
Chair of Automation

Master's Thesis

A Positioning System for Mobile
Equipment based on Ultra Wideband Radio

Lea Plessing, BSc
May 2021

2

Abstract

This thesis investigates the use of Ultra Wideband (UWB) technology as both position- and

orientation measurement system of dynamically reconfigurable equipment. The results of

implementing the UWB based system and the design of its middleware are presented. No

installation of stationary infrastructure is required for the architecture that has been developed.

Standard automation protocols have been selected and implemented to establish the connections

from the middleware to the plant network and to eight UWB sensors, in order to communicate

the range settings and measurements. An application has been programmed that manages the

bidirectional data flow and executes the algorithm that yields the relative position and orientation.

As part of the algorithm, a Least-Squares computation is performed on an overdetermined system

of four range measurements. Furthermore, a running average computation is applied to reduce

the noise of the incoming and out coming data.

The developed system has been tested, both on a test setup and on the real plant. The results

have been analyzed, the causes of uncertainty determined and proposals made on how to further

improve the complete system.

In five of the ten possible constellations of the mobile equipment, the measurement system

achieves accuracies below 200mm. As documented by the tests, the current middleware for

the UWB based positioning system, fulfills both the accuracy and real-time requirements for

the positioning of mobile processing equipment in outdoor locations. This is achieved without

requiring the installation of stationary infrastructure.

Index Terms

Ultra Wideband, Industrial Middleware, Plant Automation, Positioning System, Outdoor Posi-

tioning, Positioning without Stationary Infrastructure

3

Kurzfassung

Diese Diplomarbeit untersucht den Einsatz der Ultra-Breitband-Technologie (UWB) als Positions-

und Orientierungsmesssystems von mobilen Anlagenelementen. Die Anwendungsergebnisse

des UWB-basierten Systems und dessen Middleware-Konzeptionierung sind dargelegt. Für die

entwickelte Konstruktion ist keine stationäre Infrastruktur notwendig.

Für die Datenverbindung der Middleware zum Anlagennetzwerk und zu acht UWB-Sensoren

wurden Standard Automations-Protokolle ausgewählt und implementiert, um die Einstellungen

des Positionierungssystems und die Messergebnisse zu übermitteln. Es wurde ein Programm en-

twickelt, welches den bidirektionalen Datenfluss realisiert und den Algorithmus ausführt, welcher

Position und Orientierung berechnet. Als Teil des Algorithmus wird die Methode der kleinsten

Quadrate an einem überbestimmten System von vier Messlängen angewandt. Außerdem wird

eine laufende Durchschnitts-Berechnung durchgeführt, um das Rauschen der eingespeisten und

ausgegebenen Daten zu reduzieren.

Das entwickelte System wurde sowohl an einem Testaufbau als auch an einer echten Anlage

getestet. Die Ergebnisse wurden ausgewertet, die Ursachen für Unsicherheiten eruiert und

Verbesserungsvorschläge für das komplette System vorgelegt.

In fünf der zehn möglichen Anordnungen zweier verschiebbarer Anlagenelemente erreicht

das Messsystem Genauigkeiten von unter 200mm. Wie in der Arbeit gezeigt wird, erfüllt die

entwickelte Middleware für das UWB-basierte Positionierungssystem sowohl die notwendige

Genauigkeit, als auch Echtzeit-Fähigkeit für die Positionierung von mobilen Anlagenelementen

im Freien. Dies wurde erreicht ohne die Abhängigkeit von stationären Infrastrukturen.

Schlagwörter

Ultra-Breitband, Industrielle Middleware, Anlagenautomatisierung, Positionierungssystem, Out-

door Positionierung, Positionierung ohne stationäre Infrastruktur

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen
Quellen und Hilfsmittel nicht benutzt, und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Ich erkläre, dass ich die Richtlinien des Senats der Montanuniversität Leoben zu "Gute
wissenschaftliche Praxis" gelesen, verstanden und befolgt habe.

Weiters erkläre ich, dass die elektronische und gedruckte Version der eingereichten
wissenschaftlichen Abschlussarbeit formal und inhaltlich identisch sind.

Datum 13.05.2021

Unterschrift Verfasser/in
Lea Plessing

5

Acknowledgements

I would like to thank those who believed in me, supported me and helped me getting closer to

my goal.

The one who supervised this thesis and who animated me to pursue my interest in data science is

Univ. Prof. Paul O’Leary to whom I am much obliged.

I want to express great acknowledgements to Michael Habacher from eSENSEial Data Science

GmbH for his support and for giving me the opportunity of developing such an exciting real-

world application.

To my former mentor Assoc. Prof. Ewald Fauster I am ever thankful for the unprecedented

teaching quality I received by which I was introduced to practical automation.

Furthermore, my special esteem goes to Eva whose effective and motivating instructions I

will always keep in mind.

And to my family I owe great appreciation for their support and confidence.

Counting myself fortunate to have such friends, I want to thank them for their encouragement

and affirmations.

My conclusive expression of gratitude goes to my fiancé Max for always believing in me and

standing by my side with helpful advice.

Contents

1 Introduction 9

2 System Concept 13

2.1 Purpose of and Requirements on the System 13

2.2 Physical Environment . 15

2.2.1 Influences on Ranging Signal . 15

2.2.2 Geometric Setup . 17

2.3 Demands on the Algorithm . 18

2.3.1 Translation of the Real World Problem 19

2.4 Technical Environment . 21

2.4.1 IPC . 21

2.4.2 Distance Meters . 22

3 UWB Technology 23

3.1 Technological Principal . 23

3.2 Legal Regulation . 25

3.3 Features and Characteristics . 26

3.3.1 Spectral Density . 26

3.3.2 Data Rate . 27

3.3.3 Accuracy . 27

3.3.4 NLOS Behavior . 27

3.4 Recent Developments . 28

6

CONTENTS 7

3.4.1 Channel Sharing . 28

3.4.2 NLOS Performance . 29

3.4.3 Clock Synchronizations . 30

3.5 UWB Ranging Applications . 30

3.6 Critical Assessment . 31

3.6.1 Chances . 31

3.6.2 Limits . 32

4 Choice of Bus Protocol 33

4.1 RS485 - Background . 33

4.2 Physical Connection . 34

4.3 Bus Comparison . 35

4.4 Modbus RTU . 36

4.4.1 Protocol Principal . 36

4.4.2 Memory Map . 38

4.4.3 Messaging . 39

4.5 Interface Preparation . 40

4.5.1 Register Table . 40

4.5.2 Interface Configuration at the Middleware 41

5 Application Development 44

5.1 Hardware Setup . 44

5.2 Object Oriented Programming . 45

5.2.1 Objects and Classes . 46

5.2.2 Inheritance . 47

5.2.3 Thread . 47

5.2.4 Lock Object . 47

5.2.5 Queue . 49

5.2.6 List . 49

CONTENTS 8

5.2.7 Dictionary . 49

5.2.8 Logging . 49

5.3 Implementation of the Threads . 49

5.4 Data Exchange between Threads . 50

5.4.1 Global Configuration . 50

5.4.2 Queue of Ranges . 53

5.5 Modbus Thread . 54

5.5.1 MT - Initialization . 54

5.5.2 MT - Loop . 56

5.6 Algorithm Thread . 56

5.6.1 AT - Initialization . 56

5.6.2 AT - Loop . 57

5.7 OPC-UA Thread . 57

5.7.1 OT - Initialization . 58

5.7.2 OT - Loop . 58

6 Results 72

6.1 Modbus Connection . 72

6.2 Algorithm Performance . 76

6.2.1 Tripod Tests . 76

6.2.2 Tests on Plant Units . 77

6.3 OPC-UA Connection . 84

6.4 Summary . 85

7 Conclusion 86

A OPC-UA Variables 91

B Application Implementation 94

Chapter 1

Introduction

This thesis addresses the measurement of the relative position and orientation of mobile reconfig-

urable machines with respect to each other using the Ultra Wideband radio (UWB) technology.

This is required to enable the fast and efficient reconfiguration of mobile processing units at new

application sites. Additionally, there should be no need for any stationary infrastructure, since

the time spent on the installation of such infrastructure would be counterproductive and require

specialist staff.

While passing material between processing machines, e.g. through conveyor belts, the relative

position and orientation between two succeeding units must be maintained to allow a successful

material hand-over. The developed measurement system provides the necessary relative location

information to align the units in the first place and to observe the relative position and orientation

throughout the sorting process. Since the installation of infrastructure is not required, the same

plant can be more easily moved and installed at new sites.

Considering the harsh industrial environment, the system needs to perform despite multipath

propagation of the UWB signal which causes measurement offsets: Electromagnetic waves are

reflected on plain metal surfaces, such as the massive steel frames of the interconnecting conveyor

belts, the surrounding units or other dynamic machinery and moving parts. The reflected waves

lead to time variance in the incoming signals as the reflections arrive later than the directly

travelling signals, thus, causing measurement errors.

Other wireless communication standards, such as Wi-Fi and Bluetooth, are regularly used on

modern industrial sites and even needed to control the plant units themselves. Therefore, their

potential interference must be taken into account. Furthermore, a tight accuracy limit of 200mm

poses a high demand on the positioning algorithm and the general ranging architecture.

9

CHAPTER 1. INTRODUCTION 10

Another challenge is the request for standardized automation protocols as the mobile equipment

needs to be useable in different communication networks and allow the integration of various

sensor designs. Apart from a flexible connectivity, sufficient data rate and reliability must be met,

so that the system can be used as parking aid. The task is made considerably more challenging by

the fact that the system should not depend on any infrastructure, e.g. a set of stationary sensors

on the sides or wires in the ground, but should communicate only with the sensors of the next unit.

The literature review revealed research projects that determine only the real-time distance

between two objects without requiring stationary infrastructure, such as the collision avoidance

systems for autonomous cars compared by Ponte Müller [1]. However, the discussed systems

do not detect the relative orientation between two cars.

Other works address the simultaneous determination of position and orientation, but depend on

stationary infrastructure, such as the indoor positioning system based on passive radio frequency

identification (RFID) developed by Shirehjini et al. which uses RFID Tags and stationary RFID

carpets to navigate [2]. During the literature survey for this thesis, no implementation was found

to determine the relative position and orientation in a real-time manner which doesn’t require

stationary infrastructure.

The main scientific contribution of this thesis is a new architecture which is composed of two

UWB sensor pairs, see figure 1.1. One is attached to the first unit and consists of two Anchors, i.e.

sensors that initiate a distance measurement, while the other pair consists of two responding Tags.

Both Anchors range to both Tags respectively resulting in the measurement of four lengths while

the distances between the individuals of one pair are considered as constant. The positioning

algorithm is performed by an Industrial PC (IPC) which is connected to the Anchors and ingests

the four measured distances to determine position and orientation without requiring external

infrastructure.

Any implementation of the system belongs to one unit and is fundamentally structured with

hardware elements on the one hand, i.e. UWB Anchors and Tags, the IPC and the physical

connection in between, and with software elements on the other hand, i.e. the application

realizing the entire bidirectional data transfer from the sensors to the plant network and the

data processing including the algorithm. While the n UWB Anchor pairs feed their quartets

of distance measurements to the IPC and receive settings from it, the m UWB Tag pairs only

receive settings from the IPC, where n is the maximum number of relatively locatable units and

m the maximum number of units that receive the location of the system carrying unit.

The necessary hardware, firmware and embedded software components to implement a functional

CHAPTER 1. INTRODUCTION 11

Figure 1.1: The measurement system’s architecture requires an Anchor pair on one of the units and a Tag

pair on the other. By ranging from each Anchor to each Tag, four measurements are obtained that yield

the position and orientation after being processed on the IPC.

prototype have been integrated into the system’s middleware, see figure 1.2. Hence, in addition

to the new setup for an autonomous ranging system, the whole middleware linking the sensors

to the plant network has been designed and established. An additional benefit of this work is

the implementation of only standardized industrial protocols, i.e. Modbus RTU over RS485 and

OPC-UA, for the communication from the distance meters to the plant network.

In order to evaluate the system’s functionality, it has been installed on the mobile equipment

Figure 1.2: System design and test setup including conveyor belts: The positioning middleware of the

autonomous positioning system links the UWB sensors mounted on the units to the plant network and

performs the positioning algorithm.

of a scrap metal sorting plant. All ten possible relative arrangements of two units in the size of

shipping containers have been tested while connected by conveyor belts, see figure 1.2.

CHAPTER 1. INTRODUCTION 12

The results indicate that an accuracy of 200mm is achievable when the angle of the incoming

signal is not too steep.

A result of this implementation is the new possibility of positioning and orienting dynamically

reconfigurable components with respect to one another with a minimum requirement of personnel.

Chapter 2

System Concept

The aim of this chapter is the definition of the physical and technical environment surrounding

the location system and the layout of the middleware’s architecture. Furthermore, the demands

on the system’s precision, responsiveness and feasibility will be specified.

2.1 Purpose of and Requirements on the System

Each unit of a process line consists of a sorting machine, that is built into the framework of

a mobile shipping container. The described modularity allows flexibility w.r.t the processed

materials and enhances transportation of the plant. Connected by dismountable conveyor belts,

the mobile equipment forms an adaptable process line, where each conveyor belt is only attached

to the feeding unit and drops the material into the collecting vessel which is fitted into the

receiving unit.

By continuously measuring relative position and orientation, the misalignment can be deduced

which indicates whether the material flow is interrupted or close to interruption. The two

parameters are calculated out of four range measurements performed by four sensors: two on

the feeding unit “A” and “B” and two on the receiving unit “a” and “b” which deliver the four

ranges “A-a”, “A-b”, “B-a” and “B-b”, see figure 2.1. To prevent an interruption of the material

flow, the maximum tolerable misalignment between drop-off point of the belt and the center of

the vessel are limited by 200mm in the horizontal plane.

On the one hand, the location system has to measure the relative position and orientation

between the plant units throughout the whole runtime of the process. A displacement could be

caused e.g. by a landslide or the impact of heavy machinery, moving along the process line. On

the other hand, the positioning system functions as a parking assistant, when the units are initially

13

2.1. PURPOSE OF AND REQUIREMENTS ON THE SYSTEM 14

Figure 2.1: The main task of the middleware is the continuous output of the relative position between two

units. In the case of two linear aligned units the sensors “A” and “B” of the first unit together with “a” and

“b” from the second unit form a measurement constellation of four involved sensors.

installed. In order to ensure swift positioning, the relative location data should be updated at

frequencies of approximately 1Hz.

If two units are linearly aligned, the four sensors represented in figure 2.1 are sufficient. However,

there might occur the necessity of parallel or vertical positioning as well as the alignment of

more than two units relatively to one another in which case a higher amount of sensors would be

necessary. At most, eight sensors at once are active per unit which are divided into four sensor

pairs, each pair covering one of the sides. Every unit of the process line is also equipped with an

IPC, that executes the services of the middleware, see figure 2.2.

The middleware, that is developed in this work, represents the core of the positioning system, by

managing the data flow between the superior network of the process line and the distance meters,

as well as by calculating the relative location from the raw sensor data, see figure 2.3. All distance

meters, that are mounted on one unit, are connected to the IPC with the developed application

and supply it with their measurements, which are the input of the positioning algorithm. As a

result of the algorithm, the relative offset and orientation are transferred to the network of the

whole production line.

2.2. PHYSICAL ENVIRONMENT 15

Figure 2.2: One unit equipped with eight sensors in total, all delivering range data to the middleware

which is executed by one IPC per unit.

Figure 2.3: The middleware represents the core of the location system and includes the interfaces to the

network and UWB sensors, as well as the computations.

2.2 Physical Environment

In most cases, the whole plant will be stationed at a metal waste disposal site, thus, outdoors in

an industrial environment.

2.2.1 Influences on Ranging Signal

Within this section, the influences of that environment on ranging signals are discussed by way of

multipath propagation, no-line-of-sight (NLOS) scenarios and signal interference. On referring

to a line-of-sight (LOS) scenario, the shortest connection between two communicating sensors is

optically unobscured, whereas NLOS means that this direct line is interrupted by some material

unlike air, regardless of the dimensions of the object. Another important term is multipath

propagation, where reflected and refracted signals reach the receiver [3, p. 24]. Depending on

2.2. PHYSICAL ENVIRONMENT 16

the antenna geometry, the transmitter sends a signal that propagates in more than one direction.

If there are objects close to the LOS, that cause reflection or refraction of the impulse, multiple

time dispersed signals arrive at the receiver.

NLOS

It was found out that at least eight UWB sensors per unit are necessary for the system to execute

reliable measurements. If only one UWB sensor is mounted per edge, some constellations of

neighboring modules would require the signal to pass through the container frame. The UWB

signal cannot overcome an immediate blockage to that extent, as there is no space for it to

bypass the obstacle through multipath propagation, like reflecting on the ground or walls. Hence,

two sensors per edge, each aligned to one of the two joining sides of the unit, are the minimal

equipment. With the two distance meters per edge mounted at the least obscured vertical position,

i.e. right below the container roof, the system must still deal with NLOS situations. In our

specific example that scenario arises because the conveyor belts can be mounted on different

locations on each plant unit. In some of the possible process line constellations the belts obscure

the direct communication path, no matter at which height the distance meters are mounted on the

edges. As the belt frames are mainly made of steel, they are not permeable to electromagnetic

signals, thus causing NLOS communication between the distance meters.

Multipath Propagation

There will be multipath propagation of the UWB signals, brought about by reflections on nearby

metal planes, like the container front at the back of each distance meter, the surface of the

surrounding units and the frame of the conveyor belt – aside from surrounding scrap containers

or vehicles, etc.

Potentially Interfering Signals

As the usual operational area is outdoors, the system must cope with potential electromagnetic

interference, such as Wi-Fi, GPS and Bluetooth. Even on the unit itself there will be a module,

which communicates with the overall network via Wi-Fi.

2.2. PHYSICAL ENVIRONMENT 17

2.2.2 Geometric Setup

Each plant unit has the approximate dimensions of 6m in length and 2.5m in depth and height,

while the distance to the next one in the process line will be approximately 4m or 6m according to

the length of the feed belt in between. Orientation offsets between two modules are approximately

0°, 90°, 180° or 270° - so either in a rectangular or parallel succession in the production line.

However, the corners of the units will not be aligned necessarily, as the feed belt mounts have

different positions, depending on the specific unit. Considering the preset mounting positions

and available lengths of feed belts, ten different relative positions of two units are possible, see

figure 2.4.

The evaluation of the relative horizontal position (distance and orientation) from one unit to

Figure 2.4: Possible alignments within the process line: Horizontal length of feed belts L is 4.1m;

Mounting position offsets b and c are about 4.5m and 5.3m respectively. The green arrows on the feed

belts indicate the direction of material flow.

the other involves four sensors. All edges are equipped with two perpendicularly aligned UWB

sensors that are placed at the four top corners, just below the container roof. For a location task,

only those sensors are used that face the direction of the other unit and are therefore mounted

left and right of the connecting conveyor belt. In the case of position no. 1, the sensors ”A” and

”B”, as shown on the left side in figure 2.5, both measure the lengths to ”a” and ”b”, yielding

2.3. DEMANDS ON THE ALGORITHM 18

four lengths: two enclosing the feed belt and two crossing it. In a similar manner this applies

to all ten possible arrangements, e.g. for position no. 5, the relevant sensors would be ”C” and

”D” of “Unit 1” and ”c” and ”d” of “Unit 2” on the right side of figure 2.5. While the minimum

Figure 2.5: Constellation between two units no. 1 and 5. Names and positions of the UWB sensors on

two succeeding units. On each corner two sensors are mounted perpendicular on the top of the edge.

offset between the units’ facing sides always consists of the horizontal length of the feeding belt

minus a constant overhang, the measured distance can reach up to 11m, e.g. the long diagonal

measurement of position no. 5, see figure 2.4.

2.3 Demands on the Algorithm

The constant output of real-time position data is the key task of the middleware. By continuously

processing the raw measurements of the sensors and applying algebraic methods on them, the

2.3. DEMANDS ON THE ALGORITHM 19

horizontal offset in x and y direction, together with the angle between the units are calculated

and updated fluently. The algebraic operations, through which the errors are determined and the

minimum found, effect the computational complexity and therefore the frequency and promptness

at which value updates are achieved, as well as on the output’s accuracy.

2.3.1 Translation of the Real World Problem

In advance, a geometrical concept for an efficient algorithm has been developed, which has

settled the necessary arrangement of the involved sensors. The amount of ranging paths has been

elaborated, that are needed for effective pre-processing, based on trilateration. The programmatic

implementation of the positioning algorithm and for that matter necessary data processing are

included in this work. Additionally, the mathematical principle originated and at the Chair of

Automation [coa.unileoben.ac.at] and poses an important tribute to this thesis. Four lengths are

to be determined between two neighboring plant units, in order to obtain the relative horizontal

position, see figure 2.6. The container fronts facing each other are equipped with two sensors,

Figure 2.6: Per positioned target unit, four lengths are used to calculate the offset and angle. The running

average is computed per each length separately.

each mounted on the very edge of the front. Both sensors on the same unit and measure the

distances to both members of the opposite pair, resulting in four measurement paths in total: two

outlining the area between the containers and two paths crossing it thus connecting the diagonal

corners. With the distances given between the sensor mounts on the containers, three measured

distances would theoretically yield the sought offset and angle. However, as four sensors are

2.3. DEMANDS ON THE ALGORITHM 20

also needed to calculate three lengths, the fourth length provides redundancy without any more

technical effort. The overdetermined system has theoretically no exact solution and therefore

results in an approximation calculation.

The following main components of the algorithm are explained within this section:

Running Average

A running average computation is the calculation of the mean value on entries of a row, list, array

or another succession of data elements, like the buffer of an interface. The number of entries stays

the same but the whole running average window moves along the entries. Various phenomena,

like multipath propagation or noise of other signals, disturb the UWB communication and as a

consequence cause scatter of the range outputs. In the case of this thesis, the running average

computation is used to smoothen that data, in order to obtain steadier position calculations.

Trilateration

Two-dimensional trilateration is the calculation of the intercepting points between two ranges

originating at known center points. Only if those center points are closer than the sum of the

range values, can there exist intercepting points. If the center points are equal to the sum of

two ranges, the solution is singular. Otherwise, there are two possible solutions for intercepting

points.

Singular Value Decomposition (SVD)

Golub and Van Loan state that the importance of the SVD is hard to overestimate, especially in

data analysis and approximation computations performed on matrices [4, pp. 76-81].

A SVD can be applied on square or rectangular matrices and follows the idea of decomposing a

matrix of n columns into n blocks of information, where each block is composed of matrices U

and V T as well as n singular values (SVs). The higher the SV of the block is, the more impact

does this block have on the solution. Consequently, the block with the highest SV represents the

best fit. In other applications, like compressions or noise reduction, the SVD is applied to cut out

one or more blocks correlating to the smallest SVs. [5, pp. 195-197]

The orientation calculation within the algorithm makes use of that correlation by extracting

from V T the orientation value with the highest significance, i.e. the orientation yielding the best

approximation in a Least Squares sense.

2.4. TECHNICAL ENVIRONMENT 21

2.4 Technical Environment

The technical environment includes the hardware and software related boundary conditions. As

this thesis focuses on a universal and therefore brand independent approach, the interfaces to the

distance meters and the superior network, will be evaluated, without going into manufacturer

specific details. By adapting the specific type of interfaces, the concept of the developed

middleware can be transferred to another technical environment.

2.4.1 IPC

To facilitate communication and maintenance, the hardware embedding the middleware is of the

same manufacturer as already installed other nodes in the plant network. The specific model of

IPC was selected for its various integrated ports and its high process power (1.2 GHz quad-core)

and memory (1 GB RAM), that define the computational velocity of the positioning calculus.

Integrated are one RS485, two USB-A and two RJ45 Ethernet ports, while the IPC supports

various industrial automation protocols, which are prepared for user friendly implementation,

including OPC-UA. The nodes in the superior network communicate over an OPC-UA network

in a Server-Client topology. By implementing the protocol within the middleware and connecting

the IPC via Ethernet to the plant network, it can participate as OPC-UA-TCP Server. [6]

One of the preconditions is the data supply from the middleware to the network over OPC-UA,

which is a machine-to-machine communication protocol. Nowadays, OPC-UA is an established

technology in industrial process control systems, to exchange real-time data. The standard allows

data exchange between automation devices from different manufacturers in a Server-Client mode.

[7, pp. 297-298]

In this specific work, the Server is the IPC, i.e. the developed middleware, while the Client is a

control device within the plant network.

By means of a predefined namespace, the Data Excess (DA) Server assigns unique addresses

to all nodes within an OPC-UA network. Each node is uniquely identified by three parameters:

first, the namespace index, which defines the URI, i.e. naming authority in charge of assigning

node IDs, second, the identifier type, i.e. the data type of the address, which is in the presented

project a string and third, the identifier itself, e.g. “Range00a”. Within an OPC-UA network, all

variables are structured in tree hierarchies. [8]

While all nodes, that contain branches are referred to as object nodes, those elements which are

the leafs at the end of a branch are the variable nodes. Additionally, to the node ID, that every

node in the tree possesses, the variable nodes consist also of a value. [7, pp. 297-298]

2.4. TECHNICAL ENVIRONMENT 22

To enhance OPC-UA communication with the Client, the Server needs to provide three parame-

ters: the namespace URI, the Server URL, which is needed by a Client to access a service, and

finally the Server name.

2.4.2 Distance Meters

In the following chapter, the properties and strengths of UWB as ranging devices and the reason

for its application in the presented location system are discussed in detail. The specific model

was decided beforehand, which offers a RS485 interface, as well as a Micro-USB connector

and uses the Time-of-Arrival (ToA) principal, where the round-trip-time between two devices is

measured.

One sensor initiates the ranging by addressing the opposite by its sensor ID. Those initiating

sensors, that also calculate the distance between themselves and the communication partner, are

called Anchors. On the other hand, the sensors, that only respond to an incoming call with their

ID are called Tags. [9]

The included RS485 interface facilitates the connection to the IPC, which also provides a RS485

port [6].

Chapter 3

UWB Technology

This chapter gives an introduction to the UWB technology, which is used to obtain the raw range

information for the developed positioning middleware.

3.1 Technological Principal

By definition, UWB signals are electromagnetic waves (EMW) with low transition power and a

-10dB bandwidth above the lesser of the two: 500 MHz or 20% of the center frequency for center

frequencies below 2.5GHz. “Ultra Wide Band” refers to the broad frequency spectrum that is

emitted at the same time in short pulses, namely Gaussian pulses with amplitude distributions in

the shape of a Gaussian curve, as well as its derivatives. [10, p. 369], [11, p. 2]

With only a few cycles of a radio frequency (RF) carrier, the baseband impulse consists of low

duty cycles, as typically produced by impulse or step-excited antennas. As a consequent, UWB

signals achieve significantly lower power spectral densities than other technologies, see figure

3.1. [12, pp. 92-93]

Their large bandwidth and low power let UWB signals appear like noise next to other wireless

technologies, thus, allowing to share the frequency spectrum [13, p. 14]. A close look will

be taken into UWB radio systems as ranging technology to lay the basis for the following

development of a positioning middleware supplied by UWB sensors. How UWB signals are

interpreted and translated into a location can be divided in to 4 major groups: Received Signal

Strength Intensity (RSSI), Angle of Arrival (AoA), Time of Arrival (ToA) and Time Difference

of Arrival (TDoA) [15, pp. 70-71].

• The method of RSSI relies on a path-loss model, which requires knowledge about the

relation between power loss and distance [15, p. 71].

23

3.1. TECHNOLOGICAL PRINCIPAL 24

Figure 3.1: UWB frequency spectrum compared to other wireless technologies [14, pp. 403-404]: UWB

sends a wide frequency band in one short pulse, but at such little power level, that it appears like noise

next to other signals.

In two dimensional applications three reference nodes are necessary for determining the

location through triangulation. While the receivers don’t require clock synchronization,

this method is highly sensitive to the characteristics of the channel. [13, p. 136], [16, p. 1]

• Another approach is the AoA technique, where only two devices provide enough location

information. Here, special antenna arrays are necessary. [12, p. 90]

By measuring and comparing the arrival time of an incoming signal at different antenna

elements, the angle of the source signal is estimated [15, p. 71]. The drawback of AoA

are major errors in NLOS situations [12, p. 90].

• The ToA concepts measure the round-trip-time (RTT) of a signal sent by a mobile device

to a stationary one – or the other way round – and back. At least three nodes must provide

their RTT, which are translated into a distance and divided by two as the roundtrip includes

both directions. Accurate clock synchronization between all devices required to meet high

precision levels. [15, p. 71]

This technique allows to resolve different multipath signals and yields high accuracies by

making use of the large bandwidth of the UWB signals [16, p. 1].

• In contrast, the TDoA method only requires clock synchronization between the base nodes,

i.e. the communicating devices with known location. The mobile device measures the

arrival time differences of at least three base stations thus determining its own location.

[16, p. 2]

3.2. LEGAL REGULATION 25

Instead of using only one of the above-mentioned signal parameters, hybrids of two, such as

ToA/AoA, TDoA/AoA or ToA/RSSI, are used to obtain more accurate position information,

depending on feasible processing durations, complexity constraints and the like [15, p. 71].

In general, navigation strategies are divided into either Anchor-based localization or self-

localization, depending on whichever part runs the calculation. In an Anchor-based localization,

the sensor on the object with unknown position only sends signals, that are received by devices

with known position, named Anchors. Depending on the above explained signal parameters, two

to three Anchors combine their measurements and calculate, e.g. by triangulation, the position

of the object to be located. By contrast, self-localization allows the sensor on the mobile object

to receive signals from the Anchors and to calculate its position itself. [15, p. 70]

Anchor- based localization is used e.g. in tracking industrial goods, while a car’s navigation

system is an example of a self-locating application.

3.2 Legal Regulation

Since more than 160 countries recognize the definitions of the organization IEEE, their regula-

tions will be referenced in this thesis [17].

The IEEE 802.15.3a standard specifies short range high speed data communication from

100Mbit/s to 500Mbit/s, thus including UWB communication systems. In the meantime, the

IEEE 802.15.4 standard specifies low-speed low-power signals used for accurate positioning.

[18, p. 1162]

The second standard includes the definitions of the MAC layer and the physical layer of Wireless

Personal Area Networks with low data rates, low power and wide ranges based on short impulses

of UWB signals. The international frequency band specified in IEEE 802.15.4 can be used

without license. [13, pp. 169-170]

In any case, the national radiation rules must be respected, which dictate an instantaneous large

bandwidth emission. Sweeping narrowband signals one after the other over a large bandwidth is

in general not allowed. For both licensed and unlicensed UWB systems, the allowed frequency

bands are limited, as well as the allowed spectral power level density related to each band.

However, the radiation rules depend on the specific applications and vary considerably around

the world. [10, p. 370]

For indoor applications, the Federal Communications Commission (FCC) in the US allows

UWB systems with a maximum emission level of -41,3 dBm/MHz and an instantaneous -10dB

bandwidth above 500 MHz or 20% of a maximum 2.5GHz frequency [11, p. 2]. But in fact, the

3.3. FEATURES AND CHARACTERISTICS 26

regulations vary depending on the country or region and include different maximum emission

levels, according to the different instantaneous bandwidths and the specific application [19,

p. 11]. For most applications in the US, a spectral band from 3.1GHz to 10.6GHz is available

for UWB systems, whereas in Europe those are limited for bands from 3.1GHz to 4.8GHz and

6.0GHz to 9.0GHz [19, pp. 13-16 23].

European LT1 systems are defined as unlicensed UWB systems operating between 6GHz and

9GHz and are intended for the general location tracking of people and objects. For LT2 systems, a

frequency band from 3.1GHz to 4.8GHz is available designed for person and object tracking and

industrial applications in well-defined buildings. LAES systems operate on the same frequency

band but are defined as means for tracking fire fighters or other service staff during a mission.

[19, pp. 23 25-26]

3.3 Features and Characteristics

UWB radio sensors are seen as a promising solution for wireless location and communication

networks in the industrial and logistic sector, mainly due to their unique spectral exploitation of

signal frequencies and their low signal power. Compared to other location and communication

systems, UWB is a low-cost, energy-efficient and simple solution providing high ranging

accuracies. [20, p. 51]

The technology enhances spectrum sharing with other licensed systems [12, p. 92]. Signal

transfer in NLOS scenarios is possible, in contrast to optical ranging techniques [21, p. 179].

And depending on the specific application, the operating range can reach 10m to 50m [22, p. 9].

Even high data rates can be achieved. However, with the result of less ranging distance, as the

signal power is limited [20, p. 52]. The ranging relevant properties will be discussed in detail:

3.3.1 Spectral Density

As the limited power is divided by a large spectrum of frequencies, the UWB technology is

characterized by low spectral density values. Thus, UWB signals merely appear as noise for

receivers that use other licensed communication or ranging systems and therefore cause no

significant disturbance for those standards, even if used in the same area. [23, pp. 5-6]

Considering the fact that UWB has already found its way into smart phones which in most cases

use Wireless Local Area Network (WLAN), Bluetooth or GPS simultaneously and that modern

industry has no less constant need for various means of communication and sensing systems

based on EMWs, the feature of seamless coexistence of UWB along with the other technologies

3.3. FEATURES AND CHARACTERISTICS 27

is required in many applications. Nevertheless, there are also complaints about the noise level

that may disturb other narrowband technologies. But the general response to that opinion is, that

the low power and therefore relatively low range of UWB signals, is if anything a very local

issue. [23, pp. 5-6]

3.3.2 Data Rate

The IEEE 802.15.4a standard for low-rate Personal Area Network (PAN) defines data-rates for

UWB usage of 50Mbit/s to 100Mbit/s [24, p. 5], while the IEEE 802.15.3a standard for high-rate

PAN defines data-rates for UWB applications up to 500Mbit/s [18, p. 1162]. In comparison,

Bluetooth reaches 1Mbit/s, while Wi-Fi, the commercial name for the IEEE 802.11 standard,

reaches 54Mbit/s [24, p. 5].

3.3.3 Accuracy

In general, the achievable accuracy depends on the frequency response and pulse width of a

signal. In the case of UWB, the response frequency ranges from 10MHz to 40MHz, while one

pulse width can even go below one nanosecond resulting in a theoretical accuracy of centimeter

level. [18, p. 1163]

In the work of Giretti et al., the accuracy of an impulse signal is calculated as the square root

of the distance variance. Its lowest reachable value can be reduced by increasing two factors:

the signal-to-noise-ratio (SNR) and the spectral bandwidth. As UWB uses only low spectral

densities, it is not the SNR, but the extremely large bandwidth which is accountable for its

accurate performance, in comparison to alternative ranging systems. [12, pp. 92-93]

3.3.4 NLOS Behavior

At this point, a closer look into LOS and NLOS behavior will be taken. The most accurate

results are achieved in case of LOS and no multipath propagation, as the only arriving signal

travels directly from transmitter to receiver without detours. In scenarios of LOS and multipath

propagation, the short UWB impulse below a nanosecond is beneficial as it allows the resolution

of individual multipath components. Because of the short pulse duration, a UWB system can -

with the according firmware - isolate the first arriving signal from the later arriving reflections.

Therefore, in multipath scenarios, UWB performs better than other technologies. [11, p. 2]

In the event of NLOS, but multipath propagation, the UWB signal reaches the receiver with a

certain delay due to the longer path than direct LOS. However, the UWB communication doesn’t

3.4. RECENT DEVELOPMENTS 28

collapse and depending on the obstacle between the sensors, an approximation can be obtained.

[3, p. 45]

In comparison, optical sensors would get no signal at all.

If there is NLOS and there are no reflecting surfaces next to the direct path, an electromagnetic

signal can be detected on the other side, if the wavelength is similar to or greater than the

obstacle’s dimension in the direction of propagation. This phenomenon of “bending” around the

object is called diffraction. [25]

An object can also be penetrated by an EMW by being magnetically permeable to it. The

permeability depends on the material of the obstacle and on the signal’s wavelength. Common

glass e.g. is permeable to radio waves and most components of light but not to its ultraviolet

component. However, that characteristic is relevant for sonar applications. [21, pp. 213-214

235]

3.4 Recent Developments

The pioneering contributions to the development of impulsive UWB technology date back to

the early 1960s when the sampling oscilloscope was introduced. In the 1970s, Harmuth papers

and books made the basics for UWB transmitters and receivers public, while Ross and Robbins

defined UWB signals for different applications, which are communication, radar and sensing.

The first ground penetrating radar was invented in the US military from the 1960s to the 1990s.

Recognized in 1998 by the Federal Communication Commissions (FCC), the UWB technology

was initially regulated. [13, pp. 6 11]

The implicational range has grown significantly in the past decades. Some recent achievements

and developments are mentioned below to justify the motivation of using UWB technology in

the presented positioning system. In the previous chapter, the preconditions and tasks of the that

system are given. Those conditions in mind, the following recent developments w.r.t. the ranging

accuracy, the detection of NLOS situations and the handling of multiple users within the same

channel encourage the use of UWB.

3.4.1 Channel Sharing

Because of channel specific ranging behavior, all UWB sensors, that are part of the presented

positioning system, communicate on the same channel. The Impulse Radio UWB (IR-UWB),

which is used in this work, has the benefit of short pulse duration (below 1ns) and high pulse

repetition periods, which in contrast to narrowband technologies allows multiple access by using

3.4. RECENT DEVELOPMENTS 29

time hopping codes. Still, impulse interference cause communication problems. In 2013 Perez

Guirao proposed impulsive interference management that is independent of the physical layer

and modulation scheme and enables concurrent transmission in full power. Each signal source

can adapt the pulse rate independently in order to reduce the impact of pulse collision at nearby

receivers. [20, pp. 51-52]

Furthermore, the frequency exploitation has been improved in terms of data rates and energy

efficiency. Until then, Orthogonal Frequency-Division Multiplexing (OFDM) based overlay

systems depended on a primary user to systematically allocate unused frequencies to secondary

users. In the work of Moorfeld et al., a Multiband Impulse Radio (MIR) transmitter using

multiple bands and a receiver, which detects only the energy of the signals, are presented. [26,

p. 45]

Only in the last few years, higher data rates and ranges have been achieved by enhancing

multiple input - multiple output (MIMO) performance which mitigates multipath fading and

co-channel interference. MIMO is achieved by configuring radiators orthogonally to suppress

mutual coupling, by polarizing the two antenna elements differently by applying special isolation

geometries or placing the elements perpendicularly. A compact portable MIMO antenna was

designed only recently and covers the whole allowed bandwidth from 3.1 – 10.6GHz, which

is higher than most of the former accomplishments. The radiation pattern of the antenna is

quasi omni-directional and a T-shaped slot less than -15dB separates the elements to reduce

coupling. [27, p. 224]

El-Hadidi et al. presented a multiple input – multiple output (MIMO) antenna synthetization

that facilitates simultaneous communication between multiple transmitters and receivers without

interference [28, p. 150].

3.4.2 NLOS Performance

Jimenez and Seco have defined NLOS as an open research topic and the biggest challenge for

accurate positioning [11, p. 1]. Also, in this work the NLOS issues pose a major challenge, as

the connecting conveyor belts obscure the LOS in some constellations. Nevertheless, important

improvements concerning NLOS ranging were accomplished.

As multipath propagation caused insufficient precision, e.g. in closed environments, Kolakowski

and Djaja-Josko introduced in 2016 data fusion techniques, i.e. data aggregation from different

devices. In this case, the mobile sensors obtained their relative position by ranging to the

stationary ones and additionally by exchanging information among themselves. Cooperative

positioning using TDoA and Two-way-ranging (TWR), apart from communicating with the

stations alone yield higher accuracy. [29, pp. 1 4]

3.5. UWB RANGING APPLICATIONS 30

Referring to the above-mentioned issues, some of the reviewed publications focus on the detection

of a NLOS case. In the past, NLOS identifications were either derived from non-parametric

methods or mean-excess delay calculations. In recent years, however, a classification via machine

learning, namely the Least-Squares Support Vector Machine (SVM) was introduced. If the SVM

operates with quadratic and polynomial kernels and the training set size is increased, LOS and

NLOS scenarios are close to 100% separable. [30, p. 1]

3.4.3 Clock Synchronizations

Others devoted their work to clock synchronization schemes with higher long-term accuracy than

the originally used simplified linear clock models. Clock synchronization has great influence in

the ranging accuracy in ToA and TDoA calculations. The chosen sensor type in the presented

positioning system operates on the ToA principle as well. By introducing a quadratic clock

model, Xie et al. improved long-term precision, while maintaining the short-term precision. [31,

p. 3894]

3.5 UWB Ranging Applications

Because of the above attributes, the technology plays an important role in concepts for indoor

navigation and surveillance [21, p. 179], as well as the tracking of personnel, goods, tools or

machinery [20, p. 51].

Dynamic position tracking was primarily based on GPS, RFID and optical systems. However,

GPS is only usable outdoors, RFID signals provide low accuracy not under 1 meter and optical

sensors need LOS. Other systems like Wi-Fi and Bluetooth have an extremely high-power

consumption compared to UWB. [32, p. 1]

UWB technology is therefore a promising alternative within complicated and multipath rich

environments, e.g. in industrial and logistics fields or indoor navigation. Even when operating

without LOS, the ability to resolve multipath components allows the system to track personnel

and objects, where many other technologies fail. [21, p. 179]

Giretti et al. proposed a management service for highly automated construction facilities which

permits to dynamically track the position of workers and materials. There, the mobile low-power

UWB device stuck to the goods can be scanned either by personnel or automatically by barriers

on the site. [12, p. 109]

Another application example is the iPhone11, which includes a UWB sensor for indoor navigation

and the detection of surrounding objects [33, p. 43].

3.6. CRITICAL ASSESSMENT 31

3.6 Critical Assessment

3.6.1 Chances

Today, the scientific interest in UWB is positively booming. The car industry, which finds itself

at the beginning of the era of autonomous driving, is already studying different methods for

the employment of UWB: Ponte Müller compares already existing concepts for collision avoid-

ance systems in cars based on UWB [1]. The achievements discussed include decimeter-level

ranging precision up to 300m distance between two cars by TWR at 6.35GHz [34, pp. 11-12],

while others used 2.4GHz and 5.9GHz radios for TDoA measurements with up to 90m LOS

errors below 0.7m depending on the vehicles’ velocity [35, pp. 1-7]. There are many more

approaches including round trip delay (RTD), AoA and ToA methods, yielding accuracies within

decimeter-level at LOS and multipath-rich environments. According to Kristensen et al., in the

future, there might be self-driving cars in underground parking lots or autonomous robots in a

warehouse applying UWB systems [30, p. 1]. As mentioned before, the NLOS issue is a very

topical one and if mastered, could open many more doors in the field of UWB navigation. In the

past year, Jimenez created NLOS metrics by modelling LOS and NLOS conditions with the goal

of achieving NLOS mitigation techniques, which could lead to significant improvements in the

future [11, p. 1].

But not only is UWB suitable for location tasks, but also for medical applications or even

food quality control, as the low signal power strength of UWB is suited for harmless tissue

examination. EMWs interact with substances other than air depending on the polarity of their

molecules or ions. [36, p. 257], [37, p. 323]

Signals of different wavelengths react differently when hitting a certain material, i.e. the wave-

length determines the distribution between reflected, refracted and attenuated components of

that signal. It is therefore common practice to extract information of an unknown item or texture

by pointing an electromagnetic beam with known frequency at the specimen. By measuring

and analyzing the density of reflected, refracted or attenuated signal components, characteristics

of the examined object can be derived. As the distribution of the three components correlate

with the specimen’s texture and the wavelength of the incoming signal, even more information

can be extracted when studying the reaction of more than one frequency of EMWs. Hence,

the advantage of UWB signals lies in the simulations testing of a probe by EMWs of various

wavelengths. [10, pp. 369-370]

UWB radio waves of different frequencies can travel through different materials depending,

3.6. CRITICAL ASSESSMENT 32

among other things, on the material’s water content. It is possible to extract information on

biological objects in a non-destructive, fast and continuous way, which is beneficial in medical

applications, but also in the food industry for carrying out on-line quality control and process

monitoring. [36, p. 257], [37, p. 323]

Hilger et al. introduced a powerful method to extract information about organic tissue, which

exploits the electromagnetic interaction with matter. Atomic and molecular phenomena, like

permittivity, permeability and conductivity allow remote or contact based microwave imaging of

inner organs or remote heart monitoring. With such systems diseases, like breast cancer, can be

detected. [36, p. 314]

On the other hand, Mextorf et al. proposed a food surveillance system, which makes use of the

different frequency spectra absorbed by the various organic structures [37, p. 339].

Considering the demands on the presented location system and its boundary conditions, UWB

radio outperforms concurrent technologies in terms of NLOS performance and multipath propa-

gation, as well as spectrum sharing when operating parallel with other wireless communication

systems.

3.6.2 Limits

Some physical constraints appear due to reflections, impermeabilities, absorptions and fading

phenomena. E.g. radiofrequency interference and multipath effects cause sampling frequency

offset, phase error and carrier frequency offset, which vary enormously depending on the

operational area. [10, pp. 373-374]

NLOS effects can be compensated to a certain extent, but if the object between communicating

devices is not permeable to UWB radiation and shadows too much of the space in between, the

first arriving signal will show a significant temporal offset leading to poor ranging accuracy. Of

course, there are research projects focusing on that problem, e.g. by trying to approximate the

degree of deflection by comparing the arriving signal power with the power it usually has at a

certain distance and in a certain area. There, however, lies the difficulty, as the free space model

of the received power by Friis performs poorly in complex environments evoking multipath

fading, reflections and absorption. [38, p. 149]

Due to the power restrictions of UWB, the maximum distance between communicating devices

is limited by 50m. But such high distances are only feasible at the expense of the data rate in

order to stay within the regulation boundaries of power emission.

Chapter 4

Choice of Bus Protocol

The implementation depends on four or eight UWB modules, that must communicate with

the IPC in order to exchange settings and measurement data. Consequently, a bidirectional

connection between the IPC and multiple sensors at once is required, which is robust, easy to

install and capable of real-time data rates to keep the location system responsible. Considering

the hazardous environment, the chosen standard has to withstand very large electromagnetic

disturbances as well as movement and impact. Hence, the chosen physical line needs to tolerate

noise and allow simple wiring while the protocol running on it must be able to accomplish the

demanded data rate and the given number of participants.

As the physical layer of the OSI model, a common and reliable RS485 interface has been chosen.

While the IPC is by default equipped with an RS485 serial port, there are standard UWB modules

available for communication over that line that are well known and tested in the environment.

Due to the industrial environment, an automation protocol was selected which specifies the data

link and application layer. For the above mentioned demands on the robustness, data rate and

simplicity, the choice fell on the Modbus RTU protocol which is a wide-spread industrial fieldbus

protocol operating on the RS485 physical line and enhancing a daisy chain topology. [39]

4.1 RS485 - Background

Originally, the RS485 interface was developed for high speed data transmission over large

distances for industrial use [40, p. 97].

In case of a two-wire connection, the standard transmits data in a half-duplex manner over a

twisted pair. On the other hand, a four-wire connection enables a full duplex communication,

33

4.2. PHYSICAL CONNECTION 34

where the Master transmits signals over one of the twisted pairs and the Slaves over the other.

Either way, each node has a unique address, which allows independent communication, but

only one device is able to use the line at a time, which is why the other nodes must access a

high-impedance mode. While the two-wire connection needs less cables and allows the Slaves to

communicate among themselves, the four-wire connection achieves higher data rates by allowing

multiple simultaneous messages and avoiding turn-around delays. [40, pp. 143-145]

RS485 is used in serial communication systems and needs an additional ground line. As the

data is transmitted differentially over one or two twisted pairs, the ground doesn’t serve any

communication purposes but is needed to tie the signals to one common ground in case of high

voltage difference between the nodes, which can occur at large distances. The differential data

transmission over a twisted pair offers high noise resistance, thus managing data transmissions

without loss over distances greater than one kilometer. [40, pp. 97-98]

4.2 Physical Connection

As mentioned above, the physical layer of the RS485 interface is composed of one twisted pair

for data transfer and one ground line. While the RS485 port of the Modbus RTU Master, which

in our case is the IPC, defines one end of the physical line, the last Slave defines the other end.

In between, the other Slaves are connected to the wires in daisy chain mode, as represented in

figure 4.1. The difference between the two figures are the individual power supplies for each

Slave versus a central power supply. While the first option saves wiring, the second reduces

the amount of necessary power supplies. Whichever is preferable, depends on the additional

equipment of a plant unit, i.e. whether various locations for power supplies are provided anyway.

The connection of one Slave to the main line can be achieved e.g. by using terminal blocks.

For the twisted pair of data lines, a cable diameter of 0,25mm or more is required. Per specifi-

cation, the power supplying wires should have a diameter of at least 0.75mm. Both guidelines

are specifically true for Modbus RTU over RS485 physical line and therefore applicable in the

herein developed positioning system. [41]

The serial RS485 physical line allows 32 bus participants and is not limited to a single topology.

However, daisy chain is the most common one and in this particular application advantageous,

because of its minimal wiring effort [42, p. 22].

Only the electrical specifications of differential receivers and transmitters in digital bus systems

are defined by the RS485 standard. Additionally, the ISO standard 8482 standardizes the physical

topology with a maximum length of 500m. [43, pp. 11 64]

4.3. BUS COMPARISON 35

Figure 4.1: Physical connection from IPC as Modbus RTU Master and UWB modules as Modbus RTU

Slaves. The power supply can be installed as central supply (top) or separately (bottom).

4.3 Bus Comparison

In order to save wiring, a bus system was considered a suitable option as it allows multiple

network members to communicate over a common physical transmission line [44]. Concerning

the communication protocol, two different candidates have been considered in this work: Profibus

and Modbus RTU, which represent the most popular fieldbuses in industrial automation, that

operate on the serial RS485 line [45]. Both interfaces are prepared on the IPC, that executes

the developed service [46, p. 5]. However, the implementation of a Profibus Master requires

additional hardware. Eleven aspects have been compared, rated and their importance weighed,

in order to decide upon the most fitting bus protocol for the herein documented application.

In the table 4.1, the two protocols were compared and rated according to the dominance of the

characteristics. The importance was weighed by the “Weight” factor from 0 to 5. For each of the

two candidates, the gratification of those characteristics were graded from 0 to 5. Subsequently,

the weights of all parameters were multiplied by the grade value of each candidate and the

products added up separately. Those results represent the suitability of each candidate in terms

4.4. MODBUS RTU 36

of the listed characteristics. As the two protocols were already picked as best two candidates,

due to their suitability for industrial environments [45]. The protocol with the most points

represents the better choice [47, pp. 7-8]. In this case, the Modbus RTU protocol outperforms

the Profibus protocol foremost due to its basic architecture, which enhances easy implementation

and maintenance.

4.4 Modbus RTU

Modbus RTU is a an industrial fieldbus, that was founded in 1979 by Modicon (now Schneider

Electric), to be used with their PLC systems [56, p. 311]. Nowadays, it is still a commonly used

communication standards for interconnecting metering devices at the field level [57, p. 598].

Worldwide, control systems, such as PLCs, are communicating over the fieldbus, which can

operate on various physical lines [58, p. 122]. Networks operating on Modbus are typically

used for data transmission from control instrumentation to logic controllers or data archives [56,

p. 311]. In many cases, those networks include a gateway, that communicates with a supervisory

network, e.g. over Ethernet [59, p. 1].

The specifications for Modbus RTU are publicly available in two documents: the MODBUS

Application Protocol and the MODBUS Serial Line Protocol. The first one specifies the message

structure of the application layer in a Client/Server mode, while the second one provides the

Master/Slave structure for the data link layer - both for the ASCII protocol and RTU – and acts

as a guide for RS485 and RS232 implementations. [49, pp. 4-5]

Due to its early invention, the fieldbus protocol is short in resolving corrupted messages and has

limitations to the transmission speed and the number of Slaves, as well a restriction to single

Master mode [59, p. 1].

However, for its reliability as well as practical and economic advantages, the protocol is still

widely used in industrial automation. The RTU variant of the standard enhances a higher

transmission rate than the ASCII protocol operating under the same baud rate. Additionally, its

implementation is convenient and simple in many programming languages. [57, p. 598]

4.4.1 Protocol Principal

Modbus RTU adopts a Master/ Slave communication – allowing a maximum of 247 Slaves in

one network [59, p. 2]. It is positioned at OSI layer 7 and operates on serial buses or networks,

e.g. on the serial interfaces RS232 or RS485 [60, p. 2].

4.4. MODBUS RTU 37

UWB Middleware vs. Laser Reference- Constellation no. 1 to 10
Feature Weight Profibus over RS485 Value WxV Modbus RTU over

RS485

Value WxV

Market

share

among

industrial

fieldbuses

2 26% [45] 5 10 17% [45] 3 6

License

free

5 Royalty for every

node [48]

0 0 None, even for indus-

trial use [49, p. 4]

5 25

Speed 5 1,2 kbps - 12 Mbps,

depending on dis-

tance [50]

4 20 1,2 kbps - 12 Mbps,

usually 9,6 - 19,2 kbps

[49, p. 34]

3 15

Feasable

Length

3 1200m [51] 5 15 1000m [49, p. 27] 5 15

Maximum

Node

Number

3 127 [52] 4 12 247 [49, p. 7] 5 15

Physical

Layer

5 2 wires, twisted pair,

connectors specified

[53]

5 25 2 or 4 wires, twisted

pair, connectors not

specified [49, p. 5]

5 25

Noise Im-

munity

4 Very good [53] 5 20 Good, if proper cable

determination [54]

4 16

Telegram

Construc-

tion

3 Complex message

layout [55]

2 6 Simple message lay-

out [49, p. 8]

3 9

Error Re-

port

1 Diagnostics avail-

able [53]

5 5 Exception Response

by CRC [53]

3 3

Typical

Applica-

tions

4 Factory and process

automation [53]

5 20 Control, monitoring,

smart devices [53]

5 20

Installation

Conve-

nience

5 Additional Hardware

required [6]

2 10 No additional Hard-

ware required [6]

5 25

Sum 143 174

Table 4.1: Systematic evaluation of best choice for fieldbus protocol.

4.4. MODBUS RTU 38

The latter offers better noise immunity, as the RS485 physical data line is composed of a twisted

pair spanning a voltage potential. Consequently, interfering signals cause voltage offsets of the

same value, thus not affecting the potential in between. [61, p. 214]

Modbus encodes the data in the big endian binary format, where the most significant byte is sent

and received first [60, p. 2].

Unlike the ASCII mode, the RTU sends and receives the least significant bit first in an 8-bit

binary coding system represented in hexadecimal numbers. Next to other industrial protocols,

the data presentation of Modbus RTU is simple. All participants must use the same encoding

method and the same baud rate (typically 9600 or 19200), as there is no baud rate recognition.

[49, p. 12]

Modbus supports only two data types: 1-bit-coils and registers of two bytes [60, p. 6]. Hence, only

positive Integers from 0 to 65535 are transferrable and only data without additional parameters.

4.4.2 Memory Map

The Modbus memory map (MMM) is a subset of the device’s application memory. The manu-

facturer or developer has to assign a specific section of memory arrays to Modbus usage. It is

important to note that the addresses used by Modbus are not consistent with the hardcoded RAM

or Flash Memory addresses. There is an offset between the two, depending on the hardware

address, that is defined as start address for the MMM. [60, pp. 6-7]

That memory area only is then accessible by the fieldbus, which will produce an error message,

in case a Modbus participant tries to access a memory address out of the dedicated area.

While the protocol allows a maximum of 65535 addresses [60, p. 6], the convention suggests to

use effective addresses from 00001 to 49999. The reason behind it is that usually the first digit

of the address defines the data type (coil or register) and the action (read or write) performed

on a variable. Therefore, the MMM is divided into four subsets: the addresses starting with 0

(00001 to 09999) refer to coils with read/write access rights. So does the 1-prefix refer to coils

with read access right only, the 3-prefix to registers with read access right only and the 4-prefix

to registers with read/write access right. [62, p. 330]

There are two ways of storing the data: either in overlapping (9999 occupied registers in total) or

separate blocks (19998 occupied registers and 19998 occupied coils in total), depending on the

configuration of manufacturer or developer [60, pp. 6-7]. In the overlapping version, addresses

starting with 3 or 4 while showing the same last four digits would point to the same memory

array, but provide different access rights as described previously. If coil addresses are registered

as prefix 0 or 1 and the last four digits being 0001 to 0016, they would occupy the first of the

4.4. MODBUS RTU 39

9999 two-byte space in the map and it would not be possible to assign a register to 30001 or

40001. On the other hand, a separate block configuration stores read/write variables separately

as well as coils and registers; therefore, no address blockage would occur.

Either way, neither the full range of allowed addresses nor all four data areas are usually occupied

by an application, in which case the MMM can contain less elements. By way of example, only

addresses from 40023 to 40122 could be assigned to Modbus usage, leading to an exception

response by the Slave, if the Master tries to access an unspecified address. That way, less memory

is dedicated to Modbus, leaving more resources, e.g. for other applications. Manufactures might

predefine a fixed map or allow customers to configure a map themselves, depending on the

hardware’s purpose. In the latter case, the extended registers, occupying addresses from 40001

to 105536, could be equally used if configured in all communicating devices, which requires the

use of a 6-digit address. [60, pp. 6-7], [62, p. 330]

4.4.3 Messaging

On adopting a Master/Slave communication, the controllers of the network nodes exchange

information according to a transmitted function code (FC). Initially, the Master sends a FC

together with the starting memory address and number of the registers or coils to be read or

written. The Slave responds with the repeated FC and the requested or changed data. [60, p. 4]

According to the application protocol, each message contains four fields: Modbus Slave address

(1 byte), FC (1 byte), data (1 - 252 bytes) and CRC (2 bytes) [60, p. 3]. While the address (not to

confuse with the memory addresses of the memory map) contains the Modbus Slave ID reaching

from 1 to 247 (while 0 is the broadcast address) [49, p. 7], the FC specifies the action (read or

write registers or coils) the Slave must perform when receiving the message [60, p. 4].

In response to the Master, the Slave uses the FC field as indicator for exception (0 – 127) or

flawless transaction (128 - 255). Only to the broadcast message does the Slave not reply, which

is why broadcasting is hardly used. Slaves do not initiate communication, only the Master,

which usually is a PLC or other supervisory computer. The data field is composed of 0-252

bytes, that may contain floating point values, tables, ASCII text, queues, and other kinds of data.

Together with the FC, it forms the request-reply Protocol Data Unit (PDU), while the Application

Data Unit additionally includes the preceding Slave ID and the succeeding Cyclic-Redundant

Checksum (CRC). [60, pp. 3-4]

4.5. INTERFACE PREPARATION 40

First, the CRC value is calculated at the transmission out of the address, FC and data fields. After

reception the value is calculated again, which is then compared to the initial CRC value. Without

matching values, the message will be disposed of without any notice. While in unicast mode,

the Master can detect the loss of information after a standby time and subsequently repeat the

requirement. [49, pp. 14-15]

There is no response expected in broadcast messages [49, p. 7].

4.5 Interface Preparation

4.5.1 Register Table

In order to allow data transfer over Modbus, some conditions must be configured on the mid-

dleware’s side, that acts as Modbus Master. First of all, the memory space of the RAM must

be reserved according to the previous section. As a documentation for the middleware’s design

serves the register table, in which valid register addresses are assigned to the shared variables

in logical order. Other information that vary for each register or coil are listed in the register

table as well, e.g. the unit or well considered default values of a variable. A boolean value

defines for each variable, whether that variable is stored to the EEPROM, i.e. not deleted when a

new firmware version is uploaded. Finally, there are additional access limitations, in case of a

corrupted Modbus message trying to write on a read only register.

Both, Slave and Master communicate through their MMM in accordance to the documented

register table. The Master only sends commands of reading or writing the content of a Slave’s

register or block of registers, as described in the previous chapter. If n Slaves are attached to the

RS485 physical line and all of them have the same MMM of data to share with the Master, the

Master’s MMM must occupy n-times the memory space of a Slave’s. The below register table,

see figure 4.2, which is implemented on each Slave, was developed in this work.

In the two very left columns are the category and block names of the register sections, where

Anchor refers to the UWB sensors initiating a measurement and Tag to the responding UWB

sensor [9]. Apart from the responsibility to start a measurement, the Anchor also calculates

the distance between itself and the addressed Tags. Only the Anchors need to be integrated

through Modbus, to communicate the distance values to the IPC, while the Tags are connected to

a voltage supply only.

The firmware version, consisting of minor, major and patch number, indicates differences in the

4.5. INTERFACE PREPARATION 41

sensor’s functionalities and is computed automatically by the firmware’s version control system.

As an identifier for UWB addressing serves the 8-byte long unique ID, while the anchor’s Slave

ID refers to the Modbus address. If an Anchor should become a Tag or the other way round,

the Tag mode is changed. For surveillance purposes, the Anchor’s temperature is monitored

and expressed in percentage of Kelvin due to the values restriction from 0 to 65535, which

corresponds to -273°C to 382°C with a resolution of two decimal values.

The following registers contain, on the one hand, important information for the Anchor to initiate

the measurements, i.e. the Tags unique IDs, and on the other hand, values that are obtained

through UWB communication, i.e. the ranges in mm to each Tag and the temperatures of each

Tag. All Tags, needed for the position evaluation, are addressed periodically through these IDs,

and their distances calculated and updated every one to two seconds.

In the last block – the debug registers – are a set of variables that can be accessed through

Modbus by first entering a key, that only the maintainer has access to, as those settings define

the UWB communication itself, like measurement compensation values, ranging frequency and

signal power, as well as the confirmation, whether the specific sensor was calibrated. The access

rights and storage to EEPROM parameter determine the possibility of manipulation through

Modbus and potential recovery of settings, like the Modbus Slave ID or Tag mode, in case of

power loss or firmware change.

4.5.2 Interface Configuration at the Middleware

The assignment of the names to the MMM address is done separately in the Interface Configura-

tion File (ICF). There, the MMM is linked to the process image of the IPC, by defining a constant

address offset between MMM and the RAM of the IPC. Within the ICF, also the frequency is

specified, with which this MMM will be exchanged between Master and Slaves. Furthermore,

the path of the used physical interface of the IPC and the communication baud rate are defined in

the ICF, as well as the parity bit, the number of data bits and stop bits. Baud rate and message

format are in accordance with the Slaves’ configuration.

Modbus Master configuration in ICF:

• Slave ID = 0

• Baud rate = equal to Slaves’

• Stop bit = equal to Slaves’

• Implementation of Modbus Function Codes

4.5. INTERFACE PREPARATION 42

• Memory address assigned to communicated registers

• Function Code assigned to communicated registers

• Path to RS485 interface within IPC

As argued in the previous chapter, the manufacturers of the IPC prepared the use of Modbus by

defining the layout of the ICF. In an online tool from the manufacturers, the user can choose the

data type, name, order and update rate of the Modbus variables. By command, those settings

are automatically transferred to the ICF of the IPC, if the IPC is connected to the internet. As

the online tool only allows valid settings, that are executable by the IPC, it facilitates save

Modbus implementation without the need of overriding system protecting access rights. The

manufacturers also provided a programming library, that gives access to the ICF and uses its

information to establish Modbus communication. When transferring the user’s settings from the

online tool to the ICF, a specific absolute path is used for storing the ICF on the IPC. Same path

is included in the library, so that all information in the ICF can be accessed when establishing

the connection. For other hardware, where such convenience is not offered by the manufacturer,

the ICF would need extra generation.

4.5. INTERFACE PREPARATION 43

Figure 4.2: The register table is a documentation of all the registers transmitted between IPC and every

single Slave. Next to the address of each registers in the MMM, the table contains the register’s name and

category, a short description, its unit, default value and access right as well as a boolean value indicating

EEPROM storage. The Modbus Master, i.e. the IPC, stores the quantity of registers listed in the table

times the number of Modbus Slaves.

Chapter 5

Application Development

In this chapter, the application of the middleware itself will be addressed. On the one hand, it

controls the data flow all the way from the distance meters to the OPC-UA network of the plant.

On the other hand, the program executes the most important data processing step for a location

system, namely the positioning algorithm, which continuously translates the four raw distance

values into the offset and orientation between two connected units.

5.1 Hardware Setup

The application in the developed middleware runs on the IPC, that will later be mounted on each

unit. During the software development, the IPC is connected to the programmer’s computer

through Ethernet or Wi-Fi, while the four UWB sensors are mounted on the outer points of two

tripods, see figure 5.1. Each tripod represented the container front of a plant unit and the sensors

that are mounted on them operate as Anchor pair ”A-B” or as Tag pair ”a-b” during a test runs.

Between two paired devices is a distance of 1m, while the position of the tripods relative to

each other is variable. Before connecting all four devices to the power supply, each device was

commissioned either as Anchor or as Tag. According to the final application, the UWB devices

acting as Anchors have a Slave ID assigned to them and are connected through Modbus to the

RS485 port of the IPC, whereby the Modbus Slave functionality is already implemented in the

firmware of the sensors.

After explaining the basic elements of Object Oriented Programming (OOP), the design of

the application will be looked into. First, the data flow management is realized, followed by

the establishment of the Modbus communication to the UWB sensors on the middleware’s end.

Then, the computational part is implemented and finally, the OPC-UA interface for network

44

5.2. OBJECT ORIENTED PROGRAMMING 45

Figure 5.1: Development test setup: During the software development, two tripods imitated the fronts of

two connected plant units. An Anchor pair ”A-B” and a Tag pair ”a-b” respectively are mounted on the

two tripods to test the application. Through a Modbus RTU connection the measured data was ingested

into the Middleware and processed in the application.

integration is set up.

5.2 Object Oriented Programming

Even though Python is used as programming language in this implementation, the following

descriptions are kept general and include synonyms of other languages in brackets. Compared

to Structured Programming (SP) where the data is processed in a series of instructions that can

be combined into functions when the program grows larger, OOP combines the data, as well as

the functions applied on that data within an object. The data (attribute) of an object can only be

accessed, through calling a function (method) of the same object. [63, pp. 16-17]

All structures, that play an important role within the developed middleware are specified in this

chapter, such as Classes, Objects, Inheritance, Queues, Dictionaries and Threads.

5.2. OBJECT ORIENTED PROGRAMMING 46

5.2.1 Objects and Classes

The motivation behind OOP is the representation of objects in the real world, e.g. electrical

components, machines or employees, as objects in the programming sense.

Before there is an object, there must be a class, which is in fact a data type and serves as model

for the instantiated object. A class contains the type of attributes and therefore determines what

kind of data belongs to an object of that class. In the case of a class “Employee”, that could be

“Holidays Left” or “Overtime Hours”. A class also defines the methods, i.e. functions processing

those attributes, that in the above example could be “If Overtime Hours reaches 8, then increase

Holidays Left by 1 and set Overtime Hours to 0”. [63, p. 18]

An instance, i.e. a derived object, of the Class “Employee” could be “John Doe” with the current

state of having 17 “Holidays Left” and 3 “Overtime Hours”. During instantiation, an object may

need input parameters, which in the above example could be the name and date of employment

for a new “Employee” instance. Those input parameters are provided from outside only once,

when the object is created. [63, p. 19]

While a class only defines an object type and its attributes without specific values or only start

values (“Holidays Left” = 25 and “Overtime Hours” = 0 at the beginning of employment),

a specific object has a specific state, like shown before at the instance “John Doe” of Class

“Employee”. Hence, the instance of a class adds values to the attributes and enables the execution

of methods. [63, p. 18]

Usually, a class is shematically illustrated by a rectangle with the class name at the very top and

below a list of the attributes and the methods of the class, see figure 5.2 [64, p. 12].

On executing the initializing method (usually “init()” or similar), all attributes belonging to

Figure 5.2: Class of the configuration object containing all attributes and methods in the below sections of

the box.

the object are defined and values allocated to them. The initialization is executed without being

called once the object is instantiated. Afterwards, the main part of an object is executed, which

contains methods, that can be called from outside by referring to the object. [63, p. 19]

5.2. OBJECT ORIENTED PROGRAMMING 47

5.2.2 Inheritance

If there are classes that share most of the attributes and methods with other classes, but also

have their own, one could create a class, that inherits all attributes and methods from an already

existing one, and only add the rest. To stay at our example there could be a class “Weekend

Worker” inheriting from “Employee” with an additional attribute “Overtime Hours on Weekends”

and method “If Overtime Hours on Weekends reaches 4, then increase Holidays Left by 1 and

set Overtime Hours on Weekends to 0”, in the case of double salary at weekends. Depending on

the programming language, the child class contains a reference to the parent class. [63, p. 23]

Within a class diagram the inheritance is symbolized with an arrow pointing from the inheriting

class to the parent class, see figure 5.3 [64, p. 12].

5.2.3 Thread

Multiple threads allow an application to run various activities in a parallel manner, where

every thread follows its own line of execution. E.g. if there is one thread, that is responsible

for communicating data through an interface to another device, it maintains the connection

throughout the process. If it awaits a response from its communication partner, another thread

may perform some computations without needing the first thread to first close the connection.

As multiple threads share a global memory, data can be easily exchanged between them. If

the calculating thread from the above example has to wait for new input data to process, the

communicating thread can send a few messages. So they are not really operating at the same

time, but use the resources more efficiently [65].

In which way a thread object is created depends on the program language. However, an activity

needs to be specified, e.g. by providing a method as input, when the thread object is instantiated

or by adding same method to an instance of a class with thread inheritance [66]. Once, the

“start()” method of a thread object (including objects with thread inheritance) is called, the

allocated method is executed in a separate thread of control.

5.2.4 Lock Object

Depending on the programming environment and language, the thread class may contain an

object, that allows to force the processor to stay at that thread for a critical section of code. In

that way, a series of processing steps are executed by the processor without interruptions from

other threads. [67, p. 1]

5.2. OBJECT ORIENTED PROGRAMMING 48

F
ig

u
re

5
.3

:
C

la
ss

o
f

th
e

M
o

d
bu

s
T

h
re

ad
co

n
ta

in
in

g
al

l
at

tr
ib

u
te

s
an

d
m

et
h

o
d

s:
th

e
q

u
eu

es
an

d
ar

ra
y

s
o

f
th

e
ra

n
g

es
to

in
g

es
t

an
d

p
ro

ce
ss

th
em

,
“R

an
g

eA
i”

m
ea

su
re

d
b

y
A

n
ch

o
r

“A
”

an
d

“R
an

g
eB

i”
m

ea
su

re
d

b
y

A
n

ch
o

r
“B

”.
S

am
e

ap
p

li
es

to
th

e
te

m
p

er
at

u
re

m
ea

su
re

m
en

ts
an

d
al

l
A

n
ch

o
r

sp
ec

ifi
c

va
lu

es
.

A
ls

o

th
e

“M
o

d
b
u

sM
as

te
r”

an
d

th
e

ar
ra

y
o

f
th

e
T

ag
ID

s
w

h
ic

h
ar

e
tr

an
sm

it
te

d
to

th
e

A
n

ch
o

rs
ar

e
am

o
n

g
th

e
at

tr
ib

u
te

s.
T

h
e

in
h

er
it

an
ce

to
th

e
T

h
re

ad
C

la
ss

is

d
is

p
la

y
ed

as
ar

ro
w

fr
o

m
ch

il
d

to
p

ar
en

t.

5.3. IMPLEMENTATION OF THE THREADS 49

5.2.5 Queue

Attributes are either simple data types like booleans (0 or 1), integers (integer numbers) or strings

(ASCII text, also called chars) or more complex elements like queues. The last one is a data

storage device, that is filled and emptied - one element after the other and is equipped with a

“put()” and “get()” method. [68]

Like a queue of customers, the queue structure operates on the first-in-first-out (FIFO) principal.

It automatically locks the process before executing one of the two mentioned methods and

releases the process after the element has been added or removed. In that manner the memory is

save from data corruption, even if two threads access one queue. [69]

5.2.6 List

Lists have a static order and its elements are addressed by their index. Items of different data

types can be stored in the same list and a new item would be stored at the end of the list. [70]

5.2.7 Dictionary

Another storage device is the dictionary (also called Associative Arrays or Hashes), that consist

of key-value pairs. While the key, which is used as reference to obtain the value, much like the

index of an array, the value can be a simple data type or a more complex object. The items in a

dictionary are not ordered and the same key cannot be assigned twice. [71]

5.2.8 Logging

Additionally, a logger object is generated and written to by every thread in the application, in

order to keep track of data outputs, which eventually helps to analyze the cause of problems.

Filters might be applied, that let only critical errors or also warnings or even normal output data

pass, depending on the filtering level. Every logger object contains formatters, that define the

output structure of the log entries. [72]

5.3 Implementation of the Threads

The developed application is set up in three threads, the Modbus Thread (MT), which is in charge

of the data transfer to and from the UWB devices over Modbus RTU, the OPC-UA Thread

5.4. DATA EXCHANGE BETWEEN THREADS 50

(OT), that handles the data transfer to and from the overall network through OPC-UA, while

the Algorithm Thread (AT) processes the data and continuously calculates the relative positions

and orientations from the raw distance measurements. The most important code sections of the

implementation are presented in Appendix B.

Within the main program, which is referred to as ”manager” in this thesis, the three threads are

initiated along with the configuration object (“config”), the queue of ranges (“qMod”) and the

logger object (“logger”), see figure 5.4. While, “config” manages the storage of global data,

which is available in all threads, “qMod” is used to pass the raw measurements from the MT to

the AT.

Figure 5.4: Class of the manager containing all attributes and methods. While the method “start(self)”

is called only once to start the three threads, that contain the repeating loops, “ init (self)” initializes

the global variables “qMod”, which ingests the range data from the UWB sensors, “logger” which

continuously reports the applications state, and “config”, which stores all variables shared between the

threads.

5.4 Data Exchange between Threads

5.4.1 Global Configuration

The first attribute of “config” is a dictionary, that contains all variables that are of global

interest, the second one is a lock object, see figure 5.2. As global configuration storage, “config”

facilitates value transfer by its two methods: ”set values()” and ”get values()”. When called,

both methods receive as input a key, which addresses a key-value pair of “config”’s dictionary.

While ”get values()” returns the value from the according pair, ”set value()” changes that value

and therefore needs an additional input. Once any method is called by any of the three threads,

“config” is locked, in order to prevent simultaneous memory access by another thread during

data transfer, which could result in corrupted data, see figure 5.5.

5.4. DATA EXCHANGE BETWEEN THREADS 51

Figure 5.5: Flowchart - ”config”: Whole class. Once the “config” object is initialized, it is waiting for an

extern read or write request. If such request occurs, the processor is locked to it until the task is finished.

Parameter File

During the initialization routine of the middleware, the central parameter file “params” is used

to automatically generate a data base containing the variable names, together with their default

values, dimension and access rights. According to the variable tree within, the data base is

structured in sets and sub-sets to allow efficient storage and processing during the whole service

routine. The file is accessible by all threads and displays the names of all global variables and

their parent nodes in a tree structure, see figure 5.6.

It was prepared in the course of the software development, in order to automatically create a

central database. The parameter file is written in the Yaml format, which allows the generation

of a tree structure, that is interpretable by any programming language, but also conveniently

readable by humans, see figure 5.6 [73]. Another format like Xml or Json would also serve

the purpose [73]. The “params” file shows the superior sets (“CenterModul”, “TargetModul”)

containing the second-level sets (“InputAlgorithm”, “SlaveA” to “SlaveD” and “Modul00”

to “Modul11”) and sub-sets (“Input”, “Output” or “Input”, “OutputRaw” and “OutputCalc”

respectively) at the first sub-set layer.

5.4. DATA EXCHANGE BETWEEN THREADS 52

Figure 5.6: The parameter file is written in the Yaml format to be interpretable by machines and humans

likewise. It contains a tree of all variables, that need to be exchanged between two threads or between the

middleware and its peripherals. Only one of the four “Slave” branches and one of the twelve “Modul”

branches are expanded. The rest are structured analogously.

5.4. DATA EXCHANGE BETWEEN THREADS 53

While the “CenterModul” refers to the plant unit with the UWB Anchors ”A” and ”B”, the

“TargetModul” is the unit with the Tags ”a” and ”b” attached. As there are a maximum of 12

targetted Tag pairs foreseen, they range from ”Modul00” to ”Modul11”. The ”InputAlgorithm”

branch contains all algorithm specific variables, like the mounting distance between the Anchors

and the running average windows. ”SlaveA” to ”SlaveD” refer to the maximum number of four

UWB Anchors connected to the Modbus line. All Slave specific variables are communicated over

the Modbus Interface and have therefore been discussed in the previous chapter along with the

register table, see figure 4.2. Under the ”Modul” branches are also algorithm specific variables

like ”Width” and the three algorithm outputs defining the relative positions ”dX”, ”dY” and the

relative orientation ”Phi” per targeted Tag pair attached to one ”Modul”, i.e. one plant unit. The

rest of the variables belonging to each ”Modul” branch are also transmitted over the Modbus

RTU line and have already been addressed.

At the end points of this variable tree, are the variable names and an array. That array contains

three entries, that define the dimension, the access right and the default value of the variable:

While the first entry defines the length of an array, “1” referring to a scalar, the second value

is equal to “0” for only readable or “1” for read/write access and the last entry sets the default

value between 0 and 65535.

Dictionary Preparation

During the initialization routine of “config”, the dictionary is prepared by iterating through

“params”, see figure 5.7. During each iteration, the dictionary is populated with a key that equals

the name of the variable, i.e. the tree leaf. The value in the key-value pair has the dimension and

default value of the according array entries. Within “config”, the access right value stays unused,

which is not the case for the dictionary preparation in the MT and the OT, that sort the variables

by access right.

5.4.2 Queue of Ranges

Thanks to the FIFO principle, queue objects have the benefit of simplifying running average

computations, which is beneficial for scattered data. For another thing, especially in the case

of data exchange between two threads, a queue is very convenient as it automatically locks the

process during memory manipulation. Hence, no additional thread locking is necessary when

filled or emptied.

As the MT continuously ingests the range outputs from the UWB sensors attached to the Modbus

line, the middleware stores the incoming data in “qMod”. With its flexible length, “qMod” acts

5.5. MODBUS THREAD 54

as buffer until the first element is emptied by the AT. As the algorithm continuously computes

the average of the scattered measurements, a queue is the preferable candidate for supplying

the AT with range values. All other variables are communicated through dictionaries, including

the algorithm output and the Modbus variables but the ranges. While the AT processes the data

from “qMod”, the OT supplies the plant network with the raw distance measurements through

the range arrays in “config”.

5.5 Modbus Thread

The MT is an instance of the Modbus driver class that inherited from the thread class, ergo the

MT object has all functionalities of a thread object, as well as its own additional features, see

figure 5.3.

5.5.1 MT - Initialization

During the initialization phase all thread specific - and Modbus interface specific attributes are

initiated. The core of the Modbus interface related attributes is the “modbusMaster”, that estab-

lishes - during initialization - the connection to the Modbus network. During its initialization the

“modbusMaster” attribute accesses the ICF outside the main program through the manufacturer’s

Modbus library. As described in the previous chapter the ICF contains all necessary information

to let the IPC participate as Modbus Master, see figure 5.8.

Among the Modbus specific attributes are also the input parameters for instantiating the Modbus

driver object. When creating the object, the manager provides it with “qMod”, “config” and

“logger”. Only when initialized by the manager, i.e. external to any thread, can an object or

attribute be shared by two or more threads. While “config” and “logger” are shared by all threads,

“qMod” is accessed by the MT and the AT only.

At this point, the storage devices for all Modbus variables are initiated, such as the range arrays

measured by UWB sensor “A” and “B”: “RangeAi” and “RangeBi”. In the current version of

the middleware, one Anchor pair per unit is active at a time, leading to two Modbus Slaves in

conversation with the IPC as Modbus Master. While the above terminology is used, when Slaves

“A” and “B” are the participants of the ranging Anchor pair, they could be replaced by “C” and

“D”. Each letter refers to a different Modbus Slave ID. 1

The suffix “i” refers to the plurality of ranging partners of the Modbus Slaves “A” and “B”. In

1The meaning of the expression “A and B” or pair “A-B” refers to the statement “A and “B” or “C” and “D” or

pair “A-B” or “C-D” for better reading.

5.5. MODBUS THREAD 55

the arrangement shown in figure 5.9, the Anchor pair “C-D” from “Unit 4” measures the ranges

to “c-d” of “Unit 1”, while the Anchors “C” and “D” of “Unit 1” range to the Tag pairs “a-b” of

“Unit 2” and of “Unit 3” simultaneously. Consequently, Anchors “C” and “D” of “Unit 1” have

two ranging partners. On the other hand, the Anchor pair “C-D” of “Unit 2” has two Tag pairs

as ranging partners, which will lead to two independent position calculations, as later shown

in the section AT. The maximum number of Tag pairs per Anchor pair is twelve. Hence, all

attributes ending on “i” are one-dimensional arrays of length 24. While the rest of the Modbus

variables is provided to the other threads by updating the entries of the “config” dictionary, the

arrays “RangeAi” and “RangeBi” are updated within “config” and put into “qMod” every time

the Modbus registers are refreshed.

Analogously, the temperatures measured by the partner Tags of Slave A and B are stored in the

arrays “TempAi” and “TempBi”. So along with the information that is needed to calculate the

distance, the Tags’ UWB signal include their own temperature measurement. As each Anchor of

the Anchor pair ranges to the same set of Tags, the two temperature arrays should be identical.

However, the evaluation of both offers means of surveilling the communication. If different, the

arrays indicate a malfunctioning of the UWB or Modbus communication, e.g. a mismatch of

UWB addresses or Modbus Slave IDs.

While the range and temperature arrays are filled by the UWB sensors with incoming data, the

array of Tag IDs “TagIdi” transfers the UWB device IDs of ranging partners to both devices of

the Anchor pair. Through the later documented OT, new Tag IDs can be imposed from the plant

network to the middleware, that are further communicated over “config” to the MT, where they

are sent to the according Slaves over the Modbus network.

Just like the dictionary preparation within the “config” object, two dictionaries are created

within the MT, see figure 5.10. On the one hand, “modb dict readOnly” provides storage for

register values that are sought from the Modbus network, such as the firmware version, Modbus

address and temperature of each Slave, as well as “RangeAi” and “TempAi”. On the other hand,

“modb dict writable” saves the data that is imposed by the Modbus Master on the Slaves, like

“TagIdi”, see figure 4.2.

Unlike ranges, temperatures and Tag IDs that are arranged in arrays before being stored in

“config” or transmitted over Modbus, the rest of the Modbus variables are stored directly in

“config” or are fed directly to the Modbus network. Therefore, no extra attributes outside the

dictionaries need preparation during initialization. Finally, the lock object is initialized that is

later used to assure save data storage in the MT.

5.6. ALGORITHM THREAD 56

5.5.2 MT - Loop

Within the main part, in our case called ”run()” method, see figure 5.8, of the MT runs a

loop that executes the method ”cyclefunction()”, which is divided into two major methods:

”updateRegisters()” and ”publishData()”.

The first action within the ”cyclefunction()” method is the locking of the thread, followed by

”updateRegisters()” method, see figure 5.11, where first the Modbus register names are related to

the key-value pairs of the Modbus dictionary. That step is only necessary for variables that are

stored as arrays throughout all dictionaries of the main program, because the Modbus library only

allows a single register per attribute. Then, all Modbus inputs are stored in “modb dict readOnly”

and “config”, while the outputs are extracted from “config” and written to “modb dict writable”

and further to the related Modbus registers. This is done by iterating through the keys of the

according dictionary. Hence, the data exchange between Modbus network and “config” is

accomplished.

After making sure that the positioning system is in use by counting the number of given Tag IDs,

“RangeAi” and “RangeBi” are put into “qMod”, while all Modbus outputs are written to the log

file by handing them to “logger”. Afterwards the MT is unlocked and then pauses for one second

before executing the loop again.

5.6 Algorithm Thread

Same as the MT, the classes of the AT and the OT, too, inherited from the thread class, see figure

5.12.

5.6.1 AT - Initialization

AT and OT obtain the same input parameters from the manager during instantiation: “qMod”,

“config” and “logger”. From “config” the following variables are extracted that are necessary for

the position calculation, which are ingested over the OT as they are set from within the plant

network: “runAvrgWindRaw” is the running average window to smoothen the raw measurements,

while “runAvrgWindCalc” is the amount of smooth range sets that the output angle and offset

are approximated to. Further the widths between the sensor mounts of the Anchor pair “width1”

and the ones of the Tag pair “width2” are extracted and initialized, see figure 5.13.

Another queue “qRangesMean” is initialized, that stores the average values of “qMod” after

applying the “runAvrgWindRaw”. Finally, “d2r” simply stores the translation factor to obtain

5.7. OPC-UA THREAD 57

degrees from radians.

5.6.2 AT - Loop

If “qMod” is still empty, the AT pauses and checks the length of the queue again until “qMod” has

been filled by the MT. If the amount of elements in the queue exceeds the “runAvrgWindRaw”,

the oldest entries of “qMod” are deleted. Within “runningAverage()”, the average of all “qMod”

values is calculated and stored in “qRangesMean”, all done separately for each measured length .

Therefore, one element of “qRangesMean” consists of the quartet of average lengths between

two units.

If “qRangesMean” exceeds the “runAvrgWindCalc” the oldest entries are deleted, see figure 5.14.

However, if the size of “qRangesMean”, i.e. the number of quartets, on which to perform the

approximation, is yet too small, the AT returns to the top of the loop after a delay until there are

enough quartets to apply the algorithm. For each quartet stored in “qRangesMean”, a trilateration

routine is performed, that evaluates the x and y coordinates for both Tags relative to the center of

the Anchors leading to four coordinates in total per quartet.

Subsequently, those four coordinates times the “runAvrgWindCalc”, i.e. the amount of quartets,

are summarized in a matrix “D” and at the same time are used to calculate the overall averages

“dX” and “dY”, the coordinates of the center between the Tags, see figure 5.15. Then, “dX” and

“dY” are subtracted from the according entries of “D”, which yields a new matrix “DmeanFree”.

After applying the singular value decomposition on “DMeanFree”, the most significant value of

the matrix “V”, that contains the eigenvalues of the orientation, is extracted. The approximated

angle can be easily evaluated by the arc sine of same element. The main components of the

programmatic implementation of the algorithm are shown in figure B.4. Once the position data

has been updated within “config” and written to the log file, the loop is repeated after a delay of

half a second.

5.7 OPC-UA Thread

Finally, the OT is in charge of transmitting the algorithm output to the plant network. To the

third heritage of the thread class, the manager passes on “config” and “logger” as inputs, during

instantiation, see figure 5.16.

5.7. OPC-UA THREAD 58

5.7.1 OT - Initialization

In order to establish a connection to the plant network, an OPC-UA object node is implemented.

In our case, the IPC operates as OPC-UA Server, hence a Server object node is generated and

integrated to the OPC-UA network. Same Server object is provided by a library, available in the

used program language. During initialization, the “server” attribute sets name, URI and endpoint

URL of the node, to enable recognition and addressing by other participants, i.e. other network

nodes, see figure 5.17. The subsequently specified namespace of the object node allows the

integration of new OPC-UA variable nodes into the network.

Based on the previous models, the dictionaries “opc dict readOnly” and “opc dict writable” are

generated according to “params”, with the difference, that the values in the key-value pair are not

simple elements but OPC-UA variable nodes, see figure 5.18. Each variable node is named after

the related “params” element and that name is added to the available namespace of the OPC-UA

network.

The OPC-UA variables are structured according to the “params” hierarchy, where the “server”

object node corresponds to the “Node” in “params” All underlying branches within the OPC-UA

tree are named after their model in “params” and are superior to further nodes, until the OPC-UA

variables terminate a branch. Not only are the access right values in “params” used to separate

the dictionaries, but also defines the access right for each OPC-UA variable node.

5.7.2 OT - Loop

The data exchange between “config” and the OPC-UA variables is in accordance with the data

exchange between “config” and the Modbus registers. In the OT, the above mentioned library

enables easy updating of the OPC-UA variables through according read and write commands,

see figure 5.19. Before rerunning the loop, the OT pauses for 0.2 seconds. As the crucial data

flow starts at the MT and ends at the OT, the update frequency increases, in order to rule out data

losses.

5.7. OPC-UA THREAD 59

Figure 5.7: Flowchart - ”config”: Create dictionaries of all inputs and outputs by iterating through the

Yaml document containing the parameter tree.

5.7. OPC-UA THREAD 60

Figure 5.8: Flowchart - MT: Whole thread. After setting up the Modbus Master and updating the values

on the middleware’s end, two dictionaries – one for the transmitted data and one for the received data –

are initialized. As long as Tag pairs are responding, the MT updates all read and written values while

locking the processor to its own thread.

5.7. OPC-UA THREAD 61

Figure 5.9: Each unit is equipped with four Anchors (”A” to ”D”) and four Tags (”a” to ”d”). Hence,

the Middleware of “Unit 1” is in charge of positioning “Unit 2”, as it is connected to the Anchors of the

ranging constellation, and not the other way round.

5.7. OPC-UA THREAD 62

Figure 5.10: Flowchart - MT: Create dictionaries only of the Modbus inputs and outputs by iterating

through the parameter tree. The two separate dictionaries facilitate the efficient execution of read and

write tasks.

5.7. OPC-UA THREAD 63

Figure 5.11: Flowchart - MT: Set and get new values in the “updateRegisters()” method. The MT iterates

separately through the read- and write dictionary until the entire dictionaries have been checked for

updates.

5.7. OPC-UA THREAD 64

Figure 5.12: Class of the AT containing all attributes and methods of the thread child. Additionally to the

thread specific attributes and methods, the AT contains all methods that process the data until the relative

position and orientation are computed in each iteration every one to two seconds. Furthermore, the raw

measurements are among its attributes, “qMod”, together with other parameters from the network, like

the running average windows or the mounting width between two paired sensors, “runAvrgWindRaw”,

“runAvrgWindCalc”, “width1” and “width2”.

5.7. OPC-UA THREAD 65

Figure 5.13: Flowchart - AT: Whole thread. After reading the network specified geometry inputs and

running average windows, the AT checks if there are enough entries to perform the computations. If so,

the number of data sets is reduced to the first running average window to smoothen the ranges separately.

If the amount of smooth sets is enough, the relative offset and orientation themselves are computed and

published.

5.7. OPC-UA THREAD 66

Figure 5.14: Flowchart - AT: Run average per length. Within the AT another queue, “qRangeMean” is

initialized to store the results of the first data smoothing step and feed the actual position and orientation

calculating equation.

5.7. OPC-UA THREAD 67

Figure 5.15: Flowchart - AT: Compute relative offset and orientation. Through trilateration, which is the

calculation of intercepting points of two cycles, the evaluation of mean distances and an SVD, the best

fitting approximation of the relative position and orientation are extracted in every iteration.

5.7. OPC-UA THREAD 68

Figure 5.16: Class of the OT containing all attributes and methods. Apart from dictionaries that are used

for data transfer, the attributes: SERVER NAME and SERVER URI are defined to successfully establish

an OPC-UA connection.

5.7. OPC-UA THREAD 69

Figure 5.17: Flowchart - OT: Whole thread. After setting up the OPC-UA Server, the namespace is

specified and used to generate OPC-UA object nodes, that are addressable by the network’s OPC-UA

Client. When the dictionaries are initialized, the OT is ready for data updates.

5.7. OPC-UA THREAD 70

Figure 5.18: Flowchart - OT: Create dictionaries of all inputs and outputs. During the initialization of

the OPC-UA read and write dictionaries, OPC-UA object nodes are created that adopt the read and write

access rights from the parameter file in addition to the key-value pair.

5.7. OPC-UA THREAD 71

Figure 5.19: Flowchart - OT: Set and get new values. When updating the OPC-UA values, the OT directly

reads from or writes to the object nodes integrated into the OPC-UA network of the plant.

Chapter 6

Results

Within this chapter, the developed middleware is evaluated w.r.t the Modbus transmission, the

algorithm implementation and the OPC-UA connection. In the end, an assessment of the whole

middleware will be given. Most of the tests were performed with the same setup as the one

during software development, in which tripods act as plant units, see figure 5.1.

Before connected to the IPC, the UWB sensors received a firmware, that includes the Modbus

interface and were adapted in such a manner, that a measurement initialization is addressed

specifically to one or more Tags through their IDs, but not broadcasted to any Tag within reach.

Therefore, the relevant UWB Tag IDs are required at the Anchor’s end and must be provided by

the main application over the Modbus connection. Hence, the data transfer from the IPC over

Modbus to the Anchors is necessary to even initialize a UWB measurement.

6.1 Modbus Connection

The first tests determine if all registers are transmitted and received by the IPC and if the data rate

is accomplished. In the MT, the register values were written to the log file, which is at the same

time the source of the graphs. The following graph 6.1 shows a test measurement containing

range values in detail. There, the distance values of Anchor “A” and Anchor “B” ranging to Tag

“a” and Tag “b” are displayed, which are read in through Modbus at 1Hz. Simultaneously, the

UWB Tag IDs were transmitted from the IPC to the Modbus Slaves, i.e. Anchors “A” and “B”.

As the UWB Anchors require the UWB Tag IDs, in order to initiate a measurement in the first

place, the transfer of the Tag IDs from the IPC to the sensors over Modbus was successful. The

Modbus connection also refreshes the values at every new register reading once a second, which

can be gathered from the small jumps between two data points. Consequently, the data exchange

72

6.1. MODBUS CONNECTION 73

Figure 6.1: UWB range measurements read from the middleware: All four UWB range measurements are

displayed, that are obtained by two UWB Anchors ”A” and ”B” measuring the distance to two UWB Tags

”a” and ”b”, see figure 5.1. While the specific Tag IDs are sent through the Middleware and Modbus to the

Anchors, i.e. the Modbus Slaves, the Anchors feed the Middleware over Modbus with their measured

values, if the communication with the specified Tags was successful.

over Modbus works in both directions.

Graph 6.2 also includes the output of the temperature readings. While the temperatures of the

Anchors are transmitted once per Anchor, those of the Tags are transmitted for redundancy by

both Anchors per each Tag. Hence, the temperature of each Tags is ingested two times by each

Anchor respectively which results in two identical values represented as two overlapping lines in

the graph in case of a successful data connection.

Unlike the range values, that jump almost at every new measurement, the temperature values

stay the same for 2 to 35 measurements. The origin lies most probably in the resolution of the

temperature within the UWB sensor’s software. The assumption was made, because the jumps

and the stable values of the temperature outputs are constant. In figure 6.3 all temperatures are

displayed, that were updated by the same Anchor and Tag pairs during 500 measurements.

The temperature values only occupy a maximum of three steady values. The gap between two

steady values is constant throughout the 500 test points. Furthermore, the graph shows, that both

Anchors receive the same temperature values from both Tags. “Temp a (by A)” is identical to

“Temp a (by B)”, as is the case with the measurements from Tag “b”.

On the other hand, the data points of the range measurements jump up and down from one output

to the next within most sections, which implies, that the Modbus interface transmits each data

value correctly. However, during other sections, like data points no. 7 to 12 in graph 6.4, the

6.1. MODBUS CONNECTION 74

Figure 6.2: UWB range and temperature measurements from the middleware: Next to the four range

measurements ”Range A-a”, ”Range A-b”, ”Range B-a”, ”Range B-b” the Temperature measurements are

shown. While ”Temp A” and ”Temp B” are simply the temperature values of the Anchors themselves,

”Temp a (by A)” is the temperature measurement from Tag ”a” that is communicated over UWB to Anchor

”A” and from there transmitted to the IPC over the Modbus interface. In case of a successful transmission,

the plots of ”Temp a (by A)” and Temp b (by B)” are overlapping as shown by the thin lines on top of the

bold lines. Same applies for Tag ”b”.

incoming range value of the “A-a” pairing is frozen.

Those stuck values could suggest, that a transmission rate of 1Hz eventually causes unsuccessful

requests or responses between Master and Slaves, when the demanded amount of registers is

communicated over Modbus. In this application, many registers needed to be communicated,

due to the implementation of longer unique IDs per Tag, that each occupy four registers instead

of one in the original setup. On top of that, 20 Tag IDs need to be permanently reserved and

continuously transmitted over Modbus to each of the four Slaves. The reason for the extensive

register transmission is that the online tool provided by the manufacturers of the IPC, only permits

the generation of a static MMM, which means, that the maximum amount of registers, that might

be occupied during the running of the sorting plant, must be reserved from the beginning.

With all transmitted range and temperature registers per reserved Tag per connected Anchor,

together with the 320 Tag ID registers, as well as the Anchor specific ones, a total of 816 registers

are transmitted at the same time. 816 registers transmitted per second by the Master correspond

to 13,056 kbps, while the Modbus protocol usually operates between 9,6 and 19,2 kbps [74,

p. 1]. As the Slaves also need to respond to the Master’s request, the assumption is made, that

6.1. MODBUS CONNECTION 75

Figure 6.3: Temperature measurements: Only the temperature measurements of the UWB sensors are

shown for a total of 500 measurements. Each overlapping data pair represent the temperature measurement

of one Tag which is communicated over UWB to both Anchors and indicates that the temperatures are

being reliably measured. They are stable during the measurement and the resolution of the temperatures is

visible in the discrete step nature of the data.

Figure 6.4: UWB range measurements with frozen values read from the middleware: All four UWB range

measurements are displayed, that are obtained by two UWB Anchors ”A” and ”B” measuring the distance

to two UWB Tags ”a” and ”b”, see figure 5.1. Occasionally the otherwise jumping range values, that are

ingested over Modbus RTU remain constant throughout a few seconds.

6.2. ALGORITHM PERFORMANCE 76

the high data rate might cause the occasional freezing phenomena.

6.2 Algorithm Performance

6.2.1 Tripod Tests

At first, the algorithm implementation was tested w.r.t the approximate relative offset and angle

between the tripods, which was then compared to the algorithm outputs. However, the tripod

tests only provided significant information concerning the data flow and smoothening of the data.

Even though the setup served its purpose during software development, it wasn’t fit for judging

the accuracy, as the space around the tripods was limited and therefore only small ranges could

be evaluated.

Graph 6.5 shows the algorithm outputs, whereas the angular offset “Phi” is plotted to the

secondary y-axis on the right side and expressed in degrees. During those measurements, the

tripod containing the Tag pair was turned, while the centers of the tripods remained at fixed

locations. The turning of the tripod can be observed in the graph when looking at the shape of

Figure 6.5: Relative position and orientation output: After the UWB range measurements are smoothened

and processed by the algorithm, the relative position in x- and y-direction “dX” and “dY”, as well as the

relative orientation “Phi” between two succeeding units are obtained.

the “Phi” curve. Starting at -40° it reaches at the end -10°. Also the fixed location of the tripods

is presented in the graph.

In order to better observe the smoothened outputs of the algorithm compared to the original

6.2. ALGORITHM PERFORMANCE 77

UWB values, graph 6.6 shows all range values between the Anchor and Tag pairs, as well as

the resulting algorithm output “dX”. Compared to the jumps of the raw UWB measurements,

Figure 6.6: UWB range measurements compared to the calculated relative position: ”dX” is by far steadier

compared to the unsmoothed raw inputs and smaller than the average range measurement due to the

diagonal UWB communication where at least one must be greater than the relative position.

the output of the offset in x-direction “dX” is considerably steadier, which is the result of the

running average computations. As the locations of the tripods and consequently their relative

offsets “dX” and “dY” also remained practically constant, the computations with smoothened

data is in this case a better image of the reality, than without.

6.2.2 Tests on Plant Units

The detailed evaluation was done by mounting the UWB sensors on real plant units, see figure

6.7. Within those test series, the implementation of the algorithm is examined w.r.t. to its

accuracy. All ten constellations, presented in chapter “Preconditions”, shown in figure 6.8, were

tested in a big hall. On all containers, that were now connected through conveyor belts, the UWB

sensors were mounted at the very top of the edges, see figure 6.9. This mounting position was

found out to yield the least disturbed signals w.r.t. the NLOS situations caused by the belts.

The technical setup remained as before: While the Tags were connected to the power supply,

the Anchors were additionally connected to the IPC over the Modbus line. By means of a laser

sensor, the distances between the UWB devices were measured and documented as a reference,

before the UWB ranging took place.

The plot 6.10 shows the output of the positioning middleware of the first constellation, see figure

6.2. ALGORITHM PERFORMANCE 78

Figure 6.7: First field test constellation: Two plant units were arranged in a predefined relative position in

an industrial environment, not yet connected through a conveyor belt.

Figure 6.8: The ten different possible arrangements of two plant units: Considering the actual succeeding

sorting processes, as well as the given variety and designs of the sorting machines, a total of ten relative

location arrangements are test cases for the developed system.

6.11. While the blue circles represent the median and quantiles of the UWB measurements from

Anchor “A” to both Tags, the red ones originate at Anchor “B” ranging to both Tags “a” and

“b” respectively. The green dashed line and the y-axis of the plot enclose the computed angular

offset “Phi” between the units. Same green line intersects the yellow line at the point with the

coordinates “dX” and “dY” of the middleware’s computations. Hence, the yellow line connects

the centers of the point clouds, that are generated in the middleware by the continuous trilateration

of the UWB measurements, see figure 6.12. The black dots result from the trilateration of the

laser measurements. The circles with no boarding dottet lines represent the true distance between

the two Tags from the center of the equally colored point cloud.

Arrangement no. 1 of two units resulted in position outputs within the demanded accuracy

6.2. ALGORITHM PERFORMANCE 79

Figure 6.9: Second constellation of field tests: For the final system verification the developed system

is installed on plant units in an assembly hall, now connected through conveyor belts. The sensors are

mounted at the top of each edge - marked by red rectangles - and connected to the power supply. Only the

Anchors are additionally connected through Modbus RTU to the IPC as well.

limits of 200mm. Plot 6.10 shows that the mean values of “dX”, “dY” and “Phi”, that were

calculated by the middleware, are 20mm, 24mm and 0,37° off those values based on the

laser measurements. The system’s output is very close to the reference measurement in the

first constellation. Therefore, the cross sections of the red and blue circles representing the

middleware’s calculation of the Tags’ position obscure the grey spot marking the Tags’ position

evaluated by the reference measurements. As shown in table 6.1, the relative position outputs of

the algorithm are within the required accuracy in arrangement no. 1,2,6,9 and 10 and outside in

the other arrangements. Arrangement no. 5, see figure 6.13, yields the position outputs with the

greatest errors of an average “dY” value, that is of 270mm off the reference, see figure 6.14.

However the source of the errors can be found in the box plots of the UWB measurements, see

figure 6.15. Two of the UWB measurement errors in constellation no. 5 exceed their reference

by more than 200mm. In comparison, all errors in constellation no. 1 are smaller than 100mm,

three of them even smaller than 25mm. Between Anchor “A” and Tag “b”, the UWB ranging

path crosses two feed belt, that tend to have an impact on electromagnet waves, as their frames

6.2. ALGORITHM PERFORMANCE 80

Figure 6.10: Graphic representation of the determination of the relative position and orientation for con-

stellation no. 1: Shown are the UWB range measurements as blue and red triple circles, the Tag positions

calculated by the middleware as black and pink point clouds and the by the reference measurements as

gray spots (almost obscured for constellation no. 1). The black and pink single circles define the real

distance between the Tags once spanned from the center of the black point cloud and once from the pink

to show the relation to the calculated Tag distance. Same centers of the point clouds are connected with a

yellow line which serves as perpendicular basis to construct the green broken line indicating the relative

orientation which is computed in the middleware’s algorithm as angle.

are made of metal 1. That and the fact, that the incoming angle at the sensors is the steepest one,

leads to the conclusion, that reflections and multipath propagation are causing disturbance in the

UWB signal in the more obscured arrangements.

An important observation can be made when inspecting the plots of 6.16. They show, that the

implemented algorithm performs as it should. The calculus yields the center point coordinates

and relative angle of the opposite unit by connecting the corner points (black and pink point

1Tag “a” and “b” refer to any Tag pair, the Anchors of the system are ranging to, as the algorithm doesn’t differ

between Tag and Anchor positions “A-B” or “C-D” and “a-b” or “c-d”

6.2. ALGORITHM PERFORMANCE 81

Figure 6.11: Constellation no. 1 of two neighboring plant units.

Figure 6.12: UWB range measurements from the middleware compared to the laser reference measure-

ments for constellation no. 1: The red and blue circles represent the median bordered by the dotted 25%-

and 75% quantiles of the UWB range measurements. While the inner circles correspond to the measure-

ments ”A-a” or ”B-b”, the outer ones correspond to the diagonal ranges ”A-b” and ”B-a”. Measurements

initiated by Anchor ”A” are in blue, by Anchor ”B” in red. The intersection between the blue inner circle

(”A-a”) and the red outer circle (”B-a”) represents the middleware’s calculation for the position of Tag ”a”

which analogously applies for the position of Tag ”b”.

cloud), that were found through trilateration of the raw UWB measurements (blue and red

circles). However, the corner points, that were obtained by the laser measurements (black dots)

are distant to the intersections of the red and blue circles.

6.2. ALGORITHM PERFORMANCE 82

UWB Middleware vs. Laser Reference- Constellation no. 1 to 10
No. dX dY Phi

1 -20mm 24mm 0,37°

2 -70mm -103mm -0,21°

3 0mm 220mm -0,90°

4 -120mm 250mm 2,60°

5 -220mm -270mm -6,15°

6 -80mm -180mm -0,55°

7 20mm 213mm 1,88°

8 -140mm 230mm 4,25°

9 -10mm -110mm -2,56°

10 -70mm 181mm 0,19°

Table 6.1: Errors of algorithm outputs ”dX”, ”dY” and ”Phi” compared to reference measurements for all

ten possible constellations between two connected plant units.

Figure 6.13: Constellation no. 5 of two neighboring plant units.

The black circle has the center of the black point cloud at its center point and the width between

the mounting positions of the Tags as its radius. Analogically, the pink circle was generated. The

distance between the pink point cloud to the closest part of the black circle is 400mm, which

means that the UWB measurements would yield a greater distance between the Tags, than there

is.

6.2. ALGORITHM PERFORMANCE 83

Figure 6.14: Graphic representation of the determination of the relative position and orientation for

constellation no. 5: Shown are the UWB range measurements as blue and red triple circles, the Tag

positions calculated by the middleware as black and pink point clouds and the reference measurements

as gray spots. The black and pink single circle define the real distance between the Tags once spanned

from the center of the black point cloud and once from the pink to show the relation between to the

calculated Tag distance. Same centers of the point clouds are connected with a yellow line which serves as

perpendicular basis to construct the green broken line indicating the relative orientation which is computed

in the middleware’s algorithm as angle.

Figure 6.15: Boxplots of all four UWB range measurements relative to the laser reference measurements,

for constellation no. 1 and 5 respectively: Per constellation the median, the 25%- and 75%-quantile as

well as the whiskers to the smallest and biggest values not considered outliers are presented, separately

for each Anchor-Tag combination. Left - constellation no. 1: All four measurements yield a mean value

close to the reference. Only one mean value is more than 25mm off. Right - constellation no. 5: Three of

the four lengths exceed the reference, two of them by more than 200mm.

6.3. OPC-UA CONNECTION 84

Figure 6.16: UWB range measurements from the middleware compared to the laser reference measure-

ments for constellation no. 5: The red and blue circles represent the median bordered by the dotted 25%-

and 75% quantiles of the UWB range measurements. While the inner circles correspond to the measure-

ments ”A-a” or ”B-b”, the outer ones correspond to the diagonal ranges ”A-b” and ”B-a”. Measurements

initiated by Anchor ”A” are in blue, by Anchor ”B” in red. The intersection between the blue inner circle

(”A-a”) and the red outer circle (”B-a”) represents the middleware’s calculation for the position of Tag ”a”

which analogously applies for the position of Tag ”b”.

6.3 OPC-UA Connection

The last major task of the middleware is the communication with the superior plant network

over OPC-UA. Therefore, the final inspection tends to the OPC-UA connection, including the

reliability of data exchange with the network and the automatic tree generation of OPC-UA

variable nodes. For that purpose, a tool was installed, that simulates an OPC-UA Client if running

on a PC, that is connected to the same network as the IPC.

After setting the security configurations for save data transfer, the OPC-UA Client estab-

lishes a connection with OPC-UA Server, i.e. the IPC, by addressing it with its URL ID

“10.XX.XXX.XX:4840”, see figure 6.17, which was specified within the OT of the main appli-

cation. In the lower right corner of figure 6.17, the IPC appears as Server object node in the

variables tree. On pressing the “+” sign next to it, the Server expands to the variables tree, see

figure A.1, which was generated in the OT. The tree of OPC-UA variable nodes shows the same

topology as the parameter tree in “params”. In that manner, any Yaml document can serve as

model for the automatic generation of an OPC-UA variable tree.

When clicking on a variable node, all its information is on display, see figure A.2. In that manner

any variable can be checked for functional transmission.

6.4. SUMMARY 85

Figure 6.17: OPC-UA Viewer: Within the OPC-UA Client tool, the OPC-UA Server must first have an

URL assigned to it and then be configured w.r.t. security parameters, before appearing as Server object

node in the OPC-UA network. Left - security configurations. Right – URL ID and Server node.

Upon pressing the “Refresh” button on the lower left corner of the variable window, the value of

the variable is updated. In a similar manner, will the OPC-UA Client of the plant network ingest

the position outputs from the developed middleware of the positioning system. However, the

OPC-UA connection has never been tested when communicating with the intended OPC-UA

Client.

6.4 Summary

In five of the ten possible constellations, the field tests show that the positioning system meets

the required accuracy, i.e. a maximum positioning error of 200mm. In the other half of

the constellations, that do not manage the required limits, the UWB range measurements are

unreliable as shown by the representative boxplots of constellation no. 5, see figure 6.15. It can

be observed that those constellations causing the most acute angles of the longer diagonal which

are no. 4, 5 and 8, see figure 6.8, also show the highest errors in all three parameters ”dX”, ”dY”

and ”Phi”, see table 6.1. Constellations no. 3 and 7, the other two that cause insufficient accuracy,

have the high end of the conveyor belts in close proximity of the Tags, hence, NLOS or multipath

phenomena are likely the cause of the measurement errors. However, more investigations are

necessary before being able to determine definite geometric limits for the current system. Thanks

to a redundancy check of the Tags’ temperature measurements the reliability of the Modbus

RTU connection is verified. Only at rare occasions do the received values freeze which is likely

caused by the high data rate. Also the OPC-UA connection’s functionality on the middleware’s

end is successful when tested by an OPC-UA Client simulator.

Chapter 7

Conclusion

The results of this thesis show that the concept and the measurement of the relative position and

orientation without the necessity for infrastructure are accomplished. Nevertheless, there are

still issues that need further attention concerning the accuracy of the UWB range measurements.

Due to the difficulties of multipath propagation for acute angles, further tests in real applications

are suggested. Two factors need further investigation: the surroundings causing reflections and

obstruction and the angular influence of the incoming UWB signals. Hence, the constellations no.

3 and 7 presented in section 6.2.2, which cause critical multipath influence, should be compared

to no. 6, which unlike no. 3 and 7 permits the required accuracy even though all three layouts are

comparable in their geometry, see figure 6.8. Also constellations no. 4, 5 and 8 should be studied

to quantify the influence of the acuteness of the incoming angle on the measurement deviation. In

the future, the impact of the incoming angle and falsification of the outputs by reflecting surfaces

should be attended to, either by adjusting the signal calculation or the hardware of the sensors.

While representing a simple and common industrial automation solution, the choice of Modbus

RTU accomplishes the reliable communication when transmitting less than 13kbps. However, at

data rates above 13kbps, occasional short freezing of the data occurs, which should be addressed

in the future, e.g. by reducing the update frequency or no. of transmitted registers. Meanwhile,

the implemented OPC-UA connection shows stable performance, when inspected through the

OPC-UA Client simulator. The developed main application fulfills every requested task: the data

transmission in both directions is stable and the algorithm yields precise results. That allows the

middleware to deliver accurate position data with high precision and promptness, also in case of

widely scattered primary data as long as the mean UWB range measurements are moderately

accurate.

86

CHAPTER 7. CONCLUSION 87

The most significant contribution of this work is the development of a positioning system which

measures relative position and orientation and doesn’t require stationary infrastructure. The

system is capable of achieving the given accuracy limit of 200mm in five of ten constellations.

In the other five constellations, which are characterized by signal incoming angles above 45°, the

highest error is 270mm. Hence, the results are very accurate considering the harsh environment,

due to the measurement architecture in which the overdetermined system provides redundancy.

Same redundancy, in combination with a Least Squares approximation, proof more error tolerant

and robust than single measurements.

Appendices

89

Appendix A

OPC-UA Variables

91

APPENDIX A. OPC-UA VARIABLES 92

Figure A.1: The whole OPC-UA variable tree is composed of object nodes. The first one is the Server

object node, while the leaf nodes are the variable nodes.

APPENDIX A. OPC-UA VARIABLES 93

Figure A.2: Value updates of OPC-UA variables. By pressing the ”Refresh”-button in the lower left

corner, the OPC-UA Client simulator sends a read request to the OPC-UA Server, i.e. the IPC, which

returns the current variable value of the middleware.

Appendix B

Application Implementation

Figure B.1: Manager: The “manager” object prepares the global variables and starts the processes of the

three threads.

Figure B.2: MT: The “revpimodio2” library is publicly available and reads the necessary information

from the ICF on the IPC to automatically implement the Modbus RTU Master.

94

APPENDIX B. APPLICATION IMPLEMENTATION 95

Figure B.3: MT: The middleware intern variable names must be adjusted to match the name format of the

“revpimodio2” library to permit transmission over Modbus RTU.

APPENDIX B. APPLICATION IMPLEMENTATION 96

Figure B.4: AT: The algorithm includes running average operations, trilateration between the Tags’

distances from each Anchor and a SVD in order to yield the relative position and orientation between two

units.

APPENDIX B. APPLICATION IMPLEMENTATION 97

Figure B.5: OT: The OPC-UA object receives the server name, server URI and the URL to be addressable

by the OPC-UA Client and add its own OPC-UA objects to the namespace of the network.

List of Figures

1.1 The measurement system’s architecture requires an Anchor pair on one of the

units and a Tag pair on the other. By ranging from each Anchor to each Tag, four

measurements are obtained that yield the position and orientation after being

processed on the IPC. 11

1.2 System design and test setup including conveyor belts: The positioning middle-

ware of the autonomous positioning system links the UWB sensors mounted on

the units to the plant network and performs the positioning algorithm. 11

2.1 The main task of the middleware is the continuous output of the relative position

between two units. In the case of two linear aligned units the sensors “A” and

“B” of the first unit together with “a” and “b” from the second unit form a

measurement constellation of four involved sensors. 14

2.2 One unit equipped with eight sensors in total, all delivering range data to the

middleware which is executed by one IPC per unit. 15

2.3 The middleware represents the core of the location system and includes the

interfaces to the network and UWB sensors, as well as the computations. 15

2.4 Possible alignments within the process line: Horizontal length of feed belts L is

4.1m; Mounting position offsets b and c are about 4.5m and 5.3m respectively.

The green arrows on the feed belts indicate the direction of material flow. . . . 17

2.5 Constellation between two units no. 1 and 5. Names and positions of the UWB

sensors on two succeeding units. On each corner two sensors are mounted

perpendicular on the top of the edge. 18

2.6 Per positioned target unit, four lengths are used to calculate the offset and angle.

The running average is computed per each length separately. 19

98

LIST OF FIGURES 99

3.1 UWB frequency spectrum compared to other wireless technologies [14, pp. 403-

404]: UWB sends a wide frequency band in one short pulse, but at such little

power level, that it appears like noise next to other signals. 24

4.1 Physical connection from IPC as Modbus RTU Master and UWB modules as

Modbus RTU Slaves. The power supply can be installed as central supply (top)

or separately (bottom). 35

4.2 The register table is a documentation of all the registers transmitted between

IPC and every single Slave. Next to the address of each registers in the MMM,

the table contains the register’s name and category, a short description, its unit,

default value and access right as well as a boolean value indicating EEPROM

storage. The Modbus Master, i.e. the IPC, stores the quantity of registers listed

in the table times the number of Modbus Slaves. 43

5.1 Development test setup: During the software development, two tripods imitated

the fronts of two connected plant units. An Anchor pair ”A-B” and a Tag pair

”a-b” respectively are mounted on the two tripods to test the application. Through

a Modbus RTU connection the measured data was ingested into the Middleware

and processed in the application. 45

5.2 Class of the configuration object containing all attributes and methods in the

below sections of the box. 46

5.3 Class of the Modbus Thread containing all attributes and methods: the queues and

arrays of the ranges to ingest and process them, “RangeAi” measured by Anchor

“A” and “RangeBi” measured by Anchor “B”. Same applies to the temperature

measurements and all Anchor specific values. Also the “ModbusMaster” and

the array of the Tag IDs which are transmitted to the Anchors are among the

attributes. The inheritance to the Thread Class is displayed as arrow from child

to parent. 48

5.4 Class of the manager containing all attributes and methods. While the method

“start(self)” is called only once to start the three threads, that contain the repeating

loops, “ init (self)” initializes the global variables “qMod”, which ingests the

range data from the UWB sensors, “logger” which continuously reports the

applications state, and “config”, which stores all variables shared between the

threads. 50

LIST OF FIGURES 100

5.5 Flowchart - ”config”: Whole class. Once the “config” object is initialized, it is

waiting for an extern read or write request. If such request occurs, the processor

is locked to it until the task is finished. 51

5.6 The parameter file is written in the Yaml format to be interpretable by machines

and humans likewise. It contains a tree of all variables, that need to be exchanged

between two threads or between the middleware and its peripherals. Only one of

the four “Slave” branches and one of the twelve “Modul” branches are expanded.

The rest are structured analogously. 52

5.7 Flowchart - ”config”: Create dictionaries of all inputs and outputs by iterating

through the Yaml document containing the parameter tree. 59

5.8 Flowchart - MT: Whole thread. After setting up the Modbus Master and updating

the values on the middleware’s end, two dictionaries – one for the transmitted data

and one for the received data – are initialized. As long as Tag pairs are responding,

the MT updates all read and written values while locking the processor to its

own thread. 60

5.9 Each unit is equipped with four Anchors (”A” to ”D”) and four Tags (”a” to ”d”).

Hence, the Middleware of “Unit 1” is in charge of positioning “Unit 2”, as it is

connected to the Anchors of the ranging constellation, and not the other way round. 61

5.10 Flowchart - MT: Create dictionaries only of the Modbus inputs and outputs by

iterating through the parameter tree. The two separate dictionaries facilitate the

efficient execution of read and write tasks. 62

5.11 Flowchart - MT: Set and get new values in the “updateRegisters()” method. The

MT iterates separately through the read- and write dictionary until the entire

dictionaries have been checked for updates. 63

5.12 Class of the AT containing all attributes and methods of the thread child. Addi-

tionally to the thread specific attributes and methods, the AT contains all methods

that process the data until the relative position and orientation are computed in

each iteration every one to two seconds. Furthermore, the raw measurements are

among its attributes, “qMod”, together with other parameters from the network,

like the running average windows or the mounting width between two paired

sensors, “runAvrgWindRaw”, “runAvrgWindCalc”, “width1” and “width2”. . . 64

LIST OF FIGURES 101

5.13 Flowchart - AT: Whole thread. After reading the network specified geometry

inputs and running average windows, the AT checks if there are enough entries

to perform the computations. If so, the number of data sets is reduced to the

first running average window to smoothen the ranges separately. If the amount

of smooth sets is enough, the relative offset and orientation themselves are

computed and published. 65

5.14 Flowchart - AT: Run average per length. Within the AT another queue, “qRange-

Mean” is initialized to store the results of the first data smoothing step and feed

the actual position and orientation calculating equation. 66

5.15 Flowchart - AT: Compute relative offset and orientation. Through trilateration,

which is the calculation of intercepting points of two cycles, the evaluation

of mean distances and an SVD, the best fitting approximation of the relative

position and orientation are extracted in every iteration. 67

5.16 Class of the OT containing all attributes and methods. Apart from dictionaries

that are used for data transfer, the attributes: SERVER NAME and SERVER

URI are defined to successfully establish an OPC-UA connection. 68

5.17 Flowchart - OT: Whole thread. After setting up the OPC-UA Server, the names-

pace is specified and used to generate OPC-UA object nodes, that are addressable

by the network’s OPC-UA Client. When the dictionaries are initialized, the OT

is ready for data updates. 69

5.18 Flowchart - OT: Create dictionaries of all inputs and outputs. During the ini-

tialization of the OPC-UA read and write dictionaries, OPC-UA object nodes

are created that adopt the read and write access rights from the parameter file in

addition to the key-value pair. 70

5.19 Flowchart - OT: Set and get new values. When updating the OPC-UA values, the

OT directly reads from or writes to the object nodes integrated into the OPC-UA

network of the plant. 71

6.1 UWB range measurements read from the middleware: All four UWB range

measurements are displayed, that are obtained by two UWB Anchors ”A” and

”B” measuring the distance to two UWB Tags ”a” and ”b”, see figure 5.1. While

the specific Tag IDs are sent through the Middleware and Modbus to the Anchors,

i.e. the Modbus Slaves, the Anchors feed the Middleware over Modbus with their

measured values, if the communication with the specified Tags was successful. 73

LIST OF FIGURES 102

6.2 UWB range and temperature measurements from the middleware: Next to the

four range measurements ”Range A-a”, ”Range A-b”, ”Range B-a”, ”Range

B-b” the Temperature measurements are shown. While ”Temp A” and ”Temp B”

are simply the temperature values of the Anchors themselves, ”Temp a (by A)”

is the temperature measurement from Tag ”a” that is communicated over UWB

to Anchor ”A” and from there transmitted to the IPC over the Modbus interface.

In case of a successful transmission, the plots of ”Temp a (by A)” and Temp b

(by B)” are overlapping as shown by the thin lines on top of the bold lines. Same

applies for Tag ”b”. 74

6.3 Temperature measurements: Only the temperature measurements of the UWB

sensors are shown for a total of 500 measurements. Each overlapping data pair

represent the temperature measurement of one Tag which is communicated over

UWB to both Anchors and indicates that the temperatures are being reliably

measured. They are stable during the measurement and the resolution of the

temperatures is visible in the discrete step nature of the data. 75

6.4 UWB range measurements with frozen values read from the middleware: All

four UWB range measurements are displayed, that are obtained by two UWB

Anchors ”A” and ”B” measuring the distance to two UWB Tags ”a” and ”b”, see

figure 5.1. Occasionally the otherwise jumping range values, that are ingested

over Modbus RTU remain constant throughout a few seconds. 75

6.5 Relative position and orientation output: After the UWB range measurements

are smoothened and processed by the algorithm, the relative position in x- and

y-direction “dX” and “dY”, as well as the relative orientation “Phi” between two

succeeding units are obtained. 76

6.6 UWB range measurements compared to the calculated relative position: ”dX”

is by far steadier compared to the unsmoothed raw inputs and smaller than the

average range measurement due to the diagonal UWB communication where at

least one must be greater than the relative position. 77

6.7 First field test constellation: Two plant units were arranged in a predefined

relative position in an industrial environment, not yet connected through a

conveyor belt. 78

LIST OF FIGURES 103

6.8 The ten different possible arrangements of two plant units: Considering the

actual succeeding sorting processes, as well as the given variety and designs of

the sorting machines, a total of ten relative location arrangements are test cases

for the developed system. 78

6.9 Second constellation of field tests: For the final system verification the developed

system is installed on plant units in an assembly hall, now connected through

conveyor belts. The sensors are mounted at the top of each edge - marked

by red rectangles - and connected to the power supply. Only the Anchors are

additionally connected through Modbus RTU to the IPC as well. 79

6.10 Graphic representation of the determination of the relative position and orienta-

tion for constellation no. 1: Shown are the UWB range measurements as blue

and red triple circles, the Tag positions calculated by the middleware as black and

pink point clouds and the by the reference measurements as gray spots (almost

obscured for constellation no. 1). The black and pink single circles define the

real distance between the Tags once spanned from the center of the black point

cloud and once from the pink to show the relation to the calculated Tag distance.

Same centers of the point clouds are connected with a yellow line which serves

as perpendicular basis to construct the green broken line indicating the relative

orientation which is computed in the middleware’s algorithm as angle. 80

6.11 Constellation no. 1 of two neighboring plant units. 81

6.12 UWB range measurements from the middleware compared to the laser reference

measurements for constellation no. 1: The red and blue circles represent the

median bordered by the dotted 25%- and 75% quantiles of the UWB range

measurements. While the inner circles correspond to the measurements ”A-a”

or ”B-b”, the outer ones correspond to the diagonal ranges ”A-b” and ”B-a”.

Measurements initiated by Anchor ”A” are in blue, by Anchor ”B” in red. The

intersection between the blue inner circle (”A-a”) and the red outer circle (”B-

a”) represents the middleware’s calculation for the position of Tag ”a” which

analogously applies for the position of Tag ”b”. 81

6.13 Constellation no. 5 of two neighboring plant units. 82

LIST OF FIGURES 104

6.14 Graphic representation of the determination of the relative position and orienta-

tion for constellation no. 5: Shown are the UWB range measurements as blue

and red triple circles, the Tag positions calculated by the middleware as black

and pink point clouds and the reference measurements as gray spots. The black

and pink single circle define the real distance between the Tags once spanned

from the center of the black point cloud and once from the pink to show the

relation between to the calculated Tag distance. Same centers of the point clouds

are connected with a yellow line which serves as perpendicular basis to construct

the green broken line indicating the relative orientation which is computed in the

middleware’s algorithm as angle. 83

6.15 Boxplots of all four UWB range measurements relative to the laser reference

measurements, for constellation no. 1 and 5 respectively: Per constellation

the median, the 25%- and 75%-quantile as well as the whiskers to the smallest

and biggest values not considered outliers are presented, separately for each

Anchor-Tag combination. Left - constellation no. 1: All four measurements

yield a mean value close to the reference. Only one mean value is more than

25mm off. Right - constellation no. 5: Three of the four lengths exceed the

reference, two of them by more than 200mm. 83

6.16 UWB range measurements from the middleware compared to the laser reference

measurements for constellation no. 5: The red and blue circles represent the

median bordered by the dotted 25%- and 75% quantiles of the UWB range

measurements. While the inner circles correspond to the measurements ”A-a”

or ”B-b”, the outer ones correspond to the diagonal ranges ”A-b” and ”B-a”.

Measurements initiated by Anchor ”A” are in blue, by Anchor ”B” in red. The

intersection between the blue inner circle (”A-a”) and the red outer circle (”B-

a”) represents the middleware’s calculation for the position of Tag ”a” which

analogously applies for the position of Tag ”b”. 84

6.17 OPC-UA Viewer: Within the OPC-UA Client tool, the OPC-UA Server must

first have an URL assigned to it and then be configured w.r.t. security parameters,

before appearing as Server object node in the OPC-UA network. Left - security

configurations. Right – URL ID and Server node. 85

A.1 The whole OPC-UA variable tree is composed of object nodes. The first one is

the Server object node, while the leaf nodes are the variable nodes. 92

LIST OF FIGURES 105

A.2 Value updates of OPC-UA variables. By pressing the ”Refresh”-button in the

lower left corner, the OPC-UA Client simulator sends a read request to the

OPC-UA Server, i.e. the IPC, which returns the current variable value of the

middleware. 93

B.1 Manager: The “manager” object prepares the global variables and starts the

processes of the three threads. 94

B.2 MT: The “revpimodio2” library is publicly available and reads the necessary

information from the ICF on the IPC to automatically implement the Modbus

RTU Master. 94

B.3 MT: The middleware intern variable names must be adjusted to match the name

format of the “revpimodio2” library to permit transmission over Modbus RTU. 95

B.4 AT: The algorithm includes running average operations, trilateration between

the Tags’ distances from each Anchor and a SVD in order to yield the relative

position and orientation between two units. 96

B.5 OT: The OPC-UA object receives the server name, server URI and the URL to

be addressable by the OPC-UA Client and add its own OPC-UA objects to the

namespace of the network. 97

List of Tables

4.1 Systematic evaluation of best choice for fieldbus protocol. 37

6.1 Errors of algorithm outputs ”dX”, ”dY” and ”Phi” compared to reference mea-

surements for all ten possible constellations between two connected plant units. 82

106

Bibliography

[1] Fabian de Ponte Müller. “Survey on Ranging Sensors and Cooperative Techniques for

Relative Positioning of Vehicles: Journal Article”. In: Sensors (Basel, Switzerland) 17.2

(2017). DOI: 10.3390/s17020271.

[2] Ali Asghar Nazari Shirehjini, Abdulsalam Yassine, and Shervin Shirmohammadi. “An

RFID-Based Position and Orientation Measurement System for Mobile Objects in Intelli-

gent Environments”. In: IEEE Transactions on Instrumentation and Measurement 61.6

(2012), pp. 1664–1675. ISSN: 0018-9456. DOI: 10.1109/TIM.2011.2181912.

[3] Pascal Pagani et al. Ultra-wideband radio propagation channels. A practical approach.

London and Hoboken, NJ: ISTE and Wiley, 2008. ISBN: 9781848210844.

[4] Gene H. Golub and Charles F. van Loan. Matrix computations. 4. ed. Johns Hopkins

studies in mathematical sciences. Baltimore, Md.: Johns Hopkins Univ. Press, 2013. ISBN:

9781421407944.

[5] Paul Gerrard and Radia M. Johnson. Mastering scientific computing with R. Birmingham,

England and Sebastapol, California: Packt Publishing and Safari Books Online, 2015.

ISBN: 9781783555260.

[6] Kunbus. RevPi Connect+: Datasheet. Ed. by KUNBUS GmbH. 2021. URL: https:

//revolution.kunbus.com/revpi-connect/ (visited on 05/16/2021).

[7] Robert Henßen and Miriam Schleipen. “Interoperability between OPC UA and Automa-

tionML”. In: Procedia CIRP 25 (2014), pp. 297–304. ISSN: 22128271. DOI: 10.1016/

j.procir.2014.10.042.

[8] Unified Automation. OPC UA NodeId Concepts. 2021. URL: https://documentation.

unified-automation.com/uasdkhp/1.4.1/html/_l2_ua_node_ids.

html (visited on 05/16/2021).

[9] IC. DW1000 Anchor: Datasheet. Ed. by In-Circuit GmbH. 2021. URL: http://wiki.

in- circuit.de/images/6/6a/305000107A_DW1000_Anchor.pdf

(visited on 05/16/2021).

107

BIBLIOGRAPHY 108

[10] Stefan Heinen et al. “HaLoS – Integrated RF-Hardware Components for Ultra-Wideband

Localization and Sensing”. In: Ultra-Wideband Radio Technologies for Communications,

Localization and Sensor Applications. Ed. by Reiner Thom. InTech, 2013, pp. 369–438.

ISBN: 978-953-51-0936-5. DOI: 10.5772/54987.

[11] A. R. Jiménez and F. Seco. “Comparing Decawave and Bespoon UWB location systems:

indoor/outdoor performance analysis: 4-7 October 2016, Alcalá de Henares, Madrid,

Spain”. In: 2016 International Conference on Indoor Positioning and Indoor Navigation

(IPIN) (2016). DOI: 10.1109/IPIN.2016.7743686.

[12] Alberto Giretti, Alessandro Carbonari, and Massimo Vaccarini. “Ultra Wide Band Po-

sitioning Systems for Advanced Construction Site Management”. In: New Approach of

Indoor and Outdoor Localization Systems. Ed. by Fouzia Elbahhar. InTech, 2012, pp. 89–

112. ISBN: 978-953-51-0775-0. DOI: 10.5772/48260.

[13] Homayoun Nikookar and Ramjee Prasad. Introduction to Ultra Wideband for Wireless

Communications. Signals and Communication Technology. Dordrecht: Springer Nether-

lands, 2009. ISBN: 9781402066337. DOI: 10.1007/978-1-4020-6633-7.

[14] Mohammed Al-Husseini et al. “Cognitive Radio: UWB Integration and Related Antenna

Design”. In: New Trends in Technologies: Control, Management, Computational Intelli-

gence and Network Systems. Ed. by Meng Joo. Sciyo, 2010. ISBN: 978-953-307-213-5.

DOI: 10.5772/10405.

[15] F. Elbahhar et al. “Indoor Positioning System Based on the Ultra Wide Band for Transport

Applications”. In: New Approach of Indoor and Outdoor Localization Systems. Ed. by

Fouzia Elbahhar. InTech, 2012, pp. 69–88. ISBN: 978-953-51-0775-0. DOI: 10.5772/

50017.

[16] Syed Naveen Altaf Ahmed and Yonghong Zeng. UWB Positioning Accuracy and Enhance-

ments: 5-8 Nov. 2017. Piscataway, NJ: IEEE, 2017. ISBN: 9781509011346.

[17] Institute of Electrical and Electronics Engineers. About IEEE. 2021. URL: https://

www.ieee.org/about/index.html (visited on 05/16/2021).

[18] Kun Zhang et al. “Research on Similarity Metric Distance Algorithm for Indoor and

Outdoor Firefighting Personnel Precision Wireless Location System Based on Vague

Set on UWB: October 27-30, 2017, Chengdu, China”. In: 2017 17th IEEE International

Conference on Communication Technology (ICCT 2017) (2017). DOI: 10.1109/ICCT.

2017.8359817.

BIBLIOGRAPHY 109

[19] European Telecommunications Standards Institute. Short Range Devices (SRD) using

Ultra Wide Band (UWB): Part 3: Worldwide UWB regulations between 3,1 and 10,6

GHz. 2019. URL: https://www.etsi.org/deliver/etsi_TR/103100_

103199/10318103/02.01.01_60/tr_10318103v020101p.pdf (visited on

05/16/2021).

[20] Maria Dolores Perez Guirao. “Pulse Rate Control for Low Power and Low Data Rate

Ultra Wideband Networks”. In: Ultra-Wideband Radio Technologies for Communications,

Localization and Sensor Applications. Ed. by Reiner Thom. InTech, 2013, pp. 51–74.

ISBN: 978-953-51-0936-5. DOI: 10.5772/52497.

[21] Rudolf Zetik et al. “Cooperative Localization and Object Recognition in Autonomous

UWB Sensor Networks”. In: Ultra-Wideband Radio Technologies for Communications,

Localization and Sensor Applications. Ed. by Reiner Thom. InTech, 2013, pp. 179–240.

ISBN: 978-953-51-0936-5. DOI: 10.5772/55077.

[22] Lorenz M. Hilty et al. Lokalisiert und identifiziert: Wie Ortungstechnologien unser Leben

verändern. Vol. 57. TA-SWISS. Zürich: vdf, 2012. ISBN: 978-3-7281-3477-6. DOI: 10.

3218/3477-6.

[23] Michael Eisenacher. “Optimierung von Ultra-Wideband-Signalen (UWB)”. disserta-

tion. Karlsruhe: Techn. Univ. Karlsruhe, 2006. URL: https : / / d - nb . info /

1003466907/34.

[24] Federal Communications Commission. A Technology Comparison: Adopting Ultra-Wideband

for Memsen’s file sharing and wireless marketing platform. 2004. URL: https://www.

fcc.gov/2004- wireless- broadband- forum- comments- received

(visited on 05/16/2021).

[25] University of Cambridge. Diffraction. 2021. URL: https://isaacphysics.org/

concepts/cp_diffraction (visited on 05/16/2021).

[26] Rainer Moorfeld et al. “MIRA – Physical Layer Optimisation for the Multiband Impulse

Radio UWB Architecture”. In: Ultra-Wideband Radio Technologies for Communications,

Localization and Sensor Applications. Ed. by Reiner Thom. InTech, 2013, pp. 1–50. ISBN:

978-953-51-0936-5. DOI: 10.5772/55076.

[27] Deval V. Jansari and Reza K. Amineh. “A two-element antenna array for compact portable

MIMO-UWB communication systems”. In: AIMS Electronics and Electrical Engineering

3.2 (2019), pp. 224–232. ISSN: 2578-1588. DOI: 10.3934/ElectrEng.2019.3.

224.

BIBLIOGRAPHY 110

[28] Mohamed El-Hadidy et al. “Interference Alignment for UWB-MIMO Communication

Systems”. In: Ultra-Wideband Radio Technologies for Communications, Localization and

Sensor Applications. Ed. by Reiner Thom. InTech, 2013, pp. 133–152. ISBN: 978-953-51-

0936-5. DOI: 10.5772/55083.

[29] Marcin Kolakowski and Vitomir Djaja-Josko. “TDOA-TWR based positioning algorithm

for UWB localization system”. In: 2016 21st International Conference on Microwave,

Radar and Wireless Communications (MIKON). Ed. by Artur Rydosz. Piscataway, NJ:

IEEE, 2016. ISBN: 9781509022144.

[30] Jeppe Bro Kristensen et al. “Non-Line-of-Sight Identification for UWB Indoor Positioning

Systems using Support Vector Machines”. In: 2019 IEEE MTT-S International Wireless

Symposium (IWS). IEEE, 19.05.2019 - 22.05.2019, pp. 1–3. ISBN: 978-1-7281-0716-5.

DOI: 10.1109/IEEE-IWS.2019.8804072.

[31] Yan Xie, Gerard J. M. Janssen, and Alle-Jan van der Veen. “A practical clock synchroniza-

tion algorithm for UWB positioning systems”. In: 2016 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 20.03.2016 - 25.03.2016,

pp. 3891–3895. ISBN: 978-1-4799-9988-0. DOI: 10.1109/ICASSP.2016.7472406.

[32] Clarinox Technologies Pty Ltd. Real Time Location Systems. 2009. URL: http://

www.clarinox.com/docs/whitepapers/RealTime_main.pdf (visited on

05/16/2021).

[33] Glenn Fleishman. Take Control of iOS & iPadOS Privacy and Security. 1st edition.

[Erscheinungsort nicht ermittelbar] and Boston, MA: Take Control Books and Safari,

2020. ISBN: 9781947282643.

[34] Mark G. Petovello et al. “Demonstration of Inter-Vehicle UWB Ranging to Augment

DGPS for Improved Relative Positioning”. In: Journal of Global Positioning Systems 11.1

(2012), pp. 11–21. ISSN: 14463156. DOI: 10.5081/jgps.11.1.11.

[35] Yasser Morgan. “Accurate positioning using Short-Range Communications”. In: 2009

International Conference on Ultra Modern Telecommunications & Workshops. IEEE,

12.10.2009 - 14.10.2009, pp. 1–7. ISBN: 978-1-4244-3942-3. DOI: 10.1109/ICUMT.

2009.5345553.

[36] Ingrid Hilger et al. “ultraMEDIS – Ultra-Wideband Sensing in Medicine”. In: Ultra-

Wideband Radio Technologies for Communications, Localization and Sensor Applications.

Ed. by Reiner Thom. InTech, 2013, pp. 257–322. ISBN: 978-953-51-0936-5. DOI: 10.

5772/55081.

BIBLIOGRAPHY 111

[37] Henning Mextorf et al. “ISOPerm: Non-Contacting Measurement of Dielectric Properties

of Irregular Shaped Objects”. In: Ultra-Wideband Radio Technologies for Communications,

Localization and Sensor Applications. Ed. by Reiner Thom. InTech, 2013, pp. 323–342.

ISBN: 978-953-51-0936-5. DOI: 10.5772/55079.

[38] Stefan Knauth. “Study and Evaluation of Selected RSSI-Based Positioning Algorithms”.

In: Geographical and Fingerprinting Data to Create Systems for Indoor Positioning and

Indoor/Outdoor Navigation. Elsevier, 2019, pp. 147–167. ISBN: 9780128131893. DOI:

10.1016/B978-0-12-813189-3.00006-X.

[39] Pornchai Pongpipatpakdee et al. “Integration of wireless HART network system into

SCADA software for operation & management”. In: 2016 55th Annual Conference of the

Society of Instrument and Control Engineers of Japan (SICE). IEEE, 2016, pp. 549–554.

ISBN: 978-4-907764-50-0.

[40] Deon Reynders, Steve Mackay, and E. Wright. Practical industrial data communications:

Best practice techniques. Practical professional books from Elsevier. Oxford, Amsterdam,

and Boston: Newnes and Elsevier, 2005. ISBN: 0750663952.

[41] Schneider Electric. Modbus Cable Characteristics. 2019. URL: https://product-

help.schneider-electric.com/ED/ES_Power/ULP_System_IEC_

Guide/EDMS/DOCA0093EN/DOCA0093xx/ULP-Chapter_Appendix_ULP_

IFM_TRV00210/ULP-Chapter_Appendix_ULP_IFM_TRV00210-6.htm

(visited on 05/16/2021).

[42] John Douglas McDonald. Electric power substations engineering. 2nd ed. The Electric

Power Engineering Hbk, Second Edition. Boca Raton: Taylor & Francis, 2007. ISBN:

9780849373831.

[43] Gerhard Schnell and Bernhard Wiedemann. Bussysteme in der Automatisierungs- und

Prozesstechnik. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. ISBN: 978-3-658-

23687-8. DOI: 10.1007/978-3-658-23688-5.

[44] IEC. Electropedia: Bus. Ed. by International Electrotechnical Commission. 2006. URL:

http://www.electropedia.org/iev/iev.nsf/display?openform&

ievref=351-56-10 (visited on 05/16/2021).

[45] Electronicsworld. Research finds Industrial Ethernet increases its market share yet Field-

bus decline continues. Ed. by Electronics World Magazine. 2020. URL: https://www.

electronicsworld.co.uk/research-finds-industrial-ethernet-

increases-its-market-share-yet-fieldbus-decline-continues/

24994/ (visited on 05/16/2021).

BIBLIOGRAPHY 112

[46] Kunbus. RevPi Connect+: Flyer: IIoT GATEWAY. Ed. by KUNBUS GmbH. 2021.

URL: https://revolution.kunbus.com/revpi-connect/ (visited on

05/16/2021).

[47] Humiras Hardi Purba et al. “Product Development of Chocolate with Quality Function

Deployment Approach: A Case Study in SMEs Chocolate Industry in Indonesia”. In:

IOP Conference Series: Earth and Environmental Science 209 (2018), p. 012011. DOI:

10.1088/1755-1315/209/1/012011.

[48] Carl Henning. Profibus - Profinet: 4 MORE PROFINET MYTHS AND THE MUCH

BETTER REALITIES. 2014. URL: https://us.profinet.com/4-profinet-

myths-much-better-realities/ (visited on 05/16/2021).

[49] Modbus. MODBUS over Serial Line: Specification and Implementation Guide: V1.02.

Ed. by Modbus Organization. 2006. URL: https://modbus.org/docs/Modbus_

over_serial_line_V1_02.pdf (visited on 05/16/2021).

[50] Procentec. PROFIBUS cable length. 2021. URL: https : / / procentec . com /

content/profibus-cable-length/ (visited on 05/16/2021).

[51] Emotron. Fieldbus Option. 2018. URL: https://www.emotron.com/globalassets/

downloads/products/softstarters/emotron-tsa/option---fieldbus-

2 . 0 - instruction - manual - for - ac - drives - and - tsa / option _

fieldbus_instruction_-for-ac-drives-and-tsa_01-3698-01r11.

en.pdf (visited on 05/16/2021).

[52] PROFIBUS. PROFIBUS System Description: Technology and Application. 2021. URL:

https://www.profibus.com/index.php?eID=dumpFile&t=f&f=

52380&token=4868812e468cd5e71d2a07c7b3da955b47a8e10d (visited

on 05/16/2021).

[53] James Powell. Profibus and Modbus: a comparison. 2013. URL: https://www.

automation.com/en-us/articles/2013-2/profibus-and-modbus-

a-comparison (visited on 05/16/2021).

[54] DECK Monitoring. RS485 / Modbus RTU Wiring Standards. 2021. URL: https://

deckmonitoring.zendesk.com/hc/en- us/articles/222853008-

RS485-Modbus-RTU-Wiring-Standards (visited on 05/16/2021).

[55] Acromag. INTRODUCTION TO PROFIBUS DP. 2002. URL: http://www.diit.

unict.it/users/scava/dispense/II/Profibus.pdf (visited on 05/16/2021).

[56] Barrie A. Sosinsky. Networking bible. Vol. v.567. Bible. Indianapolis, IN: Wiley, 2009.

ISBN: 9780470431313.

BIBLIOGRAPHY 113

[57] Wang Yongliang et al. “Design of Environmental Control System Based on Embedded

Modbus”. In: Proceedings of the 31st Chinese Control and Decision Conference (2019

CCDC). Piscataway, NJ: IEEE, 2019, pp. 598–601. ISBN: 978-1-7281-0106-4.

[58] Byoung-Koo Kim et al. “Detecting Abnormal Behavior in SCADA Networks Using

Normal Traffic Pattern Learning”. In: Computer Science and its Applications. Ed. by

James J. Park et al. Vol. 330. Lecture Notes in Electrical Engineering. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2015, pp. 121–126. ISBN: 978-3-662-45401-5. DOI: 10.

1007/978-3-662-45402-2.

[59] Claudio Urrea, Claudio Morales, and John Kern. “Implementation of error detection

and correction in the Modbus-RTU serial protocol”. In: International Journal of Critical

Infrastructure Protection 15 (2016), pp. 27–37. ISSN: 18745482. DOI: 10.1016/j.

ijcip.2016.07.001.

[60] Modbus. MODBUS APPLICATION PROTOCOL SPECIFICATION: V1.1b3. Ed. by

Modbus Organization. 2012. URL: https://modbus.org/docs/Modbus_

Application_Protocol_V1_1b3.pdf (visited on 05/16/2021).

[61] Joe Cieszynski. Closed circuit television. Second edition. Oxford England, Burlington,

MA: Newnes, 2004. ISBN: 9780080545738.

[62] B. R. Mehta. Industrial process automation systems: Design and implementation. Waltham,

MA: Butterworth-Heinemann, 2015. ISBN: 9780128010983.

[63] Rajkumar Buyya, S. Thamarai Selvi, and Xingchen Chu. Object-oriented programming

with Java: Essentials and applications. New Delhi and Singapore: Tata McGraw-Hill,

2009. ISBN: 9780070669086.

[64] J. M. Almendros Jimenez and L. Iribarne. “UML Modeling of User and Database In-

teraction”. In: The Computer Journal 52.3 (2009), pp. 348–367. ISSN: 0010-4620. DOI:

10.1093/comjnl/bxn028.

[65] Mark Lutz. Programming Python. 2nd ed. Beijing and Sebastopol, CA: O’Reilly, 2001.

ISBN: 9780596000851.

[66] Python. threading — Thread-based parallelism: Python 3.9.2rc1 documentation. Ed.

by Python Software Foundation. 2021. URL: https://docs.python.org/3/

library/threading.html#thread-objects (visited on 05/16/2021).

[67] James H. Anderson, Yong-Jik Kim, and Ted Herman. “Shared-memory mutual exclusion:

major research trends since 1986”. In: Distributed Computing 16.2-3 (2003), pp. 75–110.

ISSN: 0178-2770. DOI: 10.1007/s00446-003-0088-6.

BIBLIOGRAPHY 114

[68] Robert Lafore. Object-oriented programming in C++. 4th ed. Indianapolis, Ind. and

Hemel Hempstead: Sams and Prentice Hall [distributor], 2001. ISBN: 9780132714297.

[69] Python. queue — A synchronized queue class: Python 3.9.2rc1 documentation. Ed. by

Python Software Foundation. 2021. URL: https://docs.python.org/3/

library/queue.html (visited on 05/16/2021).

[70] Python. Built-in Types: Python 3.9.2rc1 documentation: Lists. Ed. by Python Soft-

ware Foundation. 2021. URL: https://docs.python.org/3.9/library/

stdtypes.html#lists (visited on 05/16/2021).

[71] Python. Data Structures: Python 3.9.2rc1 documentation: Dictionaries. Ed. by Python

Software Foundation. 2021. URL: https://docs.python.org/3.9/tutorial/

datastructures.html?#dictionaries (visited on 05/16/2021).

[72] Python. logging — Logging facility for Python: Python 3.9.2rc1 documentation: Dictionar-

ies. Ed. by Python Software Foundation. 2021. URL: https://docs.python.org/

3.9/library/logging.html?#module-logging (visited on 05/16/2021).

[73] Yaml. YAML Ain’t Markup Language (YAML™): Version 1.2: 3rd Edition. 2009. URL:

https : / / yaml . org / spec / 1 . 2 / spec . html # id2759572 (visited on

05/16/2021).

[74] PR electronics. 4511 MODBUS RTU: Configuration Manual. 2021. URL: https://

www.prelectronics.com/filearkiv/PDF/9100%20series/9106/

Config.%20Manual/9106_MCM_101.pdf (visited on 05/16/2021).

