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Kurzfassung  

Die Öl- und Gasförderung aus Schieferöl- und Schiefergasspeichern hat rasch zugenommen 

die letzten zwei Jahrzehnte. Die Kombination von horizontalen Bohrlöchern und Hydraulic 

Fracturing war eine davon. Die Hauptgründe, warum die Schieferproduktion rentabel wurde. 

Mehrfach gebrochene horizontale Brunnen haben sich als fortschrittliches Mittel zur 

Steigerung der Bohrlochproduktivität in Reservoirs mit geringer Permeabilität herausgestellt. 

Die Wirtschaftlichkeit solcher Projekte hängt jedoch von mehreren Parametern ab. vor allem 

mit den Ölpreisschwankungen im letzten Jahrzehnt. Wählen Sie daher die Projekte aus mit 

dem höchsten Potenzial ist wichtig, um die Kapitalrendite zu maximieren. 

Um die wirtschaftlichen Risiken zu verringern, die Hydraulic Fracturing-Projekte mit sich 

bringen, bietet Data Science Techniken können verwendet werden, um die 

vielversprechendsten Projekte auszuwählen. Insbesondere maschinelles Lernen Algorithmen 

können verwendet werden, um die Bohrlochleistung vorherzusagen und zu optimieren. 

Das Ziel dieser Arbeit ist es, die Öl- und Gasproduktion mehrerer Multi-Frakturen horizontale 

Brunnen unter Verwendung unteschiedliche Modelle für maschinelles Lernen vorherzusagen. 

Diese Modelle werden mit der Leistung anderer Brunnen trainiert, die bereits im selben Gebiet 

gebohrt und ausgebeutet wurden. Das vielversprechendste Projekt kann daher ausgewählt 

werden. 
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Abstract 

The oil and gas production from shale oil and shale gas reservoirs has increased rapidly over 

the last two decades. The combination of horizontal wells and hydraulic fracturing was one of 

the main reasons shale production became profitable. Multi-fractured horizontal wells have 

emerged as an advanced mean for enhancing well productivity in low permeability reservoirs. 

However, the economic viability of such projects is dependent on multiple parameters, 

especially with the oil price fluctuations over the last decade. Therefore, choosing the projects 

with the highest potential is essential to maximize the return on investment. 

To reduce the economic risks that hydraulic fracturing projects present, data science 

techniques can be used to choose the most promising projects. In particular, machine learning 

algorithms can be used to predict and optimize the well performance.  

The objective of this thesis is to predict the oil and gas production of several multi-fractured 

horizontal wells, using different machine learning models. These models will be trained using 

the performance of other wells that were already drilled and exploited in the same area. The 

most promising project can therefore be selected.   
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1 Introduction 

Unconventional reservoirs have become one of the main source of hydrocarbons in the world. 

Shale oil and shale gas reservoirs are the most exploited unconventional reservoirs. The 

market share of these reservoirs has been steadily increasing in the past years. Their 

importance is expected to increase even more since the technologies used to extract oil and 

gas from these reservoirs are improving continuously. However, unconventional reservoirs 

typically cost more to produce than conventional reservoirs.  

The Permian basin has emerged as one of the highest producing fields in the world. The 

improvement in hydraulic fracturing technologies has meant that this field, which contains oil 

and gas producing shale formations, has reached high peaks in production over the last 

decade. The Permian basin is expected to continue growing, and the increasing number of 

new wells drilled also means that the amount of data available from this field is increasing, 

both in quantity and in quality. 

With fluctuating oil prices, shale oil and gas exploitation can be too costly, and sometimes can 

represent a dangerous investment. Wells drilled to produce from shale formations are typically 

horizontal, which are more expensive to drill. Besides, they need to by hydraulically fractured 

to produce hydrocarbons. These two processes can increase the costs, and combined with 

low oil prices, can  mean that such projects can end up losing money. 

Multi-fractured horizontal wells are used to produce the largest possible volumes of 

hydrocarbons from shale formations. There are many methods and elements that can be used 

to fracture such wells. The choice of these elements, like the proppant type and the fracturing 

fluid, have a very high impact on the oil and gas production of these wells. The number of 

stages is also a parameter that needs to be determined. All these parameters, combined with 

the well and the formation parameters, directly influence the production, and therefore the 

return on investment of a multi-fractured horizontal well project. However, the increase of data 

provided by new wells and old wells means that relationships between these parameters and 

the oil and gas production of multi-fractured horizontal wells can be explored. 

Data science techniques offer a way to use the data from already drilled wells to predict the 

performance of potential new wells. The amount of data produced by oil fields offers the chance 

to avoid risky projects and to focus on drilling wells with high potential. Predicting the 

production of new wells based on the performance of wells in the same area can reduce the 

risk factor associated with shale oil and shale gas projects. 

The objective of this thesis is to predict the oil and gas production of some potential wells in 

the Permian basin area. The prediction will be based on the performance of wells already 

drilled and exploited. The data from these wells will be cleaned and prepared. In addition, the 

relationship between hydraulic fracturing data, well data, formation data, location data and oil 

and gas production data will be analysed. Finally, machine learning models will be trained and 

evaluated. The best performing models will be used to predict the oil and gas production of the 

target wells. 
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2 Unconventional Reservoirs 

An unconventional reservoir is a reservoir with ultra-low permeability. Unconventional 

reservoirs are increasingly becoming a major source of oil and gas production in the world. 

The market share of unconventional oil and gas, especially shale gas and shale oil, is 

increasing. While production is mainly expanding in the United States, a lot of countries around 

the world have high shale oil and shale gas potential. However, hydraulic fracturing is required 

to produce from these reservoirs and to increase and maintain well productivity. Hydraulic 

fracturing refers to the process of pumping a fluid into a wellbore at high injection rate that 

causes the formation to fracture. These fractures enable production from low permeability 

formations. This process requires a very large volume of water, which can cause environmental 

and technical challenges. These challenges are mainly induced seismicity and water 

contamination.  

This chapter discusses unconventional reservoirs. The first part of this chapter discusses the 

market share and potential of unconventional resources, especially shale oil and shale gas. 

The second part discusses hydraulic fracturing and the challenges it represents. The third part 

discusses some environmental challenges related to hydraulic fracturing. 

2.1 Market Review 

Most of the oil produced today comes from conventional reservoirs. These resources generally 

accumulate in favourable structural or stratigraphic traps that can be easily extracted. The 

conventional petroleum system is consisted of 4 essential elements (Source Rock, Reservoir 

Rock, Seal Rock and Overburden Rock) and processes (Trap formation, Generation-

Migration-Accumulation). The conventional reservoir formations are porous and permeable but 

are sealed by a low permeability formation that prevents the hydrocarbons from escaping. In 

conventional reservoirs, no large-scale stimulation is needed to be able to produce.  

On the other hand, unconventional resources are more abundant but more difficult to exploit. 

There are a variety of formations that are considered unconventional, including oil shales, tight 

gas sands, coalbed methane and gas hydrates. From a characteristics point of view; 

unconventional reservoirs generally present low to ultra-low permeability (generally below 1 

millidarcy) and low to moderate porosity. Some unconventional reservoirs also contain high 

viscosity oil. This is the main reason why extracting from unconventional reservoirs is more 

difficult and requires different extraction techniques. These techniques differ depending on the 

challenges presented by the reservoir. For low permeability formations like tight oil, tight gas, 

gas shales and coalbed methane reservoirs, using horizontal wells and multistage hydraulic 

fracturing is the best method to produce economically. For formations that contain high 

viscosity and heavy oil, heat is used to overcome the challenge. Gas hydrate reservoirs still 

present a problem and new techniques are being evaluated to make extraction profitable.  

The relative abundance of conventional and unconventional resources is best described by 

the resource triangle illustrated in Figure 1. The concept of the resource triangle is that natural 

resources, such as gold, silver, uranium, oil, and gas are distributed log normally in nature 
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(Holditch 2013). The high-quality deposits are small and difficult to find but easier to extract. A 

pure vein of gold is very rare to find, but once found extracting it is easy. As you go lower in 

the triangle, the resources become larger but more difficult to produce. The technical difficulties 

and bigger investments needed can be compensated by the abundant volumes found. The 

resource triangle concept should be applicable for each basin where oil is produced. It is 

therefore possible to assume that any oil or gas basin in the world that has been producing oil 

and gas from conventional reservoirs should have larger quantities of hydrocarbons in 

unconventional formations. Figure 1 shows that the high and medium quality reservoirs are 

less present in nature, while unconventional reservoirs are much more abundant but also more 

costly to exploit, especially gas hydrates and oil shales. 

 

Figure 1: Resource Triangle1 

Oil and Gas Production from unconventional reservoirs has seen a great increase since the 

start of the 2010s. With more reserves discovered and the decline of production from 

conventional reservoirs, it is expected that unconventional reservoirs will become the main 

source of oil and gas production in many countries. The main example is the United States, 

where tight oil, tight gas and shale gas are already the biggest source of hydrocarbon 

production. The steady growth is expected to continue through 2050. Figure 2 shows the 

history and projection of crude oil and dry gas production in the United States. It indicates that 

the majority of oil and gas will be produced from tight oil and tight gas formations. 

The main unconventional resources being produced currently are shale gas and shale oil 

reservoirs. This type of shale production is typically conventional oil or gas that is produced 

from deeply buried shales. Shale has long been considered in the conventional petroleum 

system as source rock or seal due to its low permeability. However, the Barnett Shale play 

 

1 Holditch 2013. 
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demonstrated that shales can be considered as reservoirs. Shales are the most abundant 

sedimentary rock formation, but there are some important criteria that make a shale formation 

exploitable as a reservoir. These parameters describe the reservoir quality and the completion 

quality. Reservoir quality describes the hydrocarbon potential, volumes in place and 

deliverability. Completion quality describes the ability to create and maintain fracture surface 

area (Ma et al. 2015).      

 

Figure 2: U.S. Crude Oil and Dry Natural Gas Production through 20501 

Table 1 shows the parameters for source rock evaluation. These parameters include 

geochemistry, geology, petrophysics and minerology data. Favourable ranges for shale 

formations have been identified after years of production. Total Organic Carbon (TOC) should 

be above 2%. For Vitrine Reflectance (%Ro), the oil generation window is between 0.7% and 

1.0%, the dry gas generation window is between 1.0% and 1.3% and the wet gas generation 

window is above 1.3%. Vitrine Reflectance below 0.7% indicates immature rocks and values 

over 1.3% indicate over maturity. The favourable depth for shale oil and shale gas reservoirs 

is between 3,300 ft and 16,500 ft (Ashayeri and Ershaghi 2015).  

Table 1: Source Rock Evaluation Parameters2 

 

 

1 U.S. Energy Information Administration 5/31/2020. 

2 Ashayeri and Ershaghi 2015. 
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Shale gas and shale oil reserves have been discovered around the world. These discoveries 

have contributed to a big increase in worldwide proved and unproved oil and gas resources in 

the world. According to the U.S. Energy Information Administration (EIA), 345 billion barrels 

(bbl) of shale oil technically recoverable resources (TRR) and 7,299 trillion cubic feet (Tcf) of 

natural gas TTR exist around the world. In the U.S., Shale represents 9% of the total oil 

resources and 32% of the total gas resources. Outside the U.S., the main countries with 

recoverable shale oil resources are Russia, China, Argentina, Libya, and Venezuela. For 

recoverable shale gas resources, the main countries are China, Argentina, Algeria, and 

Canada. In total, Shale represents 10% of the recoverable oil and 32% of the recoverable gas. 

Table 2 summaries the proved and unproved shale and oil resources in the world. 

Table 2: Technically Recoverable Shale Oil and Shale Gas Unproved Resources in the Context of 

Total World Resources1 

 Crude oil Wet natural gas 

 (billion barrels) (trillion cubic feet) 

Outside the United States   

Shale oil and shale gas unproved resources 287 6,634 

Other proved reserves 1,617 6,521 

Other unproved resources 1,230 7,296 

Total 3,134 20,451 

Increase in total resources due to inclusion of shale oil and shale gas 10% 48% 

Shale as a percent of total 9% 32% 

United States   

EIA shale / tight oil and shale gas proved reserves n/a 97 

EIA shale / tight oil and shale gas unproved resources 58 567 

EIA other proved reserves 25 220 

EIA other unproved resources 139 1,546 

Total 223 2,431 

Increase in total resources due to inclusion of shale oil and shale gas 35% 38% 

Shale as a percent of total 26% 27% 

Total World   

Shale / tight oil and shale gas proved reserves n/a 97 

Shale / tight oil and shale gas unproved resources 345 7,201 

Other proved reserves 1,642 6,741 

Other unproved resources 1,370 8,842 

Total 3,357 22,882 

Increase in total resources due to inclusion of shale oil and shale gas 11% 47% 

Shale as a percent of total 10% 32% 

 

1 Shale oil and shale gas resources are globally abundant - Today in Energy - U.S. Energy Information 

Administration (EIA) 5/30/2020. 
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Shale formations have very low permeability. For this reason, hydraulic fracturing is used to 

stimulate the formation to be able to produce the hydrocarbons it contains. Hydraulic fracturing 

is one the main technologies that allowed the exploitation of unconventional oil and gas 

resources. However, hydraulic fracturing raises some concerns regarding the potential impact 

on the environment.  

2.2 Hydraulic Fracturing 

Hydraulic Fracturing (HF) is a process that involves pumping a fluid composed generally of 

water, propping agents and specific chemicals at a very high rate and pressure to break the 

rock containing the hydrocarbons. Without HF, shale reservoirs would not be able to produce 

at an economic rate. Figure 3 shows the increase in production and ultimate recovery that is 

allowed with HF for low permeability reservoirs. It shows that the economic limit is significantly 

extended with HF. The ultimate recovery is also multiplied with HF. 

 

Figure 3: Production and Reserves Enhancement from HF for Low Permeability Reservoirs1 

The amount of water injected is in the order of several million gallons. The large pressure 

associated with the injection of the fluid creates new fractures and extends existing fractures, 

 

1 Economides 2013. 
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which increases the production. Sand is typically used as a propping agent. The purpose of 

the propping agent is to hold the new and existing fractures open. The injection fluid that flows 

back can be reinjected to the reservoir (Aminzadeh 2020). Figure 4 shows a typical hydraulic 

fracturing operation. As indicated in the figure, hydraulic fracturing is typically done in 

horizontal wells. The combination of horizontal wells and hydraulic fracturing was one of the 

main reasons shale production became profitable (Smith and Montgomery 2015). The first step 

of production from shale formations is to hydraulically fracture the formation, which then allows 

for gas or oil production.  

 

Figure 4: Schematic of a Typical Hydraulic Fracturing Operation1 

The rapid increase in shale production has been accompanied with a larger use of hydraulic 

fracturing. According to the US EIA, 95% of the new wells drilled in the US in 2016 were 

hydraulically fractured (Aminzadeh 2020). The relative high cost of the HF means that its use 

is correlated to the oil price. Producing shale oil can cost more than 60$/bbl. In fact, periods 

where oil prices have dropped saw a decline in shale related activities. The combination of HF 

with horizontal drilling has permitted the drilling of multiple wells from the same surface 

location, reducing the footprint of such projects above ground by 90% (Aminzadeh 2020).  

 

1 Hydraulic Fracturing: An Indiana Assessment 2020. 
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Designing the hydraulic fracturing job is essential to maximize the hydrocarbon production from 

the well. Hydraulic fracturing parameters are dependent on well and formation data. The most 

important design parameters are fracturing fluids and proppants. 

2.2.1 Data Requirement for Hydraulic Fracturing 

The first step in designing a hydraulic fracturing treatment is to have a valid data set of different 

parameters needed. These parameters can be divided into reservoir data, log data, geologic 

data, and fracturing data (Smith and Montgomery 2015). Reservoir data needed includes 

porosity, permeability, reservoir pressure and temperature, reservoir fluid properties, drainage 

area and fluid sensitivity. Log data needed is deviation data, especially for horizontal wells, 

lithology, porosity, resistivity, and sonic logs. These logs can be used to determine basic 

properties of the formation. Geological Data needed include natural fractures and stress 

orientation.  

Designing a hydraulic fracturing job requires information about fracture height, fracture width, 

fluid loss and fracture tip effects (Smith and Montgomery 2015). Fracture height is controlled 

by in situ stresses, while fracture width in controlled by elastic modulus of the rock. Fluid losses 

are dependent of the fracturing fluid parameters and reservoir parameters already discussed. 

Fracture tip effects relate to the formation breakdown pressure, which is the pressure required 

to propagate the fracture tip. Fracturing data needed includes formation young’s modulus, in 

situ stress and fracture toughness. In addition to reservoir, geologic, log and fracture data, 

designing the fracturing fluid is required.  

2.2.2 Fracturing Fluid 

The fracturing fluid is the fluid injected during the hydraulic fracturing process. In the beginning, 

the fluid injected does not contain propping agents. This fluid is called the pad. When the 

fractures are wide enough to accept proppants, they are added to the fracture fluid. Designing 

the fracturing fluid consists of choosing the right pad volume to provide the fracture geometry 

needed, and the right viscosity and density so that the fluid can be used properly. The density 

of the fluid should be around 8.4 pounds per gallon for water-based fluids. Viscosity is the most 

important design criteria of the fracturing fluid. The fluid viscosity should: 

• Allow the fluid to have a good clean-up behaviour to maximize the fracture conductivity. 

• Allow the fluid to provide fractures that are wide enough for the proppant to enter. 

• Allow the fluid to transport the propping agent from the wellbore to the tip of the 

fractures.  

• Prevent fluid losses into the formation. 

The viscosity of the fluid should be in the range of 50 to 1000 centipoise to create a fracture 

width of 0.2 to 1.0 inches and transport the propping agent for distances of hundreds to 

thousands of feet (Lake and Fanchi 2006-2007). In addition to the volume and viscosity 

requirements, many other factors are important when designing the fracturing fluid. These 

factors include: 
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• The fluid should be safe and environmentally friendly to limit the risk of harm to the 

personnel and the environment in case of a leak off. The fluid should also be compatible 

with the formation, so it does not react with the formation minerals or fluids. 

• The fluid should break to a low viscosity to be able to flow back and clean up the 

fracture. 

• The fluid should be easy to mix and cost effective. 

These factors should all be considered for the design of the fluid. In the ideal case, the 

fracturing fluid designed is compatible with the formation rock and fluid, can generate a wide 

fracture, can transport the propping agent in the fracture, break to  a low viscosity fluid for clean 

up and be cost effective and environmentally friendly. Compromises always need to be made 

since generally cost is the limiting factor. There are a lot of types of fracturing fluids that can 

be used. These fluids differ in their characteristics, costs, and impact on the environment. For 

most reservoirs, water-based fluids with some additives are the best choice. It is important to 

control the quality of the water used when using these types of fluids. It is also possible to use 

oil-based fluids or foams. The most commonly used fracturing fluids are water frac, linear gel, 

cross-linked gels, oil-based fluids, and foams/poly-emulsions (Smith and Montgomery 2015). 

Slickwater refers to the use of low-viscosity fluids pumped at high rates to generate narrow, 

complex fractures with low-concentrations of propping agent. When uncross-linked gels are 

used in late-slurry stages of a fracturing treatment, they are often referred to as "hybrid" 

fracturing treatments (PetroWiki 2020). 

• Water Frac: Composed of water, clay control agent and a friction reducer, with the 

possible addition of a water recovery agent. This mixture presents low viscosity, so the 

transport mechanism of proppants has to be the velocity. This means that water frac 

is generally pumped at very high rates. Besides, the fracture width is low due to the 

low viscosity. However, the main advantages are the lower cost and the ease of 

mixing. Besides, the water can be recovered and reused. 

 

• Linear Gel: Composed of water, clay control agent and gelling agent, with the possible 

addition of bactericides or biostats, chemical breakers and water recovery agents. The 

linear gel has improved but still relatively low viscosity characteristics. This means that, 

similarly to water frac, the fracture width is narrow. The cost is also low. However, the 

big disadvantage is that the water cannot be reused because it has residual breaker. 

 

• Cross-Linked Gels: Composed of water, clay control agent, gelling agent, and cross-

linker, with the possible addition of bactericides or biostats, chemical breakers and 

water recovery agents. The cross-linker is used to significantly increase the viscosity, 

which can go from 50 centipoises to 100s or 1000s of centipoises. The higher viscosity 

offers multiple advantages. It increases the fracture width and thus higher proppant 

concentrations can be used. Other advantages include better proppant transport, 

improved fluid efficiency, and reduced friction pressure.  
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• Oil-Based Fluids: Composed of Oil, gelling agent, and cross-linker. Oil-based fluids 

are used in water-sensitive formations that can be damaged if water-based fracturing 

fluids are used. The disadvantages of using these fluids are the high cost when using 

refined oils. Besides, these oils have to be taken from the refineries before additives 

are added. If crude oils are used, gelling problems can occur. Finally, these fluids can 

present safety issues for the personnel and can have a high environmental impact 

compared to water-based fluids. 

 

• Foams/Poly-emulsions: Composed of water and a material that is not miscible with 

water, like nitrogen, carbon dioxide or a hydrocarbon such as propane, diesel, or 

condensate. The main concern with these fluids is the safety aspect since the fluids 

are pumped at high pressure and they contain gas or flammable fluids. The cost is 

also high for these fluids, and sometimes the gases needed for these mixtures are not 

available in remote areas. On the other hand, the advantages are numerous. These 

fluids are very clean, fluid loss is minimal, and proppant transport is good. The viscosity 

is controlled by changing the ratio of the gas or hydrocarbon used and the water. 

In addition to these base fluids, some additives may be needed in order to improve the overall 

efficiency of the hydraulic fracturing job. The use of these additives is dependent on the fluid 

system. Additives are transported in concentrated from and diluted when pumped. Table 3 

offers a summary of different chemical additives types, functions, and products. It shows that 

these additives can be used to kill bacteria, reduce viscosity, reduce friction, etc. 

Table 3: Fracturing Fluids Chemical Additives1 

Type of Additive Function Performed Typical Products 

Biocide Kills bacteria Gluteraldehyde carbonate 

Breaker Reduces fluid viscosity Acid, oxidizer, enzyme breaker 

Buffer Controls the pH Sodium bicarbonate, fumaric acid 

Clay stabilizer Prevents clay swelling KCI, NHCI, KCI substitutes 

Diverting agent Diverts flow of fluid Ball sealers, rock salt, flake boric acid 

Fluid loss additive Improves fluid efficiently Diesel, particulates, fine sand 

Friction reducer Reduces the friction Anionic copolymer 

Iron Controller Keeps iron in solution Acetic and citric acid 

Surfactant Lowers surface tension Fluorocarbon, Non-ionic 

Gel stabilizer Reduces thermal degradation MEOH, sodium thiosulphate 

 

 

1 Lake and Fanchi 2006-2007. 
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When looking at the overall composition of the injected fracturing fluid, it typically contains 90% 

water, 9.5% proppant materials and 0.5% chemicals. These chemicals are the additives to the 

fracturing fluid discussed in the table above. Figure 5 shows the overall composition of a typical 

fracturing fluid. It shows that apart from water and sand, which represent up to 99.5% of the 

total volume, no other element represents a percentage of more than 0.2% of the total volume. 

 

Figure 5: Overall Composition of a Typical Fracturing Fluid1 

In addition to designing the adequate fracturing fluids base composition and additives, the 

design of the proppant is an essential design parameter for the hydraulic fracturing job.  

2.2.3 Proppant  

The purpose of hydraulic fracturing is to create fractures in the formation in order to increase 

production. The width profile and the fracture height area are affected by the fracturing fluid 

volume and properties. However, once fluid pumping is stopped, the fractures will close 

because of pressure loss. To avoid this, a material is included in the fracturing fluid to keep the 

fractures open once pressure drops. This material is the propping agent. The main design 

parameters when choosing the adequate proppant is the proper grain size and proppant type. 

The ideal propping agent is readily available, has a low cost, a low density, and a high 

resistance to corrosion and to crushing.  

Proppants have differences in cost, availability, specific gravity, strength, and stress handling. 

Material strength should allow the proppant to withstand high closure pressures. Closure 

pressure is the pressure at which the fracture closes (Belyadi et al. 2016b). The required 

strength is determined by calculating the effective stress. The effective stress is defined as the 

difference between the formation closure and the bottom hole flowing pressure (Ma et al. 

2015). An increase of the effective stress results in a decrease in fracture conductivity. The 

reason is that grain failure can create small fines that migrate and reduce the permeability. 

Typically, materials that can handle higher closure pressures have a higher specific gravity, 

 

1 Aminzadeh 2020. 
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which means that they are more likely to settle faster. In order to compensate for the fast 

settling, the fracturing fluid should be designed to allow for the proper carrying of these 

proppants.  

The shape of the grains is also an important factor. The shape can be described by the 

roundness and sphericity. Roundness is a measure of the sharpness of the corners in the 

grain, while sphericity is a measure of how closely the grain approaches the shape of a sphere. 

As shown in figure 6, the shape improves with higher sphericity and roundness. 

 

Figure 6: Estimation of Roundness and Sphericity of a Grain1 

The types of proppant typically used are conventional sand, resin-coated sand, and ceramic 

proppants. 

• Sand: is the cheapest and most available proppant. It has the lowest strength of all 

proppant types. It can withstand closure pressure up to 6000 psi. There two types of 

sand generally used: Ottawa sand and Brady sand. Ottawa (also known as white sand) 

is more expensive but is of higher quality compared to Brady (also known as brown 

sand). Sand typically has an irregular shape and size. Specific gravity of sand is 2.65. 

 

• Resin-Coated Sand: is more expensive than sand. This type of proppant has 

intermediate strength. It is created by adding resin coating to sand in order to have a 

higher conductivity compared to normal sand. It is generally used for closure stress of 

6000 to 8000 psi. Specific gravity is from 2.55 to 2.60. 

 

• Ceramic Proppant: is the best quality proppant available. It is also the most expensive 

option. It presents a uniform shape and size. Besides, it is more thermally resistant and 

 

1 Belyadi et al. 2016b. 
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has a very high crush resistance. Ceramic Proppants can be divided to lightweight, 

intermediate strength, and high strength.  Lightweight ceramic proppant can withstand 

pressure of 6000 to 10000 psi and has a specific gravity of around 2.72. Intermediate 

strength ceramic proppant can handle pressure between 8000 and 12000 psi and has 

a specific gravity of 2.9 to 3.3. High strength ceramic proppant is sintered bauxite. It is 

the strongest type of proppants used in the industry and can handle pressure of up to 

20000 psi. It is generally used in deep high-pressured formations. Specific gravity is 

3.4 or more.  

Table 4 summarizes different proppant types and their characteristics. It shows that regular 

sand is the cheapest option, ceramic proppant is the highest quality proppant, while resin-

coated sand offers a good compromise of cost and quality. 

Table 4: Proppant Types Summary1 

Regular Sand Resin-Coated Sand Ceramic Proppant 

Cheapest More expensive (compared 

to regular sand) 

Most expensive 

Lowest conductivity Medium conductivity Highest conductivity 

Lowest strength Medium strength Highest strength 

Irregular size and shape Irregular size and shape Uniform size and shape 

Naturally occurring product Manufactured product Engineered and 

manufactured product 

 

Proppants are used to prevent fractures from closing after the fracking job is finished. However, 

the proppant does not reach the whole length of the fracture. This means that unpropped areas 

will close with time and lose their conductivity. Figure 7 shows the difference between created 

fracture dimensions and propped fracture dimensions. It demonstrates that propped fracture 

dimensions represent a fraction of the created fracture dimensions. Proppant size is another 

important design parameter of proppants and has a big influence on propped fracture 

dimensions and conductivity. Figure 8 shows the effect of a smaller (40/70) and a bigger 

(20/40) mesh size on the fracture conductivity and the propped fracture length.. It shows that 

using smaller mesh proppants allows the particles to travel further inside the fracture which 

results in a longer propped fracture length. However, since the grains are smaller, the space 

between them is smaller so the fracture conductivity is lower.  

 

1 Belyadi et al. 2016b. 
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Figure 7: Difference between Created and Propped Fracture Dimensions1 

 

 

Figure 8: Effect of Mesh Size on Fractures2 

Different mesh sizes are used in the hydraulic fracturing industry. The most commonly used 

are 100 mesh, 40/70 mesh, 30/50 mesh, and 20/40 mesh (Belyadi et al. 2016a). Most hydraulic 

fracturing jobs use a combination of these types. 

• 100 Mesh: is the smallest mesh size and is designed to be placed in hairline cracks of 

the formation. It can be used at the start of the operation to seal off microfractures and 

perforation erosion, to decrease leak-off and to provide a conduit for the upcoming 

sands.  

 

1 Lake and Fanchi 2006-2007. 

2 Ma et al. 2015. 
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• 40/70 Mesh: is larger in size than 100 mesh. Using this mesh size creates a high 

fracture length and some conductivity. Using smaller mesh sizes like 100 and 40/70 

provides a higher crush resistance since the stress is distributed on a bigger number 

of grains compared to bigger mesh sizes. 

• 30/50 Mesh: is larger than 40/70. The conductivity when using a bigger mesh size is 

better compared to a small mesh size.  

• 20/40 Mesh: is the largest sand size used. It is used to maximize near wellbore 

conductivity.  

2.3 Environmental Challenges 

The practice of hydraulic fracturing has been linked with concerns related to its impact on the 

environment. In general, the potential environmental impact of hydraulic fracturing can be 

divided into 3 categories: Impact on water cycle, air pollution and induced seismicity. The 

impact on the water cycle can be a result of these activities (U.S. Environmental Protection 

Agency 2016): 

• Water withdrawals for hydraulic fracturing use in areas where groundwater resources 

are scarce. 

• Spills of chemicals, hydraulic fracturing fluids or produced water that results in chemical 

substances reaching groundwater resources. 

• Well integrity problems that result in contamination of groundwater resources from the 

injected fluid. 

• Injection of fracturing fluids directly into groundwater resources. 

• Discharge of treated or produced fracturing fluid in surface water resources or disposal 

of wastewater in unlined pits that result in contamination of groundwater resources. 

Other risks to the environment include (Ahmed and Meehan 2016):  

• Release of Greenhouse gases into the atmosphere. 

• Micro-seismic events. 

• Naturally occurring radioactive materials brought to the surface. 

• Generally greater footprint and noise pollution than conventional hydrocarbon projects. 

Water acquisition and disposal are one of the biggest challenges faced by hydraulic fracturing 

projects. However, the proper handling of the fluids used is essential in order to reduce the 

impact on the environment. Disclosure of the chemicals used, the water use, and its origin is 

also important to provide nearby habitants and authorities with sufficient information and to 

address their concerns. Seismic effects are generally less than minus 2 or minus 3 on the 

Richter scale during hydraulic fracturing (Speight 2016). In general, all these risks can be 

minimized by following the best practices from the industry. Standards related to well 

construction, spill and leak reduction and containment, water and waste disposal must be 

followed.   
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3 Data Sets and Tools Used 

The objective of this thesis is to use data science and machine learning techniques to predict 

the oil and gas production from several multi-fractured horizontal wells in the Permian Basin. 

The data set consists of several wells with a description of the hydraulic fracturing stages, 

relevant well information, cumulative production, etc. The information from these wells will be 

used to predict the production from target wells with different attributes. Several models will be 

created based on the most widely used machine learning techniques. These models will then 

be evaluated and used to determine the oil and gas output of the target wells. The data is 

publicly available from the Texas Railroad Commission website. The project will be conducted 

using Python.  

This chapter discusses the importance of the Permian basin, as well as the data sets and the 

tools used. The first part gives an overview on the Permian basin and the location of the wells 

used in this thesis. The second part presents a summary of the data sets of the thesis. The 

third part is a small description of the different python tools and libraries used. 

3.1 The Permian Basin 

The Permian Basin is an oil-and-gas-producing area located in West Texas, as shown in figure 

9. The Permian Basin covers an area approximately 250 miles wide and 300 miles long and is 

composed of more than 7,000 fields. Various producing formations such as the Yates, San 

Andres, Wolfcamp, etc are all part of the Permian Basin. The oil and natural gas production 

depths range from a few hundred feet to five miles below the surface (Railroad Commission of 

Texas). The wells in this thesis produce from the Wolfcamp formation.  

 

Figure 9: Location of the Permian Basin 
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The Permian Basin has generated hydrocarbons for about 100 years and supplied more than 

33.4 billion barrels of oil and about 118 trillion cubic feet of natural gas as of September 2018. 

The use of hydraulic fracturing, horizontal drilling, and completion technology advancements 

during the past decade has reversed the production drop in the Permian, and the basin has 

exceeded its previous peak in the early 1970s. In 2017, it accounted for 20% of the total U.S. 

crude oil production and about 9% of the total U.S. dry natural gas production. For 2016, EIA 

estimates that the remaining proven reserves in the Permian Basin exceed 5 billion barrels of 

oil and 19.1 trillion cubic feet (Tcf) of natural gas, making it one of the largest hydrocarbon-

producing basins in the United States and the world (U.S. Energy Information Administration). 

Figure 10 shows the increase of oil production in the Texas Permian Basin from 2008 to 

November 2020.  

 

Figure 10: Average Daily Oil Production in the Texas Permian Basin through November 20201 

As shown in the figure above, the oil production saw a steady increase through the last decade. 

Gas and condensate production also follow the same trend. The Permian Basin has the 

potential to become the world’s most productive oil field. The reasons are the big increase in 

production, the great number of drilled but uncompleted wells and the great volumes of 

hydrocarbons still left in the formation (Rapier 2018). Since the data provided contains the 

latitude and longitude coordinates of the wells, it is possible to create a map using Python’s 

Folium library to visualize these wells. Figure 11 shows the wells used in both the training set 

and the target set. 

 

1 Railroad Commission of Texas. 



18 
 

 

 

Figure 11: Location of the Wells in Texas 

As seen in figure 11, the wells are located near the city of San Angelo in Texas. The wells 

used in the training data set are shown in blue, while the wells of the target data set are shown 

in red. An in-depth analysis of the impact of the location of the wells on the oil and gas 

production will be conducted in the exploratory data analysis chapter.  

3.2 Data sets  

The data sets consist of 27 multi-fractured horizontal wells. Similar information about the wells 

is given, but the oil and gas production are given for only 20 of these wells. These 20 wells will 

be used as a training data set for the model to predict the production of the remaining 7 target 

wells. The location of the wells used is shown in figure 12.  

While most of the wells are very close, some wells are relatively far from each other. Most of 

the wells in the target set have wells from the training set close to them. While the total number 

of wells is 27, some are very close and therefore not all wells appear in figure 12. Most wells 

are located near Big Lake and Mertzon. Two training wells are located near Eldorado. Most of 

the target wells are located in areas that already contain training wells nearby. The only 

exception is a target well located in Sterling City. The oil and gas production of these wells will 

be visualized to determine if any relationship between hydrocarbon production and location 

can be established. 
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Figure 12: Location of the Training Wells and the Target Wells 

The training data set consists of 1179 rows and 28 columns. The target data set consists of 

338 rows and 28 columns. The following columns are the same for both data sets: 

1. WELL_ID: Contains the well identification number. The training data set is composed 

of 20 wells [ 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25, 26] while 

the target data set is composed of 7 wells [ 1, 5, 9, 13, 17, 20, 27]. 

2. JOB_DESC_STAGING: Contains information about the hydraulic fracturing staging, 

the geological formation in which the wells are drilled, the fracturing fluid, the perforation 

measured depth range, and the day and stage number. Exp: “Day 4 Wolfcamp Frac 

Slickwater Stg 24”. 

3. PROPPANT_MESH_SIZE: Contains information about the mesh size of the proppant 

used. Also contains information about the type of proppant used in some cases. Exp: 

“Sand, White, 100 mesh”.  

4. PROPPANT_MESH_DESCRIPTION: Contains information about the proppant type 

used and the mesh size. Exp: “Sand, Brown, 40/70”. 

5. PROPPANT_MASS_USED: Mass of proppant used for each fracturing stage. 

6. PROPPANT_MASS_UOM: Unit of measure of proppant mass (1CWT = 112 lbs). 

7. VOLUME_PUMPED_GALLONS: Volume of fracturing fluid pumped during each 

fracturing stage. 

8. AVERAGE_STP: Average standard temperature pressure.  

9. AVERAGE_STP_UOM: Unit at standard temperature & pressure (psi). 

10. FRACTURE_GRADIENT: Fracturing gradient of the formation. This column contains 

the same value for each well.   
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11. FRACTURE_GRADIENT_UOM: Unit of fracture gradient (psi/ft). 

12. MD_MIDDLE_PERFORATION: Measured depth of the middle perforation.  

13. MD_MIDDLE_PERFORATION_UOM: Unit of measured depth (ft).  

14. TVD_DEPTH: Well true vertical depth. This column contains the same value for each 

well.  

15. TOP_DEPTH: Well measured depth. This column contains the same value for each 

well. 

16. WELL_LATITUDE: Well Latitude. This column contains the same value for each well. 

17. WELL_LONGITUDE: Well Longitude. This column contains the same value for each 

well.  

18. MIN_STP: Minimum STP.  

19. MIN_STP_UOM: Unit at standard temperature & pressure (psi). 

20. MAX_STP: Maximum STP.  

21. MAX_STP_UOM: Unit at standard temperature & pressure (psi). 

22. UPPER_PERF: Upper perforation location. This column contains the same value for 

each well. 

23. LOWER_PERF: Lower perforation location. This column contains the same value for 

each well. 

24. TRUE_VERTICAL_DEPTH: True vertical depth. This column contains the same value 

for each well.  

25. WELL_HORZ_LENGTH: Well horizontal length. This column contains the same value 

for each well.  

26. NET_PROD_DAYS: Well days of production. This column contains the same value for 

each well.  

27. LIQ_CUM_BBLS: Cumulative produced oil. This column contains the same value for 

each well. 

28. GAS_CUM: Cumulative produced gas. This column contains the same value for each 

well. 

The data sets contain a lot of redundant and irrelevant columns. Besides, the content of many 

columns is not well organized. For this reason, the data needs to be cleaned and explored 

before starting to create predictive models.  

3.3 Python Tools and Libraries 

Python has become the preferred tool for data scientists because of its simple, easy to use 

syntax and the great number of modules and packages it supports. The libraries used in this 

project are NumPy, SciPy, Pandas, Scikit-learn, Matplotlib, Seaborn and Folium. 

1. NumPy: NumPy (short for Numerical Python) is a Python library that provides a 

multidimensional array and matrix data structures. NumPy is the basis for pandas. It 

has many useful functions, and its advantages include speed and memory. The main 

data structure in NumPy is the NumPy array. A NumPy array is similar to a list. It is 

usually fixed in size and each element is of the same type. NumPy provides a vast 
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number of mathematical and statistical operations which can be performed on these 

arrays.  

2. SciPy: SciPy (short Scientific Python) is a scientific computation library that uses 

NumPy underneath. It provides more utility functions for optimization, stats, and signal 

processing. While NumPy contains array data and basic operations such as sorting, 

indexing, etc, SciPy is the library that contains fully featured versions of these functions 

along with many others.  

3. Pandas: Pandas is a Python package that provides fast, flexible, and expressive data 

structures. Data in pandas is often used to feed statistical analysis in SciPy, plotting 

functions from Matplotlib, and machine learning algorithms in Scikit-learn. Pandas can 

be used to import data from different file formats (comma-separated values, JSON, 

SQL, Microsoft Excel, etc…) into a DataFrame, handle missing data easily 

(represented as NaN), insert, rename, or delete columns in the DataFrame, view, 

explore and inspect the DataFrame, explore the relationship between continuous 

variables, etc. 

4. Scikit-learn: Scikit-learn provides a range of supervised and unsupervised learning 

algorithms via a consistent interface in Python. It is very easy to use, yet it implements 

many machine learning algorithms efficiently. It features various classification, 

regression, and clustering algorithms. Examples include linear regression, support 

vector machines (SVM), random forests (RF), gradient boosting, k-means and 

DBSCAN etc. The different machine learning models created in this thesis will be using 

Scikit-learn.  

5. Matplotlib: Matplotlib is a multiplatform data visualization library built on NumPy arrays 

and designed to work with the broader SciPy stack. It is used to create static, animated, 

and interactive visualizations in Python. Matplotlib is mainly deployed for basic plotting. 

Visualization using Matplotlib generally consists of bars, pies, lines, scatter plots, etc. 

6. Seaborn: Seaborn is a Python data visualization library based on matplotlib. It provides 

a high-level interface for drawing attractive and informative statistical graphics. 

Compared to Matplotlib, Seaborn is more comfortable in handling Pandas data frames. 

It uses basic sets of methods to provide beautiful graphics in python. It also uses fewer 

syntax and has easily interesting default themes.  

7. Folium: Folium is a Python library used for visualizing geospatial data. Folium is a 

Python wrapper for Leaflet.js which is a leading open-source JavaScript library for 

plotting interactive maps. Folium is used in this thesis to visualize the location of the 

wells.  
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4 Data Wrangling and Exploratory Data Analysis 

The data sets are not well organized and contain a lot of redundant columns and information. 

Before creating the predictive models, the data must be cleaned and processed. The first step 

in cleaning the data is to verify the completeness of the data and the data types when imported 

in Python. The second step is to change the format of different columns to make the contents 

clear and relevant. The third step is to explore the data sets with exploratory data analysis. 

Exploratory data analysis is important to examine the impact of different attributes on the oil 

and gas production of the training wells.  

This chapter discusses all the changes that were made to the data sets to make them useable 

for machine learning algorithms. It also summarizes different attributes and their impact on the 

oil and gas production of the training wells. The first part of this chapter presents the columns 

that contain missing data and the data type of each column. The second part contains the 

different transformation that were applied to the data sets to obtain a clear and precise 

DataFrame. The third part presents an overview of the oil and gas production data of the 

training wells. It also discusses the most important categorical and numerical variables that 

impact the oil and gas production, as well as the transformations that were made to encode 

and scale the data. 

4.1 Completeness of the Data and Data Types 

It is important to verify if the data contains any missing values. Missing data can influence the 

performance of the model created. Data types are important because some operations can 

only be used with specific data types. Integer and float are number types, while object generally 

refers to text. Table 5 shows the missing values contained in each column in the training and 

target data set and the data type of each column (data types are the same for both data sets). 

• Completeness of the Data 

As shown in table 5, the training data set has 7 missing values in the column “MIN_STP”. The 

target data set has no missing values apart from the oil and gas production. Determining the 

values of these columns is the objective of this thesis. In case of missing data, it is possible to 

either drop the data (drop the row or column) or replace the data (replace by mean, frequency, 

or based on other functions). The missing data will be replaced in the data wrangling part, 

using the mean value of the column “MIN_STP” to replace the missing values. New attributes 

extracted from the data sets, in particular from the column “JOB_DESC_STAGING”, also 

contained missing data. This missing data will also be discussed more in the Data Wrangling 

part of this chapter. 

• Data Types 

When importing a data set into a pandas DataFrame, it is important to verify the data types. 

The data contained in both data sets is mostly numerical. Most of the object columns (columns 

that contain text) are the columns that contain the unit of the previous column. The types of all 
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the columns when imported were representative of the contents of the columns, so no changes 

were made. The columns that contain text (object) will be replaced by columns that contain 

numerical data, because machine learning algorithms generally prefer numerical values. This 

transformation well be discussed in the exploratory data analysis and data preparation part of 

this chapter. 

Table 5: Missing Values and Data Types of the Data Sets Used 

Column Name Missing Values 

(Training Set) 

Missing Values 

(Target Set) 

Column 

Type 

WELL_ID 0 0 int64 
JOB_DESC_STAGING 0 0 object 
PROPPANT_MESH_SIZE 0 0 object 
PROPPANT_MESH_DESCRIPTION 0 0 object 
PROPPANT_MASS_USED 0 0 int64 
PROPPANT_MASS_UOM 0 0 object 
VOLUME_PUMPED_GALLONS 0 0 int64 
AVERAGE_STP 0 0 float64 
AVERAGE_STP_UOM 0 0 object 
FRACTURE_GRADIENT 0 0 float64 
FRACTURE_GRADIENT_UOM 0 0 object 
MD_MIDDLE_PERFORATION 0 0 float64 
MD_MIDDLE_PERFORATION_UOM 0 0 object 
TVD_DEPTH 0 0 int64 
TOP_DEPTH 0 0 int64 
WELL_LATITUDE 0 0 float64 
WELL_LONGITUDE 0 0 float64 
MIN_STP 7 0 float64 
MIN_STP_UOM 0 0 object 
MAX_STP 0 0 int64 
MAX_STP_UOM 0 0 object 
UPPER_PERF 0 0 int64 
LOWER_PERF 0 0 int64 
TRUE_VERTICAL_DEPTH 0 0 int64 
WELL_HORZ_LENGTH 0 0 int64 
NET_PROD_DAYS 0 0 int64 
LIQ_CUM_BBLS 0 338 int64 
GAS_CUM 0 338 int64 

 

4.2 Data Wrangling 

The data sets are not well organized and contain a lot of redundant columns and information. 

Some columns will be deleted, and others will be created to better organise the DataFrame. 

Having a precise DataFrame is essential to examine the impact of each attribute. On the other 

hand, columns that give no useful information for the machine learning algorithm, like columns 

containing units, need to be deleted to reduce the dimension of the DataFrame. The following 

problems need to be addressed to have clearer data sets: 
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1. The columns “LIQ_CUM_BBLS” and “GAS_CUM” will be renamed to 

“CUMULATIVE_OIL_PRODUCTION” and “CUMULATIVE_GAS_PRODUCTION” 

respectively to have more accurate column names. 

2. Two columns “TVD_DEPTH” and “TRUE_VERTICAL_DEPTH” seem to contain the 

same information. However, for some wells, the two columns contain values that are 

not the same. This needs to be investigated to determine which column contains the 

correct true vertical depth data. The other column will be deleted. Besides, many 

columns contain information about units and should be removed. 

3. The columns “PROPPANT_MESH_SIZE” and “PROPPANT_MESH_DESCRIPTION” 

contain a lot of redundant information. “PROPPANT_MESH_SIZE” contains a lot of 

proppant type information, and “PROPPANT_MESH_DESCRIPTION” contains a lot of 

proppant mesh size information. In many cases, these two columns contain exactly the 

same value. These two columns should be used to extract a “PROPPANT_TYPE” 

column and a “PROPPANT_MESH_SIZE” column. This way, it will be possible to 

examine the impact of each of these two different attributes on the oil and gas 

production of the training wells. 

4. The column “JOB_DESC_STAGING” contains information about the day number, the 

stage number, the fracturing fluid, and the geological basin. Since all wells are drilled 

in the same basin, the geological basin information is irrelevant for the model. This 

column should be removed, and instead columns containing the relevant information 

should be created. The columns “FRAC_FLUID”, “DAY_NUMBER”, and 

“STAGE_NUMBER” will be created, and will be filled with the relevant information 

extracted from the “JOB_DESC_STAGING” column, which will be deleted. 

5. The column “MIN_STP” contains missing data. The missing data will need to be filled. 

4.2.1 Removing Redundant Columns 

Since many columns only contain the units of the columns before them, they will be removed 

from both data sets since the information is useless for the model. These columns are: 

“PROPPANT_MASS_UOM”, “AVERAGE_STP_UOM”, “FRACTURE_GRADIENT_UOM”, 

“MD_MIDDLE_PERFORATION_UOM”, “MIN_STP_UOM”, and “MAX_STP_UOM”. 

The columns “TVD_DEPTH” and “TRUE_VERTICAL_DEPTH” both contain information about 

the same parameter: True Vertical Depth of the well. Normally, these two columns should 

contain the same values. However, when plotting the two columns against each other, they 

are not exactly the same for the training data set, as shown in Figure 13. The graph clearly 

shows that there is a strong correlation between the two variables. This is also confirmed when 

calculating the correlation coefficient, which is 0.881. Most wells have the same value for these 

two columns. However, it is clear that there are two outliers in the graph . When the outliers 

from the plot in Figure 13 are removed, the correlation coefficient becomes 0.999. The resulting 

plot is shown in Figure 14. 



25 
 

 

 

Figure 13: Plot of True Vertical Depth Column versus TVD Depth Column of the Training Set 

 

Figure 14: Plot of True Vertical Depth Column versus TVD Depth Column of the Training Set without 

outliers 
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Figure 14 confirms that both columns contain the same information, and one of them needs to 

be removed. The two outliers are wells 2 and 3. For well 2, “TVD_DEPTH” is 5727 and 

“TRUE_VERTICAL_DEPTH” is 6888. For well 3, “TVD_DEPTH” is 7809 and 

“TRUE_VERTICAL_DEPTH” is 6888. “TRUE_VERTICAL_DEPTH” contains the same value 

for two different wells, while “TVD_DEPTH” contains different values for these two different 

wells. It is therefore safe to assume that the column “TRUE_VERTICAL_DEPTH” contains 

erroneous data and that it must be removed. 

The correlation coefficient of the same columns for the target data set is 0.999, and the 

relationship is plotted in Figure 15. This also proves that these two columns are supposed to 

contain the same values. Therefore. the column “TRUE_VERTICAL_DEPTH” is therefore also 

removed from the target data set. 

 

Figure 15: Plot of True Vertical Depth Column versus TVD Depth Column of the Target Set 

Both data sets now contain 21 columns. The next step is to extract the relevant information 

from some columns that are not well organised. This information is related to the proppant 

type, the proppant mesh size, the fracturing fluid used, the number of days and the number of 

stages of the hydraulic fracturing job.  

4.2.2 Extracting Proppant Information   

Information about proppant mesh size and type is contained in two columns: 

“PROPPANT_MESH_SIZE” and “PROPPANT_MESH_DESCRIPTION”. These columns 

sometimes contain the same information. The objective is to rename the column 

“PROPPANT_MESH_DESCRIPTION” to “PROPPANT_TYPE” and change it so that it 
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contains the proppant type used. The column “PROPPANT_MESH_SIZE”, which contains the 

mesh size of the proppant used, will contain the mesh size of the proppant. The initial contents 

of these two columns in the training data set are presented in Table 6, while the initial contents 

of the same columns in the target data set are presented in Table 7:  

Table 6: “PROPPANT_MESH_DESCRIPTION” and “PROPPANT_MESH_SIZE” contents in the 

Training Data Set 

“PROPPANT_MESH_DESCRIPTION” “PROPPANT_MESH_SIZE” 

Values in the Column Count Values in the Column Count 

Sand, White, 100 mesh 524 Sand, White, 100 mesh 518 

Sand, White, 40/70 403 40/70                          419 

Sand, White, 30/50 169 30/50                          172 

Sand, White, 20/40 61 20/40                           61 

Sand, Brown, 40/70 16 S-8C, Sand, 100 mesh, bulk       7 

Sand, White, 30/50 SSF Odessa 2 20/50                            2 

Sand, White, 20/50 2   

S-8C, Sand, 100 mesh, bulk 1   

Sand, Brown, 30/50 1   

 

Table 7: “PROPPANT_MESH_DESCRIPTION” and “PROPPANT_MESH_SIZE” contents in the 

Target Data Set 

“PROPPANT_MESH_DESCRIPTION” “PROPPANT_MESH_SIZE” 

Values in the Column Count Values in the Column Count 

Sand, White, 40/70 168 40/70     169 

Sand, White, 100 mesh     144 100 144 

Sand, White, 30/50         24 30/50                          24 

Sand, White, 20/40 1 20/40                           1 

Super LC, 40/70             1    

 

Using tables 6 and 7, the following observations can be made: 

1. Mesh size 20/50 normally does not exist in the industry, therefore it will be considered 

as a mistake and changed to 30/50.  

2. SSF Odessa, S-8C are special types of white sand. Super LC is Resin Coated Sand, 

but since there is only one use of this proppant type, it will be transformed to white 

sand.  

3. “PROPPANT_MESH_DESCRIPTION” will be changed into “PROPPANT_TYPE” and 

all information about mesh size will be removed.  

4. All information about proppant type will be removed from “PROPPANT_MESH_SIZE”. 
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Once all this changes are made, the columns “PROPPANT_TYPE” and 

“PROPPANT_MESH_SIZE” will contain information that is logical and that can be understood 

and used in the exploratory data analysis part. The result of the data processing is shown in 

Table 8 for the training data set. It shows a big disparity in the use of the two proppant types. 

The brown sand is of less quality compared to the white sand, and therefore white sand should 

have a better impact on the quality of the hydraulic fracturing job and therefore on the oil and 

gas production. 

Table 8: “PROPPANT_TYPE” and “PROPPANT_MESH_SIZE” contents in the Training Data Set after 

processing 

“PROPPANT_TYPE” “PROPPANT_MESH_SIZE” 

Values in the Column Count Values in the Column Count 

White Sand 1162 100     525 

Brown Sand     17 40/70 419 

   30/50                          174 

  20/40                           61 

 

For the training data set, proppant mesh size that contain smaller grain size are used more 

frequently than mesh sizes that contain larger grain size. The most used mesh sizes are 100 

and 40/70, while 30/50 and 20/40 are used less frequently. Table 9 shows the result of the 

data processing for the target data set. It shows that the wells in the target data set are only 

fractured using white sand. The frequency of the proppant mesh size used is different 

compared to the training data set. The most frequently used mesh size is 40/70, followed by 

100. The mesh size 30/50 is used only 7% of the time, while the mesh size 20/40 is used only 

once in 338 times.  

Table 9: “PROPPANT_TYPE” and “PROPPANT_MESH_SIZE” contents in the Target Data Set after 

processing 

“PROPPANT_TYPE” “PROPPANT_MESH_SIZE” 

Values in the Column Count Values in the Column Count 

White Sand 338 40/70 169 

  100 144 

   30/50                          24 

  20/40                           1 

 

Since the data is now cleaned and does not contain outliers, it is possible to plot it. Figure 16 

shows the proppant type used in all 27 wells in the training and target sets. Figure 17 is a plot 

of the different mesh sizes used in the hydraulic fracturing for the 27 wells of both data sets. 
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Figure 16: Proppant Type Counts of Both Data Sets after Processing 

 

Figure 17: Proppant Mesh Size Counts in Both Data Sets after Processing 

Figure 16 shows that the preferred proppant type is clearly white sand. As discussed earlier in 

this thesis, white sand is more expensive but is of higher quality compared to brown sand. 
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Using sand is a cheaper but less effective option compared to resin-coated sand or ceramic 

proppants. Figure 17 shows that the most used proppant mesh sizes are 100 and 40/70, while 

30/50 and 20/40 are used less frequently. The impact of the different proppant types and mesh 

sizes on the oil and gas production will be further explored in the exploratory data analysis 

section.  

4.2.3 Extracting Fracturing Fluid, Day, and Stage Number: 

Fracturing fluid, day, and stage number information is contained in the 

“JOB_DESC_STAGING” column. However, the information in this column is not organised. 

Some samples from the column “JOB_DESC_STAGING” from the training data set: “Day 5 

Wolfcamp Frac Slickwater Stg 27”, “Day 3: Stg 11 Wolfcamp Frac (11220-11470)”, “Day 5 

Stage 28: Wolfcamp (Hybrid)”, “Day 4 Stage 17: Wolfcamp @ 7733'-7915'”, etc. The 

information contained in this column can be divided into different categories and parameters: 

1. Wolfcamp is the geological formation from which the wells are producing. Since all the 

wells are producing from the same formation, this information is not relevant for the 

model. 

2. Day and Stage (or stg) refer to the day number and stage number of the fracturing job. 

3. Slickwater and Hybrid are types of fracturing fluid.  

4. Some rows contain information about the perforation measured depth range (11220-

11470, @ 7733'-7915'). This information is already contained in the column 

“MD_MIDDLE_PERFORATION”, therefore it is not needed. 

These samples prove that this column should not be used in a machine learning model in its 

current state. The objective is to extract the information into 3 columns: “FRAC_FLUID”, 

“DAY_NUMBER”, and “STAGE_NUMBER”.  

Fracturing fluids specified in the column “JOB_DESC_STAGING” are Slickwater and Hybrid. 

Slickwater is in some cases written as “SW”. In case no information is provided, it is assumed 

that water is the fracturing fluid used. A new column “FRAC_FLUID” is created containing the 

type of fracturing fluid, and its contents are show in Table 10. Figure 18 presents a count plot 

of the column "FRAC_FLUID" for the wells of both the training and target wells.  

Table 10: "FRAC_FLUID" contents for the training and target data sets 

“FRAC_FLUID” Training Set “FRAC_FLUID” Target Set 

Values in the Column Count Values in the Column Count 

Water 837 Water 335 

Slickwater 231 Slickwater 3 

Hybrid 111   
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Figure 18: Fracturing Fluid Counts in both Data Sets after Processing 

As shown in the table and figure above, Water is the most used fracturing fluid in both data 

sets. Slickwater is used a considerable number of times in the training data set, but only three 

times in the target data set. Hybrid is only used in the training data set. The impact of the 

different fracturing fluid on the oil and gas production will be further examined in the exploratory 

data analysis section. 

Once the fracturing fluid information has been extracted, the only remaining relevant 

information contained in the “JOB_DESC_STAGING” is the day number and stage number. 

The number of stages and the number of days of hydraulic fracturing is important for the 

production of oil and gas. The day number and stage number are contained in most of the 

rows. However, the column “JOB_DESC_STAGING” presents a challenge for some wells: 

1. Well 4 (Training Set): “JOB_DESC_STAGING” only contains a number, without 

specifying whether it is a date number or stage number. However, since it is increasing 

every 2 rows, it is safe to assume that the number refers to the stage number. Exp: 

“Wolfcamp Frac (Slickwater) 30”. Therefore, the number will be contained in the 

“STAGE_NUMBER” column and the “DAY_NUMBER” column will be empty for this 

well. 

2. Well 6 (Training Set): “JOB_DESC_STAGING” contains the value “Stage 1 Wolfcamp” 

for two rows and “Stage 2-34 Wolfcamp” for the rest of the rows. The column 

“PROPPANT_MASS_USED” will be used to determine the stages 2 to 34 since it is 

increasing for each stage. The column “DAY_NUMBER” will be empty. 
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3. Well 27 (Target Set): “JOB_DESC_STAGING” only contains the day number for the 

first stage of each day. Exp: “Day 3- Stage 11” “Stage 12”. Each row in the column 

“DAY_NUMBER” will therefore contain the last day number mentioned.  

The resulting column “DAY_NUMBER” contains 136 missing values in the training data set, 

which are the values for wells 4 and 6. The missing values will be filled in the filling missing 

data section.  

The information that can be extracted from the column “JOB_DESC_STAGING” is stored in 

the columns “FRAC_FLUID”, “DAY_NUMBER”, and “STAGE_NUMBER”. The column can 

therefore be deleted. The impact of these features on the oil and gas production of the training 

wells will be examined in the exploratory data analysis and data preparation part of this 

chapter. 

4.2.4 Filling Missing Data 

After the data processing, 2 columns contain missing data in the training data set, while the 

target data set contains no missing data. The column “MIN_STP” contains 7 missing values. 

The contents of this column are described in Table 11: 

Table 11: Statistical Description of the Column "MIN_STP” in the Training Data Set 

Missing Values 7 

Count 1172 

Mean 3759.52 

Standard Deviation 1622.04 

Minimum Value 9 

25th Percentile 2957 

50th Percentile 3660 

75th Percentile 4490 

Maximum Value 32641 

 

Most values are in the range of 2000 to 5000 psi. Some outliers exist, the minimum value being 

9 psi and he maximum value more than 32000 psi. The 7 missing values will be replaced with 

the mean of the column.  

The column “DAY_NUMBER” contains 136 missing values, which are the values for wells 4 

and 6. Since a correlation exists between stage number and day number, it is possible to use 

the average number of stages executed per day to fill the missing values. Figure 19 shows the 

number of stages per day for the wells of the training set. 
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Figure 19: Average Number of Stages per Day for the Wells of the Training Set 

Figure 19 shows that most wells have an average number of 3 to 6 stages per day. However, 

wells 22 and 23 both present values that are much bigger. This means that the mean of the 

list of averages would be influenced by these two wells. For this reason, the median, which is 

5, will be used to fill the missing values for the wells 4 and 6. Figure 20 shows the number of 

hydraulic fracturing stages for the training data set.  

The bars coloured in red shown in figure 20 indicate the wells 4 and 6, which are missing 

information about the day number of the hydraulic fracturing. Both these wells are fractured in 

34 stages. Using the median of the number of stages per day (5 stages per day) as mentioned 

earlier, it will be assumed that these 34 hydraulic fracturing stages are spread across 7 days. 

Figure 21 shows the number of days of the hydraulic fracturing job for the wells of the training 

set, with the bars in red indicating wells 4 and 6. Figures 20 and 21 show a big difference 

between the wells in the number of days and number of stages. The data also shows a big 

variation between wells in different other categorical and numerical parameters. The next step 

is then to determine which of these parameters has the highest influence on the oil and gas 

production. Since both data sets no longer contain missing data, it is possible to do some 

exploratory data analysis. The final step before creating the model is to prepare the data for 

machine learning algorithm. 
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Figure 20: Number of Stages for each Well in the Training Data Set 

 

Figure 21: Number of Days for each Well in the Training Data Set 
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4.3 Exploratory Data Analysis and Data Preparation 

Since the data is now processed and the missing data is filled, the training data set needs to 

be further explored before creating the model. Since the wells have many different varying 

parameters, it is essential to determine which parameters have the highest influence on the oil 

and gas output. Exploratory data analysis can be used to analyse and investigate data sets 

and summarize their main characteristics, often using data visualization methods. It helps to 

determine how best to manipulate data sources to discover patterns, detect outliers or 

anomalous events, find interesting relations among the variables, test a hypothesis, or check 

assumptions. Once exploratory data analysis is complete and insights are drawn, its features 

can then be used for more sophisticated data analysis or modelling, including machine 

learning. 

For categorical variables, box plots can be used to examine the distribution of the production 

with respect to each variables. For numerical variables, the linear relationship between the 

variable and the production can be calculated. Plotting scatterplots with fitted lines is also a 

helpful way to visualize the relationship between numerical variables. The data then needs to 

be prepared, by scaling the numerical variables and encoding the categorical variables. 

4.3.1 Oil and Gas Production of the Training Wells 

The 20 wells used in the training have varying oil and gas productions. The mean value of oil 

production is 49613 barrels , while the standard deviation is around 43107 barrels. Most wells 

have a cumulative oil production between 50000 and 120000 barrels. Figure 22 shows the 

cumulative oil production per well. It indicates that the highest oil producing well is well 6, with 

a cumulative oil production of 160000 barrels. The lowest oil producing wells are wells 7, 25 

and 26. These wells have a production of 2000 barrels or less.  

For the cumulative gas production, the mean value is 245236 thousand cubic feet (Mcf), and 

the standard variation is 211168 Mcf. The values range between 5000 Mcf to around 700000 

Mcf. Figure 23 shows the cumulative gas production per well. It shows a big disparity in the 

cumulative gas production. Wells 3 and 21 produce negligeable amounts of gas. Wells 7, 22, 

24, 25 and 26 produce small amounts of gas, not exceeding 100000 Mcf. The three biggest 

gas producers are wells 6, 11 and 12, with gas volumes above 550000 Mcf.  

Using figures 22 and 23, it is possible to determine the best and worst overall producers. Well 

6 is the best overall well, having the best cumulative oil production and the third best gas 

production. Well 15 is also a very good producer, with a cumulative oil production of around 

115000 barrels and a cumulative gas production of more than 450000 Mcf. The worst wells 

are wells 7, 25 and 26.  

The ratio of oil to gas production is very different between the wells. The well with the lowest 

oil to gas ratio is well 7, which produces 0.019 barrels of oil per Mcf of gas. Other wells also 

present a ratio of less than 0.1 barrels per Mcf, which are wells  26, 25 and 18. Most wells 
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produce between 0.1 to 0.3 barrels per Mcf. Two wells produce more than 1 barrel per Mcf, 

which are wells 3 (1.8 barrels per Mcf) and 21 (12.8 barrels per Mcf).  

 

Figure 22: Cumulative Oil Production of the Training Wells in Barrels 

 

Figure 23: Cumulative Gas Production of the Training Wells in Mcf 
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It is important to examine the number of production days for each well to be able to compare 

the oil and gas production per day for each well. Figure 24 shows the number of days of 

production for each well.  

 

Figure 24: Net Production Day of the Training Wells in days 

Figure 24 shows that the minimum number of production days is around 500. The wells that 

produced for the shortest period of time are wells 14, 15 and 18. The wells that have produced 

the longest are wells 4, 7 and 24, with well 4 producing for the longest period of days (1522). 

The majority of wells have produced for 600 to 800 days. Combining the cumulative oil and 

gas production with the number of production days gives the oil production per day per well 

and the gas production per day per well, which are presented in figure 25 and figure 26, 

respectively.  

These figures show that well 6 is still the best oil producer, while well 15 is also a comparable 

oil producer, both reaching more than 200 barrels of oil per day. Wells 11, 12; 14 and 21 are 

also good producers, with 100 barrels per day or more. Wells 7, 25 and 26 produce almost no 

oil.  

The best gas producers per day are wells 6, 11, 12 and 15 with 800 Mcf/day or more. Wells 2, 

14, 16 and 23 are also good producers, reaching a daily average gas production of 400 Mcf/day 

or more. The worst gas producers are wells 3 and 21 since they produce almost no gas at all. 

The overall worst well is well 26, which produces very little amount of oil and gas. The 

relationship between oil and gas production and the impact of the number of days on the oil 

and gas production will be further explored.  
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Figure 25: Oil Production per Day per Well in bbl/day 

 

Figure 26: Gas Production per Day per Well in Mcf/day 

Since the available data contains the latitude and longitude of each well, it is possible to 

visualize the impact of the location of the wells on the oil and gas production. Plotting the well 
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latitude versus well longitude can give an idea about the importance of well location. Figure 27 

shows the location of the training wells and their oil and gas production. 

 

Figure 27: Effect of the Well Location on the Oil and Gas Production 

In figure 27, the x axis is the well longitude, and the y axis is the well latitude. Each circle 

represents one of the training wells. The colour of the cercle indicates the cumulative oil 

production of this well. Blue represents low oil production, yellow represents medium 

production and red represents high production, as shown in the colour bar on the right. The 

cumulative gas production is indicated with the size of each circle. The small circles represent 

wells that produce small volumes of gas, while the bigger circles represent wells that produce 

large volumes of gas. The dark red, large circle in the centre represents well 6, which is both 

a very good oil producer and a very good gas producer.  

Using figure 27, it is possible to conclude that wells that are located on the edges of the map 

are generally bad producers. Most wells are located close to each other, and for these wells it 

is not possible to see a correlation between well location and oil and gas production. The 

relationship between oil production and gas production and well latitude and longitude will be 

further explored using Pearson’s correlation coefficient.  

The oil and gas production depend on a number of features. Before creating the model, it is 

important to explore which features have the highest impact on the production of the training 

wells. Some of these features are categorical, while most of them are numerical. 
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4.3.2 Categorical Variables 

The data set contains 3 columns with categorical variables. These three columns contain 

information about the proppant mesh size, the proppant type, and the fracturing fluid used. 

Using the describe function from pandas, table 12 can be generated. “Count” refers to the 

number of values in each column. Since none of the columns have missing data, the count is 

1179 for all 3. “Unique” is the number of unique values in each column, “Top” is the most 

frequent value, and “Frequency” is the frequency of the top value. 

Table 12: Description of the Columns Containing Categorical Variables 

 PROPPANT_MESH_SIZE PROPPANT_TYPE FRAC_FLUID 

Count 1179 1179 1179 

Unique 4 2 3 

 
Top 100 White Sand Water 

Frequency 525 1162 837 

 

Table 12 shows that there are 9 categorical variables. The impact of these categorical values 

on the cumulative oil and gas production can be examined using different plotting methods. 

However, these features cannot be used in their current form, and they need to be one-hot 

encoded to be used in the model training. The 3 columns that contain them will be replace with 

9 columns for each of these attributes. 

• Impact of Different Categorical Variables on the Oil and Gas Production 

Proppant type, proppant mesh size and fracturing fluid are all very important design elements 

of any hydraulic fracturing operation. These elements are expected to have an impact on the 

oil and gas production of any hydraulically fractured well. 

The best method to analyse the impact of a categorical variable on a quantitative variable is 

using box plots. A box plot shows the distribution of quantitative data in a way that facilitates 

comparisons between variables or across levels of a categorical variable. The box shows the 

quartiles of the data set while the whiskers extend to show the rest of the distribution, except 

for points that are determined to be “outliers” using a method that is a function of the inter-

quartile range. Figure 28 explores the impact of the fracturing fluid type on oil production, while 

Figure 29 explores its impact on gas production. 

Figures 28 and 29 show that the production when using 100 mesh proppant size ranges from 

low to high, which means that the use of this proppant mesh size might not be a good predictor 

of oil and gas production. On the other hand, the use of 40/70 and 30/50 mesh sizes can be 

correlated with a relatively lower oil and gas production, while the use of the 20/40 mesh size 

can be correlated with a higher production. In addition to the proppant mesh size, the impact 

of the proppant type can also be seen using the same box plots. 
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Figure 28: Impact of the Proppant Mesh Size on Oil Production 

 

Figure 29: Impact of the Proppant Mesh Size on Gas Production 

Figures 30 and 31 explore the relationship between proppant type and oil and gas production, 

respectively  They show that the use of brown sand is generally correlated with a lower oil and 
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gas production. This can be expected since brown sand is considered of lower quality than 

white sand.  

 

Figure 30: Impact of the Proppant Type on Oil Production 

 

Figure 31: Impact of the Proppant Type on Gas Production 
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Figures 32 and 23 explore the impact of the fracturing fluid on the oil and gas production. 

 

Figure 32: Impact of the Fracturing Fluid Type on Oil Production 

 

Figure 33: Impact of the Fracturing Fluid on Gas Production 
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Figures 32 and 33 explore the impact of fracturing fluid type on the oil and gas production. 

They show a clear correlation between the fracturing fluid used and the oil and gas production. 

The use of Slickwater results in low oil and gas production, the use of water results in a low to 

medium production, and the use of hybrid results in a high production. 

The figures above show that the categorical variables can have a big impact on the oil and gas 

production. It is also possible to conclude that fracturing fluid has the most impact on 

production of all the categorical variables. However, it is not advised to use them as text 

variables, which means that they need to be encoded. 

• One-Hot Encoding  

Categorical variables are not a great choice to use in machine learning in their current form. 

Most machine learning algorithms prefer to work with numbers rather than words, so it is 

advised to transform these categorical variables from text to numbers. While it is easy to give 

a number for each category (Exp: “Water”: 1, “Slickwater”: 2, “Hybrid”: 3), this approach, called 

Ordinal Encoding, is generally not useful when using Scikit-Learn. The reason is that the 

package’s models make the fundamental assumption that numerical features reflect algebraic 

quantities. Such a solution would imply, for example, that mathematical operations or 

comparisons are possible, such as Water < Slickwater < Hybrid, or even that Hybrid - Water = 

Slickwater, which does not make sense.  

To fix this issue, a common solution is to use one-hot encoding, which effectively creates extra 

columns indicating the presence or absence of a category with a value of 1 or 0, respectively. 

This is called one-hot encoding, because only one attribute will be equal to 1 (hot), while the 

others will be 0 (cold). Table 13 shows an example of one-hot encoding of the column proppant 

mesh size.  

Table 13: Example of One-Hot Encoding of the Column Proppant Mesh Size 

Original Column Values Columns Created with One-Hot Encoding 

PROPPANT_MESH_SIZE 100 40/70 30/50 20/40 

100 1 0 0 0 

40/70 0 1 0 0 

30/50 0 0 1 0 

40/70 0 1 0 0 

20/40 0 0 0 1 

 

As shown in the table above, the goal of one-hot encoding is to create one binary attribute per 

category: one attribute equal to 1 when the category is “40/70” “Water”, or “White sand” (and 

0 otherwise), another attribute equal to 1 when the category is “30/50”, “Slickwater” or “Brown 

Sand” (and 0 otherwise), and so on. The new attributes are sometimes called dummy 

attributes. Therefore, the 3 columns containing categorical attributes (“PROPPANT_TYPE”, 

“PROPPANT_MESH_SIZE, “FRAC_FLUID”)  will be transformed into 9 columns representing 
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each one the categorical variables (100 mesh, 40/70 mesh, 30/50 mesh, 20/40 mesh, White 

sand, Brown sand, Water, Slickwater, Hybrid). 

The categorical variable that has the highest impact on oil and gas production is fracturing 

fluid. The impact of numerical variables on production is more easily determined, and the most 

important categorical and numerical features will be used to create the model. 

4.3.3 Numerical Variables 

The data set contains 19 numerical variables. In order to visualize their impact on the oil and 

gas production, it is possible to use the correlation coefficient. The most promising attributes 

can then be visualized using Regplots. As with categorical variables, it is advised to transform 

the numerical variables since they have very different scales. 

• Impact of Different Numerical Variables on the Oil and Gas Production 

The impact of the numerical attributes on the oil and gas production can be determined by 

calculating the correlation coefficient between each numerical variable and the oil and gas 

production. The correlation coefficient (Pearson's correlation coefficient) is the most familiar 

measure of dependence between two quantities. Mathematically, it is defined as the quality of 

least squares fitting to the original data (Wikipedia 2021a). Figure 34 shows some examples 

of plots with different correlation coefficients.  

 

 

Figure 34: Standard correlation coefficient of various data sets1 

The correlation coefficient only measures linear correlations (“if x goes up, then y generally 

goes up/down”). It may completely miss out on nonlinear relationships (e.g., “if x is close to 0, 

 

1 Wikipedia 2021a. 
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then y generally goes up”). A correlation coefficient of 0 does not mean that no relationship 

exists between the two variables. The first row of figure 34 shows examples of data points with 

different correlation coefficient. The second row presents examples where the correlation 

coefficient is equal to 1 or –1, which proves that the correlation coefficient is not dependent on 

the slope. For example, the height in inches has a correlation coefficient of 1 with the height in 

feet or in meter. The third row contains some plots that have a correlation coefficient of 0, even 

though a clear dependence exists between the variables. These plots are examples of 

nonlinear relationships. 

Table 14 presents the correlation coefficient of all the numerical attributes with the oil and gas 

production. The blue colour indicates a positive correlation coefficient, while the red colour 

indicates a negative correlation coefficient. The columns are classified in descending order 

according to the absolute value of the correlation coefficient of the column with the oil 

production. Table 14 shows a high correlation between the oil production and the gas 

production; however this will not be used since no production information for the target wells 

is provided in the data set. The most important variables are the net production days and the 

proppant mass used. The average STP has also a high correlation with the oil production.  

Table 14: Correlation Coefficient between Numerical Variables and Oil and Gas Production 

 

The relationship between these variables and the oil and gas production can be further 

analysed using Regplots, which plot data and a linear regression model fit. Figure 35 shows 

the Regplot of the cumulative oil production vs average pressure.  

Column Correlation with Oil Production Correlation with Gas Production

CUMULATIVE_OIL_PRODUCTION 1 0,835294

CUMULATIVE_GAS_PRODUCTION 0,835294 1

NET_PROD_DAYS -0,461236 -0,339409

PROPPANT_MASS_USED -0,293569 -0,392082

AVERAGE_STP 0,288627 0,148405

LOWER_PERF 0,278193 0,126694

TOP_DEPTH 0,269568 0,129983

MIN_STP 0,262015 0,183655

WELL_LATITUDE 0,257695 0,194977

DAY_NUMBER 0,176475 0,190545

MAX_STP 0,121172 0,090253

TVD_DEPTH 0,117474 -0,171793

STAGE_NUMBER 0,104202 0,094947

MD_MIDDLE_PERFORATION 0,102228 0,023463

FRACTURE_GRADIENT 0,094523 -0,013249

WELL_LONGITUDE -0,071168 0,302984

UPPER_PERF -0,029644 -0,259796

WELL_HORZ_LENGTH 0,020388 -0,014334

VOLUME_PUMPED_GALLONS 0,018814 0,0314



47 
 

 

 

Figure 35: Cumulative Oil Production (bbl) vs Average Pressure (psi) 

It shows an increase of the cumulative oil production with increasing average pressure. Since 

the hydraulic fracturing is multistage, the cumulative oil production does not change for each 

well while the average pressure changes depending on the fracturing stage. For example, well 

2 has a cumulative oil production of 41307 barrels, which is constant. However, well 2 has a 

different average pressure for each hydraulic fracturing stage, which explains why there are 

multiple average pressure values for the same cumulative production value. The average 

pressure is not highly correlated with gas production. On the other hand, the proppant mass 

used is highly correlated with both the oil production and the gas production. 

Figures 36 and 37 show the Regplots of the cumulative oil production vs proppant mass used 

and the cumulative gas production vs proppant mass used, respectively. Figure 36 shows a 

clear, and relatively high negative correlation between the cumulative oil production and the 

proppant mass used. Most wells are fractured using a proppant mass ranging from 0 to 800 

cwt. The only exception is well 3, where more than 2000 cwt were used to conduct the hydraulic 

fracturing. Well 3 has a relatively low cumulative oil production, while well 6 has the highest 

cumulative oil production and a very low proppant mass used. This can explain the negative 

slope of the curve. Figure 37 shows that the cumulative gas production decreases with 

increasing proppant mass used. The slope is steeper than the slope of the cumulative oil 

production vs proppant mass used. This can be explained by the low cumulative gas 

production of well 3, and the high cumulative gas production of wells 6, and 12. These two 

wells have been hydraulically fractured using a mass of 250 cwt or less for each stage. 
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Figure 36: Cumulative Oil Production (bbl) vs Proppant Mass Used (cwt) 

 

Figure 37: Cumulative Gas Production (Mcf) vs Proppant Mass Used (cwt) 

Figures 38 and 39 show the Regplot of cumulative oil production vs net production days and 

cumulative gas production vs net production days, respectively. 
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Figure 38: Cumulative Oil Production (bbl) vs Net Production Days (days) 

 

 

Figure 39: Cumulative Gas Production (Mcf) vs Net Production Days (days) 
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Figure 38 shows a negative correlation between cumulative oil production and the number of 

production days. The x axis starts at the value 500 days. Three wells have a big impact on the 

negative slope. Wells 4, 7 and 24 have a relatively low cumulative oil production and a very 

high number of production days. While cumulative production should normally increase with 

the number of production days, there can be some possible explanation for this negative slope. 

One possible explanation is that it makes sense to do a new hydraulic fracturing job for the 

wells that produce good volumes of oil, since it can be worth the investment. This may be the 

reason that the tree best oil producers are only produced for periods of less than 750 days. 

Figure 39 shows that the correlation between the cumulative gas production and the number 

of production days is also negative. The x axis starts at the value 500 days. The explanation 

of this negative slope can be the same as with figure 38. However, the slope is less steep than 

in figure 38.     

While the correlation coefficient is an interesting data exploration techniques, it does not 

always mean that the features with the highest correlation coefficient will be the most impactful 

when the model is trained. In fact, different machine learning algorithms can find different 

importance for the different attributes. The most important features found with the correlation 

coefficient will later be compared with the most important features selected by sequential 

forward selection, sequential backward elimination and the feature importance calculated by 

the random forest regression algorithm in part 6 of Chapter 5. 

• Creation of New Attributes 

In addition to the attributes already provided, it is possible to create new attributes based on 

the ones already existing. There is an infinite number of attributes that can be created, but the 

new attributes added should have an added value. One possible addition is to create a new 

column with the total number of days and the total number of stages of the fracturing job for 

each well. The impact of the new attributes is shown in Table 15, along with the original 

attributes. Total days and total stages have the second and third highest correlation coefficient 

with the cumulative oil production. For the cumulative gas production, total days has the 

highest correlation coefficient, while the total stages attribute has the fourth highest correlation 

coefficient. 

The total number of days and the total number of stages of the hydraulic fracturing operation 

for each well presents a higher correlation coefficient than the day number and stage number 

attributes. This means that the added attributes can be useful for the model training and will 

therefore be added to the target data set. 

As with categorical variables, it is advised to make some transformations to the numerical 

variables before using them to predict with a machine learning algorithm. The reason is that 

numerical variables have very different scales. 
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Table 15: Correlation Coefficient between Numerical Variables and Oil and Gas Production with New 

Attributes 

 

• Feature Scaling of Numerical Attributes  

Similarly to categorical variables, numerical variables generally cannot be used in their current 

form. They need to be transformed using feature scaling. Feature scaling is a very important 

step in data preparation. Machine learning algorithms generally perform better when the data 

is in the same scale and perform poorly when the data is in different scales (Géron 2019). 

There are two main ways to transform the numerical features to the same scale. The first 

method is called normalization or Min-Max shifting. It consists in shifting the values and 

rescaling them to a range from 0 to 1. This can be done by subtracting the minimum value and 

then diving by the maximum value minus the minimum value. The second method is called 

standardization. It consists in subtracting the mean value and the dividing by the standard 

deviation. This means that the mean of the attribute becomes zero and the resultant distribution 

has a unit standard deviation. Standardization does not present a specific range, as with 

normalization. However, the advantage is that standardization is less affected by outliers. For 

example, if the attribute has a range from 0 to 12 but contains one outlier which has a value of 

100, normalization will mean that the outlier would become 1 and all the other values will be in 

the range 0 to 0.12. For this reason, standardization is the selected method for feature scaling. 

Visualizing the data is not sufficient to determine the real impact of categorical variables on the 

prediction of the machine learning algorithm. Many methods exist to determine which variables 

have the higher impact on the production, which will be discussed in the feature importance 

part of Chapter 5. 

Column Correlation with Oil Production Correlation with GasProduction

CUMULATIVE_OIL_PRODUCTION 1 1

CUMULATIVE_GAS_PRODUCTION 0,835294 0,835294

NET_PROD_DAYS -0,461236 -0,339409

TOTAL_DAYS 0,392714 0,435532

TOTAL_STAGES 0,360284 0,328442

PROPPANT_MASS_USED -0,293569 -0,392082

AVERAGE_STP 0,288627 0,148405

LOWER_PERF 0,278193 0,126694

TOP_DEPTH 0,269568 0,129983

MIN_STP 0,262015 0,183655

WELL_LATITUDE 0,257695 0,194977

DAY_NUMBER 0,176475 0,190545

MAX_STP 0,121172 0,090253

TVD_DEPTH 0,117474 -0,171793

STAGE_NUMBER 0,104202 0,094947

MD_MIDDLE_PERFORATION 0,102228 0,023463

FRACTURE_GRADIENT 0,094523 -0,013249

WELL_LONGITUDE -0,071168 0,302984

UPPER_PERF -0,029644 -0,259796

WELL_HORZ_LENGTH 0,020388 -0,014334

VOLUME_PUMPED_GALLONS 0,018814 0,0314
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5 Model Creation and Results 

Once the data is scaled, it is possible to train a model and make the prediction for the oil and 

gas production of the target wells. Different machine learning models exist to predict the 

production of these wells. For this thesis, 4 models were trained, and their results are 

compared: a linear regression model, a decision tree regression model, a random forest 

regression model, and a support vector machine model.  

The training data set consists of 20 wells. In order to measure the performance of the model, 

it is important to create a subset of wells to build the model (18 wells), called a learning set, 

and a smaller subset (2 wells), called a test set, to test the model. Cross validation will be used 

for the random forest regression model and the support vector machine regression model since 

they are considered more sophisticated. Cross validation is important to make sure that the 

model is not overfitted to the particular wells used in the training of the model.  

The importance of the features used in the training of these models can be determined once 

the best model has been chosen. The most important features selected by sequential forward 

selection and sequential backward elimination will be compared to the best features selected 

by the random forest algorithm and to the correlation coefficient. Finally, the cumulative oil 

production and the cumulative gas production of the target wells will be predicted. 

This chapter present the models created and the results obtained. The first part is an overview 

of the cross-validation method used to fine tune the best models. The second, third, fourth and 

fifth part present the linear regression, decision tree regression, random forest regression and 

support vector machine regression models. In these parts, an overview of the models and their 

performance will be discussed. The sixth part discusses the feature importance as determined 

by different methods. The seventh part contains the final results of this thesis. 

5.1 K-Fold Cross-Validation 

Cross-validation is a resampling procedure used to evaluate machine learning models on a 

limited data sample. This procedure has only one parameter, k, which refers to the number of 

groups that the data set will be split into (Brownlee 2018).  

In this thesis, k is 5, which means that the data set is divided into 5 groups. Cross-validation is 

primarily used in machine learning to estimate the skill of a machine learning model on unseen 

data. The objective is to examine the performance of the model on data not used in the training. 

It is a popular method because it is simple to understand and because it generally results in a 

less biased or less optimistic estimate of the model skill than other methods, such as a simple 

train/test split. Figure 40 shows the procedure of k-fold cross validation. 

As shown in figure 40, the steps of k-fold cross validation are (Brownlee 2018): 

1. The data set is shuffled randomly. 

2. It is then split into k groups. 
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3. Each group is considered as a test data set, while the remaining groups are considered 

as a training data set. 

4. The model is fit on the training data set and then evaluated on the test data set. The 

performance of the model is determined using an evaluation score. 

5. Each observation in the data sample is assigned to an individual group and stays in 

that group for the duration of the procedure. This means that each sample is used in 

the hold out set 1 time and used to train the model k-1 times. 

 

Figure 40: k-fold Cross Validation Procedure1 

Cross validation can also be used to determine the best parameters for the machine learning 

algorithm. For this reason, 5-fold cross validation will be used to determine the best parameters 

in the decision tree regression and the support vector machine regression model. 

5.2 Linear Regression 

Regression is the process of predicting a continuous value. In regression there are two types 

of variables: a dependent variable and one or more independent variables. The dependent 

variable is the target of the prediction. The independent variables, also known as explanatory 

variables, can be seen as the causes of those states. The independent variables are shown 

conventionally by X and the dependent variable is notated by Y. A regression model relates Y 

to a function of X. The key point in the regression is that the dependent value should be 

continuous and cannot be a discrete value. However, the independent variable, or variables, 

can be measured on either a categorical or continuous measurement scale. The simplest form 

of linear regression is fitting a straight line to data. The straight-line fit is a model of the form y 

equals b plus a times x( y = b +ax) where a is commonly known as the slope, and b is commonly 

 

1 Wikipedia 2021b. 
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known as the intercept. Figure 41 shows a random data set, and figure 42 shows the linear 

regression model fitted to this data. 

 

Figure 41: Random Data for Linear Regression1 

 

Figure 42: Data with Fitted Linear Regression Model2 

 

1 Géron 2019. 

2 Géron 2019. 
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Linear regression generally does not give the most accurate predictions since it is the simplest 

form of regression. However, since it is the simplest model, it is a good starting point to see 

how close the predictions are. The accuracy of a regression model is determined by comparing 

the actual values and the predicted values. There are many different evaluation metrics that 

are used to determine how accurate the model is.  Typical performance measures are Mean 

Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and R-

squared: 

• Mean Absolute Error (MAE): It is the mean of the absolute value of the errors. This is 

the easiest of the metrics to understand since it is just average error. 

• Mean Squared Error (MSE): MSE is the mean of the squared error. It is more popular 

than Mean Absolute Error because the focus is more towards large errors. This is due 

to the squared term exponentially increasing larger errors in comparison to smaller 

ones. 

• Root Mean Squared Error (RMSE): RMSE is more sensitive to outliers than MEA.  

• R-squared is not an error but is a popular metric for accuracy a model. It represents 

how close the data are to the fitted regression line. The higher the R-squared, the better 

the model fits the data. Best possible score is 1.0 and it can be negative. 

Both the RMSE and the MAE are measure the distance between two vectors: the vector of 

predictions and the vector of target values. Various distance measures, or norms, are possible. 

Calculating the root of a sum of squares (RMSE) corresponds to the Euclidean norm. 

Euclidean norm is the length of a line segment between the two points. Computing the sum of 

absolutes (MAE) corresponds to the Manhattan norm because it measures the distance 

between two points in a city if only travel along orthogonal city blocks is possible. The 

Manhattan norm is less sensitive to outliers. Comparing the different evaluation metrics of each 

model is the best way to determine the best model to choose. 

As expected, the performance of the linear regression model was very poor when predicting 

the cumulative oil production and the cumulative gas production of the two wells of the testing 

set. Table 16 presents the performance of the linear regression model on the testing set. 

Table 16: Performance of the Linear Regression Model 

Model Performance Oil Production Gas Production 

Training Data Set Mean Value 49613 Bbl 245236 Mcf 

Training Data Set Standard Deviation 43107 Bbl 211168 Mcf 

MAE Test Set 30537 Bbl 121010 Mcf 

RMSE Test Set 34812 Bbl 148340 Mcf 

r2 Test Set - 0.70 - 0.28 

 

Table 16 shows that the model is not accurate in predicting both the oil production and the gas 

production. In fact, the model presents negative r2 scores for both the oil and gas production. 
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This means that the model does not follow the trend of the data, which means that it fits worse 

than a horizontal line. 

5.3 Decision Tree Regression 

Decision trees are versatile machine learning algorithms. They can be used for both 

classification and regression tasks. Tree models where the target variable is a discrete set of 

values are called classification trees while decision trees where the target variable can take 

continuous values are called regression trees. Decision trees are one of the most popular 

machine learning algorithms.  

A Decision tree is constructed by asking a series of questions which are meant to break down 

the data set into smaller subsets. It uses binary splitting to determine the target values. If the 

decision tree is well constructed, every question cuts the number of options by half. In machine 

learning implementation of decision trees, each node in the tree splits the data into two groups 

using a cut-off value (Vanderplas 2017). Figure 43 shows some data, and figure 44 shows the 

different steps used by a decision tree algorithm to divide the data.  

 

Figure 43: Random Data for Decision Tree1 

As seen in figure 44, the decision tree iteratively splits the data along using a quantitative 

criterion, and at each level assign the label of the new region created according to the majority 

of data points it contains. After the first split (depth = 1) , the upper part contains points that 

are similar, while the lower part contains points that are different. This means that in the second 

 

1 Vanderplas 2017. 
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split (depth = 2), the upper part does not need to be subdivide, while the lower part is 

subdivided. 

 

Figure 44: Different Steps of Data Splitting Using a Decision Tree1 

Decision tree regression is similar to decision tree classification. The main difference is that it 

predicts a value in each node instead of predicting a class (Géron 2019). Figure 45 shows an 

example of a decision tree regressor. 

 

Figure 45: Decision Tree Regression2 

Using the figure above, it is possible to determine the value of a new instance using the value 

of x1. For example, if x1=0.002, the predicted value is 0.854. This prediction is the average 

value for the 20 samples that are in this node, with a resulting MSE of 0.018.  

 

1 Vanderplas 2017. 

2 Géron 2019. 



58 
 

 

A high number of levels can result in an overfitted decision tree. Overfitting means that details 

of the particular data are used to split the data rather than the overall properties of the 

distributions they are drawn from. Figure 46 shows the same data set used in the figures above 

using two different decision tree models. 

 

Figure 46: Overfitting in Decision Trees1 

The figure above shows that in some areas, the two trees produce similar results (e.g., in the 

four corners), while in other areas, the two trees give very different classifications (e.g., in the 

regions between any two clusters). Both trees can give useful information, so using information 

from many decision trees at the same generally yields better results that from a single decision 

tree. Random forests are a machine learning algorithm that uses a number of decision trees 

to give better results. 

The decision tree regression model performance can be misleading because of the overfitting 

problem. For this reason, it is simply used to be compared it with the random forest regression 

model.  Table 17 shows the performance of the decision tree regression model. 

Table 17: Decision Tree Regression Model Performance 

Model Performance Oil Production Gas Production 

Training Data Set Mean Value 49613 Bbl 245236 Mcf 

Training Data Set Standard Deviation 43107 Bbl 211168 Mcf 

MAE Test Set 3797 Bbl 113435 Mcf 

RMSE Test Set 4345 Bbl 129140 Mcf 

r2 Test Set 0.97 0.03 

 

The performance of the decision tree looks very promising at first glance for the cumulative oil 

production. However, as discussed earlier, decision trees tend to overfit the data. Therefore, 

the results cannot be trusted, and it is better to use the results of a random forest to avoid the 

 

1 Vanderplas 2017. 
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overfitting problem. The performance the model when predicting the cumulative gas production 

of the wells in the test set is not good.  

5.4 Random Forest Regression 

To reduce the effect of overfitting, it is possible to combine a number of decision trees. It makes 

use of an ensemble of parallel estimators in a method called bagging. Each one of these 

estimators overfits the data, but the results can be averaged to find better results. A random 

forest is an ensemble of randomized decision trees (Vanderplas 2017). Figure 47 shows the 

result of a classification task when using a single decision tree (left) and when using a bagging 

of 500 decision trees (right). 

 

Figure 47: Single Decision Tree (Left) versus a bagging of 500 Decision Trees (Right)1 

As seen in the figure above, the result of the 500 decision trees with bagging presents a 

smoother dividing line than the single decision trees. This result is an indication of a less 

overfitted model, which is one of the main reasons behind the use of random forests. Random 

forests are generally very fast, since they are based on simple decision trees (Vanderplas 

2017). 

The random forest model is controlled by a number of hyperparameters. These 

hyperparameters can change the performance of the model significantly. To determine the 

best hyperparameters for the random forest regression model, it is possible to use randomized 

search. Randomized search evaluates a given number of random combinations by selecting 

a random value for each hyperparameter at every iteration (Géron 2019). In addition to 

randomized search, it is possible to use cross validation to determine the best 

hyperparameters for the model. The cross-validation score is helpful to inspect the 

performance of the model before using it on the testing set. In this case, 5-fold cross validation 

was used. Two different models were trained, the first to predict the cumulative oil production 

and the second to predict the cumulative gas production. Table 18 shows the results of the 

 

1 Géron 2019. 
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random forest regression model. It shows that the random forest regression model did not 

perform very well when predicting the oil production. However, the performance of the model 

when predicting the cumulative gas production is very good. The r2 score is 0.84, which is 

excellent. The MAE and RMSE are also very good. This means that this model will be used to 

predict the gas production of the target wells. 

Table 18: Random Forest Regression Model Performance 

Model Performance  Oil 

Production 

Gas 

Production Training Data Set Mean Value 49613 Bbl 245236 Mcf 

Training Data Set Standard 

Deviation 

43107 Bbl 211168 Mcf 

RMSE Cross Validation  33766 Bbl 145273 Mcf 

MAE Test Set 17221 Bbl 52071 Mcf 

RMSE Test Set 24183 Bbl 52684 Mcf 

r2 Test Set 0.18 0.84 

5.5 Support Vector Machine Regression 

A Support Vector Machine (SVM) is a versatile machine learning model. It can be used to 

perform classification, regression, and outlier detection. The idea behind SVMs is to create a 

separating margin between classes, and to make it as wide as possible. Figure 48 presents a 

random data set with two classes, with different possible lines separating the two classes 

 

Figure 48: Random Data for Support Vector Machines1 

 

1 Vanderplas 2017. 
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Figure 48 shows that there are many possible lines that can be drawn to divide the two classes. 

A new data point, marked with the X, is classified in different classes depending on the line 

chosen to divide the two classes. The main idea behind support machine vectors is to draw a 

margin with a certain width, instead of a line, to divide the two classes. This is shown in figure 

49. 

 

Figure 49: Support Vector Machine with Margins and Support Vectors1 

As shown in the figure above, the objective of the SVM is to draw the line that maximizes the 

margin between the two classes. This margin is drawn with the dashed lines. The points that 

touch the margin are circled in black. They are called support vectors. SVMs are only affected 

by points near the margin. 

SVM regression is based on the same principle as SVM classification. The difference is that 

the objective is to fit the highest number of instances on the street while minimizing instances 

outside the streets. Figure 50 presents an example of SVM regression. It shows the impact of 

the width of the margin in SVM regression. The width is controlled by ϵ, and the value of ϵ 

changes the regression result. 

As with the random forest model, the support vector machine is also controlled by a number 

of hyperparameters. To determine the best hyperparameters for the support vector machine 

regression model, randomized search was also used, as well as 5-fold cross-validation, to 

determine the best hyperparameters for the model.  

 

1 Vanderplas 2017. 
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Figure 50: SVM Regression with Different Margin Width1 

Two different models were trained, the first to predict the cumulative oil production and the 

second to predict the cumulative gas production. Table 19 presents the results of the SVM 

regression model. It shows that the model performed very well in predicting the oil production, 

with a MAE of 12931 barrels and a RMSE of 15000 barrels. The r2 score of 0.68 is very good. 

On the other hand, the gas production prediction was poor. 

Table 19: Support Vector Machine Regression Model Performance 

Model Performance  Oil Production Gas Production 

Training Data Set Mean Value 49613 Bbl 245236 Mcf 

Training Data Set Standard Deviation 43107 Bbl 211168 Mcf 

RMSE Cross Validation  36449 Bbl 160876 Mcf 

MAE Test Set 12931 Bbl 123730 Mcf 

RMSE Test Set 15000 Bbl 133594 Mcf 

r2 Test Set 0.68 -0.04 

 

5.6 Feature Importance 

Determining the most important features can be done once the models have been trained. 

Knowing which features influence the production the most is important for future projects or if 

a change to the hydraulic fracturing plan of one of the wells is considered. 

Sequential Feature Selector adds (forward selection) or removes (backward selection) 

features to form a feature subset in a greedy fashion. At each stage, the best feature to add or 

remove is chosen based on the cross-validation score of an estimator. 

 

1 Géron 2019. 
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This type of feature selection belongs to the family of greedy search algorithms which are used 

to reduce an initial d-dimensional feature space to a n-dimensional feature subspace where k 

is predefined and n < d. The objective is to select a subset of the features that are most relevant 

to the problem, which results in optimal computation efficiency while achieving reduced 

generalization error by filtering out irrelevant features (that act as a noise) (Ajitesh Kumar 

2020).   

Sequential feature selection is a greedy procedure where, at each iteration, the best new 

feature is selected based a cross-validation score. The selection is done using k-Fold Cross-

Validation.  

The aim of sequential forward selection is to search for the most important k features from the 

whole set of features. In this thesis, the 10 most important features are selected (n=10). Figure 

51 shows the steps in sequential forward selection (SFS):  

 

Figure 51: Sequential Forward Selection Steps1 

As shown in the figure above, sequential forward selection is conducted using the following 

steps: 

1. The first step is to determine the best feature based on  a certain performance 

measure. In this thesis Root Mean Squared Error (RMSE) is used. 

2. Once the best feature is selected (B), the next step is to form pairs using this best 

feature and the remaining features (A,C,D,E).  

3. The best pair (BC) is selected and used to form triplets using this pair and the 

remaining features (A,D,E).  

 

1 Rudolf K. Fruhwirth 2018. 
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4. This procedure continues until the predefined number of features is reached.  

Sequential backward elimination (SBE) is closely related. In this case, the procedure is started 

with the whole set of features, and one by one the least important features are removed until 

the desired number of features is reached.  

In the case of the random forest model, it is possible to obtain the most important features 

considered by the model. It is therefore possible to compare what features are considered 

important by the SVM regression model using SFS and SBE, the features considered most 

important by the random forest (RF) model and the features with the highest correlation 

coefficient. Table 20 shows the top 10 most important features when predicting the cumulative 

oil production. 

Table 20: Top 10 Most Important Feature in Cumulative Oil Production Prediction 

SVM SFS SVM SBE RF Feature 

Importance 

Correlation 

Coefficient 

TOTAL_DAYS TOTAL_DAYS SLICKWATER NET_PROD_DAYS 

MESH 40/70 MESH 100 UPPER_PERF TOTAL_DAYS 

BROWN SAND MESH 40/70 NET_PROD_DAYS TOTAL_STAGES 

VOLUME_PUMPED PROPPANT_MASS PROPPANT_MASS PROPPANT_MASS 

HYBRID WHITE SAND WELL_LATITUDE AVERAGE_STP 

SLICKWATER HYBRID WELL_LONGITUDE LOWER_PERF 

FRACTURE_GRADIENT SLICKWATER TOTAL_DAYS TOP_DEPTH 

WELL_LONGITUDE WELL_LONGITUDE TVD_DEPTH MIN_STP 

MIN_STP WELL_HORZ_LENGTH LOWER_PERF WELL_LATITUDE 

WELL_HORZ_LENGTH NET_PROD_DAYS MIN_STP DAY_NUMBER 

 

The correlation coefficient only considers the numerical features. However, the SFS, SBE and 

the random forest consider both numerical and categorical features. Table 20 shows that the 

only feature considered one of the top 10 important features by all methods is the total number 

of days (“TOTAL_DAYS”). This proves that this feature, which did not originally exist in the 

initial data set, is very important. Fracturing fluid “Slickwater” is the most important categorical 

feature since it is present in the top 10 features of three calculation methods. The fracturing 

fluid  “Hybrid” is important for the SVM regression model. Some numerical features are present 

in three of the four lists: “WELL_LONGITUDE”, “MIN_STP”, “PROPPANT_MASS_USED” and 

“NET_PROD_DAYS”.  

The top 10 most important features when predicting the cumulative gas production are different 

than for the cumulative oil production, as shown in Table 21.  
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Table 21: Most Important Feature in Cumulative Gas Production Prediction 

SVM SFS SVM SBE RF Feature 

Importance 

Correlation 

Coefficient 

MESH 20/40 TOTAL_DAYS WELL_LATITUDE TOTAL_DAYS 

MESH 30/50 MESH 20/40 TOTAL_DAYS PROPPANT_MASS 

PROPPANT_MASS BROWN SAND UPPER_PERF NET_PROD_DAYS 

BROWN SAND WHITE SAND NET_PROD_DAYS TOTAL_STAGES 

WHITE SAND HYBRID TOP_DEPTH WELL_LONGITUDE 

HYBRID WATER TOTAL_STAGES UPPER_PERF 

SLICKWATER FRACTURE_GRADIENT WELL_LONGITUDE WELL_LATITUDE 

WELL_LATITUDE TVD_DEPTH LOWER_PERF DAY_NUMBER 

UPPER_PERF WELL_LATITUDE PROPPANT_MASS MIN_STP 

NET_PROD_DAYS LOWER_PERF HYBRID TVD_DEPTH 

 

Both sequential feature selection methods (SFS and SBE) for the SVM regression model 

considered the categorical variables as the most important. Some categorical variables are 

present for both methods, like “Brown sand”, “White sand”, while “Hybrid” is present in both 

and also in the RF feature importance list. The most important numerical attribute is the well 

latitude “WELL_LATITUDE” since it is present in all four lists. Other numerical attributes are 

present in three of the four lists: “UPPER_PERF”, “NET_PROD_DAYS”, 

“PROPPANT_MASS”, and “TOTAL_DAYS”. 

5.7 Final Results  

Since all models have been trained and tested on the testing set, it is possible to determine 

the model that will be used to predict the oil and gas production of the 7 wells of the target set, 

which is the main objective of this thesis. The final comparison between the machine learning 

regression models used is shown in table. The model considered best for the cumulative oil 

production prediction and the model considered best for the cumulative gas production 

prediction will be used for the final predictions of the 7 wells of target data set. Table 22 shows 

the performance of different machine learning models in the prediction of the cumulative oil 

production of the 2 wells of the test set.  

Table 22: Cumulative Oil Production Prediction Performance of the Different Models Trained 

Performance Linear Regression Decision Tree Random Forest SVM Reg 

MAE 30537 Bbl 3797 Bbl 17221 Bbl 12931 Bbl 

RMSE 34812 Bbl 4345 Bbl 24183 Bbl 15000 Bbl 

R2 - 0.70 0.97 0.18 0.68 
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While the best performance was obtained by the decision tree regression model, the result 

seems to be overfitted to the data used in training. This is also proved by the fact that the 

random forest regression model performed worse than the decision tree model, which is 

unusual. For this reason, the chosen model to determine the cumulative oil production of the 

7 wells in the target data set is the support vector machine regression model. The final 

predictions of the cumulative oil production of the 7 wells of the target data set are present in 

figure 52 : 

 

Figure 52: Final Cumulative Oil Production Prediction of the 7 Wells of the Target Data set 

Figure 52 shows that most wells in the target data set are predicted to have a cumulative oil 

production between 35000 and 75000 barrels. The only two exception are well 13, which is 

predicted to be a very good producer reaching more than 100000 barrels, and well 27 which 

is predicted to be a bad oil producer.  

The cumulative gas production predictions were calculated with different models that were 

optimized to predict the gas production. Table 23 shows the performance of different machine 

learning models in the prediction of the cumulative gas production of the 2 wells of the test set. 

Table 23: Cumulative Gas Production Prediction Performance of the Different Models Trained 

Performance Linear Regression Decision Tree Random Forest SVM Reg 

MAE 121010 Mcf 113435 Mcf 52071 Mcf 123730 Mcf 

RMSE 148340 Mcf 129140 Mcf 52684 Mcf 133594 Mcf 

R2 - 0.28 0.03 0.84 -0.04 
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In the case of the cumulative gas production, the only model that presents good results is the 

random forest regression model. The r2 score of 0.84 is excellent, and the MAE and RMSE 

are also very good. This model will therefore be used to predict the cumulative gas production 

of the 7 wells of the target data set. The results are presented in figure 53. 

 

Figure 53: Final Cumulative Gas Production Prediction of the 7 Wells of the Target Data set 

Figure 53 shows that most wells in the target data set are predicted to have a cumulative gas 

production between 320000 and 170000 Mcf. The only two exception are well 13, which is 

predicted to be both a very good oil producer and a very good gas producer, reaching more 

than 450000 Mcf, and well 5 which is predicted to produce around 100000 Mcf. 
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6 Conclusion 

Machine learning has a big future in the oil and gas industry. Machine learning algorithms can 

be used to predict the performance of wells if enough information about similar or adjacent 

wells is provided. In this thesis, the cumulative oil and gas production of a number of multi-

fractured horizontal wells is predicted using data from wells located in the same field.  

Both data sets provided, the training data set and the target data set, contained a lot of 

redundant and wrong data. While the number of rows was relatively small for a machine 

learning problem, the number of features was important and proved to be sufficient to obtain 

good and logical predictions. 

The biggest part of this thesis project, as with most data science and machine learning 

problems, was cleaning the data and preparing it for the machine learning models. A number 

of columns were deleted, while other columns hat to be examined to extract information that 

turned out to be very important for the predictions. Examples of features that were not present 

in the correct form in the initial data set are fracturing fluid information, proppant mesh size 

information and proppant type information, in addition to information about the hydraulic 

fracturing stages. 

Once the data was cleaned and prepared, exploratory data analysis was conducted. This part 

of the thesis was important to examine the impact of various features on the cumulative oil 

production and cumulative gas production. New attributes were created, which were some of 

the most important features used by the different machine learning models to make good 

predictions. The data also needed to be prepared for the different models since it was not 

useable in its initial form. One-hot encoding was used for categorical data, while 

standardization was used for numerical data. 

The final part of the object was the creation of different regression models to determine the 

cumulative oil production and cumulative gas production of the target wells. Four models were 

created, which were linear regression, decision tree regression, random forest regression and 

support vector machine regression. Cross validation was used with the more sophisticated 

models, and the data was split into a learning set and a testing set to measure the performance 

of the different models. The most important features for different models were determined 

using sequential feature selection, among other techniques. These features are important to 

determine what can be changed in the hydraulic fracturing job in order to improve the predicted 

production of the wells. 

The support vector machine regression model was the most accurate in predicting the 

cumulative oil production, while the random forest regression model was the most accurate in 

predicting the cumulative gas production. These models were then used to predict the 

cumulative oil and gas production of the target wells. The results were logical and helpful in 

determining the best wells for oil production and gas production. 

This work was conducted using machine learning algorithms. The future direction can be to 

obtain more data from other adjacent wells. This data can help improve the performance and 

the robustness of the models used. More data can also allow for the training of neural networks, 
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which generally required large amounts of data. It is also possible to compare the results of 

the machine learning models with the predictions of some oil and gas software typically used 

to predict oil and gas prediction.  
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