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Kurzfassung

Diese Arbeit beschäftigt sich mit der Erkennung von Unstetigkeiten in Echtzeit-Sensordaten von
Anlagen und Maschinen. Das ist insbesondere von Bedeutung, da physikalische Systeme deren
Verhalten über Differentialgleichungen beschrieben wird, ausschließlich kontinuierlicher Funktio-
nen und Ableitungen ausgesetzt sein sollten. Hierbei baut diese Arbeit auf Forschungen im Bere-
ich der Erkennung von Cn-Unstetigkeiten auf, wobei in weiterer Folge eine Verallgemeinerung
des Ansatzes durchgeführt wird. Dabei ermöglicht der erweiterte Ansatz, bei einer Menge von n
Ableitungen einer Funktion, jene n Ordnungen zu definieren, welche auf Unstetigkeiten untersucht
werden sollen.

Alle dazu notwendigen Herleitung werden in Matrixschreibweise bereitgestellt. Anschließend
erfolgt die numerische Umsetzung der erweiterten Methode, welche mittels synthetischer und
realer Datensätze getestet wird. Im Zuge dieser Evaluierung wurde die Detektionsmethode mit
anderen gängigen Algorithmen aus diesem Feld gegenübergestellt. Dabei wurden zwei, in der Lit-
eratur verwendete, Leistungskennzahlen herangezogen.

Der neue Ansatz kann als allgemeinste Formulierung der Detektionsmethoden, die in dieser Ar-
beit behandelt wurden, gesehen werden, da keine genauere Spezifizierung des Anwendungsfalls
erforderlich ist. Generell basiert dieser auf einer allgemeinen mathematischen Formulierung einer
Unstetigkeit, welche eine Verallgemeinerung einer Cn-Unstetigkeit darstellt. Die durchgeführte
Evaluierung zeigt, dass der Detektions-Algorithmus, im verwendeten Testumfeld, überdurchschnittliche
Ergebnisse aufweist. Dabei ist allerdings anzumerken, dass einzelne andere Anwendungen, dur-
chaus höhere Kennzahlen lieferten. Zusätzlich zu erwähnen ist hierbei, dass die verwendeten Test-
datensätze ausschließlich C0- und C1-Unstetigkeiten aufweisen. Der neue Ansatz, zeigt zwar gute
Ergebnisse bei diesen, es ist allerdings davon auszugehen, dass er für Unstetigkeiten höherer Ord-
nung besser geeignet ist.
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Abstract

This thesis addresses the issue of detecting discontinuities in real-time observational data from
plant and machinery. This is highly relevant, since systems whose dynamics are well modelled by
differential equations should exhibit continuity in the real-time signals and their derivatives. This
work builds upon previous research into the detection of Cn discontinuities and extends it to a more
general case. Considering a set of n derivative orders, the new approach permits defining which of
these n orders are to be inspected for discontinuities.

All the derivations for the method, based on matrix algebraic formulations, are provided. Fur-
thermore, a numerical solution for the method is implemented. Testing has been performed with
a wide set of data sets derived from strongly differing areas of application. Performance estimates
are computed using two different metrics and are compared with the results from other discontinu-
ity and change detection methods.

This new approach is the most generic of all the methods considered, since it does not require
application specific adaption. It is based on a formal mathematical definition of a discontinuity,
which is a generalization of a Cn discontinuity. The comparative results show that the algorithm,
on average, outperforms the other methods. There are, however, specific cases where the applica-
tion specific methods perform better. Previous literature and test datasets only consider C0 and C1

type discontinuities. Whereas, the new approach, not only performs well for these type of discon-
tinuities, but also functions for higher order derivative discontinuities.
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Chapter 1
Introduction

A model of a physical system, bound to the laws of physics, is directly part of a data science
environment dependent on the provided measurement data to the system. Hence, abrupt changes
in the observed data could lead to an abnormal behaviour of the model. An area in that context
which seems to attract quite some attention in the recent past is the so called physics informed data
science [2], [3]. For further illustration of the described issue consider the following example of
the differential equation of the simple gravity pendulum,

∂ 2q(t)
∂ t2 +

g
l

sin(q(t)) = 0. (1.1)

Hereby, a discontinuity in ∂ 2q(t)
∂ t2 - a second order discontinuity - would lead to a completely false

behaviour of the model given in Equation 1.1. Thus, the detection of such changes might be of
interest. Exactly such a detection problem can be considered as the main subject of a field called
change point or discontinuity detection, where mathematical concepts are applied in order to detect
changes in data. From an algebraic perspective the literature distinguishes between three different
types of discontinuities in univariate real valued functions. Namely, those are removable, jump and
infinite discontinuities. A more in-depth definition of the different types is going to be executed
later in this thesis. As a result of higher practical relevance the major focus of this work is on the
detection of jump discontinuities of functions and their derivatives. Irregularities of that type can
affect the behaviour of a model describing a physical system by differential equations as examined
in [1].

Additional use cases for discontinuity detection would be segmented regression [4], detection
of specific events for example in economic time series data [5], geophysics [6] or image process-
ing [7], [8]. Considering the field of image processing, the detection of jumps is equivalent to the
finding of edges in an image. Likewise, possible change points in the derivative of image data may
be of interest in the task of edge detection.

1



1 Introduction 2

Even tough, this thesis is primarily dealing with a non-parametric discontinuity detection
method with constrained local polynomial approximation, an outline of the field of change point
detection in general as part of time series analysis is given briefly in Chapter 3. However, before
the different approaches for change point detection are introduced, in Chapter 2 an outline for the
relevant algebraic concepts necessary for this thesis is made. Afterwards, the derivative disconti-
nuity detection method proposed in [1] is presented in Chapter 4.
Subsequently, a more general approach for the introduced method is described in Chapter 5, which
is then tested with synthetic datasets, generated for the evaluation of change point detection algo-
rithms. Whereas, the results are compared to the first version of the detection approach. After the
application of the method to datasets without noise, the impact of noise to the detection method is
also tested with a Monte Carlo simulation.
Finally, in Chapter 6 the method is compared to other algorithms used in the field of change point
analysis. This comparison is performed with an evaluation framework dedicated to measure the
performance of change detection algorithms tested with a specific dataset collection.
At the end, Chapter 7 gives a conclusion of the thesis and some possible future tasks are proposed.



Chapter 2
Algebraic Fundamentals

In this chapter some algebraic fundamentals, which are required for the derivative discontinuity
detection method later in this thesis, are introduced.

2.1 Polynomials

As a highly applied and very popular set of functions the algebraic polynomials can be defined as
functions which map the set of real numbers into itself. [9]

Generally, a polynomial y(x,a), as the weighted sum of monomials, is formulated as,

y(x,a) = adxd +ad�1xd�1 + · · ·+a1x1 +a0, (2.1)

with d 2 N being a non-negative integer. The weights used for each monomial are called poly-
nomial coefficients ↵= [ad ad�1 . . .a0]T , which are real valued constants, ↵ 2 R. Alternatively,
the sum notation is also commonly used with,

y(x,a) =
d

Â
i=0

aixi. (2.2)

As a broadly applied way to approximate data points, polynomials are well known in a lot of
different subjects and fields. This mainly comes from the fact that they are relatively flexible in
their application and pretty easy to understand.

Concerning the usage of polynomials in general two theorems are essential. One of which is the
Weierstrass Theorem [10] describing the application range of polynomials.

Theorem 1. (Weierstrass approximation theorem) A real continuous function f = f (x) over an
interval x 2 [a,b], can be approximated by a polynomial p(x) such that the supremum norm

|| f (x)� p(x)||• < e, with e > 0, f or a  x  b. (2.3)

3



2.1 Polynomials 4

This means that it is possible to approximate a continuous function f (x) by a polynomial p(x)
with arbitrary accuracy e as long as the degree of the polynomial is high enough.

The second fundamental theorem stated here is Taylor’s theorem, which proposes a way to
determine a nth order polynomial approximation around a location x = a of a continuous function
f = f (x). This is accomplished by evaluating the respective derivatives of the function around the
point x = a.

Theorem 2. (Taylor’s theorem) For a continuous function f = f (x) with n�1 continuous deriva-
tives, the function can be defined as,

f (x) = f (a)+
f (1)(a)

1!
(x�a)+ · · ·+ f (n)(a)

n!
(x�a)n +Rn(x,a), (2.4)

whereas, the theorem also delivers an estimate of the residual error e with,

e = Rn(x,a) =
Z x

a

f (n+1)(t)
n!

(x� t)ndt (2.5)

Consequently, the Maclaurin series is defined as a Taylor series evaluated at the point x = 0.
In other words, it can be constructed by performing the coordinate transformation y = x� a and
subsequently evaluate the approximation at the point y with,

f (y) = f (0)+
f (1)(0)

1!
y+ · · ·+ f (n)(0)

n!
yn +Rn(y,0). (2.6)

So, by considering the formulation of the Maclaurin expansion in Equation 2.6 compared to the
definition of a polynomial in Equation 2.1 it can be shown that the polynomial coefficients ↵ are
equivalent to the Taylor coefficients, both evaluated around the origin. Now a Taylor expansion the
first d terms delivers an estimate f̃ (x) for a respective continuous function f = f (x) with at the
point a,

f̃ (x) =
d

Â
i=0

f (i)(a)
i!

(x�a)i. (2.7)

Thus, the estimate f̃ (x) delivered by the Maclaurin expansion at the point a = 0 would then be,

f̃ (x) =
d

Â
i=0

f (i)(0)
i!

(x)i. (2.8)

with,

t(i)f , f (i)(0)
i!

. (2.9)

Whereas, t(i)f is the ith order Maclaurin coefficient. Then, as already stated above, by performing
the polynomial approximation at the origin of the coordinate system the polynomial coefficients ↵
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are closely related to the corresponding derivatives at that point. Hence, the connection between
the Maclaurin coefficients t f and polynomial coefficients ↵ can be made by,

t(i)f = ai =
f (i)(0)

i!
(2.10)

Another way to formulate a polynomial is in matrix form. In particular this variant is of impor-
tance when computational resources are required to perform calculations with polynomials, since
many programming languages, such as mcode in MATLAB or Python, support matrix notation
directly. Hence, the application of polynomials gets easier for the user. Considering the notation
variants above, a general polynomial is denoted as,

y(x,↵)=
h
xd xd�1 . . . 1

i

2

66664

an

an�1
...

a0

3

77775

= vd(x)↵

(2.11)

in matrix form, where the vector vd(x) stores all d powers of x and can be part of a bigger
matrix, if the polynomial y(x,a) is evaluated at n sample points. Hereby, n row vectors with the
structure of vd(x) are combined to the so called Vandermonde matrix

V =

2

66664

vd(x1)

vd(x2)
...

vd(xn)

3

77775
=

2

66664

xd
1 xd�1

1 . . . x1 1
xd

2 xd�1
2 . . . x2 1

...
...

...
...

...
xd

n xd�1
n . . . xn 1

3

77775
. (2.12)

Which finally leads to the handy formulation for a set of n polynomial evaluation in matrix form
with,

y = V ↵. (2.13)

2.2 Polynomial Interpolation

Now that the principle formulation is defined, the subsequent part of this subchapter will focus
on general application examples of polynomials and the impact of the chosen degree d and the
number of sample points n.
Here mainly three different cases are possible. One of which is defined with,
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n = d +1. (2.14)

Here the solution is exactly determined and the evaluation of the polynomial is also referred to
as polynomial interpolation. A classical application example of this special case is the calibration
of a sensor for example, where only some measurement points are known, but the range within
those points is also of interest. The polynomial coefficients ad are then derived by,

↵d = V �1y. (2.15)

The Vandermonde matrix V is always invertible in the determined case. In general, this is true
for Vandermonde matrices of the form,

V =

2

66664

xd
1 xd�1

1 . . . x1 1
xd

2 xd�1
2 . . . x2 1

...
...

...
...

...
xd

n xd�1
n . . . xn 1

3

77775
2 Rn x (d+1) ,with n = d +1 (2.16)

because the column vectors are linearly independent and the structure of the matrix is squared.
The fact that the columns of the Vandermonde matrix V are linearly independent is supported by
the matter that n unique points are sampled, xi 6= x j,8i 6= j. Note that this circumstance is of theo-
retical nature. Numerically, due accuracy limits, columns of the matrix V can be linearly depended.

Even tough inverting the matrix is possible, the computational effort can get very high, since the
inversion of matrices is of O(n3) time complexity.

Fig. 2.1: Example of a polynomial interpolation with n = 4 sample points and a polynomial of
degree d = 3.

The second variant on the other hand delivers an under-determined solutions and the approx-
imation of the given sample points can be done not only by one polynomial, but by a family of
polynomials. This scenario is given by,
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n < d +1 (2.17)

This would then lead to a system of polynomial equations with more unknowns d+1 than equa-
tions n. Where the unknowns describing the degrees of freedom of the system and the equations
constraining these. In other words, in the under-determined case at least one degree of freedom
remains.

Hereby, the Vandermonde matrix V is of the form,

V =

2

66664

xd
1 xd�1

1 . . . x1 1
xd

2 xd�1
2 . . . x2 1

...
...

...
...

...
xd

n xd�1
n . . . xn 1

3

77775
2 Rn x (d+1),with n < d +1, (2.18)

which has a non-square structure [n x (d +1)] and is therefore not invertible.

Fig. 2.2: Example of a polynomial interpolation with n = 3 sample points and polynomials of
degree d1 = 3 (red), d2 = 5 (blue) and d3 = 7 (green).

Various polynomials can be used to interpolate between sample points in the under-determined
case, as shown in Figure 2.2. In fact, the family of polynomials consists of infinitely many variants.

2.3 Polynomial Approximation

Then the third and final case is given if

n > d +1, (2.19)

which yields an overdetermined solution by an approximated evaluation of the polynomials.
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Fig. 2.3: Example of an overdetermined polynomial approximation with n = 5 sample points and
polynomial of degree d = 3, optimized in the least squares sense.

Again, just like in the under-determined case, the structure of the Vandermonde matrix V is
non-square in the overdetermined case, where V 2 Rn x (d+1) with n > d +1. Consequently, For-
mula 2.13 has no exact solution, since the V is not invertible.
So, as there is no exact solution to solve for ↵ the best alternative would be to get an approximated
result for the coefficients. In general, a measure to rate the quality of the approximation is then also
formulated.

Now, a brief introduction is given to the algebraically most straight forward approach - the normal
equations. An over-determined system of equations can be written as,

Ax= b. (2.20)

Note that, the system is overdetermined, hence the non-square matrix A is not invertible.

So, as already stated, an exact solution for the given problem setting is not feasible, thus an
approximation is performed with the residual,

r = b�Ax, (2.21)

describing the deviation between the approximated values and the actual observations as a mea-
sure of error. Consequently, to get as close to an exact solution as possible, the goal is to minimize
this residual vector r. This minimization can be achieved by the definition of a cost function e(x),
with the 2-norm of the residual r, as the sum of squared residuals, with,
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e(x) = ||r||22
= rTr

= (b�Ax)T (b�Ax)

= (bT �xTAT )(b�Ax)

= bTb�bTAx�xTATb+xTATAx

(2.22)

Now, given that the cost function e(x) is a scalar, each term of the sum in Equation 2.22 is also
a scalar, so the formulation can be simplified even further with,

e(x) = bTb�2xTATb+xTATAx (2.23)

Furthermore, as the optimization of the approximation is performed with respect to the vector
x, the following condition can be formulated,

de(x)
dx

= 0

=�2AT b+2ATAb.
(2.24)

Subsequently, the system of linear equations,

ATAx=ATb, (2.25)

which are commonly referred to as normal equations, can be formulated. Now, in case the
condition is fulfilled, that the matrix A consists of real values only, the approximate solution x̂ can
be derived with,

x̂= (ATA)�1ATb. (2.26)

Here, the term (ATA)�1AT can be combined to the so called Moore-Penrose Pseudo Inverse
A+, which is the most generalized form of the inverse of a matrix, finally yielding the optimized
approximation in the least squares sense with,

x̂=A+b. (2.27)

Now, considering the previously described over-determined approximation, the system of poly-
nomial equations can be written as,

y = Vo↵o. (2.28)

Hence, the coefficients can be approximated by,
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↵̂o = V +
o y, (2.29)

which are solving the least squares problem stated as,

min
a0

||y�V +
o ↵0||22. (2.30)

Another important factor to keep in mind in this context is the computational efficiency of the
approximation. Therefore, in general the Moore-Penrose Inverse A+ with (ATA)�1AT , is derived
by various approximation techniques, like the QR or the singular value decomposition. Therefore,
both method are briefly introduced in a following subchapter.

2.4 Constrained Polynomial Approximation

Occasionally, it might be the case that an approximation of a set of sample points is required, where
some specific values or derivatives are already known before. These a priori known conditions can
then be considered in the approximation process by placing constraints on the solution.

Furthermore, four different types of constraints are distinguished.

1. Incomplete sum of monomials, which could for example be,

y(x) = a3x3 +a2x2 +a0. (2.31)

In that case, the value of a coefficient could be known to be zero, like a1 = 0 for the example
above.

2. Zero constraints, where the evaluated polynomial at the location c is constrained to,

y(c) = 0. (2.32)

3. Value constraints, with the evaluated polynomial at the location c, implying a value d in the
form of,

y(c) = d. (2.33)

This constraint is also known as Dirichlet condition.
4. Differential constraints, enforcing a value d for the pth derivative of the polynomial y(x) at

the location c, with,
y(p)
(c) = d (2.34)
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In this context, a specific constraint for the first order derivative p = 1 is the Neumann con-
dition with,

y(1)(c) = d (2.35)

Furthermore, these different constraints can be implemented into a system of polynomial equa-
tions with,

1. Modifying the polynomials, which are forming a vector basis sets spanning the space of the
constraints

2. Modifying the coefficients (e.g. by a permutation matrix)
3. Modifying the span and null space of the matrix

In the following, only the third approach is going to be described in more detail, since it is most
relevant for this thesis.

Here the constraint ti is defined by the triplet,

ti =

2

64
ci

ki

ai

3

75 , (2.36)

where ci is the location of the constraint, ki is its order and ai accounts for the respective value.
As a highly general formulation ti enables the implementation of initial, interior or boundary

conditions.

Subsequently, the constraints defined by a triple ti can be implemented into a system of poly-
nomial equations with the constraint matrix C and the value vector a with,

C↵= a (2.37)

Hereby, the constraint matrix C is constructed by m Vandermonde vectors vki
d(ci) of kth

i order
at the location ci

C ,

2

66664

vk1
d (c1)

vk2
d (c2)

...
vkm
d (cm)

3

77775
(2.38)

Now the solution of Equation 2.37 returns the coefficients,

↵=C+a+NC�. (2.39)

Here, the matrix NC forms an orthonormal vector basis set spanning the null space of the matrix
C.
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Then the previously defined formulation of a polynomial approximation yields,

y = V {C+a+NC�}. (2.40)

So, as the general implementation of polynomial constraints has been shown, the following
paragraphs are dealing with a special case of constraints for a system of polynomial equations,
which is relevant for the discontinuity detection method introduced later in this work. Namely, the
special case is the implementation of zero constraints into the system. Hereby, Equation 2.37 can
be formulated with,

C↵= 0, (2.41)

as the value vector a is equal to the zero vector. What is more, the polynomial coefficients are
then derived by,

↵=NC�, (2.42)

and the polynomial approximation results in,

y = V NC�, (2.43)

which is a new system of polynomial equations. Hence, considering the over-determined case,
no exact solution is available. So, the task here is once more to find the vector � which minimizes
the least squares problem stated with,

min
g

||y�V NC�||22. (2.44)

As described previously, the optimal solution in the least squares sense can be achieved by the
pseudo-inverse with,

� = (V NC)+y (2.45)

Thus, the polynomial coefficients ↵ considering the implemented constraints can be computed
with,

↵=NC(V NC)+y. (2.46)

Hereby, the necessary pseudo-inverse can be computed by the normal equation method or dif-
ferent approximation methods. Whereas, two representatives of the later are part of the following
subsection.
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2.5 Computational Variants of the Moore-Penrose Pseudo
Inverse

Since the method of deriving the Moore-Penrose pseudo-inverse of a matrix A directly from the
normal equations is not the most efficient approach, various methods are used to approximate it.
In this context, two main methods are broadly used. Namely, those are the QR decompositions on
the one hand and the singular value decomposition on the other side.

2.5.1 QR decomposition

By applying the QR decomposition to a matrix A, this matrix is decomposed into,

A=QR. (2.47)

Here the matrix Q is orthonormal with, QTQ = I , and R is of upper triangular form. Now,
considering the formulation for the Moore-Penrose pseudo-inverse A+ from Equation 2.26 yields,

A+ = (RTQTQR)�1(QR)T (2.48)

Now, since the matrix Q is orthonormal, the formulation can be simplified to,

A+ = (RTR)�1(QR)T

=R+QT .
(2.49)

Finally, the coefficients, as stated in Equation 2.29, for the over-determined case can be derived
by,

↵o =R+QTy (2.50)

Although, the pseudo-inverse R+ need to be computed, this can be achieved simply through
back substitution, as the matrix R is of upper triangular structure.

2.5.2 Singular Value Decomposition

Another possible way to compute the pseudo inverse of a matrix is to use the singular value decom-
position (SVD). Besides the ability to compute the pseudo-inverse of a matrix efficiently, the SVD
is also broadly used for dimensionality reduction of high-dimensional data or to denoise datasets.
The following section should give a quick introduction of the method and show the application
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in terms of pseudo-inverse computation. Of course, there is a lot of literature about the SVD, for
example a good overview is given in [11].

In general, the SVD of matrix A 2 Cnxm delivers a distinct matrix decomposition in the form,

A=U⌃V ⇤. (2.51)

Where the matrices U 2 Cnxn and V 2 Cmxm are unitary and there columns are orthonormal.
The matrix ⌃ 2Rnxm on the other side, is a diagonal matrix with real and nonnegative values. Note
that the form V ⇤ is the conjugate transpose, which is the equivalent of the regular formulation V T

of a transpose in the complex space C.

Even though, a matrix A could be described exactly with the SVD, a more practical approach
- if not the most important one - is to approximate this matrix. In fact, the decomposition method
delivers optimal low-rank approximation for a matrix A as stated by the Eckhart-Young theorem
[12], which postulates,

Theorem 3. (Eckhart-Young [12]) The optimal rank-r approximation to A, in a least squares
sense, is given by the rank-r SVD truncation Ã with,1

argmin
Ã,s.t. rank(Ã)=r

||A� Ã||F = Ũ⌃̃Ṽ ⇤. (2.52)

Note that the matrices Ũ and Ṽ ⇤ are constructed by the first r columns of U or V respectively.
The estimate ⌃̃ on the other hand, is established by the first r x r sub-matrix of the matrix ⌃. In
general, ⌃ in combination with a predefined threshold is used to define r. Here, the first r entries
on the diagonal of ⌃ bigger than the threshold are considered. This approximation variant is then
called the truncated SVD, which yields an estimate of a matrix A with,

A⇡ Ũ⌃̃Ṽ ⇤ (2.53)

Consequently, the Moore-Penrose pseudo-inverse A+ - or an estimate Ã+ - can be derived
from the SVD, by inverting each of the matrices separately resulting in,

Ã+ , Ṽ ⌃̃�1Ũ ⇤ (2.54)

This estimate can afterwards be used to derive an optimized solution of a over-determined sys-
tem of linear or polynomial equations in the least squares sense, just like described previously with
the normal equations approach. This method, however, is computational more efficient. One appli-
cation example of the SVD in this context might be the MATLAB function pinv(), which delivers
the Moore-Penrose pseudo-inverse of a matrix by making use of the truncated SVD.

1 ||.||F denotes as the Frobenius norm
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2.6 Covariance Propagation

In the context of polynomial approximation it might be of interest, how the uncertainty of a mea-
surement impacts that approximation. Hereby, the task is to compute to which extend variance
propagates through a calculation. In other words, to which extend does changes to an measure-
ment vector y affect the coefficients ↵.

Considering the over-determined polynomial approximation with,

a = V +y. (2.55)

The mean of the coefficient vector ↵ is derived by,

µ↵ =
1
n

n

Â
i=1

↵i

= V +1
n

n

Â
i=1

yi

= V +µy.

(2.56)

Subsequently, the covariance of the coefficients are computed with,

⇤↵ =
1
n

n

Â
i=1

(↵i�µ↵)(↵i�µ↵)
T

=
1
n

n

Â
i=1

(V +yi�V +µy)(V
+yi�V +µy)

T

=
1
n

n

Â
i=1

(V +yi�V +µy)(y
T
i (V

+)T �µT
y(V

+)T )

= V +

(
1
n

n

Â
i=1

(yi�µy)(y
T
i �µT

y)

)
(V +)T

.

(2.57)

Whereas the covariance of the vector y are,

⇤y =
1
n

n

Â
i=1

(yi�µy)(y
T
i �µT

y), (2.58)

which leads to the simplification,

⇤↵ = V +Ly(V
+)T . (2.59)
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Now, under the consideration that the error of y is independent and identically distributed (i.i.d),
the covariance ⇤y can be formulated as,

⇤y = s2I (2.60)

then the covariance of the coefficients ⇤↵ yield,

⇤↵ = V +s2I(V +)T = s2V +(V +)T . (2.61)



Chapter 3
Time Series Analysis

The following chapter is dedicated to give an brief overview of time series in general, as well as of
some chosen challenges for dealing with time series, which are especially relevant for change point
detection. Furthermore, an outline for the different problem settings in change point detection in
combination with different types of methods is given.

In general, a time series is a set of data points which are sorted chronologically or, to put it in
an other way, a time series displays quantities that vary over time. Apart from that characteristic
there are many other specifications by which time series can differ from each other. Therefore, in
the following chapter the most important ones are going to be described in more detail.

Algebraically more precise, a time series maps a given time index, t 2 t to an observed mea-
surement yt 2R. Hereby, two different cases are possible. On one hand, the time series data can be
sampled with continuous time with,

t = R (3.1)

and on the other hand, a discrete representation would be possible as well, given,

t = Z. (3.2)

An example for a continuous time series is for instance the measurement of ambient pressure
values at random time intervals or with varying sampling rates. Whereas, the observation of the
same ambient pressure at constant time intervals, for example every minute, would result in a
discrete time series. Taking samples in constant time steps is generally referred to as uniform
sampling. Out of practical reasons, most of the processed time series in real world applications are
discrete ones.

Considering the example stated above, measuring only the ambient pressure would lead to a
so called univariate time series. Furthermore, by taking measurements of two or more values,
the resulting time series would be a multivariate one. Considering the same example again, by
collecting ambient temperature values additionally at the same time point, the time series object
would than be called multivariate. What is more, multivariate time series yt 2 RD are considered
discrete if they are synchronized and sampled at uniformed time steps.

17
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3.1 Challenges in Time Series Processing

In addition to the basic characteristics described above time series show also different challenges
or specifications. Therefore, some of the more important ones, in terms of change point detection.
are described in the subsequent paragraphs of this chapter.

Trends

A simple and very common example would be an underlying linear trend. Hereby, it might not be
very advisable to use a model which tends to drift to the mean for extrapolation, since the mean is
constantly increasing or decreasing over time.

Fig. 3.1: Example of a positive trend in a time series dataset with constant Gaussian noise s =
0.25.

Periodicities

Time series datasets showing some sort of periodicity or seasonality are very common in obser-
vations of natural processes. Hereby, some sort of repeating pattern can be observed of certain
periods. This could be especially challenging, if a time series dataset is analysed for change points,
because the observed data could have a lot of change points algebraically inside those repeating
patterns. However, the abrupt change which might be of interest, could be in an underlying func-
tion. An example for a periodic time series is given in Figure 3.1, with a pattern of three local
mean-shift change points repeating four times. In that case, one might be interest if there was a
change besides those inside the patterns, which would not be present in that example.
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Fig. 3.2: Example of periodicity in a time series dataset with constant Gaussian noise s .

Outliers

As another prominent representative of the challenges in time series processing, outliers are shown
as an unexpected behaviour of the dataset. In fact, those could be false peaks due to sensor anoma-
lies or zero values due to failed observations, to name just a few examples.

Fig. 3.3: Example of a two outliers at t1 = 200s and t2 = 350s in a time series dataset with constant
Gaussian noise s = 0.25.

Similar to the issue stated with periodicity, outliers can also lead to problems in the course of
change point detection, since algebraically they are discontinuities in the dataset.

Change Points

Even tough, a change point could be confused with an outlier in some special cases, the inherent
reason for the former is entirely different. Furthermore, a time series dataset can have a change
point in various aspects, like in the mean, in the variance or in a derivative to name some of the
possibilities. Since change points and in a more special case discontinuities in sensor data and there
detection are the main topic of this thesis, the upcoming chapters gives a more extensive overview
of the possible versions of change points.
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Fig. 3.4: Example of a mean-shift change point at t = 250s from mean µ1 = 1 to mean µ2 = 2
with constant Gaussian noise s = 0.25.

3.2 Change Point Detection

The field of Change Point Analysis mainly deals with the detection of abrupt changes in data. These
changes could of course be of various nature and show different characteristics. First and foremost,
in this context one tries to answer the question whether or not there is an unsteadiness in the
observed dataset. Consequently, the resulting findings might lead to several sub-problems. Namely,
those could be information about the location, size and amount of discontinuities. Furthermore, it
might be of interest how certain the detected irregularity is a proper change point and with which
probability location and size can be defined.

In 1954 Page [13] published one of the first papers tackling a change point detecting problem.
Hereby, he defined the still well known CUSUM (cumulative sum) method combined with a quality
criteria h to detect a potential break point. Initially, this procedure was motivated by quality control
in manufacturing. Due to the historical relevance and the fact that the technique is still widely used
in the field, a more detailed description of the method is part a following subsection in this chapter.

However, before methods for change detection are described in more detail, different variants of
problem settings are presented. Hereby, typical change point problems, which are processed in the
literature, can be divided in five different groups as follows [14].

3.2.1 Mean-shift

Beginning with the most common representative of change point problems, the mean-shift, is
present in a dataset, if an abrupt jump in the observation leads to a sustained variation of the
underlying mean of the dataset. Hereby, a former mean model can not describe the observation
any more, resulting in the mean models for both subsets with the means µ1 and µ2 separated by
the change point at t = n .
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Fig. 3.5: Example for a change point in the mean at a time of t = 256s of the dataset. Both parts of
the observation are constant within the subset and have Gaussian error distribution with standard
deviation of s = 0.25.

3.2.2 Variance Change

Another, also quite prominent example might be the variance change, which is present if the
variance s2

1 of a dataset changes suddenly to another level s2
2 at the change point location t = n .

This type is especially from importance in the context of frequency or vibration analysis.
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Fig. 3.6: Example for a discontinuity in the variance of a dataset. Two subset are exposed to
two different Gaussian error distributions. Hereby, the first one features a standard deviation of
s1 = 0.25, whereas the second one has a standard deviation of s2 = 0.75. Resulting in a variance
change point at time t = 256 s.

3.2.3 Regression-slope switch

The next possible type of a change point problem could be the slope switch, which is characterised
by an abrupt change in the slope - the first order derivative - of a dataset. Algebraically, this change
behaviour can also be seen as a mean-shift in the first derivative. Of course, with the same principle
also higher derivative discontinuities or change point problems are possible.
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Fig. 3.7: The slope (first derivative) of the time series function is the object of abrupt change
happening at t = 256 s with a constant Gaussian error distribution of s = 0.25.

3.2.4 Distribution change

The distribution change embodies another change point variant, where the type of the underlying
distribution changes abruptly at a certain change point location. Such a change could for example
be the transition from a Gaussian distribution to an Inverse Gaussian distribution, as displayed in
Figure 3.8.
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Fig. 3.8: Example for a change in the type of distribution of an observation, from a Gaussian with
mean µ = 0 and s = 0.25 to an Inverse Gaussian error distribution with original mean µ⇤ = 1 and
shape parameter l = 1 at t = 256 s. (Note: The second signal was shifted to have effectively the
same mean as the first one.)

Additionally, some other problem types like the hazard rate change [15] are also subject of the
change point detection literature. However, as only those types described above are relevant for
this thesis, the others are not discussed in more detail.

3.3 Detection Methods in Change Point Analysis

The main goal of this section is to give an overview of the field of change point detection and de-
scribe some of the most popular methods in more detail. Subsequently, this outline of the different
algorithms should also assist to properly categorize the recently proposed method by Ninevski and
O’Leary [1] in the field and describe the application limits of the algorithm.

As a first basis for segmentation the literature regularly distinguishes between off-line and on-
line detection methods. This differentiation can be seen as fairly general. For instance off-line set-
tings benefit of the availability of higher processing time, since the detection process does not need
to happen in real-time. Hereby, the data is provided in an entire batch. In contrast a method could
be described as on-line, if the possible change points or defined batches of measurement values
can be processed in real-time. Theoretically, on-line methods could be used in off-line settings and
vice versa. In regards of an algorithm typically used for on-line change detection the data which is
directly available just needs to be observed one by one to simulate an on-line behaviour. In compar-
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ison a similar approach is used to perform off-line detection mechanism on on-line environment.
Hereby, data points are collected in smaller batches and then analysed with the off-line method.
However, one could certainly argument that by using the later approach the real-time behaviour of
the technique gets worse with a rising batch size.

Although, so far the method in [1] was only used on off-line settings, it could also be used in an
on-line environment with some adaptions.

One other way to differentiate methods for discontinuity analysis is to distinguish between al-
gorithms for a single change-point or for multiple change-points. Not to surprisingly the second
one is way more difficult and is connected to a much higher calculation effort. This mainly comes
from the possibility of having

�n�1
k�1
�

different ways of n observations to be separated in k segments.
Resulting in

n�1

Â
k=1

✓
n�1
k�1

◆
= 2(n�1) (3.3)

absolute potential outcomes. In analogy to the differentiation between on-line and off-line settings,
it might be achievable to use methods generally designed for multiple change point problems in
single change-point tasks. Even algorithms dedicated for problems with just a single discontinuity
could be used to solve those with several abrupt changes.
In fact, a way this might be obtained is the procedure of binary segmentation, like in [16].The
corresponding iterative routine works as follows:

1. Search for the first change point in a dataset
2. Split the used dataset at the location of the explored discontinuity
3. Begin a new detection run in the new segments

Whereas the classification for now was just due to the given characteristics of the data itself,
another way to categorize the various techniques is with respect to the used methodology. Hence,
the following categorization into five different groups covered in the literature emerges.

1. Parametric Methods
2. Non-Parametric Methods
3. Bayesian Methods
4. Sequential Analysis
5. Miscellaneous Methods

Collected by Lee [14], Table 3.1 shows the distribution of published articles sorted by problem
type and used methodology. According to the overview most papers are dealing with parametric
methods, at least until 2010.

Subsequently, the following subsections are covering some selected algorithms from those cat-
egories.
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Type of Problem Methodology
Parametric Non-parametric Bayesian Sequential Miscellaneous

Mean-shift 40 29 15 33 8
Variance 19 10 7 2 1

Slope-switch 60 9 17 1 2
Hazard-rate 26 6 5 2 7
Distribution 44 32 10 28 4

Total 189 86 54 66 22

Table 3.1: Published articles in the field of change point analysis by Lee, [14] sorted by change
point problem type and detection methodology.

3.3.1 Parametric Methods

The group of parametric change point detection methods does make assumptions about certain
parameters of a given dataset. Hence, they mainly focus on irregularities in a finite-dimensional
parameter vector. This vector could describe the distribution of the given observation belonging to
a family of distributions.

Truong et al. [17] are stating three different concepts in the context of parametric change point
determination:

1. Maximum likelihood estimation
2. Piecewise linear regression
3. Mahalonobis-type metric

For a more detailed description the reader is referred to [17].

3.3.2 Non-parametric Methods

Occasionally, the assumption of an underlying parametric model could be not suitable for certain
observations. As a result the application of non-parametric approaches might be more reliable or
robust in specific circumstances.
Hereby, the literature provides a variety of non-parametric methods. For instance, with regard to
detection of derivative discontinuities Hall and Titterington (1992) [18] tackled this problem by
using an estimation method based on a kernel to approximate peak and edge containing curves,
whereas the aim of the method was to preserve those irregularities. Jose and Ismail (1997) [19] on
the other hand approached a similar problem by residual analysis. Yet another approach was real-
ized through non-parametric kernel estimation by Müller(1992) [20] as well as Wu and Chu(1993)
[21].
Furthermore, a technique on the basis of splines was used by Eubank and Speckman (1994) [22]
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among others.
McDonald and Owen (1986) [23], Qui and Yandell (1998) [24] and Spokoiny (1998)[25] are some
examples where local polynomial estimation was used for change preserving estimation or change
point detection.
Wang (1995) [5] as well as Raimondo (1998) [26] in contrast, rely on wavelet-based approaches.
Even though, all of the mentioned solutions are part of the group of non-parametric change point
detection methods, all are united by the fact, that their performance is strongly governed by a spe-
cific smoothing parameter, which has to be chosen correspondingly.

In general, the literature [17] also distinguishes between three core principles:

1. Non-parametric maximum likelihood estimation
2. Rank-based detection
3. Kernel-based detection

Also for non-parametric methods, a more extensive overview is give in [17].

3.3.3 Bayesian Methods

Another group of popular detection methods are Bayesian algorithms. The majority of them are
dealing with off-line problems. To name just a few, early publications in the area of Bayesian
change point analysis are Chernoff and Zacks [27], Broemeling [28] and Smith [29]. All of the
above have in common, that they are describe a problem in a general form, such that the distri-
bution of the observed dataset prior and after a potential change point is known or at least the
distribution of one side is not known. Furthermore, most of the methods in the literature based on
Bayesian principles make use of the product partitioning model introduced by Barry and Hartigan
[30]. Hereby, the likelihood of a dataset is segmented into a product of sub-likelihoods.

Because it is a highly used and very effective detection technique [31], the Bayesian Online
Changepoint Detection method by Adams and MacKay [32] is going to be described in more
detail in the following part. A similar approach was made by Fearnhead and Liu [33].
Note that in contrary to the majority of Bayesian algorithms, the two methods mentioned above
are focusing on on-line change detection. However, as already described, these methods can easily
be adapted for off-line usage, to some extent.

As the core principle of online change point detection the time elapsed since the last change
point - referred to as run length rt - is modelled with respect to a prior and posterior knowledge.
Basically the evolution of rt proceeds as,
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rt =

8
<

:
0 if a changepoint is likely at t

rt�1 +1 otherwise
(3.4)

Formula 3.4 describes the two ways rt can evolve from one time step to another. Given the only
two possibilities are either to increase by one, if the probability of a change point is low enough
at the certain data point t, or to set to zero directly, should there be a high probability of a change
point at t.
Note: As the Bayesian change point detection is an probabilistic approach the results are only es-
timates of the changepoint.
Hereby, the changepoint prior P(rt |rt�1) models the probability of the transition. Finally, for the
prediction of the upcoming point t +1 one deduce the run-length posterior distribution P(rt |x1..t),
as well as the predictive distribution P(xt+1|x1..t).

The following overview should give an intuitive understanding of the method. Hence, the pro-
cedure is defined by the key measures described subsequently.

1. Value of the probability density function at R[r,t] using the distribution parameters from
R[r�1,t�1]

Note: If the pdf is high, it is likely that the point is on the path.
2. New distribution parameter values

Calculate µ 0 and s 0 for [r, t] in case of a Gaussian distribution.
3. Hazard value H, depended on the current run length
4. Growth probability

Probability for the run length to increase from r�1 to r, which is the product of the following
values:

a. Growth probability at R[r�1,t�1]

b. Probability that the Hazard did not occur: 1�H
c. probability density function for the new data point

5. Change Probability Probability for the run length to decrease to 0. Just like the growth proba-
bility also the change probability is a product of three values. Whereas here the actual hazard
rate H is part of the equation.

a. Growth probability at R[r�1,t�1]

b. Probability that the Hazard did occur: H
c. probability density function for the new data point
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3.3.4 Sequential Analysis

In general, the statistical discipline of sequential analysis [34] is dealing with variable sample
sizes. Hereby, the data is processed just as it is provided and the testing is stopped based on an
predefined stopping criteria. Hence, change point detection methods belonging to this field are
typically capable of dealing with on-line detection settings.

Given that the majority [14] of all sequential analysis methods are related to the CUSUM method
established by Page (1954) [13], this chapter is dedicated to give a more in-depth explanation of
the algorithm. Apart from being the main part of the group, the principle is also one of the most
popular techniques in change point analysis. Additionally, it is still widely used.

Even though, a vast amount of extensions and adaptions was performed to the general CUSUM
method, the principle idea stays the same. In general, the cumulative sum from the observed data
- maybe exposed to a weighting factor or some other transformation - is calculated. Subsequently,
a potential change point can be found in the region of the point where the calculated sum has its
absolute maximum. In order to guarantee significant and reliable results some form of threshold
needs to be defined and compared to the found maximum of cumulative sum. Should the detected
extreme point exceed the threshold, then a change point might be in this region.

Page (1954) [13] was - as already mentioned - one of the first authors who tackled the problem
of change point detection. In fact, he proposed several different variations of the CUSUM method:

1. direct form
2. recursive form
3. one-sided form
4. two-sided form

The task hereby can be defined as follows.
Let X1...n = {x1...xn} be a set of random discrete observations having samples that are independent
and identically distributed (i.i.d.). Each and every sample can be described by a probability density
function (PDF), p(x1...n,q) which is a function of the deterministic variable q . Such an observation
may contain sudden changes at a specific change point n . Resulting in an instantaneous variation
of q at the point n . Consequently, this very observation can not be described by the same PDF any
more. Subsequently, the data will be modelled with q = q1 before n and with q = q2 afterwards.
Assuming that there is only one potential change point in the dataset the following assumptions
can be made:

1. H0 - Null hypothesis (no change point)

pX |H 0
=

k

’
n=0

p(x(n),q1) (3.5)
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2. H1 - Alternative hypothesis (one change point)

pX |H 1
=

n�1

’
n=0

p(x(n),q1)
k

’
n=n

p(x(n),q2) (3.6)

Hereby, it is assumed that both the probability density function of every sample, as well as the
the parameters q1 and q2 are known. Hence, the remaining question one may wish to answer is, if
there is a change point in the dataset. Depending on the result one subsequent task might be to find
the point of change n . A popular technique for solving this problem is the popular likelihood ratio
test [35], which is part of detection theory.

Hereby the log-likelihood ratio LX denotes as:

LX = ln

 
pX |H 1

pX |H 0

!
(3.7)

For, LX  h, where h is a predefined threshold, the null hypothesis H0 is accepted meaning
there is no abrupt change in the observed data point. On the other hand, should, LX > h, the null
gets rejected resulting in a detected change point at the point n . In other words, for an accepted al-
ternative hypothesis, pX |H 1

describes the PDF for the given data significantly better than pX |H 0
.

Under consideration of Formula 3.5 and Formula 3.6, Formula 3.7 can be written as follows:

LX = ln

 
’n�1

n=0 p(x(n),q1)’k
n=n p(x(n),q2)

’k
n=0 p(x(n),q1)

!

= ln

 
’n�1

n=0 p(x(n),q1)’k
n=n p(x(n),q2)

’n�1
n=0 p(x(n),q1)’k

n=n p(x(n),q1)

!

= ln

 
’k

n=n p(x(n),q2)

’k
n=n p(x(n),q1)

!

=
k

Â
n=n

ln
✓

p(x(n),q2)

p(x(n),q1)

◆

(3.8)

Even though the log-likelihood ratio Lx is simplified now, the potential change point n is still
unknown. As a consequence, it is still not possible to make a statement about the acceptance of the
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null hypothesis H0.
Fortunately, detection theory [35] delivers yet another solution. In fact, the log-likelihood ratio
LX is going to be replaced by a generalized likelihood ratio test GX , whereas the maximum of
the log-likelihood ratio LX is of particular interest.

Hence GX denotes as:

GX = max
1nk

LX

= max
1nk

k

Â
n=n

ln
✓

p(x(n),q2)

p(x(n),q1)

◆
(3.9)

Where GX is frequently referred to as decision function, since the null hypothesis is tested as

H0 : GX  h

against the alternative

H1 : GX > h.

Just like before, h is again a predefined threshold, mainly for the purpose of detecting significant
points of change.

Given, that H0 has been rejected this finding subsequently yields another problem setting.
Namely, as a discontinuity is detect, the following task is to make an efficient estimate about
the location n of the point in question. One solution to this problem is the maximum likelihood
estimate [36], which is the estimate n̂ of the change point n maximizing the probability density
function pX |H 1

.

n̂ = argmax
1nk

LX

= argmax
1nk

k

Â
n=n

ln
✓

p(x(n),q2)

p(x(n),q1)

◆
(3.10)

In order to get a more or less straight forward form of the algorithm, the following transforma-
tions can be performed.(direct form) The log-likelihood ratio at the point n is
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s[n] = LX [n,n] = ln
✓

p(x(n),q2)

p(x(n),q1)

◆
(3.11)

and the cumulative sum of the log-likelihood ratio from 0 to k then yields

S[k] = Âk
n=0s[n]. (3.12)

As a result, the log-likelihood ratio for a potential change point LX [k,n ] can easily be derived

LX [k,n ] = S[k]�S[n �1]. (3.13)

Furthermore, the generalized likelihood ratio as well as the maximum likelihood estimate resulting
in

GX [k] = S[k]� min
1nk

S[n �1]. (3.14)

n̂ = argmin
1nk

S[n �1] (3.15)

Note: This is were the name of the CUSUM methods comes from.

Another version, which is computationally more efficient and additionally better suited for on-
line or real-time change point problems is the recursive form of the CUSUM method.

Hereby, the cumulative sum is calculated as

S[k] = S[k-1]+ s[k] (3.16)

then

GX [k] = {GX [k-1]+ s[k]}+ (3.17)

with

GX [�1] = 0 (3.18)
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In equation 3.17 {.}+ considers the fact that the threshold h only has positive values. According
to equation 3.18 GX is initialized with zero and the following values are stored for each subsequent
step. This brings the benefit that, unlike in the direct form GX has not to be calculated for each
sample.

Apart from distinguishing between the direct form and the recursive form of the CUSUM
method, a further differentiation can be made with respect to the application limit. By doing so,
the techniques are separated in one-sided and two-sided algorithms.
Considering the CUSUM method described so far, one would speak about an one-sided method,
since an abrupt change can only be detected in one direction. For example, just positive change
points may trigger the threshold h. Of course, this could be quite unfavourable in many real-world
applications, as most of the time one might be looking for both positive and negative disconti-
nuities. Fortunately, this problem has been addressed by many authors. Unsurprisingly, already
Page [13] proposed a solution for this. In general, the approach consists basically of two one-sided
methods combined. One for positive and one for negative change points.
Of course, there are many other variations or adaptions of the CUSUM method in the literature.
Among many others there are for instance the enhancement for multivariate data [37], the fast
initial response CUSUM [38] and the combined Shewhart-CUSUM methods [39].

3.4 Condition Monitoring

Now, a quick introduction is given to the field of condition monitoring, as it is one important
application example of change point detection. Here some important terms are stated and described
briefly.

In order to ensure and maintain a proper operation of a machine in an industrial environment,
it is necessary to conduct various measures in the context of process observation. Namely, those
could be oil pressure, oil temperature, engine speed and many more. Besides, the monitoring of
the aforementioned operational parameters, it is at least equally important to regularly maintain,
inspect and repair the machine.

As a modern approach for machine maintenance, the field of Condition Monitoring (also Ma-
chinery Monitoring) is dedicated to the observation of certain condition variables of a machine.
Hereby, physical factors are measured and analysed to make inferences about the present state of
an observed object. Consequently the main goals can be summarized as follows.

1. Identification of early potential damages
2. Machine safety
3. Breakdown prevention
4. Machine Efficiency
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Consequently there are various concepts for observation systems, dependent on the desired pur-
pose.

Observation

The task of a simple observation is to detect the presence of an error. Furthermore, in the case of
an automated system a detected failure can lead to further measures.

Early Error Recognition

Early error recognition systems detects possible future failures and ensures the operation of a
machine over a certain time frame.

Error Diagnosis

After the collection of relevant sensor data, the subsequent task is to derive an error diagnosis.
This can be achieved by various signal processing methods for example.

Trend Analysis

Methods for trend analysis are often embedded in systems for early error recognition.At first,
the operation of the monitored machine is still possible, even if a possible future error has been
detected.

Forecast

After the trend analysis the forecast tries to estimate the residual run time of the machine until a
critical state is reached.

Another possible separation for observation systems could be due to the frequency of monitor-
ing. On the one hand the permanent observation yields a high degree of security with the downside
of considerably more effort. Whereas, the intermediate observation is way more flexible and there-
fore less reliable.



Chapter 4
Derivative Discontinuity Detection via Constrained
Local Polynomial Approximation

The following chapter is dedicated to give a detailed explanation of the method for derivative
discontinuity detection in [1].

4.1 Algebraic Discontinuities

For univariate functions, three different types of discontinuities can be distinguished. Beginning
with the simplest form, the so called removable discontinuity is part of a real-valued univariate
function f = f (x) at the sample point x0 if,

f (x0)< • (4.1)

and also

lim
x!x0

f (x) = L < •, (4.2)

but

f (x0) 6= L. (4.3)

Removable discontinuities have there name from the fact, that the point x0 causing the discon-
tinuity, can be removed, yielding a almost identical function F = F(x). A simple example of a
removable discontinuity at the point x0 is shown in Figure 4.1.

Again, as the name suggests the given discontinuity can be removed, resulting in an almost
identical continuous function,

F(x) =

8
<

:
3x+1 for x 6= x0

1.6 for x = x0.
(4.4)

35
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Fig. 4.1: Example of a removable discontinuity in a univariate real-valued function f = f (x) at the
point x = x0.

The so called jump discontinuity is the second variant of possible discontinuities in univariate
functions f = f (x).

Algebraically, this form of singularity is defined with,

lim
x!x�0

f (x) = L1 < • (4.5)

and

lim
x!x+0

f (x) = L2 < • (4.6)

whereas L1 6= L2.

Fig. 4.2: Example of a jump discontinuity in a univariate real-valued function f = f (x) at the point
x = x0.
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An example for a jump discontinuity at x0 = 0.2 is shown in Figure 4.2 for the function

f (x) =

8
<

:
ex for x < x0

ex +1 for x � x0.
(4.7)

Finally, the third version of a discontinuity in a univariate function f = f (x) is known as an
infinite discontinuity. Hereby, a typical example would be the function f (x) = tan(x) with infinite
discontinuities at p

2 x = np
2 with n 2 R as shown in Figure 4.3.

Fig. 4.3: Example of an infinite discontinuity in a univariate real-valued function f = f (x) at the
point x = x0

Even though there are different forms of discontinuities as described above, the focus of this
thesis is only on jump discontinuities in functions and their derivatives. These are also closely
related to the also already described mean-shift and slope-shift change point problems.

4.2 Constrained Coupled Polynomial Approximation

The upcoming subchapter should give an overview of a derivative discontinuity detection method
[1] which applies two constrained coupled polynomial approximations sequentially to set of ob-
servations with suspected discontinuities. Theoretically, the method can be applied in off-line and
on-line setting. In addition, the detection of multiple change points is possible as well.
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4.2.1 General Principle

Now, the general idea is briefly introduced and followed by a more detailed description of the
necessary computational steps. Hereby, one polynomial f(x,a) is approximated to the left and an-
other one to the right g(x,b ) of an interstitial point xi, under the condition that at the point xi the
coefficients up the (n�1)th order are constrained with,

ai = bi, for every i 2 [0...n�1]. (4.8)

While constraining the first n� 1 coefficients the method yields an estimate for the nth order
polynomial coefficients ↵ and �. These are then closely related to coefficients t(n)f and t(n)g of
a Taylor expansion at the interstitial point xi in both directions, which are by itself proportional
to the nth derivative at the evaluation point xi. Subsequently, inferences about possible nth order
discontinuities can be drawn with respect to the magnitude of the calculated Taylor differences
D tn

f g. In other words, should the nth order Taylor coefficients of the left approximation t(n)f and of

the right approximation t(n)g differ significantly, chances are high that there is a discontinuity in the
nth derivative of the observed data at the interstitial point xi.

There are two reasons why interstitial points are used for the method. On the one hand, the
usage of them makes sure that each observed point xi is only used in one polynomial approxima-
tion. Moreover, especially for sensor data it is most likely that the suspected discontinuity might
happen between two sample points. As a result, a method for interpolation between the interstitial
point is necessary. Hereby, this is accomplished by polynomial approximation, as the Weierstrass
approximation theorem [10] recommends. (see Chapter 2)

A generic illustration of the principle is displayed in the following Figure 4.4.
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Fig. 4.4: Schematic visualization of the approximation polynomials f (x,↵,dL) and g(x,�,dR to
the left and to the right of the interstitial point xi over the support lengths lL and lR respectively.

As already described, the basic principle of the method is to evaluate a polynomial to the left
and to the right of an interstitial point xi. Subsequently, these approximations yield two sets of co-
efficients ↵ and �, whereas the coefficients up to the order (n�1) are constrained at the interstitial
point xi to guarantee Cn�1 continuity. As a result the degrees of freedom of the approximation are
reduced and an improved variance of the solution can be maintained.

Consequently, the polynomial approximation at the interstitial point xi can be evaluated for yL
to the left and for yR to the right with the corresponding Vandermonde matrices VL for the left
approximation and VR for the right approximation. The two vectors ↵ and � are dedicated to store
the respective polynomial coefficients.

yL = VL↵ (4.9)

yR = VR� (4.10)

Furthermore, the approximation Formulas 4.9 and 4.10 can be written in block matrix form as,
"
VL 0

0 VR

#"
↵

�

#
=

"
yL
yR

#
(4.11)

As stated in Formula 4.8, a Cn�1 continuity has constrained coefficients, except for those of the
n� th order.

an 6= bn (4.12)
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This characteristic can be written in a structured manner in matrix form as,

h
0 In�1 | 0 �In�1

i"↵
�

#
= 0. (4.13)

In the light of the above the following definitions can be made for the Vandermonde matrix
storing the left and the right Vandermonde matrices in block matrix form

V ,
"
VL 0

0 VR

#
, (4.14)

the coefficient vector

� ,
"
↵

�

#
, (4.15)

an observation vector

y ,
"
yL
yR

#
(4.16)

and for the constraint matrix

C ,
h
0 In�1 | 0 �In�1

i
. (4.17)

Subsequently, the least squares minimization with homogeneous linear constraints can be writ-
ten as,

min
�

||y�V �||22 (4.18)

with

C� = 0. (4.19)

In order to satisfy Equation 4.19 � has to lie in the null-space of the constraint matrix C. In
other words, the coefficient vector � gets mapped by the constraint matrix C to the null vector 0.
Consequently, the orthonormal vector basis set

N = null{C} (4.20)

can be derived. Subsequently, the coefficient vector � can be stated as,

� =N� (4.21)



4.2 Constrained Coupled Polynomial Approximation 41

Now, by substituting Equation 4.21 into Equation 4.18 the least squares minimization problem
results in,

min
�

||y�V N�||22. (4.22)

Consequently, the � which minimizes equation 4.22 is,

� = (V N)+y (4.23)

Hence, the desired coefficients are derived by substituting equation 4.23 into equation 4.21,

� =

"
↵

�

#
=N(V N)+y (4.24)

Finally, in order to compute the Taylor coefficients �t
(n)
f g the difference vector d is defined as,

d=

2

66664

1
0dL�1

�1
0dR�1

3

77775
(4.25)

Consisting only of two zero vectors 0dL�1 and 0dR�1 as well as one entry of 1 and another one
of �1 the sole purpose of this vector is to pick out the coefficients we are interested in from the
vector �. Since, according to equation 4.8 all coefficients up to the order n� 1 are constrained,
there respected differences would be zero anyway. Furthermore, by looking for discontinuities of
order n, all other orders are not of interest in this case. Finally, the respective Taylor differences
�t

(n)
f g can be found by,

D t(n)f g =

2

66664

1
0dL�1

�1
0dR�1

3

77775

"
↵

�

#
= d� = dN(V N)+y. (4.26)

4.2.2 Covariance Propagation

In order to estimate how the covariance of the observed data propagates through the method to the
derived Taylor differences �t

(n)
f g the following calculations can be made.

Given,
K =N(V N)+ (4.27)

the coefficient vector g is denoted by,
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� =Ky. (4.28)

Consequently, with the covariance of the data Ly, the covariance of the coefficients Lg results
in,

⇤� =K⇤yK
T . (4.29)

Hence, the final covariance of the Taylor coefficients LD equates to,

⇤� = d⇤�d
T . (4.30)

⇤� = dK⇤yKKTdT

= dN(V N)+⇤y(N(V N)+)TdT (4.31)

4.2.3 Error Analysis

Finally, to get additional measures for the determination of a possible derivative discontinuity the
following figures are derived as well.

1. Norm of the approximation residual
2. Combined approximation and extrapolation error
3. Extrapolation error
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4.2.3.1 Approximation Error

Fig. 4.5: Schematic visualization of the approximation error with two second order polynomials
approximations at an interstitial point x including the difference ei between the approximation and
the actual observation.

By comparing the observations with the evaluated approximation over an interval, the approxima-
tion error can be seen as a measure for the accuracy or the quality of the approximation. Numeri-
cally, this measure can be computed by comparing these actual values with its approximation for
each sample, as Figure 4.5 suggests. Whereas, ei is the just mentioned difference.

Consequently, the residual vector r is derived as the difference between the observed data vector
y and its estimated counterpart V � as follows,

r = y�V � =

"
yL�VL↵

yR�VR�

#
(4.32)

Thus, the quadratic norm of the residual vector r delivers the approximation error Ea with,

Ea = ||r||22
= ||yL�VL↵||22 + ||yR�VR�||22
= (yL�VL↵)T (yL�VL↵)+(yR�VR�)T (yR�VR�)

= yTy�2↵TV T
LyL+↵TV T

LVL↵�2�TV T
RyR+�TV T

RVR�.

(4.33)

4.2.3.2 Extrapolation Error

Considering a dataset is not exposed to a discontinuity, the extrapolation over a defined interval
should give a relative good estimate for the upcoming observations. However, if a discontinuity
is present, the extrapolation and the corresponding data point differ significantly. Hence, the ex-
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trapolation error can be used as another measure for the detection of a discontinuity. In order to
computed the extrapolation error the differences ei between the extrapolation and the respective
sample point is calculated, as shown in Figure 4.6.

Fig. 4.6: Schematic visualization of the extrapolation error with two second order polynomials
approximations at an interstitial point x including the difference ei between the extrapolation and
the actual observation.

In general, by performing the aforementioned computation over an interval with the length lL or
lR respectively, the extrapolation residual vectors re f and reg denote as,

re f = yL �g(xL,�) = yL �VL� (4.34)

and

reg = yR � f (xR,↵) = yR �VR↵. (4.35)

Whereas, the extrapolation residual vectors re f and reg are storing the respective residual errors
ei and have the structure,

re f =

2

66664

ee f ,1

ee f ,2
...

ee f ,l

3

77775
reg =

2

66664

eeg,1

eeg,2
...

eeg,l

3

77775

Finally, the sum of the squared residual vectors delivers the actual extrapolation error Ea.
In matrix notation this can be written as,
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Ee = rT
e fre f +rT

egreg

= (yL �VL�)
T (yL �VL�)+(yR �VR↵)T (yR �VR↵)

= yT
L yL �2�TV T

L yL +�+yT
RyR �2↵TV T

RyR +↵TV T
R VR↵

(4.36)

4.2.3.3 Combined Error

As a third and final measure for a potential derivative discontinuity, the combined error is intro-
duced. Hereby, the residual over the entire approximation range is calculated twice. Numerically,
this process can be split into two steps. Namely, for each side - left and right to the interstitial point
xi - the combined residual error e f (or eg) is calculated as the difference between the actual obser-
vation and the combined approximation including the interpolation. Considering the left hand side,
this would mean the entire observation y consisting of yL and yR are compared to the combined
approximated values with f (xL,a) (= approximation) and f (xR,a) (= extrapolation).

Fig. 4.7: Schematic visualization of the combined error with two second order polynomials approx-
imations at an interstitial point x including the difference ei, f and ei,g between the combination of
approximation and extrapolation and the actual observation. Here the upper subplot is showing sev-
eral residuals ei, f for the combined error of the LHS. On the other hand, the lower one is displaying
the residuals ei,g concerning the RHS.

Analytical Combined Error

In the following, the approach to calculated the combined error is shown in an analytical form.

ex =
Z xmax

xmin
{ f (x,a)�g(x,b )}2dx (4.37)

Under the consideration, that the coefficients up the nth order are constrained

ex =
Z xmax

xmin
{(an �bn)xn}2dx (4.38)

Consequently, evaluating the integral leads to,



4.2 Constrained Coupled Polynomial Approximation 46

ex = (an �bn)
2 x2n+1

max � x2n+1
min

2n+1
. (4.39)

Since xmax and xmin are constant for a calculation the factor,

k =
x2n+1

max � x2n+1
min

2n+1
(4.40)

is a constant as well. Hence, the combined error ex is directly proportional the squared Taylor
difference D tn

f g,

ex µ (an �bn)
2 (4.41)

Numerical Combined Error

Compared to the analytical way, the combined error can also be formulated numerically. Hence,
the measure can be derived as the 2-norm of combined residual vectors e f (or eg) as,

ef = y�f(x,↵) (4.42)

eg = y�g(x,�) (4.43)

E f g = ||ef �eg||22 = ||(an �bn)z||22 = (an �bn)
2zTzn = (an �bn)

2 Âxn
i (4.44)

with,

x=

"
xL

xR

#
, y =

"
yL
yR

#
, z , x.n

In coherence with the analytical case, the numerical implementation of the combined error mea-
sure also shows the direct proportionality to the squared Taylor difference D tn

f g.



Chapter 5
Generalization of the Constrained Polynomial
Discontinuity Detection Approach

5.1 Detection of Dn Discontinuities

In order to generalize the method described in Chapter 4, the subsequent goal is to detect a discon-
tinuity in the k-th derivative of a function, while higher and lower orders might be continuous. In
the following part of this thesis, these discontinuities are referred to as Dn discontinuities.

Definition 1. A function f has a Dk discontinuity at an interstitial point xi, if that very function
shows a jump in the k-th derivative, but the (k+ 1)-th derivatives to the left and to the right of xi

are identical.

Given Definition 1, the constrained coupled polynomial approach can be formulated with the
following coefficients, for a function with a discontinuity in the first derivative,

a0 = b0

a1 6= b1

a2 = b2.

(5.1)

This condition then afterwards results in the constraint vector

c=

2

64
1
0
1

3

75 (5.2)

In general, this formulation can be constructed in matrix form with the binary constraint vector
filled with ones except for the predefined orders i1, i2, , ..., ir,

c=
h
c1 c2 ... cn

iT

=
h
1 ... 0|{z}

n� i1 +1

1 ... 0|{z}
n� ir +1

1
iT (5.3)

47
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Consequently, for every one in the constraint vector c the corresponding coefficients are coupled
and continuity is enforced for the respective derivative. Whereas, for all zeros no constraints are
defined. As a result, Dn discontinuities can be detected for those orders.

For example the constraint vector c required to detect a first order derivative discontinuity with
a polynomial of degree three would result in,

c=

2

66664

1
1
0
1

3

77775
(5.4)

In general, the coefficients for the constrained coupled polynomial approximation are given as,

ai = bi, for i = 1, ...,n , i 6= i1, ..., ir. (5.5)

This could be written in matrix form similar to Equation 4.19 as,

C

"
↵

�

#
= 0 (5.6)

with the constraint matrix C defined as

C =
h
Cs �Cs

i
. (5.7)

whereas the diagonal matrix Cs is constructed from the constraint vector c as follows,1

Cs = diag(c)

=

2

66664

c1 0 . . . 0
0 c2 . . . 0
...

... . . . ...
0 0 . . . cn

3

77775

(5.8)

Consequently, the constraint matrix C has the following structure,

C =

2

66664

c1 0 . . . 0 �c1 0 . . . 0
0 c2 . . . 0 0 �c2 . . . 0
...

... . . . ...
...

... . . . ...
0 0 . . . cn 0 0 . . . �cn

3

77775
(5.9)

1 Even though algebraically more precise the constraint sub matrix Cs is written as, Cs = In �
�
1T

n ⌦c
�
,

to maintain a more readable formula structure, the notation diag(c) was chosen in Formula 5.8.
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From here onwards, the procedure remains similar to the one described in Equation 4.21 to
Equation 4.26 with the goal to calculate the Taylor differences D t(n)f g of the desired derivatives.

Beginning with Equation 4.11, the approximation to the left and the right is stated in block
matrix form as,

"
VL 0

0 VR

#"
↵

�

#
=

"
yL
yR

#
(5.10)

Unlike the approach before, the implementation of the constraint matrix C looks slightly differ-
ent, resulting in the following structure,

2

66664

c1 0 . . . 0 �c1 0 . . . 0
0 c2 . . . 0 0 �c2 . . . 0
...

... . . . ...
...

... . . . ...
0 0 . . . cn 0 0 . . . �cn

3

77775

"
↵

�

#
= 0. (5.11)

Again the following definitions are considered,

V ,
"
VL 0

0 VR

#
, � ,

"
↵

�

#
, y ,

"
yL
yR

#
.

From here onwards the procedure gets very similar again, with the least squares optimization
problem stated as,

min
�

||y�V �||22 (5.12)

and

C� = 0. (5.13)

Since � has to belong to the null-space of C,

N = Null{C} (5.14)

leads to

� =Nd . (5.15)

As a result, the least squares minimization becomes,

min
�

||y�V Nd ||22. (5.16)

Consequently, � minimizes the least squares problem with,
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� = (V N)+y. (5.17)

Thus, the coefficients are given by,

� =

"
↵

�

#
=N(V N)+y (5.18)

Finally the Taylor differences t(n)f g are derived by,

D t(n)f g =

2

66664

1
0dL�1

�1
0dR�1

3

77775

"
↵

�

#
= d� = dN(V N)+y. (5.19)

For further details regarding the principles of this method, the reader is referred to Chapter 4.

5.2 Synthetic Datasets

In order to validate a method for change point detection or in the case of this thesis discontinuity
detection, an algorithm needs to be tested on a practical dataset. Since, the generalization of the
discontinuity detection method discussed and validated in this thesis (Ninevski / O’Leary 2018
[1]) is still in progress the logical first step to start a validation process is to begin with synthetic
datasets. For this reason various time series datasets, with known statistical parameters including
change point size, location and order were created. Consequently, theses datasets with all relevant
parameters are going to be introduced in the following section of this chapter.

To ensure a considerably easier structure and overview regarding the usage of the synthetic
datasets a more or less descriptive notation was chosen for their naming. Hereby, the name indicates
in which derivatives the observation is continuous or discontinuous. For example, an artificial
dataset which is called D2D0 has one or more first order discontinuities and is continuous in the
zeroth and second order.

5.2.1 D2D0 - Dataset

As the first dataset, to test the generalized approach, the D2D0 - Dataset was designed to be con-
tinuous in the signal itself and in its second order derivative, whereas the first order derivative is
discontinuous at a point n . This characteristic is also referred to as being D2 and D0 continuous,
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but D1 discontinuous. The created dataset is shown in Figure 5.1 with no added white Gaussian
noise. In the course of this work, this and other datasets are tested under the corruption of noise. In
that case, the artificial observations presented in this subchapter are used with additional noise.

As the dataset was created by evaluating one polynomial to the left and one polynomial to the
right of an interstitial point. Where, the coefficients of these polynomials only differ in one order -
the discontinuous order. Thus, the parameters describing the dataset are,

↵=

2

66664

�2
�8
�5
1

3

77775
, � =

2

66664

�2
�8
10
1

3

77775
, n = 256, n = 512, s = 0.

↵ ... coefficients left polynomial

� ... coefficients right polynomial

n ... discontinuity location

n ... number of observation points

s ... standard deviation

Hence, the dataset and its relevant derivatives looks as follows.
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Fig. 5.1: Function y(t), first order derivative dy(t)
d t and second order derivative d 2y(t)

d t2 of the synthetic
dataset D2D0, which is continuous in the function and the second order derivative and discontinu-
ous in the first order at the point n = 256.

As shown in Figure 5.1, the constructed D2D0 dataset has the desired properties - a first order
D1 discontinuity, while being continuous in the observation itself D0 and in its second derivative
D2. These properties are visualized in the respective subplots, whereas as the second on shows the
jump discontinuity clearly. Note that the jump in the second derivative - third subplot - is due to
numeric reasons. Given, in the numerical case, the jump in the second order derivative does not
happen at one point, but between two. Thus, the slope at this point is relatively high. Analytically,
this jump should be infinitely high over a infinitely narrow time step. Anyway, as in the numeric
case, shown here, the time step is still considerably short.

5.2.2 D3D1D0 - Dataset

Another artificial use case to test the generalization even further was created by the D3D1D0 -
dataset. As the name suggests, this example is continuous in the third D3, first D1 and zeroth D0

order derivative, while showing an abrupt change in form of a jump discontinuity at a point n .
Again, the base version of the data is presented without added white Gaussian noise. However,
other versions used later have added noise in addition to the basic properties described below.
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To create the dataset the following parameters were used,

↵=

2

66664

�2
�7
�3
3

3

77775
, � =

2

66664

�2
5
�3
3

3

77775
, n = 256, n = 512, s = 0.

Fig. 5.2: Function y(t), first order derivative dy(t)
d t , second order derivative d 2y(t)

d t2 and third order

derivative d 3y(t)
d t3 of the synthetic dataset D3D1D0, which is continuous in the function, first order

and third order derivative and discontinuous in the second order one at the point n = 256.

Again, the artificial signal has the properties as designed, showing a a clear D2 jump disconti-
nuity in the second order derivative - as Figure 5.2 suggests. Similar, to the case before the peak in
the fourth subplot of Figure 5.2 is due to the already described numerical reasons.
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5.2.3 D4D3D1D0 - Dataset

In order to test another use case, namely the detection of multiple derivative change points, the
D4D3D1D0 dataset was designed, having two second order discontinuities at the points n1 and n2.
By doing so, the artificial observation is continuous in every other order.

Regarding the construction of this test sample, the approach was different to the one before. In
fact, a bottom up approach was used to create the signal, by starting with a continuous function
representing the fourth derivative - a sine in that case. Afterwards, the continuous functions was
integrated numerically, yielding the third derivative of the desired dataset, which is still continu-
ous. Then the second order derivative is computed by another integration, whereas it is also still
continuous. As a next step the desired second order jump discontinuities are added to the second
order derivative at the points n1 and n2. Finally, after two more numerical integration steps, the
base function - zeroth order derivative - is created. A visualization of the dataset creation can be
seen in Figure 5.3, where the initial function, the sine, is displayed in the last subplot and the jump
discontinuities are added in the third subplot.

n1 = 200, n2 = 400, n = 450, s = 0.
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Fig. 5.3: Function y(t), first order derivative dy(t)
d t , second order derivative d 2y(t)

d t2 , third order deriva-

tive d 3y(t)
d t3 and fourth order derivative d 4y(t)

d t4 of the synthetic dataset D4D3D1D0, which is continuous
in the function, the first, the third and fourth order derivative and discontinuous in the second order
at the points n1 = 200 and n2 = 400.

Once again, just as before, the desired properties - second order discontinuity - of the created
dataset can be seen in Figure 5.3. Also similar as before, the outliers at the to change point locations
n1 and n2 due to known numerical reasons are visualized in the fourth and fifth subplot of Figure
5.3.

5.3 Triple Peak Feature

This section is dedicated to the analysis of a behaviour occurring in the discontinuity detection al-
gorithm after the implementation of a constraint vector (rather than just a scalar). More precisely,
the issue hereby is that after the implementation the relevant plots of Taylor differences and resid-
ual as well as extrapolation residual errors where showing three instead of one peak around the
suspected discontinuous point. In other words, the fit around the discontinuity was significantly
different with constrained zeroth and second order (looking for first order discontinuity) compared
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to the case where just the first order was constrained. See Figure 5.4 for the described characteristic.

5.3.1 D2D0 - Dataset

As a first test, the generalized method was applied to the synthetic D2D0 dataset with an artificial
discontinuity in the first order derivative at t = 256.

Thus, the necessary parameters were set as follows for the generalized approach,

C =

2

64
1 0 0 �1 0 0
0 0 0 0 0 0
0 0 1 0 0 �1

3

75 , ls =
h
6,6
i

Fig. 5.4: Detecting a possible D1 discontinuity with enforced D0 and D2 continuities with support
length of ls = 6 to the left and to the right. The dataset tested here is a synthetic one with a first
order discontinuity at t = 256 and no added noise. The observation itself and the second derivative
of the artificial signal are continuous.

Now the goal is to get a better understanding where this behaviour is coming from. Furthermore,
a more precise explanation is part of the following paragraphs. To do so, the first step for getting
a more detailed view of the issue was to plot all respective polynomials for the approximation
around the change point. The approximation around the point of change is shown in Figure 5.5.
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Furthermore, it gives a more intuitive understanding, where the two local minima of the first order
Taylor differences are coming from in Figure 5.4. One can see easily, that, as soon as the change
point (t = 256) is in the range of the right approximation window, the best fit of the right polynomial
changes significantly to the left one, such that the slope of the polynomial decreases. The same is
true for the local minimum on the right side of the discontinuity.

Fig. 5.5: Evaluation of the left and the right polynomial (second order) around the discontinuous
point t = 256 with the obtained coefficients under constrained D0 and D1 continuity.
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Similar to the approach to detect a D1 discontinuity in Figure 5.4, Figure 5.6 delivers the out-
come of a C1 discontinuity detection with constrained C0 continuity. In contrast to the approach
presented in Figure 5.4 there is, just as expected, only one peak in the first order Taylor differences.
Subsequently, the same analysis as before in Figure 5.5 is going to be performed for this case with
the following parameters,

C =

"
0 0 0 0
0 1 0 �1

#
, ls =

h
6,6
i

Fig. 5.6: Detecting a possible C1 discontinuity with enforced C0 continuity and a support length
of ls = 6 to the left and to the right. The dataset tested here is a synthetic one with a first order
discontinuity at t = 256 and no added noise. The observation itself and the second derivative of the
artificial signal are continuous.

Unsurprisingly, one can see in Figure 5.7 that, just like before, the right polynomial adapts to the
data points after the first order jump. However, now the slope directly increases until the interstitial
point reaches the discontinuity at t = 256 resulting in a rise in first order Taylor differences till the
change point.
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Fig. 5.7: Evaluation of the left and the right polynomial around the discontinuous point t = 256
with the obtained coefficients under C0 continuity.
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Findings so far:

1. No impact of the constraint vector
2. Number of additional peaks is directly dependent on the order of the approximation polyno-

mial
3. Position of additional peaks varies with support length
4. The pattern can be considered as normal under the given conditions (no problem in the

algorithm or the generalization)

5.3.2 D3D1D0 - Dataset

In order to further evaluate the behaviour of the algorithm with the new constraint vector imple-
mentation, a similar test like before was conducted. However, this time the second order Taylor
coefficients were the ones to take a closer look at, to get a measure for a possible D2 discontinuity.
For this purpose, a synthetic dataset with the following specifications was created. The artificial
data shows a D2 discontinuity at the point n = 256, while being D3, D1 and D0 continuous.
In order to ensure the necessary constraints the constraint matrix C was set to,

C =

2

66664

1 0 0 0 �1 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 �1 0
0 0 0 1 0 0 0 �1

3

77775
,

with the support length vector

ls =
h
20,20

i
.
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Fig. 5.8: Detecting a possible D2 discontinuity with enforced D0, D1 and D3 continuities with
support length of ls = 20 to the left and to the right. The dataset tested here is a synthetic one with
a second order discontinuity at t = 256 and no added noise.

As shown in Figure 5.8 the algorithm detects the D2 discontinuity just like it should. However,
as before with the D2D0-dataset, there are also two additional additional negative peaks around the
change point location n . This finding further confirms that the triple peak pattern is a phenomena
coming up consistently in settings with the following constraints.

a3 = b3

a2 6= b2

a1 = b1

a0 = b0

(5.20)

To compare these results, with the method before the generalization - continuity enforced only
up to the (n�1)th derivative - the tunable parameters where set to,

C =

2

64
0 0 0 0 0 0
0 1 0 0 �1 0
0 0 1 0 0 �1

3

75 , ls =
h
20,20

i
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Fig. 5.9: Detecting a possible C2 discontinuity with enforced C0 and C1 continuities with support
length of ls = 20 to the left and to the right. The dataset tested here is a synthetic one with a second
order discontinuity at t = 256 and no added noise.

In contrast, Figure 5.9 gives an insight in the analysis of the identical dataset with enforced C0

and C1 continuity. Hereby, only the second order discontinuity at the sample point n = 256 was
detected.

5.4 Multiple Discontinuities

With the purpose to validated the performance of the generalized method, with a different dataset.
The algorithm was applied to the D4D3D1D0 dataset, with two second order jump discontinuities
D2, already introduced earlier in this chapter.

The method was applied under following conditions,

C =

2

6666664

1 0 0 0 0 �1 0 0 0 0
0 1 0 0 0 0 �1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 �1 0
0 0 0 0 1 0 0 0 0 �1

3

7777775
, ls =

h
20,20

i
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Fig. 5.10: Detecting a possible D2 discontinuity with enforced D0, D1, D3 and D4 continuities
with support length of ls = 20 to the left and to the right. The dataset tested here is a synthetic one
with two second order discontinuities at n1 = 200 and n2 = 400 and no added noise.

Clear characteristic patterns, as investigated in the subsection before in this chapter, around the
suspected locations of the discontinuities in the second order Taylor differences t2

f � t2
g , are shown

in the second subplot of Figure 5.10. Hereby, it is important to notice that the first second order
jump discontinuity is a negative one, whereas the other one is positive. Subsequently, the Triple
Peak indicates this difference, by having its peak in the respective direction.

As a result, the generalized method was tested successfully with more than one change point
and the direction of the detected discontinuity has a direct impact on the direction of the pattern.
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5.5 Noise Testing

Contrary to the tests executed before, in this section the focus is on the performance of the gener-
alized method with noisy data.

For this purpose the same datasets as before with added white Gaussian noise were used. In the
first validation phase the main goal was to test if the algorithm is showing characteristic patterns
in the Taylor differences D tn

f g. Hence, the peak finding algorithm used in the tests executed before
(without noise) is not part of this test phase. In that case, only a qualitative decision is made,
whether or not a characteristic pattern is present.

5.5.1 D2D0 �Noise - Dataset

In order to validate the performance of the generalized method, the next task is to detect a known
first order discontinuity in the D2D0 datset with added white Gaussian noise of s = 0.05, both with
constrained D2 and D0 continuities (generalized method; quadratic polynomial) and only with C0

continuity(special case; linear polynomial).
Again with the parameters set to,

C =

2
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1 0 0 �1 0 0
0 0 0 0 0 0
0 0 1 0 0 �1

3

75 , ls =
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i
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Fig. 5.11: Detecting a possible D1 discontinuity with enforced D0 and D2 continuities with support
length of ls = 20 to the left and to the right. The dataset tested here is a synthetic one with a first
order discontinuity at t = 256 and added white Gaussian noise with s = 0.05. The observation
itself and the second derivative of the artificial signal are continuous.

While the added white Gaussian noise is still relatively low in comparison to the detected sig-
nal, the first detection procedure executed with generalized version of the constrained polynomial
method does show a characteristic pattern in the Taylor differences t1

f � t2
g , as Figure 5.11 suggests.

Hence, the first noise validation step can be seen as quite successful. With the aim to compare the
results of the method before the generalization (implementation of the constraint matrix C), the
identical dataset was investigated with the former method.
Hence, the parameters were set to,

C =

"
0 0 0 0
0 1 0 �1

#
, ls =

h
20,20

i
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Fig. 5.12: Detecting a possible C1 discontinuity with enforced C0 continuity and a support length
of ls = 20 to the left and to the right. The dataset tested here is a synthetic one with a first order
discontinuity at t = 256 and added white Gaussian noise with s = 0.05. The observation itself and
the second derivative of the artificial signal are continuous.

As described above, the comparison between the results of the now generalized method with
the former approach was performed. The later results are shown in Figure 5.12. As a result, the
conclusion can be made that, both approach deliver a clear characteristic pattern in the measures
of interest, such as Taylor differences t1

f � t2
g , the extrapolation error Ea and the interpolation error

E f g, albeit the former approach can be seen as slightly less sensitive to the noise corruption of the
analysed dataset. This finding is going to be tested even further in the upcoming comparison.
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5.5.2 D3D1D0 �Noise - Dataset

C =

2

66664

1 0 0 0 �1 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 �1 0
0 0 0 1 0 0 0 �1

3

77775
, ls =

h
20,20

i

Fig. 5.13: Detecting a possible D2 discontinuity with enforced D0, D1 and D3 continuities with
support length of ls = 20 to the left and to the right. The dataset tested here is a synthetic one with
a second order discontinuity at t = 256 and added white Gaussian noise with s = 10�3.

Even tough, the white Gaussian noise added to the D3D1D0 dataset is relatively low, a charac-
teristic pattern is not really established under the current circumstances. Therefore, the same test
case is analysed with the former setting, with the parameters set to.
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C =

2
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Fig. 5.14: Detecting a possible C2 discontinuity with enforced C0 and C1 continuities with support
length of ls = 20 to the left and to the right. The dataset tested here is a synthetic one with a second
order discontinuity at t = 256 and added white Gaussian noise with s = 10�3.

Whereas, the detection of the D1 discontinuity in the D2D0 dataset with added white Gaussian
noise with s = 0.05 was delivering clear peaks in the respective Taylor differences, the advanced
case of the D2 discontinuity detection of the D3D1D0 dataset with added white Gaussian noise
with s = 10�3 was less successful. Even tough, the identical parameters where used to detect
the suspected change point, the new generalized method hardly shows a characteristic profile in
the second order Taylor differences t2

f � t2
g as shown in Figure 5.13. On the other hand, the not
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generalized version of the detection method does show way better results, as Figure 5.14 suggests.
Whereas, the same parameters were used to compare both variants. The reason for this behaviour
could be similar to the mechanism described in the context of the Triple Peak Feature before in
this chapter.

Consequently, the approach to deal with this discrepancy is to first adapt the support length ls to
improve the resolution of the method in this example, yielding the parameters,

C =

2
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1 0 0 0 �1 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 �1 0
0 0 0 1 0 0 0 �1
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Fig. 5.15: Detecting a possible D2 discontinuity with enforced D0, D1 and D3 continuities with
support length of ls = 30 to the left and to the right. The dataset tested here is a synthetic one with
a second order discontinuity at t = 256 and added white Gaussian noise with s = 10�3.

After increasing the support length vector ls the analysis shows significantly better results in
terms of a characteristic pattern in the second order Taylor differences t2

f � t2
g .

As a next test case, relatively high white Gaussian noise s = 0.5 was added to the D2D0 dataset.
Consequently, the generalized detection approach was applied with,

C =

2
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1 0 0 0 �1 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 �1 0
0 0 0 1 0 0 0 �1
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Fig. 5.16: Detecting a possible D1 discontinuity with enforced D0 and D2 continuities with support
length of ls = 100 to the left and to the right. The dataset tested here is a synthetic one with a first
order discontinuity at t = 256 and added white Gaussian noise with s = 0.5. The observation itself
and the second derivative of the artificial signal are continuous.

As an other example to show the impact of support length ls variations Figure 5.16 shows the
detection of the D1 discontinuity in the D2D0 dataset with higher added white Gaussian noise of
s = 0.5. Furthermore, the possible application of the generalized method is further validated, since
the Taylor differences t1

f � t1
g , the extrapolation error Ea, as well as the interpolation error E f g all

show characteristic patterns. The detection and evaluation of these characteristic patterns is then
subject of a following task. Note, that the noisier the analysed dataset gets, the higher the support
length ls has to be. As a result, the detection of multiple discontinuities gets restricted, as with
higher support lengths characteristic patterns tend to overlap.



5.5 Noise Testing 72

5.5.3 Noise Impact - Monte Carlo Simulation

Now, after the impact of noise and the comparison between different parameter settings was shown
in the previous subsections in a qualitative manner, this one is now dedicated to give a quantitative
evaluation of the impact of noise on the two variants of the detection method with the created
synthetic datasets corrupted by Gaussian noise of different magnitude. This task is performed by
Monte Carlo simulation with n = 1000 iterations for each testing routine. The parameter which
was mainly adapted to the tested dataset was the support length ls, whereas no variations have been
performed within tests of the same dataset. As additional tunable parameters, those defining the
sensitivity of the peak detection algorithm were constant over all test runs. Furthermore, in order
the have a reference value for each tested dataset, the detection procedure was also executed with
out any constraints, c= 0. The results of the performed Monte Carlo simulations are presented in
Table 5.1.
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Dataset Noise level s Constraints Support Length ls Mean Error µdetect sdetect

D2D0 0.010 [1,0,1] [30 ,30] 0.0490 0.2161
0.020 [1,0,1] [30 ,30] 0.1529 0.5029
0.040 [1,0,1] [30 ,30] 0.2049 3.2755

0.010 [0,1] [30 ,30] 0.0523 0.2798
0.020 [0,1] [30 ,30] 0.1038 0.5940
0.040 [0,1] [30 ,30] 0.0759 1.0578

0.040 [0,0] [30 ,30] 0.1035 0.8863

D3D1D0 0.005 [1,0,1,1] [100 ,100] 0.5316 1.4898
0.010 [1,0,1,1] [100 ,100] 0.6590 3.0690
0.020 [1,0,1,1] [100 ,100] 0.6009 6.3281

0.005 [0,1,1] [100 ,100] 0.5825 1.1187
0.010 [0,1,1] [100 ,100] 0.6216 2.2033
0.020 [0,1,1] [100 ,100] 0.6063 4.3499

0.020 [0,0,0] [100 ,100] 0.6966 15.8251

D4D2D1D0 0.005 [1,1,0,1,1] [40 ,40] 2.0213 0.8108
0.010 [1,1,0,1,1] [40 ,40] 2.0106 1.5514
0.020 [1,1,0,1,1] [40 ,40] 1.9123 8.5202

0.005 [0,1,1] [40 ,40] 2.0186 0.5800
0.010 [0,1,1] [40 ,40] 2.0620 1.1069
0.020 [0,1,1] [40 ,40] 2.0454 2.0796

0.020 [0,0,0] [40,40] 1.9653 6.8331

Table 5.1: Overview of the Monte Carlo simulation results for the detection of change points with
various parameter settings.

Within each dataset a clear trend of the impact of increasing noise levels can be seen in the stan-
dard deviation of the detection results sdetect . Hereby, the accuracy of the detection method gets
worse with increasing noise level s .
Another observation that could be made over all three datasets is a decreasing detection accuracy
after the implementation of higher order constraints to the approximation. This behaviour can be
seen for all noise levels, see for example dataset D2D0, with the constraint vector c= [1,0,1] and
c= [0,1] respectively.
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What is more, there seems to be a clear impact of an increasing noise level, if higher order dis-
continuities are suspected in a dataset. Hereby, one could for example compare the results of the
datasets D2D0 and D3D1D0, where even with a higher support length ls, the accuracy of the detec-
tion is still considerably worse for comparable noise levels.



Chapter 6
Benchmark Current Version with other Change Point
Detection Methods

Now, to further evaluate a change point detection method, real world datasets are commonly used
for testing in the literature [31]. Hence, a real world dataset collection was created and is going
to be presented briefly in this chapter as well. Furthermore, the applied evaluation frame work, as
well as the results of the benchmark testing are also described in the upcoming paragraphs.

6.1 Real World Datasets

The collection of time series datasets for the subsequent evaluation process was inspired by the
benchmark frame work of van den Burg [31]. In this frame work various datasets are collected,
which have interesting properties to evaluate the performance of change point detection methods.
In general, these are discontinuities in the observation as well is in the first derivative. However,
some of the datasets do not even show proper change points, but have some other interesting fea-
tures to evaluate the effectiveness of the algorithm, like outliers or seasonality. Many of the datasets
in the collection were already used in the literature of change point analysis like the Nile dataset
([40], [41], [42]) or the well log dataset [43]. Even though, also multivariate datasets were used
in the frame work of van den Burg [31], the evaluation executed in this thesis, test the detection
method only with univariate datasets. This is mainly due to practical reasons. Further testing with
multivariate observations might be a possible task of a future work.

A detailed overview of the used dataset can be found in [31].

6.2 Evaluation Metrics

Now, before the results of the tested real world change point datasets can be evaluated, specific
evaluation or benchmark metrics are going to be defined in this section. The choice of these very
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metrics was mainly inspired by the evaluation frame work for change point detection problems by
van den Burg [31].

Hereby, commonly used measures in change point analysis can be separated in clustering met-
rics and classification metrics. Whereas both describe the change point problem in a distinct man-
ner.

Furthermore, as the already mentioned, framework from van den Burg [31] is used to evaluate
the detected discontinuities, it is important to state that the authors made use of a so called an-
notation tool to get a measure for the ground truth of the analysed datasets. This annotation tool
was used to let experienced data scientists from various fields estimate the given change points in
the datasets manually. Subsequently, each annotator k 2 {1, . . . ,K} defines the locations of sus-
pected discontinuities given by the ordered set ⌧k = {t1, . . . ,tnk} with ti 2 [1,T ] for i = 1, . . . ,nk

and ti < t j for i < j. Hence, ⌧k can be seen as a partition, Gk, of the time series dataset with the
interval [1,T ], into distinct sets A j from t j�1 to t j �1 for j = 1, . . . ,nk +1.

6.2.1 Segmentation Covering Metric

Typical measures for change point evaluation methods are separated into clustering and classifi-
cation metrics, as already stated above. Whereas, applications of the former, tend to illustrate the
change point problem as a setting which inherently follows the goal to divide a time series into
multiple different subsets with individual data models. Considering a simple mean-shift change
point problem for example, the time series can be divided into two distinctive mean models. Some
clustering metrics used in the literature are for instance the variation of information (VI), the ad-
justed Rand index [44], the Hausdorff distance [45] and the segmentation covering metric [46].
Because the evaluation quality of change point methods, delivering many false positives, suffers
by using the Hausdorff metric and the validation of methods with multiple change points is not
suited for the application of the VI-metric, the segmentation covering metric is used in the follow-
ing part of this thesis. (see van den Burg 2020 [31])

Consequently, the Jaccard Index J [47] (intersection over union) of the subsets A,A0 ✓ [1,T ] is
defined as,1

J(A,A0) =
|A\A0|
|A[A0| . (6.1)

Then the segmentation covering metric [48] of the partition G by the partition G0 can be com-
puted with,

1 In the following, the expression |.| denotes the cardinality of a set.



6.2 Evaluation Metrics 77

C(G0,G) =
1
T Â

A2G
|A| max

A02G0
J(A,A0). (6.2)

Finally, considering a collection of ground truth partitions {Gk}K
k=1 (defined by K annotators), as

well a the partition S returned by a change point detection algorithm, the average of the convering
metric C(S,Gk) can be derived as a measure to evaluate the performance of the used algorithm.
Basically, the concept of the measure is to compare the subsets of a dataset due to the detected
change points with the ground truth subsets. Hereby, the highest Jaccard index J(A,A0) for each
subset is computed, where every subset in the partition S is compared to every subset of the ground
truth partition Gk. This comparison then yields the highest Jaccard index J(A,A0) for each subset of
the detected partition S, which can be seen as the score of the best match for each subset. Finally,
for those detected scores the weighted average over the dataset length T of all subsets yields the
segmentation covering measure C(S,Gk) of the partitions S and Gk. Hereby, the respective length
of each subset |A| is used as weighting factor.

To further illustrate the covering metric C the following simple example should show how it is
used.

Fig. 6.1: Example of a dataset with three mean-shift change points and the segmentation due to a
set of detected change points by a detecting method (red).

Here the dataset shown in Figure 6.1 has three mean-shift change points at the locations com-
bined in the set ⌧1, resulting in the partitioning G1.

⌧1 = {20,60,80}
G1 = {[1...20],(20...60],(60...80],(80...100]}
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Furthermore, the detected change points by a detection method lead to the partitioning S with,

S = {[1...20],(20...80],(80...100]}.

Now, the segmentation covering measure can be computed with,

C(S,G1) =
1

100

✓
|[1...20]| |[1...20][ [1...20]|

|[1...20]\ [1...20]| + |(20...60]| |(20...60][ (20...80]|
|(20...60]\ (20...80]|

+ |(80...100]| |(80...100][ (80...100]|
|(80...100]\ (80...100]|

◆

=
1

100

✓
20

20
20

+40
40
60

+ 20
20
20

◆
= 0.667

(6.3)

This result can be interpreted as to proportion of the correctly detected partitioning S, consid-
ering the ground truth partitioning G1. For further test, as K annotators defined the ground truth
locations of the change points of the different datasets, the average of all covering metrics is used
as the final evaluation metric.

6.2.2 F1 - Score

Now, considering another approach for change point detection method evaluation, the setting can
be formulated as a classification problem. Hereby, the classes ”change point” and ”non-change
point” are distinguished.[49], [50].
However, it is important to mention, that typical classification metrics like the accuracy score
are not well suited for the application in this context, because the number of discontinuities in
the dataset is considerably small compared to all samples. As a result, the accuracy score would
overrate certain detection methods, where datasets with higher sample size are analysed.

The Fb -score is used as a measure for accuracy effectiveness of a detection algorithm. Hereby,
the so called precision P as well as the recall R are involved. Where the precision P is derived as the
ratio between properly detected discontinuities to the overall number of detected discontinuities.
The recall R, on the other hand, yields the ratio of properly detected discontinuities to number
of given discontinuities in the time series. Both are then combined in the Fb -score, where the
precision P is weighted in b times.

Hence, the Fb -score is calculated with,

Fb =
(1+b 2)PR

b 2P+R
. (6.4)
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The more specific, F1-score, with b = 1, is then derived as the harmonic mean of precision P
and recall R with,

F1 = 2
PR

P+R
. (6.5)

In this context, a margin of errror M is introduced to account for minor deviations between the
suspected change points and the annotated ones. [50], [17], [31] Let X be as set of detected dis-
continuities returned by a detection method and ⌧⇤ = [k⌧k denotes the combined annotations of
all manual annotators. Then for the ground truth discontinuities ⌧ the true positives T P(⌧,X) are
all t 2 ⌧ for which x 2 X exists such that |t � x| M, with M � 0.

Subsequently, the precision P is derived by,

P =
|T P(⌧⇤,X ,M)|

|X | , (6.6)

and the recall R can be computed with,

R =
1
K

K

Â
k=1

|T P(⌧k,X ,M)|
|⌧k|

. (6.7)

Consequently, only those detected sample points are evaluated as false positive ones, which do
not correspond to any annotated change point.

So, by making use of the segmentation metric C(S,Gk) as well as of the F1-Score, the bench-
mark frame work takes the clustering view and the classification view into account.

6.3 Benchmark Testing

As described in the previous subchapter, the evaluation of the method introduced in this thesis was
executed with the segmentation covering metric and the F1-Score. In fact, two separate benchmark
testing routines were performed on the entire dataset collection, once for the constrained coupled
polynomial approach before and once after the generalization. In fact, if the dataset was analysed
for discontinuities in the observation directly(zeroth order), no constraints were applied on the
approximation for the first testing routine and if slope discontinuities were suspected (first order)
the zeroth order polynomial coefficients,

a0 = b0 (6.8)
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were constrained. All tests executed under these conditions are referred to as CCP in the follow-
ing.

In contrast to the mentioned configuration (CCP), an other set of tests with the change point
method validation dataset collection was performed by making use of the generalization described
in this thesis. Namely, additional constraints were applied to the approximation for the two different
test cases. On the one hand, potential mean-shift change points (zeroth order) were detected with
enforced first order continuity,

a1 = b1,but a0 6= b0. (6.9)

Whereas on the other hand, the detection of slope change points was performed with enforced
second and zeroth order continuity,

a2 = b2, (6.10)

a0 = b0, (6.11)

by allowing first order discontinuities with,

a1 6= b1. (6.12)

Here the results are labelled with GCCP, for generalized constrained coupled polynomials.
The results of this evaluation for both variants are shown in Table 6.1. Hereby, the average of

each metric for the entire dataset collection is compared to the other methods evaluated in [31].
The results shown in the table are compared to the best possible results for each method, which
means that the hyper parameters are optimized for the respective dataset. Another evaluation vari-
ant would be the comparison with default hyper parameters. See [31] for the difference between
both variants. The parameters for the newly tested algorithms have been optimized manually.
Hence, another task for future work could be to optimize the parameters automatically, which
was performed in [31] by a grid search.

Detailed results, as well as the used parameters, for each dataset and detection method can be
found in the appendix.

In general, the performance of the method can be seen as quite comparable, as displayed in
Table 6.1. Especially, the segmentation covering metric for the CCP configuration delivers good
results on the dataset collection compared to the other algorithms. Considering the F1-score, the
CCP results are also clearly above average.
Slightly under the average performance of the detection methods are the metrics for the tests ex-
ecuted with the GCCP configuration of the algorithm. This finding is strongly in accordance with
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the observation of performed Monte Carlo simulations in Chapter 5, where a higher impact of
noise to the detections with higher constraints was present.

Detection Method Covering Metric F1 Score Description Reference
AMOC 0.746 0.799 At Most One Change Hinkley (1970) [51]

BINSEG 0.780 0.856 Binary Segmentation Scott and Knott (1974) [52]
BOCPD 0.789 0.880 Bayesian Online Change Point Detection Adams and MacKay (2007) [32]

BOCPDMS 0.744 0.620 BOCPD with Model Selection Knoblauch and Daoulas (2018) [53]
CPNP 0.552 0.666 Nonparametric Change Point Detection Haynes et al. (2017)) [54]
ECP 0.720 0.797 Energy Change Point Matteson and James (2014) [55]

KCPA 0.626 0.683 Kernel Change-Point Analysis Harchaoui et al. (2009) [56]
PELT 0.725 0.787 Pruned Exact Linear Time Killick et al. (2012) [50]

PROPHET 0.576 0.534 Prophet Taylor and Letham (2018) [57]
RBOCPDMS 0.629 0.447 Robust BOCPDMS Knoblauch et. al. (2018) [58]

RFPOP 0.414 0.531 Robust Functional Pruning Optimal Partitioning Fearnhead and Rigaill (2019) [59]
SEGNEIGH 0.784 0.855 Segment Neighbourhoods Auger and Lawrence (1989) [60]

WBS 0.428 0.533 Wild Binary Segmentation Fryzlewicz (2014) [61]
ZERO 0.579 0.662 No Change Points
AVG 0.652 0.698 Average of the evaluation metrics

CCP 0.763 0.788 Constrained Coupled Polynomials Ninevski and O’Leary (2018) [1]
GCCP 0.690 0.711 Generalized Constrained Coupled Polynomials

Table 6.1: Comparison of the evaluation results for several well-known change point detection
algorithms by van den Burg and Williams [31] including the evaluation of the constrained coupled
polynomial discontinuity detection approach [1]

.

After the comparison of all datasets of the collection at once, the datasets where separated in
those with suspected slope change points and mean-shift change points. The idea behind this split
was the fact that the CCP, as well as the GCCP approach might perform better on the detection of
derivative constraints. Hence, a difference in favour of the slope change point problems could be
seen in the evaluation.
In fact, a clear improvement of both benchmark metrics, except for the CCP covering metric, can be
seen when only the slope change point problems are tested, as Table 6.2 suggests. Hereby, it is also
notable that both configurations, CCP and GCCP, show a performance increase, whereas both are
clear above average. Moreover, all other change point detection algorithms delivered significantly
worse results compared to the average detection results in Table 6.1 and consequently to the mean-
shift results in Table 6.3.
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Detection Method Covering Metric F1 Score Description Reference
AMOC 0.697 0.797 At Most One Change Hinkley (1970) [51]

BINSEG 0.716 0.822 Binary Segmentation Scott and Knott (1974) [52]
BOCPD 0.727 0.875 Bayesian Online Change Point Detection Adams and MacKay (2007) [32]

BOCPDMS 0.666 0.602 BOCPD with Model Selection Knoblauch and Daoulas (2018) [53]
CPNP 0.514 0.656 Nonparametric Change Point Detection Haynes et al. (2017)) [54]
ECP 0.688 0.797 Energy Change Point Matteson and James (2014) [55]

KCPA 0.546 0.638 Kernel Change-Point Analysis Harchaoui et al. (2009) [56]
PELT 0.680 0.784 Pruned Exact Linear Time Killick et al. (2012) [50]

PROPHET 0.517 0.509 Prophet Taylor and Letham (2018) [57]
RBOCPDMS 0.673 0.640 Robust BOCPDMS Knoblauch et. al. (2018) [58]

RFPOP 0.378 0.504 Robust Functional Pruning Optimal Partitioning Fearnhead and Rigaill (2019) [59]
SEGNEIGH 0.725 0.842 Segment Neighbourhoods Auger and Lawrence (1989) [60]

WBS 0.329 0.420 Wild Binary Segmentation Fryzlewicz (2014) [61]
ZERO 0.590 0.688 No Change Points
AVG 0.622 0.683 Average of the evaluation metrics

CCP 0.743 0.813 Constrained Coupled Polynomials Ninevski and O’Leary (2018) [1]
GCCP 0.661 0.748 Generalized Constrained Coupled Polynomials

Table 6.2: First derivative change points - Comparison of the evaluation results for several well-
known change point detection algorithms by van den Burg and Williams [31] including the evalu-
ation of the constrained coupled polynomial discontinuity detection approach [1]

.

Finally, just like for the slope change point datasets, a distinct comparison was also carried out
for the mean-shift detection problems. Hereby, a similar trend could be observed in terms of the
configurations CCP and GCCP, where the former performs significantly better.

Detection Method Covering Metric F1 Score Description Reference
AMOC 0.788 0.801 At Most One Change Hinkley (1970) [51]

BINSEG 0.706 0.885 Binary Segmentation Scott and Knott (1974) [52]
BOCPD 0.636 0.883 Bayesian Online Change Point Detection Adams and MacKay (2007) [32]

BOCPDMS 0.633 0.637 BOCPD with Model Selection Knoblauch and Daoulas (2018) [53]
CPNP 0.584 0.675 Nonparametric Change Point Detection Haynes et al. (2017)) [54]
ECP 0.731 0.782 Energy Change Point Matteson and James (2014) [55]

KCPA 0.684 0.716 Kernel Change-Point Analysis Harchaoui et al. (2009) [56]
PELT 0.764 0.790 Pruned Exact Linear Time Killick et al. (2012) [50]

PROPHET 0.540 0.562 Prophet Taylor and Letham (2018) [57]
RBOCPDMS 0.629 0.477 Robust BOCPDMS Knoblauch et. al. (2018) [58]

RFPOP 0.392 0.554 Robust Functional Pruning Optimal Partitioning Fearnhead and Rigaill (2019) [59]
SEGNEIGH 0.676 0.866 Segment Neighbourhoods Auger and Lawrence (1989) [60]

WBS 0.513 0.628 Wild Binary Segmentation Fryzlewicz (2014) [61]
ZERO 0.558 0.632 No Change Points
AVG 0.694 0.709 Average of the evaluation metrics

CCP 0.790 0.762 Constrained Coupled Polynomials Ninevski and O’Leary (2018) [1]
GCCP 0.718 0.674 Generalized Constrained Coupled Polynomials

Table 6.3: Mean-Shift change points - Comparison of the evaluation results for several well-known
change point detection algorithms by van den Burg and Williams [31] including the evaluation of
the constrained coupled polynomial discontinuity detection approach [1]

.



Chapter 7
Conclusion

This new approach to the detection of discontinuities in observational data is the most generic of
all the methods considered in this thesis, since it does not require application specific adaption.
It is based on a formal mathematical definition of a discontinuity, which is a generalization of a
Cn discontinuity. In the new definition, any one of the n derivative can be tested for discontinu-
ity, while enforcing continuity for the others. The extensive benchmarking of the new method in
comparison to others, for a wide range of test cases, reveals that the new approach is among the
best. This combined with the numerical efficient computation makes it very attractive. There are,
however, test cases where the application specific methods perform better. Previous literature and
test data sets only consider C0 and C1 type discontinuities. Whereas, the new approach, not only
performs well for these type of discontiuities, but also functions for higher order derivative discon-
tinuities.

Future Tasks

Finally, a brief overview of possible future avenues for investigation is given:

1. More relevant and reliable and fundamental evaluation metric
2. Application of the evaluation environment to higher order discontinuity datasets
3. Grid search optimization in the course of the evaluation environment
4. Comparison of computational efficiency of different detection methods
5. Variable margin of error for the Segmentation Covering metric
6. Testing of multivariate datasets
7. Simulation of on-line change point detection
8. Directly detecting of the triple peak pattern
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Appendix A
Detailed Results of the Benchmark Tests

Dataset CCP GCCP
Cover F1 Cover F1

bank 0.628 0.667 0.398 0.206
bitcoin 0.768 0.591 0.761 0.5112
brent spot 0.718 0.747 0.718 0.747
homeruns 0.539 0.766 0.476 0.627
measles 0.952 0.947 0.650 0.643
nile 0.892 1.000 0.649 0.368
quality control 1 0.992 0.667 0.978 0.500
quality control 2 0.907 0.571 0.920 0.800
quality control 3 0.914 0.444 0.500 0.667
quality control 4 0.760 0.936 0.672 0.781
quality control 5 1.000 1.000 1.000 1.000
rail lines 0.779 0.889 0.811 0.857
ratner stock 0.816 0.713 0.838 0.500
scanline 126007 0.428 0.741 0.458 0.779
scanline 42049 0.871 0.951 0.836 0.869
seatbelts 0.778 0.736 0.527 0.621
unemployment nl 0.605 0.904 0.655 0.812
usd isk 0.748 0.797 0.877 0.876
well log 0.920 0.409 0.926 0.643

Average 0.790 0.762 0.7180 0.674

Table A.1: Detailed evaluation results for all mean-shift datasets.
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Dataset CCP GCCP
Cover F1 Cover F1

businv 0.816 0.727 0.616 0.650
centralia 0.498 0.800 0.523 0.720
children per woman 0.789 0.769 0.792 0.555
co2 canada 0.635 0.719 0.549 0.535
construction 0.820 0.889 0.751 0.727
debt ireland 0.792 0.667 0.565 0.929
gdp argentina 0.646 1.000 0.580 0.818
gdp croatia 0.750 0.800 0.752 1.000
gdp iran 0.832 0.974 0.616 0.630
gdp japan 0.666 0.800 0.801 0.889
global co2 0.744 0.929 0.720 0.929
iceland tourism 0.827 0.571 0.828 0.391
jfk passengers 0.755 0.571 0.378 0.523
lga passengers 0.618 0.644 0.477 0.693
ozone 0.850 0.966 0.850 0.966
robocalls 0.804 1.000 0.566 0.500
shanghai license 0.905 0.776 0.922 0.966
uk coal employ 0.635 0.896 0.531 0.799
us population 0.730 0.947 0.735 1.000

Average 0.743 0.813 0.7180 0.661

Table A.2: Detailed evaluation results for all slope-switch datasets.



Appendix B
Mean-shift - Discontinuity Detection Plots

In the following the evaluation results for the CCP configuration presented in Table 6.1 are dis-
played.

Fig. B.1: Detection of a possible mean-shift change point in the dataset ”bank”, by considering a
present periodicity, with support length ls = [50,50] and constraint vector of c = [0].
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Fig. B.2: Detection of a possible mean-shift change point in the dataset ”bitcoin” with support
length ls = [10,10] and constraint vector of c = [0].
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Fig. B.3: Detection of a possible mean-shift change point in the dataset ”brent spot” with support
length ls = [10,10] and constraint vector of c = [0].
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Fig. B.4: Detection of a possible slope-switch change point in the dataset ”businv” with support
length ls = [10,10] and constraint vector of c = [0,1].
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Fig. B.5: Detection of a possible slope-switch change point in the dataset ”centralia” with support
length ls = [2,2] and constraint vector of c = [0,1].
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Fig. B.6: Detection of a possible slope-switch change point in the dataset ”children per woman”
with support length ls = [10,10] and constraint vector of c = [0,1].
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Fig. B.7: Detection of a possible mean-shift change point in the dataset ”co2 canada” with support
length ls = [12,12] and constraint vector of c = [0].
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Fig. B.8: Detection of a possible mean-shift change point in the dataset ”construction” with support
length ls = [30,30] and constraint vector of c = [0].



B Mean-shift - Discontinuity Detection Plots 102

Fig. B.9: Detection of a possible slope-switch change point in the dataset ”debt ireland” with
support length ls = [2,2] and constraint vector of c = [0,1].
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Fig. B.10: Detection of a possible slope-switch change point in the dataset ”gdp argentina” with
support length ls = [8,8] and constraint vector of c = [0,1].
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Fig. B.11: Detection of a possible slope-switch change point in the dataset ”gdp croatia” with
support length ls = [2,2] and constraint vector of c = [0,1].
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Fig. B.12: Detection of a possible slope-switch change point in the dataset ”gdp iran” with support
length ls = [4,4] and constraint vector of c = [0,1].
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Fig. B.13: Detection of a possible slope-switch change point in the dataset ”gdp japan” with sup-
port length ls = [4,4] and constraint vector of c = [0,1].
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Fig. B.14: Detection of a possible slope-switch change point in the dataset ”global co2” with sup-
port length ls = [4,4] and constraint vector of c = [0,1].
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Fig. B.15: Detection of a possible mean-shift change point in the dataset ”homeruns” with support
length ls = [8,8] and constraint vector of c = [0].
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Fig. B.16: Detection of a possible mean-shift change point in the dataset ”iceland tourism” with
support length ls = [20,20] and constraint vector of c = [0].
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Fig. B.17: Detection of a possible slope-switch change point in the dataset ”jfk passengers” with
support length ls = [25,25] and constraint vector of c = [0,1].
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Fig. B.18: Detection of a possible mean-shift change point in the dataset ”lga passengers” with
support length ls = [10,10] and constraint vector of c = [0].
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Fig. B.19: Detection of a possible mean-shift change point in the dataset ”measles” with support
length ls = [40,40] and constraint vector of c = [0].
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Fig. B.20: Detection of a possible mean-shift change point in the dataset ”nile” with support length
ls = [5,5] and constraint vector of c = [0].
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Fig. B.21: Detection of a possible slope-switch change point in the dataset ”ozone” with support
length ls = [5,5] and constraint vector of c = [0,1].



B Mean-shift - Discontinuity Detection Plots 115

Fig. B.22: Detection of a possible mean-shift change point in the dataset ”quality control 1” with
support length ls = [25,25] and constraint vector of c = [0].
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Fig. B.23: Detection of a possible mean-shift change point in the dataset ”quality control 2” with
support length ls = [17,17] and constraint vector of c = [0].



B Mean-shift - Discontinuity Detection Plots 117

Fig. B.24: Detection of a possible mean-shift change point in the dataset ”quality control 3” with
support length ls = [15,15] and constraint vector of c = [0].
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Fig. B.25: Detection of a possible mean-shift change point in the dataset ”quality control 4” with
support length ls = [15,15] and constraint vector of c = [0].
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Fig. B.26: Detection of a possible mean-shift change point in the dataset ”quality control 5” with
support length ls = [10,10] and constraint vector of c = [0].
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Fig. B.27: Detection of a possible mean-shift change point in the dataset ”rail lines” with support
length ls = [4,4] and constraint vector of c = [0].
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Fig. B.28: Detection of a possible mean-shift change point in the dataset ”ratner stock” with sup-
port length ls = [24,24] and constraint vector of c = [0].
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Fig. B.29: Detection of a possible mean-shift change point in the dataset ”robocalls” with support
length ls = [5,5] and constraint vector of c = [0].
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Fig. B.30: Detection of a possible mean-shift change point in the dataset ”scanline 420491” with
support length ls = [12,12] and constraint vector of c = [0].
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Fig. B.31: Detection of a possible mean-shift change point in the dataset ”scanline 126007” with
support length ls = [12,12] and constraint vector of c = [0].
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Fig. B.32: Detection of a possible mean-shift change point in the dataset ”seatbelts” with support
length ls = [12,12] and constraint vector of c = [0].
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Fig. B.33: Detection of a possible slope-switch change point in the dataset ”shanghai license” with
support length ls = [15,15] and constraint vector of c = [0,1].
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Fig. B.34: Detection of a possible slope-switch change point in the dataset ”uk coal employ” with
support length ls = [5,5] and constraint vector of c = [0,1].
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Fig. B.35: Detection of a possible mean-shift change point in the dataset ”unemployment nl” with
support length ls = [5,5] and constraint vector of c = [0].
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Fig. B.36: Detection of a possible slope-switch change point in the dataset ”us population” with
support length ls = [25,25] and constraint vector of c = [0,1].
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Fig. B.37: Detection of a possible mean-shift change point in the dataset ”usd isk” with support
length ls = [5,5] and constraint vector of c = [0].
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Fig. B.38: Detection of a possible mean-shift change point in the dataset ”well log” with support
length ls = [25,25] and constraint vector of c = [0].



Appendix C
Slope-Switch - Discontinuity Detection Plots

In the following the evaluation results for the GCCP configuration presented in Table 6.1 are dis-
played.

Fig. C.1: Detection of a possible mean-shift change point in the dataset ”bank”, by considering a
present periodicity, with support length ls = [90,90] and constraint vector of c = [1,0].
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Fig. C.2: Detection of a possible mean-shift change point in the dataset ”bitcoin” with support
length ls = [10,10] and constraint vector of c = [1,0].
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Fig. C.3: Detection of a possible mean-shift change point in the dataset ”brent spot” with support
length ls = [20,20] and constraint vector of c = [1,0].



C Slope-Switch - Discontinuity Detection Plots 135

Fig. C.4: Detection of a possible slope-switch change point in the dataset ”businv” with support
length ls = [10,10] and constraint vector of c = [1,0,1].
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Fig. C.5: Detection of a possible slope-switch change point in the dataset ”centralia” with support
length ls = [2,2] and constraint vector of c = [1,0,1].
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Fig. C.6: Detection of a possible slope-switch change point in the dataset ”children per woman”
with support length ls = [10,10] and constraint vector of c = [1,0,1].



C Slope-Switch - Discontinuity Detection Plots 138

Fig. C.7: Detection of a possible mean-shift change point in the dataset ”co2 canada” with support
length ls = [12,12] and constraint vector of c = [1,0].
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Fig. C.8: Detection of a possible mean-shift change point in the dataset ”construction” with support
length ls = [30,30] and constraint vector of c = [1,0].
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Fig. C.9: Detection of a possible slope-switch change point in the dataset ”debt ireland” with
support length ls = [2,2] and constraint vector of c = [1,0,1].
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Fig. C.10: Detection of a possible slope-switch change point in the dataset ”gdp argentina” with
support length ls = [8,8] and constraint vector of c = [1,0,1].
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Fig. C.11: Detection of a possible slope-switch change point in the dataset ”gdp croatia” with
support length ls = [2,2] and constraint vector of c = [1,0,1].
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Fig. C.12: Detection of a possible slope-switch change point in the dataset ”gdp iran” with support
length ls = [4,4] and constraint vector of c = [1,0,1].
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Fig. C.13: Detection of a possible slope-switch change point in the dataset ”gdp japan” with sup-
port length ls = [4,4] and constraint vector of c = [1,0,1].
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Fig. C.14: Detection of a possible slope-switch change point in the dataset ”global co2” with sup-
port length ls = [4,4] and constraint vector of c = [1,0,1].
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Fig. C.15: Detection of a possible mean-shift change point in the dataset ”homeruns” with support
length ls = [8,8] and constraint vector of c = [1,0].
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Fig. C.16: Detection of a possible mean-shift change point in the dataset ”iceland tourism” with
support length ls = [20,20] and constraint vector of c = [1,0].
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Fig. C.17: Detection of a possible slope-switch change point in the dataset ”jfk passengers” with
support length ls = [60,60 and constraint vector of c = [1,0,1].
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Fig. C.18: Detection of a possible mean-shift change point in the dataset ”lga passengers” with
support length ls = [10,10] and constraint vector of c = [1,0].
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Fig. C.19: Detection of a possible mean-shift change point in the dataset ”measles” with support
length ls = [15,15] and constraint vector of c = [1,0].
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Fig. C.20: Detection of a possible mean-shift change point in the dataset ”nile” with support length
ls = [5,5] and constraint vector of c = [1,0].
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Fig. C.21: Detection of a possible slope-switch change point in the dataset ”ozone” with support
length ls = [5,5] and constraint vector of c = [1,0,1].
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Fig. C.22: Detection of a possible mean-shift change point in the dataset ”quality control 1” with
support length ls = [25,25] and constraint vector of c = [1,0].
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Fig. C.23: Detection of a possible mean-shift change point in the dataset ”quality control 2” with
support length ls = [25,25] and constraint vector of c = [1,0].
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Fig. C.24: Detection of a possible mean-shift change point in the dataset ”quality control 3” with
support length ls = [15,15] and constraint vector of c = [1,0].
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Fig. C.25: Detection of a possible mean-shift change point in the dataset ”quality control 4” with
support length ls = [15,15] and constraint vector of c = [1,0].
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Fig. C.26: Detection of a possible mean-shift change point in the dataset ”quality control 5” with
support length ls = [10,10] and constraint vector of c = [1,0].
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Fig. C.27: Detection of a possible mean-shift change point in the dataset ”rail lines” with support
length ls = [4,4] and constraint vector of c = [1,0].
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Fig. C.28: Detection of a possible mean-shift change point in the dataset ”ratner stock” with sup-
port length ls = [40,40] and constraint vector of c = [1,0].
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Fig. C.29: Detection of a possible mean-shift change point in the dataset ”robocalls” with support
length ls = [5,5] and constraint vector of c = [1,0].
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Fig. C.30: Detection of a possible mean-shift change point in the dataset ”scanline 420491” with
support length ls = [12,12] and constraint vector of c = [1,0].
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Fig. C.31: Detection of a possible mean-shift change point in the dataset ”scanline 126007” with
support length ls = [12,12] and constraint vector of c = [1,0].
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Fig. C.32: Detection of a possible mean-shift change point in the dataset ”seatbelts” with support
length ls = [12,12] and constraint vector of c = [1,0].
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Fig. C.33: Detection of a possible slope-switch change point in the dataset ”shanghai license” with
support length ls = [40,40] and constraint vector of c = [1,0,1].
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Fig. C.34: Detection of a possible slope-switch change point in the dataset ”uk coal employ” with
support length ls = [12,12] and constraint vector of c = [1,0,1].
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Fig. C.35: Detection of a possible mean-shift change point in the dataset ”unemployment nl” with
support length ls = [15,15] and constraint vector of c = [1,0].
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Fig. C.36: Detection of a possible slope-switch change point in the dataset ”us population” with
support length ls = [25,25] and constraint vector of c = [1,0,1].
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Fig. C.37: Detection of a possible mean-shift change point in the dataset ”usd isk” with support
length ls = [5,5] and constraint vector of c = [1,0].
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Fig. C.38: Detection of a possible mean-shift change point in the dataset ”well log” with support
length ls = [100,100] and constraint vector of c = [1,0].
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