
 

 

 

 

 

 

 

Thomas Leiner, BSc 

 

May 2021 

Impact of the stacking sequence on the 

stability of transition-metal diborides 

 

Chair of Physical Metallurgy and Metallic Materials 

 

 

Lehrstuhl für Modellierung und Simulation metallurgischer Prozesse 
Master Thesis 

• • • • 

• • • 

• • • • • •• 

MONTAN 
UNIVERSITÄT • LEOBEN • 





This work received financial support from Austrian Science Fund (FWF): project number

P30341-N36. The computational results presented have been achieved in part using the

Vienna Scientific Cluster (VSC).

Affidavit:

I declare in lieu of oath, that I wroth this thesis and performed the associated research

myself, using only literature cited in this volume.

Datum Unterschrift

iii





Acknowledgements

I want to thank everybody who made my university studies possible and joyful. Out of the

many people who accompanied me during these years, I want to name a few here.

First of all I want to thank my parents, Karin and Gerhard, for their financial support during

these years, which made it possible to attend the university in Leoben.

Secondly, I want to thank the supervisor of this thesis, Priv. Doz. David Holec PhD, for

introducing me to the world of ab-initio calculations, the opportunity to write about a highly

interesting group of materials, for bringing me into the CMS group, where I found many

like-minded colleagues and for his relentless support in the creation of this work.

Lastly, I want to thank my girlfriend Alexandra for all the emotional support and for never

stopping to believe in me.

v





Contents

Contents vii

Abstract 1

Kurzfassung 3

1 Theoretical background 5

1.1 Metal diborides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Applications of MeB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Motivation for the present Study . . . . . . . . . . . . . . . . . . . . 6

1.2 Atomic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Atomic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Stacking Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Phase Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.4 Structures of MeB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 The Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Electron density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.3 Hartree and Hartree-Fock methods . . . . . . . . . . . . . . . . . . . 12

1.3.4 The Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . . . . 13

1.3.5 The Kohn-Sham approach . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.6 LDA and GGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



Contents

1.4 Software packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 VASP code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 Gadget code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.3 VESTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.4 Phonopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Methods and Results 21

2.1 Convergence Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Energy Landscape Curves/Relaxation . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Shearing of Planes by Tilting . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Analysis of Dynamical Stability with Phonopy . . . . . . . . . . . . . . . . . 37

3 Summary and Outlook 61

Bibliography 63

viii



Abstract

Abstract

Transition-metal diborides are a very hard and brittle type of materials, which, among others,

find uses as protective coatings. The investigated diborides (Cr, Hf, Mn, Mo, Nb, Re, Ta,

Ti, V, Zr) occur in three different known stackings.

In this work, these different stacking sequences of transition-metal diborides are explained

and the impact of the stacking sequence on the stability of diborides is investigated via ab

initio methods and phonon analysis.

Predictions about a possible stability of certain stackings were made and their behaviour

was compared to each other.
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Kurzfassung

Kurzfassung

Übergangsmetalldiboride sind eine sehr harte und sehr spröde Klasse von Materialien, welche,

unter anderem, als Beschichtungen Einsatz finden. Die untersuchten Diboride (Cr, Hf, Mn,

Mo, Nb, Re, Ta, Ti, V, Zr) kommen in drei verschiedenen, bekannten Stapelungen vor.

In dieser Arbeit werden die Stapelordnungen der Übergangsmetalldiboride erklärt und der

Einfluss der Stapelordnung auf die Stabilität der Diboride mittels ab initio Methoden und

Phononenanalyse untersucht.

Vorhersagen über eine mögliche Stabilität gewisser Stapelungen werden gemacht und deren

Verhalten untereinander verglichen.

3





Chapter 1

Theoretical background

1.1 Metal diborides

1.1.1 Applications of MeB2

There are some lesser known uses for transition metal diborides (MeB2) such as catalysts [1]

or for electroreduction of carbon dioxide[2]. But the main application field for MeB2 is as

coatings, because of their excellent heat conductivity, oxidation stability and wear resis-

tance [3]. As an example for the multitude of possible uses, some of the applications for

selected MeB2 are listed in the following paragraphs.

TiB2

TiB2 is a stable material with very high melting point, high hardness and chemical inertness,

as well as electric resistivity and thermal conductivity [4]. That is the reason why TiB2

can be used as a coating for cutting tools, electric devices and wear parts. It has a low

friction coefficient with aluminium which makes it a superb coating for cutting and drilling

tools working [5]. In composite ceramics such as TiB2-AlN it can also be used for drilling

purposes [6]. It is used as a diffusion barrier in Ohmic contacts on Si or GaAS substrates [7].

Due to its inherent brittleness, multilayer coatings of TiB2 and DLC (diamond-like carbon)

are an ongoing topic of research [8].

HfB2

HfB2 is used as a coatings because of its high wear resistance and high resistance to ox-

idation [9]. In space flight applications, it is classified as ultra high temperature ceramic

(UHTC), same as ZrB2 and NbB2, and it is used as heat shields [10]. Additionally, it is used

as a high temperature composite material in combination with SiC [11].

5



1.2 Atomic Structure

MgB2

Bulk superconductivity of MgB2 at 39 K has been found in 2001 which, at the time, was the

highest transition temperature for a non-copper-oxide bulk superconductor [12].

VB2

VB2 finds application in VB2/air batteries, where it acts as an anode [13].

1.1.2 Motivation for the present Study

There is an ever increasing need to improve the characteristics of materials or to find a

material which can fulfil the needed requirements while being produced at a cheaper cost.

Only then can a material be competitive in the long run to others in the open market. Due

to this external pressure, companies and countries alike tend to invest into researching new

materials which can satisfy the demand of ever better physical properties.

As almost all ultra hard materials such as diamond or cubic BN are either exceedingly rare

or need extreme temperatures and pressures for their fabrication, alternate materials are in

high demand [14].

Because of their favourable properties, such as high hardness and incompressibility (e.g.

ReB2 which is said to have hardness comparable to that of diamond [15]), a question of how

much of these properties are due to their unique crystallographic structure arises. Namely,

the stability of these structures and possibility of metastable structures needs to be carefuly

and consistently evaluated.

1.2 Atomic Structure

1.2.1 Atomic Structure

For the sake of simplicity, we can imagine an atom as a sphere, that takes takes up a certain

amount of space, depending on its radius. Atoms tend to arrange themselves, when they

are cooled below their respective melting temperature, into a periodic pattern. Usually they

assume an arrangement which leads to as dense packing of the atoms as possible, to decrease

their free surface and therefore the overall energy of the system.

The three most common stacking orders are the face-centred-cubic (fcc), the body-centred

cubic (bcc) and hexagonal-close-packed (hcp). Out of those, the fcc and the hcp stacking

differ only by the sequence the most densely packed planes of atoms are stacked above

each other. While for the hcp stacking order, the planes are stacked in an “. . . ABAB. . . ”

6



1.2 Atomic Structure

sequence (Fig. 1.1), the atoms in the fcc structure are stacked in an “. . . ABCABC. . . ”

pattern (Fig. 1.2) [16].

Figure 1.1: hcp stacking order along the [0001] direction (vertical, visualisation created with
VESTA [17]).

Figure 1.2: fcc stacking order along the 〈111〉 direction (vertical, visualisation created with
VESTA [17]).
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1.2 Atomic Structure

1.2.2 Stacking Faults

Stacking faults are two-dimensional defects in the crystal lattice. They arise when there

is a deviation from the perfect periodic stacking. As an example we consider the stacking

faults in an fcc material. There can either be a missing plane in the stacking order, or an

additional plane of atoms. In the first case, an intrinsic stacking fault is created with the

stacking order “. . . ABCA-BA-BC. . . ”, where BA is the stacking fault. In the second case,

an extrinsic stacking fault occurs, with the stacking order “. . . ABCA-BAC-ABCA. . . ” with

BAC as the stacking fault. In conclusion, stacking faults in simple structures are additional

or missing planes of atoms (Fig. 1.3) [16].

Figure 1.3: Intrinsic and extrinsic stacking faults in fcc (taken from [18]).

Impact of Stacking-Fault Energy on Mechanical Properties

The energy required to form a stacking fault is called stacking-fault energy (SFE), which

plays a significant role in the mechanical properties of a material. It is noted as γSFE and

its unit is energy per area (typically, J/m2 or eV/Å2). SFE determines the splitting of

dislocations into partial dislocations: lower SFE results in an wider splitting of the partial

dislocations and vice versa (Figs. 1.4 and 1.5). When the stacking fault energy is low, the

wider splitting of the partial dislocations results in a lower mobility of dislocations, due

to a lack of slip planes, and therefore a decreased ductility of the material. Therefore the

preferred deformation mechanism for materials with very low SFE is twinning [16].

8
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1.2 Atomic Structure

Figure 1.4: Perfect dislocation in an fcc
crystal [19].

Figure 1.5: Partial dislocations separated
by a stacking fault [19].

Figure 1.6: Perfect fcc crystal [21]. Figure 1.7: Deformation by twinning [21].

Twinning

When the crystals are sufficiently loaded with shear stress, they may deform plastically by

twinning. During the twinning process, atoms move by translation over relatively small

distances, where multiple rows of atoms are displaced along a glide plane. Hereby the

stacking order of the twinned crystal (Fig. 1.7) is changed compared to the perfect crystal

(Fig. 1.6); it exhibits the mirrored ordering of the crystal structure [20].

1.2.3 Phase Stability

A phase of a material is a region of space where the material has uniform physical properties.

Therefore, we can easily differentiate between the solid, liquid and gas phase of a material.

This study will deal with different phases in solids. As an example we can take iron, which
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1.2 Atomic Structure

at room temperature is stable in the bcc structure, called the α-phase. At elevated temper-

atures, the α-phase transforms into the γ-phase. The phase stabilility can be shown using

phase diagrams, example of which is the the Fe-Fe3C phase diagram shown in Fig. 1.8. The

full lines separate the metastable phases of the Fe-Fe3C with the carbon bound in the ce-

mentite phase (Fe3C), while the dashed lines show the phase diagram corresponding to the

stable Fe-C system, where carbon is found as stable graphite. The reason for the existence of

metastable Fe3C are finite cooling speeds which do not allow the thermodynamically stable

graphite phase to form due to slower kinetics at lower temperatures. An unstable phase will

instantly transform into either a metastable or stable configuration [16].

Figure 1.8: Fe-Fe3C phase diagram (taken from [22]).

1.2.4 Structures of MeB2

In this work, transition metal diborides from TiB2 to ReB2 (excluding TcB2, because of

its radioactivity) in the periodic table were studied. These come in three different stable

structures. WB2 crystallised in the ω-structure (space group 194, P63/mmc) as seen in

Fig. 1.9, ReB2 in the ReB2-structure (space group 194, P63/mmc) as seen in Fig. 1.10, and

all other MeB2 in the α-structure (space group 191, P6/mmm) as seen in Fig. 1.11.
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1.2 Atomic Structure

Figure 1.9: ω-structure of WB2 (visu-
alised with VESTA [17]).

Figure 1.10: Structure of ReB2 (visualised
with VESTA [17]).

Figure 1.11: α-structure of TiB2 (visualised with VESTA [17]).

Noticeably, the boron sheets between the metal atom planes come in two configurations,

either flat (H) as in the α-structure or puckered (K) as in the ReB2-structure or alternating

as in the ω-structure. The metal atoms are either in an A-A-A-A stacking sequence for the

α-structure, an A-B-A-B stacking sequence for the ReB2-structure, or the A-A-B-B stacking

sequence for the ω-structure. This leads us to the following stacking sequence for the three

structures [23]:

MeB2: . . . A-H-A-H. . .

ReB2: . . . A-K-B-K-A-K. . .

WB2: . . . A-H-A-K-B-H-B-K. . .

11
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1.3 Density Functional Theory

1.3 Density Functional Theory

1.3.1 The Schrödinger Equation

In essence, all quantum mechanical processes revolve around the Schrödinger equation:

Hψ = Eψ . (1.1)

By applying the Hamiltonian operator, H, on the wave function, it is possible to calculate

the energy levels of the system (eigenvalues of H). This may sound simple in theory, but we

are only able to directly calculate it for the most simple of systems, such as single atoms. For

bigger systems, for example a solid crystal, we have to take certain approximations to find

the lowest energy level and therefore ground state structure for our system. The approach

employed here is based on Density Functional Theory (DFT) which shall be explained in the

following paragraphs. The underlying mathematics were for the most part omitted and the

theory was intentionally simplified, to get a better understanding how DFT works instead

of deriving why it works the way it does [24, 25].

1.3.2 Electron density

Due to the uncertainty principle, electrons are particles which cannot be fully localised in

a crystal structure. Instead, they have a probability to be found at a certain point in the

crystal. This probability is called the electron density, which in turn is the wave function of

the electrons squared. Therefore, by taking the Schrödinger equation (Eq. (1.1)) into account,

we can immediately see that knowing the electron density is of the utmost importance to

know the corresponding wave function, and to be finally able to calculate its energy [24, 25].

1.3.3 Hartree and Hartree-Fock methods

Before the emergence of DFT, the Hartree and the Hartree-Fock (HF) methods were the way

to calculate the many-electron problems. Due to the complexity of solving the Schrödinger

equation for multiple electrons (an n-electron system), the early methods of solving it relied

on the simplifying the interacting n-electron system into a system where the electrons no

longer interacted with each other and only “felt” the presence of the other electrons as

a mean field. The interacting n-electron system therefore became a non-interacting one-

electron system which could be solved by limited computational resources, by solving one

electron at a time [24, 25].

With these simplifications, Hartree introduced the self-consistent field method to solve the

wave equation:

(− h̄2

2m
∇2 + Uext(r) + UH(r))ψ(r) = Eψ(r) , (1.2)

12



1.3 Density Functional Theory

where Eext is the attractive interaction between electrons and nuclei and UH is the Hartree

potential coming from the classical Coulomb repulsive interaction between each electron and

the mean field.

Due to the simplifications of the Hartree method, it fails to fulfil the Pauli exclusion principle.

To resolve this, the method has been refined into the Hartree-Fock (HF) method. Here, the

n-electron wave function is approximated by a linear combination of non-interacting wave

functions in the form of a Slater determinant. This solution leads to the following energy

contributors to the total energy E:

E = Ekin + Eext + EH + EX . (1.3)

Here, Ekin is the kinetic energy of the electrons and EX the exchange energy coming from

the anti-symmetrical nature of the wave function in the Slater determinant form [24, 25].

1.3.4 The Hohenberg-Kohn Theorems

Hohenberg and Kohn showed that the electron density can be used as a central quantity

to replace the wave function, and thus formulated the modern Density Functional Theory

(DFT). They managed to mathematically connect the electron density, wave function, ex-

ternal energy and Hamiltonian with the use of their theorems.

The first theorem states that there is an unique external potential (Uext) acting on the

electrons which is solely determined by the ground state electron density.

Uext is by definition the measure of the interaction between electrons and nuclei, while the

term “external” refers to the viewpoint of the electron. This Coulomb attraction by the nuclei

is by nature dependent on their charge and distance and therefore the external potential,

and corresponding energy Eext, is system dependent.

The internal energy, Eint, consists of the kinetic energy of the electrons and of the electron-

electron interactions. This contribution is independent of nuclei and hence it is system

independent. Therefore, once known, it can be applied to any system at will.

As Eint is system independent, different Hamiltonians differ only by their external energies,

which, as stated above, is solely determined by the electron density.

In conclusion this means that the electron density defines Hamiltonian, wave function and

external energy and all ground-state properties of the system. Consequently, with the elec-

tron density we can calculate, e.g., the total energy of a system, among other properties.

This forms the basis of all DFT calculations.

Their second theorem states, that we can approach the ground state energy of a system by

varying the electron density for a given external potential (and hence fixed Hamiltonian).

13



1.3 Density Functional Theory

Figure 1.12: Energy contributions in the Kohn-Sham approach (taken from [25]).

This process is called variational principle and the electron density, at which the energy is at

a minimum, is the true ground-state electron density. The process is a step by step process,

where we try to get closer and closer to the ground state energy [24, 25].

1.3.5 The Kohn-Sham approach

The Kohn-Sham approach starts by taking the kinetic, external, Hartree and exchange

energies into consideration. Let us start with the HF total energy, Eq. (1.3). In a system

with multiple electrons (n-elecrons) it is very hard to calculate the coupled interactions

between electrons. Therefore, Kohn and Sham proceeded by splitting the energy terms up

into interacting and non-interacting terms:

Ekin = Enon
kin + E int

kin . (1.4)

Moreover, additional energy term, E int
C , enters the total energy. This is correlation energy

and it is neglected in the HF method.

By summing up all interacting terms into EXC :

EXC = EX + E int
C + E int

kin = EX + EC , (1.5)

we arrive at formula:

E = Enon
kin + Eext + EH + EXC . (1.6)

While Enon
kin , EH and Eext are relatively easy to calculate while EXC has to be approximated.

By doing this, every single electron can be seen as independent from the other electrons,

14
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1.3 Density Functional Theory

which simplifies the problem from an interacting n-electron system to a non-interacting n

one-electron problems. Such transformation enables us able to calculate bigger systems with

many electrons. All that is left to be figured out is how to deal with EXC .

According to Eq. (1.5) the exchange-correlation energy is made up of the correlation energy

(EC) and the exchange energy (EX). The EXC contains all quantum mechanical effects.

The EX is the exchange energy between electrons of the same spin, which stems from the

Pauli exclusion principle. It leads to an anti-symmetry of the orbitals and their orthogonal

arrangement in space. The reduced electron density stemming from this effect is called the

exchange hole.

EC is the correlation energy between electrons with different spin, which stems from the fact

that the electrons with the same charge repel and therefore avoid each other. This leads to

a lower electron density around the electron, which is called a correlation hole.

The exchange hole and the correlation hole together form the exchange-correlation hole.

The exchange energy and therefore the exchange hole is the main contributor for the high

electron densities due to the Pauli exclusion principle which becomes more significant with

higher electron densities and the correlation energy therefore becomes more significant for

lower electron densities [24, 25].

1.3.6 LDA and GGA

Two common approximations for the exchange and correlation energy shall be described

here, the local density approximation (LDA) and the generalised gradient approximation

(GGA).

The LDA works by substituting a real, gradually changing electron density of a system with

local elements of uniform electron density. By doing so the system is divided into regions of

different but constant electron density. In each of these elements the exchange-correlation

energy can be calculated and ultimately summed up to get the total exchange-correlation

energy of the system.

LDA usually underestimates the exchange energy and overestimates the correlation energy

by roughly the same amount, which makes LDA a decent approximation for the exchange

and correlation energy. However, it typically leads to overestimation of binding, and hence

underestimation of interatomic spacings.

The GGA goes one step further than the LDA by adding the gradient of the electron density

to the local electron density as an input parameter. This leads, in general, to more accurate

XC calculations than with just LDA, while it still tends to overestimate bonding length and

underestimates band gaps [24, 25].

15



1.4 Software packages

1.4 Software packages

Below is a short overview of the software tools used in this thesis.

1.4.1 VASP code

“VASP is a complex package for performing ab-initio quantum-mechanical molecular dy-

namics (MD) simulations using pseudopotentials or the projector-augmented wave method

and a plane wave basis set. The approach implemented in VASP is based on the (finite-

temperature) local-density approximation with the free energy as variational quantity and

an exact evaluation of the instantaneous electronic ground state at each MD time step.” [26]

VASP has its roots in the CASTEP code, which was in 1989 brought to the Vienna University

by Jürgen Hafner. In 1995, VASP had become a stable and versatile tool for ab initio

calculations and has been improved ever since. VASP is currently developed by Georg

Kresse and his team [27].

The pseudopotentials used in this work are:

Boron: PAW PBE B 06Sep2000

Chromium: PAW PBE Cr pv 02Aug2007

Hafnium: PAW PBE Hf pv 06Sep2000

Manganese: PAW PBE Mn pv 02Aug2007

Molybdenum: PAW PBE Mo pv 04Feb2005

Niobium: PAW PBE Nb sv 25May2007

Rhenium: PAW PBE Re pv 06Sep2000

Tantalum: PAW PBE Ta pv 07Sep2000

Titanium: PAW PBE Ti 08Apr2002

Vanadium: PAW PBE V 08Apr2002

Tungsten: PAW PBE W 08Apr2002

Zirconium: PAW PBE Zr sv 04Jan2005

For the entire work, an automatically generated k-point mesh with length parameter 50 Å

was used.

1.4.2 Gadget code

GADGET is a program for efficient atomic and lattice relaxation, developed by Tomáš

Bučko [28].

Examples for the input data used with the GADGET code are given below. While using

GADGET, the INCAR file is similar to that used during usual VASP calculations.

16



1.4 Software packages

INCAR:

ALGO = Fast

EDIFF = 1e-06

EDIFFG = 0.0001

ENCUT = 500

IBRION = -1

LCHARG = False

LREAL = False

LWAVE = False

NCORE = 8

NSW = 0

PREC = Accurate

When using GADGET, controlling the relaxation by setting the correct constraints is crucial.

These constraints are specified in the ICONST file. Note, that in the example given below

the constraints are specified in a way that constrains the cell to keep its hexagonal structure.

17



1.4 Software packages

ICONST

LA: 0 2

LA: 0 1

LA: 1 2

RatioLR: 0 1

fX: 0:S

fY: 0:S

fX: 1:S

fY: 1:S

fX: 2:S

fY: 2:S

fX: 3:S

fY: 3:S

1.4.3 VESTA

VESTA is a 3D visualisation program for structural models, volumetric data such as elec-

tron/nuclear densities, and crystal morphologies [17].

18



1.4 Software packages

1.4.4 Phonopy

Phonopy is an open source package for phonon calculations at harmonic and quasi-harmonic

approximation levels [29].

The supercells needed for the Phonopy calculation were created, from already existing 1x1x4

cells, with a random displacements method according to the input file:

DIM = 4 4 1

PRIMITIVE AXES = AUTO

ATOM NAME = Re O

ATOM NAME = B 1

ATOM NAME = B 2

CELL FILENAME = POSCAR

CREATE DISPLACEMENTS = .TRUE.

RANDOM DISPLACEMENTS = 2

DISPLACEMENT DISTANCE = 0.03

PM = .TRUE.

DOS = .TRUE.

tolerance=1e-4

The phonon branches were calculated with the ALM force calculator and plotted according

to this specification:

FC CALCULATOR = ALM

DIM = 4 4 1

BAND = 0 0 0 1/3 1/3 0 1/2 0 0 0 0 0 0 0 1/2 1/3

1/3 1/2 1/2 0 1/2 0 0 1/2

EIGENVECTORS=.TRUE.
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1.4 Software packages

An example for the INCAR file (VASP master input file) used in the phonon calculation is

given here:

PREC = Accurate

IBRION = -1

NELMIN = 5

ENCUT = 500

EDIFF = 1.000000e-08

ISMEAR = 0

SIGMA = 1.000000e-02

IALGO = 38

LREAL = .FALSE.

LWAVE = .FALSE.

LCHARG = .FALSE.
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Chapter 2

Methods and Results

2.1 Convergence Tests

All the calculations using VASP have to meet certain criteria for them to converge and

therefore give reasonable results within a small, but acceptable, margin of error. Usually,

this error should be within 2 meV/at. in the present calculation. The two most important

setting parameters to control this accuracy are the plane-wave cut-off energy (ENCUT set

in the INCAR input file) and the number of k-points (specified in the KPOINTS file). The

cut-off energy specifies to include in the basis set all plane-waves with a kinetic energy

smaller than the specified value. As we are looking for the ground state solution of the

problem, we can cut off the free electron solutions with an too high energy. namely with

energy higher than the specified cut-off energy. The KPOINTS specify the Bloch vectors

that will be used to sample the Brillouin zone of the calculation. The convergence tests for

the studied transition-metal diborides (MeB2) suggest that the desired accuracy is reached

at an ENCUT of 500 eV and at k-points density corresponding to the length parameter

Rk = 50 Å. as indicated by the yellow 2 meV/at. contour line seen at the xy-plane of the

3D graph. An example, in this case TiB2, of the results of these calculations can be seen

in Fig. 2.1. It has to be noted, that a higher value of ENCUT and KPOINTS increase the

calculation time significantly. Therefore, it is desirable to find a compromise for their values

to reach good results (as high values as possible) in a reasonable time frame (as small values

as possible).
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2.1 Convergence Tests

Figure 2.1: Example of a convergence test of TiB2. Region in which the overall total energy
(vertical axis) changes less than 2 meV/at. is marked by the yellow contour line. Energy cut-
off energy (ECUT) is given in eV. density of k-points is characterised by a length parameter
(KPOINTS) given in Å.
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2.2 Energy Landscape Curves/Relaxation

2.2 Energy Landscape Curves/Relaxation

In this part is reported the behaviour of the MeB2 in terms of the energy landscape, when we

shear them from their stable configurations (e.g., A-A-A-A) to the stacking order of those

of other MeB2. The results below were achieved by shifting metal atoms using multiple

in-between steps from A to B position or vice-versa. At each step, the atoms were allowed

to relax in the z-direction. while movement of the atoms in the x- and y-directions was

prevented to keep the stacking order fixed. The transformation path was chosen as:

A-A-A-A→ B-A-A-A→ B-A-B-A→ A-B-B-A→ A-A-A-A . (2.1)

The resulting energy per atom of the system was plotted on the vertical axis and the stacking

order of the atoms (configuration of the supercell) on the horizontal axis in the graphs below

(Figs. 2.3–2.13).

In most cases we can observe several local minima and thereby potential metastable struc-

tures. The global minimum is at the stacking order which corresponds to the stable structure.

The other local minima are typically at other A or B stackings of the metal planes, but in

some cases local minima are predicted also for lateral shifts between the A and B configura-

tions.

In the cases of TiB2 (Fig. 2.10) an VB2 (Fig. 2.11) at the A-B-B-A stacking we can see two

different energy states. The higher energy state was caused by the boron atoms being locked

in a higher symmetry configuration and hence preventing them from relaxing to the lower

energy state. By choosing a different starting position for the B atoms, the structure is able

to relax into an lower energy state.

In any two neighbouring stackings (A-A-A-A, B-A-A-A, B-A-B-A or A-B-B-A) both corre-

spond to a local energy minima, the energy difference between the initial (in terms of the

transformation path Eq. (2.1)) and the local maximum between the two minima defines an

energy barrier. For example, “barrier 1” corresponds to the energy difference between the

local maximum between A-A-A-A and B-A-A-A and E(A-A-A-A), provided that both A-A-

A-A and B-A-A-A configurations are local energy minima. This barrier must be overcome

in order to proceed further along the transformation path. All barriers for all investigated

MeB2 are summarised in Fig. 2.2. The energies of all important configurations are given in

Tab. 2.1.
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Table 2.1: Total energies (in eV/at.) of important stacking along the transformation path, and corresponding energy barriers.

CrB2 HfB2 MnB2 MoB2 NbB2 ReB2 TaB2 TiB2 VB2 WB2 ZrB2

A-A-A-A −7.9712 −8.7999 −7.6186 −8.1294 −8.6079 −8.1225 −9.0516 −8.1014 −8.1808 −8.6319 −8.3258

E-Barrier −7.8528 −8.5172 −7.5805 −7.8739 −8.4087 −8.8979 −7.8147 −7.9495 −8.6059 −8.0431

B-A-A-A −7.8893 −8.5282 −7.6108 −7.9869 −8.4345 −8.6023 −8.9307 −7.8284 −7.9680 −8.7400 −8.0573

E-Barrier −7.7100 −7.5207 −7.8376 −8.2122 −8.5882 −8.7261 −7.5395 −7.7219 −7.7714

B-A-B-A −7.7408 −8.2498 −7.5843 −7.9636 −8.2258 −9.0275 −8.7440 −7.5527 −7.7356 −9.0588 −7.7850

E-Barrier −7.6824 −7.4692 −8.2188 −8.5287 −8.7302 −7.5447 −7.7316 −8.7571 −7.7759

A-B-B-A −7.6902 −8.5336 −7.4771 −8.0507 −8.4885 −8.5931 −8.9949 −7.8417 −8.0266 −9.1464 −8.0619

E-Barrier −7.6743 −8.5299 −7.4629 −7.9868 −8.4563 −8.9431 −7.8367 −8.0036 −8.6319 −8.0591

A-A-A-A −7.9712 −8.7999 −7.6186 −8.1294 −8.6079 −8.1225 −9.0516 −8.1014 −8.1808 −8.6319 −8.3258

Barrier1 0.1185 0.2827 0.0381 0.2554 0.1992 0.1537 0.2867 0.2313 0.0259 0.2827

Barrier2 0.1793 0.0900 0.1492 0.2223 0.0140 0.2046 0.2889 0.2460 0.2859

Barrier3 0.0584 0.1151 0.0070 0.4988 0.0138 0.0080 0.0040 0.3017 0.0090

Barrier4 0.0159 0.0036 0.0142 0.0640 0.0322 0.0518 0.0050 0.0230 0.5145 0.0028
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2.2 Energy Landscape Curves/Relaxation

Figure 2.2: Energy barriers between different stacking orders of MeB2.
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Figure 2.4: Total energy landscape for HfB2.
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Figure 2.5: Total energy landscape for MnB2.
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Figure 2.6: Total energy landscape for MoB2.
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Figure 2.7: Total energy landscape for NbB2.
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Figure 2.8: Total energy landscape for ReB2.
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Figure 2.9: Total energy landscape for TaB2.
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Figure 2.10: Total energy landscape for TiB2.

-8.2

-8.15

-8.1

-8.05

-8

-7.95

-7.9

-7.85

-7.8

-7.75

-7.7

A-A-A-A 0.5 B-A-A-A 1.5 B-A-B-A 2.5 A-B-B-A 3.5 A-A-A-A

E
n
er

gy
[e

V
/a

to
m

]

Coordinate

Energy
Energy-lower

Figure 2.11: Total energy landscape for VB2.
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Figure 2.12: Total energy landscape for WB2.
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Figure 2.13: Total energy landscape for ZrB2.
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2.3 Shearing of Planes by Tilting

In summary, we have found various local energy minima at different stackings. The next

step is to evaluate if these local minima correlate to a metastable structure. The smaller

the energy barrier between two different stackings, the easier it is to create stacking faults

and therefore a transformation from one stacking to the next one can procees. Many of

these energy barriers are small (0.2–0.3 eV/at.) between the B-A-B-A and the A-B-B-A

stacking, which means that only small inputs are needed to change the stacking sequence.

This evaluation is done in Sec. 2.4 via a phonon analysis.

2.3 Shearing of Planes by Tilting

In contrast to the previous section, where shear was applied to only one plane, we now

investigate energy barriers when homogeneous shear is applied.We start from an A-A-A-

A stacking and tilt the c-axis of the crystal in three different directions according to the

following specification: c′ = c + ka, c′ = c + k(a + b), c′ = c + k(a − b), further called the

a-direction, the a+ b-direction and the a− b-direction. It means that the ~c lattice vector is

tilted in ~a, ~a +~b or ~a−~b direction. Parameter k describes the magnitude of the tilt; k = 1

means that we a lattice translational vector is added and hence the A-A-A-A stacking is

again recovered.

We notice that the results for the tilting in the a-direction is equal to the tilting in the

a+ b-direction, which results from the crystallographic equivalence of these planes. The few

points they differ are caused by the boron atoms getting stuck between the metal atoms and

therefore being unable to relax into a lower energy state.
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2.3 Shearing of Planes by Tilting
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Figure 2.14: Shearing of TiB2 in the a-direction.
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Figure 2.15: Shearing of TiB2 in the a− b-direction.

32



2.3 Shearing of Planes by Tilting
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Figure 2.16: Shearing of TiB2 in the a+ b-direction.
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Figure 2.17: Shearing of VB2 in the a-direction.
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2.3 Shearing of Planes by Tilting
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Figure 2.18: Shearing of VB2 in the a− b-direction.

-8.2

-8.15

-8.1

-8.05

-8

-7.95

-7.9

-7.85

-7.8

-7.75

-7.7

-7.65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n
er

gy
[e

V
/a

to
m

]

Coordinate

Figure 2.19: Shearing of VB2 in the a+ b-direction.
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2.3 Shearing of Planes by Tilting
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Figure 2.20: Shearing of WB2 in the a-direction.
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Figure 2.21: Shearing of WB2 in the a− b-direction.
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Figure 2.22: Shearing of WB2 in the a+ b-direction.
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2.4 Analysis of Dynamical Stability with Phonopy

When tilting TiB2 in the a-direction, we get a smooth curve which reflects the tendency of

the boron atoms to find a lower energy state in the A-A-A-A stacking. When tilting the

c-axis in the a−b-direction, the total energy has local minima at the 0.3 and 0.55 coordinate

related to the boron electrons moving and relaxing into a metastable state.

VB2 shows similar behaviour as TiB2; when tilted into the a− b-direction, the local minima

are even more pronounced than in the case of TiB2.

Lastly, the A-A-A-A-stacked WB2 transforms to a lower energy states when tilted in the

a − b-direction. This suggests a stable structure with a lower energy state and different

stacking than the A-A-A-A stacking.

2.4 Analysis of Dynamical Stability with Phonopy

It is of a particular interest to find out, if each of the identified local energy minima represents

a stable or unstable structure. One way to investigate that is to analyse their phonon density

of states (DOS) and their phonon frequencies. A dynamically stable structure contains

only phonon modes corresponding to positive frequencies, whereas negative values (or, more

precisely, imaginary frequencies) signify dynamically unstable structures.
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Figure 2.23: Phonon DOS of different CrB2 stackings.
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2.4 Analysis of Dynamical Stability with Phonopy

What we see in Fig. 2.23 for CrB2 is a recurring pattern for many other MeB2. Because of

their non-zero values for the DOS at negative frequencies, we conclude that the A-B-B-A

and the B-A-A-A stackings are unstable configurations for CrB2. The A-A-A-A and the B-

A-B-A stacking show only little values for the negative (imaginary) frequencies which may

be related to numerical inaccuracies. Those structures are likely to be stable but should be

tested more closely for their stability.

Figure 2.24: Phonon dispersion of the A-A-A-A-stacked CrB2.

As we can see in Fig. 2.24, there is only one phonon mode which shows negative frequen-

cies. Unlike that, the B-A-B-A stacking exhibits many modes with imaginary frequencies

(Fig. 2.25), related to the high phonon DOS (Fig. 2.23) for negative frequencies, and hence

is indeed unstable.

Figure 2.25: Phonon dispersion of B-A-B-A CrB2

Figure 2.26 visualises the displacements for the negative phonon mode in Fig. 2.24 at the Γ

point. The displacements suggest that the structure might not be in a fully relaxed state,
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2.4 Analysis of Dynamical Stability with Phonopy

Figure 2.26: Displacements of atoms for A-A-A-A stacking of CrB2 corresponding to the
most negative frequency.

where planes of metal still atoms want to shift along the z-direction with simultaneous

shift of the B planes in-plane. We can conclude therefore that the A-A-A-A stacking is the

most likely stable structure for CrB2. We note, that these slight instabilities may be also

related to the neglection of magnetic interactions, as our calculations did not include any

spin-polarisation.

Figure 2.27: Displacements of the atoms for B-A-B-A CrB2 for 3 modes with the most
negative frequencies at the Γ point.

Taking a look at the imaginary-frequency phonon modes of the B-A-B-A stacking (Fig. 2.25)

and the corresponding displacements on the atoms (Fig. 2.27) at Γ-point, we can come to

no simple solution for a mechanism to stabilise this structure.
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2.4 Analysis of Dynamical Stability with Phonopy
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Figure 2.28: Phonon DOS of different HfB2 stackings.

Figure 2.28 shows that no DOS at negative (imaginary) frequencies for the A-A-A-A stacking

and only a small one for the B-A-B-A stacking. The A-B-B-A and B-A-A-A stackings can

be dismissed as unstable structures.

Phonon dispersion in Fig. 2.29 shows no negative phonon frequencies, hence we can conclude

that the A-A-A-A stacking is a stable structure.

As seen in Fig. 2.30, for the B-A-B-A stacking, HfB2 shows two negative phonon frequencies

at the Γ point. Fig. 2.31 shows the atomic displacements at the Γ point for the two negative

phonon frequencies.

40

-------r-----r-----r--------r--r-----------r-----------r--r--------r-----r-----r --------r --r ---------7 

' ' ' ' ' ' ---------------------------------------- ----------------------------------------------------
' ' 1 1 1 1 

' ' 1 1 1 1 ------·--·--·--·--·-------------------- ---------·----------------------------·--·--·--·---
' ' ' ' ' ' 



2.4 Analysis of Dynamical Stability with Phonopy

Figure 2.29: Phonon dispersion of the A-A-A-A-stacked HfB2.

Figure 2.30: Phonon dispersion of the B-A-B-A-stacked HfB2.
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2.4 Analysis of Dynamical Stability with Phonopy

Figure 2.31: Atomic displacements corresponding to the 2 imaginary frequencies at the Γ
point of the B-A-B-A stacking of HfB2.
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Figure 2.32: Phonon DOS of different stackings of MnB2.

In Fig. 2.32 we see almost no phonon DOS at negative frequencies for the B-A-B-A stacking.

Non-negligible phonon DOS at imaginary frequencies is predicted for the A-A-A-A stacking.

The A-B-B-A and B-A-A-A stackings can be dismissed as unstable structures.

Figure 2.33: Phonon dispersion of the A-A-A-A stacked MnB2.

Fig. 2.34 shows the forces on the atoms for the A-A-A-A stacking of MnB2 at the Γ point

(Fig. 2.33). It leads to the conclusion that the MnB2 is not fully relaxed along the c-direction,

43

- - -- -- - , - --· - , · --· - , · - -- - -- -1--1---- -· --· --r -· --· ----_ T _ T _ - -- --· T · --· -r · ----r --------r --r --· --· ----7 
' ' 

20 

15 

i 
10 

l 5 

-5 

- 10 

K A rM H M 



2.4 Analysis of Dynamical Stability with Phonopy

Figure 2.34: Atomic displacements for the A-A-A-A stacking of MnB2.

which can be again related to the symmetry-forbidden relaxation at 0 K, similarly to CrB2.

It may be therefore possible to obtain a stable structure for the A-A-A-A-stacked MnB2.

Figure 2.35: Phonon dispersion of the B-A-B-A-stacked MnB2.

Interestingly, also the B-A-B-A-stacked MnB2 exhibits imaginary phonon modes (Fig. 2.35),

suggesting that also in this configuration our structure is not perfectly relaxed.
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Figure 2.36: Phonon DOS of different MoB2 stackings.

As seen in Fig. 2.36 for MoB2 there seems to be no stable structure in the observed stackings.

This might be due to Mo forming a stable structure with B as Mo2B5. Similarly, our

structures may not be ideally relaxed, as already discussed above for other MeB2. Apart

from the A-A-A-A stacking, which corresponds to the local minimum on the energy landscape

(Fig. 2.6), all other structures have local minima “nearby” along the transformation path,

hence correlating with the phonon instability.
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Figure 2.37: Phonon DOS of different NbB2 stackings.

The same behaviour as for HfB2 is predicted also for NbB2. The A-A-A-A is the stable

stacking (Fig. 2.38) and the B-A-B-A stacking might be stabilised (Fig. 2.39).

Figure 2.38: Phonon dispersion of the A-A-A-A stacking of NbB2.
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2.4 Analysis of Dynamical Stability with Phonopy

Figure 2.39: Phonon dispersion of the B-A-B-A stacking of NbB2.
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Figure 2.40: Phonon DOS of different ReB2 stackings.

ReB2 behaves oppositely to most of the other MeB2 we have discussed so far, and it is similar

to MnB2. Here, the B-A-B-A structure is fully stable (Fig. 2.41) and the A-A-A-A structure

is the one which might be stabilised (Fig. 2.42).

Figure 2.41: Phonon dispersion of the A-A-A-A-stacked ReB2.
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2.4 Analysis of Dynamical Stability with Phonopy

Figure 2.42: Phonon dispersion of B-A-B-A-stacked ReB2.
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Figure 2.43: Phonon DOS of different TaB2 stackings.

For TaB2, the same conclusions as for HfB2 apply.

Figure 2.44: Phonon dispersion of A-A-A-A-stacked TaB2.
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Figure 2.45: Phonon dispersion of B-A-B-A-stacked TaB2.
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Figure 2.46: Phonon DOS of different TiB2 stackings.

For TiB2, the same conclusions as for HfB2 apply.

Figure 2.47: Phonon dispersion of A-A-A-A-stacked TiB2.
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Figure 2.48: Phonon dispersion of B-A-B-A-stacked TiB2.
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Figure 2.49: Phonon DOS of different VB2 stackings.

For VB2, the same conclusions as for HfB2 apply.

Figure 2.50: Phonon dispersion of A-A-A-A-stacked VB2.
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Figure 2.51: Phonon dispersion of B-A-B-A-stacked VB2.
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Figure 2.52: Phonon DOS of differently stacked WB2 structures.

As seen in Fig. 2.52, WB2 has its stable structure at the A-B-B-A stacking while the other

structures are clearly unstable. Nevertheless, the phonon dispersion of the A-B-B-A stacking

in Fig. 2.54 reveals that some phonon modes still exhibit imaginary phonon frequencies, and

hence our structural model is not yet fully relaxed. Similarly to MoB2, instability may be

related also to the fact, that slightly off-stoichiometric compositions W2B5−x are preferred.

Figure 2.53: Phonon dispersion of A-B-B-A-stacked WB2.

56

- - - - - - - , - - - - - , - - - - - , - - - - - - - -1- -1- - - - - - - - - --r ---------_ T _ T _ - - - - - - T - - - --r-----r--------r--r----------7 

' ' 1 1 1 1 ---------------------------------------- ------------------------------------------------------
' ' ' ' ' ' 

' ' ' ' ' ' -------------,--------------;--------- -------,---------------,---------------,---------------; 

30 

20 

10 

i 
l 

- 10 

- 20 



2.4 Analysis of Dynamical Stability with Phonopy

ZrB2

0

1

2

3

4

5

6

7

8

9

-30 -20 -10 0 10 20 30 40
0

5x10-6

1x10-5

1.5x10-5

2x10-5

2.5x10-5
-6x106 -4x106 -2x106 0 2x106 4x106 6x106 8x106 1x107

D
en

si
ty

of
S
ta

te
s

[s
ta

te
s/

T
H

z-
at

om
]

Frequency [THz]

A-A-A-A left scale
A-B-B-A right scale
B-A-A-A right scale

B-A-B-A left scale

Figure 2.54: Phonon DOS of different stackings of ZrB2.

For ZrB2, the same conclusions as for HfB2 apply.

Figure 2.55: Phonon dispersion of the A-A-A-A-stacked ZrB2.
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Figure 2.56: Phonon dispersion of the B-A-B-A-stacked ZrB2.
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2.4 Analysis of Dynamical Stability with Phonopy

Conclusions from the Dynamical Stability

No negative phonon frequencies are obtained only for the known stable structures. Structures

with only a few soft phonon modes may be stabilized by a careful structural optimisation.

This is predicted for the B-A-B-A structures for MeB2 with the stable A-A-A-A stacking,

but never in the B-A-A-A stacking and the A-B-B-A stacking. None of these structures is

stable for MoB2. WB2 is only stable in the A-B-B-A stacking and ReB2 in the B-A-B-A

structure, with a possible stability in the A-A-A-A stacking.
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Chapter 3

Summary and Outlook

The energy landscapes (Sec. 2.2) helped us identifying local energy minima, while the analysis

with dynamical stability (Sec. 2.4) enabled us to take a closer look to discern which of these

local energy minima might result in a stable or metastable structure.

The stable stacking sequence for the MeB2 (Me=Cr, Hf, Mn, Nb, Ta, Ti, V, Zr) was identified

as the α-structure (A-A-A-A stacking), except for ReB2 and WB2, where the stable stacking

orders were B-A-B-A and A-B-B-A, respectively. No stable structure for MoB2 was found

in this investigation.

The phonon analysis suggests possible metastable structures for the above mentioned MeB2

in the B-A-B-A stacking and ReB2 in the A-A-A-A stacking, but the energy barriers between

those stackings and other, metastable/unstable stackings, were identified to be very small.

Therefore, stabilising structures with these stackings might be difficult. A way to stabilise

those structures was not identified in this work and is subject to further investigations.
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