative is to define a
vector,

α̇ =



0
dαd

(d− 1)αd−1
...

2α2
α1


(3.63)

such that,
ẏ(x) = vd(x) α̇. (3.64)

Using this definition of α̇ the relation between α and α̇ is

α̇k−1 = kαk, (3.65)

whereby each coefficient is shifted by one location and additionally scaled by k.

The second possibility is to formulate ẏ(x) via the derivative of the Vandermonde
vector v̇d(x) such that

ẏ(x) = v̇d(x)α. (3.66)
An algebraic formulation in this manner enables a least square approximation of
constrained data. The vector v̇d(x) used in Equation 3.66 is defined as,

v̇d(x) , [d xd−1, (d− 1)xd−2, . . . , 1, 0]. (3.67)

To allow an efficient computation of v̇d(x) a matrix M has to be determined such
that,

v̇d(x) = vd(x) M. (3.68)

The task of the matrix M is to form the derivative d
dx

of a polynomial, whereby each
monomial can be differentiated on its own. To yield the derivative of a monomial
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the term is scaled by the exponent of x and the exponent reduced by one number.
In the notation for polynomials the reduction of the exponent is yielded by shifting
all terms by one place in the vector. For the scaling the vector s is defined as,

s = [d, (d− 1), . . . , 2, 1] (3.69)

and extended to a scaling matrix S via

S = diag{s}. (3.70)

To shift all entries by one position the matrix M is generated in the form

M =
[

0 0
S 0

]
. (3.71)

Using this definition in Equation 3.66 we obtain,

ẏ(x) = vd(x) Mα, (3.72)

thus, following relationships can be determined,

v̇d(x) = vd(x) M (3.73)
α̇ , Mα. (3.74)

This approach is also valid for derivations of higher degrees, e.g. the derivative if the
ith order is computed as,

v
(i)
d (x) = vd(x) Mi (3.75)
α(i) = Miα. (3.76)

With these definitions available we can set up a formulation for the constraints. For
each constraint a triplet is defined,

ti = [ci, ki, ai]. (3.77)

These triplets are used to define constraining vectors vkid (ci), which are combined
together to a set of equations of the form:

v
(k1)
d (c1)

...
v

(km)
d (cm)

α =


a1
...
am

 . (3.78)

This set of equations specify the constraints and degrees of freedom of the system.
Defining the matrix of constraining vectors vkid (ci) as matrix C allows the formulation
of Equation 3.78 as,

Cα = a. (3.79)
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The rank of the matrix rC = rank(C) indicates the number of independent constraints.
If rc is smaller then the number of constraints m there are redundant constraints.
A further condition that has to be fulfilled is, that all values a must lie in the
range of C, a ∈ range{C}. If these conditions are not fulfilled the constraints are
inconsistent [50].

Approximating the vector α from Equation 3.79 yields,

α = C+ a+ NC γ (3.80)

whereby NC forms a orthonormal vector basis set for the null-space of C.

Expanding the resulting equation for y,

y = V{C+ a+ NC γ} (3.81)

yields,
y = V C+ a︸ ︷︷ ︸

yp

+ V NC γ︸ ︷︷ ︸
yh

. (3.82)

Equation 3.82 shows, that the equation splits into a particular solution yp, that
fulfils the generalised constraints, and a homogeneous solution yh, which is used to
perform the least square approximation [50].

Implementation

The solution of this task is structured into following tasks:

1. Set up the Matrix T containing the triplets ti for each constraint.

2. Compute the Matrix C from the constraint values contained in T and the
Vandermonde vector vd or one of his derivatives (ci = v(ci)Mk).

3. Find a particular solution yp = p(ci, αp) that fulfils the given constraints,
whereby also k-derivative constraints have to be taken into account in this
solution portion. The coefficients αp are computed via,

αp = C+ a and (3.83)
yp = V C+ a (3.84)

4. Compute the homogeneous portion of the problem as residual from the given
noisy data and the particular solution, e.g.

ŷh = ŷ − yp (3.85)

5. Approximate a polynomial p(ŷh,αh) representing the homogeneous solution,
that fulfils the resulting zero constraints of the residual ŷ−yp. The coefficients
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of the homogeneous solution αh may be also denoted as γ within this thesis.
To compute the coefficients γ for the homogeneous solution the null-space NC
for C has to be computed.
The null-space NC is a vector basis set of orthogonal functions which repre-
sents all polynomials that are valid solutions and fulfil the constraints in a
homogeneous manner. γ is computed according to,

γ = (VNC)+ŷh. (3.86)

6. The final approximation is the sum of the particular and the homogeneous
portion,

y = yh + yp. (3.87)

The coefficient α for our model y = Vα is the sum of the coefficients of the
particular and the homogeneous solution,

α = αp +αh = C+a+ NCγ. (3.88)

Covariance Propagation

The covariance matrix Λŷ is computed from the noisy data ŷ. When we compute
the homogeneous solution using the approximation of Equation 3.86 we yield,

yh = VNCγ = V NC {V NC}+︸ ︷︷ ︸
K

ŷh. (3.89)

With the definintion

K , NC {V NC}+ (3.90)

from Equation 3.89 we can compute the covariance of Λα by

Λα = K Λŷ KT. (3.91)
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3.4 Basis Functions

The columns in the design matrix B, introduced in Section 3.2, are the basis for a
function space, which allows the representation of every continuous function as an
independent linear combination of basis functions. In the case of using geometric
polynomials, they are the monomial basis and are called Vandermonde basis. This
basis functions are easy to use and wide spread in the literature [36]. However, the
use of the Vandermonde matrix leads to a number of problems and limit the practical
usability, since the basis functions are not orthogonal.

As a consequence of this, the computation of B+ is computationally expensive and
quickly becomes numerically degenerate as the degree of the polynomial increases.
This makes it impossible to compute a useable inverse. The condition number of the
Vandermonde Basis of degree d = 10 and n = 100 points equally spaced between
[−1 ≤ x ≤ 1] is > 104 which makes the Vandermonde not suitable for solving large
scale problems. The high condition number is an indication for an ill-conditioned
problem, which leads to inaccuracies when computing the inverse of the design
matrix.

There are several basis functions beside the Vandermonde basis that can be used for
approximating data that can be classified in three main groups according to their
moment, [48]:

1. Geometric moments

2. Polar moments

3. Periodic moments

Choosing a basis for a specific problem depends on the nature of the data being
analysed and on the model features. When using a suitable basis function set
the amount of redundancy information is minimised as are the effects of Runge’s
phenomena and Gibbs error [48]. Using a different type of basis function doesn’t
change the basic principles for computations with them.

The focus in this thesis is mainly on geometric moments, since these ones are
used to describe bending of structures and therefore used for reconstructions in
geo-monitoring.

3.4.1 Nomenclature

When discussing basis functions we also have to define a specific nomenclature prior
to defining an algebraic framework. Since all basis functions are related to each other
they can fulfil specific conditions.



3.4. Basis Functions 52

If functions are orthogonal they have the mathematical property of describing non-
overlapping, uncorrelated or independent objects of some kind. In a mathematical
view two vectors are orthogonal if the inner/scalar product is zero, e.g. xT y =
yT x = 0 while xT x = ξ and yT y = ψ and ξ and ψ are scalars.

Orthogonality does not refer to the magnitude of the vectors. If two vectors are
orthonormal the vectors form a set of unit vectors, e.g. xTx = 1 and yTy = 1 while
the condition xT y = yT x = 0 is still fulfilled. If the vectors are complex, x, y ∈ C,
the vector basis set is called a unitary set. The same concept is also expanded to
matrices like the basis functions that result in following nomenclature [27],

1. orthogonal basis BTB = C, where C is a diagnoal matrix and

2. orthonormal basis BTB = I, where I is the identity matrix.

For completeness there are also additional basis sets, like the unitary or weighted
orthogonal basis, that are also described in literature, see [49], but not specially
handled in this thesis.

Synthesising Basis Functions

For approximating discrete data with discrete basis functions in a least square sense
the support points of the basis functions have to be identical with the points on
the x-axis. There are several algorithms available for synthesising these functions
that use a recurrence relationship, e.g. for the Vandermonde basis the following
relationship is used,

bn =


1, for n = 0
x, for n = 1
b2
n−1, for 2 ≥ n ≥ d

(3.92)

which yields the Vandermonde matrix,

V =


1 x1 x2

1 . . . xd1
... ... ... ... ...
1 xn x2

n . . . xdn

 . (3.93)

As stated already before, the Vandermonde Matrix is bad conditioned and not
orthogonal, and that leads to several problems. It also becomes degenerate at high
degrees (d & 8), thus there is no unique inverse and therefore, the Vandermonde
basis is not suitable for signal synthesis [27].
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Legandre Polynomials

There are several methodologies available for the generation of discrete orthogonal
basis functions that are based on a three-term recurrence relationship of the form
[10, 20],

bn = αn(bn−1 ◦ x) + βnbn−2. (3.94)

x represents the vector of the support nodes, that may be arbitrarily spaced on
the x-axis. The two scalar recurrence coefficients {αn, βn} are mutable, different
values for them deliver different polynomials, e.g. the Legendre polynomials can be
synthesised using the recurrence relationship with αn and βn defined as,

αn = (2n+ 1)
n+ 1 and βn = n

n+ 1 (3.95)

yielding

bn(x) = (2n+ 1)
n+ 1 x ◦ bn−1(x)− n

n+ 1 ◦ bn−2(x). (3.96)

The first two basis functions for the synthesis are b0 = 0 and b1 = x. The Legendre
polynomials fulfil the orthogonality condition in the range x = [−1, 1] in an integral
sense, such that

∫ +1

−1
Pm(x)Pn(x) d x =

0 if p 6= q,
2

2p+1 if p = q.
(3.97)

These basis functions are not orthogonal for discrete values. The quality of the
basis functions with respect to their orthogonality can be verified by interpreting the
residual matrix R. For computing R first the basis functions B are synthesised with
the redundancy relationship from Equation 3.96 and x, a vector with equally spaced
nodes in the interval of [−1, 1]. The first six Legendre polynomials for degree d = 10
on n = 100 equidistant nodes are shown in Figure 3.11.

The matrix of residual errors for a set of basis functions can be computed as,

R = BT B− diag
(

BTB
)
. (3.98)

Considering a perfectly orthogonal basis set all elements of the residual matrix R
would be zero. The residual matrix for the Legandre polynomials are shown in
Figure 3.12. Observing this residual matrix, it is obvious that the discrete Legendre
basis functions are not orthogonal.
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Fig. 3.11 Plot of the first six Legendre polynomials in the interval of [−1, 1].

These Legendre polynomials are one example for synthesising basis functions from
a recurrence relationship. Beside these Legendre polynomials there are also other
basis functions that can be synthesised by recurrence relations like the Chebyshev or
Gram-Schmidt polynomials, see [16, 60].

Gram-Schmidt Polynomials

The Gram-Schmidt polynomials [26] are continuous polynomials which form a
complete orthogonal (and unitary) set of basis functions, if they are synthesised
by uniformly spaced nodes. The Gram-Schmidt recurrence relation performs a
orthogonalisation, referred to as Gram-Schmidt orthogonalisation, that can also
be used for the QR-decomposition of matrices. Theoretically, the Gram-Schmidt
polynomials form an ideal basis, fulfilling an ideal orthogonally condition:

∫ 1

−1
Gn(x)Gm(x) d x = δ(n,m). (3.99)

The three term recurrence relation for the Gram-Schmidt synthesis is [13]

gn = 2αn−1 x ◦ gn−1(x)− αn−1

αn−2
gn−2, (3.100)

whereby,

αn−1 = m

n

(
n2 − 1/4
m2 − n2

)1/2

(3.101)

and
g0(x) = 1, g−1(x) = 0 and α−1 = 1. (3.102)

The nodes for the Gram polynomials are equally spaced according to,
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Fig. 3.12 The residual matrix R = BT B − diag(BT B) for the Legendre polynomials of
degree d = 10, computed for n = 100 nodes. R is scaled by the first entry of the diagonal
of BT B.

x = −1 + (2k − 1)
m

, 1 ≤ k ≤ m. (3.103)

Note that they do not span the full range of [+1,−1]. Figure 3.13 shows the first
eight Gram-Schmidt basis functions. The first basis function is scaled by the scaling
factor of ĝ0 = 1√

nr.nodes
and the polynomials of a higher rank are normalised by

ĝn = gn
‖ gn ‖

. (3.104)

The residual matrix R for the Gram-Schmidt polynomials is shown in Figure 3.14

Fig. 3.13 The first eight Gram-Schmidt polynomials.



3.4. Basis Functions 56

for n = 100 points and degree d = 10.
The error in R is significantly lower than the residual error of the Legendre polynomials
but the significant digits are with 10−13. Compared to the computational accuracy
available, the eps1 for the double number 1.0 is e = 2.2204 x 10−16 in Matlab® [40]
this accuracy is still three digits poorer.

0

1

2

3

4

5

6
10-13

Fig. 3.14 The residual matrix R = BT B− diag(BT B) for the Gram-Schmidt polynomials
of degree d = 40. R is scaled by the first entry of the diagonal of BT B.

3.4.2 Discrete Orthonormal Polynomials (DOP)

All common methods for synthesising an orthogonal or orthonormal polynomial basis
use the three term recurrence relationship:

pn = αn x ◦ pn−1 + βn pn−2. (3.105)

As stated before, using different terms for α and β yield different bases. The three
term recurrence relation results in unstable processes, since not all prior terms are
taken into account and also round-off errors effect the result. This makes it almost
impossible to synthesize polynomial basis functions of higher degree with this three
term recurrence formulation.

O’Leary [44] published a universal synthesis algorithm to synthesize a polynomial
basis which is truly orthonormal (unitary) and that this is the only method to yield

1The floating-point relative accuracy (eps) is the difference from a number to the next available
number in a system. It is depending on the base number and the number format used (single or
double).
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a perfect orthonormal polynomial basis. Compared to Equation 3.105 the recurrence
relationship can be formulated more generally as,

pn = αn x ◦ pn−1 + Pc βn, (3.106)

whereby the complete polynomial basis of degree n− 1 is contained in the matrix
Pc. Performing orthogonalisation by projecting pn onto Pc ensures that the nth basis
function is also orthogonal to all basis functions of lower degree,

p⊥n =
(

I− Pc P+
c

) {
αn x ◦ pn−1 + Pc βn

}
. (3.107)

Expanding Equation 3.107 yields,

p⊥n = αn
(

I− Pc P+
c

)
x ◦ pn−1 +

(
I− Pc P+

c

)
Pc βn (3.108)

The fact that the projection of Pc onto its own orthogonal complement must be zero,
i.e. (I− Pc P+

c ) Pc = 0 indicates, that the synthesis of a unitary basis is independent
of βn.

The remaining polynomial,

p⊥n = αn
(

I− Pc P+
c

)
x ◦ pn−1, (3.109)

is normalised by,

p̂⊥n = p⊥n
‖p⊥n ‖2

= αn (I− Pc P+
c )x ◦ pn−1√

α2
n

(
x ◦ pn−1

)T
(I− Pc P+

c )
(
x ◦ pn−1

) (3.110)

to ensure a unitary basis which is perfectly conditioned. The term αn /
√
α2
n is a sign

function, hence αn is cancelled out of Equation 3.110:

p̂⊥n = (I− Pc P+
c )x ◦ pn−1√(

x ◦ pn−1

)T
(I− Pc P+

c )
(
x ◦ pn−1

) . (3.111)

Both, α and β, are not used for the generation of the one existing polynomial basis
that is perfectly conditioned. This generation process is performed incrementally
where after each iteration the existing basis Pc=̂Pn−1 is augmented with the newly
generated orthonormal basis p̂⊥n ,

Pn =
[
Pc, p̂⊥n

]
. (3.112)

This synthesis can be split into two parts, an initial step and afterwords an incremental
process. The initial step consists of the generation of the first two basis functions.
p0 is a column vector of m ones scaled by m− 1

2 .

p1 represents the centralised and normalised x vector,

p0 = 1√
m

and p1 = x− x̄
‖ x− x̄ ‖2

. (3.113)

After the generation of the first two basis functions each further function of the next
higher degree is synthesised in following steps:
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1. Generation of the basis function pn of next higher degree

pn = p1 ◦ pn−1 (3.114)

2. Complete re-orthogonalisation via

p⊥n =
(

I− PT
n−1 Pn−1

)
pn. (3.115)

Via re-orthogonalisation of pn w.r.t. the complete existing orthonormal basis
Pn−1 all correlations with the previous basis functions are eliminated.

3. Normalisation of p⊥n via

p̂⊥n = p⊥n
‖p⊥n ‖2

(3.116)

4. Expansion of Pn−1 with p⊥n to yield the matrix Pn containing the complete set
of basis vectors from p0 to pn.

Pn =
[
Pn−1,p

⊥
n

]
=
[
p0, p1, . . . ,p

⊥
n

]
(3.117)

Figure 3.15 presents the residual matrix for the discrete orthogonal basis functions
for degree d = 500. The range of 10−16 for the significant digits indicates, that the
generation of basis functions of a high degree is in the range of the reachable relative
floating-point accuracy of current implementations of IEEE standard floating point
representations in hard- and software [2].
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10-16

Fig. 3.15 The residual matrix R = BT ◦ B − diag(BT ◦ B) for a discrete orthogonal
polynomial of degree d = 500. The residual error is in the magnitude of the floating-point
relative accuracy (eps) available in the calculating system.
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3.4.3 Derivatives of Discrete Orthonormal Polynomials

For synthesising the basis functions for a vector x just fundamental linear algebra
is used. For solving ordinary differential equations (ODE) and partial differential
equations (PDE) also the derivative of pn is needed.
While pn is synthesised via Equation 3.106 the derivative p′n can be synthesised by
the recurrence relation,

p′n = αn
(
p′n−1 ◦ x+ pn−1 ◦ x′

)
+ Pn−1 βn. (3.118)

These derivatives are concatenated to the matrix P′ = [p′0,p′1, . . .p′n]. These basis
functions are not orthogonal. But extending the algorithm to synthesize the basis
functions, including complete re-orthogonalisation, results in a marginal additional
computational effort. Moreover, the algorithm to compute the derivatives, can easily
be implemented into the framework to compute the discrete orthogonal basis.

The numerical derivative y′ of a vector y can be computed via the differential matrix
D as,

y′ = Dy. (3.119)
D is a linear differential operator and is required for solving various kinds of problems
like Boundary Value Problems (BVP) or Initial Value Problems (IVP). The quality of
the linear differential operator affects the accuracy of the solution to the mathematical
problem directly. The relation between the basis functions, their derivatives and the
linear differential operator is,

P′ = D P. (3.120)

Differential matrices are generally rank-1 deficient, but if computed for a high
degree and high number of points they become more degenerate what results in
an increasing condition number κ = cond(D). This affects the solution of inverse
problems negatively; thus, a regularising differential operator D̂ is introduced, which
is defined as,

D̂ =̂ P′m PT
m = D P′m PT

m. (3.121)

In this case Pm is a truncated subset of the basis functions containing just the first
m basis vector sets. Using a regularising linear differential operator reduces the
numerical effort and stabilises the solution with respect to present noise. This type
of regularisation is called spectral regularisation.

For the cost function of a differential equation,

ε =‖ Dy − y′ ‖2
2, (3.122)
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the solution, in a least square manner for the estimate ŷ w.r.t. y, is,

ŷ = D+y′ + null(D) γ. (3.123)

In this solution null(D) γ represents the appropriate null-space for the problem. The
null-space is a subset of the vector base for an inverse problem, whereby this subset
is not influencing the solution since it is orthonormal to all other solutions. The
null-space is, depending of the rank deficiency scaled by a scalar or vector and can
be compared to the constant of integration. If the numerical variational integrator
D+ is numerically perfectly conditioned the null space is a vector of ones,

null( D ) γ = γ 1. (3.124)

Regularisation for this type of problems is not limited to spectral regularisation,
e.g. also Tikhonov regularisation [35] could be used by implementing an additional
penalty term to the cost function [29],

εT ikhonov =‖ Dy − y′ ‖2
2 +λ ‖ Sy ‖2

2 . (3.125)

The penalty term of the Tikhonov regularisation penalizes outliers according to the
regularising parameter λ. A combination of spectral and Tikhonov regularisation is
described in [46].

As mentioned before a differential matrix should be rank-1 deficient but when they
are computed for high degrees the condition number increases and they start having
additional null-spaces. If they are stabilised by computing the regularised differential
matrix D̂ according to Equation 3.121, they are stable up to degree d = 33, see
Figure 3.16.

Fig. 3.16 Rank deficiency of the differential matrix D̂ computed according Equation 3.121
regarding to the degree of the used basis functions. D̂ is rank-1 deficient up to degree
d = 33, for higher degrees the differential matrix degenerates and delivers more null-spaces.
This is negative for solving inverse problems.
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3.4.4 Local Approximation

In Section 3.2.2 the basics of polynomial regression was presented using the full
Vandermonde matrix. In addition to this global approximation, where the basis
functions are applied to the full length of the support, also a local approximation is
possible. The local approximation applies the basis functions of a defined degree d
to a limited portion of the data, defined by the support length ls.

The original approach for local approximation was introduced by Savitzky and Golay
[59] as local polynomial approximation to smooth and evaluate the derivatives of
noisy spectrometer data. The smoothing used low degree geometric polynomials
of a limited length. Due to the numerical instability of the approximation using
Vandermonde polynomials this approach can be improved by using orthogonal basis
functions instead of geometric polynomials, see [45].

The process of generating a local approximating matrix can be split up to following
steps:

1. A unitary base G for m = ls elements of degree d has to be synthesised. This
base is unitary (GT G = I) and incomplete since d < (ls − 1).

G

ls

d

Fig. 3.17 Unitary base G as starting point for local approximation.

2. From G the local projection matrix P = G GT is computed. The centre row
pc of this matrix represents the projection at the centre of the support. The
upper rows (ps) and lower rows (pe) of the centre row in the matrix correspond
to the projection of the data on the basis functions at the start and end of the
data. These rows are, in contrast to the centre row, asymmetric because the
signal at both ends could not be modelled perfectly. This fact is responsible
for a Gibbs error at the end parts of local approximations.

pc

ps

pe
}

}
}

P = GGT

*

Fig. 3.18 Local projection matrix P = G GT
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3. From the local projection matrix P a global complete projection matrix P is
generated, whereby P is of the dimension to span over all m data points. The
core of P is filled up diagonally with the centre row of the local projection
matrix P and at the start and end of the global projection matrix P the top
and the bottom lines of P are placed.

P

Fig. 3.19 Global complete projection matrix P, whereby P is of the dimension to span
over all given data points m.

The progress of local polynomial approximation becomes numerically intensive for
large data sets. An alternative would be to generate a large matrix with a local
approximation term around the trace of the matrix. This approximation term could
alternatively be used as kernel for a convolution operation for the middle data sets,
whereby the beginning or ending datasets have to be handled separately. This reduces
the computational effort significantly. If local approximation is applied to time-series
data instead of spatial data, this time-series data is streamed and therefore it has no
real beginning or ending part. This aspect is important in data analytics where huge
datasets over long periods of time are available, see [27, 47, 56].

3.4.5 Linear Differential Operator

As described in Chapter 3 in monitoring of structures inclinometers are often used.
These inclination sensors measure the slope at a specific point on the observed
object. This inclination is the first derivative of the deflection of the structure. The
deformation of the structure is described by differential equations, e.g. in the case of
a beam the Euler-Bernoulli equation,

d4 y(x)
d x4 − λ y(x) = 0. (3.126)

The goal is to reconstruct the deflection of the beam from the measured perturbed
inclination values. This class of problem is an inverse problem, see Section 3.2, where,
via a mathematical model for the structure, the output data is used to define the
input, which is causing the deformation.

A Linear Differential Operator (LDO) has to be defined to enable the computation
of the inverse solution. This concept using the LDO is not just suitable for
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inclinometer measurements, that are related to a spacial domain, but also suitable
for measurements in the temporal domain, e.g. accelerometer measurements.

In Chapter 3.4.2 the synthetisation of a set of discrete orthogonal polynomials B
and in Chapter 3.4.3 the generation of their derivative Ḃ is described. The relation
between B and Ḃ is,

Ḃ = D B. (3.127)

Both sides are multiplied with the Moore-Penrose pseudo-inverse B+ of B to compute
the differential operator D.

Ḃ B+ = D B B+ (3.128)

The vector basis set and their derivatives can be computed for either a

1. complete set of basis functions, B and Ḃ or

2. an incomplete vector basis set, Br and Ḃr.

For a complete set of basis functions:

B BT = I, (3.129)

and applying this to Equation 3.128 yields D computed as,

D = Ḃ B+. (3.130)

D is a non regularising differential operator with rank-1 deficiency. Hence the
null-space ND of D is

ND = 1 γ, (3.131)
whereby γ is a scalar. The linear differential operator can now be defined as A = D+.
The resulting matrix equation for solving the inverse problems of inclinometer
measurements is now defined as,

y = A ẏ + ND γ, (3.132)

whereby ND γ is comparable with the constant of integration.

If a reduced number of basis functions are used for generating the orthogonal vector
basis set Br and Ḃ, the regularising differential matrix can be defined as,

Dr , Ḃr B+
r = D Br B+

r . (3.133)

The differential operator Dr is not suitable for solving inverse problems but the
projection

ŷ = D Br B+
r ỹ (3.134)
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implies a smoothing during the derivation or integration.

This regularising differential matrix enables a high degree global smoothing for
inverse problems. In geo-monitoring, where data from displacement sensors and
inclination sensors, which indicate the first derivative of the displacement, have to
be combined, this approach enables more stable solutions where the effect of single
outliers in the data is reduced.

3.4.6 Basis Function Approximation with Constraints

Discrete orthogonal polynomials are also suitable for solving initial value or boundary
value problems with constraints, e.g. inclinometer measurements with constraining
reference measurements. This type of problem belongs to the family of ordinary
differential equations (ODE).

The m measurement values corresponding to discrete samples of a continuous forcing
function z(x) are forming the vector z. In the case of inclinometer measurements
the positions of the sensors define the location vector x.

Note that the presented method is also applicable for time series data, where the
time points of the individual measurements define x.

As described in Chapter 3.3 in a system where a-priori knowledge is available
constraints can be defined. These constraints can correspond to known zeros (y(ci) =
0), to value pairs of the function (y(ci) = ai) or to a derivative of the function
of grade k on known positions (y(k)(ci) = ai). Dirichlet and Neumann boundary
conditions are a special case of such generalised conditions as they appear in initial
value (IVP) or boundary value problems (BVP).

To compute a numerical solution for a specific problem with constraints it is necessary
to approximate the function by a continuous function, e.g. a polynomial, which fulfils
the constraints. Discrete orthonormal polynomials are better suitable for a stable
solution, compared to polynomials with a Vandermonde basis, since computing the
inverse of the design matrix is more stable and efficient.

For the reconstruction of perturbed inclination measurements the algebraic model
for the problem is defined as,

y = L ż, (3.135)

whereby the disturbed measurement values are in the vector ż and L represents the
discrete linear differential operator defined as,

L , An Dn + An−1 Dn−1 + A1 D + A0. (3.136)

This problem is an inverse problem [65] that is ill-posed, because it covers multiple
solutions. To solve this problem the residuum r,
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r = Ly − z, (3.137)

has to be minimised yielding least square solution resulting in the definition of the
cost function K = ‖r‖2

2 = ‖rTr‖2 as,

K = ‖Ly − z‖2
2. (3.138)

To ensure a unique solution to the problem, constraints must be imposed on the
system. The constraints, that are gathered by boundary conditions and/or reference
measurements e.g. optical reference measurements2, are modelled by,

CT y = d, (3.139)

whereby CT is the matrix of constraints and d the vector with the values of the
corresponding constraints. In this form the physical structure of the observed system
is described.

The description of the system via an incomplete set of orthogonal basis functions B
of degree d is related with the coefficients α via,

y = Bα. (3.140)

The basis functions B are related with the eigenfunctions of the structure being
monitored, whereby in this case they deliver the deformed curve based on the modes
of the structure. The use of an incomplete set of discrete orthogonal polynomials
results in a form of spectral regularisation.

The most general solution of the inverse problem is yielded by substituting y = Bα
in CT y = d resulting in,

CT Bα = d. (3.141)

An estimate for α̂ for the coefficients α of Equation 3.141 is given by,

α̂ = {CT B}+
d+ Nγ, (3.142)

where {CT B}+ is the pseudo-inverse of the least square solution, N the orthonormal
null space of {CT B}+ and γ the coefficients corresponding to the null space N.
Substituting this estimate into Equation 3.140 yields the curve estimate ŷ,

ŷ = B {CT B}+
d+ B Nγ. (3.143)

Expanding the cost function, Equation 3.138, with this estimate

K = ‖L B {CT B}+
d+ L B Nγ − z‖2

2 (3.144)
2optical reference measurements with robotic total stations are assumed to be true in geotechnical

applications



3.4. Basis Functions 66

solved for γ in a least square sense yields,

γ = {L B N}+(z − L B {CT B}+
d). (3.145)

The substitution of γ into Equation 3.142 yields

α̂ = {CT B}+
d+ N {L B N}+(z − L B {CT B}+

d), (3.146)

and using this estimation for the coefficient α̂ in Equation 3.140 yields the final
solution for ŷ,

ŷ = B {CT B}+︸ ︷︷ ︸
K

d+ B N {L B N}+︸ ︷︷ ︸
P

(z − L B {CT B}+︸ ︷︷ ︸
K

d), (3.147)

for easier reading it is defined,

K = B {CT B}+ and P = B N {L B N}+. (3.148)

Substituting these terms in Equation 3.147 yields,

ŷ = Kd+ P (z − L Kd) (3.149)
= Kd+ P z − P L Kd. (3.150)

Partitioning this equation for d and z yields,

ŷ = (K− P L K)d+ P z (3.151)
= (I− P L)Kd+ P z, (3.152)

whereby the multiplicand of d is defined as,

H , (I− P L)K. (3.153)

With this definition Equation 3.151 is rewritten in the form,

ŷ = Hd+ P z. (3.154)

In this form the term yh = Hd represents the homogeneous solution and yp = P z
the particular solution.

y = yh + yp (3.155)

In this generalised solution for this type of problems, the vectors d and z are variable,
while the matrices H and P are defined by the specific problem. Thus, the matrices
H and P can be computed a priori and computing the homogeneous and particular
solution for new d and z is done by two efficient matrix multiplications. Therefore,
this solution is suitable to be used on low power devices with limited computing
power when compared with embedded systems.
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3.5 Model Based Reconstruction of Monitoring
Data

A suitable construction site was selected to apply the model-based reconstruction on
real data.

In this project a new subway line is built underneath the subway station of an
existing line. The new tunnel gets excavated while the surrounding metro lines are
operated as usual. Therefore, the need for continuous parallel monitoring with short
reaction times in case of unpredicted events is mandatory. Figure 3.20 shows the
existing station, marked as the long purple area from the left side to the right side.
The long thin purple area from top to bottom marks the newly built tunnel.

Fig. 3.20 Schematic representation of a complex measurement field associated with the
monitoring of a subway tunnel construction. The white circles form a linear chain of 59
inclinometers monitoring a stretch of railway line. The pink circles correspond to reference
measurements points acquired from theodolite measurements, © Geodata GmbH.

In such a case the task is the surveillance of the condition of the active tracks and
determine if subsidence, deformation or lateral tilt appear. As soon as a deformation
occurs that is greater than the expected deformations, an alarm must be triggered
promptly.

Commonly the monitoring of the tracks would be done with a total station and
reflective targets at the critical positions. The reliability of such a system is high and
also the accuracy is sufficient over long distances [14, 28]. Since the rails are used
continuously and passengers remain on the platforms, measurements with a robotic
total station cannot be carried out without interruptions, since these measurements
require the line-of-sight to be free from obstructions.

To ensure continuous monitoring, an inclinometer chain is used and significant
reference points are monitored by a total station. In Figure 3.20 the white circles mark
the positions of the horizontal inclinometer chain and the pink circles correspond to
the positions of the retro reflectors, that are used for 3D displacement measurements
carried out with the robotic total station. Furthermore, inclinometers deliver a higher
resolution than total stations and are less affected by changes in temperature and
air pressure, thus, they are more suitable to determine small changes in tilt and
elevation for this application.
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A horizontal inclinometer consists of several rigid rods connected to each other by
joints and together form a continuous chain. The inclinometers attached to the
rods measure the inclination of each individual rod, from which the rod length
can be used to determine the settlement of each individual joint. Both ends of an
inclinometer chain are located outside of the area where deformations are expected.
Therefore the used measurement system was designed with n = 59 inclinometers,
mounted on rigid rods each of length l = 2 m, yielding a measurement chain
with total length lt = 118 m. Additionally, p=13 retro-reflectors were installed to
enable an independent verification of the measurement results emanating from the
inclinometers. The retro-reflectors were located at the following nominal points
x = {4, 20, 32, 36, 40, 44, 48, 52, 56, 68, 72, 84, 88} [m], each location corresponds to
the end of an inclinometer rod. The rods of the inclinometer chain and an end point
of the chain with an optical target (retro reflector) for the robotic total station is
shown in Figure 3.21.

Fig. 3.21 Photograph of the inclinometer
rods (covered with the yellow tape) mounted
in a tunnel along the track, © Geodata
GmbH.

Fig. 3.22 Photograph of the end of the
inclinometer chain (A) together with a
retro-reflector (B) for the total station
measurements. © Geodata GmbH.

This measurement problem, where the changes in m = 60 elevations computed from
inclination sensors and additional n = 12 optical measurements from a robotic total
station corresponds to an over-constrained inverse problem described in Chapter 3.4.
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3.5.1 Data Fusion

The data of the inclination sensors were acquired with an automatic data collection
system which was set-up to a measurement interval of tm = 10min. The optical
reference measurements were performed daily by workers in place at predetermined
times. During these measurements, the subway line was closed to ensure safety.

The inclinometer measurements and the optical measurements use a completely
different physical measuring principle. They are therefore completely independent of
each other and do not influence each other. Therefore, each individual data source
can be used alone for an independent reconstruction. The individual reconstructions
are used for mutual validation.

Using a suitable data fusion procedure that combines both datasets enables the
computation of the final results with higher precision and an additional validation of
the correctness of the sensor data.

For data fusion the inclinometer data is considered to be the more important data
source, because the sensors are measured at relatively short intervals and have a
higher accuracy than the optical measurements. The data from the theodolite is
used to verify the reconstructed data and to identify inconsistencies in the datasets
caused by sensor failures or problems with the total station.

To determine the subsidence of the tracks the following computational procedures
are performed:

1. Since the inclination measurements have no location or height information
the two end points of the inclination measurement m0,m118 are registered in
the project coordinate system via the optical measurements of these positions
m0 = [x0, d1] and m118 = [x118, d118]. For a measurement with an in-place
inclinometer chain the registration of one point would be sufficient but the
registration of two reference points was chosen since this results in an over-
constrained reconstruction with one additional constraint more than required.
This enables the detection of one defective inclination sensor. Further, a
correction for one erroneous sensor can be computed. Given these reference
points, the constraint matrix C1 and the vector dT

1 = [d1, d118] can be formed.
The reconstruction is now computed solving:

miny1 ‖Di y1 − g‖2
2, (3.156)

given CT
1 y = d1. (3.157)

As far as no inconsistency from a defect sensor or other source is detected this
solution can be considered as the correct and final computation procedure.

2. Additionally, to the previously described reconstruction a second one was
performed, where all 13 measurements of the total station were used to compute
the constraint matrix C2 and d2. This extended reference data set results in
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more constraining points for the reconstruction which split the inclinometer
measurements into segments between each constraining point. Within a single
segment the reconstruction is degree one over-constrained for each segment
allowing the detection of one defective sensor in each of the twelve segments.
This improves the robustness of the system for cases, where defect inclination
sensors occur.

3. The difference between the two previously defined reconstructions ∆(y) =
y1 − y2 should remain constant over time. If the measurements of the total
station and the inclinometers diverge, this is an indication that damage has
occurred to individual inclinometers, the retro reflectors or the total station.
This results in a further level of consistency checking.

Fig. 3.23 Result of the data fusion of inclinometer and theodolite measurements, top:
(red) an unconstrained reconstruction from the inclinometer data. (green) The theodolite
reference points and (black) the constrained reconstruction. Bottom: The difference
between the constrained and unconstrained reconstruction, [61] © 2016 IEEE.

An example for a measurement with the above reconstructions can be seen in
Figure 3.23.
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3.5.2 Long-Term Observations

Inclinometer and theodolite data were collected over three months at ten minute
intervals. When reconstructing the deformation for this period, no significant
height shifts were found. In the data, however, a very small periodic shift of
some measurement points is detectable, which is so small that it has no critical effect
on the measurement result. Figure 3.24 shows this vertical shift of all sensors of this
inclinometer chain for the period of one week.

Fig. 3.24 Reconstructions for the 60 elevations, measured with a sampling interval of
ts = 10 [min] over a seven day time period. Note that the scaling of the vertical shift is in
[µm/m], [61] © 2016 IEEE

A first assumption suggests an origin from daily temperature changes. Looking at
the temporal course of the signal of a single sensor, it can be seen that not only a
24-hour cycle is present, but also an influence of another source is predominant. The
signal of a single sensor is shown in Figure 3.25.

Fig. 3.25 A 40 day observation of the periodic portion of the reconstructed elevation, with
the measurement period ts = 10 [min], [61] © 2016 IEEE.

A spectral analysis reveals that there is a coincidence in the frequencies of the periodic
signal and the diurnal and half-daily tidal patterns. The two-day pattern has an
amplitude smaller than d2 < 1 [µm/m], but is still clearly visible, see Figure 3.26.
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The 7- and 14-day patterns are also noticeable in the frequency domain. In addition,
there is a residual temperature sensitivity that requires further long-term observation.

Fig. 3.26 The FFT of the signal from Fig. 3.25. The solid-earth diurnal and semi diurnal
tidal modes are marked in red, [61] © 2016 IEEE.

The long term field measurement and model based reconstruction demonstrated,
that the data contained enough information to verify that periodically appearing
deflections in the inclinometer data could be assigned to solid earth tides. This
correlation was not visible in the reconstruction made by trigonometric computations.
In addition, it was shown, that the model based reconstruction is a replacement for
trigonometric reconstruction of inclinometer data, especially when constraints from
the surrounding environment should be considered in the reconstruction.





4 | Future Urban Monitoring In-
frastructure

4.1 Distributed Monitoring

In the last years the use of connected sensors and availability of sensor data in real
time occurred. This process also applies to the comparatively traditional mining
industry. Several years ago it was sufficient to use data loggers that acquired data
locally and a local supervisory system stored the data and provided engineers the
necessary information on-site for evaluation, e.g. security relevant processes. With
the emergence of internet communication technologies, surveillance systems evolved
from a localised system to a networked sensor system that is permanently online and
transmits sensor data to a server. There, the data is processed and the information
obtained is passed on, regardless of location, to responsible persons who interpret
the available information.

Nowadays different micro controller units (MCU’s) with various configurations are
available to enable low-power devices, that are battery driven and powerful enough
to enable local computing and permanent internet connection. This is the basis for
Internet-of-Things (IoT) devices, which are able to form a self managed intelligent
sensor network. In urban areas and municipalities public sensor networks form the
backbone for so-called smart cities, where environmental data of urban systems is
collected and used to automate processes to improve urban cohabitation.

To meet this trend modern monitoring systems have to fulfil todays demands for
interoperable systems. The acquired data of one sensor or a complete system is used
by multiple systems for superior control. Therefore, the demand for reliable sensors
with a secure connection to various supervisory systems is given.

Modern cloud based monitoring systems for challenging environments have to fulfil
several demands in different domains to guarantee a high acceptance. These demands
address modularity, security, available interfaces and the stability/robustness of the
local devices as well as the possible services that the cloud solution provide. A system
for urban automation has different demands than a system for monitoring mines and
construction sites. On the one hand the main focus in a Smart City system lies in

74
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the connectivity of various heterogeneous systems with event detection combined
with advanced rule processing. On the other hand the focus of monitoring systems
for mines and construction sites is the legal and security aspect. Thus, a reliable,
continuous, secure and complete monitoring of processes is needed.

In this chapter the implementation of a monitoring system for mines within an
urban control system is presented. The whole development of the presented generic
platform is part of the Celtic Plus Project "Advanced Sensing for Urban Automation
- ASUA".

4.2 The Celtic Plus ASUA Project

The major goal of the project was to develop a framework for various heterogeneous
systems used for automating Smart City tasks. The technical focus of the project
could be divided into three key elements: constrained devices, communication
networks and information management.

To support the development process during the three-year project several demonstra-
tors were developed to show the different aspects of the outcomes of the project and
prove the abilities of the framework.

• Water quality monitoring (Rumania);

• Patients health monitoring system for hospitals and nursing homes (Belgium);

• Mine worker health and position monitoring system (Turkey);

• Urban Monitoring Information and Control System - UrbMics (Austria).

4.2.1 UrbMics in ASUA

The Austrian Prototype "Urban Monitoring Information and Control System" is a
reference system, developed in cooperation between Geodata GmbH and the Chair
of Automation, University of Leoben, during the participation in the ASUA project.
In the UrbMics environment new approaches for monitoring in mining, tunnelling
and structural monitoring in challenging environments are realised and tested.

The Urban Monitoring, Information and Control system consists of edge devices like
wired sensors, wireless sensors and gateways as well as a private cloud framework
where each part fulfils the demands for an integrated and reliable monitoring system
for the rough industrial applications.

Additionally, the edge devices are designed to perform complex tasks in stand-alone
modes, where no continuous connections to supervisory systems are possible. Such
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complex tasks can be the continuous data acquisition of data from local wired or
wireless sensors as well as performing complex computations like solving differential
equations. This enables processing of derived values and additional local event
processing and alarm triggering.

4.3 Monitoring Devices for Challenging Environ-
ments

The monitoring of construction sites for tunnelling or mining requires robust sensors
and data acquisition devices. The conditions in such challenging environments are
often rough. In Figure 4.1 a construction site in a tunnel is shown, where sensors
were mounted next to the working face of a tunnel, which is still under construction.
Geotechnical sensors are placed in the tunnel wall, e.g. they are mounted on the
steel reinforcing bars, which are covered from shot concrete or boreholes are drilled
into the rock and the sensors placed in these boreholes and the borehole grouted.
The floor of the tunnel is quite wet and muddy and some rocks from the last blast
still lie around while water drops from the ceiling.

Fig. 4.1 Conditions at a tunnelling construction site at the working face.

There are several different types of very specialised sensors available, that are
used for monitoring in mining and tunnelling applications. The list of sensors
includes extensometers, fibre-optical sensors for stress and temperature measurements,
vibrating wire sensors or inclination sensors, but this list is not limited to these
examples. These sensors are available in a robust case with IP68, [3], protection
class specification and commonly have a bus system to access the data for further
automated data processing. Since for some of these sensor types no robust designs
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are available, some companies have to develop their own sensor system for suitable
monitoring solutions. Since there is no common standard that specifies the bus or
protocol used on a construction site there are different heterogeneous data systems
in use. Thus, the need for a modular system, that enables the communication with
the various monitoring systems and different data interfaces is given.

The automatic data transmission of sensor data on construction sites or in tunnelling
has quite specific requirements, since the measuring positions are spread over a
wide area and the environmental conditions are often rough (e.g. dirt, dust, mud,
especially high/low temperatures, etc.). Additional infrastructure e.g. power supply
or network connection is not very good. Figure 4.2 shows the planed measuring
points for an urban tunnelling project, whereby the measurement points (coloured
circles) are spread over wide urban areas.

Fig. 4.2 Example for Urban Monitoring: During subsurface construction in urban area
the measurement points (purple, green and blue circles) are spread over large urban areas.
© Geodata GmbH

For monitoring urban processes with the purpose for urban automation in smart
cities, it is essential that the data is provided in real time to responsible officials or
third party systems to ensure a seamless operation of different systems in a horizontal
manner.

Therefore, it is necessary to provide a system where all the legal issues are satisfied
and the provided data of specific types of other third party systems can be found
automatically by location, time and further generic characteristics. Further details
for storing data online are described in section 4.4.

The wireless measurement node was developed during the work on this PhD thesis
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at the Chair of Automation for the ASUA project. The node can be used for data
acquisition with local data processing, as local relay station or as generic gateway to
different cloud systems.

The node is designed as modular system that can be extended for special purposes.
Since this multi-purpose measurement box is part of the UrbMics ecosystem it is
commonly called UrbMics Box.

The measurement box is equipped with a single-board computer that enables local
data processing and performing network management tasks, running a local data
storage, triggering alarms or acting as a gateway for further UrbMics Boxes that are
connected via a self-organising meshed WiFi.

To withstand the challenging environmental conditions the case of the measurement
box is designed robust and watertight, whereby all used outer hardware fulfil the IEC
60529 standard (International Protection Code) IP67. According to the standard
the components are designed as dust tight and water tight for 30 [min] to a depth
up to 1 [m] [3]. An image of the UrbMics Box is shown in Figure 4.3.

Fig. 4.3 Wireless Measurement Box: A) robust aluminium case B) IP67 antenna for
800MHz to 2.5GHz C) LED-button for triggering predefined actions. D) IP67 Ethernet
connector

The embedded system in the wireless measurement box needs a 5 [V ] power supply.
Since the common power supply on a construction site is 24 [V ], a DCDC converter
is used for providing all necessary voltage levels in the measurement box. Since
the UrbMics Box is able to fulfil various different measurement tasks the hardware
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configuration can be customised for the application on hand. The minimum hardware
configuration consists of the embedded system, the power supply, the network device
and at least one sensor interface. This configuration can be extended by a battery
pack for possible power failures and further sensor interfaces, e.g. Bluetooth, Zigbee,
LoRa, 433MHz, etc. A system diagram of the UrbMics Box is shown in Figure 4.4.

Fig. 4.4 System diagram for one configuration of the Measurement Box.

The wired sensors are connected directly to the UrbMics Boxes via a private RS485
network. This RS485 network allows a communication between the UrbMics Box and
multiple attached sensors (over 100 tested) over a distance of at least 500 meters in
an electrically noisy environment on a single cable. For communication, the Modbus
protocol and the DAMOS protocol from Geodata are implemented, as most wired
sensors commonly used for monitoring tasks use these two protocols.

Figure 4.5 shows a picture of the internal hardware of the Wireless Measurement
Box.
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Fig. 4.5 Wireless Measurement Box with hardware for mesh networking; A) RS485
connector B) Power connector C) DC-DC converter D) Network Device E) RS232/RS485
converter F) Embedded device G) IP67 ethernet connector

4.4 Cloud Systems in ASUA

A public cloud system is necessary to provide the data to all further systems
in an urban control system. Since each monitoring system is different, not all
requirements can be covered by a generic cloud system. A proprietary private
cloud may be necessary to support independent operation of the individual systems.
Especially as the ideal operating conditions vary between systems and different
standards/protocols are used for different technical solutions, e.g. some systems use
client-server connections for data transmission, others use a publish and subscribe
system. Further reasons for a private cloud are e.g. legal issues; storing raw sensor
data in dedicated databases; providing configuration data for the different systems;
enabling additional functionalities tailored for a specific monitoring system.

4.4.1 The ASUA Urban Automation Reference Platform

The Urban Automation Reference Platform is the framework for shared data
developed within the Celtic Plus ASUA project. It provides the infrastructure
for the data, that is used by automated systems in Smart Cities. Before the data is
uploaded to the ASUA Cloud, it is converted locally or by a dedicated cloud service
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into the final format so that it can be processed by other systems in the ASUA
framework. The raw data and data that is not suitable for further processing (e.g.
status or configuration data) is stored by private clouds beside the ASUA framework.
In the case for the prototype developed by Geodata and the Chair of Automation
this private cloud is the UrbMics Center.

The Urban Automation Reference Platform is designed to be a generic cloud system
with different core features, e.g. rule processing, event triggering, alert triggering,
data storage and data visualisation. The system is designed to allow the extension
with new services and provides different application programming interfaces (API’s)
for third party applications (e.g. mobile phone apps, third party data visualisation) or
API’s for monitoring systems. The commonly used protocols in the ASUA reference
platform are:

1. RESTful Web Services (RWS) for client-server data transmission;

2. Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE)
as a M2M readable data format for spatial and environmental data;

3. Message Queuing Telemetry Transport (MQTT) as a lightweight pub-
lish and subscribe data transmission protocol;

4. Simple Network Management Protocol (SNMP) for organising devices
and collecting device information within the ASUA Urban Automation Refer-
ence Platform.

This list is not limiting the interfaces for systems in this framework but represents
the focussed interfaces.

A graphical overview of the ASUA Urban Automation Reference Platform is shown
in Figure 4.6.
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Fig. 4.6 ASUA Urban Automation Reference Platform Architecture: Core capabilities of
the cloud framework. The framework is designed to be extendable for additional services
and third party applications. Various API’s and protocols are implemented for different
monitoring and organisational tasks within the framework.

The ASUA Urban Automation Reference Platform is "public", meaning that other
systems in this framework can access the sensor data and the associated metadata of
these sensors.

4.4.2 UrbMics Centre

As described in Section 4.4.1, there is a need to use a private cloud (server) for several
reasons. Since the UrbMic System is used for monitoring geological structures or
infrastructure related to construction precesses daily reports have to be generated
and the raw and processed data has to be stored over long periods for legal issues.
Dedicated software is used for data warehousing, data processing, event- and alarm
triggering and report generation. For these tasks existing databases, that are reliable,
have to be used. Also interfaces to several Geographic Information Systems (GIS)
are available, that are not common for urban automation purposes and therefore
implemented in the Urban Automation Reference Platform.

4.5 Local UrbMics Network

The counterpart to the cloud system is the local sensor network. A gateway node
controls the devices that are used for monitoring on a construction site. It establishes a
secure connection to the UrbMics Centre via a VPN connection and also acts as a relay
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to transmit data to the ASUA IoT Server or other public cloud services. The gateway
provides different services, the most important ones are: a local storage/database,
a network time protocol (NTP) server, a Message Queuing Telemetry Transport
(MQTT) broker for local communication, a SNMP agent and a mesh Wifi device.
In addition, the gateway provides sufficient computational power to enable model
based reconstruction as described in Chapter 3 of this thesis. Since the gateway has
a modular design it may also be equipped with data acquisition hardware for wired
sensors.

The local network commonly does not need a specific measurement box which acts as
a gateway, since each wireless measurement box is able to transmit the data directly
to the cloud systems. A dedicated gateway is needed in following cases:

1. Local model based reconstruction is performed with the use of data acquired
from multiple devices, e.g. two or more wireless measurement boxes are
acquiring the data of one structure (e.g. long rails);

2. Use of low-power wireless sensor nodes;

3. The use of wireless communication standards beside WiFi, e.g. LoRa, ZigBee,
6LoWPAN, wireless M-Bus (wM-Bus) or Bluetooth;

4. Local real time event detection and alarm triggering;

5. Offline modes for monitoring tasks where no connection to cloud services is
possible (e.g. tunnelling and mining).

The UrbMics gateway provides other wireless measurement boxes with a network
(and internet) connection via internal network devices, that span a wireless mesh
network between several UrbMics Boxes (Figure 4.7). For the case when no dedicated
gateway is needed, at least one of the UrbMics Boxes has to be connected to the
internet via ethernet. The meshed network organizes itself and each connected
UrbMics Box acts as an access point to this meshed WiFi for low-power wireless
sensors nodes in the surrounding area. The data of the low-power sensor nodes is
transmitted to the the cloud system via a wireless measurement box in a gateway
setup.
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Fig. 4.7 Example for a local montoring network with wired and wireless sensors [63].

For monitoring structures various sensor systems are available. For measurements
over a long period of time most sensors are equipped with an internal data acquisition
electronics and the data is provided via a fieldbus system like RS485. Examples for
sensors used in mining applications are extensometers (measuring displacements along
an axis), inclinometers (measuring displacement perpendicular to an axis), strain-
meters or water level gauges. For sensors with no digital interface, e.g. vibrating
wire sensors, a suitable data logger with analog digital converters and multiplexer
provides the sensor data for the bus system. As bus interface commonly a RS485
network with half-duplex data transmission and Geodata’s damos1 protocol is used.
The RS485 interface allows cable length of up to 1200m and at least 32 devices in a
bus-line [4].

In addition to the private RS485 network the CAN-bus is used by some sensors, e.g.
magnetostrictive extensometers. The CAN-bus is also robust for data transmission
and allows, depending on the bit rate, up to 500m of cable length [33].

The meshed WiFi is realised by a dedicated additional hardware in the wireless sensor
box. The mesh enabled access points establish the connection among each another
by themself. If the connection to one of the wireless sensor boxes in the meshed
network is lost, the network reconfigures itself and new connections are established.
Each UrbMics Box acts for monitoring sensors with a WiFi interface as a gateway to
the meshed wireless network.

1data acquisition and monitoring system
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4.5.1 Handling of the Monitoring Sensor Data

Figure 4.8 shows a general sketch of the relation between the local monitoring devices
that generate the data and the two cloud systems, the private and the public one. The
first design consideration for the data transmission was, how the data is transmitted
to the public cloud. On the one hand it is possible to transmit the sensor data
directly or indirectly, whereby the data is forwarded from the private cloud (UrbMics
Center) to the public one (ASUA IoT Server).

Fig. 4.8 Relation between monitoring sensors and devices and the two cloud systems, the
private (UrbMics Center) and the public one (ASUA IoT Server).

When the monitoring data is transmitted to the public cloud via the private one
the design of the system is easier and the local devices require less functionality and
less configuration efforts. It is simpler to implement just one defined communication
interface, where vendor wide the same standard is used and all functionalities are
taken into account. Also all possibilities for data uplinks and configuration downlinks
are implemented. The received data is processed (e.g. filtered or converted) and
stored in the private cloud and then forwarded to the public one. During this
processing the data may be checked for failures or inconsistencies and so it can be
verified, that just validated data is forwarded to the public cloud.

In a system design, where the monitoring devices transmit the data directly to the
private and the public cloud the local devices need much more features. The design of
the configuration mechanism and the wide variety of communication interfaces lead to
rather complex devices. Not only, that there are different communication standards
and protocols (HTTP, FTP, TCP/UDP, RESTful HTTP, Ajax http, Websockets,
MQTT, SNMP) and also different machine-to-machine (M2M) formats like XML
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and JSON are used.

Since it is difficult to cover all different options and possibilities and keep the included
features up to date these systems have to be adapted for the specific use case. Cases,
when the direct data transmission should be applied are:

1. There is no need for a dedicated private cloud or server side complex data
processing before data transmission to the public cloud.

2. The variety of different monitoring devices that have to be adapted is small.

3. The interfaces, that are used by the public cloud are standardised and already
implemented.

4. The monitoring devices react directly to events of the cloud system.

The decision whether to use communication via a public cloud or private cloud has
to be taken by the responsible person in charge or a case by case basis. In most
cases, when suitable and reliable of-the-shelf devices are used, the scenario with the
indirect data transmission will be more suitable.

4.5.2 Data and Metadata of Sensors

A key issue of urban automation systems is, that the available data of sensors can be
found by type and location to trigger events and for advanced rule processing. The
sensors, that are spread over a city, are often not predefined in the location. The
system is expanded by new types of sensors that have to be integrated in the existing
ecosystem. To enable automatic adaption of various sensors of different types and
locations the metadata has to be available for all sensors in the complete monitoring
system. This allows a horizontal interaction between different sensor systems without
the need for overlaying processes to enabling the interaction of different systems.

Therefore, each sensor has to be registered on the server with metadata to describe the
sensor type, location, features of interest and their corresponding units, precision and
update intervals. To register a sensor in the ASUA framework the standards of Open
Geospatial Consortium - Sensor Web Enablement (OGC-SWE) were implemented.
In OGC-SWE the sensors are defined in SensorML, where models for sensors and a
XML encoding for their metadata, e.g. properties and location, are provided. This
XML file is then used to register each sensor in the public cloud. OGC-SWE also
allows to upload sensor data in a machine readable format to the server.

In the ASUA framework a second communication interface for transmitting the data
to the cloud using a publish and subscribe principle was implemented. The Message
Queuing Telemetry Transport (MQTT) protocol offers an open source transmission
protocol that is supported by a wide variety of devices and programming languages
and it is simple to implement on different devices.
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The ASUA IoT Server hosts a broker that handles the data flow. Devices or
systems publish sensor data to the broker via a structured topic name, e.g. "/A-
SUA/id123123/temperature". The broker pushes the data to all the clients, that
subscribed for this specific topic. If the data cannot be transmitted immediately to
a subscriber, the data is buffered until it is successfully transmitted to all recipients.
The MQTT broker is hosted by the ASUA IoT Server for the data transmission of
measurement devices, that are directly connected to the internet. For the case, that
devices in a local UrbMics Network are not directly connected to the internet the
gateway hosts a dedicated local broker combined with a service, that acts as a relay
for transmitting the data to the ASUA IoT Server and/or the UrbMics Center.

However, the sensors have to be registered in the cloud system to provide the
metadata as well as to inform the service, that the sensor itself publishes on a specific
topic. This registration process is done via RESTful and OGC SensorML and just
the data is transmitted via MQTT.

In the ASUA project an update of the software configuration of UrbMics devices
via MQTT is also implemented. The UrbMics centre hosts a private MQTT broker
that enables a secure connection with authorisation and authentication. An UrbMics
device subscribes to a topic on which new configurations for specific devices, e.g. for
a device with ID:id123123 the subscription topic is "/UrbMics/id123123/config", or
a device group, e.g. "/UrbMics/#/config" whereby # is a wildcard to receive all
messages of this topic level.

4.5.3 Setting Alarms in ASUA

Some devices of the ASUA system provide alarm setting possibilities, like buzzers
and LED’s. One wireless node of the UrbMics System is equipped with RGB LEDs to
allow alarms via blinking or fading in different colours. To trigger the external alarm
a MQTT topic for the devices was established, that allows the system to trigger an
alarm in several predefined levels (e.g. L1 = normal situation, L2 = attention, L3
= local alarm, L4 = system wide alarm). Each of the alarm levels is indicated by
different colours and different speeds of blinking or fading.



5 | Outlook and Conclusion

Smart monitoring applications are an emerging technology, whereby most systems
cannot fulfil the demands on openness for easy integration to supervisory systems.
With upcoming event-driven frameworks it is necessary to develop a new generation
of smart monitoring devices enabling local data collection and local data processing.

The constrained polynomials enable the embedding of a-prior knowledge about a
measurement situation and in this manner improve the quality of the results. In
geo-monitoring application the uncertainty of a measurement is highly relevant and
the constraints ensure a better confidence interval in each measurement. Furthermore
if a limited number of monitoring sensors fail, the reconstruction is still possible
with this method. The model-based reconstruction is mathematically so efficient
that it can be implemented on an embedded system. This allows solutions with low
power devices near the area where the monitoring is performed, e.g. in a mine or at
a construction site, without the need for a permanent internet connection for online
data processing.

The noise of sensors is not always of Gaussian type, as the detailed analysis of the
inclination sensors proved. The sensor noise of the in geo-monitoring commonly used
sensor, the Murata SCA103T, is of Cauchy-Lorentzian type. This distribution has no
statistical moments, and therefore no mean or variance can be computed. The use of
suitable parameter estimation, e.g. the 24 % truncated mean, leads to a significant
improvement in estimating the location parameter. The SCA103T inclination sensor
consists of two sensing elements, whereby the sensor analysis revealed, that the gain
of the two internal sensing elements are not equal. Singular value decomposition
allows to determine the appropriate correction factor for each sensor to reduce the
noise level by a ratio of 0.66.

Future urban monitoring requires that monitoring devices have to be able to be
integrated into larger monitoring systems. To enable autonomous collaboration
between heterogeneous systems require, that sensor data and metadata are provided
from each system in machine readable formats to enable automatic data exploration
and data processing for surveillance services of the monitoring system. Since urban
monitoring systems cannot offer all interfaces for every monitoring system by default
it is necessary that urban monitoring systems can be extended with manufacturer-
specific services and interfaces to enable the integration and control of devices. As
this is currently not possible due to a lack of standardisation, it is often necessary to
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use an additional private server to operate proprietary monitoring sensors.

The nowadays most commonly used inclination sensor for geo-monitoring tasks, the
Murata SCA103T, was discontinued towards the end of the work on this thesis.
Since there is currently no replacement high performance inclination sensor with
comparable characteristics, high stability and low temperature dependency, the
processing of the data of a less precise sensor plays an even bigger role. The next
steps in research will be the characterisation of inclination and acceleration sensors
and develop appropriate algorithms to improve the precision and stability of these
newly used sensors.

In geo-monitoring, the demand for battery-powered sensors that provide data over a
period of several years via radio is increasing. The Long Range Low Power (LoRa)
radio data transmission technology plays a particularly important role here. Using
LoRa, it is possible to reliably transmit sensor data over several kilometres despite a
transmission power that is lower than that of WiFi. Data transmission via LoRa
to satellites is also possible in a cost-effective and energy-efficient way. For short
data transmission distances, Bluetooth Low Energy (BLE), Zigbee 3.0 and the
"Narrowband IoT" standard are playing an increasingly important role, compared
to the energy-intensive WiFi, and have to be considered as parts of monitoring
infrastructures.

With the knowledge gained in this thesis it was possible to develop a new generation
of networked sensors and devices for geo-monitoring. The first devices have now
been in use for some time and significantly expand the possibilities of real-time data
acquisition in tunnel and road construction and other infrastructure projects. Above
all, a smooth and simple integration of the smart sensors into different monitoring
platforms brings great advantages.
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A | Review of Statistical Distribu-
tions

Sensors are used to monitor objects and processes etc. The sensor data, which is
acquired, is perturbed by noise, since there are different influences that interface
with the measurement and the sensor itself. The central limit theorem states, that if
there are multiple independent random variables or influences, that the normalised
sum of these yields a normal distribution.

If it is possible to acquire a theoretical infinite number of measurements then the
amount of data is called the statistical population. A statistical sample represents a
subset of this statistical population, that is used for statistical analysis. The task in
this statistical analysis is to find a model for the noisy sensor data and to estimate the
parameters of this statistical model. Various tools are available to support choosing
the right probability distribution and definitions for various parameters are available.

A.1 Histograms

Histograms are a simple method to visualize the distribution of a sample. The
minimum and maximum of the data span the range of the data, which is then
split into equal intervals, the bins. For each bin the data points, which lie in the
corresponding interval, are counted. In the histogram a bar for each bin with the
height of the counts is plotted. This bar series is a discrete estimate for the probability
distribution of the data.

In Figure A.1 a noisy dataset is shown on the left side, on the right side the
corresponding histogram is shown. Note: Histograms are usually shown vertically, but
here for showing the relationship between bins and counts a horizontal visualisation
was chosen.

The bars in the histogram represent the density of the data points in the range of
all values. This density is also described by a continuous function, the probability
density function (PDF) P (y). It is defined as the derivative of the cumulative
distribution function (CDF) D(y). Thus, the PDF of a histogram is yielded by
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Fig. A.1 Noisy data and the corresponding horizontal histogram; Left: data of n = 500
samples with i.d.d. noise; Right: the corresponding vertical histogram for the data on the
left side. The count of each bin is plotted beside the bars.

computing the cumulative sum of each bin. The PDF and CDF for a data set with
20000 independent identically distributed (i.i.d.) variables is shown in Figure A.2.

Fig. A.2 Probability density function (PDF) and cumulative density function (CDF) of
20000 i.i.d. variables

If the number of bins is chosen wrongly, this can lead to misinterpretation of the
data, since some effects in the data can be lost or there is a high level of noise. There
are several rules of thumb for estimating a good amount of bins for the histogram
available, a non-exhaustive list includes the methods of the square root rule, the
Sturges formula or the Rice Rule. There are also more complex methods available:
He [30] proposed a stepwise Bayes rule for finding a appropriate number of bins.
These rules are a good support for choosing the number of bins for continuous
probability distributions. For discrete probability distributions or digital data other
methods for bin generation may be more suitable, since in digital data the values
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are a multiple of the sensors least significant bit of the sensors ADC and therefore
can just take certain digital levels.

A.2 Statistical parameters

A statistical distribution can be defined by various parameters, e.g. the probability
density function of the normal distribution is defined as,

f(x | µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2 , (A.1)

whereby µ is the location parameter and σ the standard deviation as a measure for
the width of the distribution. Figure A.3 shows the probability distribution function
for the standard normal distribution (Gaussian distribution) with µ = 0 and σ = 1.
For an acquired dataset these parameters are not known in general, therefore the

Fig. A.3 Probability density function of the standard normal distribution with the
parameters µ = 0 and σ = 1.

parameters have to be estimated from the sample data. Since not all sensor noises
are of Gaussian type, this has to be checked from the sample data. Depending on the
nature of the distribution, different ways of computing the appropriate parameters
are necessary.

For the parameter estimation of normal distributions the statistical moments can
be used. Statistical moments are a specific measure for the form and shape of the
distribution. The first statistical moment is the mean value, the expectation of the
distribution. It is defined as,

x̄ = 1
n

n∑
i=1

xi, (A.2)

and represents the location of the sample as an estimation for the location µ of the
distribution.
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Since higher degree moments are computed around the mean they are called central
moments and for their computation the data is shifted to the centre by removing
the mean x̄. The second order moment s2 is an estimate for the variance σ2 of the
distribution,

s2 = 1
n− 1

n∑
1

(xi − x̂), (A.3)

and s as,

s =
√√√√ 1
n− 1

n∑
1

(xi − x̂), (A.4)

as estimation of the standard deviation σ.

The third order moment defines the skewness of the distribution, and the fourth order
moment the kurtosis. These moments are not handled in this thesis, but details can
be found in the literature [17]. Since a minimum amount of data points is required
to yield a reliable estimation the relation,

n = 5d (A.5)

can be used as rule of thumb for a rough estimate what data size n is needed to
compute a moment of order d. This estimation represents a good starting point for
the data size, but depending on the data n may be larger for stable results.

These statistical moments yield a valid parameter estimation for normal distributions,
even if the underlying distribution is not known, they deliver admissible parameter
estimations. Nevertheless, there are also other estimations for e.g. the location that
yields good estimates for other distributions.

For the location of a distribution the mode and the median are often computed. The
mode represents the most often occurring value in the sample and the median is the
middle of the data, where 50 % of the datapoints are smaller and 50 % are larger. In
Figure A.4 the mean, median and mode are shown for a data set.

mean
median
mode

Fig. A.4 Comparison of mean, median and mode
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Standard methods in statistics require, that a normal distribution is the underlying
distribution of the data. For most datasets this holds true, thus these methods
can be applied. Due to this fact most engineers assume that almost all sensor
data is perturbed with Gaussian noise and do not check the true nature of the
noise. Since there are some distributions where the standard methods do not yield
the best estimation for the statistical parameters, also other distributions and the
corresponding parameter estimation algorithms should be taken into account. Since
the Cauchy-Lorentz probability distribution is an example for a distribution, where,
for example, the mean is undefined, dedicated algorithms to estimate the location
and dispersion have to be used. This distribution also occurs in the detailed analysis
of the Murata SCA103T inclination chip, therefore a review of the Cauchy-Lorentzian
is presented here.

A.3 Cauchy-Lorentz Distribution

The Cauchy-Lorentz1 distribution is defined by

f(x) = 1
π

1
1 + x2 , (A.6)

in the range −∞ < x <∞. In Figure A.5 the standard normal distribution and the
Cauchy distribution are shown, [68].

Gaussian
Cauchy-Lorentz
Cauchy half-maximum

Fig. A.5 Comparison of the standard normal distribution and the Cauchy-Lorentz
distribution. The tails of the Cauchy distribution are wider than the ones of the Gaussian.

The mean and variance for the Cauchy distribution are undefined. Compared to the
Gaussian distribution, where the mean (first raw moment) converges to a value if
the sample size is increasing, the mean of a larger sample size for a Cauchy noise
diverges and does not yield a more accurate expectation of the true value. There
are also no higher central moments for the Cauchy-Lorentz distribution. Due to this
fact, the expectation value of the Cauchy distribution is undefined, [68].

1or just Cauchy distribution
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In the case of the Cauchy distribution the median and mode, which are at x = 0,
are useful as a measure for the location and the half-width at half-maximum (half-
maxima at x = ±1) and are a good estimate for the dispersion [68].

In scientific and engineering domains often the three-term definition of the Cauchy-
Lorentz distribution is used,

f(x;xo, γ, I) = I
γ

γ2 + (x− xo)2 (A.7)

whereby x represents the point where the equation is evaluated, x0 is the location
parameter, γ the parameter describing the dispersion and I a scaling factor, [68].

A.3.1 Parameter estimation for Cauchy distribution

The estimation of the parameters for the Cauchy distribution is not trivial, since
the mean is not a consistent estimator and the according variance is divergent. In
literature [58, 68] often a truncation of the values is proposed to avoid the long tails
of the distribution. Rothenberg [58] defined the estimator for the arithmetic average
of 2a+ 1 central sample values as,

m(a) = 1
2a+ 1

a∑
i=−a

xi, (A.8)

whereby m(n) yields the full sample mean and m(0) the sample median. Finding the
minimum extrema of the estimator indicates, that the estimator is minimised when
the ratio r = a/n equals 0.2393. Thus, the average of the dataset where the lowest
and highest 38 % of the values are neglected is a better estimate for the location
parameter than the sample median or the full sample mean.

For estimating the half-width at half-maximum (HWHM) (, γ) also no standard
procedure is available. In [68] the proposal is given to fit the probability density
function to the sample data. Another proposed estimation for γ is the semi-
interquartile range, which is defined as the half of the difference between the upper
and lower quartile2. Thus, an estimator for γ is,

γ = 1
2(Q3 −Q1). (A.9)

2The quartile are the 25 %, the 50 % and 75 % quantiles, that divide the PDF into four parts of
equal probability [68]
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A.3.2 Random number generation

For testing and simulating the methods for models based reconstruction, where the
noise of the inclinometer sensors is of Cauchy-Lorentian type, it is advantageous to
have the possibility to generate data with noise of Cauchy type. To yield a random
number in [68] the formula,

x = x0 + γ tan(2πξ) (A.10)

is derived from the equation F (x) = ξ, whereby F (x) is the cumulative distribution
function,

F (x) = γ

π

∫ x

−∞

1
γ2 + (t− x0)2dt, (A.11)

and ξ is a pseudorandom number between 0 and 1. An alternative way to achieve
random Cauchy noise is,

x = x0 + γ
z1
z2 , (A.12)

whereby z1 and z2 are independent standard normal distributed numbers.



B | List of Figures

2.1 Simplified MEMS model: The sprung proof mass is moved by the
acceleration which causes the change of the two capacitances C1
and C2. This is used to derive the acceleration and suitable signal
conditioning and filtering yields the inclination. MEMS sensors use
multiple parallel-plate capacitors on one sensing element. . . . . . . . 10

2.2 Sketch of a simplified basic electromechanical system of a pull-in
MEMS [57]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 SEM image of a MEMS sensor for measuring acceleration and inclina-
tion. The proof mass is placed on the back-side of the structure [9]. . 11

2.4 Comparison of range and sensitivity of different inclination sensors . . 12

2.5 Schematic of the SCA103T inclinometer, [43] © Murata . . . . . . . . 12

2.6 Photograph of a pair of inclinometers connected to the data acqui-
sition electronics. Each metal cylinder contains one MEMS sensor.
In the implementation shown the Sensors are connected using the
analogue interfaces, i.e. using the signals VDD, GND, OUT_1 and
OUT_2 [63] © 2017 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Laboratory set up to measure the stability of the inclinometer mea-
surements. Left top: detail view of the two sensors, the right one with
the SPI and the left one with analogue interface and additional data
acquisition electronics included. Left bottom: detail view of the the
measurement scale. Right: overall view of the complete laboratory set
up [63] © 2017 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Laboratory measurement to characterize the sensor performance: Top:
The tilt measured in [mm/m] for various angles, (blue) precision
analogue measurement, (gray) raw SPI data and (red) filtered SPI
data 1 Hz bandwidth. The vertical green bars indicate the segmen-
tation of the data for statistical evaluation. Bottom: the measured
accelerations [63] © 2017 IEEE. . . . . . . . . . . . . . . . . . . . . . 16

99



List of Figures 100

2.9 Histogram of the tilt measurements together with the maximum
Likelihood Gaussian (red) σt = 2.5765mm/m± 7.2 µm/m with 95%
certainty and the maximum entropy Cauchy-Lorentz distribution
(blue) with the parameters xm = 60 µm/m, γ = 1.2883mm/m and
I = 0.219, [63] © 2017 IEEE. . . . . . . . . . . . . . . . . . . . . . . . 17

2.10 The signal acquired from the SCA103T sensor after evaluation to tilt:
(black) signal prior to filtering and (red) after filtering. A total of
n = 183 311 samples are used for the ensuing statistical analysis, [63]
© 2017 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.11 Histogram for x− y in each of the segments i ∈ 1 . . . 11 denoted by
si, as shown in Fig. 2.10. The PDF for the Cauchy and Gaussian
distributions are shown in red and blue respectively. The corresponding
coefficients for the distributions are given in Table 2.2. The histograms
have been centered around the median value of each segment, this
simplifies the comparison of the results in each segment, [63] © 2017
IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.12 Histogram of the values x(t) and y(t) with their corresponding Gaus-
sian approximations with respective standard deviations, [63] © 2017
IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.13 Deviation of the cumulative distribution functions P (x) and P (y)
from their ideal Gaussian models and the respective χ2 values, [63]
© 2017 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.14 Histogram of the values p(x − y) and p(x + y) with Gaussian (red)
approximations. Additionally for p(x − y) a Cauchy-Lorenz (blue)
distribution has been approximated, [63] © 2017 IEEE. . . . . . . . . 21

2.15 Bivariate histogram for x(t) and y(t), the color indicates the frequency
and is proportional to p(x, y), [63] © 2017 IEEE. . . . . . . . . . . . . 22

2.16 Histograms for the orthogonalised values dSV D and sSV D together
with the Gaussian (red) and Cauchy-Lorentz (blue) PDF, [63] © 2017
IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.17 Long Term Test stand in laboratory . . . . . . . . . . . . . . . . . . . 24

2.18 Graph of the data logged from two inclinometers measuring in mutually
orthogonal directions. This data was acquired with a measurement
interval ts = 5 s: tilt of sensor I1 (blue), tilt of sensor I2 (cyan) and
temperature T (red). There are approximately n = 105 samples, [63]
© 2017 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.19 Linear estimation of the correlation between temperature and I2, the
slope is sl = −25.53 µm / m

dC , [63] © 2017 IEEE. . . . . . . . . . . . . . 25



List of Figures 101

2.20 Schematic of the SCA830-D07 MEM inclinometer sensor [1]. . . . . . 25

2.21 The full signal acquired with the SCA830 sensor over a period of
approximately one hour. The portions marked in red correspond
to all values lying within 1 % (percentile). This data set contains
n = 400 693 samples. The values are in LSB acquired directly from
the ADC. The device features a 16-bit ADC with a range of ±1 g, [63]
© 2017 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.22 Histogram of the SCA830 Signal, with the Gaussian (red) and Cauchy-
Lorentz (blue) models for the complete data set, [63] © 2017 IEEE. . 26

2.23 Histogram of the SCA830 Signal, with the Gaussian (red) and Cauchy-
Lorentz (blue) models for the centered 98 % percentile of the data set,
[63] © 2017 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Measurement principle for a vertical in place inclinometer measure-
ment [42]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 General mathematical model for a measurement system. The mapping
between input x and output y is defined by the model f(x) and the
corresponding parameters α. . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 A polynomial with three different types of constraints. At location
c1 a known zero constraint is implemented, location c2 represents a
known value pair and at location c3 a constraint with a defined slope
(derivative constraint) is shown [50]. . . . . . . . . . . . . . . . . . . . 39

3.4 Example for a physical problem with constraining roots: A simple
supported beam has zero constraints on both supports [50]. . . . . . . 40

3.5 Dataset with constraint value pairs: The black dots represent the noisy
data, the red dots the constraining value pairs xc = [−0.8, 0.3, 1]T
and yc = [−0.5, 0.3,−0.5]T. . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Particular solution for a value constrained polynomial. . . . . . . . . 43

3.7 Homogeneous solution for a value constraint polynomial. The homoge-
neous solution is the residual of the observed data and the particular
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 The final approximation for the value constrained data yielded from
the sum of the homogeneous and the particular solution. . . . . . . . 44

3.9 The final approximation for the value constrained data yielded from
the sum of the homogeneous and the particular solution. . . . . . . . 45

3.10 Normal and derivative constraints on a cantilever. . . . . . . . . . . . 46



List of Figures 102

3.11 Plot of the first six Legendre polynomials in the interval of [−1, 1]. . . 54

3.12 The residual matrix R = BT B− diag(BT B) for the Legendre polyno-
mials of degree d = 10, computed for n = 100 nodes. R is scaled by
the first entry of the diagonal of BT B. . . . . . . . . . . . . . . . . . 55

3.13 The first eight Gram-Schmidt polynomials. . . . . . . . . . . . . . . . 55

3.14 The residual matrix R = BT B − diag(BT B) for the Gram-Schmidt
polynomials of degree d = 40. R is scaled by the first entry of the
diagonal of BT B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.15 The residual matrix R = BT◦B−diag(BT◦B) for a discrete orthogonal
polynomial of degree d = 500. The residual error is in the magnitude
of the floating-point relative accuracy (eps) available in the calculating
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.16 Rank deficiency of the differential matrix D̂ computed according
Equation 3.121 regarding to the degree of the used basis functions.
D̂ is rank-1 deficient up to degree d = 33, for higher degrees the
differential matrix degenerates and delivers more null-spaces. This is
negative for solving inverse problems. . . . . . . . . . . . . . . . . . . 60

3.17 Unitary base G as starting point for local approximation. . . . . . . . 61

3.18 Local projection matrix P = G GT . . . . . . . . . . . . . . . . . . . . 61

3.19 Global complete projection matrix P, whereby P is of the dimension
to span over all given data points m. . . . . . . . . . . . . . . . . . . 62

3.20 Schematic representation of a complex measurement field associated
with the monitoring of a subway tunnel construction. The white circles
form a linear chain of 59 inclinometers monitoring a stretch of railway
line. The pink circles correspond to reference measurements points
acquired from theodolite measurements, © Geodata GmbH. . . . . . 67

3.21 Photograph of the inclinometer rods (covered with the yellow tape)
mounted in a tunnel along the track, © Geodata GmbH. . . . . . . . 68

3.22 Photograph of the end of the inclinometer chain (A) together with
a retro-reflector (B) for the total station measurements. © Geodata
GmbH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.23 Result of the data fusion of inclinometer and theodolite measurements,
top: (red) an unconstrained reconstruction from the inclinometer data.
(green) The theodolite reference points and (black) the constrained
reconstruction. Bottom: The difference between the constrained and
unconstrained reconstruction, [61] © 2016 IEEE. . . . . . . . . . . . . 70



List of Figures 103

3.24 Reconstructions for the 60 elevations, measured with a sampling
interval of ts = 10 [min] over a seven day time period. Note that the
scaling of the vertical shift is in [µm/m], [61] © 2016 IEEE . . . . . 71

3.25 A 40 day observation of the periodic portion of the reconstructed
elevation, with the measurement period ts = 10 [min], [61] © 2016 IEEE. 71

3.26 The FFT of the signal from Fig. 3.25. The solid-earth diurnal and
semi diurnal tidal modes are marked in red, [61] © 2016 IEEE. . . . . 72

4.1 Conditions at a tunnelling construction site at the working face. . . . 76

4.2 Example for Urban Monitoring: During subsurface construction in
urban area the measurement points (purple, green and blue circles)
are spread over large urban areas. © Geodata GmbH . . . . . . . . . 77

4.3 Wireless Measurement Box: A) robust aluminium case B) IP67 an-
tenna for 800MHz to 2.5GHz C) LED-button for triggering predefined
actions. D) IP67 Ethernet connector . . . . . . . . . . . . . . . . . . 78

4.4 System diagram for one configuration of the Measurement Box. . . . 79

4.5 Wireless Measurement Box with hardware for mesh networking; A)
RS485 connector B) Power connector C) DC-DC converter D) Network
Device E) RS232/RS485 converter F) Embedded device G) IP67
ethernet connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 ASUA Urban Automation Reference Platform Architecture . . . . . . 82

4.7 Example for a local montoring network with wired and wireless sensors
[63]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Relation between monitoring sensors and devices and the two cloud
systems, the private (UrbMics Center) and the public one (ASUA IoT
Server). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.1 Noisy data and the corresponding horizontal histogram . . . . . . . . 93

A.2 Probability density function (PDF) and cumulative density function
(CDF) of 20000 i.i.d. variables . . . . . . . . . . . . . . . . . . . . . . 93

A.3 Probability density function of the standard normal distribution with
the parameters µ = 0 and σ = 1. . . . . . . . . . . . . . . . . . . . . 94

A.4 Comparison of mean, median and mode . . . . . . . . . . . . . . . . . 95

A.5 Comparison of the standard normal distribution and the Cauchy-
Lorentz distribution. The tails of the Cauchy distribution are wider
than the ones of the Gaussian. . . . . . . . . . . . . . . . . . . . . . . 96



C | Bibliography

[1] SCA830 Datasheet. Technical report, Murata Electronics Oy.
[2] IEEE Standard for Radix-Independent Floating-Point Arithmetic. Standard, IEEE Standards

Association, Piscataway Township, New Jersey, United States, 1987.
[3] IEC 60529, Degrees of protection provided by enclosures (IP Code), (Geneva: International

Electrotechnical Commission), 2001.
[4] How Far and How Fast Can You Go with RS-485. Technical Report APPLICATION NOTE

3884, Maxim Integrated Products, Inc., 2006.
[5] Energiemethoden. In Technische Mechanik. Festigkeitslehre. Vieweg+Teubner, Wiesbaden,

2008.
[6] Geotechnische Erkundung und Untersuchung - Geotechnische Messungen - Teil 2: Ver-

schiebungsmessungen entlang einer Messlinie: Extensometer. Standard, Austrian Standards
International, Vienna, AT, 2017.

[7] Geotechnische Erkundung und Untersuchung - Geotechnische Messungen - Teil 3: Ver-
schiebungsmessungen quer zu einer Messlinie: Inklinometer. Standard, Austrian Standards
International, Vienna, AT, 2020.

[8] D. R. Albert. Monte Carlo Uncertainty Propagation with the NIST Uncertainty Machine.
Journal of Chemical Education, 97(5):1491–1494, 2020.

[9] F. S. Alves, R. A. Dias, J. Cabral, J. Gaspar, and L. A. Rocha. High resolution pull-in
inclinometer. 2013 Transducers and Eurosensors XXVII: The 17th International Conference
on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS and EUROSENSORS
2013, (June):928–931, 2013.

[10] L. C. Andrews and S. of Photo-optical Instrumentation Engineers. Special Functions of
Mathematics for Engineers. Oxford science publications. SPIE Optical Engineering Press,
1998.

[11] S. Auci, L. Mundula, and E. Quaquero. Bright Cities and City Information Modeling. 2019.
[12] E. Barbeau. Polynomials. Springer-Verlag, 2003.
[13] R. Barnard, G. Dahlquist, K. Pearce, L. Reichel, and K. Richards. Gram Polynomials and the

Kummer Function. Journal of Approximation Theory, 94(1):128–143, jul 1998.
[14] A. A. A. Beshr and I. M. A. Elnaga. Investigating the accuracy of digital levels and reflectorless

total stations for purposes of geodetic engineering. Alexandria Engineering Journal, 50(4):399–
405, 2011.

[15] P. Bonate. A Brief Introduction to Monte Carlo Simulation. Clinical pharmacokinetics,
40:15–22, 2001.

[16] J. P. Boyd. Chebyshev and Fourier Spectral Methods. New York, page 688, 2000.
[17] C. Dorman. Parametrische Statistik. Verteilungen, maximum likelihood und GLM in R.,

volume 53. 2013.
[18] F. El-Nahhas. Construction monitoring of urban tunnels and subway stations. Tunnelling and

Underground Space Technology incorporating Trenchless, 7(4):425–439, 1992.
[19] G. V. C. Freue. The Pitman estimator of the Cauchy location parameter. Journal of Statistical

Planning and Inference, 137(6):1900–1913, 2007.
[20] W. Gautschi. Orthogonal Polynomials, computation and Approximation, Numerical Mathe-

matics and Scientific Computation. Oxford University Press, 2004.

104



105

[21] J. M. Gere and S. Timoshenko. Mechanics of Materials. PWS Publishing Company, Boston,
4th editio edition, 1997.

[22] J. Golser. {F}allbeispiel zur {B}auwerksüberwachung mittels online {N}eigungssensoren. In
25. {C}ristian {V}eder {K}olloquium, 2010.

[23] G. H. Golub and C. F. Van Loan. Matrix Computations (Johns Hopkins Studies in Mathematical
Sciences)(3rd Edition). The Johns Hopkins University Press, 3rd edition, 1996.

[24] C. Gomez and J. Paradells. Urban Automation Networks: Current and Emerging Solutions
for Sensed Data Collection and Actuation in Smart Cities. Sensors, 15, 2015.

[25] M. Gorawski and K. Grochla. Performance Tests of Smart City IoT Data Repositories for
Universal Linear Infrastructure Data and Graph Databases. SN Computer Science, 1, 2020.

[26] J. Gram. Ueber die Entwickelung reeller Functionen in Reihen mittelst der Methode der
kleinsten Quadrate. Journal Fur Die Reine Und Angewandte Mathematik - J REINE ANGEW
MATH, 1883:41–73, 1883.

[27] C. Gugg. An Algebraic Framework for the Solution of Inverse Problems in Cyber-Physical
Systems. Phd thesis, Montanuniversitaet Leoben, 2015.

[28] M. Hägglund Eriksson. Accuracy and Precision Analysis of Total Station Measurements. PhD
thesis, KTH Royal Institute of Technology, 2014.

[29] M. Harker and P. O’Leary. Least squares surface reconstruction from gradients: Direct
algebraic methods with spectral, Tikhonov, and constrained regularization. In CVPR 2011,
pages 2529–2536. IEEE, jun 2011.

[30] K. He and G. Meeden. Selecting the number of bins in a histogram: A decision theoretic
approach. Journal of Statistical Planning and Inference, 61(1):49–59, may 1997.

[31] Henri J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer-Verlag
Berlin Heidelberg, 2 edition, 1982.

[32] S. C. Hill, J. Jelemensky, and M. R. Heene. Queued serial peripheral interface for use in a
data processing system, 1987.

[33] ISO. Road vehicles – Controller area network (CAN). International Organization for
Standardization, 2015.

[34] A. Klenke. Wahrscheinlichkeitstheorie. Springer Spektrum, 2013.
[35] R. Kress. Numerical Analysis. Springer-Verlag New York, New York, 1 edition, 1998.
[36] E. Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, 2010.
[37] X. Liu and B. Akinci. Requirements and Evaluation of Standards for Integration of Sensor

Data with Building Information Models. pages 95–104, 2009.
[38] G. Machan and V. G. Bennett. Use of Inclinometers for Geotechnical Instrumentation on

Transportation Projects. Transportation Research E-Circular, E-C129(October):92, 2008.
[39] A. Maier, R. Schmidt, B. Oswald-Tranta, and R. Schledjewski. Non-destructive thermography

analysis of impact damage on large-scale CFRP automotive parts. Materials, 7(1), 2014.
[40] MATLAB. version 9.2.0 (R2017a). The MathWorks Inc., Natick, Massachusetts, 2017.
[41] C. Mgbere, V. A. Knyshenko, and A. Bakirova. Building Information Modeling. A Management

Tool for Smart City. pages 177–182, 2018.
[42] M. T. U. D. Möser, G. INSTITUT, and L. INGENIEURGEODÄSIE). Bauwerk-

süberwachungsmessungen, 2004.
[43] Murata Electronics Oy. THE SCA103T DIFFERENTIAL INCLINOMETER SERIES, 2015.
[44] P. O’Leary and M. Harker. Surface Modelling Using Discrete Basis Functions for Real-Time

Automatic Inspection. In 3-D Surface Geometry and Reconstruction, pages 216–264. IGI
Global.

[45] P. O’Leary and M. Harker. Discrete polynomial moments and Savitzky-Golay smoothing.
World Academy of Science, Engineering and Technology, 72:439–443, 2010.

[46] P. O’Leary and M. Harker. A framework for the evaluation of inclinometer data in the
measurement of structures, 2012.

[47] P. O’Leary, M. Harker, R. Ritt, M. Habacher, K. Landl, and M. Brandner. Mining Sensor
Data in Larger Physical Systems. IFAC-PapersOnLine, 49(20):37–42, 2016.

[48] P. O’Leary, M. Harker, and T. Suesut. Combined polynomial and periodic moments for the
analysis of measured 3D surfaces. Conference Record - IEEE Instrumentation and Measurement
Technology Conference, (May):354–358, 2008.



106

[49] P. O’Leary, P. O’Leary, and M. Harker. Discrete polynomial moments for real-time geometric
surface inspection. Journal of Electronic Imaging, 18(1):013015, 2009.

[50] P. O’Leary, R. Ritt, and M. Harker. Constrained Polynomial Approximation for Inverse
Problems in Engineering. In M. A. Wahab, editor, Proceedings of the 1st International
Conference on Numerical Modelling in Engineering, volume NME2018, pages 225–244. Springer
Singapore, 2019.

[51] B. Oswald-Tranta and R. Schmidt. Crack depth determination with inductive thermography.
In Proceedings of SPIE - The International Society for Optical Engineering, volume 9485,
2015.

[52] B. Oswald-Tranta, R. Schmidt, and T. Grandl. Comparison of samples with flat bottom
holes and with hidden occlusions using flash thermography. In 2016 Quantitative InfraRed
Thermography, 2016.

[53] B. Oswald-Tranta, R. Schmidt, and C. Tuschl. Thermographic investigations of metal inclusions
in 3D printed samples. Proceedings of SPIE - The International Society for Optical Engineering,
10214:1–9, 2017.

[54] R. Penrose. A generalized inverse for matrices. Mathematical Proceedings of the Cambridge
Philosophical Society, 51(3):406–413, 1955.

[55] B. E. Rapp. Chapter 3 - Engineering Mathematics. In B. E. Rapp, editor, Microfluidics:
Modelling, Mechanics and Mathematics, Micro and Nano Technologies, pages 21–50. Elsevier,
Oxford, 2017.

[56] R. Ritt and P. O’Leary. Symbolic Analysis of Machine Behaviour and the Emergence of the
Machine Language. In Theory and Practice of Natural Computing, pages 305–316. Springer
International Publishing, 2018.

[57] L. A. Rocha, E. Cretu, and R. F. Wolffenbuttel. Analysis and analytical modeling of static
pull-in with application to MEMS-based voltage reference and process monitoring. Journal of
Microelectromechanical Systems, 13(2):342–354, 2004.

[58] T. J. Rothenberg, M. Fisher Franklin, and C. B. Tilanus. A note on estimation from a Cauchy
sample. Journal of the American Statistical Association, 59(February 2015):460–463, 1966.

[59] A. Savitzky and M. Golay. Smoothing and Differentiation of Data by Simplified Least Squares
Procedures. Analytical Chemistry, 36 (8):1627–1639, 1964.

[60] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen. Mathematische
Annalen, 63(4):433–476, 1907.

[61] R. Schmidt, P. O. Leary, M. Harker, P. O’Leary, and M. Harker. Precision Inclinometer
Measurement System with a Wireless Gateway. In 2016 IEEE International Instrumentation
and Measurement Technology Conference Proceedings, pages 1–6. IEEE, may 2016.

[62] R. Schmidt, P. O’Leary, M. Harker, K. Chmelina, and J. Golser. A Smart Multi-Sensor System
for Structural Monitoring. In GeoMonitoring 2016, Braunschweig, 2016.

[63] R. Schmidt, P. O’Leary, R. Ritt, and M. Harker. MEMS based inclinometers: Noise
characteristics and suitable signal processing. In I2MTC 2017 - 2017 IEEE International
Instrumentation and Measurement Technology Conference, Proceedings, pages 1–6. IEEE, may
2017.

[64] M. H. Stone. The Generalized Weierstrass Approximation Theorem. Mathematics Magazine,
21(4):167, mar 1948.

[65] A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. Society
for Industrial and Applied Mathematics, jan 2005.

[66] J. Van Cranenbroeck. Continuous Beam Deflection Monitoring Using Precise Inclinometers.
In FIG Working Week 2007, Hong Kong, SAR, 13..17 May, 2007.

[67] A. van Dijk. Smart Cities Report. Technical report, Deloitte Netherlands, Netherlands, 2015.
[68] C. Walck and P. P. Group. Hand-book on STATISTICAL DISTRIBUTIONS for experimental-

ists. Hand-book on STATISTICAL DISTRIBUTIONS for experimentalists, (September):26–35,
2007.

[69] J. B. Waldner. Nanocomputers and Swarm Intelligence. ISTE, 2010.
[70] I. working group on general approaches to the design of tunnels. Guidelines for the design of

tunnels. Tunnelling and Underground Space Technology incorporating Trenchless, 3(3):237–249,
1988.



107

[71] X. Xu, L. Ding, H. Luo, and L. Ma. From building information modeling to city information
modeling. Electronic Journal of Information Technology in Construction, 19:292–307, 2014.

[72] Y. Yu, H. Liu, D. Li, X. Mao, and J. Ou. Bridge Deflection Measurement Using Wireless.
International Journal on Smart Sensing and Intelligent Systems, 6(1):38–58, 2013.

[73] Y. Yu, H. Xie, J. Wang, and J. Ou. Deflection measurement using wireless inclination sensors
for bridge. In 2010 International Conference on Intelligent Control and Information Processing,
pages 487–492. IEEE, aug 2010.


	Introduction
	Monitoring of Structure
	Outline of the Thesis
	Original Work
	List of Publications

	Analysis of Inclination Sensing Elements
	MEMS technology for inclination sensors
	Comparison of Different Inclination Sensors
	SCA103T-D04 Inclination Sensor
	Characterisation of the SCA103T
	Histograms and Distributions for x(t) and y(t)
	Correlation in the Perturbations of x(t) and y(t)

	Long-term Laboratory Measurement
	The SCA830 Single Axis Inclination Sensor

	Model Based Reconstruction
	Physical Deformation Model
	Polynomials
	Design of Polynomials
	Polynomial Regression
	Covariance Propagation

	Constrained Polynomials
	Polynomials with Constraining Roots
	Polynomial with Constraining Value Pairs
	Polynomial Approximation with Generalised Constraints

	Basis Functions
	Nomenclature
	Discrete Orthonormal Polynomials (DOP)
	Derivatives of Discrete Orthonormal Polynomials
	Local Approximation
	Linear Differential Operator
	Basis Function Approximation with Constraints

	Model Based Reconstruction of Monitoring Data
	Data Fusion
	Long-Term Observations


	Future Urban Monitoring Infrastructure
	Distributed Monitoring
	The Celtic Plus ASUA Project
	UrbMics in ASUA

	Monitoring Devices for Challenging Environments
	Cloud Systems in ASUA
	The ASUA Urban Automation Reference Platform
	UrbMics Centre

	Local UrbMics Network
	Handling of the Monitoring Sensor Data
	Data and Metadata of Sensors
	Setting Alarms in ASUA


	Outlook and Conclusion
	Review of Statistical Distributions
	Histograms
	Statistical parameters
	Cauchy-Lorentz Distribution
	Parameter estimation for Cauchy distribution
	Random number generation


	List of Figures
	Bibliography

