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Kurzfassung

Diese Masterarbeit untersucht den Einsatz von genetischen Algorithmen zur Optimierung von
Hyperparametern des maschinellen Lernens, insbesondere für den Anwendungsfall von Echtzeit-
daten, welche in industriellen Prozessen anfallen. Der Einsatz und die Eignung der Kombina-
tion eines Algorithmus des maschinellen Lernens und einer Metaheuristik, welche unter dem
Überbegriff der genetischen Algorithmen zusammengefasst wird, wird untersucht. Als Modell
des maschinellen Lernens wird ein sogenannter Variational-Autoencoder, welcher über Schichten
des langen Kurzzeitgedächtnisses verfügt, verwendet. Der Rückgabewert dieses Modelles ist der
Rekonstruktionsfehler. Da dieser nicht normalverteilt ist, wird für die Anomaliedetektion eine
spezielle Art des Boxplots für schiefe, nicht normalverteilte Daten verwendet. Eine neue Variation
des genetischen Algorithmus mit maximal einer Evaluation pro Individuum und Teilmenge wird
zur Laufzeitreduktion vorgestellt. Damit lässt sich darüber hinaus auch das benötigte Expertenwis-
sen, welches bei manuellen Ansätzen der Hyperparameteroptimierung benötigt wird, vermindern.
Weiters wird die Kombination zweier Kreuzungsfunktionen eingeführt, um eine bessere Unter-
suchung guter Regionen des Suchraumes zu gewährleisten. Für die Ausreißererkennung werden
Methoden des unüberwachten Lernens eingesetzt. Für die Hyperparameteroptimierung und das
Trainieren des Netzwerkes werden nur fehlerfreie Daten verwendet. Nach diesem Schritt wird
das damit trainierte Netzwerk auf den gesamten Datensatz angewandt. Diese Vorgehensweise
verbessert die Performance der Anwendung auf Daten mit einem unausgewogenen Verhältnis
zwischen gewöhnlichen Daten und Ausreißern. Der entwickelte Ansatz wurde erfolgreich auf
Daten, welche in einem industriellen Prozess erhoben wurden, angewandt.
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Abstract

This thesis investigates the use of genetic algorithms to optimize the hyperparameters of machine
learning; the focus is on the application to real-time series data gathered during industrial pro-
cesses. The combination of machine learning and the meta-heuristic genetic algorithm is reviewed
to determine their suitability for hyperparameter optimization for anomaly detection. Because the
machine learning model consists of a variational autoencoder with long short-term memory lay-
ers, the output of the model is the reconstruction error. Further, a skewness-adjusted boxplot for
non-normal distributed data is applied for outlier detection on the reconstruction error. A new ap-
proach of the genetic algorithm with maximal one evaluation of each individual per generation
and fold was introduced. The genetic algorithm is developed to overcome the long runtime and
expert knowledge that is needed for the popular approach of manual hyperparameter optimization.
Further, a combination of two crossover functions is introduced for a better exploration of good
regions of the search space. The outlier detection is done in an unsupervised manner. For the hyper-
parameter optimization as well as the training only non-anomalous data was used; then the trained
network is applied to all the data. This improves performance for highly biased training data. The
approach was successfully applied to datasets gained during an industrial process.
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Chapter 1

Introduction

This thesis addresses the issue of applying machine learning to real-time series data from industrial
processes with the goal of producing added value. The key issue of this topic is that the data is
acquired as real-time series data. One of the special characteristics of this type of data is that
the sequence of the data needs to be maintained. Data collected in this setting is in most cases
highly biased. In the case of outlier detection, this means that more non-anomalous than anomalous
examples are present in the data. Often only unlabelled data is available, which limits the number
of machine learning (ML) techniques that can be applied [1].

As a ML-model a long short-term memory (LSTM) based variational autoencoder (LSTM-VAE)
is used, which was developed during a prior thesis (see [2]). This approach was chosen because
ML-models that are applied on time-series data have to deal with the problem of vanishing/ ex-
ploding gradients [3] due to the nature of learning in deep recurrent architectures using gradient
descent-based techniques and backpropagation.

Each ML-algorithm has several settings, hyperparameters, which need to be set before execu-
tion. The relationship of hyperparameters and the performance of machine learning algorithms is
still unclear [4]. It is assumed that some few hyperparameters have bigger impact on the perfor-
mance than others [5]. Optimizing this and finding for this values of good performance can be
enough to reach a region of the search space where the overall performance of the ML-model
does not vary much. Genetic algorithms, which belong to the subgroup of meta-heuristics, explore
the search space by a directed search. However, its nature does not guarantee convergence to a
global optimum. Despite this, it is very likely that meta-heuristics find good regions of the search
space [6].

When optimizing multiple hyperparameters, hyperparameter optimization (HPO) becomes mul-
tidimensional and multiple configurations are possible. A common approach to find hyperparam-
eters is applying grid search. Using this technique all possible configurations of the values on a
specified grid are tried out one by one, which is an exhaustive search and has exponential runtime.
The evaluation of ML-models is computationally expensive and the budget of possible evaluations
limited. Another commonly used technique is that the hyperparameters are set manually, which
requires a lot of expert knowledge [4].
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1.2 Organization 2

The question of how to choose a subset of hyperparameters for optimization and how to deter-
mine the search space is still only discussed in the literature . The same is the case for the question
of how to choose the right encoding for HPO applied on ML and how to design the genetic opera-
tors, which are the crucial part of every genetic algorithm.

1.1 Goals

This situation motivates an evaluation of the potential of using optimized hyperparameters on a
variational autoencoder including LSTM layers when applied to time series in a physical system.
As an optimization technique, a genetic algorithm is used. It should be discussed if genetic algo-
rithms are suitable for this task. Further, the question about finding the right representation should
be addressed as well as a literature review about existing solutions for LSTM hyperparameter op-
timization. Also, possible variations of the operators of genetic algorithms should be discussed.
The goal is to show if different hyperparameter settings have an impact on the reconstruction of
the encoded and decoded input signal and if there is potential to use this technique for outlier
detection.

1.2 Organization

This work is structured as follows: Part 2 introduces the basic concepts of machine learning, Part
3 is discussing the theory related to time series forecasting, while Part 4 focuses on the machine
learning architecture LSTM and the architecture LSTM-VAE. Part 5 introduces the optimization
technique genetic algorithm (GA) while Part 6 combines the topics of GA and LSTM. Part 7 gives
an overview of statistical approaches for outlier detection. Part 8 shows the application of a GA for
HPO on real data. Part 9 summarizes and concludes this work and proposes possible directions for
further work.



Chapter 2

Machine Learning Basics

2.1 What Machine Learning is

There is no single answer to what machine learning is. Commonly machine learning is presented as
the idea of imitating the learning process of humans by computers. Human beings and some other
biological systems are the only known example of robust learning, therefore trying to copy their
behaviour is often a starting point for possible learning methods [7]. One downside of human-like-
learning is that it is a slow process because the encoding of it is unknown. Additionally, there is no
possibility to copy learned information [8]. One definition formulated by Simon in [8]: ”Learning
denotes changes in the system that are adaptive in the sense that they enable the system to do the
same task or tasks drawn from the same population more efficiently and more effectively the next
time.” From that definition, learning can only be achieved by a repetitive process [8].

According to the authors of [9] computers would need to incorporate some kind of self-reflection
to act and react intelligently. Humans can self-observe their behaviour and learn from that. This is
the foundation for the ability of self-reflection [9].

The question is how much can computers understand? Extracting information that meets certain
criteria out large data sets is known as data mining. This can be visualized with the data mining
wisdom pyramid (see Figure 2.1) [10]. According to this definition, the hierarchy of processing
raw data is: data, information, knowledge, understanding and ”ultimate” wisdom. The idea of the

Wisdom

Understanding

Knowledge

Information

Data

Fig. 2.1: data mining wisdom pyramid [10]
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pyramid is that raw data is pre-processed to easier extract attributes or features needed for the
application. By building a model that executes regression or classification knowledge is gained.
This knowledge is then analysed and so a deeper understanding of the work principles is obtained.
In this context as wisdom is defined transferring knowledge to other application domains [9].

These principles cannot be applied to all problems that humans can solve. Some problems,
particularly those, that can be described by formal rules, can be solved simply and efficiently
by computers. In contrast, computers have great difficulty in solving problems that are easy for
humans to solve but cannot be described by formal rules. Human beings approach these problems
intuitively. Examples for tasks of this group are: recognizing spoken words or faces in images. To
solve a task a computer needs an algorithm that is designed for that task [11].

According to [12] an algorithm can be very abstract defined as: ”[...] mechanically executable,
ordered (possibly non-terminating) list of (multiple, interacting) steps for the application of com-
putable functions on a well-defined domain of input values (be these simple or streams of infinite
and complex nature).”

For some task no algorithm is available. The nature of the inputs is known as the expected
outputs, however, the required sequence of commands for the transformation is unknown. The
algorithm for that task should be extracted by the computer providing enough examples that can
be discovered. In most cases, only an approximation of an algorithm is extracted from the input
data and this can be enough for the task of detecting certain patterns and regularities. With the
discovered patterns, predictions on outcomes of inputs can be done [13]. Each piece of information
included in the input data is called a feature. Machine learning can be described as a class of
algorithms that extracts ”non-hard coded” knowledge from the inputs. Therefore, the performance
of machine learning algorithms depends heavily on the representation of data that is given to them
as input. The machine learning algorithm learns the mapping between inputs and outputs but cannot
influence in any way how the features are defined [11].

A possible approach to solve this problem is called representation learning. If this variation of
machine learning is used the input-output mapping is learned alongside with the representation
itself. An example for representation learning are autoencoders (see Section 2.5.3.2 ) [11].

To solve more complex mappings so-called deep learning is used [11]. The term deep learning
describes a subgroup of machine learning techniques that have at least three adaptive non-linear
layers to convert a given input to an output [14].

This concept allows the computer to build more complex structures out of simpler concepts by
breaking down the desired complex mapping into a series of simpler mappings. Each mapping
is done by a different layer of the model. In deep learning models, layers are distinguished by
their position in the network between visible and hidden layers. In visible layers, the variables can
be observed, as in the input layer. The hidden layers extract abstract features from the data and
their values are not given in the data. The last layer is an output layer, that outputs the solution
to the given task. The structure of each layer is not specified, beside some parameters restricting
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the dimensionality [11]. ML algorithms can be divided into two classes, based on the degree of
supervision of learning. When supervised learning is used, the goal is to learn the input-output
mapping and given a labelled set of input-output pairs. In unsupervised learning the outcome is
not known and only the input data is available [13, 15]. As summed up in [13], ML can also be
explained as the task to program computers in a manner so that they can determine the parameters
of a model optimizing the performance criterion. So ML can be understood as an optimization
problem [13].

Every machine learning algorithm has two sets of parameters: model parameters and hyperpa-
rameters. The first group, model parameters, are parameters that are initialized and updated as
learning proceeds. On the other side, hyperparameters cannot be estimated by learning, but have to
be set before training and have an impact on the learning procedure and the model architecture [16].
Every learning algorithm has a large set of hyperparameters. This set needs to be dimensioned and
selected for each algorithm. These parameters can be set empirically or by using additional data
(see Section 6.2 and Chapter 6) [11].

2.2 Classification vs. Regression

Two of the most common tasks in supervised machine learning are classification and regres-
sion [11].

2.2.1 Classification

As classification the problem assigning a class to each item is described [17]. This task is solved
by the learning algorithm by producing a function f where

f : Rn →{1, . . . ,k}, (2.1)

such that it is a mapping from an element in Rn to an element in a finite set. If y = f (x), the input
to the model x produces an output y, which assigns x to a categorical output y. Another variation
of a classification task is that the output of f is a probability distribution that describes how likely
it is that the input of x is a member of each instance of the set {1, . . . ,k} [11].

2.2.2 Regression

The term regression describes the problem of predicting a real value for each input [17]. This task
is solved by the learning algorithm producing a function [11]
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f : Rn → R, (2.2)

which is a mapping from an element in Rn to a real number [11].

2.3 Error Measurement

In literature mainly a distinction between two classes of measures for forecast accuracy of time-
series predictions is made. Both measures are comparing the target value to the value of the pre-
diction [18].

2.3.1 Scale Dependant Errors

If a scale dependant error measure is used, the error is on the same scale as the data. The limitation
of this technique is, that it should not be used for comparisons between data sets on different scales
[18], but they can be used to compare different methods applied on the same set of data [19]. Some
examples for scale dependent error measures [19]:

1. mean square error (MSE):

MSE =
1
n

n

∑
i=1

(
yobs

i − ypred
i

)2
, (2.3)

2. root mean square error (RMSE):

RMSE =
1
n

√
n

∑
i=1

(
yobs

i − ypred
i

)2
, (2.4)

3. mean absolute error (MAE):

MAE =
1
n

n

∑
i=1
|yobs

i − ypred
i |, (2.5)

whereby yobs
i is the current observation and ypred

i is the predicted value. Because the RMSE is on
the same scale as the data, it is often preferred to the MSE. Both of those error measures are more
sensitive to outliers in the data than MAE [19].
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2.3.2 Percentage Errors

Percentage errors on the other hand are scale-independent. They are often used to compare perfor-
mance between different scaled datasets with relative errors. This class includes [19]:

1. root mean square percentage error (RMSPE):

RMSPE =

√√√√1
n

n

∑
i=1

[
yobs

i − ypred
i

yobs
i

]×100, (2.6)

2. mean absolute percentage error (MAPE):

MAPE =
1
n
[
yobs

i − ypred
i

yobs
i

]. (2.7)

The disadvantage of these error measures is, that they are undefined if yobs
i = 0. On the other hand

the advantage of percentage error measures is that they deliver the relative error and so errors of
data on different scales can be compared [19].

2.4 Artificial Neural Networks

The history of artificial neural networks (ANN) goes back to the first attempts understanding the
structure and functionality of the human brain. McCulloch and Pitts developed in 1943 a compu-
tational model for a basic neuron (see [20]). They discovered that one of the main characteristics
of nervous activity, neural events and relations between them is that they are active or not and can
therefore be treated using propositional logic [20].

From the view of neurophysiology, each neuron consists of the soma, the cell body, and the
axon. The nervous system is formed by a net of neurons. The synapses are always between the
soma of one and the axon of another. Every neuron has at any point in time some threshold. The
excitation needs to be higher than this threshold to initiate an impulse. It has been observed that
this excitation needs to take place in a sufficient number of neighbouring neurons that an impulse
is triggered [20]. Further, they showed that in principle any computable function can be computed
with a high enough number of neurons, appropriate synapses, each synapse associated with a
weight. This paper is seen by many experts as the starting point of the field of neural networks and
artificial intelligence [21].

Despite all the biological and neuroscience background of this research area, the goal of mod-
ern artificial neural networks is not to model the brain function but achieving statistical gener-
alization [11]. Many variations of ANNs have been developed over the last decades. It can be
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distinguished between ANNs, which contain recurrent connections (see Section 2.4.3) and ANNs
without recurrent connections (see Section 2.4.2) [22].

2.4.1 Perceptron

The basic processing element of an artificial neural network is called a perceptron. Each perceptron
has d input units xi, where i = {1, . . . ,d}. As illustrated in Figure 2.2 alongside the inputs, every
perceptron has a bias unit denoted with x0 and a bias weight w0 [13].

w0 w1 w2

y

Fig. 2.2: Schematic representation of a perceptron with the inputs x1 and x2 alongside with the
associated weights w1 and w2. The bias is represented by x0 and the bias weight by w0. The inputs
are passed through the activation function σ(a) to produce the output of the perceptron y.

There are two types of inputs that the perceptron can receive, either inputs from the environment
or inputs that are the outputs of other perceptrons. Each input is weighted via a weight wi. The
output can be formed in different ways. The simplest output is a weighted sum of the inputs, which
can be written as a dot product [13]:

y =
d

∑
i=1

wi xi +w0 =wTx, (2.8)

whereby w = [w0,w1, . . . ,wd] and x= [1,x1, . . . ,xd]. The vectors are augmented in a way that the
bias weight and the bias input are included [13].
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A perceptron implements the learning of the weights w, such that for the input x, the difference
between the output of the perceptron ypred and the corresponding label yobs is minimized [13].

If the perceptron receives only one input from the environment, that means d = 1, it models the
equation of a line [13]:

y = w1 x+w0, (2.9)

whereby w1 represents the slope and w0 is the offset. Such models can be used for linear fitting.
The perceptron defines a hyperplane and divides the input space into two half-spaces, to do so it
uses a activation function on the output of the computations which are performed on the inputs.
An example for a simple activation function is the binary step function [13]:

σ(a) =

1 if a≥ 0

0 otherwise.
(2.10)

When the binary step function is applied on a regression task, if the output of the threshold function
is 1, the input belongs to class 1, otherwise to class 2. Also other functions as the sigmoid function
or the hyperbolic tangent can be used as activation function. If the task includes K ≥ 2 outputs,
K perceptrons are used, whereby each perceptron is a local function with inputs and weights. A
perceptron with only one layer can only learn linear functions of the inputs and therefore can not
be used for nonlinear problems such as nonlinear regression [13].

2.4.1.1 Training a Perceptron

A common learning technique for neural networks is the so-called online learning. Samples are
presented one by one to the network and the weights are adjusted over time. A popular initial-
ization technique is initializing the weights with random numbers. In the process of training the
weights are slightly adjusted in the direction of the minimum of the objective after each iteration
without forgetting the previous learned. The speed of learning is controlled by the hyperparameter
called learning rate, which controls how much of the previously learned is kept and how much
the weights are impacted by the adjustment in the direction of the minimum. If the learning rate
is too high the algorithm tends to oscillate in the search space, because the weights are adjusted
too rigorous. Otherwise, if the learning rate is too low could lead to the case that the algorithm
converges to a local optimum because it examines only a small part of the search space. If the error
function is differentiable, gradient descent can be used for determining the direction of the next
update towards the minimum. After passing through the network all samples ones and adjusting
the weights accordingly, one epoch is finished. The number of epochs is the hyperparameter that
determines the number of training iterations [11].
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2.4.2 Multilayer Perceptron

The multilayer perceptron (MLP) is a deep learning model. Each input example x is combined by
a label y, therefore it belongs to the class of supervised learning techniques. This kind of neural
network is also called a (deep) feed-forward network because the information flow through the
network is only evaluated in one direction; from x to define y. There are no recurrent connections
used in this type of architecture. Recurrent connections are implemented in other models to feed-
back the output of a layer to earlier located computation steps (see Section 2.4.3). Further, MLPs
implement at least one hidden layer containing at least one hidden unit. Each hidden layer has a
vector containing the values of the hidden units denoted as h and also referred to as the hidden
state vector. The goal of an MLP is if a input vector x is given to approximate some function g by
defining the mapping [11, 22]:

y = f (x,w). (2.11)

The MLP learns the weights w that result in the best function approximation of g. Multilayer per-
ceptrons are formed out of small processing units, called nodes or neurons, which are connected by
weighted connections. After presenting some input x to the network it is activated. The activation
then spreads through the weighted connections to the units in the hidden layers, until it reaches
the output layer where the output of the network is computed. Each perceptron in a hidden layer
receives input from several other upstream neurons and computes its own output through the acti-
vation function. The output only relies on the current input and is not dependent on any past inputs
because of the absence of recurrent connections [11, 22].

More precisely, when an MLP is activated by an input vector x each of the hidden units in the
first layer h1 calculates a weighted sum of the input units. The weights of the network are stored in
a matrix W. The weight of the connection between neuron i and neuron j is denoted as wi, j. Also,
a vector of biases is needed, denoted as b, where the entry bi represents the bias weight of the i-th
neuron. For the hidden unit k with the associated bias weight w0k the sum ak is calculated as [13]:

ak =
n

∑
i=1

(wik xi)+w0k. (2.12)

The activation function σ is applied on each weighted sum ak to receive the activation bk [11, 22]:

bk = σ(ak). (2.13)

The output of the first hidden layer is then used as input of the next hidden layer and the output of
the last hidden layer is used to compute the output of the model in the output layer. This sequence of
operations is called forward pass [11]. The activation of the neurons in the output layer determines
the output vector y. It is calculated the same way as for hidden neurons. The number of neurons in
the output layer and the activation function in the output layer depends on the task that should be
solved by the MLP [22].
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In most cases when using MLPs a nonlinear function is needed to describe the features. There-
fore a nonlinear activation function is used. Using a linear activation function is only suitable for
MLPs with one hidden layer because an MLP with more than one hidden layer and a linear ac-
tivation function is equivalent to some other MLP with only one hidden layer. Combining linear
operators is itself a linear operator. Examples of nonlinear activation functions are the sigmoid
function, the rectified linear unit (ReLU) or the hyperbolic tangent function. If the activation func-
tion is differentiable the network can be trained using gradient descent [22].

2.4.2.1 Training a MLP

Training an MLP is a very similar process to the training of a perceptron. Since MLPs are in most
cases differentiable a gradient-based method is preferably used. The aim of gradient descent is
to find the derivative of the loss function with respect to each of the network weights. The loss
function depends on the task the MLP should solve. For an efficient calculation of the gradient,
a technique called backpropagation can be considered, which is the repetitive application of the
chain rule for partial derivative [22]. The error is computed using an error function and comparing
the outputs of the network with the labels of the examples. The information about the error is then
propagated back through the layers to compute the gradient [11]. If the convergence of gradient
descent is too slow for an application other optimization methods using conjugate gradient and
second-order methods can be considered [13].

Another version of gradient descent is the stochastic gradient descent. Using this algorithm,
the samples are not presented one by one but mini-batches are built out of the training data. This
extension was invented because learning large datasets which is necessary for good generalization
can get computationally expensive. To reduce the number of forward passes the algorithm needs
for training, more training samples are combined to a mini-batch

B =
{

x(1), . . . ,x(m)
}
, (2.14)

which is constructed by drawing uniformly m examples from the training set x. The mini−batch−
size is typically chosen to be from one to a few hundred examples and is a hyperparameter that can
be optimized. The weights of the ANN are only updated after each mini-batch [11].

2.4.3 Recurrent Neural Network

Recurrent neural networks (RNN) are a subgroup of artificial neural networks. In addition to the
feed-forward connections, an RNN has self-connections or connection to neurons in upstream
layers. [13]. In contrast to an MLP, which can only map from an input vector to an output vector,
an RNN can map from the entire history of previous inputs to the output. The recurrent connections
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act as a memory of previous inputs and influence the output of the network. The forward pass in
an RNN is similar to the forward pass in an MLP, except that the neurons in the hidden layers get
additional inputs from hidden layer activations of the previous time step. An input vector x with
length T is presented to a RNN with I input units, H hidden units and L output units. The entry xt

i

is the value of the input i at time t and at
j and bt

j are the inputs of the node j at time t. For each
hidden unit h at time step t the activation is computed as [22]:

at
h =

I

∑
i=1

wih xt
i +

H

∑
j=1

w jh bt−1
j . (2.15)

After calculating the weighted sum, the activation function is applied in the same way as for an
MLP [22]:

bt
h = σh

(
at

h
)
. (2.16)

The equation 2.15 requires initial values for all b0
i , corresponding to the RNN’s state before receiv-

ing any input. There are different approaches how to chose these initial values. One possibility is
to set all of them to zero. The network’s output can be calculated in the same way as at the MLP.
The output layer has no recurrent inputs because it is the last layer in the network [22, 11].

2.4.3.1 Training a RNN

Similar to the MLP the RNN uses partial derivatives of the loss function to determine the deriva-
tives. Because of the dependence on earlier time steps, normal backpropagation cannot be used.
Most commonly used is an algorithm called backpropagation through time [11]. This is further
discussed in Section 3.3.1.

2.5 Architectures

An approach to visualize the architectures of algorithms is to use computational graphs. The un-
folding of a recurrent or recursive computation over time into a computational graph, leads to
a graph with repetitive structure. The parameters of the network are shared across the chain of
events and the shared parameters do not change their value over time [11].

2.5.1 Sequence-Vector Model

Sequence to vector models take a sequence x =
{

x(t),x(t−1) , . . . x(1)
}

and produce as output a
fixed sized vector b. Such models are implemented to summarize a sequence and output a fixed
size representation that can be used as input of another model. An example of this architecture is
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shown in Figure 2.3. The RNN produces a fixed-sized output b at the end of the sequence. The
loss L measures the distance between the output h and the labels y. An example of a sequence to
vector model is an RNN, which take an input sequence and tries to predict the next entry in the
sequence. This architecture processes the input sequence x by incorporating it into state h which
is passed forward through time. The black square in Figure 2.3 on the self-connection in the left
diagram indicates the delay of one unit [11].

unfold

Fig. 2.3: Unfolding a sequence to vector model (cf. [11]): the grey instances are representing
sequences and the white vectors. The sequence x is the input to the model that is followed by the
hidden state h which has a self-connection with a delay of one time step, represented by the square
on the connection. L is measuring the difference between the output of the model b and the label y.
This network can also be unfolded into an unfolded computational graph where each node of the
sequence is linked to a particular time step.

2.5.2 Vector-Sequence Model

A vector to sequence model maps a fixed-sized vector x into a distribution over sequences y. An
example of this type is an architecture build for image captioning. The input is an image and the
output a sequence of words that are describing the image. In Figure 2.4 an example of an RNN is
shown that takes a fixed-sized vector x and produces out of it a sequence output y. Each element
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unfold

Fig. 2.4: Unfolding a vector to sequence architecture (cf. [11]): A fixed-sized vector x is used as
input. The information is passed on to the hidden state sequence h and then produces an output
sequence b. L measures the difference between the expected output y and the archived output b.
Note that the entry of y at a certain time step is used as input for the current time step and as the
target of the previous.

y(t) is at the same time the input for the current time step and the target of the previous time
step [11].

2.5.3 Sequence-Sequence Model

Sequence to sequence models are recurrent networks that map an input sequence x to a correspond-
ing sequence of output values b. These models include networks that produce an output at each
time step and have recurrent connections between hidden units as well as models that only have
recurrent connections from the output of one time step to the hidden unit of the next time step [11].

An example of a sequence to sequence model is the architecture shown in Figure 2.5. This RNN
maps an input sequence x to a sequence of output values b. L is the loss that measures the distance
between the elements in b and the corresponding target values in y [11].
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unfold

Fig. 2.5: unfolding a sequence to sequence model (cf. [11]): A sequence x is used as input. The
information is passed on to the hidden state sequence h and then produces an output sequence b. L
measures the difference between the expected output y and the archived output b.

2.5.3.1 Encoder-Decoder Architecture

The encoder-decoder architecture is a special case of sequence to sequence learning. With this type
of architecture an input sequence can be mapped to an output sequence, but the two sequences are
not necessarily the same length. This is archived by an encoding step followed by a decoding step.
In the encoding step, a sequence to vector representation is generated and in the decoding step, the
vector is mapped to a sequence [11].

2.5.3.2 Autoencoder

An autoencoder is a neural network model that can be seen as a special form of MPLs for unsuper-
vised learning. An autoencoder is the combination of an encoder function and a decoder function.
The encoder maps the input data into so-called latent variables in the latent space [23]. Latent
variables are variables that are part of the model but cannot be observed from outside and are
therefore not part of the input dataset [24]. The decoder function converts the representation found
by the encoder back into the original domain. In most applications the architecture of autoencoders
is designed in a way, that they are not able to produce perfect copies of the input but instead have to
learn how to produce an approximation of it [11]. The difference between the input of the encoder
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and the output of the decoder is the residual from which the reconstruction loss can be derived.
The target of the autoencoder during training is to minimize this residual [25].

The autoencoder is a possible implementation of a encoder-decoder architecture, therefore it
consists of a encoder with a encoder function h = f (x) and a decoder that produces the recon-
struction r= g(h), whereby h is the vector of the latent variables for the input x [11]. The number
of output nodes of the decoder is the same as the number of input nodes of the encoder because
the network is trained to reproduce the inputs. Further, the number of neurons in the output layer
of the encoding network should be the same as the number of neurons in the input layer of the
decoding network. If this number is lower than the number of input neurons this layer where the
encoding and decoding step are connected is often referred to as a bottleneck. In this case, the
network is trained to find the best representation of the input on the reduced number of neurons.
While doing this it is performing a dimensionality reduction. In the following decoding step, the
reduced representation is reconstructed in the best possible way [13]. Such autoencoders are called
uncomplete autoencoder. If the autoencoder learns the incomplete representation it is forced to
extract the most prominent features. The learning can be described as minimizing a loss function
L which is measuring dissimilarities between the reconstructed representation r and the input of
the encoder [11]:

L(x, r) . (2.17)

Another variation of the autoencoder is a denoising autoencoder. They are inspired by the hu-
man ability to recognize objects even if they are partially hidden. This type of autoencoders is
trained by adding noise to the training data. The model is trained to recover the original, noise-
free, image [23].

2.5.3.3 Variational Autoencoder

A variational autoencoder (VAE) is in contrast to the autoencoder, which is a discriminative
model, a generative model. A discriminative model aims to learn a predictor given the observa-
tion. A generative model learns a joint distribution over all the variables. The aim is to find a
generalization of the data generation process. To fulfil this task generative models learn the map-
ping between the observed space of inputs with a typical complicated unknown distribution Pd(x)
and the latent space which has in most cases a relatively simple distribution P [24]. The goal is to
learn the simpler distribution P that it is as similar as possible to Pd(x) [26].

The VAE consists of the autoencoder of two coupled parts: the encoder and the decoder. Each
of the parts is independently parametrized. The encoder delivers an approximation of its posterior
over latent random variables to the decoder. The encoder is a (stochastic) function of the input
variables and uses a set of parameters to model the relationship between the input and the latent
variables. Every data point in the input dataset should have at least one setting of the latent variable.
VAE is often designed in a way that the output of the encoder is a Gaussian distribution described
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by standard deviation and mean [26]. The decoder is activated by random variables. The distribu-
tion of the random variables has been learned from the data. An autoencoder (see Section 2.5.3.2)
produces a point in the latent space, whereby a VAE produces a distribution over possible values
in the latent space [21].



Chapter 3

Time Series

3.1 Definition

A time series is a set of observations M whereby each observation xt ∈M was recorded at a
specific time t [27]. A time series that contains only records of one variable is called univariate. If
it contains measurements of more than one variable it is a multivariate time series [28].

3.2 Components

Time series data is affected by four main components which can be separated from the data. These
four are: the trend as well as cyclical, seasonal and irregular components. The trend is the gen-
eral tendency of the time series. The tendency can be weather the series decreases, increases or
stagnates over a long period of time. In other words, the trend is the long term movement of the
time series. The seasonal component is a specific repetitive yearly pattern. As the name indicates,
cyclic components are medium-term changes caused by effects that occur in cycles. Not repeating
random variations which do not follow a particular pattern in time are the irregular component [28].

3.3 Characteristics of Time Series in ML

One common approach to do time series modelling is using statistical methods. Some of the most
commonly used are all kinds of autoregressive models and moving average models or a combi-
nation of those. Another approach is using machine learning, especially ANNs, for this task. An
advantage of ML models is that non-linear modelling can be done. The majority of time-series
data recorded in a real-world environment show non-linear patterns. Another advantage is, that
ML models are data-driven and self-adaptive [28].

18



3.3 Characteristics of Time Series in ML 19

3.3.1 Backpropagation Through Time

A common choice for time series forecasting are ANNs which implement some kind of recurrence.
So, for the learning of these models, normal backpropagation cannot be used. Instead, another ver-
sion called backpropagation through time (BPTT) is applied. Similar to the backpropagation used
for MLP training, also BPTT consists of repeated application of the chain rule [22]. Computing
the gradient of a network with recurrent connections can be seen as applying the classical back-
propagation algorithm on a graph that is unrolled through time [11]. So an RNN with N time steps
can be seen as an MLP with N layers. The first layer corresponds to the first time step. Calculating
the gradients is done recursively, so it is started at time instance N, at the last layer, and propagates
backwards in time until the first layer is reached. Therefore this algorithm is called backpropaga-
tion through time. Because of this property that a recursive network can be seen as a feed-forward
multilayer network the downsides of normal backpropagation are also occurring in BPTT, namely
vanishing or exploding gradients. This occurs because the derivative of the r− 1, r = {1, . . . ,N},
layer depends on the derivatives of the layer above and on the weights in the current layer. Both
these terms are multiplied recursively and the number of therms involved grows after each step as
the algorithm flows backwards. Depending on the used activation function the values of the deriva-
tives can be smaller than one. If the parameters are small the gradients of the cost function with
respect to the parameters of the lower layers can take very small values and vanish. This makes the
training very slow. This can also happen in the other direction if the values of the parameters take
very large values. This can lead to the effect that the gradients blow up. The deeper the network
is, the more prominent this occurrence is. In time series learning, long sequences are often used
so one should pay attention not to run into this problem [21]. A heuristic approach to solve this
problem is the clipping of gradients at some maximum value. Another proposed solution was using
LSTMs (see Section 4) instead of RNNs [29].

3.3.2 Time Series Forecasting

The task of predicting values of the future of a given sequence by using historical data is called
time series forecasting [18]. The goal of time series modelling is to study past observations and
develop an appropriate model to describe the structure of the underlying time series. This model
is used for forecasting future values of the time series. Time series forecasting can be described as
the act of predicting the future by understanding the past. There are a lot of statistical models to
approach this forecasting task [28].
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3.3.2.1 One-Step Ahead Forecasting

When one-step ahead forecasting is applied and the observations of the last n time steps are known
Y = {y1, . . . ,yn}, then the value yn+1 for the time step n+1, is predicted [18].

3.3.2.2 Multi-Step Ahead Forecasting

Given a historical time series containing n observations time steps Y = {y1, . . . ,yn} the task
when using multi-step ahead forecasting is to predict the values of the h next observations
Y f = {yn+1, . . . ,yn+h}, where h≥ 1 and h is called the forecast horizon [30].

3.3.3 Outlier Detection

A pattern that normally doesn’t occur in that way in the dataset is called an outlier, or anomaly.
These patterns can indicate that an unusual event happened. It can be also caused by errors in the
measurement or during the procedure of data collection [1]. Identifying unlikely or rare events is
called outlier detection [31]. When applying outlier detection the task is to determine for every time
step if the data measured at that time step is an outlier or not. Given a time series Y = {y1, . . . ,yn},
where yi refers to the data measured at time step i, at time step i the last L observations are taken
in account, t = {L, . . . ,n}, to determine if the measurements at time step i contain anomalous data
or not. The output should be binary and 1 indicating that the sample is anomalous and classified
as an outlier [32]. To classify dissimilarities a so-called anomaly-score is commonly used, which
measures the deviation from the data that is considered to be non-anomalous. If this score exceeds
a certain pre-defined threshold, the sample is considered to be an outlier [33].

Outliers can also be found by visually inspecting the data but according to [34] this technique
is on its own not reliable enough to identify outliers. Therefore algorithms have been developed
for this task and also ML can be applied. Like other ML tasks, also outlier detection is divided
into supervised, unsupervised and semi-supervised methods. If the data the ML-model used for
the outlier detection is labelled and the labels are indicating if an error occurred in that specific
sample, the outlier detection is called supervised. Then the model is trained with the labelled data
to predict the labels of unseen examples [1].

Semi-supervised methods are those, where only labels for either anomalous or non-anomalous
data are available. A model that performs a classification is trained in a supervised way using the
available data and is then used to predict the labels of the unseen data [1].

As summed up in [35] when applying outlier detection in practical applications these three main
problems occur:

1. Imbalanced data: anomalous data occurs less frequent in the data then non-anomalous data.
This can lead to overfitting and lack of generalization in trained models.
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2. Labelling costs: if data needs to be labelled by human experts, it is difficult to create big
amounts of data for testing and training.

3. Presence of unseen anomalies: there are a lot types of anomalies in practical applications.
Some are not known before they occur the first time.

It was found that autoencoders can be used for outlier detection. The time-series data that should
be analysed is often high-dimensional. An autoencoder then performs dimensionality reduction and
extracts the most representative features out of it. Because outliers are often non-representative
features they can be found by reconstructing the compressed representation and calculating the
reconstruction error. An autoencoder is often not able to reconstruct anomalous data, so the recon-
struction error is high and this can indicate an outlier [35].



Chapter 4

Long-Short Term Memory

The network structure called long-short term memory (LSTM) is a variation of RNNs. Unlike
RNN, LSTM can store and retrieve information over long time periods. [29]. According to Hochre-
iter and Schmidhuber [3], the founders of the LSTM, the model was introduced due to the prob-
lem that backpropagation takes a very long time and to solve the problems occurring because of
exploding/ vanishing gradients when learning long time sequences. While RNN can use the recur-
rent connections to store activations from the recent past (short term memory), LSTM can learn to
bridge long time lags [3]. This architecture is widely used for learning of time series data, because
of their ability to learn long-term dependencies [18].

Fig. 4.1: Basic LSTM architecture and information flow when the architecture is activated by an
input xt at time step t. The information flows through the gates ft , it and ot . The cell state at time
step t is denoted with st and ht denotes the hidden vector at time t.
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4.1 Basic Architecture Description

To control the outflow of information in the system memory and the inflow of information the
LSTM architecture incorporates so-called gates, which are non-linear elements. These gates con-
sist of a sigmoid activation function and a multiplier. Algorithmically seen the gates are equivalent
to weighting the information flow between zero and one, whereby the value depends on the value
of the involved variables. This weighting ensures that the model is and stays differentiable. The
weight is the activation of the sigmoid activation function when this value is used as input to it
[21]. Each LSTM has three binary gates which are represented by the vectors it , ft , ot , the forget
gate, the input gate and the output gate at time step t. The gates control, whether the memory cell
is updated, set to zero, or whether the local state is incorporated in the hidden vector [29].

In addition to the hidden state vector, which is also used in RNNs, the LSTM incorporates a cell
state, which is represented by a cell state vector st at time step t. The key element of the LSTM
structure is the cell state, also called the memory cell, which can be imagined as a conveyor belt.
It runs through the whole structure [18, 29].

As visualized in Figure 4.1 the cell state is influenced by the following three terms (from left to
right in Figure 4.1):

1. In the first step the LSTM decides which piece of information is thrown away. This decision
is made by the forget gate ft ;

2. The second term provides information that should be stored in the cell state. This step has
two folds: the input gate it decides which values are updated and the hyperbolic tangent
activation creates new candidate values;

3. Then the cell state at the previous time step ct−1 is updated to the new cell state ct .

The output gate decides which parts of the cell state are incorporated into the hidden vector at
time t ht . It is based on the cell state but a filtered version of it [18].

To overcome the problems with BPTT, LSTM uses a constant error flow and truncates gradi-
ents where it is possible within special multiplicative units. These are the units that learn to close
and open the gates to ensure constant error flow. In LSTM networks long-term information with
significant delays is approximated [18].

4.2 Combination of LSTM and VAE

As mentioned in Section 3.3.3 autoencoders were used in the past successfully for outlier detec-
tion. Also the generative type of autoencoders, variational autoencoders, were applied to this task.
An emerging idea for outlier detection in time series is the use of a hybrid model consisting of
VAE incorporating LSTM layers. In literature this combination is often referred to as LSTM-based
variational autoencoder (LSTM-VAE) [25]. This was for example used in [25], [36], [37] and [32].
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Developing a reliable outlier detection algorithm can be quite a challenging task. How the out-
liers look is in some cases not known before they occur the first time. So in the best case, the
algorithm should be able to categorize prior unseen outliers as such. In most cases, the available
data sets used for training are often unbalanced and contain way more non-anomalous data then
anomalous data that represent outlier. An advantage of this hybrid model is, that it can be trained
in an unsupervised way with unlabelled data [32].

To overcome these constraints of unbalanced amounts of data the autoencoder is trained only
with non-anomalous data. The key idea is that the model cannot reconstruct patterns in unseen data
that contains anomalies and so the reconstruction loss on this data is higher than when reconstruct-
ing data without anomalies. One possibility for outlier detection in the latent space is to sum up
the log-likelihoods of the current observation and comparing it to a given distribution. If the value
of the summation is below a predefined threshold it is determined as an outlier [25]. Another pos-
sibility is to measure the magnitude of the reconstruction loss. If the samples are normal the VAE
can reconstruct them with a reasonably low reconstruction loss. Therefore a predefined threshold
is needed as in conventional outlier detection that the outlier score can be used and a sample is
labelled as anomalous if the threshold is exceeded [33].

However, it can occur that outliers in the original domain do not occur as outliers in the latent
space due to the compression done during the encoding. Another method of detection is by recon-
structing the current observation and measuring the reconstruction loss. If the reconstruction loss
is above a predefined threshold, the observation is marked as outlier [25].

The LSTM part of this hybrid approach is used to model the time series data with its long-term
dependencies [25].



Chapter 5

Genetic Algorithm

5.1 Description

Genetic algorithms (GA) belong to the class of so-called evolutionary algorithms which are in-
spired by the principles of evolution and inheritance. The naming associated with this class is heav-
ily inspired by biology. The underlying idea is the ”survival of the fittest”. At each iteration, a set
of potential solutions, referred to as population, is produced. Each population P(t) = {xt

1, . . . ,x
t
n}

consists at time step t of n individuals xi, where i= {1, . . . ,n}. Each individual represents a possible
solution to the problem which the algorithm tries to optimize [38].

Further, GA assumes that every distinct possible solution can be described by a set of parameters,
called chromosomes in the GA jargon [39]. The individuals consist of one or more chromosomes,
each formed by one or more genes, entries in the encoding. The value of a single gene is called
an allele [6]. All possible solutions present in the current generation are evaluated to provide some
measure of the quality how well they solve the problem. This measure is called the fitness of the
individual and ranks the individuals depending on how good their represented solution fits the
problem. This is done by the underlying fitness function that reflects the problem that should be
optimized. This value is a quantitative information that guides the search [6, 38].

In literature the highest fitness is often considered to be the best, in other words, the optimization
task is formulated as a maximization problem. However, in the Matlab implementation of genetic
algorithms, it is the other way around and the lowest fitness value is considered to be the best
(see [40]). Because the coding part of this work is done with Matlab (version 2020b), the Matlab
notation will be used in this work. So, in this case the fitness function corresponds to a minimization
problem.

The process of creating the next population contains the following steps: firstly some individ-
uals from the current population are selected following the applied selection rule (see Section
5.4.1). These individuals form the mating pool. After this, some members of the mating pool are
transformed through the genetic operators (see Section 5.4). These transformed individuals are the
population of the next time step. Intuitively, the genetic algorithm produces iteratively better indi-
viduals, while creating new generations by applying simple operations. The algorithm converges,
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hopefully, after a number of generations. If the search of the genetic algorithm was successful,
the best individual of the last generation represents a solution near the global optimum. The initial
population is created randomly or with the help of some construction heuristic [6, 38]. In gen-
eral, all algorithms that obtain a population, try to archive a better population in every iteration
by some local perturbations, called mutations (see Section 5.4.3), and the combination of different
members, called crossover (see Section 5.4.2) [41].

The combination of these genetic principles into an algorithm can be used to search an optimal
solution to a problem without using any derivative information as required for many other search
algorithms [6, 42]. A search algorithm has several possible solutions and the task is to find the
best solution in a fixed number of time steps. If there is only a small number of possible solutions
in the search space, this can be done by trying out all possible solutions, this approach is called
exhaustive search. As the search space increases and with it the number of possible solutions is
growing, exhaustive search becomes very quickly impractical because it would take to long to
evaluate all possible solutions. Traditionally search algorithms evaluate one solution at a time step
and are hoping to find the optimal solution. Whereby evolutionary-based algorithms evaluate a
larger number of individuals and perform a directed search [6].

5.2 Representation

Every problem that can be formulated as an optimization problem, can be solved by applying
some kind of evolutionary algorithm. To apply some evolutionary algorithm to a distinct problem
it requires a data structure that can encode all possible solutions. This representation is commonly
chosen by humans intuition. It should allow applying the genetic operators on the encoded solu-
tions by maintaining the property that small changes in the parents lead to small changes in the
offspring. Large changes in the parents’ genes lead to much bigger changes in the next individuals
of the next generation [6].

5.3 Initialization

The creation process of the first generation differs from all subsequent generations. Unlike the
following generations, which are obtained by applying genetic operators, the first one is the initial-
ization of the algorithm. A bad initial guess can lead to the optimum of the objective function not
being found. If the search landscape of a given problem is not known in the beginning, it is hard
to determine if a guess is “good” or “bad”, therefore often an initialization with random numbers
is chosen. The risk by doing so is that if the dimension of the search space increases, the chances
that a random guess is in a promising region decreases [43].
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5.4 Genetic Operators

The population of the next iteration is created by applying the genetic operators selection, crossover
and mutation to the previous population [38]. In the traditional form of the genetic algorithms, the
solutions are encoded by a fixed-length bit-string representation. In this encoding, every position
of the string represents a particular feature of the solution or the whole string can represent a
number. However, this encoding is not natural for many problems and in some cases, corrections
are required after applying genetic operators [6].

As described in [6] and visualized in Figure 5.1 every iteration of the genetic algorithm consists
of the following steps:

1. Evaluation: The fitness of the individuals is evaluated;
2. Selection: In the second step the individuals who are candidates for the reproduction are

chosen;
3. Reproduction: The offspring are formed by the selected individual out of the candidates by

using one or both of the genetic operators crossover and mutation;
4. Replacement: The new population is formed by replacing the individuals from the previous

according to the replacement strategy.

Reproduction
(crossover & mutation)

SelectionReplacement

Evaluation

Fig. 5.1: cycle of operators for a classical GA
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These steps are repeated until the stopping criterion, which could be convergence, the number of
maximal generations or no better solution was found for a predefined number of generations is
met. Also a combination of two or more stopping criteria can be applied [6, 44].

5.4.1 Selection

Selection typically ensures that the population size stays constant over all generations. The first step
of selection is selecting the individuals for reproduction. In most selection schemes the individuals
with the best fitness are favoured. The degree of this favouring is called the selection pressure.
The aim of the selection pressure is to produce new solutions in regions of the search space of
previously found good solutions. This should lead to the effect that the mean fitness of a population
gets better as the algorithm proceeds. Therefore, the convergence of GA is highly influenced by
the selection pressure. A higher selection pressure leads to high convergence rates. If it is too low
the algorithm will need a long time to find the optimal solution. On the other hand, if it is too high
it increases the risk that the algorithm converges through a local optimum [6, 45].

5.4.1.1 Roulette Wheel Selection

1
2

3

4

5

Fig. 5.2: roulette wheel selection of five individuals, better individuals are favoured in the selection
process by assigning them bigger slots on the wheel

Roulette wheel selection is the selection technique used in traditional GA approaches. In this
selection scheme individuals are chosen to be members of the mating pool depending on their rela-
tive fitness. The roulette wheel selection works in that way, that every individual of the population
gets a slot in an interval weighted proportional to its fitness value. A better fitness value leads to a
bigger slot. A random target value is sampled in the interval and it is evaluated in which slot it falls
into. The roulette wheel can be imagined as shown in Figure 5.2. In the example illustrated the
individual five has the best fitness and individual two the worst. The individual that is associated
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with the slot the target value lies is selected as a candidate for the mating pool. This is repeated n
times, if n is the number of individuals in the population [6].

This technique has only a moderately strong selection pressure since it is not guaranteed that the
fittest individuals of the population are selected, although the chances are high. On the other side,
the diversity in the population decreases, in most cases, very quickly. If some few individuals have
very good fitness, then the chances of the other individuals to be selected is very low [6].

5.4.1.2 Rank Selection

This selection scheme selects individuals for the mating pool depending on their rank in the pop-
ulation. The best individual gets the fitness value 1 and the worst individual gets the fitness value
n, if n is the number of individuals in the population. This leads to a much lower convergence
compared to roulette wheel selection because the genetic diversity is better preserved over a longer
time. It also keeps selection pressure high if the variance in the fitness values of the fitness func-
tion is low. The parents can be selected with different approaches. One possibility is selecting two
random pairs out of the individuals. As parents the individuals with a lower rank in each of the
random pairs are selected [6].

5.4.1.3 Tournament Selection

When using the tournament selection, the selection pressure is created by holding a tournament
competition among m individuals, while m ≤ n. The winner of the tournament is the individual
with the better fitness value. The winner of the competition is added to the mating pool. This is
repeated until enough individuals are in the mating pool to create the next generation [6].

5.4.1.4 Elitism

Elitism can be used in combination with other selection methods and forces the GA to perceive the
best individuals and passes it on to the next generation. If elitism is not used the best performing
individuals can be destroyed after applying crossover and mutation [46].

Another selection scheme is the combination of rank selection with elitism. If this selection
scheme is applied, the individuals of a population are ranked and then a fixed number of the best
individuals are selected to form the mating pool [46].
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5.4.2 Crossover

Crossover is a genetic operator that creates a new individual, called offspring, by combining parts
from at least two individuals which are referred to as parents [38]. Commonly, individuals are
selected probabilistically, according to their fitness value, to form the parents of the individuals
of the next generations. Another possibility is to select randomly two parents out of the mating
pool. If a bit-string representation is used as encoding, the crossover step can be done by a so-
called bit-string crossover. In this operator parents, two individuals encoded as strings, are used.
Two new individuals are created by swapping a sequence of the two strings. Crossover creates new
individuals that are hopefully better than their parents [6].

5.4.2.1 Single-Point Crossover

1 1 1 1 0 1

1 0 1 0 0 1

P1:

P2:

Crossover point

1 1 1 1 0 1

1 0 1 0 0 1

C1:

C2:

Fig. 5.3: single-point crossover of parents P1 and P2 to offspring C1 and C2

The classical implementations of the GA use the so-called single-point crossover. For this pro-
cedure, two parents are used. That is the simplest way to implement the crossover operator. As
shown in Figure 5.3, a random crossover point along the length of the parent individuals is chosen.
The sections after the crossover point are exchanged between the two parental individuals [6].

5.4.2.2 K-Point Crossover

If a k-point crossover is applied more than one cut point is used to create new individuals. Also
more than two parent individuals can be used. In most cases, this reduces the performance of the
GA because building blocks, short sequences of alleles that lead to a good fitness value, are more
likely disrupted. On the other hand, the changes that the search space is explored more thoroughly
are higher than when a single-point crossover is used [6].

5.4.2.3 Uniform Crossover

Another version of a crossover without cuts is the uniform crossover. When applying this technique
it is randomly chosen for each gene separately if it is taken from the first or second parent [6].
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5.4.3 Mutation

The mutation is one of the genetic operator. It creates a new possible solution by a small change in a
single individual [38]. It aims to prevent the solutions to get stuck in local optima. Mutations should
recover the lost gene material as well as bring some random portion into the genetic information.
This operator helps to explore the search space, which is not reached by using crossover without a
mutation step. If a binary representation is used, mutation can be simply done by inverting a bit by

1 0 1 0 0 1P: 1 0 1 0 1 1C:

Fig. 5.4: bit-flipping mutation from parent P to offspring C [6]

a very small probability. This kind of mutation is called bit-flipping mutation and is demonstrated
in Figure 5.4 [6].

An important parameter of the GA is the mutation probability. If mutation occurs too often,
mutation probability is too high, the GA becomes a random search [6]. On the other hand if the
mutation rate is too low this can lead to stagnation of the algorithm [45].

5.4.4 Replacement

Replacement is the last step in the process of forming a new population. If a new individual is cre-
ated, the algorithm needs to decide which individuals to remove, to obtain a fixed-sized population.
There are again multiple replacement strategies [6].

One approach is to produce n new individuals and the newly formed individual replace the prior
generation. There are some other methods for example the λ + µ strategy where not the whole
population is replaced, but there are only λ new individuals out of a population of µ individuals
produced [6].

5.5 Hyperparameters of the Genetic Algorithm

When using a genetic algorithm there are some hyperparameters to set. The two most crucial ones
for the performance and the runtime are the population size and the number of generations. GA is
a meta-heuristic with a stochastic nature. Because if these properties there are no methods known
that predict when the genetic algorithm will converge. The problem of the right population size
can be thought of as the problem of human decision making and the number of group members
involved. If there are only a few persons involved, it is hard to come up with a solution for a very
complex problem. On the other hand if the group is too big, the initial results will be worse because
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of disagreements of the group members but the final result will be most likely a more successful
output [47]. The computationally most demanding step of a GA is the evaluation of the individuals.
The upper bound F of this step is given with

F = GN, (5.1)

where N is the population size and G is the number of maximal generations. There is a trade-off
at determining the population size between finding better solutions and the fact that increasing the
population size leads to a significant higher number of fitness function evaluations [47].

The next question that occurs when dealing with genetic algorithms is if to choose a higher
number of generations or a higher number of individuals per population. The number of indi-
viduals needed for a sufficient result also depends on the genetic operators used. For example it
was observed that more disruptive crossover techniques, for example n-point crossover or uniform
crossover, are leading to better results when smaller population sizes are used. In comparison, less
disruptive crossover techniques as 1-point or 2-point crossover does not perform that well when
the population size is small. These less disruptive versions on the other hand lead to better overall
results when applied on larger population sizes. But also this assumption is only a tendency and
depends on the task that should be solved so it cannot be generalized. But it has been shown that
when larger populations are used the fitness improves slower but overall leads to better results [47].

5.6 Why GA works

Several attempts try to explain why the idea of GA works. One of them is the building blocks
hypothesis. Building blocks are considered to be good combinations of values that lead to good
fitness values. The name is derived from using bit-string encoding, where bit values build blocks.
The building block hypothesis assumes that genetic algorithms discover, emphasize and recombine
these good value combinations [46]. Through mutation, several of these building blocks can be
combined in one individual by crossover and lead to a better fitness value [6].

An alternative hypothesis for the explanation of the performance of GA is the macro-mutation
hypothesis. Crossover is seen as a ”macro-mutation”, a mutation of many bits. This can lead to
building blocks being passed on by mutation [6].

Also in the adaptive mutation hypothesis, crossover is seen as mutation. It is interpreted that it
automatically adapts to the stage of convergence the algorithm is in. If it is near convergence the
individuals of a population have similar alleles and so it crates offspring in the same region of the
search space as the parents are in [6].
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5.6.1 Convergence of Genes

When using genetic algorithms it can be observed that not all genes need the same number of
generations to be solved. This happens because not all genes equally impact the individuals fitness.
Because fitness is what guides the search, the algorithm focuses on fixing the genes which are
contributing a larger part to it. If these important portions are solved the GA moves on and tries to
improve the fitness further by fixing the genes with lower impact [48].



Chapter 6

LSTM Hyperparameter-Selection using Heuristics
based on GA

6.1 Hyperparameter Optimization

Before starting a machine learning algorithm one needs to set the hyperparameters. One option is to
use the default values of the software package that is used, if there are any available, default values
proposed in the literature or find out a good value by trial and error. Another option is to optimize
these values before executing the original program. If the hyperparameters should be optimized, it
needs to be defined which one to optimize and which can be set to a default value that works well
over a range of datasets. This decision impacts on one hand the quality of the results and on the
other hand the convergence and speed of the optimization [49].

Machine learning transforms a problem that should be solved into an optimization problem and
different optimization methods are used to solve the underlying problem. The corresponding op-
timization function contains several hyperparameters. Those are set before starting the learning
process. These parameters affect how the learned model is fitted to the data. Before starting the
training of the machine learning algorithm the task is to identify the best possible set of hyper-
parameters in a reasonable amount of time. This is called hyperparameter optimization (HPO)
or hyperparameter tuning. The relationship between hyperparameters and the performance of ML
models is still not completely understood. In practice, the problem of finding a good set of hy-
perparameters is addressed by training several models with different hyperparameter settings and
then choose the best of it [4]. Before applying a machine learning algorithm to a new dataset, the
appropriate set of hyperparameters for this specific set has to be found because of the inability to
reach the stage of generalization that a found set of hyperparameters maximizes the performance
of the applied ML algorithm on all datasets [50, 44].

According to [16] the hyperparameter optimization process is formed by four main components:

1. an estimator: regressor or classifier and the associated objective function;
2. a search space;
3. a method to find the hyperparameter combinations;
4. an evaluation function to compare the performance of the different combinations of the hy-

perparameters.

34



6.1 Hyperparameter Optimization 35

The domain of hyperparameters is not always continuous. For example, there can be hyperparam-
eters that take discrete, binary or categorical values. Further, the hyperparameter space can contain
conditional hyperparameters, that is if there are dependencies between the values of the hyperpa-
rameters that are tuned. Also, the hyperparameters of the model depend on the specific kind of
learning algorithm used [16].

6.1.1 Importance/ Impact of LSTM hyperparameters on the Performance

6.1.1.1 Training Parameters

According to [5] one of the most important hyperparameters for an LSTM is the learning rate. It
was found that three thirds of the performance on the test set, in comparison to all other hyper-
parameters, are impacted by the learning rate. The range of values for the learning rate where the
performance doesn’t vary much is for each dataset quite large [5].

Another hyperparameter that influences the quality of the training process is the number of
epochs. When training a neural network over more iterations, the error on the training gets lower at
each iteration. But there is a point where the error on the validation set starts to rise again because
the model overfits on the training data. At this point the training should be stopped [11].

6.1.1.2 Architecture Parameters

In general, when designing a neural network architecture the number of nodes and their location in
the layers, as well as the connections between them has a significant impact on the overall perfor-
mance of the network [51]. A too high number of neurons can lead to slow training and overfitting
and a too low number of neurons limits the networks ability to map complicated relationships [52].

Another important hyperparameter of LSTMs is the hidden layer size. As expected the perfor-
mance of the network increases with increasing hidden layer size. The downside of increasing the
hidden layer size is that the time needed for training increases because the computation of each
epoch increases and the convergence speed decreases [5]. All these parameters, regarding the ar-
chitecture of the model, should be chosen in a way that on one side they provide enough capacity
to model the objective function and on the other side not to over-fit [16]. If overfitting occurs while
training, the network does not learn how to approximate the function but memorizes each train-
ing example instead. The problem with this is, that also the noise present in the data is treated
like it would be part of the data and so the generalization skills of the network are lost. Also, the
right stopping time of the training is an important parameter to prevent the network to overfit the
data [51].
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6.1.1.3 Activation Function

The activation function is used to model the nonlinearity in the ML-model [16]. As mentioned in
the architecture description in Section 2.4.2 and the basic architecture description of LSTMs in
Section 4.1 activation functions are used to model the non-linearities of a deep neural network.
The type of the non-linear activation function can vary and is therefore a hyperparameter of the
model [53]. Commonly used types of activation functions are [53]:

1. sigmoid:

sig(x) =
1

(1+ e−x)
, (6.1)

2. hyperbolic tangent:

tanh(x) =
sinh(x)
cosh(x)

=
ex− e−x

ex + e−x , (6.2)

3. softsign:
so f tsign(x) =

x
(1+ |x|)

. (6.3)

This activation functions are visualized in Figure 6.1. The activation functions softsign and hyper-
bolic tangent have both the range from -1 to 1 but the tails of the softsign are quadratic polynomials
and the tails of the hyperbolic tangent are exponentials. Therefore the softsign approaches the tan-
gent much slower [53]. However, when using an LSTM the activation functions are already fixed
in the network architecture (see Chapter 4 and Figure 4.1) so they are not optimized, but in other
ANN they can be a potential hyperparameter that can be tuned.

6.2 Classical Techniques for Choosing Hyperparameters

There is a distinction between two groups of approaches to approach this task: manual search (see
Section 6.2.1) and automatic search (see Section 6.2.2) [4].

6.2.1 Manual Search

If manual search is used hyperparameter settings are tried out per hand. This requires the user’s
expertise and background knowledge. As the number of parameters to optimize and their range of
values increases this method becomes difficult to handle [4].

Promising regions in the search space can be found by using manual search. The goal of this
technique is to develop the intuition of how to choose the hyperparameters best for the underlying
task [54].
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Fig. 6.1: examples of activation functions

6.2.2 Automatic Search

To be able to do hyperparameter search over a higher dimensional space automatic search al-
gorithms, such as grid search and random search, were introduced [4]. When using these two
techniques every configuration is evaluated and treated independently [16].

6.2.2.1 Grid Search

When grid search is applied every possible configuration of a predefined, finite set of hyperparam-
eters is tried out and evaluated. The idea behind grid search is applying an exhaustive search over
a grid of possible configurations. The output of grid search is the set of values for the hyperparam-
eters with which the best performance was archived [54, 4, 16].

Assuming the hyperparameter optimization should be done over a set of K parameters, grid
search requires that a set of possible values,

{
L1 . . .Lk} is chosen for every variable. The number

of trials is then given as ∏
K
k=1 L(k). This product over k, and so the number of needed trials, grows
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exponentially with the number of optimized parameters. Grid search suffers from the curse of
dimensionality and because of this, it leads to poor results in practical applications. One of the
advantages of grid search is that it is very easy to implement and to parallelize and it typically
finds better sets of hyperparameters than purely manual search [54].

Grid search cannot explore regions that provide good results further by using a smaller step
size in good regions. Therefore the procedure of grid search has to be repeated in good regions by
narrowing the search space and reducing the step size, the distance between the evaluation points
on the grid. Because of the predefined grid, it is not guaranteed that it detects the global optimum
of continuous parameters [16].

6.2.2.2 Random Search

Random search proceeds similar to grid search, but instead of trying all possible combinations on
a grid, it samples random solutions in the predefined search space as long as the predefined budget
for different configurations is exhausted [16]. Random search performs better than grid search if
some of the optimized parameters have a greater impact on the performance than others. If the
resources for a random search are sufficiently high, it will find a hyperparameter setting arbitrary
close to the optimum [41].

6.3 Hyperparameter Optimization Using Genetic Algorithms

Modern machine learning models have large sets of hyperparameters with complex search spaces.
To find a good configuration in a reasonable amount of time, meta heuristics, to which group
genetic algorithms belong, have gained popularity in this field [16]. Compared to grid search which
is still a widely used technique, GA can find good solutions after fewer evaluations of the objective
function but on the other hand, the accuracy of grid search is better under higher computation
time [44]. Genetic algorithms identify the best parameter settings in each generation and pass
the combinations with the best performance more likely on to the next generation until the best-
performing combination is found [16].

To apply genetic algorithms to an HPO problem the hyperparameters need to be encoded in the
individuals. One common approach to performing the encoding is to encode every hyperparameter
in a chromosome. The value of the chromosome is then the actual input value of the hyperparameter
for the ML-algorithm. One possible encoding for the chromosomes is that every chromosome
consists of several genes that are binary digits [16].

When using GA for HPO the main limitation is that the algorithm itself again introduces addi-
tional hyperparameters that need to be configured. The hyperparameters of the GA are including
the fitness function, the population size, crossover rate and the mutation rate [16]. When hyperpa-
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rameter search is applied on deep ML architectures evaluating the different hyperparameter settings
is often very costly in terms of computational power. There is always a trade-off between optimiza-
tion performance and runtime. To overcome the enormous long runtimes of optimization runs the
HPO is often applied on a small subset of the data, training only a few iterations or using only
a few cross-validation folds [41]. When genetic algorithms are applied in the context of machine
learning most of the computational time is used for the evaluation of the fitness function [48].

Another problem occurs while evaluating the fitness of the individuals in the generation. The
randomly chosen weights at the start of the training lead to different outcomes with the same
parameter settings. So a configuration could be considered to be better, but the difference in the
fitness is only caused by the noise. To reduce the effects of the noise, the models are trained several
times with different random initial weights. This of course leads to an increased evaluation time of
the models. So a trade-off between the run time and the presence of noise needs to be found [51].
According to [55] even this procedure is not sufficient to get reliable results. It was shown that
when using random initialization of the weights it is possible getting for the same hyperparameter
settings learning curves that do not fall into the same distribution [55].



Chapter 7

Statistical Approaches for Outlier Detection

The most commonly used methods in machine learning for detecting outliers are to calculate some
kind of outlier score and then use a certain threshold to detect outliers. These methods are often
based on statistical methods, which can be biased if the data they are applied to contains outliers.
This causes that for the threshold a too high value is chosen and this leads to several outliers not
being detected [56] or observations that are non-anomalous being labelled as outliers [34].

According to [56] the most commonly used techniques to get a threshold for outlier detection
are standard deviation, mean absolute deviation and interquartile range. But there is the assumption
that none of these techniques are suitable for a dataset that contains outliers that deviate strongly
from the non-anomalous data [34]. All of these techniques have in common that they are not suit-
able for applying to non-normal distributed datasets or small datasets. This occurs because depend-
ing on the distribution and the number of samples the percentage of expected outliers changes [57].
Outlier detection methods can be in general divided into two groups, formal tests and informal tests
and most of them are designed for being applied on a well-behaving distribution. Which test is se-
lected depends on the type of outliers, single outliers or multiple outliers, that should be detected
and on the type of distribution the non-anomalous data follows. However, most data recorded un-
der real-world conditions does not follow the well-known distributions, for example the normal
distribution, gamma distribution, exponential distribution, or the distribution is unknown. Infor-
mal tests provide an interval in which the data is considered to be normal, above and beyond it is
categorized as an outlier [57].

Another limitation is if an outlier detection method is sensitive to masking. Masking denotes the
effect that an outlier ”masks” another outlier. That is, if the second outlier can be detected as an
outlier by itself but not if the first outlier is also present in the dataset [57]. The opposite effect of
masking is called swamping and describes that good data points are marked as outliers [58].

40
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7.1 Outlier Detection for Normal Distributed Data

Most of the standard outlier detection techniques assume the underlying data to be normally dis-
tributed. If a normal distribution is assumed, it is also assumed that the distribution is symmet-
ric [59].

7.1.1 Standard Deviation (SD)

This technique defines the threshold by adding to the mean µ a multiple a of the standard deviation
σ [56]. The standard deviation can be seen as an indicator of the distance from the mean. A low
standard deviation is an indicator that the distance between the data points and the mean is low and
a high standard deviation means that the data points are spread out. If the SD-method is used as
an outlier detection method it is based on comparing some kind of residual to a value. This value
represents the distance to the mean by a certain number of standard deviations [60]. A common
choice for α is 3 if only a few outliers are expected or for a more aggressive approach α = 2 [56].
If a data set is normally distributed the following values can be approximately assumed [61]:

1. 68 % of the values are in the interval [µ−σ ; µ +σ ],
2. 95 % of the values lie the interval [µ−2σ ; µ +2σ ],
3. 99.7 % are in the the interval [µ−3σ ; µ +3σ ].

This is also known as the 68-95-99.7 rule. With this technique, a lower threshold Tmin and an upper
threshold Tmax can be calculated as:

Tmin = µ−α σ , (7.1)

Tmax = µ +α σ . (7.2)

The data points between this lower bound (Equation 7.1) and upper bound (Equation 7.2) are
considered to be non-anomalous, all others are marked as outliers. When using SD the underlying
distribution is assumed to be normal. The mean and SD may be strongly affected by outliers [56].
This method can lead to wrong results because the standard deviation is afflicted by outliers and
its value gets increased by them [60].

7.1.2 Median Absolute Deviation (MAD)

This technique was developed because the median 1 is more robust towards outliers then the mean.
The thresholds can be calculated as follows:

1 The median of a set X is denoted as X̃ in this work.
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Tmin = X̃−α MAD, (7.3)

Tmax = X̃ +α MAD. (7.4)

The median absolute deviation of a dataset X , X = {x1 . . .xn}, is calculated as:

MAD = bS̃, (7.5)

whereas for each xi of X the entry si of S is calculated an as:

si = |xi− X̃ |. (7.6)

The parameter b depends on the underlying distribution of the data. For a normally distributed
dataset the scale b = 1.4826 is suggested, which is not taking into account that outliers do not
always follow a normal distribution [62]. If the data follows another distribution, b changes and
can be calculated as [63]:

b =
1

Q0.75
, (7.7)

whereby Q0.75 indicates the 0.75-quantile of the underlying distribution [63].
Similar to the standard deviation method presented in the previous section this method also

requires the user to set α which subsequently impacts the rejection criterion, which is bounded by
Tmin and Tmax [63]. In [63] the value α = 2.5 is recommended for outlier detection as a reasonable
choice, but it is also pointed out that the choice should be somehow justified [63].

In addition, this technique is affected by the presence of outliers. If more than 50% of the data
consists of anomalous data, the median is located within the anomalous data [56].

7.1.3 Interquantile Range (IQR)

The difference between the first quantile Q1, which contains 25% of values and the third quantile
Q3 that holds 75% of values is called the interquantile range. This can be used to calculate the
thresholds:

Tmin = Q1− c∗ IQR, (7.8)

Tmax = Q3 + c∗ IQR. (7.9)

A common value for the parameter c is 1.5 [56]. This is based on the assumption of an underlying
normal distribution. Assuming this, Q1 corresponds to a −0.675σ , that means that the interval
that contains 25% of the values is bounded by the mean and the value of −0.675σ . The same
consideration applies also to Q3 and 0.675σ . The interquantile range is the population spread
between Q1 and Q3, which leads to the interval bounded by−0.6745σ and 0.6745σ . To reach that



7.1 Outlier Detection for Normal Distributed Data 43

95% of the values lie in the interval, the value for c can be determined by substituting the values
for Q1 and Q3 and solving for the c. It leads to a value for c that is often approximated as 1.5 [64].

7.1.4 Z-Score

To use the Z-score the data should follow a normal distribution because this technique is derived
from the property of the normal distribution, indicated with N, that if X = {x1,x2, . . . ,xn} fol-
lows N

(
µ,σ2), then X−µ

σ
distributed as N (0,1). Following this property the Z-score zi of each

measurement xi can be calculated as

zi =
xi− x

s
, (7.10)

where x is the mean and s the standard deviation of X.
A commonly used threshold for outlier detection is if |zi| exceeds 3 the measurement is marked

as outlier. Both, σ and µ are quite sensitive to outliers [34, 57]. However, due to its nature the
Z-score is not an appropriate technique for outlier detection in small datasets. The largest value of
the z-score zmax of a data set with n samples is bounded by the equation:

zmax =
n−1√

n
. (7.11)

The largest negative z-score zmin is given by zmin = −zmax. So, the empirically commonly chosen
threshold for outlier detection is to mark observations as outliers if their zi exceed 3, because of
Equation 7.11 this can only be exceeded with a data sample containing at least 18 samples [65].

7.1.4.1 Modified Z-Score

The modified Z-score was introduced because the mean and standard deviation of a sample can
be strongly affected by the presence of a few outliers and even by a single strong anomalous
measurement. To reduce this effect, instead of the mean and the standard deviation, the median
absolute deviation is used. The modified Z-score for xi is calculated as [34, 57]:

Mi =
0.6745xi− x

MAD
, (7.12)

whereby the constant 0.6745 represents the 0.75-quantile of normally distributed data sets with a
large sample size n. A commonly used empirically chosen threshold for outlier detection is to mark
observations with Mi > 3.5 as outliers [34].
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7.1.5 Two-Stage Threshold

This threshold technique was introduced in [56] to overcome the problem with too strongly devi-
ating outliers and give a better measure in this case. Therefore in [56] it was proposed to calculate
the threshold in two steps. For this method SD, MAD or IQR can be used. In the first step, called
the ”cleaning step”, the threshold is calculated and all the data detected as anomalous is removed
from the dataset before the threshold is calculated a second time. This procedure is more robust if
the data is very noisy compared to calculating the threshold only once [56].

7.2 Outlier Detection for Non-Normal Distributed Data

If a normal distribution is assumed and the data follows another distribution, observations can
be considered to be non-anomalous even if they are outliers but are drawn from another distribu-
tion [34]. One approach to apply outlier detection to highly skewed data is to transform it into a nor-
mal distribution and in the next step applying methods that work well for normal-distributed data.
However, this distribution could affect the accuracy of the following outlier-detection step [57].
The skewness of a distribution measures its shape and potential asymmetry. A symmetric distri-
bution has a skewness of zero. A distribution with a larger tail to the right than to the left has a
positive skewness, whereby a distribution with a tail to the left has a negative skewness [66].

7.2.1 Boxplot

The advantage of the boxplot is that it does not assume a distinct distribution and does not use the
mean or standard deviation in its statistics. It depends on the IQR of the data and defines inner
fences and outer fences. For the inner fence, c takes the value 1.5 and for the outer fence, c takes
the value 3. Observations that lie between the inner fence and the nearest outer fence are called to
be outside. This interval is also referred to as whisker [57].

Assuming normally distributed data and calculating the percentage of data points that lie out-
side the inner fence by substituting c = 1.5 into 7.8 and Q1 = −0.675σ as well as IQR = 1.35σ

leads to −2.7σ . Because the boxplot is symmetric, the inner fence is represented by the interval
[−2.7σ ;2.7σ ], which corresponds to approximately 99.65% of the data left of the median lying in
the interval [−2.7σ ;median]. That means on each side only 3.5% of the data lies outside the inner
fence. So, in total it is expected that 7% of the data is classified as being outside [64, 67].

However, the boxplot is not depending on the distribution as it delivers the best results when
applied on datasets containing a high sample size that are fairly following the normal distribution
having a the degree of skewness that is not too high. Despite all the downsides it is resistant to
extreme values in the data [57]. If the skewness in the data is too high for this technique too many
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observations are classified as outliers. This occurs because the calculation of the cut-off values are
based on principles of normal distribution [67].

7.2.1.1 Skewness-Adjusted Boxplot

This variation of the boxplot was introduced in [68] and does not assume symmetric distribution.
This approach should be more suitable for skewed data. The calculation of the whiskers depends
on a more robust measure of skewness, the medcouple [68].

The medcouple was introduced as a measure for skewness in [69] because the commonly used
Pearson’s moment coefficient of skewness is very sensitive to outliers in the data and uses the
moment coefficient of skewness for a univariate dataset. The medcouple MCn of the descending
sorted dataset X with n samples and the sample median mn is defined in [69] as:

MCn = median
xi≤mn≤x j

h(xi,x j). (7.13)

There are two kernel functions, one for the normal case, (see equation 7.14) where xi < mn and
x j > mn and one for the special case where xi = x j = mn (see equation 7.15).

h(xi,x j) =
(x j−mn)− (mn− xi)

x j− xi
. (7.14)

Following equation 7.13 the values for the MC always lie between -1 and 1. For a right-skewed
distribution MC takes a positive value and for a left-skewed distribution a negative, whereas sym-
metric distribution has a medcouple of zero [67]. The distance between xi or x j to the median is
measured by the kernel function 7.14. If the result of the kernel function is a positive value, then
xi lies closer to the median, if it is negative x j. The value of the kernel function is -1 for all pairs
where xi is the median and 1 for all pairs where x j is the median.

Comparing the original publication where the skewness-adjusted boxplot was introduced in
2004 (see [68]) with later versions of the same authors (see [67]) and the introduction of the
medcouple (see [66]) one notices that the definitions vary. In [68] only the normal case where
xi < mn,x j > mn is discussed and the special case where xi = x j = mn was introduced for the
adjusted boxplot in later publications (see [67] ).

In [69] where the medcouple was introduced and in [66] an additional calculation rule h1(xi,x j)

for the kernel function in the case where xi = x j = mn is employed.

h1(xi,x j) =


1 i > j

0 i = j

−1 i < j

(7.15)
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Instead of using a c of 1.5 in equation 7.8 and equation 7.9 it is purposed in [67] to replace c
for a lower boundary with hl(MC) and for the upper boundary hr(MC), whereby hl and hr are
functions. To obtain the properties of the boxplot for symmetric distribution it is required that
hl(0) = hr(0) = 1.5. It was also found in [67] that over all skewed distributions the best fit is to
mark observations that lie outside the following interval as outliers:[

Q1−1.5e−3MC IQR; Q3 +1.5e4MC IQR
]

(7.16)

The interval of equation 7.17 is defined for a right-skewed distribution. To get the interval of an
left-skewed distribution it is only necessary to switch the boundaries [70, 67]:[

Q1−1.5e−4MC IQR; Q3 +1.5e3MC IQR
]

(7.17)

As pointed out in [70] in this method the whiskers are adjusted in that way so that in comparison
with the normal boxplot fewer data points fall outside the interval.



Chapter 8

Approach for HPO Using GA

8.1 Used Time Series Data

The developed model was applied to time-series data recorded during geo-drills at different con-
struction sites. The process is more in depth described in [2]. The raw data consists of different
sensor signals gained during the process. For this application four of the signals were chosen and
analysed: the depth of the drilling, the vibrator frequency, the vibrator temperature and the weight.
The execution of the drilling process is dependant on external factors at the site, so the patterns in
the data change from site to site. As visible in Figure 8.1 and Figure 8.2 for example the depth of
the drills varies from site to site. Because of these changes, an optimization was done for each site
separately.

8.1.1 Preprocessing

The processing time for a drilling process is not the same for each point, so also the number of
recorded measurements varies. For the LSTM layers of the ML-model, a fixed number of timesteps
is needed. To fulfil this condition, the signals are compressed in one of the preprocessing steps to
this length called the time series length. This resizing is shown in Figure 8.3 for the signals of
Figure 8.2.

The second step of the preprocessing is rescaling. This is done because the input signals are on
different scales and the reconstruction error is calculated as the sum of all differences between the
input signals and reconstructed signals, the range of the signals is defined to be between zero and
one.
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Fig. 8.1: exemplary plot of recorded signals over time at the site Seestadt Aspern

8.2 Optimized ML-Model

The hyperparameter optimization was applied to an LSTM-VAE (see Section 4.2). This ML model
was developed in a prior master thesis (see [2]) and slightly modified and extended for hyperpa-
rameter optimization. The model mainly consists of two parts: the encoder and the decoder. The
code for these two parts is shown in listing 8.1. The variable numNeuornsEncoder contains the
number of neurons used in the LSTM layer of the encoder and the variable numNeuronsDecoder
of the LSTM layer of the decoder. The inputDim represents the number of signals of the input data
on which the model is applied.
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Fig. 8.2: exemplary plot of recorded signals over time at the site Fehring

1 % dimension of the latent space

2 latentDim = 2;

3 % dimension of the input features

4 inputDim=size(XTest,1);

5 % layers of the encoder

6 encoderLG = layerGraph([

7 sequenceInputLayer(inputDim, 'Name', 'inputEnc')

8 lstmLayer(numNeuronsEncoder,'Name', 'lstmE1')

9 fullyConnectedLayer(2*latentDim, 'Name', 'fcE')

10 ]);

11 % layers of the decoder

12 decoderLG = layerGraph([

13 sequenceInputLayer(latentDim, 'Name', 'inputDec')

14 lstmLayer(numNeuronsDecoder,'Name', 'lstmD1')

15 fullyConnectedLayer(inputDim, 'Name', 'fcD')

16 ]);

Listing 8.1: architecture of the LSTM-VAE
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Fig. 8.3: resized exemplary plot of the signals shown in Figure 8.2 to 400 timesteps

The output of the model is the reconstruction error on a provided test set. The dataset is highly
imbalanced in the number of positive examples and anomalous examples, the learning is done on
a subset of positive (non-anomalous) manually selected examples.

The data is unlabelled and autoencoders belong to the group of unsupervised learning tech-
niques, so does the LSTM-VAE, it was chosen not to label the entire data because certain anoma-
lies are very hard to identify manually only by manual inspection. Further, certain anomalies are
unknown before they occur the first time.

8.3 Applied Genetic Algorithm

For the special task of hyperparameter optimization of an LSTM-VAE a quite selective approach
of the genetic algorithm was chosen. To evaluate the fitness of each individual a ML-model has to
be trained with different parameters. The long computational time of the machine learning model
leads to a limited budget of possible evaluations. It can be observed that also the chosen hyperpa-
rameters influence the training time. Whereby the models are trained using the GPU and all other
manipulations were done using the CPU. Two of these folds were used for training and one for
testing. So each hyperparameter configuration was trained three times for the HPO. That leads to
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Fig. 8.4: the signals shown in Figure 8.3 where taken and rescaled between zero and one.

the training of up to 60 machine learning models in one generation consisting of 20 individuals.
The approach with training three folds and three repetitions was chosen because of the effect of the
random seed on the model. The weights of the machine learning model are initialized randomly
in the beginning and that leads to a discrepancy in the performance of the model as shown in
Figure 8.5. The fitness deviates even if the same data and the same hyperparameters are used. To
illustrate this 200 models were trained with the same data and the same hyperparameter settings
and the archived fitness values were plotted in Figure 8.5.

This effect is even stronger if random folds of the same data are generated and then the model
is trained and evaluated on them. This is visualized in Figure 8.6. For a better generalization, each
generation was trained with a different permutation of the data. That lead to different subsets used
as folds.

8.3.1 Termination Condition

As the termination condition a combination of three arguments was chosen. The first one is the
number of maximal generations and the second one tests if the average fitness of the generation
is better than one of the average fitness values of the last four generations. The third argument is
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Fig. 8.5: deviation in fitness of models trained with the same data and same hyperparameters

that the algorithm terminates if the generation only consists of individuals that all hold the same
hyperparameters.

8.3.2 Fitness Function

The fitness function is formed by the ML-model the HPO is done for. It is realized as a function
where different encoded individuals can be passed as input parameters alongside the folds of the
train data and test data. As a fitness measure the reconstruction error on the test set is used. The
input data and also the reconstruction consists of four signals, the summed up absolute values of
the difference between the preprocessed input data and the reconstructed data of the test set is used
as fitness value.
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Fig. 8.6: deviation in fitness of models trained with different folds of the same dataset and same
hyperparameters

8.3.3 Chromosomes

The hyperparameters are encoded as integers and a range of allowed values for each parameter was
defined. For the optimization the following hyperparameters (see Table 8.1) are used alongside the
defined domains of the values.

variable name normal searchspace enlarged searchspace
trainedEpochs [1;100] [1;200]
numberOfNeuronsEncoder [1;100] [1;200]
numberOfNeuronsDecoder [1;100] [1;100]
learningRate [0.005,0.01] = [5,1000] 10−5 [0.001, 0.1]=[1; 10000] 10−5

miniBatchSize [2;53] [2;53]

Table 8.1: domains of the HPO for the normal and extended searchspace
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As shown in Table 8.1 the HPO was firstly done on a smaller search space and then the domain
was extended for the variables trainedE pochs, numberO f NeuronsEncoder and learningRate.

As discussed in Section 6.1.1 the learning rate was found to be the most important hyperparam-
eter and therefore it was tried out to optimize it on a larger domain. Because the learning rate is a
decimal between zero and one, it is shifted to the integer domain and then multiplied by 10−5 be-
fore beeing applied to the ML-model. The upper bound of the mini-batch size is set to 53 because
for the run 80 training examples were used, divided into three folds and two out of them used for
training.

The genetic algorithm was also programmed for a bit-string-representation. But because of the
interval the values should lie in and the number of bits they need to be encoded, it is necessary that
after every genetic manipulation is checked if the produced offspring is a valid number. This ex-
tends the runtime of the genetic operators and because except one, all hyperparameters are integers,
it was chosen to use the integer-representation instead of the bit-string-representation.

8.3.4 Genetic Operators

A similar approach for designing the genetic operators was presented in [71] also using integer en-
codings. The genetic operators are designed in a way that the integer property of the chromosomes
is ensured. The first step is to create the initial population. This is done by creating individuals with
randomly initialized genes. Then as long as the termination criterion is not fulfilled the following
genetic operators are applied to the population:

8.3.4.1 Evaluation

The first step of the genetic algorithm is that the individuals are evaluated to determine their fit-
ness. For each individual, each hyperparameter setting, three models are trained with the same
parameters on different folds of the data. As fitness of the model, the mean of the three runs is
taken. If individuals are holding the same hyperparameters in the population, each configuration
was evaluated only once per population, because of the long runtime that is caused by training
three ML-models per individual. The fitness evaluation is with no doubt the dominant term of the
runtime-function.
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8.3.4.2 Selection

For the selection, an approach with quite high selection pressure is used. Elitism is employed by
transferring the k = 3 best individuals of the population to the next population without applying
crossover to them.

All individuals that have a fitness better, smaller, as the median of all fitness values of the popu-
lation form the mating pool. Additionally, the other individuals are added with a small pre-defined
probability to the mating pool to maintain genetic diversity.

8.3.4.3 Crossover

The next genetic operator applied to the population is crossover. This process is repeated p− k
times if p is the number of individuals in each generation because each iteration produces one
new individual. The crossover-step consists of two possible crossover operators that are chosen
randomly. Firstly two individuals are selected randomly out of the mating pool. If the first variation
of crossover is used as shown in Listing 8.2 then each chromosome is randomly selected if the child
inherits the value of the first or the second parent.

1 % number of variables

2 numVar = length(parentA);

3 for i=1:numVar

4 % random number [0,1] if <= 0.5 component from first parent

5 % otherwise from second

6 randNr=rand();

7 if(randNr <= 0.5)

8 child(i)=parentA(i);

9 else

10 child(i)=parentB(i);

11 end

12 end

Listing 8.2: random crossover

If the second variation of crossover is used (see Listing 8.3), for each allele the mean of the
alleles of the two parents is taken as the value of the offspring and rounded to the next integer to
obtain the integer property of the entries.
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1 numVar=length(parentA);

2

3 child= (parentA+parentB)./2;

4 child=round(child);

Listing 8.3: mean crossover

This approach with the combination of two crossover functions was chosen because of the rela-
tively low number of individuals in comparison of possible combinations in the search space that
more new values for each parameter are produced and the search space is explored more.

The first trials were done using only random crossover and that lead to the effect that the values
each parameter can take were the same as in the random construction from the first generation,
except if a mutation occurs, which is applied with only a very small probability that the search
does not turn into a random search.

8.3.4.4 Mutation

The mutation is applied with a relatively small pre-set probability randomly on the newly created
population. If a chromosome is mutated, the allele is set to a random value of the parameter’s
domain. The mutated population is the starting point for the evaluation at the beginning of the next
generation.

8.3.5 Algorithm Applied to Real Data

After fulfilling the termination condition the winning individual of the optimization is the individ-
ual that has to hold the hyperparameter setting that performed best in the last evaluation.

All the following plots in this section were obtained by an optimization done on the dataset of
the site Fehring and the parameters listed in Section 8.3.3, a population consisting of 20 individuals
and as many generations until the termination condition (see Section 8.3.1) was fulfilled.

8.3.5.1 Convergence

The average fitness of a genetic algorithm at the beginning decreases exponentially, this is shown
for one exemplary run in Figure 8.7.
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Fig. 8.7: average fitness of the population over the generations

Because the genetic algorithm performs a directed search, the number of values the individuals
of a population hold is decreasing from population to population. For one optimization run it is
shown in Figure 8.8

If the HPO is executed two times, compare Figure 8.8 and Figure 8.9, on the same data with the
same settings it does not lead to the same results, although the values are in a similar range they
vary. The resulting values for the hyperparameters of the first run were [49,82,60,878,3] and the
second run of the HPO returned [76, 49, 56, 978, 7]. The only real dissimilarity between these two
results is, that in the first result the encoder has more neurons than the decoder and in the second
result, it is the other way around. In the master thesis of [2] the author assumed that the encoder
should have more neurons as the decoder. He based his assumptions on observations of the shape
and density of distributions in the latent space. In most cases (see Table 8.2), this assumption can
be also done with the experiments done here, but there are also cases as that the second exemplary
HPO (see Figure 8.9), where it does not hold.

The dissimilarities of two HPO runs could be explained on one hand with the random initial-
ization of the first population, the uncertainties regarding the random seed and learning in general,
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Fig. 8.8: values of the HPO the individuals take at each generation
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Fig. 8.9: values of the HPO executed a second time the individuals take at each generation
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as well as the random portion of the genetic algorithm with the random crossover and the random
probability that an individual with a too high fitness is added to the mating pool and potentially
chosen for crossover. Another possible explanation is that some hyperparameters, for example the
learning rate, as discussed in Chapter 6 can be imagined as a bathtub function and there are larger
regions of values with good performance.

Fig. 8.10: reconstructed and real signals for a non-anomalous point of the site Fehring

After training an encoder-decoder structure found by the HPO, all data, all drilling points of
a site, are encoded and decoded to obtain the reconstruction error of each sample. For a non-
anomalous sample it is considered to be relatively low and for an anomalous sample, an outlier,
accordingly higher. As example the results of an non-anomalous sample (see Figure 8.10) and an
anomalous (see Figure 8.11) sample where visualized.
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Fig. 8.11: reconstructed and real signals for a anomalous point of the site Fehring

As shown in Figure 8.12 also training the actual ML-model, which is later on used to calculate
the reconstruction error, inherits all the uncertainties regarding ML-models. Training it multiple
times with the same hyperparameters found by the optimization will lead to slightly different re-
sults - also in the classification results of what is an outlier and what not.

For comparison in Figure 8.14 the reconstruction error of a model trained with the optimized
hyperparameters and two individuals of the first generation is shown. By comparing it with Fig-
ure 8.12 it can be seen that the fewer points are outlying and the overall reconstruction error is
higher than when data is applied to the optimized model.

If the reconstruction error of the optimized parameters shown in Figure 8.8 is visualized in a
histogram (see Figure 8.13), one can see that the reconstruction error does not follow a normal dis-
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Fig. 8.12: two encoder-decoder structures where trained with the same hyperparameters of the
HPO visualized in Figure 8.8 and on the same data and afterwards applied on the whole dataset of
the site Fehring to get the reconstruction error for each point

Fig. 8.13: histogram of the data gained at performing the reconstruction shown in Figure 8.12
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Fig. 8.14: reconstruction error of a ML model trained on the hyperparameters held by two individ-
uals of the first generation when applied on the data of the site Fehring.

tribution. Because of this most statistical methods for outlier detection cannot be applied. Therefore
for the outlier detection the skewness-adjusted boxplot (see Section 7.2.1.1) is used. This method
is applied only single-sided, only a too high reconstruction error is flagged as an outlier. If the
reconstruction error is too low, it means that the reconstruction fits the real recorded signals well.
That should not be marked as an outlier.

Figure 8.15 shows the classification done by using the skewness-adjusted boxplot. Additionally,
ten samples that are considered to be non-anomalous and ten samples assumed to be outliers were
picked manually and marked in the plot.

The outlier detection was applied on the reconstruction errors of the two trained ML-models
shown in Figure 8.12 which were trained using the HPO visualized in Figure 8.8. The results of
the first model is shown in Figure 8.15 and of the second model in Figure 8.16.

When comparing them one can see that in the first figure one of the examples manually labelled
as an outlier is classified as normal, whereby in the other figure all examples are classified as they
were classified manually.

The same procedure was applied on two models with hyperparameters randomly initialized in
the first generation of the GA. The results of this outlier detections are shown in Figure 8.17 and
Figure 8.18. When comparing the outlier detection done on the models with non-optimized hyper-
parameters (Figure 8.17 and Figure 8.18) and the outlier detection done on models with optimized
outlier detection, one can see that in the optimized models more of the manually labelled outliers
are identified. Also, the boundaries between the two classes are clearer and the reconstruction error
of the normal data is less scattered.
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Fig. 8.15: first example of outlier detection using the skewness-adjusted boxplot and manually se-
lected anomalous and non-anomalous samples and trained models with optimized hyperparameters

8.3.5.2 Enlarged Searchspace

Some trials were also done on a larger domain of the values as listed in Table 8.1. This was done
because in [2] it was assumed that a higher number of neurons in the encoder leads to even better
generalization and to better results.

Also on a trained model of this type an outlier detection with the manually selected samples
was done and leads to the results shown in Figure 8.20. When comparing to the outlier detection
done on the normal domain, it can be seen that the overall reconstruction error is lower. However,
also the reconstruction error of the outliers is lower and the classes are less well distinguishable.
This could be explained by the bigger search space which was not explored as well with the same
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Fig. 8.16: second example of outlier detection using the skewness-adjusted boxplot and manually
selected anomalous and non-anomalous samples

number of solution candidates. This can be seen also in the visualization of the exploration of the
search space in Figure 8.19 and the gaps in the first generation, where no random solution was
sampled on. So, for this variation, bigger population size should be considered.

8.3.5.3 Extended Optimization

The model was then extended to a optimization containing four additional parameters to the five
used in the other variations (see table 8.1) which are:

6. additional LSTM layer encoder [1; 10]
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Fig. 8.17: first example of outlier detection using the skewness-adjusted boxplot and manually se-
lected anomalous and non-anomalous samples with models trained with random hyperparameters

7. number neurons additional layer encoder [1; 100]
8. additional LSTM layer decoder [1; 10]
9. number neurons additional layer decoder [1; 100]

If the variable additionalLST MlayerEncoder takes a value greater than five, an additional
LSTM layer is used in the encoder and the same principle is applied for the decoder. Then the
next parameter defines the number of neurons for this additional layer. The same applies to the
next two parameters regarding the decoder. The domain of the additional LSTM layer was chosen
in this way, that the crossover presented in Section 8.3.4.3 works. If the domain [0;1] would be
used, where 1 would indicate that the additional LSTM layer is used and one parent would hold
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Fig. 8.18: second example of outlier detection using the skewness-adjusted boxplot and manually
selected anomalous and non-anomalous samples with models trained with random hyperparame-
ters

the value 0 and the other the value 1, calculating the mean and round it to the next integer, would
favour choosing the LSTM-layer.

In [2] the assumption was made that the model generalizes better if the encoder has more and the
decoder fewer layers. By including the conditional layers into the HPO this could not be concluded
for the HPOs done in this thesis. Either non of the layers were chosen or an additional layer for the
decoder with a higher number of neurons than the first LSTM-layer, which has converged to a much
lower number as normal, was chosen. Only a few trial runs were done and further investigation is
needed to see a tendency if this was caused by the random seed, a too low number of training
examples to deal with more degrees of freedom in the HPO.
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Fig. 8.19: results of the HPO done on the enlarged domain for the site Fehring
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Fig. 8.20: outlier detection using the skewness-adjusted boxplot and manually selected anomalous
and non-anomalous samples; models where trained on hyperparameters found by a HPO on the
enlarged search space

As example the values the individuals take during one HPO done of the Fehring dataset using
the extended model is shown in Figure 8.21.

Also, the reconstruction error of an ML-model trained with the values of the best individual of
the last generation, as well as the outlier detection using the skewness-adjusted boxplot and the
position of the manually labelled examples are shown in Figure 8.22. The reconstruction error of
the examples that are classified as normal is higher than in the other two variants of the HPO.
Also, the separation between the two classes is not so clear, because the reconstruction error of
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Fig. 8.21: results of the HPO done on the extended domain for the site Fehring
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the outliers is lower. So, it happens that some of the manually labelled outliers are categorized as
good.

Fig. 8.22: outlier detection using the skewness-adjusted boxplot and manually selected anomalous
and non-anomalous samples; models where trained on hyperparameters found by the HPO on the
extended search space

8.3.5.4 Overview of the Results of all HPOs

In table 8.2 an overview of the HPO done on the datasets of the sites Fehring and Aspern with
the described setup in this chapter is given. The type describes which variation of the algorithm
was used. Also, the number of files used for training varied. The results are given in the same or-
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der as used in this chapter in general: [trainedEpochs, numberOfNeuronsEncoder, numberOfNeu-
ronsDecoder, learningRate, miniBatchSize] and for the extended optimization as [trainedEpochs,
numberOfNeuronsEncoder, numberOfNeuronsDecoder, learningRate, miniBatchSize, addition-
alLSTMLayerEncoder, numberNeuronsAdditionalLSTMencoder, additionalLSTMLayerDecoder,
numberNeuronsAdditionalLayerDecoder]

index site type number files generations result
1 Aspern normal 80 13 [75, 54, 37, 756, 3]
2 Aspern normal 80 12 [99, 46, 43,868, 3]
3 Aspern normal 80 13 [99, 58, 46, 784, 3]
4 Aspern normal 160 13 [68, 69, 40, 612, 5]
5 Fehring enlarged 160 10 [174, 44, 37, 3754, 13]
6 Fehring enlarged 160 8 [80, 46, 61, 569, 5]
7 Fehring enlarged 80 13 [126, 68, 97, 2353, 12]
8 Fehring normal 80 12 [49, 82, 60, 878, 3]
9 Fehring normal 80 12 [76, 49, 56, 978, 7]
10 Fehring normal 80 12 [69, 47, 96, 910, 7]
11 Fehring extended & enlarged 80 12 [178, 28, 65, 2482, 22, 3, 134, 7, 83]
12 Fehring extended & enlarged 80 11 [399, 32, 55, 3421, 12, 3, 247, 5, 286]
13 Fehring extended 80 12 [87, 86, 76, 635, 6, 7, 50, 3, 69]

Table 8.2: results for the hyperparameters of different HPO-runs; the site indicates the dataset that
the HPO was performed on, in the column type is specified which variation of the HPO was done,
the third column contains the number of files that where used, the fourth column indicates the
number of generations used for the optimization and the last column contains the results of the
HPO in the format defined in Section 8.3.5.4

If comparing the results of all HPO-runs tabulated in Table 8.1 the same assumption can be
made as in [2] that the encoder has in most cases a higher number of neurons than the decoder.
It seems that there are different optimal sizes of the mini-batches depending on the dataset. When
the hyperparameters are optimized for the data of the site Aspern, in three of four cases 3 is the
result for the optimal batch-size for the normal domain. Whereby for Fehring it tends to be higher,
around 7 for the normal domain. For the enlarged search space it seems that a higher mini-batch
size is favoured.

The assumption often found in the literature that when using a smaller learning rate, more epochs
need to be trained cannot be made from these results. The resulting value for the number epochs
trained varies relatively strong, even on the same data.

It also cannot be assumed that more LSTM-layers in the encoder are favoured towards the model
with only one layer. When comparing the HPOs with the indices 11-13, one time an additional layer
in the decoder was used in the configuration hold by the best individual of the last generation, once
one in the encoder and once non of the above. However, it can be assumed that if the HPO has
more degrees of freedom the number of epochs trained needs to be higher. This may possibly
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be explained by the reasonably low number of input features, the low number of training files or
overall the structure and degree of complexity of the data itself.



Chapter 9

Summary and Conclusion

This thesis investigated the use of genetic algorithms for the hyperparameter optimization of a ma-
chine learning model for outlier detection to improve the detection of unusual events. To accom-
plish this, a genetic algorithm with fewer evaluations compared to a classical genetic algorithm
was developed.

Most of the data in real industrial application is gathered without labels, so for this approach,
only a subset of non-anomalous examples needs to be labelled and not the whole data. This is done
because the machine learning model is trained in a highly biased way only using non-anomalous
data and so the reconstruction error of outliers, which were not shown to the network in the training
phase, is most likely higher because these unknown pattern can not be reconstructed as accurate as
patterns of non-anomalous examples the network learned during the training phase.

The combination of machine learning with a meta-heuristic is afflicted by uncertainties. The
weights, which are the values that are adjusted during the training of neural networks, are set by
default at the initialization to random values. Further, also the first population which is the starting
point of the HPO is initialized with random values. This leads to performance fluctuation and
each setting of the hyperparameters needs to be evaluated on different folds of the data to get
better generalization. The number of repetitions is a trade-off between generalization, run time and
the possible risk of overfitting. When using an evolutionary algorithm, new hyperparameters are
introduced that also need to be set. Also, the question arises of how big the portion of the data that
is used for the HPO should be to guarantee some kind of generalization without increasing runtime
too much.

Evaluating the performance of unsupervised learning techniques is not a trivial task and cannot
be done straight forward by calculating for example a confusion matrix as often used in super-
vised learning. Therefore, to show the functional principle exemplary some measurements were
manually labelled and compared to the outcome of the model. This leads to the assumption that
LSTM-VAEs with optimized hyperparameters perform better than models trained with random hy-
perparameters. The results of these evaluation suggest that when using optimized hyperparameters
the clusters of anomalous and non-anomalous data are better distinguishable compared to models
trained on random hyperparameters. Also, the average fitness of the individuals per generation de-

74
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creases exponentially, as expected for a genetic algorithm. Further investigations are needed to find
the hyperparameters of the LSTM-VAE that have the biggest impact on the performance and also
which subset of the features is most suitable as input for the ML model to archive the best possible
performance in a reasonable runtime.

Overall, the thesis showed that genetic algorithms are a suitable method for the hyperparameter
optimization of machine learning models. It could be considered for practical application because
the runtime, which is often the limiting factor can be adjusted by training less generations and even
then archiving good results.

Some important insights of this work are:

1. It has been shown that genetic algorithms are a suitable technique for the HPO of variational
autoencoders. This is concluded because the reconstruction error of non-anomalous exam-
ples is lower when the ML-model is trained with optimized hyperparameters and the overall
performance of the outlier detection is increased.

2. It could not be shown that a larger searchspace and more layers in the decoder and encoder
could increase the performance.

3. Further, the discovery was made that a relatively low number of non-anomalous samples
used for the optimization lead to sufficient results.

4. Not all chosen features contribute to the reconstruction error equally. Some features are re-
constructed rather accurately, even if they are considered anomalous.

5. It is assumed that genetic operators that create new values for the parameters to be optimized
in the course of the algorithm are beneficial, since the winning individual often contains
values for the parameters that were not part of the first generation.
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