
 

i 

 

 

 
 

 

 

 

 

 

 
 

 

 

 
 

 





 

iii 

 

  

I dedicate my Thesis to my father Wolfgang Lindner († Nov 29th, 2005). 

 

“Science can amuse and fascinate us all, but it is engineering that changes the world.” 

- Isaac Asimov 

 



 

iv 

 



 

v 

 

 
 

 

 

 
 

 

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen 

Quellen und Hilfsmittel nicht benutzt, und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe. 

 
Ich erkläre, dass ich die Richtlinien des Senats der Montanuniversität Leoben zu "Gute 

wissenschaftliche Praxis" gelesen, verstanden und befolgt habe. 

 
Weiters erkläre ich, dass die elektronische und gedruckte Version der eingereichten wissenschaftlichen 

Abschlussarbeit formal und inhaltlich identisch sind. 

 

Datum 06.11.2020 

 

 

 

Unterschrift Verfasser/in 

Andreas, Lindner 

  

EIDESSTATTLICHE ERKLÄRUNG 



 

vi 

 

Abstract  

Unplanned and unexpected events during drilling a well do not only lead to a massive 

loss of resources by increasing the amount of non-productive time, but also cause the 

necessity of plugging a well and starting a contingency side-track, which will add 

environmentally and economically risks to the originally planned project. Therefore, 

detecting the undesirable downhole drilling trouble at the earlier stages may help avoid 

the matters above. 

Several surface drilling parameters can be used to predict the downhole drilling 

problems in real-time. Nevertheless, torque and standpipe pressure are considered to be 

the most critical and useful parameters. Therefore, several methods utilizing the two 

indicated surface parameters for detecting the downhole drilling problems were 

published in the last decade. However, these methods have flaws, mainly related to 

delays in receiving the necessary information, uncertainties associated with involved 

data, human error by potential incomplete data sets (due to sensor misreading), as well 

as human error interpretation of the data. Thus, linking sequential pattern recognition 

for possible drilling event determination is impacted. Consequently, recognizing drilling 

parameter anomalies in real-time using one single approach, such as data-driven or 

model-driven, can lead to an excessive increase in the nonproductive time due to the 

generation of undue false alarms.  Thus, integrating a stochastic model with a data-

driven model will reduce the associated uncertainties and make the predictive model 

more effective.  From this perspective, the ultimate goal of this thesis is to develop a 

hybrid model that provides better accuracy in detecting abnormal behavior of measured 

drilling parameters such as standpipe pressure and torque. 

A standalone application based on a hybrid model was developed during the thesis 

work by the implementation of statistical calculations based on actual and predicted data 

channels. As a result, uncertainty windows are created and compared to the actual data 

points in order to detect abnormal drilling behavior and triggering alerts to provide 

warnings to the user. In order to evaluate and determine the shortcomings of the 

developed workflow, the developed hybrid model, a case study was conducted. The 

final results of the case study reveal that the workflow is reliable and easy to use. 
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Zusammenfassung 

Ungeplante und unerwartete Ereignisse während des Bohrens eines Bohrlochs führen 

nicht nur zu einem massiven Ressourcenverlust, indem die Menge an unproduktiver 

Zeit erhöht wird, sondern verursachen auch die Notwendigkeit, ein Bohrloch zu 

verschließen und eine Nebenbohrung aufgrund unvorhergesehener Ereignisse zu 

starten, die neben ökologischen Auswirkungen die wirtschaftliche Risiken für das 

ursprünglich geplante Projekt erhöht. Daher kann das Erkennen der unerwünschten 

Bohrprobleme im Bohrloch in den früheren Stadien dazu beitragen, die oben genannten 

Probleme zu vermeiden. 

Verschiedene Oberflächenbohrparameter können verwendet werden, um die 

Bohrlochprobleme in Echtzeit vorherzusagen. Trotzdem werden Drehmoment und 

Standrohrdruck als die kritischsten und nützlichsten Parameter angesehen. Daher 

wurden im letzten Jahrzehnt mehrere Methoden veröffentlicht, bei denen die beiden 

angegebenen Oberflächenparameter zur Erkennung der Bohrprobleme im Bohrloch 

verwendet wurden. Diese Verfahren weisen jedoch Mängel auf, die hauptsächlich auf 

Verzögerungen bei der Übertragung der erforderlichen Informationen, auf 

Ungenauigkeiten im Zusammenhang mit den verwendeten Daten, auf menschliches 

Versagen durch möglicherweise unvollständige Datensätze (aufgrund von 

Sensorfehlern) sowie auf menschliches Versagen bei der Interpretation der Daten 

zurückzuführen sind. Somit wird die Verknüpfung der sequentiellen Mustererkennung 

für eine mögliche Bestimmung des Bohrereignisses beeinflusst. Folglich kann das 

Erkennen von Anomalien von Bohrparametern in Echtzeit aufgrund eines einzigen 

Ansatzes, z. B. datengesteuert oder modellgesteuert, zu einer übermäßigen Erhöhung 

der unproduktiven Zeit führen, wenn Fehlalarme generiert werden. Die Integration 

eines stochastischen Modells in ein datengesteuertes Modell verringert somit die damit 

verbundenen Ungenauigkeiten und macht das Vorhersagemodell effektiver. Aus dieser 

Perspektive besteht das ultimative Ziel dieser Arbeit darin, ein Hybridmodell zu 

entwickeln, das eine erhöhte Genauigkeit bei der Erkennung abnormalen Verhaltens 

gemessener Bohrparameter wie Standrohrdruck und Drehmoment bietet. 

Eine eigenständige Anwendung basierend auf einem Hybridmodell wurde während der 

Arbeit durch die Implementierung statistischer Berechnungen basierend auf 

tatsächlichen und vorhergesagten Datenkanälen entwickelt. Infolgedessen werden 

Unsicherheitsfenster erstellt und mit den tatsächlichen Datenpunkten verglichen, um 

abnormales Bohrverhalten zu erkennen und Alarme auszulösen, um den Benutzer zu 

warnen. Um die Mängel des entwickelten Workflows, des entwickelten Hybridmodells, 

zu bewerten und zu analysieren, wurde eine Fallstudie durchgeführt. Die endgültigen 

Ergebnisse der Fallstudie zeigen, dass der Workflow zuverlässig und einfach zu 

verwenden ist. 
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Chapter 1 Introduction 

1.1 Overview 

Drilling operations are always encountered with the risk of equipment, procedure, and 

downhole environmental related issues, which can influence drilling performance 

negatively and, in a worst-case scenario, lead to loss of the well being drilled. Common 

problems that are encountered during drilling formation can be classified into two 

categories, minor issues related to hole cleaning or bit balling, and major issues such as 

twist offs, stuck pipe, fluid losses, kicks, and critical hole conditions like a tight hole, 

washouts through to the collapse of the hole.  It is important to understand that drilling 

problems appear at each well being drilled and can be mitigated to an acceptable level 

by keeping control over the drill string and downhole conditions. There are several 

routine options and state of the art procedures to detect or recognize potential risk and 

issues during drilling. However, most of them required human interference; hence, there 

is the potential of such risks being missed or might be recognized too late, and it will be 

no enough time to take the proper actions to reduce the impacts. 

Continuously monitoring the surface torque and standpipe pressure data provides a 

good indication of the possible issues mentioned above; hence most of the existing 

methods that deal with identifying the downhole problems rely on these two 

parameters. In the state-of-the-art drilling industry, surface sensor data is used to apply 

simulation models and algorithms and to evaluate the actual data that is acquired, e.g., 

via WITSML real-time data streams.  

- Torque and drag simulation vs. real-time monitoring 

- Deterministic approach for pressure loss calculation 

- Standpipe pressure simulation vs. real-time monitoring 

- Analysis of historical data (offset wells) 

- Machine learning approach 

Torque and drag simulation and monitoring as a down-hole problem detection method 

were introduced decades ago. Different simulations are performed upfront to the good 

operations according to varying equipment and conditions that are being expected. Once 

drilling is performed, torque and hook load data are being recorded in real-time, and a 

data plot based on the actual data will be generated on the fly. The actual “torque and 

drag plot” can be compared to the simulated data, and deviations from the expected 

range and potential upcoming drilling issues respectively can be identified.  

Major disadvantages of the torque and drag analysis are the required pre-work 

simulation on the one hand and that the required analysis parameters on the other. For 

example, once a component of the drill string is being changed, the simulated curve will 

not apply realistically anymore, leading to additional re-simulation work.  Another 

disadvantage is that the actual torque and hook load data could potentially be 

misinterpreted due to invalid sensor data and human factors. If the simulation was done 

based on offset data, this applies another factor of uncertainty. 

A common method to estimate the pressure loss of the system is a deterministic 

approach. It is a complex method with consideration of drilling mud rheology, 
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downhole conditions, and time-related effects on the mud properties and equipment 

related input. On the market, a wide range of hydraulic simulation software tools is 

available. Real-time applications use the streaming mud logging sensor data, that is, e.g., 

transmitted via WITSML or WITS0, as an input for the simulator and recalculate the 

pressure regimes. 

1.2 Motivation 

As it was clarified in the previous section, all of the mentioned methods have flaws; the 

points below summarize the most obvious ones: 

• Manual input of some specific parameters that need to be identified in the 

laboratory and can often not be provided frequently to update the models.  

• Lack of a systematic approach for filling up the missing data. As a result, relevant 

input data is reduced, or the filling is done by the human, which could lead to 

uncertainties due to invalidity and human factors.  

• Use of the off-set well data as the main source for building the models. In most 

cases, such data never match the exact environmental conditions of another 

wellbore; hence its scope of application is limited to operational performance 

related analysis and planning, but not to downhole conditions related 

simulations in terms of health safety and environmental (HSE) aspects. 

• For machine learning methods, usually, they used to fill data gaps in case of 

missing timestamps of a specific sensor data channel without considering 

possible deviations related to the uncertainty of the provided data. This gave the 

basic idea for extending sensor data-driven neural networks by calculating an 

operational window after comparing predicted and actual data to make the 

predictive model more effective. 

1.3 Objective 

The prime objective of this thesis is to develop a hybrid model that provides better 

accuracy in detecting abnormal behaviors of measured drilling parameters such as hook 

load, standpipe pressure, torque, flow-out, and validate the model by using made-up 

cases of manipulated data. It was decided to focus on torque and standpipe pressure 

data since these are significant for detecting and predicting the following drilling 

problems: 

- Stuck pipe  

- Losses 

- Kick 

- Tight hole 

- Washout 

- Hole collapse 

- Hole cleaning 

- Twist off 

- Bit balling 
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In order to accomplish the prime goal of the thesis a  set of sequential objectives were 

defined; 

1. Data Collection:  Get in touch with the supporting company with data enough 

for performing what is aimed. It should relate to at least sequential 03 (three) 

hours of drilling, or sequential drilling data of a drilled joint, as a minimum 

necessity. The more data is provided, the better it is.  

2. Data filtering and processing: All data received may be susceptible to gaps, 

unreliable data-points, and outliers, needing filtering and processing in order to 

be able to be used for the purpose of the thesis. This is intended to be done with 

a developed script, allowing fast processing in a more automated manner.  

3. Development of predictive model: The predictive model to be programmed 

using to be used is part of this step. Once data is collected and processed, several 

predictive models will be generated based on the number of drilling parameters 

to be studied.  

4. Development of alert window sub-function and signs shown: Based on step 3 

and as an enhancement of the coding, determination of window for triggering 

different alerts and also different levels is to be defined and implemented. 

5. Stand-alone application: A user interface will be generated to provide a quick 

evaluation of real-time data. 

6. Model Validation: At this stage, with all developed, the test is to be run, results 

analyzed, corrective measures applied. Tests will be performed based on 

historical datasets from Equinor’s “Volve” open source. 

 

1.4 Thesis Structure  

The research was undertaken, which is covered in Chapter 2, prior to the development 

work for the creation of a standalone application. Starting with the most common issues 

arising in the daily business of a drilling rig, state of the art procedures for detecting 

those issues are explained in detail, as well as up-to-date developments in the field of 

machine learning approaches are introduced. 

Chapter 3 gives insights into the methodology behind the developed standalone 

application. Data processing, building the predictive models, and statistical calculations 

are explained in detail. Considerations for triggering alerts and building the standalone 

application are illustrated further. 

Finally, Chapter 4 compiles the results of a performed case study, where manipulated 

data was used to test the capabilities of the standalone application. Different scenarios 

have been created by manipulating original data sets without abnormal drilling 

behavior to evidently abnormal trends in the data channels is to be investigated. 
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Chapter 2 Abnormal Drilling Behaviors 

Verification Methods 

2.1 Overview 

This chapter provides an overview of common drilling problems, their prediction, 

detection, and mitigation methods of today’s drilling industry. There are many problems 

that can occur whilst drilling is performed. Figure 1 illustrates an example for the 

distribution of root causes for average non-productive time (percentage compared to 

drilling days) compiled from 263 wellbores drilled over six years and below 600 feet 

water depth (waiting on environmental conditions excluded). It can be noticed that the 

majority of the problems are related to equipment failures and downhole issues, for 

instance, stuck pipe, kicks, or loss of circulation. 

 

Figure 1: Example non-productive time (NPT) distribution (modified from Pritchard et 

al. 2012) 

The main focus of the following subchapters lies in the explanation of the major issues 

that could be avoided by considering methods for verifying abnormal drilling behavior 

and techniques of monitoring torque and standpipe pressure trends. 
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2.2 Drilling Problems 

2.2.1. Pipe Sticking 

Pipe sticking is the major reason for causing the drill string to get stuck (stuck pipe). A 

differentiation between differential sticking that is induced by differential forces in the 

borehole and mechanical sticking, which the origin may be subsurface material 

(formation) or equipment related. 

2.2.2. Differential Sticking 

Differential sticking can occur when the drill string gets in contact with the filter cake. 

While normal drilling is carried out with slight overbalance (higher than the pore 

pressure of the formation and equal to the filter cake’s differential pressure), once the 

drill string is partly embedded in the filter cake, the pressure will be different in the fluid 

surrounding the area of the string and therefore forcing it to get stuck with time. 

Figure 2 illustrates the conditions that lead to differential sticking. 

 

Figure 2: Differential sticking (Hussain Rabia, 2015) 

It is important to mention that any differential force will add to the forces that are already 

present in the drill string related to the path and geometry of the well. The magnitude 

of overbalance and friction is critical to the magnitude of the differential sticking force 

(overpull). The friction factor is prone to increase over time. The following formula (1) 

considers pressure conditions and friction factor to calculate the differential sticking 

force. 

𝐷𝑆𝐹 = (𝐻𝑠 − 𝑃𝑓)×𝐴𝐶×𝑓𝑓    (1) 
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where DSF is the differential sticking force in lb., Hs the hydrostatic pressure of the mud, 

Pf the formation pressure in psi, Ac the effective contact area in in² (2) and ff represents 

the friction factor. 

Ac=2h×√ {(
Hs

2
− tmc)

2
− [

Hs

2
− tmc (

Hs−tmc

Hs−𝑂𝐷𝑝
)]

2
}   (2) 

Where h is the thickness of the permeable zone, tmc the thickness of the filter cake in 

inches and OPp the outer diameter (OD) of the drill pipe or collars in inches. 

Figure 3 shows an example of the magnitude of overpull at a contact perimeter of 1200 

in² resulting in 1200000 lb. 

 

Figure 3: Magnitude of differential sticking force (Hussain Rabia, 2015) 

The difficulty in early detection of differential sticking is that circulation will not be 

influenced (no change of surface parameters). The major indicator is an abrupt increase 

of surface torque values (torque and drag), in which the alerting period may be too short 

to prevent it completely from getting stuck. After differential sticking is being noticed, 

mud weight can be reduced while circulating to mitigate the symptoms; however, this 

method will increase the danger of an unrecognized kick. Other methods are displacing 

the choke with seawater (offshore well) and the U tube method (Hussain Rabia, 2015). 

2.2.3. Mechanical Sticking 

The leading cause of mechanical sticking is related to pack off or formation and bottom 

hole assembly (BHA). Partly collapsed hole material, as a result of insufficient hole 

cleaning or formation instability, is “bridging” around the drill string, where the pipe 

diameter changes downwards, or it is “packing off” between the borehole wall and the 

pipe shortly above the drill bit and prevents the ability to pull back-wards while rotating 

the string is still possible (overpull). Besides decreasing drilling performance, torque will 

increase before getting stuck. Hence torque and drag simulation and monitoring are 

commonly done, and the developed torque window could ease early detection of it. The 

following figure illustrates packing off and bridging behavior while drilling. 
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Figure 4: Sketch of "pack off" (a) and "bridging" (b) (Hussain Rabia, 2015) 

Especially highly inclined wells tend to form cutting beds on the low side of the well 

while drilling, and removing them can be impossible. Once the string is being pulled, 

the cuttings bed will accumulate around the drill string and stuck the pipe mechanically 

(Hussain Rabia, 2015). Figure 5 shows how hole cleaning conditions change with the 

well paths deviation. While fast cleaning is appearing at lower inclinations (<30°), the 

speed of cleaning may be reduced with increasing deviation. At the inclined section >65°, 

a cuttings bed tends to be developed. Hence proper hole cleaning should be carried out 

according to the degrees of inclination and after guidelines for effective hole cleaning 

(Abdelaziz Gabr, 2017). 

 

 

Figure 5: Guidelines for effective hole cleaning (Abdelaziz Gabr, 2017) 
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Referring to the conditions illustrated in Figure 5, well inclination and cuttings bed 

behavior can be categorized into three types (Type 1-3) (Asad Elmgerbi, 2019). 

Type one (I) is valid for wellbore inclinations below 30° and can form pack-offs or 

bridging, as illustrated in Figure 4. Type two (II) is valid for an inclination of 30°-65°. In 

such cases, the particles tend to move downwards again after a velocity decrease during 

uplift and due to gravity. The particles will be held in a state of local circulation between 

the drill string and the borehole wall and may lead to stuck pipe conditions due to 

accumulation. The particles will form accumulations, and the so-called phenomenon of 

avalanche effect can appear, whereas an abrupt downward movement of the 

accumulated cuttings is induced and will cause the drill string to be stuck. 

Type three (III) is valid for highly inclined wells of more than 65°. The particles will form 

accumulations at the low side of the well. Pipe rotation is a critical parameter to avoid 

formation damage and viscous coupling of particles onto the drill string (maintain 

optimum RPM). 

Reaming and circulating the hole clean needs to be performed carefully to avoid the 

cuttings bed to slide down (avalanching). A common procedure is to perform frequent 

short trips. Sufficient hole cleaning is highly related to the mud parameters, flow rate, 

the cuttings size, and their annular velocity and can be influenced by changing the mud 

system (fluid properties, rheology, additives, solvents, etc.), the setup of the bottom hole 

assembly (can cause dog legs, etc.) or hydraulics (pump rate, pump volume, etc.), hence 

proper prediction of the pressure losses of the complete system is obligatory. 

In general, turbulent flow is desired for optimum hole cleaning behavior. However, for 

laminar flow regimes, the flow rate needs to be increased accordingly, although the 

optimum flow rate is hard to determine under realistic conditions (unconsolidated 

formations, cutting size, etc.) [Hussain Rabia, 2015]. 

The predicted standpipe pressure window could therefore improve procedures of 

adjusting the flow parameters at an early stage of developing hole cleaning problems, as 

the pressure losses are reflecting changes in the flow as well. 

2.2.4. Tight Hole 

Tight holes are usually developing in reactive formations (e.g., shales) and lead to 

restricted rotary or vertical movement of the drill string and may end up in stuck-pipe. 

The effect can be intensified by the particular sticking mechanism. The symptom can be 

detected by increasing, and erratic rotary torque and drag (overpull to lift the pipe or 

increased weight when lowering the pipe), as well as via monitoring the standpipe 

pressure (or pump pressure) since an increasing trend is a clear indicator of tight hole 

formation. 

The swelling of shale appears when the filtrate from the drilling fluid is being absorbed 

and will lead to tight hole conditions. Hence it is critical to select the proper mud to 

mitigate chemical effects with the formation. Mud inhibitors and oil-based muds are 

used to lower the effect of swelling. 

Over pressured formations, in other words, formations with a higher pore pressure than 

normal for the depth of their occurrence, are the result of incomplete compaction and 

de-watering during the burial process. These formations apply another source of tight 

hole condition and may be indicated by: 
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- increased pressure and reduction in hole size 

- shale cavings are falling into the hole, which might accumulate on the bottom of 

the hole. 

Tight hole conditions can lead to extended operational timings and a number of 

scheduled runs due to the necessity of additional reaming and hole cleaning operations 

(wiper trips or additional conditioning runs before drilling ahead), logging operations, 

and additional casings to be set as severe hole stability problems may occur. 

2.2.5. Bit Balling 

The symptoms of bit balling are close to that of forming a tight hole, whereas in such 

case, the BHA will be adhered to by the reactive formation material, and the bit nozzles 

may be plugged with time. Formations of low permeability are characteristic for bit 

balling conditions, shales for instance, which is strongly influenced and increased by its 

(sticking) clay mineral content (A. Hayatdavoudi, 2011). 

The theory behind bit balling can be explained by the plasticity of the clays, which lead 

to a longer state of the plasticity of the shale before being hydrated to a liquid (less sticky 

state). “This extended plasticity state is believed to contribute towards cuttings 

becoming molded onto the steel parts of the bottom hole drilling assembly (BHA) and 

being plastered onto the walls of the wellbore.” (G. De Stefano, S. Young, 2009). 

Amongst other factors, the liquid and plastic limit depends on the type of the clay 

mineral (e.g., kaolinite or montmorillonite), clay fraction, and type of cations present 

and its radius. While Na+ has the smallest impact on the PL/LL ratio, Al3+ has the largest 

on it. Mechanical force is reducing accretion and delaying it significantly with reduced 

magnitude. 

The “stickiness” of the shale surface may be enhanced by additives that absorb surface 

water rapidly. The cuttings size is significantly influencing the accretion, whereas the 

accretion will be reduced over time with increasing cuttings size. However, at smaller 

cuttings size, the resulting greater surface area can lead to support plasticity and 

accretion to lower timings.  

While on the one hand, water-based fluid systems and additives have improved 

wellbore stability whilst drilling; on the other hand, majority of non-productive time is 

related to bit balling. The standpipe pressure will rise due to the plugged nozzles and 

the resulting smaller annular diameter. Torque and drag will increase whilst pulling the 

string (overpull), and a higher weight needs to be applied on the bit. The drilling 

performance will be reduced dramatically (ROP); hence actions will be required (change 

mud properties, additives), including necessary extra trips to clean the bit. 

Alternatively, to water-based drilling fluids, oil-based or synthetic muds can be used 

and will lower the risk of operational problems due to bit balling, agglomeration, and 

accretion of drilled cuttings. The use of oil-based and synthetic muds is often associated 

with higher costs for cuttings treatment, waste stream processing, compliance testing, 

and higher costs for the material in general (G. De Stefano, S. Young, 2009).   

2.2.6. Matrix Losses 

Loss of circulation describes the fluid being lost to the formation whilst drilling. Lost 

material is a major issue in terms of economics and health safety and environment (HSE). 
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There are various reasons for induced fluid losses. The loss can be due to the natural 

composition and geometry of the formation (porosity, permeability, brittleness, etc.), 

caused by the wrong drilling procedure or underestimation of the annular conditions 

(cuttings volume, pressure, etc.) respectively. Further, a tight mud window can lead to 

exceeding the (formation) fracture pressure. Fractures will be formed, and fluid will be 

lost. Besides mud rheology and pressure control, the volume of the cuttings in the 

annulus needs to be considered and can be determined by the following formula (3), 

which describes the ratio of the total mass to the total volume of the mud and cuttings 

(Hussain Rabia, 2015). 

𝜌𝑒𝑓𝑓 =
𝜌𝑚×𝑄+141.4296×10−4𝑅𝑂𝑃×𝑑𝑏

2

𝑄+6.7995×10−4𝑅𝑂𝑃×𝑑𝑏
2     (3) 

where 𝜌𝑒𝑓𝑓 is the effective mud density in the hole, ppg 

 𝜌𝑚 is the density of the mud at the surface, ppg 

 Q is the mud flow rate, gpm 

 ROP is the rate of penetration, ft/hr 

and 𝑑𝑏 is the bit size, in 

The equivalent circulating density is given by summing up (4). 

𝐸𝐶𝐷 = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑚𝑢𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 𝑑𝑟𝑖𝑙𝑙𝑐𝑢𝑡𝑡𝑖𝑛𝑔𝑠 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 +

𝑎𝑛𝑛𝑢𝑙𝑎𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑙𝑜𝑠𝑠 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛       (4) 

To reduce the loss severity while tripping, tripping speeds should be restricted whilst 

running into the hole (surge pressure), which can be monitored in real-time. The 

magnitude of the loss can be determined by the circulating pressure difference before 

and after the losses appear compared to the mud weight. Therefore, a predictive window 

for monitoring the pressure could advance the detection of losses. 

In a case of fluid loss, the symptoms can be mitigated by reduction of the mud weight 

or using loss circulation material (LCM). An abrupt change in the monitored pressure 

loss (standpipe pressure) will clearly indicate abnormal circulation behaviors (losses) 

and may avoid kick situations. The methods of evaluating the pressure losses will be 

described at a later point in the thesis. 

2.2.7. Kicks 

Kicks are no big issue if control can be maintained, and the “unwanted influx from the 

formation” can be circulated out through the well control system after following the 

specific procedures accordingly. It is important to mention that when drilling with a 

bottom hole pressure (BHP) close to the pore pressure of the formation, so-called “mini 

Kicks” can appear at gas wells, which can lead to a misleading interpretation of the 

pressure readings. In case of a gas influx into the annulus, the standpipe pressure will 

decrease gradually (Anton Lettner, 2019). It is preferred to stay rather close to the pore 

pressure than to the formation fracture pressure since a kick may be easier to control 

than a fractured casing shoe (severe loss of the well operation) (Anton Lettner, 2019). 
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However, the main purpose is to avoid kicks completely, if possible. Hence the pressures 

need to be monitored at all times, and critical pressure changes should be recognized 

initially. If the fluid flow becomes uncontrollable, a “blowout” is induced either; 

- on the surface (fluids flowing at the surface) or  

- underground where fluids are flowing between subsurface formations. 

Causes of kicks can be related to: 

- the formation pressure 

- insufficient hold fill while tripping 

- swabbing while tripping (frictional pressure caused by mud movement whilst 

pulling the string leads to a reduction of mud hydrostatic). 

- insufficient mud weight 

- lost circulation 

- excessive ROP through gaseous sands 

The major reason for kicks is insufficient mud weight. The friction between the drill 

string and the borehole wall may also lead to a reduction (swab, whilst pulling out of a 

hole) or increase (surge, whilst running in a hole) of the BHP. 

Amongst others (return flow, pit volume), kicks can be indicated by loss of circulation 

and an increase in torque and drag. This once more clearly shows the importance of 

monitoring pressure changes, torque, and drag.  The most common signs of the kick are: 

- increased ROP or drilling breaks 

- falling pump pressure 

- increase in mud flow from the annulus 

- increase in pit levels 

- gas cut, water cut, and salinity (reduction in the mud weight) 

In general, once a kick was noticed (e.g., the flow was observed during a flow check), 

the mud weight needs to be increased after safely shutting in the well and circulating 

out the kick. There are standardized “killing” procedures for kick situations by the 

International Association of Drilling Contractors (IADC) and the International Well 

Control Forum (IWCF). 

2.2.8. Equipment Related Downhole Issues 

While issues related to the bottom hole assembly (BHA), such as bit damages (nozzles) 

or twist-offs, can be indicated by an abrupt decrease of the standpipe pressure, 

developing washouts are indicated by a gradual decrease. Washouts can lead to severe 

additional stresses under compression and result in drill pipe failure. 

Key seats or doglegs may be formed by the couplings (joints) of the drill string, touching 

the borehole wall whilst pulling out of the hole. The location of potential doglegs is 

usually known upfront and can be monitored via torque and drag to prevent the stuck 

pipe during tripping operations (increase in drag). Figure 6 illustrates the formation of 

a key seat whilst pulling out of the hole by the smaller diameter of the pipe rotating 
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against the borehole wall. The string can be caused to get stuck when, e.g., a stabilizer is 

reaching the spot, and a sudden overpull will be experienced. Another indication may 

be either constant or increase in standpipe pressure will be experienced due to 

unrestricted circulation (Colin Bowes, Ray Procter, 1997) 

 

Figure 6: Formation of a key seat (Sedco Forex, 1997) 

Doglegs (Figure 7) tend to form in varying formation layers (e.g., soft and hard formation 

beds) that force the drill string to change the direction (accidentally) and are often related 

to unsuitable setups of the BHA, too frequent change of BHA or too frequent or abrupt 

changes in the direction of the rotary steerable system (RSS). 
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Figure 7: Formation of a dogleg (Sedco Forex, 1997) 

Dogleg severity is calculated during the planning stage of a wellbore (drill string design), 

considering the maximum allowable bending in the drill pipes and couplings. 

While key seats and doglegs can only form whilst pulling out of the hole, change of the 

bit (e.g., PDC after roller cone) can cause under gauge hole conditions. Bit wear or coring 

bottom hole assemble (BHA) can result in under gauged hole diameters, and the post-

run BHA can jam into it, causing severe equipment failures. Reaming should be 

performed after coring and in danger of under gauging conditions. Stabilizers and 

protected equipment should be used. Frequent logging runs should be carried out at 

varying formation conditions to evaluate the well path for restrictions or obstacles.  

Indications are under gauged parts of the BHA, sudden decrease of the string weight up 

to experienced stuck pipe while the circulation shows rather unrestricted (Colin Bowes, 

Ray Procter, 1997). A critical issue related to human factors is dropped objects in the 

wellbore, which can lead to a significant amount of non-productive time due to 

additional operational runs (fishing runs). An incident of a so-called “junk” is caused by 

non-compliance with the health, safety, environmental, and quality (HSEQ) regulations 

on the rig floor. Hence such incidents (and near incidents) should be tracked and 

evaluated properly.     
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2.3 Methods and Approaches used to Detect Downhole 

Problems 

2.3.1  Torque and Drag as Index for Detecting Downhole 

Problems  

2.3.1.1 The Principal of “Torque and Drag” 

Torque and drag planning, monitoring, and analysis are essential for safe drilling 

operations. The principals and applications in the drilling industry are explained in the 

following subchapters. The principle of torque and drag is well known and is already 

applied in the drilling industry for decades; it is related to kinematics. The base 

calculations can be traced back to the free body diagram in Figure 8 that illustrates the 

forces acting on a body on an inclined plane. Since the body of a drill string will be in 

motion, friction forces need to be considered. Friction acts in the opposite direction of 

the motion, hence whilst running in the hole, it acts upwards (Figure 8) and downwards 

whilst pulling out of the hole. 

 

Figure 8: Free body diagram of a moving body on an inclined plane (µ=µk). 

The resulting force for running or pulling is given according to the sketch. 

𝐹 = 𝛥𝑇 ± 𝐹𝑓      (5) 

Where F is the force required to move the pipe in the specific direction, Ff the friction 

force, N the normal force, W reflects the buoyed weight, and therefore the axial tension 

𝛥𝑇 is given, and the formula can be solved as followed. 

𝐹 = 𝑊 × 𝑐𝑜𝑠𝜑 ± µ × 𝑊 × 𝑠𝑖𝑛𝜑   (6) 

The following table shows the default values for the (kinematic) friction coefficient µ. 

The friction factors can vary significantly under realistic conditions and should be 

obtained as accurately as possible from field measurements. 
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Mud Type Cased hole (CH) Open hole (OH) 

Water based mud (WBM) 0.24 0.29 

Oil based mud (OBM) 0.17 0.21 

Brine 0.30 0.30 

Table 1: Default friction factors based on historical well data (M.L. Payne &, F. 

Abbassian 1996) 

Drag is an axial-force generated due to friction between the drill string and the borehole 

wall. To calculate the drag of a specific drill string element, starting from the bottom 

where the drag force will be equal to weight on bit (WOB), the resulting formula can be 

generated from the free body diagram (Figure 8). 

𝑇𝑛−1 = 𝑇𝑛 + 𝛥𝑇 − 𝐹𝑓 = −𝑊𝑂𝐵 + 𝛥𝑇 − 𝐹𝑓    (7) 

Especially at extended reach wells, drilling drag is very critical due to the excessive 

compressional forces (axial) in the drill string during running into the hole or whilst 

sliding drilling. When reaching critical loads (increasing WOB), buckling will be induced 

to drill string and lead to additional stresses that may result in drill pipe failure and 

fatigue, respectively. 

Figure 9 shows different scenarios of buckling, depending on the magnitude of WOB. 

 

Figure 9: Drill string buckling behavior under increasing compressive load.  

(M. L. Payne, Fereidun Abbassian, 1997) 

Torque measurements provide a lot of information about the downhole conditions 

whilst ongoing drilling operations. Torque is created by the friction when the rotating 

drill string gets in contact with the borehole wall. The sketch in Figure 10 illustrates the 

forces and torque on a rotating drill pipe. 
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Figure 10: Torque on a rotating drill pipe at a low well inclination (a) and high well 

inclination (b) section (µ=µk). 

∆𝑇𝑜𝑟𝑞𝑢𝑒 = 𝐹𝑓 ∗ 𝐷𝑃𝑂𝐷 = µ × 𝑁 × 𝐷𝑃𝑂𝐷   (8) 

where 

DPOD is the outer diameter of the drill string element. 

Considering an uplift of the drill string to the high side of the well the torque can be 

calculated as followed. 

∆𝑇𝑜𝑟𝑞𝑢𝑒 = 𝑊 × (
𝐷𝑃𝑂𝐷

2
) × 𝑠𝑖𝑛𝛷   (9) 

where 

𝛷 = atan µ     (10) 

2.3.1.2 Torque and Drag Modeling 

Torque and drag modeling are the pre-calculation of a drilling scenario in terms of 

equipment and operations related limits in order to provide a safe drill string design that 

considers tension and compression whilst running in the hole (RIH), pulling out of hole 

(POOH) and drilling compared to buckling limits (vibrations) that were evaluated by 

calculation of appearing torque and forces. 

There are two major models for calculating torque and drag: 

- Soft-string model 

- Stiff-string model 

I. Soft-string Model 

The soft string model considers a simplified picture of the drill string as a uniform 

weighted steel chain without joints or clearance. It further neglects any deformation of 

the drill string (no stiffness, no bending). Besides the critical considerations, which can 

lead to underestimation of buckling prediction, the model can be applied below a build 

of 1.5°/100m. Figure 11 illustrates the forces on the drill string during pick up and the 
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prediction of buckling can be calculated by the previous explanations and additional 

formulas given below. The method is applied by starting from the bottom of the string 

and calculating torque and drag for each element (drill collars, heavy-weight drill pipes, 

drill collars, etc.) until the top and summation of the results afterward. 

 

Figure 11: Forces acting on drill string element during pickup. (C.A. Johancsik, D.B. 

Friesen, Rapier Dawson, 1984) 

Buckling Limits (by Dawson-Pasley): 

𝑂𝐻: 𝑟 =
1

2
× (𝐵𝐻𝐷 − 𝐷𝑃𝑂𝐷)    (11) 

𝐶𝐻: 𝑟 =
1

2
× (𝐶𝑆𝐺𝐼𝐷 − 𝐷𝑃𝑂𝐷)    (12) 

𝐼 =
𝜋

64
× (𝐷𝑃𝑃𝑖𝑝𝑒

4 − 𝐼𝐷𝑃𝑖𝑝𝑒
4 )    (13) 

𝐹𝑐𝑟𝑖𝑡,𝑠𝑖𝑛 = −2 × √
𝐸×𝐼×𝑊𝑒×𝑠𝑖𝑛𝜃

𝑟
    (14) 

𝐹𝑐𝑟𝑖𝑡,ℎ𝑒𝑙 = (2√2 − 1) × 𝐹𝑐𝑟𝑖𝑡,𝑠𝑖𝑛   (15) 

where BHD is the borehole diameter, CSGID the inner diameter of the casing, E the E-

modulus for steel = 2,06843x1011 Pa, I the moment of inertia, We the unit weight [N/m], F 

the critical forces where sinusoidal and helical buckling may occur. 
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The following information is required as input for each element of the drill string to the 

model: 

- MD 

- Trajectory 

- Inclination 

- CH or OH 

- Friction coefficient 

- Torque at bit 

- WOB 

- Young’s Modulus 

- Mud and steel density 

- Buoyancy factor 

- Casing and well diameter 

- Pipe specification 

After the required data was obtained, the calculation starts from the bottom up: 

- Weight per element in the mud 

- Normal force 

- Tensional force 

- Friction force 

- RIH force 

- POOH force 

- Torque 

The next step is to calculate the load profile by the cumulation of: 

- RIH force (RIH profile) 

- POOH force (POOH profile) 

- Drill with WOB profile (formula (7), start with WOB and torque at bit) 

- Torque (Torque profile) 

Finally, the critical buckling limits can be calculated and can be compared in a 

tension and compression plot (Figure 12). The curves for RIH (dark blue), POOH 

(red), and drilling (light blue) must not exceed the curve for helical buckling (purple). 

Sinusoidal buckling (green) allows tolerances but may be avoided if possible. It can 

be noticed that the profile changes from tensional conditions (positive area) to 

compressional conditions (negative area) at approximately 2200 meters. This point 

is called the neutral point and appeared exactly at the kickoff point (KOP, end of 

vertical section), where the first contact of the drill string with the borehole wall is 

considered within the soft-string model. 

In case a curve exceeds the limits, the setting of the drill string can be changed by 

varying available pipe specifications and repeated until the model shows a safe 

profile. The planning needs to be done realistically (e.g., avoiding HWDP in 

horizontal sections), and the number of different used pipe gradings may be kept 

small. 
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Figure 12: Example of a tension and compression plot for a planned drill string (soft-

string model) 

II. Stiff-string Models 

Stiff-string models consider bending stiffness of the drill string elements, clearance, 

contact, and mechanical integrity for calculating the tension and compression curves. A 

stiffness-factor can be added to the soft-string model. The soft-string model tends to 

become inaccurate with increasing compressional conditions, and the difference 

between stiff and soft-string can be significant. 

Many different models for stiff-string were created, and their approach is not always the 

same. In general, the importance of stiff string models was growing when horizontal 

wells were becoming industry-standard e.g., HWDP and drill collars are being run in 

compressional sections frequently; the goal was to overcome the poor results of the soft-

string model for stiff tubular, high dogleg severity or narrow radial clearance. To name 

outstanding stiff-string models: 

- Inclusion of bending stiffness: 

They generally improved the soft-string model by adding BHA specific 

calculations for stiffness and considering different approaches for directional 

surveys (Mirhaj, S. A et al.,  2016 ) but still neglecting clearance. 

 

- Inclusion of radial displacement: 

Analytical and finite element models that consider both bending stiffness and 

radial displacement. 

Finite element analysis model for the radial displacement of the casing . 

- Dynamic stiff string model [Vadim Tikhonov, et al., 2013] 

As these models have been discussed in previous publications, a detailed description 

will not be given at this point. 



Abnormal Drilling Behaviors Verification Methods 

24 

2.3.1.3 Torque and Drag Simulation 

Software tools apply a similar approach of torque and drag modeling, explained in the 

previous chapter, and are capable of simulating it for multiple scenarios and conditions 

in a short time. The simulated scenarios may further be updated whilst ongoing 

operations after input of actual measurements and real-time data in an automized way, 

which is a clear improvement to the manual approach that was done in the past. A wide 

variety of simulation tools is available on the market, which makes it easy to generate 

torque and drag and buckling prediction plots, that can be used for a safe drill string 

design. In general, the tools use a similar approach based on the fundamental kinematic 

equations that were explained earlier. An outcrop of simulated torque and drag 

broomstick plots is shown in Figure 13. The different colored lines are indicating 

different simulated operational loads and torque in terms of moving the drill string 

upwards (red), downwards (blue), or rotating it on the bottom (green) for varying 

friction factors in cased and open hole (varying line formatting). 

 

Figure 13: Simulated torque and drag broomstick plots, indicating simulations for RIH 

(blue), POOH (red), and ROB (green) for the different cased hole (CH) and open hole 

(OH)  friction factors (number beside CH and OH) (©proNova by TDE) 

2.3.1.4 Torque and Drag Real-time Monitoring 

The simulated curves can be used to monitor and identify abnormal behavior of the 

sensor data channel trends in real-time. The surface sensor data channels that are 

available via a standard real-time WITSML data provider setup are: 

- Hook-load 

- WOB 

- Torque (surface) 

- SPP 

- Flow in 
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- RPM 

- ROP 

- Block position 

- Bit and hole depth 

The following figure shows a monitoring plot of simulated vs. actual sensor data (red, 

blue, and green markers) and indications for abnormal behavior. It plots frequent sensor 

data channel points (usually average values) of torque and hook-load for RIH, RIH with 

rotation, POOH, POOH with rotation, and whilst drilling in real-time. Rig state detection 

algorithms and alerts are used to notify the personnel of any deviations from the 

simulated trends. A deviation of torque at a measured depth between approximately 

3300m and 3500 m can be spotted for spacing out, picking up, and rotating on the bottom 

in the example. The simulated curve should be updated as often as possible, and if the 

deviation is maintaining, the driller should act accordingly in order to prevent possible 

upcoming incidents. 

 

Figure 14: Torque and drag real-time data vs. simulated curves (©proNova by TDE) 

There are tools available that update the friction factor based on the measured sensor 

data frequently and calculate it via iterations, e.g., until the actual HKLD matches the 

predicted one. This method is called “Torque and Force Method” [Frank Reiber (Baker 

Hughes Inteq), Bart E. Vos (Baker Hughes Inteq), Svein E. Eide (Statoil), 1999]. Besides, 

the real-time friction factor calculation for other surface and downhole parameters may 

be used as input at the rig site and improve the quality of problem indications. 

Dogleg severity plots are used in addition to identifying possible obstacles in the 

wellbore (Figure 15). 
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Figure 15: Dogleg severity for entire well - planned vs. actual (Eddie Martinez et al., 

2020) 

Tests have been performed on models that use downhole measurements (e.g., torque at 

the bit). However, it needs to be carefully considered that measurements at the bit are 

highly influenced by downhole conditions, and the error may be high as, e.g., vibrations 

in the drill string can add up to the measured (real) torque at the bit and therefore make 

the values useless for HSE-related monitoring purposes. One major problem of 

nowadays torque and drag monitoring procedures is the dependency on multiple 

parameters, meaning that there can be significant differences in the predictions and 

possible misinterpretation of the results (human factor). 

2.3.2 Standpipe Pressure as Index for Detecting Downhole 

Problems 

2.3.2.1 Standpipe Pressure Modeling 

A proper determination of the pressure drop in the wells system is not only vital for safe 

planning and realization but also for improvement of drilling performance. The 

deterministic approach considers onsite measurements of the drilling mud composition, 

etc. and applies laboratory tests for tracking hydraulic conditions and to monitor 

pressure losses over the complete period of ongoing well operations. Since annular 

pressure drop is the critical component of pressure drops to be evaluated and the other 

components were discussed in detail in previous papers already, the description in this 

thesis is limited to the methodology of the annular section. 

It is critical to consider the correct models and procedures related to the fluid system. 

The pressure losses vary significantly for different rheological models and equivalent 

diameter definitions at different operating conditions. The importance of determining 

the pressure losses during drilling fluid circulation is related to the influence on ECD, as 

the mud window must not be exceeded. 

Considering rather non-newtonian than Newtonian fluids in the wellbore annulus 

under realistic conditions, the applied rheological models are: 

- Bingham Plastic 
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𝜏 = 𝜏0 + 𝜇𝑝 × 𝛾     (16) 

- Power Law 

𝜏 = 𝐾 × 𝛾𝑛      (17) 

- Yield Power Law 

𝜏 = 𝜏0 + 𝑘 × 𝛾𝑛     (18) 

where µp = Plastic viscosity [cp] 

τγ = Yield point [lbf/100ft2] 

γ = Shear rate [s-1] 

τ = Shear stress [lbf/ft2] 

Which differ basically in their relationship between friction factors, velocities, diameters, 

shear stress, and shear rate. They also reflect the viscosity of the drilling fluid and its 

hole cleaning ability. 

After the proper model was chosen, the flow regime needs to be defined and is achieved 

by determination of the critical Reynolds Number (laminar below 2100 or turbulent flow 

above 2100). For the pressure loss calculation in the annulus, laboratory tests with the 

rotational viscometer are performed at different rotations per minute (θ) to provide the 

rheological parameters for the respective model. Where the plastic viscosity and yield 

point are determined: 

𝜇𝑝 = 𝜃600 − 𝜃300     (19) 

𝜏𝛾 = 𝜃300 − 𝜇𝑝      (20) 

The power law rheological parameters in the annulus are determined as followed: 

- For high shear rate: 

𝑛𝐻𝑆 = 3.32𝑙𝑜𝑔
𝜃600

𝜃300
     (21) 

𝐾𝐻𝑆 =
5.11𝜃600

1022𝑛𝐻𝑆
      (22) 

- For low shear rate conditions in the annulus: 

𝑛𝐿𝑆 = 0.657𝑙𝑜𝑔
𝜃100

𝜃3
     (23) 

𝐾𝐿𝑆 =
5.11𝜃3

5.11𝑛𝐿𝑆
      (24) 

where 

KHS = High shear consistency index [eqcp] 

KLS = Low shear consistency index [eqcp] 

nHS = High shear flow behavior index [-] 

nLS = Low shear flow behavior index [-] 

Equivalent diameters are used to perform a comparative comparison of pressure losses 

of different sections. Annular pressure loss gradients versus flow rates can be 

determined for each section and further the effect on total pressure loss. 
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- Hydraulic Diameter: 

𝑑𝑒 = 4 × 𝑟𝐻 = 𝑑𝑜 − 𝑑𝑖     (25) 

- Crittendon7 Criteria: 

𝑑𝑒 =
1

2
× [√𝑑𝑜

4 − 𝑑𝑖
4 −

(𝑑𝑜
2−𝑑𝑖

2)

ln (
𝑑𝑜
𝑑𝑖

)

4
] +

1

2
× √𝑑𝑜

2 − 𝑑𝑖
2  (26) 

- Slot Approximation: 

𝑑𝑒 = 0.816 × (𝑑𝑜 − 𝑑𝑖)    (27) 

- Lamb18 Approach: 

𝑑𝑒 = √[𝑑𝑜
2 + 𝑑𝑖

2 −
(𝑑𝑜

2−𝑑𝑖
2)

ln (
𝑑𝑜
𝑑𝑖

)
]    (28) 

where 

de = Equivalent diameter [in] 

di = Drill pipe or collar outer diameter [in] 

do = Wellbore or casing inner diameter [in] 

K = di/do ratio [-] 

The frictional pressure loss inside an annulus using the slot approximation: 

𝑑𝑃

𝑑𝑧
=

𝑓𝑓×𝜌×𝑣𝑎
2

25.81×(𝐷𝑜−𝐷𝑖)
     (29) 

Where 𝜌 is the static density, va is the average annular velocity, and ff is the friction factor. 

The friction factor is changing significantly with the flow regime and pipe rotation, 

respectively. Figure 16 shows a sample plot for determining frictional pressure loss 

gradients at varying flow rates based on a drill collar section on the explained 

methodology. 
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Figure 16: Example for pressure loss gradient analysis at open hole - drill collar annular 

section (K=0.735) (Demirdal, B., & Cunha, J. C. S 2007) 

After the determination of the annular pressure loss, the total pressure loss of the system 

can be calculated by summing up the components. 

∆𝑃 = ∆𝑃𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + ∆𝑃𝐷𝑃 + ∆𝑃𝐵𝐻𝐴 + ∆𝑃𝐵𝑖𝑡 + ∆𝑃𝐴𝑛𝑛𝑢𝑙𝑢𝑠 + ∆𝑃𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑇𝑜𝑜𝑙𝑠 (30) 

The major problem for the deterministic approach is the consistency in the required 

measurements to be performed (uncertainty of parameters), time, and human factors 

(misinterpretation). Temperature profiles and alteration of the mud system add up 

possible errors to the calculation. 

2.3.2.2 Standpipe Pressure Simulation 

Similar to torque and drag simulation software tools, there are a variety of hydraulics 

simulators available on the market. The majority use the input parameters similar to the 

deterministic approach and compute the pressure loss for the desired component. 

Hence, the computation of the results was digitalized and enhanced. 

The computed pressure loss is used for evaluation of the actual pressure readings at the 

pressure gauges or of the real-time sensor data channel stream. Monitoring and analysis 

of standpipe pressure provide information on the efficiency of the hole cleaning and may 

indicate major upcoming drilling problems. 

Figure 17 shows calculated pressure loss curves based on the rheological models vs. 

actual measurements. The curves were computed by a simulator that requires the input 

well information and parameters from the laboratory (viscometer). The rheological 

model that fits best with the actual curve can be applied for further downhole condition 

interpretation and hence for standpipe pressure evaluation in real-time. It can be seen 

that while at shallow depth, the simulation after Herschel Bulkley (purple) fits best, the 

power-law model simulation (yellow) is closest to the actual measurements (black) with 
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advancing measured depth and should therefore be used for further monitoring purpose 

of the ongoing operations [K. Ayeni, S.O. Osisanya (The University of Oklahoma), 2004]. 

 

Figure 17: Drill string pressure loss plot for 8 3/4" hole (Ayeni, K., & Osisanya, S. O, 

2004) 

2.3.2.3 Standpipe Pressure Real-Time Monitoring 

Monitoring of standpipe pressure in real-time is further used to evaluate performance-

related behavior during routine drilling-related operations (e.g., during Weight to 

weight connection, slip to slip connection). Pumps-off and pumps-on procedures can be 

analyzed in detail and improved if necessary. A case study proved that focus on gel 

breaking related standpipe pressure (SPP) peaks after changing from static conditions to 

pumps-on can improve performance and prevent damaging the wellbore. “Especially in 

narrow drill-ability windows, this pressure peak may lead to a fracturing of the 

formation, lost circulation, kicks or even collapse of the wellbore” (Zoellner, P et al., 

2011). Figure 18 shows a pressure peak of 12 bars after starting up the pumps, which led 

to a significant increase in ECD. The pressure peak in the shown case describes the 

difference between the highest value and the stabilized pressure value. 
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Figure 18: Pressure peak observed during pump start-up (Reitsma, D, 2011) 

HSE related alerts may be set, and performance-related timings (Key Performance 

Indicators) can be measured by implementing algorithms based on the provided sensor 

data. Additionally, to the standpipe pressure sensor, an annular discharge pressure 

(ADP) sensor may be installed (e.g., anywhere along with the discharge piping, BOP, 

etc.) and connected directly to the system on the rig site since the detection of anomalous 

behavior could be delayed via WITS streaming. This is only applicable for managed 

pressure drilling (MPD) and underbalanced drilling (UBD) but not at overbalanced 

conditions. Tests have shown that a lower sensor span can result in significant 

improvement of the resolution, which enhances the timing for detecting anomalies 

(Reitsma, D, 2011). Figure 19 shows that normal variations have been removed 

(corrected) since an anomaly will cause significant changes in the data channels, and a 

lower frequency will improve visibility. 

 

Figure 19: Calibration of SPP vs. ADP monitor (Reitsma, D, 2011) 
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Once calibrated, this approach is useful to detect a number of issues. Amongst others, 

besides kicks and losses, leaking equipment and plugging may be indicated by clear 

changes in the sensor channel data trends. 

While Figure 20 shows an indication of a fast kick on the left (an abrupt increase of both 

channels), on the right, a clear indication of a washout (drill-pipe leak) is given by a 

decrease in the SPP and a consistent ADP trend at the same time (losses would be 

indicated by a decrease in both channels). 

 

Figure 20: System screen of fast kick test (left) and drill-pipe leak (right) (Reitsma, D, 

2011) 

A major advantage of this method compared to a Coriolis flowmeter is that kicks can be 

detected when the well is shut-in. The major disadvantage is missing kick rate and 

volume calculation. Critical parameters that may influence the behavior of the data trend 

to misleading view (e.g., downhole torque measurements, heaves, etc.) need to be 

considered. 

Alerts can be improved by preventing false alarms during “ballooning” and “breathing” 

conditions due to total flow and the continuous total change in volume-related pressure 

change. Standard alarm settings that are based on the change in total flow (whilst steady-

state conditions) may be deactivated during specific periods to avoid false alarms and is 

critical for HSE. Concluding standpipe pressure real-time monitoring, the simulated 

standpipe pressure curves by considering varying calculation models can be updated in 

real-time by the input of actual measurements and compared in terms of pressure trend 

evaluation in real-time. Most models are limited by the required input parameters, the 

accuracy of required measurements, and not easy to apply for complex wells. 

2.3.3 Delta Flow for Detecting Kicks and Fluid (Matrix) Losses 

Flow meters (Coriolis meter) are capable of detecting kicks and losses at the rig site. 

However, there is a potential error due to vibration sources, and maintenance is required 

frequently to assure reliability. Downhole measurements (e.g., via downhole pressure 

sensors) also are limited to a range of uncertainty that is related to the telemetry system 

and the delay encountered in signal transmission. Pressure sensors (e.g., hysteresis) are 

smaller and easier to install, and cheaper than flow meters. 

2.3.4 Analysis of historical data (offset wells) 

The use of historical data for HSE-related simulation and analysis is limited due to 

varying equipment, procedures, and downhole conditions from well to well. Even at 
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batch wells and fields with several offset wells, respectively, the changing parameters 

need to be considered carefully. 

Gathered data from offset wells may be used for planning and lessons learned purposes 

in general but never seen as a correct outlook for upcoming well operations. 

Like torque and drag, historical hydraulics data can be used rather than review issues 

with the equipment at certain conditions than as a reliable reference for simulations and 

predictions. 

As using historical data is critical to make predictions for safe well operations, this 

approach will not be discussed further in this thesis. To sum it up, historical data may 

be useful for planning purposes of the well design and to review operational problems 

(non-productive time) and to analyze performance related to the human factor, 

equipment, or operational procedure. 

2.3.5 Machine Learning Approach 

2.3.5.1 Overview 

Machine learning approaches are rising in the drilling industry for a couple of years, 

with wells becoming more challenging, and HSE has priority from planning until 

competing operations for a well. This section provides an overview and outlook on 

machine learning trends being established in the near future. It needs to be stated that 

this summary does not provide a description of all existing machine learning techniques. 

Popular machine learning methods are [Noshi, C. I., & Schubert, J. J., 2018]: 

- Linear Regression 

- Decision Trees (Random Forest) 

- Linear Classifiers (Perceptron, Support Vector Machine) 

- Artificial Neural Network 

- Principal Component Analysis (PCA) 

- K-Means Clustering 

- Fuzzy Logic (BBN) 

- Genetic Algorithms (GA) 

- Bayesian Belief Networks (BBN) 

2.3.5.2 Machine Learning Approaches Applied for Drilling Parameters  

2.3.5.2.1 Statistical Learning Models 

Statistical learning models can be supervised by calculating an output from defined 

inputs or unsupervised by learning trends in data without definite outputs. A 

supervised model is described in [Hegde, C., 2015], which differs between “normal” and 

“abnormal” torque via putting the prediction into classes that reflect operational 

performance. 

The model accuracy was determined as followed: 

𝑀𝑆𝐸𝑅 =
1

𝑛
∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑜𝑟𝑞𝑢𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇𝑜𝑟𝑞𝑢𝑒)²𝑛

𝑗=1   (31) 

Where MSER = Mean Squared Error 
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Modeling techniques differ from regressions, bootstrapping, and random forests to 

support vector machines (SVM). 

Regressions [e.g., Multilinear regression (MLR)] uses linear models for predictions of 

torque. 

𝑇𝑜𝑟𝑞𝑢𝑒 =  ∑ 𝑎𝑘𝑥𝑘
𝐾
𝑘=1      (32) 

where k = number of parameters 

 a = constant determined by MLR algorithm 

Bootstrapping returns the uncertainty by sampling the data. 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑜𝑟𝑞𝑢𝑒 − ∑ 𝑎𝑘𝑥𝑘
𝐾
𝑘=1      (33) 

Figure 21 illustrates an example for bootstrapped regression. 

 

Figure 21: Depth plotted against downhole torque in Tyler formation using 

Bootstrapped regression (Hegde, C., 2015) 

Random Forests use decision trees to capture non-linearity in the data. Random forests 

use bootstrapping samples to overcome low accuracy and overfitting (Figure 22). 
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Figure 22: Random forest visualization (Hegde, C., 2015) 

Figure 23 illustrates an example for random forest. 

 

Figure 23: Downhole torque versus depth using random forests with 80% of the data 

used for training (Hegde, C., 2015) 
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A moving window linear regression model is shown in Figure 24. A moving window 

algorithm was developed for different surface data channels. Once torque changes are 

noticed, the next value is predicted via linear regression and compared to the upcoming 

actual value, which will provide a possible indication of abnormal behavior. “Evolving 

differential sticking tendency and poor hole cleaning can be detected and addressed 

early with this symptom”( Ahmed, O. S.,, 2019). 

 

Figure 24: Change Point Detection algorithm. The black line is the input data stream, 

the green, and blue boxes are the right and left sliding window, respectively, and the 

red line is the calculated distribution divergence distance for data from both sliding 

windows evaluated at their adjacent point (Ahmed, O. S., 2019) 

SVMs use non-linear classification boundaries for classification and pattern recognition 

of the torque trend (Table 2). Pre-processing the input and target data (e.g., 

normalization) is necessary to improve the predicted results, and different types of 

kernel functions are used. 

Total Population Condition Positive Condition Negative 

Test Outcome Positive True Positive False Positive 

Test Outcome Negative False Negative True Negative 

Accuracy = ∑True Positive + ∑True Negative / ∑Total Population 

Table 2: Confusion matrix used to evaluate the accuracy of classification algorithms in 

machine learning (Hegde, C., 2015) 

The method splits the two classes by a hyperplane (Figure 25). 
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Figure 25: Hyperplane in SVM (Mishra and Datta-Gupa, 2017) 

The method being used depends highly on the run time for processing the data as it may 

be used for real-time alerting applications. 

2.3.5.2.2 Deep Learning for Torque Predictions 

Artificial neural networks use input, hidden, and output layers that are linked via 

transfer functions for predictions. The methods vary from feed-forward to recurrent 

networks. Feedforward backpropagation is a supervised learning method, whereas 

Levenberg-Marquard training function is probably the best-known learning algorithm 

for ANNs [Abbas, A. K et al., 2019]. Figure 26 illustrates the basic structure of an artificial 

neural network (ANN). 

 

Figure 26: ANNs structure with one hidden layer (Abbas, A. K et al., 2019) 

The ANNs used in this project will be explained further in the “Methodology” chapter 

of the thesis. The following deep neural network (DNN) contains several additional 

layers between the input and output layers (Figure 27). The network was trained with 

42287 samples and a sample rate of 5 seconds/sample, including block position (BPOS), 

hook load (HKLD), pressure (SPPA), surface torque (STOR), RPM, and pumping rate 

(SPM1). The training was carried out for 200 epochs and reached an accuracy of 98%, 

using the mean-square error function. 
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Figure 27: Overall architecture of the proposed DNN model (Yu, Y., Chambon, S., et 

al., 2018). N is the number of channels, CNN convolutional layers, LSTM long short-

term memory layer and FC are fully connected layers 

As a result, over 10000 timestamps were simulated recursively (Figure 28). It has to be 

considered that depth data was not considered for the model, which may lead to 

increasing errors in the predictions. 

 

Figure 28: Simulated time sequence by the proposed DNN (Yu, Y., Chambon, S., et al., 

2018) 
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2.3.5.2.3 Lost Circulation Prediction Via Deep Learning 

A neural network approach was proposed based on data acquired from the Yingqiong 

Basin in the southern Chinese sea, which is known for a narrow safe drilling mud density 

window (Figure 29). Hence the loss of circulation is a serious issue in the mentioned 

region. 

 

Figure 29: Illustration of the safe drilling mud window (SDMDW) in Yingqiong Basin 

(Hou, X. et al., 2020) 

The data was selected by consideration of drilling parameters of available surface sensor 

data channels (e.g., TQA, SPP, MD, WOB, etc.), geological parameters (e.g., lithology, 

pore pressure, formation fracture pressure, etc.), and drilling fluid properties (e.g., yield 

point, mud weight, etc.). After selection, the data was pre-processed in terms of data 

outliers, qualitative features, and normalization (34). 

𝑥𝑖
′ =

𝑥𝑖−𝑀𝑖𝑛𝑖

𝑀𝑎𝑥𝑖−𝑀𝑖𝑛𝑖
      (34) 

Where 

x’i is the value of i-th feature after normalization 

xi is the original value i-th feature 

Maxi is the maximum of i-th feature 

Mini is the minimum of i-th feature 

The ANN was a supervised learning model, using rectified linear unit (ReLU) as 

activation function, L2-Norm for regularization and hidden neurons number Nh (35). 

𝑁ℎ = √𝑚 + 𝑛 + 𝑎     (35) 
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Where  

m is the neuron number of input layers 

n is the neuron number of output layers (loss risk type) 

a is a constant within 1-10 

The model was evaluated using the cross-entropy loss function J (36). 

𝐽 = − ∑ 𝑦𝑖log (𝑝𝑖)𝐾
𝑖=1      (36) 

Where 

K is the number of class 

y is label, that is, if class is i, yi=1, otherwise yi=0 

p is the output of the ANN 

The architecture of the ANN is illustrated below. 

 

Figure 30: Architecture of lost circulation prediction ANN (Hou, X. et al., 2020) 

Accuracy and loss during training and testing are illustrated in Figure 31. It can be seen 

that the accuracy during both testing and training is exceeding 0.9 after 10 epochs and 

the loss is decreasing below 0.2 after 10 epochs. 
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Figure 31: Accuracy (a) and loss (b) on training and testing set (Hou, X. et al., 2020) 

The results showed no overfitting issues and an accuracy of 91% (mean) after 50 epochs 

(Table 3). 

Loss risk type Precision 

No loss 0.86 

Micro loss 0.90 

Small loss 0.95 

Middle loss 0.95 

Large loss 0.89 

Severe loss 0.93 

Mean 0.91 

Table 3: Metrics of six loss types (Hou, X. et al., 2020) 

Generally, the classification results of the proposed circulation lost risks prediction 

method agree with the practical engineering situation, satisfy the needs of drilling 

engineering, and can provide guidance for the estimation of lost circulation risks. This 

method can be applied to other fields if the required data is available (Hou, X. et al., 

2020). 

2.3.5.2.4 Drilling Hydraulic Optimization Via Deep Learning 

A model that is capable of predicting pump pressure versus depth (in similar 

formations) and in real-time was proposed in 2015 (Wang, Y., & Salehi, S. 2015). It was 

built in MATLAB by using the fitting tool. The ANN used 12 input parameters (Table 4). 
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Table 4: Input and output parameters (Wang, Y., & Salehi, S. 2015) 

The data was pre-processed by normalizing before training the model, whereas the mean 

squared error function was used for scaling. The number of hidden layers was 

determined after the heuristic approach. The data was split into 75% for training, 15% 

for validation, and 10% for testing. Overfitting is prevented by the determination of the 

minimum validation error in general (MSE). 

One hundred twenty networks were created and evaluated. The best results were 

provided by a three-layered network with 11 hidden neurons in the hidden layer. A 

feed-forward network with ‘tansig’ activation function, ‘purelin’ output layer function, 

and Levenberg-Marquant function (back-propagation) has been used for training.  

To evaluate the impact of each data channel on the error of prediction, a forward 

regression (heuristic approach) was undertaken. Single channels were considered as the 

input layer, and 1440 networks were created to identify the ranking after MSE (Figure 

32). It turned out that depth has the most impact on the model. 
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Figure 32: Ranking of model input, one input channel (Wang, Y., & Salehi, S. 2015) 

Afterward, the other channels were used in combination with the depth channel as 

input. The pump speed (total spm) showed the lowest error together with depth. The 

final step was using depth, pump speed in combination with the other channels, 

showing differential pressure as the next best fit, etc. up to 9360 networks in total (Figure 

33). 

 

Figure 33: Ranking of model input (Wang, Y., & Salehi, S. 2015) 

A regression of the simulated pump pressure vs. measured pump pressure is illustrated 

in Figure 34 and shows good results. 
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Figure 34: Regression of the overall simulation results for three wells (Wang, Y. & 

Salehi, S. 2015) 

The review of the discussed papers provided the base for the neural network approach 

developed during this thesis project, in which the methodology is introduced in the next 

chapter. 

2.3.5.3 Limitations of Machine Learning for Predicting Torque and 

Standpipe Pressure 

The main limitation of the discussed machine learning methods is that they are only 

considering the prediction of abnormalities of a single data channel. The input 

parameters often need to be manipulated, or manual work has to be done to fit the 

requirements of the existing approaches and may not be set up quickly or require 

frequent updates of specific manual measurements. 

The developed hybrid model analyses torque and standpipe pressure behavior at the 

same time and can easily be integrated at any system that is gathering a standard set of 

surface sensor data without changing settings or preparing the configuration of the 

parameters manually. It provides an easy approach in addition to existing methods that 

are used in the field in order to verify false alarms that are e.g. caused by inaccurate 

simulations of curves, leading to confusion amongst the drilling personnel.
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Chapter 3 Developed Methodology to 

Detect Anomalies in Drilling Behaviors  

3.1 Background 

In this chapter, a detailed description of the steps undertaken to develop a hybrid model 

that provides better accuracy in the detection of abnormal behaviors of measured 

drilling parameters is provided. The terminus “hybrid model” is related to the different 

sets of neural networks that are used at the same time to identify the critical behavior of 

a specific data channel. For each data channel, three networks are used to predict the 

actual and future values and trends. After importing and filtering the sensor data, the 

networks will be trained, and the algorithms for predicting the data will be applied once 

new sensor data is available. In order to reduce the impact of uncertainty of the 

prediction models, and uncertainty window is constructed. It is calculated based on 

statistical evaluation of the error between the predicted and the actual data. Therefore, 

the standard deviation of the mean squared error between the actual and predicted data 

is used. Once a predefined number of actual data points is shown to be outlaying the 

window of uncertainty, alerts will be triggered accordingly. 

The following flow chart (Figure 35) illustrates the undertaken development steps for 

creating the hybrid model. 

 

Figure 35: Flow chart of undertaken development steps for creating the hybrid model 
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3.2 Data Processing 

The procedure of data acquisition and pre-processing is illustrated in Figure 36. 

 

Figure 36: Data acquisition and pre-processing procedure 

3.2.1 Data Acquisition 

The data acquisition is conducted via standard EDR surface sensor and MWD/LWD 

data, provided via WITSML files via a setup server connection, usually called the 

WITSML bridge. The WITSML data is converted into .csv format by a developed Python 

script to ease data import into Matlab. A sample file of the WITSML data and converted 

import table file can be found in the Appendix. 

The available well data contain varying amounts of data channels, but the desired 

surface sensor data channels are available as per standard data provider companies of 

the drilling industry in general. The minimum required surface sensor data channels for 

developing the presented hybrid model are: 

- TIME 

- TQA (Surface average torque) 

- SPPA (Standpipe pressure average) 

- DBTM (Measured bit depth) 

- DMEA (Measured hole depth) 

- RPM (Rotation) 

- SPM 1 (Pump rate 1) 

- SPM2 (Pump rate 2) 

- SPM3 (Pump rate 3) 

- BPOS (Block position) 
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- HKLD (Hook load) 

- TFLO (Flow in) 

- SWOB (Surface weight on bit) 

- ROP (Rate of penetration) 

3.2.2 Data Selectivity 

In order to provide the best possible input for training the hybrid model that intends to 

predict abnormal drilling behavior in real-time, it is necessary to meet the minimum 

requirements to the data set, which are: 

- Minimum of 3 hours bit on bottom drilling or at least one completed stand of 

drilling. 

- Sufficient period of drilling without issues. 

- Sufficient data quality. 

- Available daily drilling reports (DDR) to verify potentially identified issues. 

- Available “issue data” to test the hybrid model for feasibility in terms of 

industrial requirements. 

3.2.3  Data Handling 

The data of the explained surface sensor data channels are imported into Matlab and 

pre-processed in order to meet the requirements of machine learning purposes. Pre-

processing of the data is important, as inaccurate measurements, such as outlaying 

datapoints, missing data, or small variations in the data intervals (heaving), will lower 

the quality and validity of the trained hybrid model. 

3.2.3.1 Outliers, Data Gaps, and Conversions 

Outliers of specific data channels are being removed via threshold rules applied and 

filled afterward by linear regression. Data gaps are filled by the available linear 

regression (fill missing indices functions), and outliers are removed and replaced via 

outlier threshold functions in Matlab. The data of the output layers is further 

smoothened (via an available smoothening function in Matlab), as removing small 

variations (heaves) in the curves will reduce overfitting later at creating the ANNs. Every 

filtering process influences the results in terms of distortion; hence filtering (removal of 

outliers and smoothing data curves) should be kept at a minimum level and according 

to necessity. Specific data channel units are converted to improve visualization in the 

plots. The pump stroke parameters (often three mud pumps at rig site) are merged due 

to the fact that not always the similar pumps are operating at the same time, and the 

pumps that are inactive would show zero values and falsify the results. 

The pre-processing and cleaning of the data is achieved by the implementation of 

additional functions and plots that will provide the user an overview of the filtered data 

points compared to the raw data points of each channel that was received via WITSML 

data stream. The pre-processed data channels were merged into a new table, whereas 

the filtering functions are displayed in Table 5. 
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Table 5: Applied filtering functions of the merged filtered data table 

3.2.3.2 Raw versus Filtered Data 

Figure 37 illustrates an outcrop of the major raw surface sensor data of interest after 

import into Matlab. Where the blue line indicates the torque channel data and the red 

line the rotations per minute, missing data (empty intervals at both channels) and 

outliers (peaks to approximately -400, -600, and -800 in the blue line) can be found. 

 

Figure 37: Outcrop of raw surface sensor data, rig Maersk Inspire, well NO 15/9-F-15 A 

Figure 38 illustrates an outcrop of pre-processed data (red line) in comparison to the raw 

torque data of the surface sensors (blue line), where the missing data points shown in 

the previous plot are being filled, and outliers are being removed at the TQA channel. 

 

Figure 38: Outcrop of pre-processed surface sensor data, rig Maersk Inspire, well NO 

15/9-F-15 A 

3.3 Building Predictive Model 

The hybrid model was designed to be able to predict abnormal behavior based on actual 

time input parameters and to provide an expectation of the behavior of the data in the 

future. It is comparing a future prediction that is done via a delay between input and 

output parameters during training to a future trend that is simulated via a closed-loop 

network of an input parameter.  

Since the input data is provided in timestamps and to meet the purpose of training a 

model to predict future timestamps, usage of neural network times series application in 

Matlab was chosen. However, the models will be independent of data frequency since 

the models will predict for similar intervals between data points. This means that similar 
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timestamps as actual datapoints (actual network) and 50 timestamps in the future, with 

similar data frequency as the input parameter, will be predicted.    

The hybrid model will be trained for two separate input parameters (One for Torque and 

one for SPP); hence Data Handlingence six artificial neural networks will be generated  

(Figure 39). 

 

Figure 39: Predictive models creation workflow 

3.3.1 ANN for Actual Time Prediction 

The neural networks for the hybrid model predicting the actual time series were created 

via the neural network time series application in Matlab and use the Levenberg-

Marquardt backpropagation as training function. The non-linear autoregressive 

network with external input (“NARX”) was constructed with the determination of the 

network’s hyper-parameters, such as 1:50 input delays, 1:50 feedback delays, and 1 

hidden layer. The division of data is set to 70% for training, 15% for validation, and 15% 

for testing. The performance was evaluated using the mean squared error (MSER) 

function. 

The time series for input and output use similar timestamps of data points. It predicts 

series y(t) given d past values of y(t) and another series x(t) (Matlab R2019b). 

The architecture of the actual prediction networks was constructed, as shown in the 

following example figure. The input parameters are streamed into a single hidden layer 

with 10 hidden neurons and used to train the network based on one output layer. 

 

Figure 40: NARX Neural Network architecture, prediction of actual time series 
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3.3.2 ANN for Future Prediction 

The neural networks for the hybrid model predicting the future time series were created 

via the neural network time series application in Matlab and use the Levenberg-

Marquardt backpropagation as training function. The non-linear autoregressive 

network with external input (“NARX”) was constructed with the determination of the 

network’s hyper-parameters, such as 1:50 input delays, 1:50 feedback delays, and 1 

hidden layer. The division of data is set to 70% for training, 15% for validation, and 15% 

for testing. The performance was evaluated using the mean squared error (MSER) 

function. 

The timestamps of the output time series are 50 timestamps delayed to the future of the 

input time series timestamps. This allows creating a network for a prediction of 50 

timestamps ahead. It predicts series y(t+50) given d past values of y(t+50) and another 

series x(t) (Matlab R2019b). 

The architecture of the actual prediction networks was constructed, as shown in the 

following example figure. The input parameters are streamed into single hidden layer 

with 10 hidden neurons and used to train the network based on one output layer. 

 

Figure 41: NARX Neural Network architecture, prediction of future time series 

3.3.3 ANN for Future Trend Prediction 

The neural networks for the hybrid model predicting the future time trends were created 

via the neural network time series application in Matlab and use the Levenberg-

Marquardt backpropagation as training function. The non-linear autoregressive 

network (“NAR”) considers 1:50 feedback delays and one hidden layer. The division of 

data is set to random. The performance was evaluated using the mean squared error 

(MSER) function. 

The architecture of the open-loop network is illustrated in Figure 42. 

 

Figure 42: NAR Neural Network architecture, trend prediction, open loop 

After simulating the open-loop network, the network is being closed and will predict the 

future trend of the input channel for 50 timestamps into the future (Figure 43). The 

output is used as further input to the network after closing the loop. 
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Figure 43: NAR Neural Network architecture, trend prediction, closed-loop 

Table 6 shows the models of prediction and their functions in the context of the entire 

model and for defining the abnormality. 

Predictive Model Function Purpose 

ANN for Actual Time 

Prediction 

Predicts datapoints based 

on actual channel data 

input. 

Comparison of actual and 

predicted datapoints to 

identify abnormalities. 

ANN for Future Prediction Predicts datapoints with 50 

timestamps offset into the 

future based on actual 

channel data input. 

Comparison of predicted 

future datapoints and the 

predicted future trend of a 

single data channel in 

order to provide drilling 

behavior forecasts. 
ANN for Future Trend 

Prediction 

Predicts the trend of a 

single data channel input 

with 50 timestamps offset 

into the future. 

Table 6. Models of prediction description 

3.4 Construction of Uncertainty Windows 

3.4.1 Overview 

The main purpose of triggering alerts is achieved by calculating a predictive window of 

uncertainty (safety window) and detection of outlier data points. Once data points are 

identified as outliers from the window that is being generated by calculating the MSER 

and considering the standard deviation of it, alerts are going to be triggered accordingly 

(Figure 44). 
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Figure 44: Workflow of safety window creation and triggering alerts 

The sketch in Figure 45 illustrates the principle of identifying outliers (abnormal 

behavior of a data channel). The window is created by considering the MSER function 

and standard deviation of each timestamp of the investigated range of data. A similar 

principle is applicable for the future prediction of the channels compared to the 

predicted future trend of a single channel. 

 

Figure 45: Principal of identifying outliers, in other words, abnormal behavior of the 

specific data channel 
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3.4.2 Extraction of Actual and Predicted Data 

After applying the models of predicting the torque and standpipe pressure, the data 

points can be extracted for further calculations. 

3.4.3 Compute Mean Squared Error (MSER) 

After simulating the curves for TQA and SPPA the error between the predicted and 

actual data and between the future prediction and trend lines respectively can be 

calculated. The mean squared error function was applied to each timestamp. 

𝑀𝑆𝐸𝑅 =  √(𝑃𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)²    (37) 

3.4.4 Obtain Standard Deviation 

The standard deviation of the calculated MSER can be computed by the statistical 

approach. The error histogram in the figure shows the distribution of the MSER and the 

standard deviation in theory. The data samples (MSER of each timestamp) are plotted 

against their density (occurrence). By evaluating the mean, the standard deviation (of 

the normally distributed histogram) is defined to the left and right. 

 

Figure 46: Normal distributed histogram of data samples (MSER of each timestamp), 

indicating mean and standard deviation 

The standard deviation for a sample is calculated as followed. 

б = √
∑ (𝑥𝑖−𝑥𝑚𝑒𝑎𝑛)²𝑛

𝑖=1

(𝑛−1)
     (38) 

where  

б is the Standard Deviation 

xi is the value of the sample 

n is the total number of sample elements 
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xmean is the sample mean 

𝑥𝑚𝑒𝑎𝑛 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
      (39) 

3.4.5 Create Windows 

After obtaining the overall standard deviation explained earlier, the windows can be 

created once new predictions based on new data input were calculated. 

3.4.6 Compare Actual Data with Predictive Windows 

The actual data will be compared to the predictive windows. If the actual data is within 

the window, the situation is expected to be safe, and no alert will be triggered. In case 

the actual data is detected to be outside the window, alerts will be triggered accordingly. 

3.5 Alert Level Definition and Activation 

Once a specific amount of data point is identified as an outlier from the window of 

uncertainty, alerts are triggered accordingly. The main purpose is to indicate any 

potential evolving issue and to draw attention to the drilling personnel at an early stage 

of a possible problematic situation, but not to classify the reason at this point (more 

explanation will be given in the future work chapter). 

The thresholds for the specific alerts were defined as followed: 

- 50 data points of actual TQA above upper window border: potential packoff, 

stuck pipe  

- 50 data points of actual TQA below lower window border: potential twist off 

- 50 data points of actual SPPA above upper window border: potential packoff, 

plugged equipment (bit balling) or kick 

- 50 data points of actual SPPA below lower window border: potential losses or 

washout of equipment 

3.6 Standalone Application 

The aim was to create a simple user interface (UI), which is capable of performing pre-

processing, training algorithms, and operational evaluation of the imported data at the 

same time, without adding additional afford to the drilling personnel. The application 

was designed specifically for analyzing the behavior of surface torque (TQA) and 

standpipe pressure (SPPA). Figure 47 illustrates a flow chart of the methodology behind 

the developed standalone application. 
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Figure 47: Outlook of the developed standalone application 

The overview of the standalone application shows an indication of a critical torque after 

the comparison of actual versus predicted values of actual timestamps and predicted 

future timestamps versus future trends of TQA and SPPA (Figure 48). 
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Figure 48: Workflow of the developed Standalone Application 
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3.6.1 Data Import and Filter 

By pushing the data import and filter button, the folder which contains the new (actual) 

data sample can be selected. The format of the import data needs to be in “csv,” and the 

channel mapping of the sample data table needs to be adjusted accordingly in the script 

upfront. Usually, the channel mapping does not change during a well operation; hence 

once a standard mapping was applied, no further changes need to be done. 

The software imports the raw data and applies pre-defined filters for filling missing data 

points and replacing outlier data values. The data is visualized once the filtering process 

was completed (Figure 49). 

 

Figure 49: Visualization of the imported raw and filtered actual data in standalone 

application charts (well NO 15/9-F-15 A) 

3.6.2 Train Torque Network 

By pushing “train torque network,” training of the three torque prediction networks for 

a chosen time range is triggered. The start time and end time of the training data can be 

entered by the user (Figure 50). 

  

Figure 50: Enter the start point (start time) and endpoint (end time) of training data 

(well NO 15/9-F-15 A) 
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3.6.2.1 ANN for Actual TQA 

The architecture of the ANN is illustrated in Figure 51. 

 

Figure 51: NARX Neural Network architecture, prediction of actual TQA time series 

The ANN for predicting the actual torque values uses the input parameters shown in 

Table 7 for training. 

Input time series x(t) Target time series (output) y(t) 

filtered_RPM2 filtered_SWOB filled_HKLD filtered_TQA2 

Table 7: ANN for actual TQA prediction, data selection 

3.6.2.2 ANN for future TQA prediction 

The architecture of the ANN is illustrated in Figure 52. 

 

Figure 52: NARX Neural Network architecture, prediction of future TQA time series 

The ANN for predicting the actual torque values uses the input parameters shown in 

Table 8 for training. 
T

im
estam

p
 

Input time series x(t) 

T
im

estam
p

 

Target time 

series (output) 

y(t+50) 

t filtered_RPM2 filtered_SWOB filled_HKLD t+50 filtered_TQA2 

Table 8: ANN for future TQA prediction, data selection 

3.6.2.3 ANN for Future Trend Prediction 

The target time series, defining the desired outputs of the trend prediction, are stated in 

Table 9. 

NAR Neural Network Target time series (output) y(t) 

TQA future trend filtered_TQA2 

SPPA future trend filtered_SPP2 

Table 9: ANNs for TQA and SPPA future trend prediction, data selection 
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Training the torque networks reached a sufficient performance after a small number of 

iterations and short durations: 

- Training the actual torque prediction network took 12 iterations (20 seconds) 

with a performance of 1.45*10-3. 

- Training the future torque prediction network took 17 iterations (32 seconds) 

with a performance of 1.19*10-3. 

- Training the torque trend prediction network took 78 iterations (9 seconds) with 

a performance of 1.62*10-3. 

3.6.3 Train SPPA Network 

By pushing “train torque network” training of the three standpipe pressure prediction 

networks as described in chapter 2.3 for a chosen time range. The start time and end time 

of the training data can be entered by the user (Figure 53). 

  

Figure 53: Enter start point (start time) and endpoint (end time) of training data (well 

NO 15/9-F-15 A) 

3.6.3.1 ANN for actual SPPA 

The architecture of the ANN is illustrated in Figure 54. 

 

Figure 54: NARX Neural Network architecture, prediction of actual SPPA time series 

The ANN for predicting the actual standpipe pressure values uses the input parameters 

shown in Table 10 for training. 

 

Input time series x(t) Target time series (output) y(t) 

filled_

TFLO 

filled_

SPM1 

filled_

SPM2 

filled_

SPM3 

filled_Output

DMEA 

filtered_SPP2 

 SPM total   

Table 10: ANN for actual SPPA prediction, data selection 
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3.6.3.2 ANN for Future SPPA Prediction 

The architecture of the ANN is illustrated in Figure 55. 

 

Figure 55: NARX Neural Network architecture, prediction of future SPPA time series 

The ANN for predicting the actual standpipe pressure values uses the input parameters 

shown in Table 11 for training. 

 

T
im

estam
p

 

Input time series x(t) 

T
im

estam
p

 

Target time series 

(output) y(t+50) 

t filled_

TFLO 

filled_

SPM1 

filled_

SPM2 

filled_

SPM3 

filled_Output

DMEA 

t+50 filtered_SPP2 

  SPM total    

Table 11: ANN for future SPPA prediction, data selection 

The big difference to the torque networks in iterations of the training processes can be 

explained by the different training modes and the bit depth channel used as an input 

channel, which is gradually changing and, therefore, will not lead to steady gradients. 

The training processes were stopped after sufficient performance was reached. 

- Training the actual SPPA prediction network took 600 iterations (manually 

stopped after 35 minutes 34 seconds) with a (sufficient) performance of 1.21*10-8. 

- Training the future SPPA prediction network took 325 iterations (manually 

stopped after 23 minutes 41 seconds) with a (sufficient) performance of 2.50*10-7. 

- Training the SPPA trend prediction network took 1000 iterations (2 minutes 7 

seconds) with a performance of 4.05*10-5. 

Re-training of the networks should be performed at the start of a new drilling run once 

the first stands have been drilled without issues, or after a longer period of missing 

sensor data (an outage of sensor measurements) and drilling ahead of the required 

stands for sufficient amount of training data. 

3.6.4 Calculate Torque Window 

“Calculate Torque Window” will perform the statistical calculations for the construction 

of the torque windows of uncertainty, as described in chapter 2.4. 

The histogram of the mean squared error of predicting the actual torque values is 

illustrated in Figure 56. The standard deviation can be evaluated after the normal 

distribution. The majority of error values was ranging between 0 and 0.4. 
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Figure 56: Mean squared error (MSER) of actual torque prediction (TQA), Histogram 

3.6.5 Calculate SPPA Window 

“Calculate SPPA Window” will perform the statistical calculations for the construction 

of the standpipe pressure windows of uncertainty, as described in chapter 2.4. 

The histogram of the mean squared error of predicting the actual standpipe pressure 

values is illustrated in Figure 57. The standard deviation can be evaluated after the 

normal distribution. The majority of error values was ranging between 0 and below 0.05. 

 

Figure 57: Mean squared error (MSER) of actual standpipe pressure prediction (SPPA), 

Histogram 
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3.6.6 TxD Plot Results 

The final results are plotted by pushing the “TxD Plot Results” button. The charts area 

of the standalone application will change to visualize the actual vs. actual predicted 

windows of uncertainty, and future trend vs. future predicted windows of uncertainty. 

Figure 58 shows the visualization of the predicted data and windows of uncertainty in 

the actual data charts section (the predictions after timestamp 15:00:00 vary from the real 

values since the data was not included in the training data set). Additionally, the future 

predictions (50 timestamps after the last available real data point) are visualized in the 

right-hand charts section. 

It has to be mentioned that future predictions potentially indicate upcoming problems 

by comparing the future trends of the channels to the predicted future uncertainty 

windows, but due to the insufficient testing period of the software, it is not considered 

for triggering alerts at this stage. 

The outcrop in Figure 58 shows that the actual data channels (green line) stay inside the 

predicted actual windows of uncertainty (dashed red lines). Therefore no alerts will be 

triggered.  

The future predictions show that the torque trend (green line) tends to exceed the upper 

boundary of the window (sigmao, future) partly over the next 50 timestamps and the 

standpipe pressure trend to stay within the window (between sigmau, future, and 

sigmao, future) over the next 40 timestamps with a sudden increase afterward. Both 

channels should be monitored closely for the new imported actual data (does actual data 

reflect a similar trend?) as well as updated future predictions for a potential indication 

of upcoming problems in such cases (Figure 59). 

 

Figure 58: Visualization of the actual results in the standalone application (well NO 

15/9-F-15 A). 
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Figure 59: Visualization of the future results in the standalone application (well NO 

15/9-F-15 A). 

Alerts will be triggered accordingly after importing new sample data, recalculating the 

windows, and plotting the results. It is important that the new sample data contains the 

previous imported time range, hence continuously updating data similar to real-time 

mode. The real-time mode is not available in the developed application. 
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3.6.7 Advantages and Limitations of The Standalone 

Application 

Table 12 compiles the advantages and disadvantages of the standalone application. 

 

Table 12: Advantages and disadvantages of the standalone application 
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Chapter 4 Case Studies 

In order to examine the functionality of the developed standalone application, made-up 

scenarios based on manipulated data are created.  The Data from Volve (well NO 15/9-

F-15 A) was manipulated in terms of deviating torque and standpipe pressure data 

measurements to provide sufficient data for case studies evidence. 

4.1 Model Definition 

Similar network settings in terms of hyperparameters, as described in chapter 3.6 have 

been used to test the standalone application. The tests were performed after 

manipulating the original raw data set to provide the different test scenarios. After re-

training was performed, a similar data file, including manipulated data points after 17:47 

was imported to test the standalone application. The networks have been re-trained 

based on wells NO 15/9-F-15 A time interval from 2009-Jan-02 8:39 to 2009-Jan-02 17:47 

(Figure 60). 

 

Figure 60: Standalone application view of the actual data training interval, imported, 

filtered, and trained networks, well NO 15/9-F-15 A 

To demonstrate that the application requires a short amount of time for training, in order 

to provide feasibility of handling during ongoing drilling operations (e.g. whilst 

performing a weight to weight connection) and without adding additional effort to the 

drilling personnel, the performance of training the system is given:  

- Training the actual torque prediction network took 35 iterations (1 minute 26 

seconds) with a performance of 1.40*10-3. 

- Training the future torque prediction network took 39 iterations (1 minute 34 

seconds) with a performance of 1.41*10-3. 

- Training the torque trend prediction network took 199 iterations (26 seconds) 

with a performance of 1.30*10-3. 
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- Training the actual SPPA prediction network took 45 iterations (manually 

stopped after 3 minutes 00 seconds) with a (sufficient) performance of 1.2*10-5. 

- Training the future SPPA prediction network took 35 iterations (manually 

stopped after 3 minutes 00 seconds) with a (sufficient) performance of 2.81*10-3. 

- Training the SPPA trend prediction network took 1000 iterations (3 minutes 13 

seconds) with a performance of 4.09*10-4. 

4.2 Performed Scenarios 

The standalone application has been trained for the following scenarios: 

- Excessive torque 

- Decreasing torque 

- Excessing standpipe pressure 

- Decreasing standpipe pressure. 

4.2.1 Excessive Torque 

To test the alerting for excessive torque, the dataset for upcoming test import (100 

timestamps) was manipulated by increasing the actual torque values (raw datapoints 

inside red square) by 5 kN.m (Figure 61). 

 

Figure 61: Manipulated input data, excessive torque 

Figure 62 shows an increase of actual torque after importing new timestamps (after 

approx. 17:48) and the actual (real TQA - in green) exceeding the predicted window 

(sigmao – in red). Hence a warning for excessive torque was triggered. 

  

 

 

 

high 

TQA 
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Figure 62: Performed Scenario to identify excessive torque behavior, manipulated well 

data (NO 15/9-F-15 A). a.) Standalone application view shows a warning message 

shown b.) Zoomed “Actual Torque Window” view indicates the actual outlier data in 

green from the predicted window in red c.) Zoomed “Actual Torque Window” view 

(II) provides a closer look into the outlier data range, whereas the actual TQA data in 

green is clearly exceeding the predicted window of uncertainty (upper border) in red. 

The application detected abnormal torque behavior based on the increased values by 

five kN.m accordingly; hence the networks can be considered as sufficient models. 

However, for advanced detection, a classification of the specific issue, additional data 

channels should be implemented as network training references [directional drilling 

data (e.g., inclination, dogleg severity). 

4.2.2 Decreased Torque 

To test the alerting for decreased torque, the dataset for upcoming test import (100 

timestamps) was manipulated by decreasing the actual torque values (raw datapoints 

inside red square) by 5 kN.m (Figure 63). 

 

Figure 63: Manipulated input data, decreased torque 

 

 

 

low 

TQA 
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Figure 64 shows a decrease of actual torque after importing new timestamps (after 

approx. 17:48) and the actual (real TQA – in red) exceeding the predicted window 

(sigmau – in red); hence a warning for decreased torque was triggered. 

 

Figure 64: Performed Scenario to identify decreased torque behavior, manipulated well 

data (NO 15/9-F-15 A). a.) Standalone application view shows a warning message 

shown b.) Zoomed “Actual Torque Window” view indicates the outlier actual data in 

green from the predicted window in red c.) Zoomed “Actual Torque Window” view 

(II) provides a closer look into the outlier data range, whereas the actual TQA data in 

green is clearly exceeding the predicted window of uncertainty (lower border) in red. 

The application detected abnormal torque behavior based on the decreased values by 5 

kN.m accordingly, hence the networks can be considered as sufficient models. Similar 

approach for potential improvement of the models as for excessive torque should be 

considered in the future. 

4.2.3 Excessive Standpipe Pressure 

To test the alerting for excessive standpipe pressure, the dataset for upcoming test 

import (100 timestamps) was manipulated by increasing the actual SPPA values (raw 

datapoints inside red square) by 10000 kPa (100 bar) (Figure 65). 

 

Figure 65: Manipulated input data, excessive standpipe pressure 
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Figure 66 shows significant increase of actual SPPA after importing new timestamps 

(after approx. 17:48) and the actual (realSPPA – in green) exceeding the predicted 

window (sigmao – in red), hence a warning for excessive SPPA was triggered. 

 

Figure 66: Performed Scenario to identify excessive SPPA behavior, manipulated well 

data (NO 15/9-F-15 A). a.) Standalone application view shows a warning message 

shown b.) Zoomed “Actual SPPA Window” view indicates the outlier, actual data in 

green from the predicted window in red c.) Zoomed “Actual SPPA Window” view (II) 

provides a closer look into the outlier data range, whereas the actual SPPA data in 

green is clearly exceeding the predicted window of uncertainty (upper border) in red. 

While the tests performed based on manipulated standpipe pressure data provided 

evidence for abnormal SPPA behavior for significantly higher values (>50 bar increase), 

detection was showing less reliability with decreasing values added, hence potential 

miss of detection (and therefore warnings) could be induced after slight increase of 

SPPA. The miss of detecting slight increased SPPA values could lead to delayed 

recognition of severe problems like equipment failure. 

Output of the SPPA networks could be improved by implementation of additional data 

channels for training input. In other words, discharge pressure, ECD and 

implementation of formation data classification would improve detection of abnormal 

standpipe pressure. 
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4.2.4 Decreased Standpipe Pressure 

To test the alerting for decreased standpipe pressure, the dataset for upcoming test 

import (100 timestamps) was manipulated by decreasing the actual SPPA values (data 

points inside red square) by 10000 kPa (100 bar) (Figure 67). 

 

Figure 67: Manipulated input data, decreased standpipe pressure 

Figure 68 shows a significant decrease of actual SPPA after importing new timestamps 

(after approx. 17:48) and the actual (realSPPA – in green) exceeding the predicted 

window (sigmau – in red); hence a warning for decreased SPPA was triggered. 

 

Figure 68: Performed Scenario to identify decreased SPPA behavior, manipulated well 

data (NO 15/9-F-15 A). a.) Standalone application view shows a warning message 

shown b.) Zoomed “Actual SPPA Window” view indicates the actual outlier data in 

green from the predicted window in red c.) Zoomed “Actual SPPA Window” view (II) 

provides a closer look into the outlier data range, whereas the actual SPPA data in 

green is clearly exceeding the predicted window of uncertainty (lower border) in red. 
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While the tests performed based on manipulated standpipe pressure data provided 

evidence for abnormal SPPA behavior for significantly lower values (>50 bar decrease), 

the detection was showing less reliability with decreasing values removed, hence 

potential miss of detection (and therefore warnings) could be induced after slight 

decrease of SPPA. The miss of detecting slightly decreased SPPA values could lead to 

delayed recognition of severe problems like severe fluid losses to the formation or 

washouts. 

A similar approach for potential improvement of detecting abnormal behavior as for 

excessive standpipe pressure should be considered in the future. 

4.3 Case Study Conclusion 

After undertaking the study on the provided scenarios in this chapter, the standalone 

application has proven its user-friendliness by an easy approach of performing analysis 

on input data.  

The application showed a short timeframe between configuring the models (training the 

networks), importing new data into the program, and showing valuable results, for 

instance, warning messages, in case abnormal drilling behavior was detected. The 

accuracy of the predictions was sufficient after short training intervals, although results 

could be improved by considering additional data channels. 

Aside from the proven functionalities of the developed standalone application, a 

number of limitations still appear. The import data needs to be converted from WITSML 

to csv format externally before it can be imported into the application; therefore real-

time streaming without manual input is not applicable yet. A direct configuration in the 

standalone application is not possible and needs to be handled by the administrator in 

case changing conditions and considerations is desired.
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Chapter 5 Conclusions and Future Work 

5.1 Conclusions 

The main conclusion of the presented work can be summarized in the following points. 

1. The major drilling problems that appear during routine operations are 

related to pipe sticking (differential sticking or mechanical sticking), tight 

hole conditions, bit balling, losses, kicks, or the equipment being used. 

2. Today a lot of simulation programs are available for torque and standpipe 

pressure calculations and are used for real-time monitoring purposes. The 

actual trend of the data can be compared to the simulated expected values. 

Hence drilling problems can be noticed by deviating trends but can 

potentially be missed due to human factors. 

3. Often historical data is being used for planning purposes and to review the 

performance at previous well operations of a similar field. This can be a 

useful approach for choosing the equipment and creation of the drilling 

program. However, previous theses have shown that this is not applicable 

for detecting drilling problems as minor changes in the setup or downhole 

conditions will lead to a completely different scenario. 

4. Since the age of machine learning also reached the oil business a decade ago, 

various machine learning approach concepts for minimizing health, safety, 

and environmental risks and improving drilling performance have been 

proposed, developed, and tested to the industry. Amongst various statistical 

learning models, artificial neural networks for torque and drag predictions 

and lost circulation, as well as drilling hydraulic optimization related to 

standpipe pressure prediction, have been introduced and discussed in this 

thesis. 

5. Up to now, simulating torque and drag and standpipe pressure after 

standard principals are still state of the art and most used approaches at the 

drilling rig. 

6. The developed hybrid model compiles six artificial neural networks, 

whereas three are used for predictions of a single data channel (e.g. torque 

or standpipe pressure). The actual data channel values are predicted based 

on a set of related data channels and are compared to the actual data 

afterward. Additionally, future values are predicted based on related actual 

data channels, and the future trend of a specific data channel is predicted 

based on the actual values. Windows of uncertainty are calculated based on 

the mean squared error between actual and predicted values to identify 

outliers (deviations from the trend) and, therefore, potential drilling-related 

problems. The standard deviation is used to create the windows. Alerts are 

being triggered once a pre-defined number of outliers was identified, and 

warning signs are shown. 
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7. The created standalone application provides an easy user interface to ease 

data import & filter, training the networks, calculation, and visualization of 

the results and to provide warning messages related to the type of the issue. 

The advantages of the application include quick and easy usage, 

independence from the data frequency, re-training of networks for the 

desired time interval, and calculation of results without restarting it. The 

illustration of the actual data channels and results, warning signs being 

shown, and a preview of future predictions (50 timestamps) also add up to 

a plus. Potential future work and disadvantages of the app can be seen in the 

missing real-time mode, the required data format (.csv), and that a direct 

configuration of the data file mapping, network, and alert settings, as well as 

parallel zoom of the charts, is not available yet. 

8. Based on the results of the conducted scenarios, the following points can be 

considered as main findings. 

• The planned laboratory tests at UFES Brazil (mini drilling rig) could 

not be performed due to the COVID-19 situation, hence data from 

Volve (well NO 15/9-F-15 A) was manipulated in terms of exceeding 

torque and standpipe pressure data measurements to provide 

sufficient data for case studies evidence. 

• Performed Scenarios have been performed on four main scenarios, 

i.e. excessive torque, decreased torque, excessive standpipe pressure, 

and decreased standpipe pressure.  

• The outcome of the case studies was that while abnormal torque 

behavior could be detected properly at small deviations from the 

safety windows, abnormal standpipe pressure tends to be detected 

the easier, the larger the deviation of the actual values from the 

predicted. In other words, the standpipe pressure model provides the 

potential for improvement. 

• It is recommended to consider additional input data channels for 

predicting torque and standpipe pressure and to perform further 

tests in real-time and on the rig site, respectively. 

5.2 Future work 

General future work should be done on the main developed hybrid model: 

- Real-time mode for automated data import (direct import and convertion of 

WITSML data) 

- Classification of alert level and issue type (e.g. loss rate or kick rate could be 

calculated) 

- Improve actual networks and therefore, alert timing by consideration of 

additional input data channels for torque (e.g. inclination, DLS) and standpipe 

pressure predictions (e.g. discharge pressure, ECD, formation classification). 

- Improve future networks and therefore alert timing by consideration of 

additional input data channels and neural network settings (e.g. type, 

parameters) 
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- Additional tests based on real issue data and in real-time (data stream at or from 

rig site) 

The following implementations should be done to the standalone application to improve 

capabilities, independent from administrators (easier user handling) and alert timing: 

- Allow for direct configuration of data format and input, networks training 

parameters and alerts. 

- Parallel zoom option of charts 

- Mark outlier regions of actual data from windows of uncertainty in the results 

charts 

- Improve preview of future predictions (show information about changing 

upcoming trends)
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Appendix A  

Developed Scripts 

A.1.1 Python Script 

Incoming WITSML data is converted from WITSML to CSV format via a python script. 

 

Figure 69: WITSML (.xml) Well Data Outcrop before format conversion to CSV (.csv) 

 

Figure 70: Python script, xml to csv converter 
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Figure 71: CSV Well Data Outcrop after format conversion 

A.1.2 Matlab Scrips 

Before running the standalone application and importing files, the script needs to be 

adjusted to the well data file columns header. 

 

Figure 72: Import and filter data script, outcrop, heada parameters to be adjusted 
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Figure 73: Imported and filtered data table 

Training parameters of the neural network models may also be calibrated after the users 

desire upfront (administrator). The scripts will prepare the table parameters and create 

a matrix for each input and output table before training of the models will be triggered. 

 

Figure 74: Actual Torque Prediction Script, outcrop, input parameters 
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Figure 75: Actual Torque Prediction Script, outcrop, training parameters 

 

Figure 76: Input data for Actual Torque Prediction, outcrop, table (left) and matrix 

(right) 
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Figure 77: Actual Standpipe Pressure Prediction Script, outcrop, input parameters 

 

Figure 78: Actual Standpipe Pressure Prediction Script, outcrop, training parameters 

Note: The channels for pump strokes are being compiled to a single channel since there 

are not always the same pumps active, which would falsify the results. 
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Figure 79: Input data for Actual Standpipe Pressure Prediction, outcrop, table (left) and 

matrix (right) 
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Figure 80: Graphical User Interface for Developed Standalone Application 
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# Description and Function 

1 Imports and filters new data sample. 

2 Calculate torque and standpipe pressure windows based on trained networks. 

3 Visualizes results in the specific plot sections. 

4 Train neural networks for torque predictions 

5 Train neural networks for standpipe pressure predictions 

6 Visualization of actual raw data vs. filtered data, predicted torque and 

standpipe pressure windows 

7 Visualization of additionally filtered data channels (hookload vs. block 

position and measured depth of bit vs. hole). 

8 Visualization of predicted torque trend, future torque (based on other 

channels) and torque window. 

9 Visualization of predicted SPPA trend, future SPPA (based on other channels) 

and SPPA window. 

10 Warning shown by alert trigger functions. 

Table 13. Detailed Description of the GUI Panel 
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Acronyms 

TQA 

SPPA 

WITSML 

WITS0 

HSE 

UI 

DSF 

OD 

BHA 

RPM 

ROP 

LCM 

BHP 

WBM 

OBM 

CH 

OH 

WOB 

DP 

CSG 

KOP 

HWDP 

RIH 

POOH 

ROB 

KPI 

SPP 

ADP 

MSER 

SVM 

Average (surface) torque 

Average Standpipe Pressure 

Wellsite information transfer standard markup language 

Wellsite Information Transfer Standard Level 0 

Health Safety Environment 

User Interface 

Differential Sticking Force 

Outer Diameter 

Bottom Hole Assembly 

Rotations per Minute 

Rate of Penetration 

Loss Circulation Material 

Bottom Hole Pressure 

Water based Mud 

Oil based Mud 

Cased Hole 

Open Hole 

Weight on Bit 

Drill Pipe 

Casing 

Kickoff Point 

Heavy Weight Drill Pipe 

Running in hole 

Pulling out of hole 

Rotating off bottom 

Key Performance Indicator 

Standpipe Pressure 

Annular Discharge Pressure 

Mean Squared Error 

Support Vector Machines 
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MLR 

ANN 

NARX 

NAR 

IADC 

IWFC 

RSS 

 

Multilinear Regression 

Artificial Neural Networks 

Nonlinear Autoregressive with External (Exogenous) Input 

Nonlinear Autoregressive 

International Association of Drilling Contractors 

International Well Control Forum 

Rotary Steerable System 
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Symbols 

𝑚  mass [kg] 

𝑟 

F 

φ 

µ 

radius 

Force 

angular 

friction factor 

[m] 

[N] 

[°] 

[-] 
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