

ACKNOWLEDGMENT

HANS-JÖRG SCHMÖLZER II

ACKNOWLEDGMENT

HANS-JÖRG SCHMÖLZER III

Acknowledgment

I would like to take this opportunity to thank all those who supported and motivated me during

the preparation of this Master's thesis.

First of all, I would like to thank DDipl.-Ing. Benjamin Ralph, who supervised and examined my

master's thesis. I would like to express my sincere thanks for the helpful suggestions and

constructive criticism during the preparation of this thesis.

I also like have to thank Dipl.-Ing. Macel Sorger, who supported me in the implementation and

extension of the existing software. I would like to thank him for the helpful advice regarding the

programming and his time for the implementation.

Special thanks go to all the participants in my survey, without whom this thesis could not have

been written. I would like to thank them for their willingness to provide information and their

interesting contributions and answers to my questions.

I would also like to thank my fellow students Dominik Dax and Markus Berger, who supported

me with a lot of patience, interest and helpfulness. I would like to thank them for the numerous

interesting debates and ideas, which have contributed significantly to the fact that this Master's

thesis is available in this form.

Finally, I would like to thank my parents, who made my studies possible through their support.

Hans-Jörg Schmölzer

Leoben 18.03.2021

ABSTRACT

HANS-JÖRG SCHMÖLZER IV

Abstract

The interconnection of people, machines and products in the fourth industrial revolution (I4.0)

is opening up more opportunities for managing projects. In response to these developments,

project management must evolve as a result of the possibilities of direct integration of

machines and process data. The possibilities of automated connections therefore pose new

challenges for the interfaces between the different layers.

In order to be successful with digital project management, a multi-layered networked solution

that uniformly notes the machine data, activities of the employees and the times of these

activities is required. Especially for SMEs, the cost factor for the development and support of

such a solution must also be taken into account. Another point of digitally supported project

management is the security of the data input. These must be protected against unauthorised

manipulation and extraction.

The objective of this thesis was to develop an end-to-end, adaptable solution for the integration

of production and process data into a project management tool, with particular emphasis on

auser-friendly graphical user interface. For the purpose of cost-effectiveness open source

solutions, specifically PHP and SQL, were used.

By using the software mentioned above, a multi-layered project management tool linked to the

machinery has been created and put into use. By using this system, it is now possible to

present the administration of projects, machines and employees in a simple and concise way.

This leads to a significant reduction in administrative effort. Through the automated connection

of essential machine data, such as operating and idle hours, it is also possible to optimise

maintenance intervals. This leads to a further increase in efficiency in the area of maintenance

and enables the use of modern predictive maintenance algorithms in the future.

KURZFASSUNG

HANS-JÖRG SCHMÖLZER V

Kurzfassung

Durch die Vernetzung von Menschen, Maschinen und Produkten in der vierten industriellen

Revolution (I4.0) werden dem Projektmanagement mehr Möglichkeiten eingeräumt. Als

Reaktion auf diese Entwicklungen muss sich das Projektmanagement, durch die Möglichkeiten

der direkten Integration von Maschinerien und Prozessdaten, weiterentwickeln. Durch die

automatisierte Anbindung ergeben sich neue Herausforderungen an die Schnittstellen

zwischen den verschiedenen Layern.

Um mit einem digitalen Projektmanagement erfolgreich zu sein, benötigt man eine

mehrschichtige vernetzte Lösung, welche die Maschinendaten, Aktivitäten der Mitarbeiter und

die Zeiten dieser Aktivitäten einheitlich notiert und für eine Auswertung aufbereitet. Gerade bei

KMU’s ist hierbei zusätzlich der Kostenfaktor für die Entwicklung und Betreuung einer solchen

Lösung zu berücksichtigen. Ein weiterer Punkt des digital unterstützen Projektmanagements

ist die Sicherheit der eingetragenen Daten. Diese müssen vor unautorisierter Manipulation und

Auslesen geschützt werden.

Ziel dieser Arbeit war es daher, eine durchgehende, adaptierbare Lösung für die Integration

von Produktions- und Prozessdaten in ein Projektmanagement Tool, unter besonderer

Berücksichtigung von grafisch ansprechenden Benutzer Oberfläche zu entwickeln. Um den

Kostenfaktor gerecht zu werden, wurden Open Source Lösungen, im speziellen

PHP und SQL, eingesetzt.

Durch den Einsatz oben genannter Programme wurde ein mehrschichtiges, mit dem

Maschinenpark verbundenes, Projektmanagement Tool erstellt und zum Einsatz gebracht.

Durch die Verwendung dieses System ist es nun möglich, die Administration von Projekten,

Maschinen und Mitarbeitern einfach und kompakt darzustellen. Dies führt zu einer

signifikanten Verringerung von administrativen Aufwand. Durch die automatisierte Anbindung

von essentiellen Maschinendaten, wie beispielsweise Betriebs- und Leerlaufstunden, ist es

zudem möglich, die Wartungsintervalle zu optimieren. Dies führt zu einer weiteren

Effizienzsteigerung im Bereich der Instandhaltung und ermöglicht zukünftig den Einsatz von

modernen vorausschauende Wartungsalgorithmen.

KURZFASSUNG

HANS-JÖRG SCHMÖLZER VI

Table of content

Affidavit .. I

Acknowledgment ...III

Abstract .. IV

Kurzfassung .. V

List of figures ... VII

List of code snippets ... IX

List of abbreviations .. X

1 Introduction .. 1

2 Fundamentals .. 3

2.1 Project management ... 3

2.2 Database software system .. 4

2.3 Graphical user interface Environment ... 5

2.4 IT Security ... 5

2.5 Usability requirements ... 6

3 Development and implementation .. 7

3.1 Stakeholder analysis ... 7

3.2 Feasibility study ..10

3.3 MySQL database ...13

3.4 PHP ...22

4 Results and discussion ..65

5 Conclusion and outlook ...83

References .. X

Appendix ..12

List of functions ...12

LIST OF FIGURES

HANS-JÖRG SCHMÖLZER VII

List of figures
Figure 1: Result of the Stakeholder analysis .. 8

Figure 2 Roles of the project management tool ... 9

Figure 3 Flowchart of the connections of the tables ..13

Figure 4 Tables of the project management tool ...14

Figure 5 Attributes of the table activitymac ...14

Figure 6 Attributes of the table activityuser ...15

Figure 7 Attributes of the table machines..16

Figure 8 Attributes of the table projects ..18

Figure 9 Attributes of the table projecttypes ..19

Figure 10 Attributes of the table users ..20

Figure 11 Attributes of the table roles ...21

Figure 12 Flowchart of the PHP pages invisible for the user ...22

Figure 13 Flowchart of the php pages visible for the user ...23

Figure 14 General overview of the PHP pages ...23

Figure 15 Header section of the project management tool ..25

Figure 16 Navigation menu with different roles ...27

Figure 17 Examplery footer of the project management tool ...27

Figure 18 Flowchart Login possibilities ...28

Figure 19 Display of the last activities ...31

Figure 20 Input mask for new activities ...32

Figure 21 Input mask of activity update ..35

Figure 22 Flowcharts of the project related pages ..38

Figure 23 Flowchart of new project creation ...40

Figure 24 Flowchart of the update project ...43

Figure 25 Drop down menu and start / end date ...45

Figure 26 Flowchart project details ...45

Figure 27 Flowchart project details ...49

Figure 28 Flowcharts of the machine related pages ...50

Figure 29 Flowchart of new project creation ...52

Figure 30 Flowchart of the update machine ..54

Figure 31 Flowchart machine details ..56

LIST OF FIGURES

HANS-JÖRG SCHMÖLZER VIII

Figure 32 Flowchart project details ...59

Figure 33 Related pages of the employee section ..60

Figure 34 Flowchart to register a new user ...61

Figure 35 Flowchart of the update user process ...63

Figure 36 Multi-layer architecture of the chair of metal forming ...65

Figure 37 Visible pages for the users ...66

Figure 38 Index page with login for user ...66

Figure 39 home.php of Administration ..67

Figure 40 Difference of activities page for admin (left) and user (rigth)68

Figure 41 Input mask for new user activities ...68

Figure 42 Activity Update page for administration ...69

Figure 43 Project page of admin (left) and user (right) ..70

Figure 44 New project page..70

Figure 45 Update project page ...71

Figure 46 Project detail page ..72

Figure 47 Project Detail page with involved items ...73

Figure 48 Finished projects detail page ..74

Figure 49 Machines overview page ..75

Figure 50 Machine page for new machines with input mask ...76

Figure 51 Machines update page with input mask ..77

Figure 52 Machine detail page ...78

Figure 53 Machine detail list with involved items ..79

Figure 54 Machine archive page ..80

Figure 55 Employee page of an admin (left) and user (right) ..81

Figure 56 Employee sign up page ..81

Figure 57 Employee page of an admin (left) and user (right) ..82

LIST OF CODE SNIPPETS

HANS-JÖRG SCHMÖLZER IX

List of code snippets

Code snippet 1 Static header functions ..24

Code snippet 2 Function checkUser(…) ...24

Code snippet 3 Navigation menu admin view ...25

Code snippet 4 Function checkAccess(…) ...26

Code snippet 5 Function loginUser(…) ...29

Code snippet 6 Function displayProjects(…) ..30

Code snippet 7 Function displayMachines(…) ..30

Code snippet 8 Function displayActivity(…) ..32

Code snippet 9 Transfer page for create activity ...33

Code snippet 10 Function createActivity(…) ...34

Code snippet 11 Additional updates of createActivity(…) ...35

Code snippet 12 Transfer page of activityUpdate.php ..36

Code snippet 13 Function updateActivity(…) ..37

Code snippet 14 SQL statement of Function displayProjects(…) ..39

Code snippet 15 Data display of fetched SQL data ..39

Code snippet 16 Transfer page for a new project ...41

Code snippet 17 Function createProject(…) ...42

Code snippet 18 Function updateProject(…) ..44

Code snippet 19 Transfer function of projectActive.php ..46

Code snippet 20 Functions of projectDetail1.php ..46

Code snippet 21 Function involvedEmployee(…) ...47

Code snippet 22 Function involvedMachines(…) ..48

Code snippet 23 Function displayMachines(…) ..51

Code snippet 24 Function createMachine(…) ...53

Code snippet 25 Function updateMachine(…) ..55

Code snippet 26 Transfer function of machineDetail.php ..57

Code snippet 27 Machine detail PHP functions ..57

Code snippet 28 Function to show involved projects ..58

Code snippet 29 Function createUser(…)...62

Code snippet 30 Function updateUser(…) ..64

Code snippet 31 Function inactiveUser(…) ..64

LIST OF ABBREVIATIONS

HANS-JÖRG SCHMÖLZER X

List of abbreviations

ERP … Enterprise Resource Planning

GUI … Graphical User Interface

HMI … Human Machine Interface

IoT … Internet of Things

MES … Manufacturing Execution System

PHP … Hypertext Preprocessor

PMT:CMF … Project Management Tool of the Chair of Metal Forming

SME … Small and Medium-sized Enterprises

SQL … Structured Query Language

INTRODUCTION

HANS-JÖRG SCHMÖLZER 1

1 Introduction

The interconnectivity, automation, machine learning, and real-time data is in the focus of the

fourth industrial revolution (I4.0). Industry 4.0 combines physical production and operations

with smart digital technology, machine learning and Big Data to create a more holistic and

connected ecosystem for businesses, their people, machines and products. In response to

these developments, project management must evolve as a result of the possibilities of direct

integration of machines and process data. The possibilities of automated connections therefore

pose new challenges for the software interfaces between the different layers. [1]

In an SME, the combination of lack of staff and specific knowledge may cause staff to be

assigned to project management tasks on top of their jobs. As a result, project manager

activities are seen more as coordination activities and not as a strategic, integral unit. This

results in a lack of dynamism and sustainability with the holistic management of the required

processes until the end. To counteract this aspect, it is necessary to create and support a

complete, integrated and agile project management. In addition to the creation of the project

phases, iterative process steps are introduced in order to meet the requirements of the

customer and also to be able to react agilely to changes. [2]

To achieve this, the used project management tools have to be changed from a single

recording tool, which is only available when the employee is available, to a server-based tool.

The advantage of this is, that tools are always available and provide a customised output for

each employee. This enables direct tracking of projects with smaller status meetings and

generates faster completion. [3]

In order to ensure this, SMEs are dependent on smaller, mostly not standardised solutions

which, in addition to low cost intensity, also offer a high degree of flexibility and expandability.

These conditions lead to open source software support because, as a rule, these products can

be downloaded free of charge. Additional costs such as training, maintenance and support are

sunk costs. Companies pay for it, regardless of whether the software is open source or closed

source. Furthermore, open source software offers a high degree of customisation possibilities

through access to the code itself. Detailed customisations can usually be made with limited

resources. [4]

INTRODUCTION

HANS-JÖRG SCHMÖLZER 2

As a reason a digital project management tool for SMEs must consist of a cost-efficient and

user friendly management tool. This integrates the production network and the shop floor as

well as providing an overview of the projects for the administration and the project managers.

The purpose of this thesis is to develop a cost-efficient, agile and digital project management

tool for administration and shop floor use. It contains information about the machinery, the

employees and projects of the chair of metal forming at Montanuniversität Leoben.

The key points of this thesis are the development of a database for data storage of the shop

floor sensor data and the administrative data of the projects, including development of a

graphical environment that allows the input and tracking of data from the shop floor and

projects from any PC in the network. Finally, an existing Python interface will be connected

with the developed data base.

FUNDAMENTALS

HANS-JÖRG SCHMÖLZER 3

2 Fundamentals

This chapter gives a brief description of the basics of project management and digital media.

IT supporting industrial processes represents an important key to competitive advantage.

Production - the shop floor - should be seamlessly networked as an integrated overall system

with corporate planning - the top floor. This is the only way to evaluate production on the basis

of current production data and make it more productive. In order to achieve this, the production

data must be connected to corporate planning or project management via a digital interface

and the data must be available for further assessments. In addition, this supports the

coordination of corporate goals and production key figures through close interaction between

top and shop floor. The central prerequisite for this is production data integration. [5]

In most SMEs, the machinery has grown over decades and generally works with

heterogeneous control systems. A frequent first task before using IT-supported processes is

therefore to overcome these barriers. For this purpose, data suppliers and consumers can be

connected via various production data integration tools. This applies to plant and machine

controls as well as measuring devices or testing equipment. Secondly, it is possible to connect

machine data via sensors and actuators and by means of fieldbus controllers. Thirdly, machine

operators and maintenance staff can enter or correct data. Regardless of the technology,

production data integration takes place in the three steps of providing data, reading in data via

customised software and interpreting the data. In order to archive this, SMEs tent to use open

source solutions for the described layers of data generation. [6]

In the context of this thesis, the creation of a digital project management tool is elaborated,

which unifies the interaction of the data from the production as well as the storage of this data

for all project members and facilitates their evaluation.

2.1 Project management

The main tasks of a project management are to assess, to plan, to enable and facilitate,

conduct and coordinate, supervise and control and to document the activities of a project. In

order to facilitate this for the project manager, it is necessary to be able to access the data of

the product and to have it displayed in a daily updated and uniform manner. [7]

FUNDAMENTALS

HANS-JÖRG SCHMÖLZER 4

To store the production data, an interface with the production network and a database is

necessary. Furthermore, a general summary of the activities of the individual machines and

employees in relation to the projects is necessary. The provided tools and their data should

support the three main questions of project management. [8] These are:

1. Where are we?

2. Where have we planned to be?

3. How can we come back on track?

The first point is aimed at the activities carried out in a project. This is achieved and displayed

with the help of the machine data and the stored activities of the employees. The second point

relates to the project work plan, which is limited by the completion date. This is supported by

the project data and its completion date. The last point aims at achieving the objectives in case

of unscheduled delays. This requires machine data such as maintenance and staff

availability. [9]

The most important point in all of this, however, is the usability of the project management ttool

in order to generate project-, machine- and employee-related data on the one hand and to be

able to retrieve this data in a comprehensible and user-friendly way on the other. For these

purposes, the Chair of Metal Forming represents a typical SME in the metal processing

industry.

2.2 Database software system

In connection with the question ("Where are we?") from section 2.1, all existing data sources

must be brought together and stored. In order to operate an efficient and flexible project

management, the search for the required data and its processing must be simple and fast. For

this reason, it is necessary to network all data in a cluster of databases and to be able to

retrieve them uniformly.

For international companies, it can be advantageous to separate these databases from each

other in order to make the required data available everywhere. This is not feasible for SMEs

because they usually operate regionally and do not have the necessary IT infrastructure. For

this reason, open source applications are an essential advantage for these companies. [10]

The advantages of a server-based database system, apart from availability and processing

speed, are extension and spatial independence, interactivity and, if used correctly, actuality.

FUNDAMENTALS

HANS-JÖRG SCHMÖLZER 5

2.3 Graphical user interface Environment

The point mentioned in section 2.1 “Where should we be” is made realised by the possibility

of appointments. These need to be presented in a clear and concise manner to provide the

best possible support. The proposed system is designed to be extensible and expandable to

improve efficiency and user engagement in terms of usability and flexibility. In addition, it

should be accessible on any device of the network without installation. Due to these

constraints, a server-based software solution was chosen for the environment. This offers the

possibility of almost unlimited extensions as well as the necessary security aspects to prevent

access by unauthorised users.

An addition is that this system avoids a proprietary solution that offers only one possibility to

connect machines, but with the respective capabilities further machines and databases may

be linked.

2.4 IT Security

The required security settings include user identification as well as the individual input options

within the tools. This ensures that projects can be entered and edited correctly and reliably.

Appropriate measures must be taken to fulfil these conditions when the tool is created.

Open source software (OSS) means that it is possible for anyone to use and change all parts

of the software. Therefore, OSS is more secure because vulnerabilities are usually visible to

everyone. OSS gets more attention overall, which means more testing, more frequent bug

fixing and better resilience. Thus, OSS solutions benefit from a level of security that most

commercial vendors cannot match. The flexibility and adaptability of OSS means that different

programs, in this case PHP, SQL and Python, can interact with each other to build a

multilingual system across the required layers. [11]

FUNDAMENTALS

HANS-JÖRG SCHMÖLZER 6

2.5 Usability requirements

By integrating different OSS, a production network consisting of different sensors and

performance meters can be linked together to manage and track projects. Active condition

monitoring makes it easier to calculate the maintenance dates of the machines and move them

to existing downtimes. This generates the basis for a predictive maintenance analysis

algorithm that accesses the machine data and can adjust the maintenance dates of the

machines based on the data in the projects. [12]

Due to the linking of shop floor and top floor, the collection of data in the previously mentioned

layers can lead to a lack of acceptance and adoption for the tool by the employees. [13]

For this reason, a stakeholder analysis is carried out in order to involve all stakeholders in the

development of the project management tool and to generate the required and desired data

on the one hand and to present it correctly and accurately on the other.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 7

3 Development and implementation

This section covers the points of the development and implementation of the overall project

management tool (PMT:CMF). The first stage is a stakeholder analysis, the second a feasibility

study and finally the development of a suitable solution for the connection of the machine data

and project activities. Because a project can be blocked by stakeholders to such an extent that

it fails, mostly due to a lack of awareness and necessity, the start point is the stakeholder

analysis. [14]

In this process, all employees of the Chair of metal forming are interviewed and the data

necessary for continuous processing is collected. The goal is to obtain a consistent and useful

project management interface, suitable for all potential user.

This is followed by a feasibility study, which serves as the basis for decision-making on the

software to be used. Subsequently, the results shown in the feasibility study are presented and

implemented.

3.1 Stakeholder analysis

This sub-chapter describes the stakeholder analysis conducted. The necessary steps of the

stakeholder analysis can be summarised in identifying and prioritizing the stakeholders. The

team at the chair of metal forming represents the main stakeholder group. In addition to the

chair's management, the administration, technicians and student workers were also

interviewed in order to obtain a consistent and holistic result. [15]

The people who are highly influential and highly interested in the project, the so-called players,

who need to be fully involved, are represented by the head and the assistants of the chair.

They are the main beneficiary of the integrated machine and project data within the PMT:CMF

and are in essential contacts to ensure that everything works. The high influential, less

interested people, are stakeholders which need to be satisfied, but not so much that they get

bored. This group is represented by the technicians. They have to enter their details into

software, but are not interested in the technical details of the PMT:CMF and its contents. The

next group are the people with low power and high interest who need to be adequately

informed about the project and the outcome. This group delivers the most ideas of the content

and it is important to ensure that no major problems arise with this group. This group is

represented by the administration, as they act in a supporting role in the details. The last group

of people are those with low influence and less interest. This group is represented by the

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 8

student workers at the chair of metal forming. They have to work with the tools and know how

to use them in order to perform their tasks adequately. [15]

According to the interviews, the most important points for the project management tool are

consistency, connectivity, efficient data structures, high level of detail and easy visualisation

as well as no change of software for data input and presentation. The participants were divided

into three groups after the interviews.

Figure 1: Result of the Stakeholder analysis

As shown in figure 1 the stakeholders are divided into three groups. Group one represents the

Head of the Chair of metal forming and the assistants. The second group represents the

administration staff and the technical staff and the third group represents the student workers

at the chair. Furthermore, one subsection is dedicated to the feasibility study. The existing

python scripts need to have a connection with the project management tool. In addition, it was

decided not to use cost-intensive software for the tasks.

3.1.1 Layer of Project Management Tool

According to the stakeholder analysis, it has become clear that certain users should not be

able to access all data of machines and projects. This resulted in the creation of roles within

the tool. The roles are assigned when the users are signed in and can only be changed by

someone with an administrator role. The roles/views are applied immediately after logging into

the tool. The first difference is the navigation menu, which is displayed for the respective users

and changed according to their role and function. A further difference is that non administration

user can only enter or change activities for themselves. Project costs and budgets are only

0

2

4

6

8

10

Connectivity

Consistency

Efficiency

GUI

High Details

Usability

Group 1 Group 2 Group 3

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 9

visible in the detailed project view for the responsible project manager, for every other user a

percentage value is shown. Furthermore, a user cannot view any personal data other than

himself/herself. Based on the stakeholder analysis, the following roles and corresponding

rights have been identified:

A
D

M
IN

P
R

O
F

E
S

S
O

R

A
S

S
IS

T
A

N
T

T
E

C
H

N
IC

IA
N

P
H

D

S
T

U
D

E
N

T

S
T

U
D

E
N

T

SEE FINANCE YES YES YES NO NO NO

SEE MACHINE
DETAILS

YES YES YES YES YES NO

SEE PROJECT
DETAILS

YES YES YES NO OWN NO

CREATE PROJECT YES YES YES NO NO NO

CREATE MACHINE YES YES NO NO NO NO

CREATE USER YES YES NO NO NO NO

UPDATE MACHINE YES YES YES YES NO NO

UPDATE PROJECT YES YES YES OWN OWN NO

UPDATE ACTIVITIES FOR ALL FOR ALL OWN OWN OWN OWN

CREATE ACTIVITIES FOR ALL FOR ALL YES YES YES YES

Figure 2 Roles of the project management tool

As shown in figure 2, the role of professor and administrator can view all possible entries and

also change them. In addition, these roles can also create machines, projects and employees

in the system. Finally, the holders of these roles can also create activities for all. For ease of

reading, the role of professor is equated with that of administrator in the thesis and is not

enumerated further.

The role of the assistant has the same authorities as the role of the professor, except for the

creation of users and machines. However, an assistant cannot create or alter activities for all

employees.

The technician role allows editing of the machines created in the system. This includes not

only the entries but also the detailed views of the machines.

The PhD student role can be entered as the main responsible for a project but cannot create

one by himself.

The student role can only create its own activities and cannot access machines or projects.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 10

In this thesis, a distinction is only made between admin and user for the sake of easier

readability when the positions are the same. The rights of the special roles are explained with

those of the admin.

3.2 Feasibility study

In addition to the results of the stakeholder analysis, further points were added. On the one

hand, this concerns the expandability of a project management tool with regard to further

calculations and details, and on the other hand, the storage of the machine data must be

guaranteed. In order to make the data storage and the graphical processing as cost-effective

as possible, open source software was used for the creation. In addition, derived from the

stakeholder analysis, the software must fulfil the following conditions:

 Executable on a server

 Manual and automated data storage up to two years

 Security against unauthorised entry

 Possibility to link with Python

 Expandable

 Attractive design

 In-house

Because the software used should be low cost, open source software was chosen for the

creation of the systems and because of the versatile tasks, the choice fell on 2 types of

software. On the one hand, a database management system with a connection to the existing

Python scripts and on the other hand, a system for displaying the data with safety

measurements and pleasing presentation. For this purpose, the databases InfluxDB and

MySQL were compared as database management systems for the project, machine and

employee data. For the presentation and manipulation of the relevant user data, the systems

of PHP and JavaScript were compared.

Python is often used as a support language for software developers, testing, controlling and in

many other ways. Also at the chair of metal forming Python is used for subroutines and support

activities. For this reason, it is mandatory for the chosen software to have an easy connector

to Python.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 11

To cover all the above points, the two databases InfluxDB and MySQL were compared. The

database management systems must manage the activity data of the machines and

employees in addition to the project, machine and employee data. For the display and

manipulation of the relevant user data, the systems of PHP and JavaScript were compared.

The main focus of both systems is on their interoperability and extensibility.

3.2.1 Database management systems

The InfluxDB time series platform supports the user to build software without the need to

provision infrastructure and manage clusters. The InfluxDB Cloud gives users the ability to

start collecting metrics serverless. It provides the ability to create a dashboard for real-time IoT

monitoring and analytics display. [16]

InfluxDB includes a paid plan as well as a free plan and it is designed for quick queries and

monitoring of active machines. However, with its free version, it is not designed to store data

for a long period of time and due to the cloud storage of the data, sensitive budgeting and

machine cost data as well as employee contract data would leave the university's servers. [16]

A SQL database is a storage and management system that can store, sort, select and retrieve

large amounts of information. Instead of putting all the data in a single big table, the SQL

database stores its data in separate tables. That sort of database is called a relational

database. The database structures are organized like files, which are optimized for operation

speed. The logical model, with objects such as databases, tables, views, rows, and columns,

offers a flexible programming environment. The SQL database consists of two parts, on the

one hand there are the structured tables with primary keys and information and on the other

hand the database management system, the interface with which the database tables can be

administered. The data is kept on the chair's own server, which means that all data remains

the property of the chair and cannot be interfered with by third parties. [17]

Due to the possibility of an own server on which the database runs and the data is stored, and

in addition that data can be stored for more than two years, the SQL database management

system has been chosen for data storage. By choosing SQL, the administration program

phpMyAdmin has been selected. It provides support for a vast number of operations with

MySQL and common operations can be done directly from the user interface. Another

Advantage is that there are predefined interfaces with Python, which can be uses to interact

with the database.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 12

3.2.2 Content display

JavaScript is by definition a programming language in the broader sense and a scripting

language in the narrower sense, as the name suggests. It is most commonly used as part of

web browsers, whose implementations allow client-side scripts to interact with the user, control

the browser, communicate asynchronously, and alter the document content that is displayed.

The script should be contained in or referenced by an HTML document, so that the code can

be rendered by the browser. This means that a web page can contain programs that interact

with the user and controlling the browser. JavaScript depends on the performance of the

executing computer and the bandwidth. And all data inserted in the script is possible to be

seen by the user. [18]

PHP code is executed by a so-called interpreter on the server and sent back to the client as

HTML output, in contrast to client-side programming languages such as JavaScript, which are

executed on the side of the web browser (the client). There are three main areas where PHP

scripts are used. The first area is server-side scripting. To use PHP, a PHP parser, a network

server and a browser are required. The server must be set up with a PHP installation and the

browser is needed to view the programmed PHP pages. It is possible to run PHP scripts with

only a parser, meaning without a browser or server. These applications are often used for

simple text processing tasks. These are called command line scripts because they are

executed and handled directly with the operating system. In principle, it is possible to run a

stand-alone application with PHP, but there are more sophisticated languages that allow this

to be done better. One advantage of PHP applications is that they can be run on multiple

platforms. [19]

A major advantage is that for the user the PHP code is invisible, because of the fact that it runs

on the server. Also the PHP programmed pages’ don´t depend on the performance of the

executing computer but on the bandwidth at the server.

Since data security is a significant aspect, the scripting language PHP is used for the

development of the project management tool. For this case, an interpreter has been installed

on the server.

Another advantage of this solution is that the chair's homepage already works with PHP,

making it easier to integrate the PMT:CMF.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 13

3.3 MySQL database

This chapter describes the settings of the MySQL database tables and their primary key

relations. The database with the name projectmanagement is set up with the tool phpMyAdmin,

which is a OSS, written in PHP and intended to handle the administration of the SQL database.

The database itself is in utf8mb4_general_ci format, where the performance of the

utf8mb4_general_ci shows that it’s faster at comparing and sorting. A minor disadvantage of

the utf8mb4_general_ci is that it cannot implement all Unicode sorting rules, which leads to

undesired sorting in some situations, e.g. when using certain languages or characters. As far

as Latin (i.e. "European") languages are concerned, there is not much difference between the

Unicode collation and the simplified ‘utf8mb4_general_ci’ collation in MySQL. [20]

The database at the PMT:CMF consists of interlinked tables which are divided in the topics of

usability. The SQL database stores and displays the activities of the employees, the

information about projects and machines, the sensor values of the machines and includes

auxiliary tables for interconnection.

Figure 3 Flowchart of the connections of the tables

As displayed in figure 3 the tables are linked via their primary keys to reduce the probability of

errors and to obtain a better response when selecting the tables.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 14

3.3.1 Data Tables

In this subsection the SQL tables are described in detail. For better manageability, the tables

were divided into their data areas and named accordingly. To address the structure of the

tables, each table has its own auto incrementing id column. This column is used when linking

attributes of one table to another one. The advantage of these unique identifiers is that entries

can be changed in one place and are valid for all linked connections. The included tables with

their detailed attributes are listed below.

Figure 4 Tables of the project management tool

Figure 4 shows the tables in the phpMyAdmin tool, with the displayed tables representing the

main structure of the PMT:CMF. The empty database with all created tables and the inner

structure has a volume of apaproximatly 112 kB.

3.3.1.1 Tables activitymac and activityuser

The first two tables are the tables activityuser and activitymac. These two tables are the work

tables of the PMT:CMF. All project-related activities of the employees and machines are stored

in these two tables. The table activitymac obtains its data through a script written in Python.

This data is generated by the sensors of the machines and transmitted to the database.

Figure 5 Attributes of the table activitymac

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 15

As shown in figure 5, actMID is the primary key of the table and is automatically incremented

when a new entry is added. The key can reach a 32-digit integer value.

The machine is set in the next column, only the actMMachine is stored here as an integer value

and has a limit of 4-digits. This column is the connection to the Machines of the chair of metal

forming.

To register the date and time of a sensor input, the column actMTime has been created with

the attribute datetime(4). It consists of the date and the time.

The final column of the table is the actMValue column. Here the actual sensor value is stored.

Employees enter data directly into the table activityuser via a form on the PHP page. The

table activitymac obtains its data through an application written in Python. This data is

generated by the sensors of the machines and transmitted to the database.

Figure 6 Attributes of the table activityuser

Figure 6 shows the corresponding nine columns of the activityuser table. Beginning with the

actUsID, this is the primary key of the table and is automatically incremented when a new entry

is added. The key can reach up to a 32-digit integer value.

The naming of an activity takes place in the column actUsName. This is of the type varchar

with a possible size of 256 digits.

The next three columns, actUsUser, actUSProject and actUsMachine, have a limit of 8-digits

integer. In this columns the corresponding IDs are stored in the table.

To register the start of an activity, the column actUsStartDate has been created with the

attribute datetime. It consists of the start time and date of the activity.

Similar to the column described above, the end time and date of an activity is registered in the

column actUsEndDate, which has the attribute datetime. It consists of the start time and date

of the activity.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 16

To input an activity without an employee at the machine, e.g. if an oven heats up components

slowly over a whole day, the Boolean attribute in the actUsNoUser column is set to true. When

a new activity is created, this column is set to false unless otherwise entered, or to zero (not

NULL).

The final column of the table is the actUsLog column. The attribute of this column is datetime

and is set to the current date and time when the activity is created.

3.3.1.2 Table machines

This table (figure 7) is used to store all relevant data about the machines, including the machine

name, the machine type and the date of the last maintenance. Data for the Asset valuation are

also included as well as the possibility to take the machine out of service.

Figure 7 Attributes of the table machines

Starting with the macID, which is the primary key of the table. When a new entry is added, it is

automatically incremented. The key can reach an 8-digit integer value.

According to the stakeholder analysis the machines of the chair of metal forming have a

number in the main ERP system. For this reason, the column macNumber contains this data

with the type text, so that the numbers can be alphanumeric.

The macName column is for the internal name of the machine. The attribute of the column is

a varchar with a 128-digit entry for alphanumeric entries. The main purpose is to achieve

general readability.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 17

The macNotes column is an additional text field for general information in text form. The entries

are saved as text type to allow alphanumeric input.

The macType column refers to the type of the machine. The main purpose is to achieve general

readability and administrating the machines.

To register the purchase date of the machine, the column macPurchaseDate with the datatype

date is used.

To be able to calculate the yearly costs of the machine the purchase costs have to be noted.

This is done in the column macPurchaseCost with the data type double.

The running costs of a machine is stored in the column macHourRate. The data attribute used

for this column is float.

The column macUtilisation with the data type float represents the duration of the machine

useage in years.

Maintenance is an essential part of the project management tool. The interval between

maintenance dates is entered in the macMaintInterval column as the data type float.

In addition to the maintenance interval, the last maintenance is also entered; this is achieved

in the macMaintLast column with the data type date.

the current book value of the machine is stored in the macAssetValue column. This is

calculated with the utilization time and the purchase date.

To remove an active machine, the boolean variable is set to true in the macInactive column.

The column is set to the value false by default, respectively zero (not NULL) when a new

machine is created.

The final column of the table is the macLastUpdate column. The attribute of this column is from

the data type datetime and is set by the actUsEndDate variable when a new activity is created.

3.3.1.3 Table projects and projecttypes

The next tables are the table projects (figure 8) and its auxiliary table projecttypes (figure 9).

Thus, all relevant data on the projects are stored, including the project number, type and

relevant data of the project. Also the budget and running costs for a project are listed here.

The projects table contains the following twelve columns.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 18

Figure 8 Attributes of the table projects

When a new entry is made, the proID column is automatically increased. The column has been

selected as the primary key. The attribute auto_increment generates a unique number

automatically when a new record is inserted into the table. To ensure that the table does not

enter a data overflow, an 8-digit integer was chosen as the primary key.

The project number is entered in the corresponding column proNumber. This is the external

identifier for the chair of metal forming. Due to the fact that the number may be alphanumeric,

the type char with a length of 16 characters. Following two project number examples from the

chair of metal forming, one shows an alphanumerical entry and the other one the numerical

entry:

 P056-F-56-07

 105600

The attribute of the field proName is a text field which allows alphanumeric entries this allows

the column to serve as the internal name of the project. The main purpose is to achieve general

readability.

The proType column refers to the type of the project. Only an integer value is stored here, as

the name of the type is stored in the support table projecttype. This entry affects the costs of

the project and results in a column change in the user table. An example for this connection is

shown in the PHP section.

The proNote column is an additional text field for general information in text form. For example,

external contact persons can be entered here or whether a partial payment has already been

initiated. The entries are saved as text to allow alphanumeric input.

To ensure that a project has an internal contact person who is also responsible for the project,

the column proContact was added. The type of this column is integer with a length of 4-digits.

The integer value entered here corresponds to the ID value of the user table.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 19

The project budget is stored in the column proBudget. The attribute used for this column is

double to allow the entry of large numbers and comma values.

The column proCosts contains the costs incurred after completion of the projects. The attribute

used is double to break down the necessary information.

To register the start date of the project, the column proStartDate has been created with a date

attribute. The input is set with the creation of a new project.

Similar to the column described above, the delivery date of the project is registered in the

column proEndDate, which has the attribute date.

To indicate a completed project, the boolean attribute is set to true in the proFinished column.

The column is set to the value false by default, respectively zero (not NULL) when a new

project is created.

The final column of the table is the proLastUpdate column. The attribute of this column is

datetime and is set to the current date and time when the project is created. This column is

updated when a new activity is entered by the staff.

The table projects is supported by the auxiliary table projecttypes for the different project types.

This auxiliary table is linked to the cost calculation of the employees working in different project

types.

Figure 9 Attributes of the table projecttypes

The figure above shows the attributes of the table projecttypes. This table is used for the

different project types and the cost calculation. The table projecttype consists of the two

columns typID and typName.

The column typID represents the primary key with automatic incrementation. The attribute

auto_increment generates a unique number automatically when a new record is inserted into

the table.

The name of the type is saved in the column typName. The attribute of the field is a text field

which allows alphanumeric entries. The main purpose is to achieve general readability.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 20

3.3.1.4 Tables user and roles

The next tables are the table users and its auxiliary table roles. Thus are used to store all

relevant data about the employees. Including name, the role and the relevant dates for the

employee. The table roles is derived directly from the analysis of the different layers previously

carried out. The table users contains the following ten columns.

Figure 10 Attributes of the table users

Figure 10 describes the attributes of the users table. The column usID, with an 8-digit integer

type, describes the primary key with an automatic increment. The auto increment generates a

unique number automatically when a new record is created.

The name of the employee is stored in the column usName with the attribute of the type varchar

with a length of 64 digits. This makes it possible to store alphanumeric entries, which is

intended to improve the general readability.

The main purpose of the column usLogin is to enter the PHP pages and identify the user. The

attribute of the field is of type varchar with a length of 32 digits. The employee login is stored

in the column.

The column usContract has two purposes. The first one is to display the end of the contract of

an employee and the other one is to reset the user password to an unknown one if the contract

is ended so that the entries of user still exist when the user left the chair of metal forming.

Based on the stakeholder analysis, the roles for the users were created and inserted in the

column usRole as an integer with 8-digits. The role is set by the administration when the user

is created and it is for the different views inside the PHP project management tool.

As mentioned before the project type refers to different fees of the employees so the three

columns usFee one to three contain these fees which are stored as a set of float values.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 21

To secure the SQL entries and the PMT:CMF on the PHP pages, the user must enter a

password. This password is set when a new user is created and is hashed by the PHP code

and stored in the column usPwD with 128-digit varchar type.

The final column of the user table is the usLastLogin column. The attribute of this column is

datetime and is set to the current date and time when a new user is created. This column is

updated when a new activity is entered by the staff.

The auxiliary table roles supports the table users for the different views in the project

management tool. This auxiliary table is linked to the security features of the PHP system.

Figure 11 Attributes of the table roles

As shown in Figure 11 describes the attributes of the roles table. The column rolID, with a

3-digit integer type, describes the primary key with an automatic increment. This integer is

used for the access of different pages of the project management tool.

The column rolName represents the name of the user role, which has the attribute varchar for

alphanumeric entries. The main purpose of this field is to achieve general readability.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 22

3.4 PHP

This chapter describes the graphical user interface and the processes involved within and

behind the PHP layers. The advantage of using PHP is that pages can be accessed from any

device connected to the network because the PHP files are stored at a server of the chair of

metal forming. In order to meet the requirements, the HMI was built with PHP version 8.0.2 for

a stable performance and security reasons.

This chapter contains two larger blocks, the first one describing the interaction of the methods

and representations used with a flowchart and class diagrams. Secondly, in addition to the

HMI, the code snippets and their application are described.

Figure 12 Flowchart of the PHP pages invisible for the user

Figure 12 shows the hidden pages for the user, which are connected with the function file and

the database. The pages are divided into three types, of which the contents of two types are

not directly visible to the user and the third type is the graphical user interface. The first invisible

category is for the Cascading Style Sheets (CSS) where all the formats and styles for the

display are stored. These files are stored in an own folder to separate them from the main

pages. The second group consists of transfer pages that collect the data entered in the PHP

forms, process it and transfer it to a function.inc.php file. All of this files contain only individual

if statements and no visible parameters, so that they and the results are not displayed by the

server to the user. As mentioned above each of the categories (Activities, Machines, Projects,

Employees) has a transfer file, these are marked with the extension ‘.inc’.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 23

Figure 13 Flowchart of the php pages visible for the user

Due to the results of the stakeholder analysis, the division of the pages was made as shown

in the figure 13. It shows the visible pages for all users. This third type follows two aspects, on

the one hand the pages of this type contain instructions on how the retrieved data is displayed

to the user in the browser. On the other hand, these pages contain functions which transferred

to the functions.inc.php file to receive data from the database or to enter data to create or

change it in the database.

3.4.1 Overview

All of the PHP pages are divided into four areas. Three of them, header, nav and footer, are

static through the session of a user and the fourth is the main content area (body) where all

information is displayed and entered.

Figure 14 General overview of the PHP pages

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 24

Figure 14 displays the general sections of the PHP pages. The three static sections header,

navigation and footer and the area for the content of the page named body. Anticipating, the

navigation area is different for the user's roles. The header area consists of two sub files one

which loads the whole format via cascading style sheet files and the other one displays the

header of the pages. The setup file defines the loading order of the CSS files and setup.

<?php

 session_start();

 checkUser();

 $fullName = $_SESSION['usName'];

?>

<header>

 <div class="bluebox"></div>

 <div class="whitebox"><div class="ifutxt">CHAIR of METAL FORMING</div></d

iv>

 <div class="alignleft" style="top: 25px;">

 </div>

 <div class="alignleft" style="top: 90px;">

 <p> <?php greetings($fullName); ?></p>

 </div>

 <div class="alignleft" style="top: 65px;">

 <div class="logoutbox">

 <form action="includes/logout.inc.php" method="post">

 <button type="submit" name="logout-submit">

 </button>

 </form>

 </div>

 </div>

 </header>

Code snippet 1 Static header functions

Code snippet 1 displays the header section and its functions for identifying the user as well as

the php function greetings($fullName). The function session_start() is a built in PHP function

which creates a new session or continues an existing one. PHP calls the open and read

routines of the session memory function. This is used to create super global variables, which

are available for each page and function. These variables are used for security reasons and

for the different rights and views of the user.

function checkUser(){

 //Function to chek if user is logged in

 if(!isset($_SESSION['usID'])){

 header("location: ../PMToCMF/index.php?error=NoLogin");

 exit();

 }

 }

Code snippet 2 Function checkUser(…)

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 25

The function checkUser() (code snippet 2) secures the page and, if the user didn’t login

properly, sends the user back to the login screen.

Figure 15 Header section of the project management tool

The header (figure 16) consists of the metal forming logo and a button to log out, as well as a

time-dependent personalised greeting. Furthermore, the page title is shown with a background

image of the metal forming library and the name of the current page.

The navigation bar is a user interface element within the PHP page that serves as a link to

other areas of the tool. As already mentioned above, the navigation bar is part of the main

template of the website, which means that it is displayed on most, if not all, pages. This means

that regardless of which page is displayed, a user can use the navigation bar to visit other

sections of the website. The navigation menu is divided into the categories Activities, Projects,

Machines and Employees. The permitted views are shown from the user roles created in the

SQL database.

<td valign="top" class="left">

 <div class="nav">

 <?php

 $access = checkAccess($conn, $_SESSION['usID']);

 $project = checkContact($conn, $_SESSION['usID']);

 $machine = checkMachine($conn, $_SESSION['usID']);

 $activity = checkActivity($conn, $_SESSION['usID']);

 if($access){

 echo '

 <li class="col">IMPORTANT DATES

 <li class="col2">NEW ACTIVITY

 <li class="col2">UPDATE ACTIVITY

 <li class="col3">

 ...

 }

Code snippet 3 Navigation menu admin view

The code snippet 3 shows the functions for retrieving the required variables $access, $project,

$machine and $activity. These variables are used to map the individual areas for the user. All

four functions use the variable $conn for the active database connection and the as second

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 26

variable the user id from the super global variable of the logged in user. The logic of the

functions for recording these variables is described below using the function checkAccess(…)

as an example. (code snippet 4)

function checkAccess($conn, $user){

 //Function for access control on several pages

 $access = inputExists($conn, $user, $user, 'employee');

 $sql = "SELECT proContact

 FROM projects

 WHERE proContact ='".$access["usID"]."';";

 $results=mysqli_query($conn, $sql);

 // check role of employee

 if($access["usRole"] == 2 || $access["usRole"] == 3 || $access["usRole"] == 101){

 return true;

 } else {

 return false;

 }

}

Code snippet 4 Function checkAccess(…)

The mentioned functions themselves call another key function of the tool, the function

inputExists(…). This function accesses the database and returns an associative array that

corresponds to the fetched row or null if there are no more rows.

In order to specify this, the function checkAccess($conn, $_SESSION['usID']) searches the

role of the logged-in user to see if he or she has admin rights. The function

checkContact($conn, $_SESSION['usID']) checks the projects for the ID passed as the project

contact. The function checkMachine($conn, $_SESSION['usID']) checks the role of the user

whether he has the right to change and maintain machines in the tool.

Finally, the function checkActivity($conn, $_SESSION['usID']) checks the existence of

executed activities of the user. All four functions are used to restrict the user's view in the event

of a negative result, thus enabling selective user control through the pages.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 27

Figure 16 Navigation menu with different roles

In figure 16 above, two possible views of the navigation menu are shown. On the left side, the

whole navigation menu is displayed. This is the view of the administration staff, so that they

can alter every project and machine entry. On the right side the navigation menu shows the

view of a project contact. This employee can see the project he is working for as well as the

details of active and finished projects.

The footer, which is located at the bottom of each page, contains information about the current

version of the tool as well as the mission statement of the chair of metal forming. In addition,

the database connection is closed using the php internal function mysqli_close($conn).

Figure 17 Examplery footer of the project management tool

Figure 17 shows the footer of the PMT:CMF. In addition to the basic principle of the chair, the

current version number of the tool is displayed.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 28

3.4.2 index.php

The index.php is a PHP file that represents the entry point of a website or application. It is a

file used for templates that contain a mixture of codes that are delivered as PHP code. The

index page is the first security barrier of the tool. To log in to the tool, a login name and

password must be entered. Both must be created in advance by an administrator in order to

gain access. If this has been done so far, the function loginUser($conn, $username, $pwd) is

used to initiate the access. This function uses the function inputExists($conn, $username,

$username, 'employee') to check whether the user is stored in the database and, if available,

outputs the relevant associated array. The PHP internal function password_verify($pwd,

$input["usPwd"]) then checks the validity of the entered password. The PHP internal encryption

is used to make the password not visible. There are several possibilities how the login can end

as shown below:

Figure 18 Flowchart Login possibilities

As shown in the flowchart in figure 18, the user will not be redirected if the wrong name or

password is entered. In addition, the user is made aware of the incorrect procedure. When the

user enters his correct login and password, the attributes usID, usName and usRole from the

database are saved as global variables and his last login date is transferred to the database.

The user is then redirected to the main overview of the project management tool.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 29

function loginUser($conn, $username, $pwd){

 $input = inputExists($conn, $username, $username, 'employee');

 if($input === false){

 header("location: ../index.php?error=NoSuchUser");

 exit();

 }

 // verify Pwd

 $pwdCheck = password_verify($pwd, $input["usPwd"]);

 if($pwdCheck == false){

 header("location: ../index.php?error=WrongPwd");

 exit();

 } else if ($pwdCheck == true){

 //Open session for roles

 session_start();

 $userID = $input["usID"];

 $_SESSION['usID'] = $input["usID"];

 $_SESSION['usLogin'] = $input["usLogin"];

 $_SESSION['usName'] = $input["usName"];

 $_SESSION['usRole'] = $input["usRole"];

 $lastLog = "UPDATE user

 SET usLastLogin ='".date("Y-m-d")."'

 WHERE usID =".$userID.";";

 mysqli_query($conn, $lastLog);

 inactiveUser($conn);

 //Close connection

 mysqli_close($conn);

 header("location: ../home.php");

 } else {

 header("location: ../index.php?error=NoInput");

 exit();

 }

}

Code snippet 5 Function loginUser(…)

Code snippet 5 shows the function loginUser($conn, $username, $pwd). The input variables

consist of the connection to the Database, the entered username and the password of the

user. First, the function verifies with the already explained function inputExists(...) whether the

user name exists in the database. If there is a similar username the function returns the row

with the user information. The internal function password_verify($pwd, $input[“usPwd”])

checks if the passwords are equal. Afterwards key variables like usID, usLogin, usName and

usRole are stored as session super global variables and the user is transmitted to the page

home.php.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 30

3.4.3 home.php

The page home.php represents the global overview of the project management tool. The

content section contains the most important dates about the projects, the machines and

especially for administrators the contract end dates of the employees. This data is created

directly from the SQL database with the help of display functions and displayed on the

home.php page.

function displayProjects($conn, $activ){
 //Function to display the projects

 $access = checkAccess($conn, $_SESSION['usID']);
 $sql = "SELECT proID, proNumber, proName, typName, usName,

 proBudget, proStartDate, proEndDate, proLastUpdate
 FROM projects
 INNER JOIN user ON projects.proContact = user.usID
 INNER JOIN projecttypes ON projects.proType = projecttypes.typID
 WHERE proFinished = ".$activ."
 ORDER BY proEndDate DESC
 LIMIT 15;";
 $result = mysqli_query($conn, $sql);
 if (mysqli_num_rows($result) >0)

Code snippet 6 Function displayProjects(…)

Code snippet 6 illustrates how the data is selected by the function

displayProjects($conn, $activ) for projects. The variable $active stands here for the search if

the displayed items are actual running projects or already finished projects. Also seen here are

the inner joins of the SQL table. This is necessary to improve the overall readability of the

output data.

function displayMachines($conn, $activ){

 $access = checkAccess($conn, $_SESSION['usID']);

 if ($access){

 $sql = "SELECT * FROM machines

 WHERE macInactive = ".$activ." AND macID > 1

 ORDER BY macMaintLast DESC ;";

 } else {

 $sql = "SELECT macNumber, macName, macType, macMaintLast,

 macMaintInterval, macLastUpdate FROM machines

 WHERE macInactive = ".$activ." AND macID > 1

 ORDER BY macMaintLast DESC ;";

 }

 $result = mysqli_query($conn, $sql);

 if (mysqli_num_rows($result) > 0){

Code snippet 7 Function displayMachines(…)

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 31

Code snippet 7 explains how the data is selected by the function

displayMachines($conn, $activ) for projects. To display active or inactive machinery the

variable $active defines the output. Here is shown how the code differentiates between the

users. User, for which the variable $access is true, get all the machine data displayed, but user

without get the short list with the next maintenance data.

3.4.4 activitiesNew.php

The activities page is about entering the activities carried out for projects with or without

machines. This section is divided into the creation and updating of activities. The page

activityNew.php allows a user to add new tasks to the projects. The display shows the last

15 tasks of the user. Below this entry the input form that transfers the tasks to the database is

displayed. The page distinguishes between administrators and other users. An admin can

independently enter activities for all members of the team. According to the Stakeholder

analysis, users can only create activities in their own name.

Figure 19 Display of the last activities

Figure 19 shows the display of the last 15 activities of the user. Including an activity name,

corresponding project, used machines and the required time of the activity.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 32

function displayActivity($conn){

 $user = $_SESSION['usID'];

 $access = checkAccess($conn, $user);

 if($access){

 $sql = "SELECT actUsName, usName, proName, macName, actUsStartDate,

 actUsEndDate

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 LIMIT 20;";

 } else {

 ...

 }

 echo '...';

 $result = mysqli_query($conn, $sql);

 if(!$result){

 $result = 0;

 }

 if(mysqli_num_rows($result) > 0){

 while($row = mysqli_fetch_assoc($result)){

 $hours = dateDifference($row["actUsStartDate"],

 $row["actUsEndDate"], 2);

...

Code snippet 8 Function displayActivity(…)

Code snippet 8 shown above illustrates how the data is selected by the function

displayActvitey($conn). It is also shown how the code differentiates between the users. As

already mentioned before (code snippet 6) the function checkAccess(…) checks the user

access to the sensible machine data. If check is successful, the display will shorten the list and

only the next maintenance data is shown.

The page activitiesNew.php to allow the user to create a new task in his name. All entries are

mandatory, otherwise the task cannot be saved.

Figure 20 Input mask for new activities

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 33

As shown in figure 20, a user can create tasks in his/her name. In addition to a name for the

task performed, the duration must also be entered by means of the start and end time of the

tasks. If the user has worked without a machine, he can set this within the machine selection

by selecting None. If a user is not operating a machine for a task while the machine is running,

this can be entered in the PMT:CMF via the 'No user' checkbox. The activity is submitted with

the button named send, to the transfer file activities.inc.php. After checking the entries are

transferred to the database using the function createActivity($conn, $aName, $uName,

$pName, $mName, $actStart, $actEnd, $noUser).

if(isset($_POST["activity-submit"])){

 if($_POST["proName"] == 0){

 header("location: ../activityNew.php?error=NoProject");

 exit();

 }

 $uName = $_POST["actUser"];

 $aName = $_POST["actName"];

 $pName = $_POST["proName"];

 $mName = $_POST["macName"];

 $aDateS = $_POST["actStartDate"];

 $aDateE = $_POST["actEndDate"];

 $aTimeS = $_POST["actStartTime"];

 $aTimeE = $_POST["actEndTime"];

 if(!empty($_POST["cbNoUser"])){

 $noUser = 1;

 } else {

 $noUser = 0;

 }

 require_once 'dbh.inc.php';

 require_once 'functions.inc.php';

 $actStart = date('Y-m-d H:i:s', strtotime("$aDateS $aTimeS"));

 $actEnd = date('Y-m-d H:i:s', strtotime("$aDateE $aTimeE"));

 createActivity($conn, $aName, $uName, $pName, $mName, $actStart, $actEnd, $noUser

);

 header("location: ../activityNew.php?error=none");

 exit();

}

Code snippet 9 Transfer page for create activity

In code snippet 9 the transfer file of activityNew.php is shown. Using the integrated POST

method, the variables are read from the form of the activityNew.php page. It is important to

note that POST requests are never cached, do not remain in the browser history, cannot be

bookmarked and have no data length limit, resulting in the requirement of storing this kind of

request to a variable as seen above.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 34

function createActivity($conn, $aName, $uName, $pName,

 $mName, $actStart, $actEnd, $noUser){

 // Prepare sql statement

 $sql = "INSERT INTO activityuser(actUsName, actUsUser,

 actUsProject, actUsMachine, actUsStartDate, actUsEndDate,

 actUsNoUser, actUsLog)

 VALUES (?,?,?,?,?,?,?,?);";

 $stmt = mysqli_stmt_init($conn);

 // Check if input is valid

 if(!mysqli_stmt_prepare($stmt, $sql)){

 header("location: ../activityNew.php?error=stmt_prepare_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 // update the last entry

 $lastActivity = date("Y-m-d H:i:s");

 $user = inputExists($conn, $uName, $uName, 'employee');

 // Bind parameter to statement and execute

 if(mysqli_stmt_bind_param($stmt, "siiissis" ,

 $aName, $user["usID"], $pName, $mName, $actStart,

 $actEnd, $noUser, $lastActivity) == false){

 header("location: ../activityNew.php?error=stmt_bind_param_failed?... ";

 exit();

 }

 if(mysqli_stmt_execute($stmt) == false){

 header("location: ../activityNew.php?error=execute_failed?... ");

 exit();

 }

...

}

Code snippet 10 Function createActivity(…)

In code snippet 10, the function createActivity($conn, $aName, $uName, $pName, mName,

$actStart, $actEnd, $noUser) with its steps to connect to the database with the SQL statement

is shown. After connection, the function gets checked with the internal function

mysqli_stmt_prepare(...) and afterwards the entered variables are linked to the statement

using the internal function mysqli_stmt_bind_param(…).This ensures that the input does not

damage, delete or render the database unusable through injection. In addition to that, if there

is an error with the binding process, an error message is shown and the creation of the task is

stopped. Finally, the statement is executed and sent to the database using the internal function

mysqli_execute(…).

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 35

function createActivity($conn, $aName, $uName, $pName,

...

 //update Project

 $logUpdate = date("Y-m-d H:i:s", strtotime($actEnd));

 $lastLog = "UPDATE projects

 SET proLastUpdate ='".$logUpdate."'

 WHERE proID ='".$pName."';";

 //update Machine

 $lastLog = "UPDATE machines

 SET macLastUpdate ='".$logUpdate."'

 WHERE macID ='".$mName."';";

 //Close DB connection

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

}

Code snippet 11 Additional updates of createActivity(…)

As shown in code snippet 11, after the execution of the statement the tables projects and

machines are updated to the latest dates of the activities. The end time / date of an activity is

directly inserted into the tables.

3.4.5 activityUpdate.php

In addition to the creation page for activities, it is possible to modify activities afterwards. This

is made possible with the page activityUpdate.php. Again, a distinction is made between admin

and user. Users can only change their own activities while admins can access and change any

activity.

Figure 21 Input mask of activity update

The update activity shows the same display as mentioned in the page activityNew.php. As

shown in Figure 21, this is the input form for a user, where above the user name already is

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 36

placed on the form and the user isn’t able to change it. Also, as mentioned before, the page

distinguishes between administrators and other users so that an admin can alter activities for

all members of the team.

if(isset($_POST["activity-update"])){

 $aID = $_POST["actUsID"];

 if($aID == 0){

 header("location: ../activityUpdate.php?error=NoActivity");

 exit();

 }

 require_once 'dbh.inc.php';

 require_once 'functions.inc.php';

 //Get old activity data

 $input = inputExists($conn, $aID, $aID, 'activity');

 $userID = $input["actUser"];

 $aName = $input["actName"];

 $pName = $input["proName"];

 $mName = $input["macName"];

 $actStart = $input["actStartDate"];

 $actEnd = $input["actEndDate"];

 $noUser = $input["actNouser"];

 if (!empty($_POST["actUser"])){

 $userID = $_POST["actUser"];

 }

 if (!empty($_POST["actName"])){

 $aName = $_POST["actName"];

 } ...

Code snippet 12 Transfer page of activityUpdate.php

As shown in code snippet 12, the transfer of activityUpdate.php using the PHP integrated

$_POST([]) method, takes the variables from the form of the update page. The activity id is

first checked in the database and previous inputs are loaded into existing variables. Afterwards

the input forms are checked if they are empty. If not, new data will be submitted to the update

function. The update itself is done by the function updateActivity($conn, $aID, $aName,

$uName, $pName, $mName, $actStart, $actEnd, $noUser).

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 37

function updateActivity($conn, $aID, $aName, $uName,

 $pName, $mName, $actStart, $actEnd, $noUser){

 // Create the statements for interaction with SQL

 $stmt = mysqli_stmt_init($conn);

 $user = inputExists($conn, $uName, $uName, 'employee');

 $update = " UPDATE activityuser

 SET actUsName =?, actUsUser =?, actUsProject =?,

 actUsMachine =?, actUsStartDate =?, actUsEndDate =?,

 actUsNouser=?, actUsLog='".date("Y-m-d h:a:s")."'

 WHERE actUsID =?;";

 if(!mysqli_stmt_prepare($stmt, $update)){

 header("location: ../activityUpdate.php?error=stmt_prepare_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 $lastActivity = date("Y-m-d H:i:s");

 if(mysqli_stmt_bind_param($stmt, "siiissisi",

 $aName, $user["usID"], $pName, $mName, $actStart, $actEnd,

 $noUser, $lastActivity, $aID) == false){

 header("location: ../activityUpdate.php?error=stmt_bind_param_failed?...");

 exit();

 }

 if(!mysqli_execute($stmt)){

 header("location: ../activityUpdate.php?error=query_failed?...");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

...

Code snippet 13 Function updateActivity(…)

Code snippet 13 shows the update function and as already shown before in the previous

subsection the function mysqli_stmt_bind_param(…), which ensures that the update input

does not damage, delete or render the database unusable through injection. Also if there is an

error along the internal functions the update of the task is stopped and an error message is

shown to the user. Finally, the statement is executed and sent to the database using the

internal function mysqli_execute(…). Just as shown in code snippet 11, after the instruction is

executed, the projects and machines tables are updated to the latest dates of the activities.

The end time / date of an activity is inserted directly into the tables.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 38

3.4.6 projects.php

This section deals with the projects and their links within the tool. Each page is linked to the

database to either retrieve data directly or save it. The main purpose of this section is to collect

the chair's projects and provide required details.

Figure 22 Flowcharts of the project related pages

As mentioned before and displayed in figure 22, all of the project pages are connected to the

SQL table projects via *.inc.php files. The main page project.php provides an overall overview

of the projects. Here the user gets an update on all current active projects. In addition to the

project number, a name and the contact person, the start date and the delivery date of the

project can also be found here. A distinction is made here between users, project managers

and administrators. Because financial data is sensitive, users can only see the relative status

of budget and costs incurred as a percentage value. Only project manager and administrators

are allowed to see the absolute numbers of the project budget and the costs already incurred.

To archive this the function displayProjects($conn, $active) implements a connection to the

database and retrieves all necessary data about the projects.

For this purpose, a SQL statement is built, since this is not influenced by the user, the

statement is not equipped with security measures against injection. This SQL statement

connects the table project with the tables user and projecttypes to make it more readable for

the user.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 39

function displayProjects($conn, $activ){

 $sql = "SELECT proID, proNumber, proName, typName, usName, proBudget,

 proStartDate, proEndDate, proLastUpdate

 FROM projects

 INNER JOIN user ON projects.proContact = user.usID

 INNER JOIN projecttypes ON projects.proType = projecttypes.typID

 WHERE proFinished = ".$activ."

 ORDER BY proEndDate DESC

 LIMIT 15;";

 $result = mysqli_query($conn, $sql);

 if (mysqli_num_rows($result) >0){

 if ($access){

 echo "...

Code snippet 14 SQL statement of Function displayProjects(…)

As shown in code snippet 14, the attribute $active is submitted with the function call. This

attribute is matched with the proFinished column, allowing active or finished projects to be

displayed. On the project.php page only active projects are shown, as this is more relevant for

all users of the tool than if all projects are visible. The number of active projects was also limited

to 15, as otherwise the overall overview according to the stakeholder analysis would be lost.

When an associative list of data is returned from the SQL database, the function prepares the

entries for the user. An associative list is an abstract data type used here to manage key-value

pairs and look up the value associated with a particular key.

...

while($row = mysqli_fetch_assoc($result)){

 $costsArray = costsProject($conn, $row['proID']);

 $costs = $costsArray[0] + $costsArray[1];

 $budget = number_format($row["proBudget"],2,","," ");

 $costs = number_format($costs,2,","," ");

 $start = date("d.m.Y", strtotime($row["proStartDate"]));

 $end = date("d.m.Y", strtotime($row["proEndDate"]));

 echo "

 <tr>

 <td>".$row["proNumber"]."</td>

 <td>".$row["proName"]."</td>

 <td>".$row["typName"]."</td>

 <td>".$row["usName"]."</td>

 <td>".$start."</td>

 <td>".$end."</td>

 <td>".$budget." €</td>

 <td>".$costs." €</td>

 </tr>";

} ...

Code snippet 15 Data display of fetched SQL data

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 40

In code snippet 15, the individual columns of the array are called and the respective values

are stored at variables for display. These are then returned to the visible page using the

command echo. As already mentioned, a distinction is made between admin and user for the

costs. In addition, the admin also sees the finished projects on this page. As a result, the

information can be accessed and used more quickly.

3.4.7 projectNew.php

To create a new project, the page projectNew.php has been created. This can only be done

by an admin, as only he or she has access to the projectNew.php page. As shown in figure 22,

the projectNew.php is not directly linked to the database, as the input data is transmitted to an

inclusive file. Within this file, the input data is checked and afterwards transmitted to the

functions.inc.php file for the creation of the new entry in the database.

Figure 23 Flowchart of new project creation

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 41

Figure 23 shows the procedure for entering a new project. The data entered is passed to the

createProject($conn, $number, $name, $contact, $type, $budget, $startDate, $endDate,

$note) function via the projects.inc.php file. This function then transfers the entered data to the

table projects. If the data is entered correctly, the user is informed that the project has been

created. Otherwise, an error message is displayed with the respective problem.

if(isset($_POST["project-submit"])){

 $number = $_POST["proNumber"];

 $name = $_POST["proName"];

 $contact = $_POST["proContact"];

 $budget = $_POST["proBudget"];

 $startDate = $_POST["proStartDate"];

 $endDate = $_POST["proEndDate"];

 $note = $_POST["proNote"];

 require_once 'dbh.inc.php';

 require_once 'functions.inc.php';

 createProject($conn, $number, $name, $contact, $type,

 $budget, $startDate, $endDate, $note);

 header("location: ../projectNew.php?error=none");

 exit();

}

Code snippet 16 Transfer page for a new project

This input fields are divided in three types. As shown in the first group of code snippet 16 the

inputs project number and name are transferred. The second input group is the project

manager and the project type both chosen by a dropdown menu and the third type are the

project dates entered by time and date fields. The function createProject($conn, $number,

$name, $contact, $type, $budget, $startDate, $endDate, $note) first creates the database

connection and calls the function inputExists(…). This function checks the database whether

a similar project with the same number already exists.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 42

function createProject($conn, $number, $name, $con-

tact, $type, $budget, $startDate, $endDate, $note){

 // Check if Project already exists

 if(inputExists($conn, $name, $name, 'project') !== false){

 header("location: ../projectNew.php?error=ProjectExists");

 exit();

 }

 // Create the statements for interaction with SQL

 $stmt = mysqli_stmt_init($conn);

 $sql = "INSERT INTO projects (proNumber, proName, proNote, proContact,

 proType, proBudget, proStartDate, proEndDate,

 proLastUpdate)

 VALUES (?,?,?,?,?,?,?,?,?);";

 // Check if input is valid

 if(!mysqli_stmt_prepare($stmt, $sql)){

 header("location: ../projectNew.php?error=stmt_prepare_failed?...");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 // last update when insert is taken

 $lastUpdate = date("Y-m-d");

 // Bind parameter to statement and execute in SQL DB

 $res = mysqli_stmt_bind_param($stmt, "ssssidsss", $number, $name, $note, $con-

tact, $type, $budget, $startDate, $endDate, $lastUpdate);

 if($res == false){

 header("location: ../projectNew.php?error=stmt_bind_param_failed?...");

 exit();

 }

 if(mysqli_stmt_execute($stmt) == false){

 header("location: ../projectNew.php?error=execute_failed?...");

 exit();

 }

 //Close DB connection

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

}

Code snippet 17 Function createProject(…)

In code snippet 17 the function createProject(…) is displayed. As mentioned in the subsections

before, the function creates a SQL statement, then checks with the internal function

mysqli_stmt_prepare(...) and links the entered variables to the statement using the function

mysqli_stmt_bind_param(…). Finally, the statement is executed and sent to the database

using the internal function mysqli_execute(…).

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 43

3.4.8 projectUpdate.php

To update a project, the user must access the projectUpdate.php page. However, this is only

possible if the user has the status of a project manager or the role of an administrator. As

shown in figure 22 the projectUpdate.php is not directly linked to the database.

Figure 24 Flowchart of the update project

Figure 24 shows the procedure for updating a project. The data entered is passed to the

function updateProject($conn, $pID, $number, $name, $contact, $type, $budget, $startDate,

$endDate, $note, $finished) via the projects.inc.php file. This function then transfers the

entered data to the table projects. If the data is entered correctly, the user is informed that the

project has been updated successfully. Otherwise, an error message is displayed with the

respective problem.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 44

function updateProject($conn, $pID, $number, $name, $contact, $type,

 $budget, $startDate, $endDate, $note, $finished){

 // Create the statements for interaction with SQL

 $stmt = mysqli_stmt_init($conn);

 $update = " UPDATE projects

 SET proNumber =?, proName =?, proContact =?, proType =?,

 proBudget =?, proStartDate =?, proEndDate =?, proFinished =?,

 proNote =?, proLastUpdate ='".date("Y-m-d h:a:s")."'

 WHERE proID =?;";

 if(!mysqli_stmt_prepare($stmt, $update)){

 header("location: ../projectUpdate.php?error=stmt_prepare_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 $budget = str_replace(',', '.', $budget);

 if(!mysqli_stmt_bind_param($stmt, "ssiidsssii", $number,

 $name, $contact, $type, $budget, $startDate,

 $endDate, $note, $finished, $pID)){

 header("location: ../projectUpdate.php?error=stmt_bind_param_failed?...");

 exit();

 }

 if(!mysqli_execute($stmt)){

 header("location: ../projectUpdate.php?error=query_failed?...");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 if($finished == 1){

 $costsArray = costsProject($conn, $pID);

 $costs = $costsArray[0] + $costsArray[1];

 $fin = "UPDATE projects

 SET proCosts = ".$costs.";";

 mysqli_execute($conn, $fin);

 }

 //Close DB connection

 mysqli_close($conn);

 }

Code snippet 18 Function updateProject(…)

In code snippet 18 the function updateProject(…) with its steps to update a project is shown.

The update statement searches for the proID in the database and selects the requeste project.

This procedure is set up as mentioned before to prevent damage to the database, the internal

functions mysqli_stmt_prepare(...) and the function mysqli_stmt_bind_param(…) are used.

A special case occurs when the project is finished. The total costs are then calculated over

again using the costsProject($conn, $pID) function shown in code snippet and entered directly

into the data field provided for this purpose in the database. The final steps of the function

updateProject(…) are closing the statement and the connection to the database.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 45

3.4.9 projectActive.php

The details of a project are especially important for milestones and project meetings. In addition

to the basic project data, the persons and machines involved are also displayed. When

selecting, the time period of the display can be selected. The page shows the active projects

are displayed using the function displayProjects($conn, $active). Below this, a drop-down

menu is displayed using the function ddItem($conn, 'project', 0). Next to it is the input option

for the time span of the activities.

Figure 25 Drop down menu and start / end date

As shown in the preceding figure 25, after selecting the project, it is possible but not required

to enter a start and end date before proceeding by clicking the button.

Figure 26 Flowchart project details

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 46

Figure 26 displays the procedure of the project details process. As already stated, the user

has to choose a project id. When pressing the show display button in the GUI, the selected

project id is submitted to the transfer page project.inc.php.

if(isset($_POST["choose-active"])){

 $id = $_POST["proID"];

 $start = $_POST["start"];

 $end = $_POST["end"];

 if($id == 0){

 header("location: ../projectActive.php?error=nothing");

 exit();

 }

 if(empty($start)){

 $start = '2000-01-01';

 }

 if(empty($end)){

 $end = '3000-01-01';

 }

 header("location: ../projectDetail1.php?id=".$id."

 &start=".$start."&end=".$end."");

 exit();

}

Code snippet 19 Transfer function of projectActive.php

As shown in code snippet 19, the transfer page catches the entry and the project id is

transformed and displays the project details on a new page, projectDetail1.php. As mentioned

before, if the user doesn´t set a date, this is done automatically within this function.

<div class="signupbox">

 <?php if(isset($_GET['id'])){ detailProject($conn, $_GET['id']); }?>

 <table class="tableouter">

 <tr> <?php involvedMachine($conn, $_GET['id'],GET['start'],

 $_GET['end'], 'project');

 ?></tr>

 <tr> <?php involvedEmployee($conn, $_GET['id'], $_GET['start'],

 $_GET['end'], 'project'); ?></tr>

 </table class="tableouter">

</div class="signupbox">

Code snippet 20 Functions of projectDetail1.php

As shown above in code snippet 20, the output data is displayed in three tables. To fetch all

necessary data and display it to the user, the projectDetail1.php page calls the function

detailProject($conn, $project). The first table contains the general project data such as project

number, type, contact person, start date, end date, days until completion, working hours of the

employees and machines as well as notes entered.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 47

function involvedEmployee($conn, $id, $start, $end, $type){

 if($type == 'project'){

 $sql = "SELECT actUsUser, usName, actUsProject, proNumber, proName,

 actUsMachine, macName, actUsStartDate, actUsEndDate

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 WHERE activityuser.actUsproject ='".$id."'

 AND actUsEndDate >='".$start."'

 AND actUsStartDate <='".$end."'

 ORDER BY actUsStartDate;";

 }

 // Create a connection to the database

 $stmt = mysqli_stmt_init($conn);

 if(!mysqli_stmt_prepare($stmt, $sql)){

 exit();

 }

 $result = mysqli_query($conn, $sql);

 if(!$result){

 $result = 0;

 }

 if(mysqli_num_rows($result) > 0){

 echo '...';

 while($row = mysqli_fetch_assoc($result)){

 $hours = dateDifference($row["actUsStartDate"], $row["actUsEndDate"], 2);

 $start = date("h.m - d.m.Y", strtotime($row["actUsStartDate"]));

 $end = date("h.m - d.m.Y", strtotime($row["actUsEndDate"]));

 echo'...';

 }

 } else {

 echo '<p> No employee activites.</p>';

 }

}

Code snippet 21 Function involvedEmployee(…)

Code snippet 21 illustrates the function involvedEmployee(($conn, $id, $start, $end, $type))

which selects the employees for the project from the activities and displays them in a table.

The function starts with its steps to connect to the database with the SQL statement. The

database then provides the requested columns and the function displays the data on the page.

Afterwards the page projectDetail1.php starts the function

involvedMachine($conn, $id, $start, $end, $type) with the same attempt.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 48

function involvedMachine($conn, $id, $start, $end, $type){

 if($type=='project'){

 $sql = "SELECT actUsUser, usName, actUsProject, proNumber, proName,

 actUsMachine, macName, actUsStartDate, actUsEndDate

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 WHERE activityuser.actUsproject ='".$id."'

 AND actUsEndDate >='".$start."' AND actUsStartDate <='".$end."'

 ORDER BY actUsStartDate;";

 }

 // Create a connection to the database

 $stmt = mysqli_stmt_init($conn);

 if(!mysqli_stmt_prepare($stmt, $sql)){

 exit();

 }

 $result = mysqli_query($conn, $sql);

 if(!$result){

 $result = 0;

 }

 if(mysqli_num_rows($result) > 0){

 echo '...';

 while($row = mysqli_fetch_assoc($result)){

 $hours = dateDifference($row["actUsStartDate"], $row["actUsEndDate"], 2);

 $hours = number_format($hours, 2, ",", " ");

 $start = date("h.m - d.m.Y", strtotime($row["actUsStartDate"]));

 $end = date("h.m - d.m.Y", strtotime($row["actUsEndDate"]));

 echo '...';

 }

 } else {

 echo '<p> No machine activites.</p>';

 }

}

Code snippet 22 Function involvedMachines(…)

Code snippet 22 shows the function involvedMachine(...). This function operates the same way

as the function involvedEmployee(…). The function selects the machines for the project from

the activities and displays them in a table. The database then provides the requested columns

and the function displays the data on the page.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 49

3.4.10 projectFinished.php

The projectFinished.php page acts exactly the same as the projectActive.php page mentioned

earlier in subsection 3.4.9. The only difference is the passing of a variable $active, which the

functions use to select which projects are displayed.

Figure 27 Flowchart project details

Figure 27 displays the procedure of the finished project detail process. As mentioned in the

section before, stated the user must choose a project id. When pressing the show display

button, the selected project id is submitted to the transfer page project.inc.php. Afterwards the

procedure follows the same path as described in subsection 3.4.8 before.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 50

3.4.11 Machines

This subsection covers the integration of the machines and their connections within the

PMT:CMF with the SQL database. Each page is linked to the database to either retrieve data

directly or save it. The main purpose of this section is to collect the machine data and their

resulting working costs.

Figure 28 Flowcharts of the machine related pages

Figure 28 displays the interlink between the machine pages and the SQL table machines via

a machine.inc.php file. The main machine.php page provides an overall overview of the

machines. According to the stakeholder analysis, the user has the possibility to update on all

maintenance dates, despite the machine names.

A distinction is made between users, project managers and administrators. Because financial

data is sensitive, users can’t see the purchase price and the actual asset value. Only

technicians and administrators are allowed to see the absolute numbers of purchase price,

hour rate and actual value. To do so, the function displayMachines($conn, $active) retrieves

all necessary data about the machines.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 51

function displayMachines($conn, $activ){

 $access = checkAccess($conn, $_SESSION['usID']);

 if ($access){

 $sql = "SELECT * FROM machines

 WHERE macInactive = ".$activ." AND macID > 1

 ORDER BY macMaintLast DESC ;";

 }

 $result = mysqli_query($conn, $sql);

 if (mysqli_num_rows($result) > 0){

 echo ...";

 while($row = mysqli_fetch_assoc($result)){

 $lastMaint = $row["macMaintLast"];

 $MaintInterval = $row["macMaintInterval"];

 $last = date("d.m.Y", strtotime($lastMaint));

 $next = date("d.m.Y", strtotime($lastMaint.'+'.$MaintInterval.'days'));

 $update = date("h:i d.m.Y", strtotime($row["macLastUpdate"]));

 $rate = number_format($row["macHourRate"],2,","," ");

 $value = number_format($row["macAssetValue"],2,","," ");

 echo "...";

 }

 } else {

 echo "N0 results";

 }

Code snippet 23 Function displayMachines(…)

As mentioned in code snippet 23, the attribute $active is used which is submitted with the

function call. This attribute is matched with the macInactive column, allowing active or inactive

machines to be displayed. At the machine.php only active machines are shown. As the

associative list $result is returned from the SQL database, the function prepares the entries for

the user. An associative list is an abstract data type used here to manage key-value pairs and

look up the value associated with a particular key.

3.4.12 machineNew.php

To implement a new machine, the page machineNew.php has been created. This can only be

done by an admin, as only he or she has access to the machineNew.php page. As shown in

Figure 28 the pages is not directly linked to the database. The input data is transmitted to an

inclusive file. There the input data is checked and afterwards transmitted to the

functions.inc.php file for the creation of the new entry in the database.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 52

Figure 29 Flowchart of new project creation

Figure 29 shows the procedure for creating a new machine in the system. The entered data is

passed to the function createMachine($conn, $number, $name, $type, $note, $purDate,

$purCost, $hourRate, $maintInterval, $util) via the machines.inc.php file. This function

transforms the data and sends it to the table machines. If the data is entered correctly, the user

gets the information that the machine has been entered in the system. Otherwise, an error

message is displayed with the respective problem.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 53

function createMachine($conn, $number, $name, $type, $note, $purDate,

 $purCost, $hourRate, $maintInterval, $util){

 if(inputExists($conn, $name, $name, 'machine') !== false){

 header("location: ../machineNew.php?error=MachineAlreadyExists");

 exit();

 }

 $stmt = mysqli_stmt_init($conn);

 $sql = "INSERT INTO machines (macNumber, macName, macType, macNotes,

 macPurchaseDate, macPurchaseCosts,

 macHourRate, macMaintLast,

 macMaintInterval, macUtilisation)

 VALUES (?,?,?,?,?,?,?,?,?,?);";

 if(!mysqli_stmt_prepare($stmt, $sql)){

 header("location: ../machineNew.php?error=stmt_prepare_failed?...");

 exit();

 }

 $maintLast = date(Y-m-d);

 if(!mysqli_stmt_bind_param($stmt, "sssssdisii", $number, $name, $type,

 $note, $purDate, $purCost, $hourRate,

 $maintLast, $maintInterval, $util)){

 header("location: ../machineNew.php?error=stmt_bind_param_failed?...");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 if(!mysqli_stmt_execute($stmt)){

 header("location: ../machineNew.php?error=stmt_execute_failed?...");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

}

Code snippet 24 Function createMachine(…)

In code snippet 24 the function createMachine(…) with its steps to connect to the database

with the SQL statement, is visuallised. To prevent damage, deletion or injection the SQL

statements are checked with the internal function mysqli_stmt_prepare(...). The internal

function mysqli_stmt_bind_param(…) is used for the linking the entered variables to the

statement and executed with the function mysqli_execute(…). The already mentioned error

messages are implemented as well as in the previous sections.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 54

3.4.13 machineUpdate.php

To update machines, the user must access the page machinesUpdate.php. Only if the user

has the role of a technician or the role of an administrator this is possible. As shown in

figure 22 the machineUpdate.php is also not directly linked to the database.

Figure 30 Flowchart of the update machine

In general, figure 30 shows the procedure for updating an existing machine. The data entered

is passed to the function updateMachine($conn, $mid, $number, $name, $type, $note,

$purDate, $purCost, $hourRate, $assetValue, $util, $maintInterval, $maintLast, $inactive) via

the machines.inc.php file. The entered data is transferred to the table projects with this

functions. The user is informed that the project has been updated successfully, if the data is

entered correctly, otherwise, an error message is displayed with the respective problem.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 55

function updateMachine($conn, $mid, $number, $name, $type, $note,

 $purDate, $purCost, $hourRate, $assetValue, $util,

 $maintInterval, $maintLast, $inactive){

 $stmt = mysqli_stmt_init($conn);

 $input = inputExists($conn, $mid, $name, 'machine');

 $assetValue = asstetCalc($conn, $purCost, $purDate);

 $update = "UPDATE machines

 SET macNumber =?, macName =?, macType =?, macNotes =?,

 macPurchaseDate =?, macPurchaseCosts =?, macHourRate =?,

 macAssetValue =?, macUtilisation =?, macMaintInterval =?,

 macMaintLast =?, macInactive= ? ,

 macLastUpdate ='".date("Y-m-d h:a:s")."'

 WHERE macID =?;";

 if(!mysqli_stmt_prepare($stmt, $update)){

 header("location: ../machineUpdate.php?error=stmt_prepare_failed?... ");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 if(!mysqli_stmt_bind_param($stmt,"sssssdidiisii", $number, $name,

 $type, $note, $purDate, $purCost, $hourRate,

 $assetValue, $util, $maintInterval, $maintLast,

 $inactive, $input["macID"])){

 header("location: ../machineUpdate.php?error=stmt_bind_param_failed?...");

 exit();

 }

 if(!mysqli_execute($stmt)){

 header("location: ../machineUpdate.php?error=query_failed?...");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 mysqli_close($conn);

}

Code snippet 25 Function updateMachine(…)

In code snippet 25 the function updateMachine(…) with its steps to connect to the database

with the SQL statement is shown. The function updateMachine(…) operates in the same way

as the function updateProject(…). As mentioned in the section 3.4.11 before a SQL Statement

is formed and the variables are bind with the internal function mysqli_stmt_bind_param(…). In

the same way as mentioned earlier, the user is informed of any errors that may have occurred

when the function was run through or that the entry was correctly adopted.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 56

3.4.14 machinesDetail.php

The details of a machine are especially important for evaluation meetings and project

calculation. The page shows the machines, which are displayed by using the function

displayMachines($conn, $active). Below this, a drop-down menu is displayed using the

function ddItem($conn, 'machine', 0). Next to it the input option for a time span of the activities

is given.

Figure 31 Flowchart machine details

Figure 31 shows the procedure of the detail machine process. As already stated the user has

to choose a machine id to start it. When pressing the show display button, the selected id is

submitted to the transfer page machine.inc.php.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 57

if(isset($_POST["choose"])){

 $id = $_POST["macID"];

 $start = $_POST["start"];

 $end = $_POST["end"];

 if($id == 0){

 header("location: ../machineDetail.php?error=nothing");

 exit();

 }

 if(empty($start)){

 $start = '2000-01-01';

 }

 if(empty($end)){

 $end = '3000-01-01';

 }

 header("location: ../machineDetail1.php?...");

 exit();

}

Code snippet 26 Transfer function of machineDetail.php

As shown in code snippet 26, the transfer page passes the entry. Afterwards the id is

transformed as mentioned in the previous section into a header for the new page,

machineDetail1.php. If the user doesn´t set a date the date is set here to display all entries of

the item.

<div class="signupbox">

 <?php

 if(isset($_GET['id'])){

 detailMachine($conn, $_GET['id']);

 }

 ?>

 <table class="tableouter">

 <tr> <?php involvedProject($conn, $_GET['id'], $_GET['start'],

 $_GET['end'], 'machine'); ?> </tr>

 <tr> <?php involvedEmployee($conn, $_GET['id'], $_GET['start'],

 $_GET['end'], 'machine'); ?> </tr>

 </table class="tableouter">

</div class="signupbox">

Code snippet 27 Machine detail PHP functions

Code snippet 27 visualises the output data, which is then displayed in three tables. To fetch

all necessary data and display it to the user the machineDetail1.php page calls the function

detailProject($conn, $project). The first table contains the general machine data such as

machine name, type its last maintenance, the next maintenance and the remaining days till

that date, the costs and date of the machine purchase. The function creates the labour costs

of the last and current year in addition to the labour hours of the last and current year, but only

if the user is an admin.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 58

The function involvedEmployee(...) which selects the employees from the activities and

displays them in a table, is also used in this section. Code snippet 21 shows how the function

starts with its steps to connect to the database with the SQL statement. The database then

provides the requested columns and the function displays the data on the page. Afterwards

the page machineDetail1.php starts the function involvedMachines(…) with the same attempt.

function involvedProject($conn, $id, $start, $end, $type){

 if($type=='machine'){

 $sql = "SELECT actUsUser, usName, actUsProject, proNumber, proName,

 actUsMachine, macName, actUsStartDate, actUsEndDate

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 WHERE activityuser.actUsMachine ='".$id."'

 AND actUsEndDate >='".$start."' AND actUsStartDate <='".$end."'

 ORDER BY actUsStartDate;";

 }

 $stmt = mysqli_stmt_init($conn);

 if(!mysqli_stmt_prepare($stmt, $sql)){

 exit();

 }

 $result = mysqli_query($conn, $sql);

 if(!$result){

 $result = 0;

 }

 if(mysqli_num_rows($result) > 0){

 echo '...';

 while($row = mysqli_fetch_assoc($result)){

 $hours = dateDifference($row["actUsStartDate"], $row["actUsEndDate"], 2);

 $start = date("h.m - d.m.Y", strtotime($row["actUsStartDate"]));

 $end = date("h.m - d.m.Y", strtotime($row["actUsEndDate"]));

 echo '...';

 }

 } else {

 echo '<p> No project activites.</p>';

 }

}

Code snippet 28 Function to show involved projects

As mentioned before at section 3.4.8 the function involvedProject(...) which selects the projects

for the selected machine from the activities and displays them in a table as seen in

code snippet 28. The function creates an SQL statement and connects to the database. With

the statement, it fetches the rows of the table activityuser with the requested $id. The variable

$result then provides the requested columns, which are then read and transformed into an

expected expression so it can be displayed on the page.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 59

3.4.15 machineArchiv.php

The page machineArchiv.php behaves exactly like the mentioned page machineDetail.php

earlier in subsection 3.4.13. The only difference is the transfer value of the variable $active,

which the functions use to decide which projects are retrieved.

Figure 32 Flowchart project details

Figure 32 displays the procedure of the machine archive process. As already stated the user

must choose an ID. When pressing the show detail button, the selected machine id is submitted

to the transfer page machine.inc.php. Afterwards the procedure follows the same path as the

subsection 3.4.13.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 60

3.4.16 employee.php

In this section the employees’ information is displayed, entered, stored and changed. Each

page of the employee section is linked to the database via an employee.inc.php file to either

create, retrieve, display or change data.

Figure 33 Related pages of the employee section

As shown in figure 33 above, the employee pages are linked by the employee.inc.php file to

the database to prevent damage or injection. The main page displays all relevant data for an

employee. To archive this the function displayEmployee($conn, $active) implements a

connection to the database and retrieves all necessary data about the user and displays the

retrieved data to the viewer. Based on the stakeholder analysis, users only see their own data.

An administrator is able to see all the registered user and their contract dates because they

have to know when to talk to the employee about his contract and set a new date.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 61

3.4.17 employeeNew.php

In accordance with the stakeholder analysis, only an administrator is allowed to register new

employees. The entered data is transmitted to an inclusive file, employee.inc.php. Within this

file, the data is checked and transmitted to the function createUser($conn, $name, $login,

$contractEnd, $role, $cfee, $afee, $sfee, $pwd) of the functions.inc.php file for the creation of

the new entry in the database .

Figure 34 Flowchart to register a new user

Figure 34 shows the transfer of entered data with the function createUser(…) to the table user.

If the data has been entered correctly, a notification is displayed, otherwise an error notification

is displayed with the specific issue.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 62

function createUser($conn, $name, $login, $contractEnd,

 $role, $cfee, $afee, $sfee, $pwd){

 if(inputExists($conn, $login, $login, 'employee') !== false){

 header("location: ../employeeNew.php?error=EmployeeAlreadyExists");

 exit();

 }

 $stmt = mysqli_stmt_init($conn);

 $sql = "INSERT INTO user (usName, usLogin, usContract, usRole,

 usFee1, usFee2, usFee3, usPwd, usLastLogin)

 VALUES (?,?,?,?,?,?,?,?,?);";

 if(!mysqli_stmt_prepare($stmt, $sql)){

 header("location: ../employeeNew.php?error=stmt_prepare_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 $hashedPwd = password_hash($pwd, PASSWORD_DEFAULT);

 $lastLogin = date("Y-m-d");

 if(!mysqli_stmt_bind_param($stmt, "sssidddss", $name, $login,

 $contractEnd, $role, $cfee, $afee, $sfee,

 $hashedPwd, $lastLogin)){

 header("location: ../employeeNew.php?error=stmt_bind_param_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 if(!mysqli_stmt_execute($stmt)){

 header("location: ../employeeNew.php?error=stmt_execute_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

}

Code snippet 29 Function createUser(…)

Code snippet 29 shows the function createUser(…), which establishes a database connection

to examine the database for an existing user with the loginname. If the request is incorrect, the

function takes the user's entered password and scrambles the input with the internal

password_hash(…) function. This approach has the advantage that even if the database is

hacked, the user passwords are not shown in the tables. After this the statement is bound with

the function mysqli_stmt_bind_param(...), so that the statement can be inserted into the

database with the function mysqli_execute(…).

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 63

3.4.18 emloyeeUpdate.php

To upgrade the name or any other data of a user, an Admin can access the

employeeUpdate.php. Based on the interviews from the stakeholder analysis, a distinction is

also made at this point between user and admin. Every user is able to update its own name,

login and password, while the admin can change all fields including roles and fees.

Figure 35 Flowchart of the update user process

As shown in Figure 35, the entered data is transferred to the users table using the function

updateUser(...). An error message is displayed with the corresponding problem if the data was

entered incorrectly. The user is also informed if an entry is correct.

 DEVELOPMENT AND IMPLEMENTATION

HANS-JÖRG SCHMÖLZER 64

function updateUser($conn, $userID, $name, $login, $contractEnd,

 $role, $cfee, $afee, $sfee, $pwd){

 $stmt = mysqli_stmt_init($conn);

 $hashedPwd = password_hash($pwd, PASSWORD_DEFAULT);

 $update = "UPDATE user

 SET usName =?, usLogin =?, usContract=?, usRole =?,

 usFee1 =?, usFee2 =?, usFee3 =?, usPwd =?, usLastLogin =?

 WHERE usID =?;";

 if(!mysqli_stmt_prepare($stmt, $update)){

 header("location: ../employeeUpdate.php?error=stmt_prepare_failed?...");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 if(!mysqli_stmt_bind_param($stmt, "sssidddssi", $name, $login, $contractEnd,

 $role, $cfee, $afee, $sfee, $hashedPwd, $lastLogin,

 $userID)){

 header("location: ../employeeUpdate.php?error=stmt_bind_param_failed?");

 exit();

 }

 if(!mysqli_execute($stmt)){

 header("location: ../employeeUpdate.php?error=query_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 mysqli_close($conn);

}

Code snippet 30 Function updateUser(…)

Code snippet 30 shown is the function updateUser(…) with its steps to create a SQL statement,

connect to the database and update the variables in the database. A special case occurs when

the users contract has ended.

function inactiveUser($conn){

 $stmt = mysqli_stmt_init($conn);

 $hashedPwd = password_hash('.*.*., PASSWORD_DEFAULT);

 $sql = "UPDATE user

 SET usPwd ='".$hashedPwd."'

 WHERE DATEDIFF(usContract, NOW()) < 0

 AND DATEDIFF(usContract, NOW()) > -180

 AND usID >= 2;";

 mysqli_query($conn, $sql);

}

Code snippet 31 Function inactiveUser(…)

With every user login the user table is searched for terminated contracts in the last six months.

This is done at the end of the function loginUser(…) with the embedded function

inactiveUser($conn) as shown in code snippet 31. This function updates every password of an

inactive user to a random chosen one. This allows to let the contracts run out without an urgent

need to change the user actively. If a user comes back, an admin can set a new contract end

date and password to activate the account again.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 65

4 Results and discussion

In this chapter, the results of the preceding code snippets are presented. The embedding in

the whole system at the chair of metal forming is also shown and described. The figures shown

in this chapter are created with the PMT:CMF version 1.212m. The digital project management

tool is a part of a multi-layered networked solution for recording project, machine and employee

data. According to the six-layer condition monitoring system of the chair of metal forming, the

PMT:CMF collects this data using an open source solution with a MySQL database, prepares

it and presents it to all stakeholders in an intuitive and understandable way with a server based

PHP GUI. [21]

 [21]

Figure 36 Multi-layer architecture of the chair of metal forming

As displayed in figure 36 above, the PMT:CMF is one of the two different Graphical User

Interfaces which are developed to support respective workers. The PMT:CMF is a key

component to support the chair of metal forming to implement condition monitoring to its

machines. [21]

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 66

Figure 37 Visible pages for the users

As shown in figure 37, the tool is accessed via the index.php page. This is linked to the page

of the chair of metal forming and is only available when it is accessed within the university

network. If the user has a correct login and password, he/she is able to access the home.php,

which allows a general overview over the projects and machines. The Graphical User Interface

(GUI) of the PMT:CMF is presented on the next pages. Due to previous explanations, the

details are kept brief.

Figure 38 Index page with login for user

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 67

Figure 38 shows the GUI of the page index.php and the input fields for the users. On the right-

hand side of the figure a note is displayed, indicating that if a user does not have his/her login

details to hand, the link will take him/her to the chair's administration. The admins can tell the

requesting users login name and set a new password. It is not possible to retrieve the password

within the PHP pages or the SQL database, because the entered password gets hashed, when

it is entered and only get decrypted if the user logs in the PMT:CMF index.php page.

Figure 39 home.php of Administration

As shown in figure 39, the general information of the PMT:CMF is displayed on the home.php

page. Additionally, completion dates of the projects and maintenance dates of the machines

are shown.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 68

Figure 40 Difference of activities page for admin (left) and user (rigth)

As pictured in figure 40 the admin may enter activities for every signed user. The user, on the

other hand, can only create activities in his or her own name. Another difference is the entered

activities themselves. Here, the user only sees his own activities, whereas the admin sees all

activities with machine and employee.

Figure 41 Input mask for new user activities

The entry of the activities requires that, in addition to the name of the activity, the start and end

time are also entered. In addition, a project must be selected and, if applicable, the machine

used must be selected. As mentioned before, an admin could also input a name of any

employee.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 69

Figure 42 Activity Update page for administration

The activity update page for an administrator has the same input possibilities as the create

activity page shown in figure 42. An administrator is able to change every activity and may

even change the employee of the activity.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 70

Figure 43 Project page of admin (left) and user (right)

As shown in figure 43, admins can view all projects on, as well as the budget and costs of each

project. A user without project management functions sees a percentage status instead.

Figure 44 New project page

In coordination with the stakeholder analysis, administrators are tasked with creating new

projects in the PMT:CMF. This is done using the ProjectNew.php page shown in figure 44. A

predefined project number, name and budget are entered, then the project type and contact

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 71

person are selected using the drop-down menu. Finally, the start date and the end date of the

project are entered. The entries are mandatory, otherwise the project cannot be created.

Finally, with the Create button the input data is transferred to the system and stored in the

database.

Figure 45 Update project page

To modify a project, administrators and project managers can do so using the input mask

shown in figure 45. This GUI allows any aspect of the project to be changed. It is important to

select the relevant project in order to change the correct entries. A modification of the project

can be done at any time, as all details are automatically updated to the last status of the project.

Another important point is the checkbox to conclude a project. All project data is calculated

again and saved separately. This was requested by the stakeholders in order to obtain a

reference value for future projects.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 72

Figure 46 Project detail page

Another stakeholder requirement is to show details of ongoing projects to support project

meetings. As shown in figure 46, a project is selected by using the drop-down menu. It is

possible to query the projects for specific time periods using the inputs displayed next to them.

This influences the activities carried out and, accordingly, the staff and machines involved. A

separate page has been created for the completed projects.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 73

Figure 47 Project Detail page with involved items

Figure 47 shows an example project with the corresponding entries. In addition to the basic

project data, the remaining days until project completion are also displayed. Furthermore, the

total costs incurred and the hours worked by employees and machines are displayed, hours

worked without machines are not added. Notes on the project are also displayed and can be

read out.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 74

Figure 48 Finished projects detail page

Figure 48 shows the completed detail page, which displays the completed projects. The

process of completing a project must be done manually by a project manager or an admin, as

some data is transferred to the database that would otherwise be changed by changes to the

fees. A finished project is selected using the drop-down menu. As mentioned before here again

it is possible to query the projects for specific time periods using the inputs displayed next to

them. The details displayed are identical to those of the active projects, with the difference that

they no longer change due to staff and fee changes.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 75

Figure 49 Machines overview page

To view all machine information admins and technicians can do this with the page shown in

figure 49. Next to the machine number and name, the type and dates for the next maintenance

are visualised. In addition to the active machines, the inactive machines are also displayed.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 76

Figure 50 Machine page for new machines with input mask

At the machineNew.php page, shown in the figure 50, it is possible for the admin to add new

machines to the project management tool. In addition to entering the specific machine number

and a name, the type, notes and information on the purchase of the machine can also be

entered. This includes the date of purchase, purchase price and machine hour cost rates, as

well as maintenance data and the utilization of the machine.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 77

Figure 51 Machines update page with input mask

To update or change entries of a machine, administrators and technicians can do so using the

input mask shown in figure 51. In the input mask shown, every aspect of the machine can be

changed. It is important to select the appropriate machine to change the correct entries. A

change to machine can be made at any time, as all entries are automatically updated in the

activities to the latest status of the machine. Another important point is the checkbox to

deactivate a machine. This is necessary in order to continue to display activities with the

machine in the completed projects.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 78

Figure 52 Machine detail page

The machine details are displayed in the same way as described above for the projects. By

selecting an active machine, the details can be called up as shown in figure 52. In the same

way as mentioned before, certain time periods can be set to limit the activity display.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 79

Figure 53 Machine detail list with involved items

Figure 53 shows an exemplary machine with the corresponding entries. In addition to the basic

machine data, the remaining days until the next maintenance are also displayed. Furthermore,

the asset value, the costs incurred and the working hours of the last and the current year are

displayed and separated according to employees and machines. Notes on the machines are

also displayed. The shown diagram is an input from a python script running on the chair’s

internal server. This script transfers the data to the database and creates the diagram, so that

the detail page can display it accordingly to the machine name.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 80

Figure 54 Machine archive page

Figure 54 shows the inactive machine details input page. The process of inactivating a machine

must be done manually by a technician or an admin, as data is transferred to the database. An

inactive machine is selected from the drop down menu. By using the items displayed next to

it, it is possible to query a specific time period. The details displayed are identical to those of

the active machines.

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 81

Figure 55 Employee page of an admin (left) and user (right)

The stakeholder analysis showed that the separation of personal data is necessary. As shown

in Figure 55 above, an admin can see all users and their data regarding current contracts. The

user, on the other hand, is only shown his own data.

Figure 56 Employee sign up page

RESULTS AND DISCUSSION

HANS-JÖRG SCHMÖLZER 82

As determined by the stakeholder analysis, only admins are allowed to register new users.

This is done with the input mask shown in the figure 56. In addition to the user name, a login

name and an initial password is assigned. This must be entered repeatedly as a verification

measure. Next, the end date of the contract is entered. After this, the administrator can create

cost rates for the various project types. These are used for the activities carried out in order to

provide the activities with the costs incurred. Finally, the role of the new user is defined, which

regulates their access rights/views in the project management tool.

Figure 57 Employee page of an admin (left) and user (right)

Following previous definition, an admin can access any user data. This is also the case here

on the update page shown in the figure 57. User without the administration role, can only

access and change their own data records. The data regarding costs, contract duration and

user roles cannot be changed by the user himself but by the admin. These changes take effect

after a new logon to the system.

CONCLUSION AND OUTLOOK

HANS-JÖRG SCHMÖLZER 83

5 Conclusion and outlook

The digital project management tool (PMT:CMF) used, has enabled a multi-layered networked

solution for recording project, machine and employee data. As shown in the stakeholder

analysis, the activities as well as the times required for employees and machines used are also

stored uniformly and processed for further evaluation. The tool supports the clear and uniform

presentation of project data and enables a detailed listing of activities carried out, as well as

machines used. Through the connection to the machine sensors, the direct machine

consumption can be retrieved and converted into real costs with the help of a defined energy

price.

As explained in the feasibility study, the open source solutions PHP and MySQL were used for

the creation of this framework. The use of these solutions considerably reduces the costs and

creates an end-to-end, adaptable solution. The PHP graphical user interface connects the

sensor data of the machines with the project activities using the data storage in the MySQL

database of the tool.

As the PMT:CMF golive, further adaptations are made in the areas of user input and project

tracking to achieve maximum effectiveness. As a result, inputs, displays and associated code

snippets may change, due to the continuous improvement approach of the chair of metal

forming.

The next steps in extending the project management tool could be the connect the tool directly

to other machines. The connection is made via a Python script that is already in use for a

machine at the institute. A connection to a higher-level MES system that can obtain data

directly from the MySQL database is also being considered. The data entered in the project

management tool is stored in the MySQL database and is to be read out and processed in this

future system. This process of accessing the database and reading out the data as well as

transferring it to a higher-level MES/ERP system is supported by a Python script.

For all this planned activities, this thesis and corresponding work serves as fundamental basis

for further improvement and digitalisation.

CONCLUSION AND OUTLOOK

HANS-JÖRG SCHMÖLZER X

References
[1] J. Tupa, J. Simota, and F. Steiner, “Aspects of risk management implementation for

Industry 4.0,” Procedia manufacturing, vol. 11, pp. 1223–1230, 2017.

[2] L. Safar, J. Sopko, S. Bednar, and R. Poklemba, “Concept of SME business model for

industry 4.0 environment,” TEM Journal, vol. 7, no. 3, p. 626, 2018.

[3] C. Desmond, “Project management tools-software tools,” IEEE Engineering

Management Review, vol. 45, no. 4, pp. 24–25, 2017.

[4] J. M. Müller and S. Däschle, “Business model innovation of industry 4.0 solution

providers towards customer process innovation,” Processes, vol. 6, no. 12, p. 260, 2018.

[5] D. Mourtzis, E. Vlachou, N. Milas, and N. Xanthopoulos, “A cloud-based approach for

maintenance of machine tools and equipment based on shop-floor monitoring,” Procedia

Cirp, vol. 41, pp. 655–660, 2016.

[6] Z. Alansari et al., “Challenges of internet of things and big data integration,” in

International Conference for Emerging Technologies in Computing, pp. 47–55.

[7] A. Clarke, “A practical use of key success factors to improve the effectiveness of project

management,” International journal of project management, vol. 17, no. 3, pp. 139–145,

1999.

[8] A. K. Munns and B. F. Bjeirmi, “The role of project management in achieving project

success,” International journal of project management, vol. 14, no. 2, pp. 81–87, 1996.

[9] M. Pannu, Q. Salih, C. Yuen, Z. H. Li, and E. Tanu, “Web based Project Management

Systems for small to midsize businesses,” in 2018 IEEE 9th Annual Information

Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver,

BC, 112018, pp. 1233–1237.

[10] Deductive and object-oriented databases: Elsevier, 1990.

[11] J. Bishop, C. Jensen, W. Scacchi, and A. Smith, “How to use open source software in

education,” in Proceedings of the 47th ACM Technical Symposium on Computing

Science Education, pp. 321–322.

[12] A. I. Vlasov, P. V. Grigoriev, A. I. Krivoshein, V. A. Shakhnov, S. S. Filin, and V. S.

Migalin, “Smart management of technologies: predictive maintenance of industrial

equipment using wireless sensor networks,” Entrepreneurship and Sustainability Issues,

vol. 6, no. 2, pp. 489–502, 2018.

[13] R. Y. Zhong, L. Wang, and X. Xu, “An IoT-enabled real-time machine status monitoring

approach for cloud manufacturing,” Procedia Cirp, vol. 63, pp. 709–714, 2017.

[14] R. Felkai and A. Beiderwieden, Projektmanagement für technische Projekte.

Wiesbaden: Springer Fachmedien Wiesbaden, 2015.

CONCLUSION AND OUTLOOK

HANS-JÖRG SCHMÖLZER XI

[15] F. Ackermann and C. Eden, Making strategy: Mapping out strategic success, 2nd ed.

London: SAGE, 2012.

[16] M. Nasar and M. A. Kausar, “Suitability of influxdb database for iot applications,”

International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 10,

pp. 1850–1857, 2019.

[17] S. N. Z. Naqvi, S. Yfantidou, and E. Zimányi, “Time series databases and influxdb,”

Studienarbeit, Université Libre de Bruxelles, p. 12, 2017.

[18] D. Edler and M. Vetter, “The simplicity of Modern audiovisual web cartography: an

example with the open-source JavaScript Library leaflet. js,” KN-Journal of Cartography

and Geographic Information, vol. 69, no. 1, pp. 51–62, 2019.

[19] L. Welling and L. Thomson, PHP and MySQL Web development: Sams Publishing,

2003.

[20] J. W. Krogh, MySQL Connector/Python Revealed: SQL and NoSQL Data Storage Using

MySQL for Python Programmers. Berkeley, CA: Apress, 2018.

[21] B. Ralph, M. Sorger, B. Schödinger, H.-J. Schmölzer, C. Stöckl, and M. Stockinger,

“Development and implementation of a six-layer low cost resilient condition monitoring

and predictive maintenance system,” Procedia manufacturing, vol. 2021, 1-8

(submitted).

 APPENDIX

HANS-JÖRG SCHMÖLZER XII

Appendix

To ensure the completeness of the thesis, all core functions are presented in alphabetical order

in this section. As mentioned before, this is version V1.212m of the PMT:CMF.

List of functions
o costsMachineYear($conn, $id) XIII
o costsMachineActual($conn, $id) XIII
o checkAccess($conn, $user) XIV
o checkActivity($conn, $user) XV
o checkContact($conn, $user) XV
o checkMachine($conn, $user) XV
o checkUser() XV
o createActivity($conn, $aName, $uName, $pName, $mName,

 $actStart, $actEnd, $noUser) XVI
o createMachine($conn, $number, $name, $type, $note,

 $purDate, $purCost, $hourRate, $maintInterval, $util) XVII
o createProject($conn, $number, $name, $contact, $type,

 $budget, $startDate, $endDate, $note) XVIII
o createUser($conn, $name, $login, $contractEnd, $role,

 $cfee, $afee, $sfee, $pwd) XVIII
o costsProject($conn, $proID) XIV
o dateDifference($start , $end , $type) XXI
o ddItem($conn, $type, $activ) XXI
o detailMachine($conn, $machine) XXII
o detailProject($conn, $project) XXIII
o displayActivity($conn) XXV
o displayEmployees($conn, $activ) XXVI
o displayMachines($conn, $activ) XXVII
o displayProjects($conn, $activ) XXIX
o greetings($fullName) XXX
o inactiveUser($conn) XXXI
o inputExists($conn, $id, $name, $type) XXXI
o invalideMail($email) XXXII
o invalidName($name) XXXII
o involvedEmployee($conn, $id, $start, $end, $type) XXXIII
o involvedMachine($conn, $id, $start, $end, $type) XXXIII
o involvedProject($conn, $id, $start, $end, $type) XXXV
o loginUser($conn, $username, $pwd) XXXVI
o pwdMatch($pwd, $pwdrepeat) XXXVII
o updateActivity($conn, $aID, $aName, $uName, $pName,

 $mName, $actStart, $actEnd, $noUser) XXXVII
o updateMachine($conn, $mid, $number, $name, $type,

 $note, $purDate, $purCost, $hourRate, $assetValue,
 $util, $maintInterval, $maintLast, $inactive) XXXVIII

o updateProject($conn, $pID, $number, $name,
 $contact, $type, $budget, $startDate, $endDate, $note, $finished) XXXIX

o updateUser($conn, $userID, $name, $login, $contractEnd,
 $role, $cfee, $afee, $sfee, $pwd) XL

 APPENDIX

HANS-JÖRG SCHMÖLZER XIII

function costsMachineYear($conn, $id){

 /*

 function to return machine costs a an array with 4 entries

 Depreciation, last year's costs ,last year's working hours, running

 costs, this years hours

 returns array($depre, $coLastYear, $whLastYear, $coActual, whActual);

 */

 $sql = "SELECT actUsName, actUsProject, macName, macHourRate,

 actUsStartDate, actUsEndDate, actUsNoUser

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 WHERE activityuser.actUsMachine =".$id." AND actUsStartDate > YEAR(CUR

RENT_TIMESTAMP)-1 AND actUsStartDate < YEAR(CURRENT_TIMESTAMP);";

 $activities = mysqli_query($conn, $sql);

 if(!$activities){

 $activities = 0;

 }

 $whMac = 0;

 $coMac = 0;

 $hours = 0;

 if(mysqli_num_rows($activities) < 0){

 $costsArray = array($coEmp, $coMac);

 return $costsArray;

 } else {

 while($row = mysqli_fetch_assoc($activities)){

 // Sum of working hours of project emp/mac

 $hours = dateDifference($row["actUsStartDate"],

 $row["actUsEndDate"], 2);

 $whMac = $whMac + $hours;

 $coMac = $coMac + $row["macHourRate"] * $hours;

 }

 $costsArray = array($coMac, $whMac);

 return $costsArray;

 }

}

function costsMachineActual($conn, $id){

 /*

 function to return machine costs a an array with 4 entries

 Depreciation, last year's costs, last year's working hours,

 running costs, this years hours

 returns array($depre, $coLastYear, $whLastYear, $coActual, whActual);

 */

 APPENDIX

HANS-JÖRG SCHMÖLZER XIV

 $sql = "SELECT actUsName, actUsProject, macName, macHourRate,

 actUsStartDate, actUsEndDate, actUsNoUser

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 WHERE activityuser.actUsMachine =".$id." AND actUsStartDate >

 YEAR(CURRENT_TIMESTAMP) ;";

 $activities = mysqli_query($conn, $sql);

 if(!$activities){

 $activities = 0;

 }

 $whMac = 0;

 $coMac = 0;

 $hours = 0;

 if(mysqli_num_rows($activities) < 0){

 $costsArray = array($coEmp, $coMac);

 return $costsArray;

 } else {

 while($row = mysqli_fetch_assoc($activities)){

 // Sum of working hours of project emp/mac

 $whMac = $whMac + dateDifference($row["actUsStartDate"],

 $row["actUsEndDate"], 2);;

 $coMac = $coMac + $row["macHourRate"] * dateDifference(

 $row["actUsStartDate"], $row["actUsEndDate"], 2);;

 }

 $costsArray = array($coMac, $whMac);

 return $costsArray;

 }

}

function checkAccess($conn, $user){

 //Function for access control on several pages

 $access = inputExists($conn, $user, $user, 'employee');

 $sql = "SELECT proContact FROM projects WHERE proContact ='

 ".$access["usID"]."';";

 $results=mysqli_query($conn, $sql);

 // check role of employee

 if($access["usRole"] == 2 || $access["usRole"] == 3 ||

 $access["usRole"] == 101){

 return true;

 } else {

 return false;

 }

}

 APPENDIX

HANS-JÖRG SCHMÖLZER XV

function checkActivity($conn, $user){

 $sql = "SELECT actUsID FROM activityUser

 WHERE actUsUser ='".$user."';";

 $sql = mysqli_query($conn, $sql);

 if(mysqli_num_rows($sql)>=1){

 return true;

 } else {

 return false;

 }

}

function checkContact($conn, $user){

 //Function for access control on project update

 $access = inputExists($conn, $user, $user, 'employee');

 $sql = "SELECT proContact FROM projects

 WHERE proContact ='".$access["usID"]."';";

 $results=mysqli_query($conn, $sql);

 // check role of employee

 if(mysqli_num_rows($results)>=1){

 return true;

 } else {

 return false;

 }

}

function checkMachine($conn, $user){

 $sql = "SELECT rolID FROM user

 INNER JOIN roles ON roles.rolID = user.usRole

 WHERE user.usID ='".$user."';";

 $sql = mysqli_query($conn, $sql);

 $results=mysqli_fetch_assoc($sql);

 // check role of employee

 if($results["rolID"] == 5){

 return true;

 } else {

 return false;

 }

}

function checkUser(){

 //Function to secure site

 if(!isset($_SESSION['usID'])){

 header("location: ../PMToCMF/index.php?error=NoLogin");

 exit();

 }

}

 APPENDIX

HANS-JÖRG SCHMÖLZER XVI

function createActivity($conn, $aName, $uName, $pName, $mName,

 $actStart, $actEnd, $noUser){

 // Prepare sql statement

 $sql = "INSERT INTO activityuser(actUsName, actUsUser, actUsProject,

 actUsMachine, actUsStartDate, actUsEndDate, actUsNoUser, actUsLog)

 VALUES (?,?,?,?,?,?,?,?);";

 $stmt = mysqli_stmt_init($conn);

 // Check if input is valid

 if(!mysqli_stmt_prepare($stmt, $sql)){

 header("location: ../activityNew.php?error=stmt_prepare_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 // update the last entry

 $lastActivity = date("Y-m-d H:i:s");

 $user = inputExists($conn, $uName, $uName, 'employee');

 // Bind parameter to statement and execute

 if(mysqli_stmt_bind_param($stmt, "siiissis", $aName, $user["usID"],

 $pName, $mName, $actStart, $actEnd, $noUser, $lastActivity) == false){

 header("location: ../activityNew.php?error=stmt_bind_param_failed?

 activity:".$aName."?user:".$uName."?project:".$pName."?

 machine:".$mName."?Start:".$actStart."?End:".$actEnd."?

 lonely:".$noUser."?lastLog".$lastUpdate);

 exit();

 }

 if(mysqli_stmt_execute($stmt) == false){

 header("location: ../activityNew.php?error=execute_failed?

 activity:".$aName."?user:".$user["usID"]."?project:"

 .$pName."?machine:".$mName."?Start:".$actStart."?Time:"

 .$actSTime."?End:".$actEnd."?Time:".$actETime."?lonely:"

 .$noUser."?lastLog".$lastUpdate);

 exit();

 }

 //update Project

 $logUpdate = date("Y-m-d H:i:s", strtotime($actEnd));

 $lastLog = "UPDATE projects

 SET proLastUpdate ='".$logUpdate."'

 WHERE proID ='".$pName."';";

 if(mysqli_query($conn, $lastLog) == false){

 header("location: ../activityNew.php?error=update_project_failed?

 Date:".date("Y-m-d h:a:s")."?Project:".$pName);

 exit();

 }

 //update Machine

 $lastLog = "UPDATE machines

 SET macLastUpdate ='".$logUpdate."'

 APPENDIX

HANS-JÖRG SCHMÖLZER XVII

 WHERE macID ='".$mName."';";

 if(mysqli_query($conn, $lastLog) == false){

 header("location: ../activityNew.php?error=update_machine_failed?

 Date:".date("Y-m-d h:a:s")."?Project:".$mName);

 exit();

 }

 //Close DB connection

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

}

function createMachine($conn, $number, $name, $type, $note, $purDate,

 $purCost, $hourRate, $maintInterval, $util){

 // Check if machine already exist

 if(inputExists($conn, $name, $name, 'machine') !== false){

 header("location: ../machineNew.php?error=MachineAlreadyExists");

 exit();

 }

 // Create the statements for interaction with SQL

 $stmt = mysqli_stmt_init($conn);

 $sql = "INSERT INTO machines (macNumber, macName, macType, macNotes,

 macPurchaseDate, macPurchaseCosts, macHourRate, macMaintLast,

 macMaintInterval, macUtilisation)

 VALUES (?,?,?,?,?,?,?,?,?,?);";

 // Check if input is valid

 if(!mysqli_stmt_prepare($stmt, $sql)){

 header("location: ../machineNew.php?error=stmt_prepare_failed");

 exit();

 }

 // Set first dates

 $maintLast = date(Y-m-d);

 // Bind parameter to statement and execute in SQL DB

 if(!mysqli_stmt_bind_param($stmt, "sssssdisii", $number, $name, $type,

 $note, $purDate, $purCost, $hourRate, $maintLast, $maintInterval,

 $util)){

 header("location: ../machineNew.php?error=stmt_bind_param_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 if(!mysqli_stmt_execute($stmt)){

 header("location: ../machineNew.php?error=stmt_execute_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 //Close DB connection

 mysqli_stmt_close($stmt);

 APPENDIX

HANS-JÖRG SCHMÖLZER XVIII

 mysqli_close($conn);

}

function createProject($conn, $number, $name, $contact, $type,

 $budget, $startDate, $endDate, $note){

 // Check if Project already exists

 if(inputExists($conn, $name, $name, 'project') !== false){

 header("location: ../projectNew.php?error=ProjectExists");

 exit();

 }

 // Create the statements for interaction with SQL

 $stmt = mysqli_stmt_init($conn);

 $sql = "INSERT INTO projects (proNumber, proName, proNote, proContact,

 proType, proBudget, proStartDate, proEndDate, proLastUpdate)

 VALUES (?,?,?,?,?,?,?,?,?);";

 // Check if input is valid

 if(!mysqli_stmt_prepare($stmt, $sql)){

 header("location: ../projectNew.php?error=stmt_prepare_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 // last update when insert is taken

 $lastUpdate = date("Y-m-d");

 // Bind parameter to statement and execute in SQL DB

 $res = mysqli_stmt_bind_param($stmt, "ssssidsss", $number, $name, $note,

 $contact, $type, $budget, $startDate, $endDate, $lastUpdate);

 if($res == false){

 header("location: ../projectNew.php?error=stmt_bind_param_failed");

 exit();

 }

 if(mysqli_stmt_execute($stmt) == false){

 header("location: ../projectNew.php?error=execute_failed?".

 $startDate."?".$endDate);

 exit();

 }

 //Close DB connection

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

}

function createUser($conn, $name, $login, $contractEnd, $role, $cfee,

 $afee, $sfee, $pwd){

 // Check if User already exist

 if(inputExists($conn, $login, $login, 'employee') !== false){

 header("location: ../employeeNew.php?error=EmployeeAlreadyExists");

 exit();

 APPENDIX

HANS-JÖRG SCHMÖLZER XIX

 }

 // Create the statements for interaction with SQL

 $stmt = mysqli_stmt_init($conn);

 $sql = "INSERT INTO user (usName, usLogin, usContract, usRole, usFee1,

 usFee2, usFee3, usPwd, usLastLogin) VALUES (?,?,?,?,?,?,?,?,?);";

 // Check if input is valid

 if(!mysqli_stmt_prepare($stmt, $sql)){

 header("location: ../employeeNew.php?error=stmt_prepare_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 // hash pwd

 $hashedPwd = password_hash($pwd, PASSWORD_DEFAULT);

 $lastLogin = date("Y-m-d");

 // Bind parameter to statement and execute in SQL DB

 if(!mysqli_stmt_bind_param($stmt, "sssidddss", $name, $login,

 $contractEnd, role, $cfee, $afee, $sfee, $hashedPwd, $lastLogin)){

 header("location: ../employeeNew.php?error=stmt_bind_param_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 if(!mysqli_stmt_execute($stmt)){

 header("location: ../employeeNew.php?error=stmt_execute_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 //Close DB connection

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

}

function costsProject($conn, $proID){

 /*

 function to return project costs a an array with 4 entries

 costs Employee, Machine, Workhours Employee, Workhour Machine

 returns array($coEmp, $coMac, $whEmp, $whMac);

 */

 $sql = "SELECT actUsName, usID, usName, actUsProject, proType, actUsMachine,

 macName, macHourRate, actUsStartDate, actUsEndDate, actUsNoUser

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 WHERE activityuser.actUsProject =".$proID.";";

 APPENDIX

HANS-JÖRG SCHMÖLZER XX

 $activities = mysqli_query($conn, $sql);

 if(!$activities){

 $activities = 0;

 }

 $whEmp = 0;

 $coEmp = 0;

 $whMac = 0;

 $coMac = 0;

 $hours = 0;

 if(mysqli_num_rows($activities) < 0){

 $costsArray = array($coEmp, $coMac, $whEmp, $whMac);

 return $costsArray;

 } else {

 while($row = mysqli_fetch_assoc($activities)){

 // Sum of working hours of project emp/mac

 $hours = dateDifference($row["actUsStartDate"],

 $row["actUsEndDate"], 2);

 if(!$row["actUsNoUser"]){

 $whEmp = $whEmp + $hours;

 }

 if($row["actUsMachine"]>1){

 $whMac = $whMac + $hours;

 }

 // Sum of costs of project emp/mac depending on project type

 if($row["proType"]==1){

 //Contract Research

 $sql = "SELECT usFee1 AS fee

 FROM user

 WHERE usID =".$row["usID"].";";

 }elseif($row["proType"]==2){

 //Application Research

 $sql = "SELECT usFee2 AS fee

 FROM user

 WHERE usID =".$row["usID"].";";

 }elseif($row["proType"]==3){

 //Other

 $sql = "SELECT usFee3 AS fee

 FROM user

 WHERE usID =".$row["usID"].";";

 }

 $result = mysqli_query($conn, $sql);

 $costs = mysqli_fetch_assoc($result);

 $coEmp = $coEmp + $costs["fee"] * $hours;

 $coMac = $coMac + $row["macHourRate"] * $hours;

 }

 $costsArray = array($coEmp, $coMac, $whEmp, $whMac);

 return $costsArray;

 }

}

 APPENDIX

HANS-JÖRG SCHMÖLZER XXI

function dateDifference($start , $end , $type){

 //type = 1 for days, 2 for hours, 3 for minutes, 4 for years

 $ts1 = strtotime($start);

 $ts2 = strtotime($end);

 $seconds_diff = $ts2 - $ts1;

 if($type == 1){

 $days_diff = round($seconds_diff/86400,2);

 return $days_diff;

 }elseif($type == 2){

 $hours_diff = round($seconds_diff/3600,2);

 return $hours_diff;

 }elseif($type == 3){

 $minutes_diff = round($seconds_diff/60,2);

 return $minutes_diff;

 }elseif($type == 3){

 $year_diff = round($seconds_diff/(86400*365),0);

 return $year_diff;

 }else{

 return $seconds_diff;

 }

}

function ddItem($conn, $type, $activ){

 /*

 This function creates a drop down menue from the type

 and returns its ID as value

 */

 $access = checkAccess($conn, $_SESSION['usID']);

 if($type == 'machine'){

 $query = "SELECT * FROM machines

 WHERE macInactive = ".$activ."";

 } elseif ($type == 'project') {

 $query = "SELECT * FROM projects

 WHERE proFinished = ".$activ."

 ORDER BY proNumber ASC";

 } elseif ($type == 'employee') {

 if($active){

 $query = "SELECT * FROM user

 WHERE usID > 1 AND DATEDIFF(usContract, NOW()) < 0

 ORDER BY usName ASC";

 }else{

 $query = "SELECT * FROM user

 WHERE usID > 1 AND DATEDIFF(usContract, NOW()) > 0

 ORDER BY usName ASC";

 }

 } elseif ($type == 'role') {

 APPENDIX

HANS-JÖRG SCHMÖLZER XXII

 $query = "SELECT * FROM roles";

 } elseif ($type == 'proType') {

 $query = "SELECT * FROM projecttypes";

 } elseif ($type == 'activity') {

 if($access){

 $query = "SELECT * FROM activityuser";

 } else {

 $query = "SELECT * FROM activityuser WHERE actUsUser =

 ".$_SESSION['usID']."";

 }

 }

 $results=mysqli_query($conn, $query);

 if($type == 'machine'){

 foreach ($results as $row){

 echo '<option value="'.$row["macID"].'">'.$row["macName"].'</option>';

 }

 } elseif ($type == 'project') {

 foreach ($results as $row){

 echo '<option value="'.$row["proID"].'">'.$row["proNumber"].'

 </option>';

 }

 } elseif ($type == 'employee') {

 foreach ($results as $row){

 echo '<option value="'.$row["usID"].'">'.$row["usName"].'</option>';

 }

 } elseif ($type == 'role') {

 foreach ($results as $row){

 echo '<option value="'.$row["rolID"].'">'.$row["rolName"].'</option>';

 }

 } elseif ($type == 'proType') {

 foreach ($results as $row){

 echo '<option value="'.$row["typID"].'">'.$row["typName"].'</option>';

 }

 }elseif ($type == 'activity') {

 foreach ($results as $row){

 echo '<option value="'.$row["actUsID"].'">'.

 $row["actUsID"]." - ".$row["actUsName"].'</option>';

 }

 }

 return $results;

}

function detailMachine($conn, $machine){

 $detail = inputExists($conn, $machine, $machine, 'machine');

 if($detail > 0){

 // Machine infos and maintencance dates

 $name = $detail["macName"];

 $id = $detail["macID"];

 $lastMaint = date("d.m.Y", strtotime($detail["macMaintLast"]));

 $nextMaint = date("d.m.Y", strtotime($detail["macMaintLast"].'+'

 APPENDIX

HANS-JÖRG SCHMÖLZER XXIII

 .$detail["macMaintInterval"].'days'));

 $purCosts = number_format($detail["macPurchaseCosts"], 2, ",", " ");

 $pdate = date("d.m.Y", strtotime($detail["macPurchaseDate"]));

 $asset = number_format($detail["macAssetValue"], 2, ",", " ");

 $costsLastYear = costsMachineYear($conn, $machine);

 $costsactual = costsMachineActual($conn, $machine);

 echo '

 <h1>'.$name.'</h1>

 <table class="tableouter"><tr>

 <td>

 <table class="tableinner">

 <tr><th>Machine type</th> <td>'.$detail["macType"].'</td></tr>

 <tr><th>Last
maintenance</th> <td>'.$lastMaint.'</td></tr>

 <tr><th>Next
maintenance</th> <td>'.$nextMaint.'
in '

 .dateDifference('today',$nextMaint,1).' days</td></tr>

 <tr><th>Purchasing price</th> <td>'.$purCosts.' EUR</td> </tr>

 <tr><th>Purchasing date</th> <td>'.$pdate.'</td></tr>

 <tr><th>Asset value</th> <td>'.$asset.' €</td></tr>

 <tr><th>Last years<br< Working hours</th> <td>'

 .number_format($costsLastYear[0], 2, ",", " ").' h</td></tr>

 <tr><th>Last years
 Working costs</th> <td>'

 .number_format($costsLastYear[1], 2, ",", " ").' €</td></tr>

 <tr><th>Actual
working hours</th> <td>'

 .number_format($costsactual[1], 2, ",", " ").' h</td></tr>

 <tr><th>Actual
working costs</th> <td>'

 .number_format($costsactual[0], 2, ",", " ").' €</td></tr>

 </table class="tableinner">

 </td>

 <td><img class="imgDetail" src="images/charts/'

 .$name.'.png" alt="no Chart" width=100%></td>

 </tr>

 </table class="tableouter">';

 }

}

function detailProject($conn, $project){

 $detail = inputExists($conn, $project, $project, 'project');

 if($detail > 0){

 $sql = "SELECT proID, proNumber, proName, typName, usName,

 proBudget, proStartDate, proEndDate, proLastUpdate

 FROM projects

 INNER JOIN user ON projects.proContact = user.usID

 INNER JOIN projecttypes ON projects.proType =

 projecttypes.typID

 WHERE proID = '".$project."';";

 $stmt = mysqli_stmt_init($conn);

 mysqli_stmt_prepare($stmt, $sql);

 $result = mysqli_fetch_assoc(mysqli_query($conn, $sql));

 // Project date and time

 $number = $detail["proNumber"];

 APPENDIX

HANS-JÖRG SCHMÖLZER XXIV

 $name = $detail["proName"];

 $type = $result["typName"];

 $note = $detail["proNote"];

 $contact = $result["usName"];

 // Sum of Workhours and Costs

 $costsArray = costsProject($conn, $detail['proID']);

 // returns array($coEmp, $coMac, $whEmp, $whMac) -> [0 - 3]

 $costs = $costsArray[0] + $costsArray[1];

 $startDate = date("d.m.Y", strtotime($detail["proStartDate"]));

 $endDate = date("d.m.Y", strtotime($detail["proEndDate"]));

 $finDate = date("d.m.Y", strtotime($detail["proEndDate"]));

 if($detail["proFinished"] == 0){

 // Project days due the delivery

 $diff = dateDifference(date("d.m.Y") , $detail["proEndDate"] , 1);

 } else {

 $diff = 'Project is finished.';

 }

 echo '

 <h1>'.$number." / ".$name.'</h1>

 <table class="tableouter"><tr>

 <td>

 <table class="tableinner">

 <tr><th>Project type</th> <td>'.$type.'</td></tr>

 <tr><th>Project Contact</th> <td>'.$contact.'</td></tr>

 <tr><th>Start date</th> <td>'.$startDate.'</td></tr>';

 if(!$detail["proFinished"]){

 echo '

 <tr><th>Delivery date
Days till delivery</th>

 <td>'.$endDate.'
'.$diff.'</td></tr>';

 } else {

 echo '

 <tr><th>Delivery date
Days till delivery</th>

 <td>Project finished
'.$finDate.'</td></tr>';

 }

 echo '

 <tr><th>Workhours employees</th> <td>'.

 number_format($costsArray[2],2,","," ").' h</td></tr>

 <tr><th>Workhours machines</th> <td>'.

 number_format($costsArray[3],2,","," ").' h</td></tr>

 <tr><th>Costs employees</th> <td>'.

 number_format($costsArray[0],2,","," ").' €</td></tr>

 <tr><th>Costs machines</th> <td>'.

 number_format($costsArray[1],2,","," ").' €</td></tr>

 <tr><th>Last activity</th> <td>'.date("H:i - d.m.Y",

 strtotime($detail["proLastUpdate"])).'</td></tr>

 <tr><th>Notes</th> <td>'.$note.'</td></tr>

 </table class="tableinner">

 </td>';

 }else {

 echo 'No Result';

 APPENDIX

HANS-JÖRG SCHMÖLZER XXV

 }

}

function displayActivity($conn){

 /*

 This function Displays Activity according to the user

 if the parameter matches with the sql database

 and if available returns the row of the requested inputs

 */

 $user = $_SESSION['usID'];

 $access = checkAccess($conn, $user);

 if($access){

 $sql = "SELECT actUsName, usName, proName, macName,

 actUsStartDate, actUsEndDate

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 LIMIT 20;";

 } else {

 $sql = "SELECT actUsName, usName, proName, macName,

 actUsStartDate, actUsEndDate

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 WHERE actUsUser =".$user." LIMIT 15;";

 }

 echo '<tr>

 <th>Activity</th>';

 if($access){

 echo' <th>User</th>';

 }

 echo '<th>Project</th>

 <th>Machine used</th>

 <th>Activity Start</th>

 <th>Activity End</th>

 <th>Time spend</th>

 </tr>';

 $result = mysqli_query($conn, $sql);

 if(!$result){

 $result = 0;

 }

 if(mysqli_num_rows($result) > 0){

 while($row = mysqli_fetch_assoc($result)){

 $hours = dateDifference($row["actUsStartDate"],

 $row["actUsEndDate"], 2);

 if($access){

 echo "<tr>

 <td>".$row["actUsName"]."</td>

 APPENDIX

HANS-JÖRG SCHMÖLZER XXVI

 <td>".$row["usName"]."</td>

 <td>".$row["proName"]."</td>

 <td>".$row["macName"]."</td>

 <td>".$row["actUsStartDate"]."</td>

 <td>".$row["actUsEndDate"]."</td>

 <td>".$hours." h</td>

 </tr>";

 } else {

 echo "<tr>

 <td>".$row["actUsName"]."</td>

 <td>".$row["proName"]."</td>

 <td>".$row["macName"]."</td>

 <td>".$row["actUsStartDate"]."</td>

 <td>".$row["actUsEndDate"]."</td>

 <td>".$hours." h</td>

 </tr>";

 }

 }

 } else {

 echo "<tr><td>No Entries</td></tr>";

 }

}

function displayEmployees($conn, $activ){

 /*

 This function displays employee according to the user

 if the parameter matches with the sql database

 active describes if the Employee has a valid contract end

 */

 $access = checkAccess($conn, $_SESSION['usID']);

 if ($access){

 if($activ) {

 $sql = "SELECT * FROM user

 INNER JOIN roles ON roles.rolID = user.usRole

 WHERE DATEDIFF(usContract, NOW()) < 1 AND usID >= 2

 ORDER BY usName DESC;";

 } else {

 $sql = "SELECT * FROM user

 INNER JOIN roles ON roles.rolID = user.usRole

 WHERE DATEDIFF(usContract, NOW()) > 0 AND usID >= 2

 ORDER BY usName DESC;";

 }

 } else {

 if($activ) {

 $sql = "SELECT usName, usLogin, rolName, usContract, usLastLogin

 FROM user

 INNER JOIN roles ON roles.rolID = user.usRole

 WHERE DATEDIFF(usContract, NOW()) < 1

 AND usID =".$_SESSION['usID']."

 ORDER BY usName DESC;";

 APPENDIX

HANS-JÖRG SCHMÖLZER XXVII

 }else{

 $sql = "SELECT usName, usLogin, rolName, usContract, usLastLogin

 FROM user

 INNER JOIN roles ON roles.rolID = user.usRole

 WHERE DATEDIFF(usContract, NOW()) > 0

 AND usID =".$_SESSION['usID']."

 ORDER BY usName DESC;";

 }

 }

 $result = mysqli_query($conn, $sql);

 echo "

 <tr>

 <th>Full name</th>

 <th>Login name</th>

 <th>Role</th>

 <th>End of contract</th>

 <th>Last Project</th>

 </tr>";

 if (mysqli_num_rows($result) > 0){

 while($row = mysqli_fetch_assoc($result)){

 echo "

 <tr>

 <td>".$row["usName"]."</td>

 <td>".$row["usLogin"]."</td>

 <td>".$row["rolName"]."</td>

 <td>".date("d.m.Y", strtotime($row["usContract"]))."</td>

 <td>".date("d.m.Y", strtotime($row["usLastLogin"]))."</td>

 </tr>";

 }

 }else {

 echo "<tr><td>No results</tr></td>";

 }

}

function displayMachines($conn, $activ){

 /*

 This function displays machines according to the user

 if the parameter matches with the sql database

 and if available returns the row of the requested inputs

 */

 $access = checkAccess($conn, $_SESSION['usID']);

 if ($access){

 $sql = "SELECT * FROM machines

 WHERE macInactive = ".$activ." AND macID > 1

 ORDER BY macMaintLast DESC ;";

 } else {

 $sql = "SELECT macNumber, macName, macType, macMaintLast,

 macMaintInterval, macLastUpdate FROM machines

 WHERE macInactive = ".$activ." AND macID > 1

 ORDER BY macMaintLast DESC ;";

 APPENDIX

HANS-JÖRG SCHMÖLZER XXVIII

 }

 $result = mysqli_query($conn, $sql);

 if (mysqli_num_rows($result) > 0){

 if($access){

 echo "<tr>

 <th>Machine number</th>

 <th>Machine name</th>

 <th>Machine type</th>

 <th>Next
maintenance</th>

 <th>Last
maintenance</th>

 <th>Purchase date</th>

 <th>Hour Rate
 [EUR]</th>

 <th>Asset value
 [EUR]</th>

 <th>Last activity end</th>

 </tr>";

 while($row = mysqli_fetch_assoc($result)){

 $lastMaint = $row["macMaintLast"];

 $MaintInterval = $row["macMaintInterval"];

 $last = date("d.m.Y", strtotime($lastMaint));

 $next = date("d.m.Y", strtotime($lastMaint.'+'.$MaintInterval.'da

ys'));

 $update = date("h:i d.m.Y", strtotime($row["macLastUpdate"]));

 $rate = number_format($row["macHourRate"],2,","," ");

 $value = number_format($row["macAssetValue"],2,","," ");

 echo "<tr>

 <td>".$row["macNumber"]."</td>

 <td>".$row["macName"]."</td>

 <td>".$row["macType"]."</td>

 <td>".$next."</td>

 <td>".$last."</td>

 <td>".date("d.m.Y", strtotime($row["macPurchaseDate"]))."<

/td>

 <td>".$rate." €</td>

 <td>".$value." €</td>

 <td>".$update."</td>

 </tr>";

 }

 } else {

 echo "<tr>

 <th>Machine name</th>

 <th>Machine type</th>

 <th>Next
maintenance</th>

 <th>Last
maintenance</th>

 <th>End Date
last activity</th>

 </tr>";

 while($row = mysqli_fetch_assoc($result)){

 $lastMaint = $row["macMaintLast"];

 $maintInterval = $row["macMaintInterval"];

 $last = date("d.m.Y", strtotime($lastMaint));

 APPENDIX

HANS-JÖRG SCHMÖLZER XXIX

 $next = date("d.m.Y", strtotime($lastMaint.'+'.$maintInterval.'day

s'));

 $update = date("h:i d.m.Y", strtotime($row["macLastUpdate"]));

 echo "<tr>

 <td>".$row["macName"]."</td>

 <td>".$row["macType"]."</td>

 <td>".$next."</td>

 <td>".$last."</td>

 <td>".$update."</td>

 </tr>";

 }

 }

 } else {

 echo "0 results";

 }

}

function displayProjects($conn, $activ){

 //Function to display the projects

 $access = checkAccess($conn, $_SESSION['usID']);

 $sql = "SELECT proID, proNumber, proName, typName, usName, proBudget,

 proStartDate, proEndDate, proLastUpdate

 FROM projects

 INNER JOIN user ON projects.proContact = user.usID

 INNER JOIN projecttypes ON projects.proType = projecttypes.typID

 WHERE proFinished = ".$activ."

 ORDER BY proEndDate DESC

 LIMIT 15;";

 $result = mysqli_query($conn, $sql);

 if (mysqli_num_rows($result) >0){

 if ($access){

 echo "

 <tr>

 <th>Project number</th>

 <th>Project name</th>

 <th>Project type</th>

 <th>Contact</th>

 <th>Start date</th>

 <th>Delivery date</th>

 <th>Budget</th>

 <th>Costs</th>

 </tr>";

 while($row = mysqli_fetch_assoc($result)){

 $costsArray = costsProject($conn, $row['proID']);

 $costs = $costsArray[0] + $costsArray[1];

 $budget = number_format($row["proBudget"],2,","," ");

 $costs = number_format($costs,2,","," ");

 $start = date("d.m.Y", strtotime($row["proStartDate"]));

 $end = date("d.m.Y", strtotime($row["proEndDate"]));

 echo "

 APPENDIX

HANS-JÖRG SCHMÖLZER XXX

 <tr>

 <td>".$row["proNumber"]."</td>

 <td>".$row["proName"]."</td>

 <td>".$row["typName"]."</td>

 <td>".$row["usName"]."</td>

 <td>".$start."</td>

 <td>".$end."</td>

 <td>".$budget." €</td>

 <td>".$costs." €</td>

 </tr>";

 }

 } else {

 echo "<tr>

 <th>Project number</th>

 <th>Project name</th>

 <th>Contact</th>

 <th>Start date</th>

 <th>Delivery date</th>

 <th>Status</th>

 </tr>";

 while($row = mysqli_fetch_assoc($result)){

 $costsArray = costsProject($conn, $row['proID']);

 $costs = $costsArray[0] + $costsArray[1];

 $status = (1-$costs/$row["proBudget"])*100;

 $start = date("d.m.Y", strtotime($row["proStartDate"]));

 $end = date("d.m.Y", strtotime($row["proEndDate"]));

 echo "

 <tr>

 <td>".$row["proNumber"]."</td>

 <td>".$row["proName"]."</td>

 <td>".$row["usName"]."</td>

 <td>".$start."</td>

 <td>".$end."</td>

 <td>".number_format($status, 2,","," ")." %</td>

 </tr>";

 }

 }

 }else {

 echo "<tr><td>0 results</tr></td>";

 }

}

function greetings($fullName){

 $Hour = date('G');

 if ($Hour >= 5 && $Hour <= 10) {

 $greetings = "Good Morning, ".$fullName;

 } else if ($Hour >= 11 && $Hour <= 16) {

 $greetings = "Hello, ".$fullName;

 } else if ($Hour >= 17 || $Hour <= 19) {

 $greetings = "Good Evening, ".$fullName;

 APPENDIX

HANS-JÖRG SCHMÖLZER XXXI

 } else if ($Hour >= 20 || $Hour <= 4) {

 $greetings = "Good Night, ".$fullName;

 }

 echo $greetings;

}

function inactiveUser($conn){

 $stmt = mysqli_stmt_init($conn);

 $hashedPwd = password_hash('1BUCpzr=H$YtR5iq1', PASSWORD_DEFAULT);

 $sql = "UPDATE user

 SET usPwd ='".$hashedPwd."'

 WHERE DATEDIFF(usContract, NOW()) < 0

 AND DATEDIFF(usContract, NOW()) > -180

 AND usID >= 2;";

 mysqli_query($conn, $sql);

}

function inputExists($conn, $id, $name, $type){

 /*

 This function checks if the parameter matches with the sql database

 and if available returns the row of the requested inputs

 */

 if(empty($type)){

 exit();

 } elseif ($type == 'machine'){

 $sql = "SELECT * FROM machines WHERE macID = ? OR macName = ?;";

 } elseif ($type == 'project') {

 $sql = "SELECT * FROM projects WHERE proID = ? OR proName = ?;";

 } elseif ($type == 'employee') {

 $sql = "SELECT * FROM user WHERE usID = ? OR usName = ? OR usLogin = ?;";

 } elseif ($type == 'role') {

 $sql = "SELECT * FROM roles";

 } elseif ($type == 'activity'){

 $sql = "SELECT * FROM activityemp WHERE actID = ? OR actName = ?;";

 }

 // Create a connection to the database

 $stmt = mysqli_stmt_init($conn);

 if(!mysqli_stmt_prepare($stmt, $sql)){

 exit();

 }

 // Set Statement for the database

 if ($type == 'employee') {

 mysqli_stmt_bind_param($stmt, "sss", $id, $name, $name);

 } else if ($type == 'project') {

 mysqli_stmt_bind_param($stmt, "ss", $id, $name);

 } else if ($type == 'activity') {

 mysqli_stmt_bind_param($stmt, "ss", $id, $name);

 } else if($type == 'machine'){

 mysqli_stmt_bind_param($stmt, "ss", $id, $name);

 }

 APPENDIX

HANS-JÖRG SCHMÖLZER XXXII

 // Execute Statement and search results

 mysqli_stmt_execute($stmt);

 $resultData = mysqli_stmt_get_result($stmt);

 // Check if results are not 0

 if($row = mysqli_fetch_assoc($resultData)){

 // $row is an array with named columns as result

 return $row;

 }

 else{

 $result = false;

 return $result;

 }

 // Close connection

 mysqli_stmt_close($stmt);

}

function invalideMail($email){

 $result;

 if(!filter_var($email, FILTER_VALIDATE_EMAIL)){

 $result = true;

 }else{

 $result = false;

 }

 return $result;

}

function invalidName($name){

 $result;

 if(!preg_match("/^[a-zA-Z]*$/", $name)){

 $result = true;

 }else{

 $result = false;

 }

 return $result;

}

function involvedEmployee($conn, $id, $start, $end, $type){

 // $id ... object id

 // $type is who is asking

 if($type == 'project'){

 $sql = "SELECT actUsUser, usName, actUsProject, proNumber,

 proName, actUsMachine, macName, actUsStartDate, actUsEndDate

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 WHERE activityuser.actUsproject ='".$id."'

 AND actUsEndDate >='".$start."' AND actUsStartDate <='".$end."'

 ORDER BY actUsStartDate;";

 }elseif($type == 'machine'){

 APPENDIX

HANS-JÖRG SCHMÖLZER XXXIII

 $sql = "SELECT actUsUser, usName, actUsProject, proNumber,

 proName, actUsMachine, macName, actUsStartDate, actUsEndDate

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 WHERE activityuser.actUsMachine ='".$id."'

 AND actUsEndDate >='".$start."' AND actUsStartDate <='".$end."'

 ORDER BY actUsStartDate;";

 }

 // Create a connection to the database

 $stmt = mysqli_stmt_init($conn);

 if(!mysqli_stmt_prepare($stmt, $sql)){

 //header("location: ../".index.php."?error=stmtExistFailed");

 exit();

 }

 $result = mysqli_query($conn, $sql);

 if(!$result){

 $result = 0;

 }

 if(mysqli_num_rows($result) > 0){

 echo '

 <th><h2>Involved employees</h2></th></tr>

 <tr>

 <th>Name</th>

 <th>Hours</th>

 <th>Start activity</th>

 <th>End activity</th>

 </tr>';

 while($row = mysqli_fetch_assoc($result)){

 $hours = dateDifference($row["actUsStartDate"],

 $row["actUsEndDate"], 2);

 $hours = number_format($hours, 2, ",", " ");

 $start = date("h.m - d.m.Y", strtotime($row["actUsStartDate"]));

 $end = date("h.m - d.m.Y", strtotime($row["actUsEndDate"]));

 echo'

 <tr>

 <td>'.$row["usName"].'</td>

 <td>'.$hours.'</td>

 <td>'.$start.'</td>

 <td>'.$end.'</td>

 </tr>';

 }

 } else {

 echo '<p> No employee activites.</p>';

 }

}

function involvedMachine($conn, $id, $start, $end, $type){

 // $id ... object id

 APPENDIX

HANS-JÖRG SCHMÖLZER XXXIV

 // $type is who is requesting

 if($type=='project'){

 $sql = "SELECT actUsUser, usName, actUsProject, proNumber,

 proName, actUsMachine, macName, actUsStartDate, actUsEndDate

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 WHERE activityuser.actUsproject ='".$id."'

 AND actUsEndDate >='".$start."' AND actUsStartDate <='".$end."'

 ORDER BY actUsStartDate;";

 }elseif($type == 'employee'){

 $sql = "SELECT actUsUser, usName, actUsProject, proNumber,

 proName, actUsMachine, macName, actUsStartDate, actUsEndDate

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 WHERE activityuser.actUsUser = '".$id."'

 AND actUsEndDate >='".$start."' AND actUsStartDate <='".$end."'

 ORDER BY actUsStartDate;";

 }

 // Create a connection to the database

 $stmt = mysqli_stmt_init($conn);

 if(!mysqli_stmt_prepare($stmt, $sql)){

 //header("location: ../".index.php."?error=stmtExistFailed");

 exit();

 }

 $result = mysqli_query($conn, $sql);

 if(!$result){

 $result = 0;

 }

 if(mysqli_num_rows($result) > 0){

 echo '

 <th><h2> Involved machines</h2></th>

 <tr>

 <th>Name</th>

 <th>Hours</th>

 <th>Activity start</th>

 <th>Activity end</th>

 </tr>';

 while($row = mysqli_fetch_assoc($result)){

 if($row["actUsMachine"]>1){

 $hours = dateDifference($row["actUsStartDate"],

 $row["actUsEndDate"], 2);

 $hours = number_format($hours, 2, ",", " ");

 $start = date("h.m - d.m.Y", strtotime($row["actUsStartDate"]));

 $end = date("h.m - d.m.Y", strtotime($row["actUsEndDate"]));

 echo '

 <tr>

 APPENDIX

HANS-JÖRG SCHMÖLZER XXXV

 <td>'.$row["macName"].'</td>

 <td>'.$hours.'</td>

 <td>'.$start.'</td>

 <td>'.$end.'</td>

 </tr>';

 }

 }

 } else {

 echo '<p> No machine activites.</p>';

 }

}

function involvedProject($conn, $id, $start, $end, $type){

 // $id ... object id

 // $type is who is asking

 if($type=='user'){

 $sql = "SELECT actUsUser, usName, actUsProject, proNumber,

 proName, actUsMachine, macName, actUsStartDate, actUsEndDate

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 WHERE activityuser.actUsUser ='".$id."'

 AND actUsEndDate >='".$start."' AND actUsStartDate <='".$end."'

 ORDER BY actUsStartDate;";

 }elseif($type=='machine'){

 $sql = "SELECT actUsUser, usName, actUsProject, proNumber,

 proName, actUsMachine, macName, actUsStartDate, actUsEndDate

 FROM activityuser

 INNER JOIN user ON activityuser.actUsUser = user.usID

 INNER JOIN machines ON activityuser.actUsMachine = machines.macID

 INNER JOIN projects ON activityuser.actUsProject = projects.proID

 WHERE activityuser.actUsMachine ='".$id."'

 AND actUsEndDate >='".$start."' AND actUsStartDate <='".$end."'

 ORDER BY actUsStartDate;";

 }

 // Create a connection to the database

 $stmt = mysqli_stmt_init($conn);

 if(!mysqli_stmt_prepare($stmt, $sql)){

 //header("location: ../".index.php."?error=stmtExistFailed");

 exit();

 }

 $result = mysqli_query($conn, $sql);

 if(!$result){

 $result = 0;

 }

 if(mysqli_num_rows($result) > 0){

 echo '

 <th><h2>Involved projects</h2></th>

 <tr><td>

 APPENDIX

HANS-JÖRG SCHMÖLZER XXXVI

 <tr>

 <th>Number
Name</th>

 <th>Hours</th>

 <th>Start activity</th>

 <th>End activity</th>

 </tr>';

 while($row = mysqli_fetch_assoc($result)){

 $hours = dateDifference($row["actUsStartDate"],

 $row["actUsEndDate"], 2);

 $start = date("h.m - d.m.Y", strtotime($row["actUsStartDate"]));

 $end = date("h.m - d.m.Y", strtotime($row["actUsEndDate"]));

 echo '<tr>

 <td>'.$row["proNumber"].'
'.$row["proName"].'</td>

 // <td>'.$hours.'</td>

 <td>'.$start.'</td>

 <td>'.$end.'</td>

 </tr></td>';

 }

 } else {

 echo '<p> No project activites.</p>';

 }

}

 function loginUser($conn, $username, $pwd){

 $input = inputExists($conn, $username, $username, 'employee');

 if($input === false){

 header("location: ../index.php?error=NoSuchUser");

 exit();

 }

 // verify Pwd

 $pwdCheck = password_verify($pwd, $input["usPwd"]);

 if($pwdCheck == false){

 header("location: ../index.php?error=WrongPwd");

 exit();

 } else if ($pwdCheck == true){

 //Open session for roles

 session_start();

 $userID = $input["usID"];

 $_SESSION['usID'] = $input["usID"];

 $_SESSION['usLogin'] = $input["usLogin"];

 $_SESSION['usName'] = $input["usName"];

 $_SESSION['usRole'] = $input["usRole"];

 $lastLog = "UPDATE user

 SET usLastLogin ='".date("Y-m-d")."'

 WHERE usID =".$userID.";";

 mysqli_query($conn, $lastLog);

 APPENDIX

HANS-JÖRG SCHMÖLZER XXXVII

 inactiveUser($conn);

 //Close connection

 mysqli_close($conn);

 header("location: ../home.php");

 } else {

 header("location: ../index.php?error=NoInput");

 exit();

 }

 }

 function pwdMatch($pwd, $pwdrepeat){

 $result;

 if($pwd !== $pwdrepeat){

 $result = true;

 }

 else{

 $result = false;

 }

 return $result;

 }

function updateActivity($conn, $aID, $aName, $uName, $pName,

 $mName, $actStart, $actEnd, $noUser){

 // Create the statements for interaction with SQL

 $stmt = mysqli_stmt_init($conn);

 $user = inputExists($conn, $uName, $uName, 'employee');

 $update = " UPDATE activityuser

 SET actUsName =?, actUsUser =?, actUsProject =?,

 actUsMachine =?, actUsStartDate =?, actUsEndDate =?,

 actUsNouser=?, actUsLog='".date("Y-m-d h:a:s")."'

 WHERE actUsID =?;";

 if(!mysqli_stmt_prepare($stmt, $update)){

 header("location: ../activityUpdate.php?error=stmt_prepare_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 $lastActivity = date("Y-m-d H:i:s");

 if(mysqli_stmt_bind_param($stmt, "siiissisi", $aName, $user["usID"], $pName, $

mName, $actStart, $actEnd, $noUser, $lastActivity, $aID) == false){

 header("location: ../activityUpdate.php?error=stmt_bind_param_failed?activ

ity:".$aName."?user:".$user["usID"]."?project:".$pName."?machine:".$mName."?Start:

".$actStart."?End:".$actEnd."?lonely:".$noUser."?lastLog".$lastUpdate);

 exit();

 }

 if(!mysqli_execute($stmt)){

 header("location: ../activityUpdate.php?error=query_failed?ActID:'.$stmt");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 APPENDIX

HANS-JÖRG SCHMÖLZER XXXVIII

 exit();

 }

 //update Project

 $logUpdate = date("Y-m-d H:i:s", strtotime($actEnd));

 $lastLog = "UPDATE projects

 SET proLastUpdate ='".$logUpdate."'

 WHERE proID ='".$pName."';";

 if(mysqli_query($conn, $lastLog) == false){

 header("location: ../activityNew.php?error=update_project_failed?

 Date:".date("Y-m-d h:a:s")."?Project:".$pName);

 exit();

 }

 //update Machine

 $lastLog = "UPDATE machines

 SET macLastUpdate ='".$logUpdate."'

 WHERE macID ='".$mName."';";

 if(mysqli_query($conn, $lastLog) == false){

 header("location: ../activityNew.php?error=update_machine_failed?

 Date:".date("Y-m-d h:a:s")."?Project:".$mName);

 exit();

 }

 //Close DB connection

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

}

function updateMachine($conn, $mid, $number, $name, $type, $note, $purDate,

 $purCost, $hourRate, $assetValue, $util,$maintInterval,

 $maintLast, $inactive){

 // Create the statements for interaction with SQL

 $stmt = mysqli_stmt_init($conn);

 $input = inputExists($conn, $mid, $name, 'machine');

 // $assetValue = $buchwert * $Abschreibungssatz[in prozent]

 $assetValue = asstetCalc($conn, $purCost, $purDate);

 $update = "UPDATE machines

 SET macNumber =?, macName =?, macType =?, macNotes =?,

 macPurchaseDate =?, macPurchaseCosts =?, macHourRate =?,

 macAssetValue =?, macUtilisation =?, macMaintInterval =?,

 macMaintLast =?, macInactive= ? , macLastUpdate ='"

 .date("Y-m-d h:a:s")."'

 WHERE macID =?;";

 if(!mysqli_stmt_prepare($stmt, $update)){

 header("location: ../machineUpdate.php?error=stmt_prepare_failed?");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 if(!mysqli_stmt_bind_param($stmt,"sssssdidiisii", $number, $name, $type,

 $note, $purDate, $purCost, $hourRate, $assetValue, $util,

 $maintInterval, $maintLast, $inactive, $input["macID"])){

 APPENDIX

HANS-JÖRG SCHMÖLZER XXXIX

 header("location: ../machineUpdate.php?error=stmt_bind_param_failed?");

 exit();

 }

 if(!mysqli_execute($stmt)){

 header("location: ../machineUpdate.php?error=query_failed?");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 //Close DB connection

 mysqli_close($conn);

}

function updateProject($conn, $pID, $number, $name, $contact, $type, $budget,

 $startDate, $endDate, $note, $finished){

 // Create the statements for interaction with SQL

 $stmt = mysqli_stmt_init($conn);

 $update = "UPDATE projects

 SET proNumber =?, proName =?, proContact =?, proType =?,

 proBudget =?, proStartDate =?, proEndDate =?, proFinished =?,

 proNote =?, proLastUpdate ='".date("Y-m-d h:a:s")."'

 WHERE proID =?;";

 if(!mysqli_stmt_prepare($stmt, $update)){

 header("location: ../projectUpdate.php?error=stmt_prepare_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 $budget = str_replace(',', '.', $budget);

 if(!mysqli_stmt_bind_param($stmt, "ssiidsssii", $number, $name, $contact,

 $type, $budget, $startDate, $endDate, $note, $finished, $pID)){

 header("location: ../projectUpdate.php?error=stmt_bind_param_failed?");

 exit();

 }

 if(!mysqli_execute($stmt)){

 header("location: ../projectUpdate.php?error=query_failed?");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 if($finished == 1){

 // Sum of emp and mac costs

 $costsArray = costsProject($conn, $pID);

 // returns array($coEmp,$coMac,$whEmp,$whMac) -> [0 - 3]

 $costs = $costsArray[0] + $costsArray[1];

 $fin = "UPDATE projects

 SET proCosts = ".$costs.";";

 mysqli_execute($conn, $fin);

 }

 //Close DB connection

 APPENDIX

HANS-JÖRG SCHMÖLZER XL

 mysqli_close($conn);

}

function updateUser($conn, $userID, $name, $login, $contractEnd, $role,

 $cfee, $afee, $sfee, $pwd){

 // Create the statements for interaction with SQL

 $stmt = mysqli_stmt_init($conn);

 $hashedPwd = password_hash($pwd, PASSWORD_DEFAULT);

 $update = "UPDATE user

 SET usName =?, usLogin =?, usContract=?, usRole =?,

 usFee1 =?, usFee2 =?, usFee3 =?, usPwd =?, usLastLogin =?

 WHERE usID =?;";

 if(!mysqli_stmt_prepare($stmt, $update)){

 header("location: ../employeeUpdate.php?error=stmt_prepare_failed?");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 if(!mysqli_stmt_bind_param($stmt, "sssidddssi", $name, $login, $contractEnd,

 $role, $cfee, $afee, $sfee, $hashedPwd, $lastLogin, $userID)){

 header("location: ../employeeUpdate.php?error=stmt_bind_param_failed?");

 exit();

 }

 if(!mysqli_execute($stmt)){

 header("location: ../employeeUpdate.php?error=query_failed");

 mysqli_stmt_close($stmt);

 mysqli_close($conn);

 exit();

 }

 //Close DB connection

 mysqli_close($conn);

}

