

Lehrstuhl für Geologie und Lagerstättenlehre

Masterarbeit

Differentiation und Lagerstättenpotential ausgewählter Pegmatite in Defereggen (Osttirol)

Christian Horvat, BSc

März 2021

Danksagung

Ohne bestimmte Personen wäre es ein Ding der Unmöglichkeit gewesen, diese Arbeit zu verfassen bzw. hätte die Qualität der Arbeit gelitten. Für die fachlich kompetente Betreuung möchte ich mich deshalb zu allererst bei meinen Betreuern Herrn Ass.Prof. Dipl.-Ing. Dr.mont. Heinrich Mali und Herrn Univ.-Prof. Mag.rer.nat. Dr.mont. Frank Melcher bedanken. Durch beide habe ich nicht nur eine ausgezeichnete Betreuung dieser Arbeit erhalten, sondern durfte auch schon in den Jahren des Studiums von deren Lehre profitieren. Mein weiterer Dank gilt aber natürlich auch allen anderen MitarbeiterInnen des Lehrstuhls für Geologie und Lagerstättenlehre, sowie Herrn Dipl. Ing. Lukas Marousek vom Lehrstuhl für Aufbereitung und Veredelung. Bei Frau Tanja Knoll, MSc. und Herrn Dr. Ralf Schuster von der GBA möchte ich mich außerdem herzlichst für die Rahmenbedingungen, unter welchen diese Arbeit verfasst werden konnte, bedanken. Nicht vergessen will ich auf Brigitte und Simone, die mir nicht nur während der Kaffeepausen immer ein offenes Ohr geschenkt haben.

Im Laufe meines Studiums wurden aus Bekanntschaften Freundschaften. Ich hoffe, dass diesen Freunden bewusst ist, wie wichtig sie mir mit der Zeit geworden sind; ich möchte es aber hier noch einmal mit Nachdruck schreiben: Danke Max und Peter für die unvergessliche Studienzeit! All die gemeinsamen Abende, die gemeinsamen Essen und die Wanderungen haben einen ganz besonderen Stellenwert eingenommen. Allen anderen Weggefährten möchte ich hier aus Platzgründen nur pauschal danken, ihr wart genauso ein essentieller Teil meines Studiums.

Ob ich die Familie Eichinger und ganz besonders Stefanie und Katrin noch zu den Freunden oder schon zu der Familie zählen soll, weiß ich nicht so genau. Mein Dank gilt Euch trotzdem. Die gemeinsamen Nachmittage und Abende mit Euch vergehen leider immer viel zu schnell.

Liebe Eltern, liebe Schwester. Ihr seid die beste Familie und der beste Rückhalt, den ich mir in meinem Leben hätte wünschen können. Deshalb, und wegen so viel mehr, möchte ich mich bei euch bedanken.

Zusammenfassung

Im östlichen Defereggental (Osttirol) treten permische Pegmatite im Petzeck-Rotenkogel-Komplex des Koralpe-Wölz-Deckensystems und im Michelbach-Komplex des Drauzug-Gurktal-Deckensystems auf. Die meisten Pegmatite liegen konkordant in Glimmerschiefern oder Gneisen und bilden teilweise durch Störungen versetzte Gänge im Zentimeter- bis Zehnermeterbereich. Neben einfachen Pegmatiten finden sich auch Spodumenpegmatite. Diese sind im Bereich Poling, Ratzell, Glanzalm und als Neufund am Großen Zunig aufgeschlossen.

Die Li-Pegmatite bestehen hauptsächlich aus Quarz, Kalifeldspat, Plagioklas, Muskovit, Spodumen, Turmalin und Granat. Der Kontakt zum Nebengestein ist oft von Turmalinisierung geprägt. Akzessorisch konnten aus Schwermineralkonzentraten der Spodumenpegmatite Apatit, Kassiterit, Rutil, Strüverit, Uraninit, gediegen Wismut, ein nicht genau definiertes Wismutphosphatmineral, Zirkon, sowie Minerale der Columbit-, Mikrolith-, Monazit- und Xenotimgruppe mit REM-EDS nachgewiesen werden. Die Zirkone und Minerale der Columbitgruppe folgen dem allgemeinem Fraktionierungstrend mit Anreicherungen von Hf und Ta gegenüber Zr bzw. Nb. Bei den Mineralen der Columbitgruppe handelt es sich zum Großteil um Columbit-(Fe).

Die Gesamtgesteinschemie von Proben aus 5 einfachen Pegmatiten und 8 Spodumenpegmatiten ergab gut vergleichbare Ergebnisse zu anderen Pegmatiten der Ostalpen. Die maximalen Gehalte der untersuchten Proben erreichen dabei 2,28 % Li₂O bzw. 99 ppm Nb und 249 ppm Ta.

An 112 Muskoviten aus 74 Pegmatitvorkommen wurden jeweils 27 Elemente mit LA-ICP-MS und REM-EDS analysiert. Dabei wurden Spurenelementgehalte von maximal 1204 ppm Li, 6992 ppm Rb, 396 ppm Nb, 1181 ppm Sn, 1953 ppm Cs, 188 ppm Ta und 61 ppm Tl gemessen. Die Muskovite sind niedrig- bis hochdifferenziert und erreichen ein minimales K/Rb-Verhältnis von 11,5. Eine Korrelation zwischen Schwermineralauftreten und Muskovitelementchemie konnte nicht gefunden werden. Eine Ausnahme bildet der Li-Gehalt. Dieser ist bei Muskoviten aus Spodumenpegmatiten erhöht.

Die Differentiationsgrade zeigen einen regionalen Trend. Höher differenzierte, einige hundert Meter breite, Ost-West verlaufende Bereiche alternieren mit niedriger differenzierten Bereichen. Dieses Verteilungsmuster kann durch den vorherrschenden Faltenbau erklärt werden.

Einzelne Zonen der Spodumenpegmatite erreichen bis zu 50 Vol% Spodumen. Gesamtgesteinsproben aus 8 Spodumenpegmatiten enthalten durchschnittlich 1,12 % Li₂O. Wirtschaftlich relevante Schwerminerale sind nur akzessorisch vorhanden. Ob diese Vorkommen in Zukunft von wirtschaftlichem Interesse sind, kann zum jetzigen Zeitpunkt ohne weitere Explorationsarbeiten nicht beurteilt werden.

Abstract

In the eastern part of the Defereggen valley (Eastern Tyrol, Austria) pegmatites of Permian age occur in the Petzeck-Rotenkogel Complex and the Michelbach Complex of the Koralpe-Wölz and Drauzug-Gurktal Nappe System, respectively. Most of the pegmatites intruded concordantly into mica schists and gneisses. The pegmatites form dykes with a few centimeters up to some tens of meters in thickness. In some outcrops, faults can be observed. In addition to simple pegmatites, spodumene pegmatites occur in the area of Poling, Ratzell, Glanzalm and a newly discovered one at Großer Zunig mountain.

The Li-pegmatites are mainly composed of quartz, K-feldspar, plagioclase, muscovite, spodumene, tourmaline and garnet. The contact to the host rock is often characterized by tourmalinisation. The following accessory minerals were found by SEM-EDS: apatite, cassiterite, columbite group minerals, monazite group minerals, microlite group minerals, rutile, strüverite, uraninite, native bismuth, an undefined bismuth phosphate mineral, xenotime group minerals and zircon. Zircon and the columbite group minerals follow a general fractionation trend where Hf and Ta are enriched in with respect to Zr and Nb, respectively. Columbite-(Fe) is the main columbite group mineral.

Whole rock analyses of 5 simple pegmatite samples and 8 spodumene pegmatite samples show consistent data compared to other pegmatites from the Eastern Alps. The highest contents of the pegmatite samples of this work yield 2,28 % Li₂O, 99 ppm Nb and 249 ppm, respectively.

LA-ICP-MS and SEM-EDS measurements were performed on 112 muscovites from 74 pegmatite occurences with 27 analyzed elements, respectively. Maximum trace element contents are: 1204 ppm Li, 6992 ppm Rb, 396 ppm Nb, 1181 ppm Sn, 1953 ppm Cs, 188 ppm Ta and 61 ppm Tl. The muscovites show low to high differentiation, with the highest one exhibiting a K/Rb ratio of 11.5. Except of Li the trace element contents do not correlate with the occurrence of heavy minerals in the pegmatites.

The spatial distribution of the differentiation shows east-west trending areas of a few hundred meters thickness where low and high differentiation alternate. This distribution of differentiation values can be associated with regional folds.

Certain zones of spodumene pegmatites contain up to 50 vol% of spodumene. Whole rock analyses of 8 spodumene pegmatite samples yield an average Li₂O content of 1.12 %. Economically important heavy minerals were found in trace amounts only. Further exploration is necessary for an economic assessment.

Inhaltsverzeichnis

Danksagung	1
Zusammenfassung	2
Abstract	3
 Einleitung 1.1. Aufgabenstellung 1.2. Geographische Übersicht 	5 5 5
 Geologische Übersicht Koralpe-Wölz-Deckensystem Drauzug-Gurktal-Deckensystem Pegmatite in den Ostalpen 	7 10 14 14
 3. Pegmatite 3.1. Klassifizierung 3.2. Zonierung 3.3. Geochemie 3.4. Genese 3.5. Lagerstätten 3.6. Exploration 	17 18 21 23 24 27
 4. Methodik 4.1. Probennahme 4.2. Probenaufbereitung und –präparation 4.3. Lichtmikroskopie 4.4. Electric Pulse Disaggregation (EPD) 4.5. Energiedispersive Rasterelektronenmikroskopie (REM-EDS) 4.6. Laserablation – induktiv-gekoppelte-Plasma-Massenspektrometrie (LA-ICP-MS) 	28 28 29 30 30 31 32
 Aufschluss- und Probenbeschreibung 5.1. Spodumenpegmatite 5.2. Einfache Pegmatite 	33 33 42
 6. Mineralogie und Petrographie 6.1. Hauptgemengteile 6.2. Kontakt zum Nebengestein 6.3. Akzessorien 	47 47 51 53
 7. Ergebnisse und Auswertung 7.1. Gesamtgesteinschemie 7.2. Geochemie der Muskovite 7.3. Geochemie ausgewählter Schwerminerale 7.4. Schlitzprobe Ratzell 	58 58 60 69 73
8. Diskussion	75
9. Schlussfolgerung	80
Literaturverzeichnis	82
Abbildungs- und Tabellenverzeichnis	88
Anhang Karten Aufschlussbeschreibungen Gesamtgesteinschemie	93 93 123 126
LA-ICF-IVID- UTIU KEIVI-EDD-IVIESSWEITE	178

1. Einleitung

1.1. Aufgabenstellung

Ziel der Arbeit ist die Beschreibung der osttiroler Pegmatite der Region Defereggen hinsichtlich ihres Auftretens, ihrer Mineralogie und ihrer Geochemie (Abbildung 1, Detailkarten: Anhang Abbildung 64 bis Abbildung 66). In weiterer Folge sollen daraus die Differentiationsgrade bestimmt und Aussagen über das Lagerstättenpotential getroffen werden. Zusätzlich erfolgt eine Einteilung in Klassifikationsschemata (z.B. [CERNY & BURT 1984; ČERNÝ & ERCIT 2005; DILL 2016]), sowie eine Eingliederung in das bestehende Genesemodell nach KNOLL et al. [2018]. Dafür sollen Daten aus der Literatur erste Hinweise über die Lage und Art der Pegmatite geben. Besonderes Augenmerk soll dabei auf Spodumenpegmatite gelegt werden. Eine erste Auswahl des Arbeitsgebietes erfolgte anhand der Karten von SENARCLENS-GRANCY [1972], JAGOUTZ [1998], SCHULZ [1999] und LINNER et al. [2013]. Eines der Ziele war, die Verteilung und Eigenschaften der Pegmatite auch über großtektonische Grenzen hinweg zu verfolgen.

Eine makroskopische Beschreibung der Pegmatite im so festgelegten Gebiet erfolgte im Zuge der Probenahme. Die genommenen Proben wurden hinsichtlich ihrer Mineralogie beschrieben. Dazu dienten für die Hauptgemengeanteile Dünnschliffe, sowie Schwermineralkonzentrate für die Akzessorien. Gesamtgesteinsanalysen ausgewählter Pegmatitproben dienten einer ersten Beurteilung der Elementgehalte. Anhand der Elementchemie magmatogener Muskovite wurden der Differentiations- bzw. Fraktionierungsgrad der Pegmatite bestimmt. Ziel war es, auch aus unterschiedlichen muskovithältigen Zonen einzelner Pegmatitgänge Proben zu nehmen, um Aussagen über die interne Fraktionierung treffen zu können. Die Darstellung der Ergebnisse erfolgte dabei im großen Maßstab mit Aufschlussskizzen und Fotos, im kleinen Maßstab mit Karten, welche als Datenquelle auf OpenStreetMap (www.openstreetmap.org) zurückgreifen. Weiters sollten, die gewonnenen Daten und Erkenntnisse für erste Aussagen über das Lagerstättenpotential und weitere Prospektionsmöglichkeiten der Pegmatitvorkommen dienen.

Diese Arbeit ist Teil des Projektes MRI Peg II *Die permischen Pegmatite des Ostalpinen Kristallins – Verbreitung, Genese und Lagerstättenpotential,* bei dem es sich um das Nachfolgeprojekt des MRI Peg I Projektes handelt. Mit diesen Forschungsprojekten sollte eine weitere Verbesserung des Wissens um die Entstehung und Verbreitung von Li-führenden Pegmatiten und eine Ermittlung des Potentials für seltene Elemente (Ta, Nb, Sn, Cs, Be) in Österreich erreicht werden.

1.2. Geographische Übersicht

Das Arbeitsgebiet liegt in Osttirol im Bezirk Lienz in den Gemeinden Matrei in Osttirol und Hopfgarten in Defereggen, etwa 15 km bis 20 km NW von Lienz (Abbildung 1). Nördlich des

Defereggentals liegt das Arbeitsgebiet in der Lasörlinggruppe der Venediger Gruppe, südlich davon in den Deferegger Alpen. Beide Gebirgsgruppen gehören der Region Hohe Tauern an.

Das Kerngebiet dieser Arbeit liegt zwischen dem Großen Zunig im Norden und dem Rudnig bzw. dem Steinbruch Gebr. Dietrich GmbH bei St. Johann im Walde im Südosten. Im Westen wird es durch die Linie Rottörl-Rotes Kögele- Grünalmbach, im Osten durch die Isel begrenzt. Außerhalb dieses Kerngebietes liegen die Probennahmepunkte in Unterpeischlach und dem Michelbachtal. Das Arbeitsgebiet wurde intern in die Gebiete Glanzalm, Gossnerbach, Grünalmbach, Kienburg, Michelbach, Naßfeld, Poling, Ratzell, Rudnig, Steinbruch St. Johann, Unterpeischlach, Zöschken und Zunig unterteilt.

Abbildung 1: Übersichtskarte des Arbeitsgebietes mit Probennahmepunkten und bereits bearbeiteten Pegmatiten des MRI Peg I Projektes. Literatur Pegmatite nach Karten von: JAGOUTZ [1998], SCHULZ [1999], LINNER et al. [2013].

2. Geologische Übersicht

Die untersuchten Pegmatite liegen im Koralpe-Wölz-Deckensystem (DS) und dem Drauzug-Gurktal-DS des Oberostalpins (Abbildung 2) [SCHMID et al. 2004] und bildeten sich während eines Extensionsereignisses im Perm [SCHUSTER & STÜWE 2008]. Die kristallinen Einheiten der Ostalpen waren von Magmatismus im Zuge von Extension am Nordrand von Gondwana im Ordovizium [RAUMER et al. 2013], sowie dem variszischen Ereignis, bei dem Gondwana mit Laurussia kollidierte [KRONER & ROMER 2013], im späten Devon und Karbon betroffen. Die permischen Pegmatite bildeten sich erst nach der variszischen Orogenese einhergehend mit einer Abnahme der Mächtigkeit der Lithosphäre und wurden teilweise durch die alpidische Orogenese überprägt [SCHUSTER 2015].

Abbildung 2: Tektonische Karte der Alpen mit pegmatitführenden Einheiten, Leukograniten und Spodumenpegmatiten und vereinfachtem Aufbau des austroalpinen Deckenstapels. **Rote Markierung:** Lage des Arbeitsgebietes (überzeichnet). Verändert nach KNOLL et al. [2018]

Nach der Erosion des variszischen Orogens dünnte sich die Kruste im Perm weiter aus. Diese Nord-Süd Extension folgte einer Ausbreitung der Neotethys in Richtung Westen. Durch Druckentlastung im lithosphärischen Mantel entstanden dort basaltische Schmelzen. Diese Schmelzen stiegen bis zur Moho auf und bewirkten Magmatismus und Metamorphose. Diese Niederdruck- und Hochtemperaturmetamorphose (LP/HT) erreichte in der mittleren Kruste Grünschiefer- bis Amphibolitfazies, in der tieferen Kruste obere Amphibolit- bis Granulitfazies und führte zu sekundärer Schmelzbildung (Abbildung 3) [SCHUSTER & STÜWE 2008]. Im mittleren Bereich der Kruste handelt es sich, bei diesen durch Anatexis entstandenen Gesteinen, um granitische und pegmatitische Intrusionen [SCHUSTER et al. 2001b; SCHUSTER & STÜWE 2008]. Der Höhepunkt der Metamorphose lag etwa an der Grenze vom Unterperm zum Oberperm mit einem Temperaturgradient von 45 °C/km [SCHUSTER et al. 2001b]. Im Anis öffnete sich der Meliata Ozean, wodurch sich die Extensionsspannungen auf die neugebildete ozeanische Kruste konzentrierten [SCHUSTER & STÜWE 2008]. Dies führte zu einer Abkühlung auf einen Temperaturgradienten von 25 °C/km um 200 Ma und der Ablagerung von über 3 km mächtigen Sedimentpaketen durch Subsidenz [SCHUSTER et al. 2001b].

Abbildung 3: Karte des permischen Metamorphoseereignisses in den Alpen. Rote Markierung: Lage des Arbeitsgebietes (überzeichnet). Verändert nach Schuster & Stüwe [2008]

Das alpidische Kollisionsereignis begann mit einer intrakontinentalen Subduktionszone am adriatischen Mikrokontinent (Adria) [STÜWE & SCHUSTER 2010]. Dieser befand sich in der frühen Unterkreide zwischen europäischem und afrikanischem Kontinent. Während der nach Südosten gerichteten Subduktion der kontinentalen Kruste vom Nordrand der Adria bildeten einige Einheiten des Ostalpins (Ötztal-Bundschuh- und Drauzug-Gurktal-DS) und des Südalpins die Oberplatte. Einheiten der Unterplatte (Koralpe-Wölz-DS) wurden subduziert und deren permomesozoische Decksedimente abgeschert. Die Subduktion kontinentaler Kruste dauerte bis in die mittlere Oberkreide an [SCHUSTER & STÜWE 2010; SCHUSTER 2015]. Der Höhepunkt dieser eoalpidischen Metamorphose fand etwa um 95 Ma statt [THÖNI 2006] und erreichte Eklogit- bis Ultrahochdruckfazies [MILLER et al. 2005; JANÁK et al. 2015]. Die Exhumation dieser Einheiten erfolgte durch eine nach Norden bis Nordwesten gerichtete Überschiebung des Liegenden [WILLINGSHOFER & NEUBAUER 2002] und eine nach Süden bis Südosten gerichtete Abschiebung des Hangenden [KOROKNAI et al. 1999] mit Abkühlaltern bis in die späte Oberkreide [THÖNI 1999]. Der Grad der eoalpidischen Metamorphose nimmt im Allgemeinen von Norden nach Süden bis zur oberen Amphibolit- oder Eklogitfazies zu und endet an der SAM (southern limit of Alpine Metamorphism) (Abbildung 4) [HOINKES et al. 1999].

Ab der mittleren Oberkreide wurden penninische Einheiten Richtung Südosten subduziert. Teile, die nicht subduziert wurden, blieben als Akkretionskeil erhalten [HANDY et al. 2010]. Das heutige Penninikum umfasst dabei Reste von zwei Ozeanen (Piemont-Ligurischer Ozean im Süden und Valais Ozean im Norden) und einen dazwischen liegenden Mikrokontinent (Iberia-Brianconnais). Einheiten des Mikrokontinents reichen dabei nicht weiter östlich als bis ins Unterengadiner Fenster [SCHMID et al. 2004; FROITZHEIM et al. 2008]. Im Eozän begann die Subduktion von europäischem Schelf und Festland (Helvetikum und Subpenninikum) im Westen der Kollisionszone. Teile dieser Einheiten erreichten zwischen 45 Ma und 35 Ma Eklogitfazies [SCHMID et al. 2013]. Das Abreißen eines Teils der subduzierten europäischen Platte im Oligozän (slab breakoff [DAVIES & BLANCKENBURG 1995]) führte zur Bildung der periadriatischen Magmatite [ROSENBERG 2004]. Ab dem Miozän wurden die Ostalpen durch das Vorstoßen des kontinentalen Indenters in Richtung Nord-Süd verkürzt und in Richtung Ost-West gedehnt. Zusammen mit einer Ost-West-Extension durch die Subduktion des penninischen Ozeans im Osten führte dies zur lateralen Extrusion der Ostalpen [RATSCHBACHER et al. 1989; FROITZHEIM et al. 2008; SCHARF; FAVARO et al. 2017]. Diese Bewegung nach Osten bewirkte Seitenverschiebungen und Abschiebungen, sowie die Öffnung von tektonischen Fenstern (Unterengadiner Fenster, Tauern- und Rechnitzfenster) mit Abkühlaltern zwischen 25 Ma und 15 Ma [LUTH & WILLINGSHOFER 2008; SCHMID et al. 2013].

Der durch diese Orogenese entstandene südgerichtete Falten- und Überschiebungsgürtel (Retrokeil) umfasst heute das südlich des Periadriatischen Lineaments (PAL) gelegene Südalpin. Diese Gesteine sind durch die alpidische Metamorphose nur schwach geprägt. Der nordgerichtete Falten- und Überschiebungsgürtel (Vorkeil) stellt einen Deckenstapel von Ostalpin, Penninikum und Helvetikium dar. Das Hangendste dieses Deckenstapels bildet das Ostalpin [SCHMID et al. 2004; FROITZHEIM et al. 2008].

Das Ostalpin kann in ein Ober- und Unterostalpin gegliedert werden [SCHMID et al. 2004]. Dabei handelt es sich um kristalline Gesteine und Metasedimente aus dem Mesozoikum und Paläozoikum. Den unterostalpinen Gesteinen wird eine distale Schelflage vor Adria im Piemont-Ligurischen Ozean zugeordnet. Das Oberostalpin findet seinen präeoalpidischen, paläogeographischen Ausgang am nordöstlichen Teil von Adria [SCHMID et al. 2004; PESTAL et al. 2009]. Die kristallinen Teile dieses Deckenstapels sind, vom Liegenden ins Hangende, das Silvretta-Seckau-DS, das Koralpe-Wölz-DS das Ötztal-Bundschuh-DS und das Drauzug-Gurktal-DS [SCHMID et al. 2004].

Die Pegmatite des Arbeitsgebietes befinden sich im Koralpe-Wölz-DS und dem Drauzug-Gurktal-DS. Darin enthaltene, für diese Arbeit relevante Einheiten werden im Folgenden detaillierter beschrieben.

Abbildung 4: Karte des eoalpidischen Metamorphoseereignisses der Ostalpen. **Rote Markierung:** Lage des Arbeitsgebietes (überzeichnet). [SCHUSTER 2003]

2.1. Koralpe-Wölz-Deckensystem

Die Einheiten des Koralpe-Wölz-DS südlich des Tauernfensters sind der Prijakt-Polinik-Komplex, der Petzeck-Rotenkogel-Komplex und der Durreck-Komplex [PESTAL et al. 2009]. Lithologisch entspricht der Durreck-Komplex der Durreck-Muskovitschiefer-Gruppe und der Petzeck-Rotenkogel-Komplex der Nord-Defereggen-Petzeck-Gruppe (inklusive der Rotenkogel- und Torkogel-Subgruppe), wobei die Michelbach- und Prijakt-Subgruppe in das Drauzug-Gurktal-DS bzw. den Prijakt-Polinik-Komplex fallen [SCHULZ & BOMBACH 2003; KREUSS et al. 2014]. Bei den Subgruppen handelt es sich um Metabasite, die in den Metapsammopeliten, Metaquarziten und Marmoren der Nord-Defereggen-Petzeck-Gruppe liegen (Abbildung 5, Abbildung 6) [SCHULZ & BOMBACH 2003]. Zu den anderen Teilen des Koralpe-Wölz-DS sind die Einheiten südlich des Tauernfensters im Westen durch die Brenner- und Jaufen-Störung, im Osten durch die Mölltal-Störung getrennt [SCHMID et al. 2004; SCHMID et al. 2013]. Diese Störungen entstanden im Zuge der lateralen Extrusion und der damit verbundenen Öffnung des Tauernfensters ab dem Oligozän [FRISCH et al. 1998; SCHMID et al. 2013]. Einheiten, die heute jeweils am Ost- und Westrand des Tauernfensters liegen, grenzten vor der lateralen Extrusion in Richtung Osten aneinander. So zeigen der Texel- und Millstatt-Komplex starke Ähnlichkeit mit dem Schneeberg- und Radenthein-Komplex, was deren Lithologie, Aufbau, Metamorphose und Alter betrifft [KRENN et al. 2011].

Im Norden überlagert das Koralpe-Wölz-DS penninische Einheiten des Tauernfensters. Dazwischen sind teilweise Schuppen des Unterostalpins eingeschaltet [SCHMID et al. 2004]. Die jüngsten Abkühlalter liegen nördlich und südlich der Deckengrenze im Oligozän bis Miozän [BORSI et al. 1978; FRISCH et al. 2000]. Daraus folgt, dass zwischen Koralpe-Wölz-DS und Tauernfenster nur ein geringer vertikaler Versatz stattfand und die Einheiten bereits vor der Exhumation des Tauernfensters aneinandergrenzten [FRISCH et al. 2000].

Im Süden werden die Einheiten des Koralpe-Wölz-DS subvertikal durch die Defereggen-Antholz-Vals-Linie (DAV) bzw. die Zwischenbergen-Wöllatratten- und Ragga-Teuchl-Störung vom Drauzug-Gurktal-DS getrennt [HOKE 1990; LINNER et al. 2009]. Bei der DAV handelt es sich um eine sinistrale Seitenverschiebung. Die Störungsgesteine erreichen eine Mächtigkeit von mehreren hundert Metern und setzen sich nördlich der Hauptachse der Störung aus Myloniten, südlich davon aus Kataklasiten zusammen [SCHULZ 1989]. Die DAV ist mit der SAM gleichzusetzen [HOINKES et al. 1999]. Die Abkühlungsalter von Glimmern sind nördlich davon oligozän bis miozän und südlich davon permisch und nehmen von Westen nach Osten zu (Abbildung 5 C)) [BORSI et al. 1978].

Die sinistrale Transtension der DAV wechselte im Oligozän zu einer dextralen Transpression entlang des Störungssystems des PAL. Dies geschah aufgrund der lateralen Extension der Ostalpen [MANCKTELOW et al. 2001]. Mit diesem Wechsel des Bewegungsregimes einhergehend fanden die Platznahme und Erstarrung der periadriatischen Magmatite statt [MANCKTELOW et al. 2001; STEENKEN et al. 2002]. Dabei werden die Abkühlungsalter dieser tonalitischen und granodioritischen Gesteine von Westen nach Osten immer älter [STEENKEN et al. 2002]. Der Kontakt zu den Gesteinen des Koralpe-Wölz-DS ist entweder konkordant oder durch Störungen gekennzeichnet und durch eine Kontaktaureole geprägt [PESTAL et al. 2009]. Die Zonen dieser Kontaktmetamorphose reichen von distalem Chlorit und Biotit über Staurolith und Andalusit zu proximalem Sillimanit [CESARE 1999; PESTAL et al. 2009]. Durch die anhaltende dextrale Bewegung im Miozän wurden diese Magmatite spröde deformiert, so auch der westlich des Arbeitsgebietes gelegene Riesenfernerpluton [MANCKTELOW et al. 2001; PESTAL et al. 2009].

Die östlich des Arbeitsgebietes gelegene Iselstörung gehört zum dextralen Störungssystem des PAL. Diese wurde durch eine Phase der Kompression während des Subduktionsereignisses in den Karpaten im oberen Miozän in sinistrale Richtung reaktiviert [PERESSON & DECKER 1997; LINNER et al. 2009]. Diese Bewegung stellt das letzte signifikante spröde Deformationsereignis südlich des Tauernfensters dar [LINNER et al. 2009].

Abbildung 5: A) Tektonische Karte der Ostalpen. B) Detailkarte des Gebietes südlich des Tauernfensters. C) Abkühlalter von Glimmern. Rote Markierung: Lage des Arbeitsgebietes. Verändert nach KRENN et al. [2012]

Abbildung 6: N-S Profil: Matrei-Großer Zunig-Deferegger Riegel-Rudnig-Schneideck (Lage: siehe Abbildung 5 B)). Verändert nach Schulz et al. [2008]

Prijakt-Polinik-Komplex

Der Prijakt-Polinik-Komplex besteht aus unterschiedlichen Zweiglimmerschiefern, Para- und Orthogneisen in denen Eklogite, Eklogitamphibolite, Amphibolite und Pegmatite eingeschaltet sind. Der Prijakt-Polinik-Komplex liegt aufgrund einer starken eoalpidischen Verfaltung stellenweise im Liegenden bzw. im Hangenden des Petzeck-Rotenkogel- und Durreck-Komplexes [PESTAL et al. 2009].

Das Alter eines Eklogitamphibolites mit Ozeanbasaltzusammensetzung liegt bei 590 Ma \pm 4 Ma [SCHULZ et al. 2004]. Hornblende-Plagioklas-Gneise haben Inselbogenbasaltzusammensetzung mit Altern von 533 Ma \pm 3,8 Ma [SCHULZ & BOMBACH 2003]. Die Protolithe der Orthogneise sind saure Magmatite mit ordovizischen Bildungsaltern und spiegeln mit den Metabasiten eine anhaltende Magmaentwicklung wider [SCHULZ et al. 2004]. Altersdatierungen an Monaziten von granatführenden Glimmerschiefern ergeben ein variszisches (321 Ma \pm 14 Ma), ein permisches (261 Ma \pm 18 Ma) und ein eoalpines (112 Ma \pm 22 Ma) Event. Dabei kann zwischen einer Hochdruckphase bei etwa 600 °C und 13 kbar bis 16 kbar und einer Hochtemperaturphase bei 650 °C bis 700 °C und 6 kbar bis 9 kbar unterschieden werden [KRENN et al. 2012]. Die Eklogite zeigen Metamorphosebedingungen von 625 °C \pm 20 °C und 16 kbar bis 18 kbar [LINNER et al. 1998]. Die Alter der Pegmatite werden als permotriasisch mittels Sm-Nd-Datierungen (267 Ma \pm 3 Ma, 248 Ma \pm 3 Ma und 239 Ma \pm 18 Ma [REPOLUST et al. 2007]) und permisch mittels Rb-Sr- Datierungen eingestuft [Hoke 1990].

Petzeck-Rotenkogel-Komplex

Der Petzeck-Rotenkogel-Komplex besteht aus Paragesteinen, Orthogneisen, Metabasiten und geringmächtigen Kalkmarmoren [PESTAL et al. 2009]. Bei den Paragesteinen handelt es sich um Glimmerschiefer (als Zweiglimmerschiefer oder Quarzglimmerschiefer und teilweise granatführend) und Paragneis (als Biotit- oder Zweiglimmergneis und teilweise granat-, graphit- oder staurolithführend) [PESTAL et al. 2009; KREUSS et al. 2014]. Die Orthogneise sind teilweise mit den Metabasiten (als Amphibolit oder Amphibolgneis und teilweise gebändert oder granatführend) assoziiert [PESTAL et al. 2009].

Dieselbe Magmaserie des Prijakt-Polinik-Komplexes tritt auch im Petzeck-Rotenkogel-Komplex auf. Jedoch fehlen eklogitische Gesteine und die Hornblende-Plagioklas-Gneise haben etwas ältere Bildungsalter von 550 Ma ± 5,9 Ma [SCHULZ & BOMBACH 2003]. Die Amphibolite gehören zu einer Alkalibasaltserie mit Bildungsaltern von 430 Ma ± 1,6 Ma [STEENKEN & SIEGESMUND 2000; SCHULZ & BOMBACH 2003]. Diese magmatische Entwicklung spiegelt zuerst einen aktiven Kontinentalrand vom Neoproterozoikum bis ins Ordovizium wider. Dieser wurde durch die Öffnung der Paläotethys zu einem passiven Kontinentalrand nördlich von Gondwana [SCHULZ et al. 2004].

Die eoalpidische Metamorphose erreichte im Petzeck-Rotenkogel-Komplex Amphibolitfazies [SCHUSTER 2003; PESTAL et al. 2009]. Die alpidische Metamorphose erreichte Grünschieferfazies, wobei die Abkühlalter von Glimmern von Osten nach Westen jünger werden. Diese liegen in der Schobergruppe zwischen 76 Ma und 86 Ma [LAMBERT 1970], in der östlichen Lasörlinggruppe zwischen 46,8 Ma und 59,3 Ma und in der westlichen Lasörlinggruppe und dem Ahrntal im Oligozän und Miozän [BORSI et al. 1978].

Durreck-Komplex

Der Durreck-Komplex besteht hauptsächlich aus granatführenden Hellglimmerschiefern [SENARCLENS-GRANCY 1964]. Hinzu kommen quarzitische Glimmerschiefer, Zweiglimmerschiefer aber auch Gneise [PESTAL et al. 2009; KREUSS et al. 2014]. In diese Glimmerschiefer sind Lagen aus Amphibolit, Marmor und Pegmatite eingeschaltet [KREUSS et al. 2014]. Westlich des Iseltals läuft der Durreck-Komplex in einer Synform aus und liegt hier aufgrund der Großfalte im Liegenden als auch im Hangenden des Petzeck-Rotenkogel-Komplexes [SCHULZ et al. 2008]. Der Durreck-Komplex enthält keine permischen Pegmatite [pers. Komm. SCHUSTER R.].

2.2. Drauzug-Gurktal-Deckensystem

Südlich der DAV schließt das Drauzug-Gurktal-DS an und besteht aus kristallinen Einheiten, sowie paläozoischen Metasedimenten und einer Abfolge permomesozoischer Sedimente [FROITZHEIM et al. 2008]. Das kristalline Grundgebirge wurde variszisch und permisch metamorph überprägt. Dabei wurde Amphibolitfazies und obere Amphibolitfazies mit einhergender Anatexis in den liegendsten Einheiten erreicht [SCHUSTER et al. 2001b]. Südlich wird das Drauzug-Gurktal-DS vom PAL begrenzt [FROITZHEIM et al. 2008].

Michelbach-Komplex

Der Michelbach-Komplex besteht aus sillimanitführenden Biotitschiefern und Biotit-Plagioklas-Gneisen in denen Amphibolite, Marmore und Pegmatite eingeschaltt sind [SENARCLENS-GRANCY 1972]. Lithologisch ist der Michelbach-Komplex ähnlich dem, durch die DAV getrennten, Petzeck-Rotenkogel-Komplex, zeigt aber eine niedriggradigere alpidische Überprägung [SCHUSTER et al. 2001a]. Das Sm-Nd-Alter eines Pegmatites im Michelbachtal liegt bei 253 Ma ± 7 Ma. Das Ar-Ar-Plateau des Nebengesteines, ein Sillimanit-Biotit-Schiefer, zeigt ein Abkühlalter auf unter 400 °C bei 193 Ma ± 2 Ma [SCHUSTER et al. 2001b].

2.3. Pegmatite in den Ostalpen

Pegmatite sind, was Anzahl und Verteilung betrifft, in den Ostalpen weit verbreitet. Neben Pegmatiten mit ordovizischen [THÖNI & MILLER 2004], variszischen [HANDLER et al. 1999] und

kretazischen [THÖNI & MILLER 2010] Altern werden die meisten mit dem permischen Ereignis assoziiert. Komplexe, die diese permischen Pegmatite enthalten (z.B. Rappold-, Saualpe-Koralpe-, Millstatt- und Petzeck-Rotenkogel-Komplex), befanden sich während des Ereignisses in der mittleren bis unteren Kruste. Einheiten mit permischen Pegmatiten bestehen oft aus Glimmerschiefer oder Paragneis. Diese sind teilweise staurolithführend und können ebenso Aluminosilikate enthalten. Die Sm-Nd-Alter von Granat aus Pegmatiten liegen zwischen 245 Ma und 280 Ma [KNOLL et al. 2018].

Die Pegmatite bestehen aus K-Feldspat, Quarz, Plagioklas, Muskovit, Granat und Turmalin. Akzessorisch treten Beryll, Apatit, Kassiterit und Nb-Ta-Minerale auf. Teilweise sind die Pegmatite spodumenführend. Die Vergesellschaftung und Zusammensetzung der Minerale variiert teilweise stark zwischen Pegmatiten bzw. den einzelnen Zonen innerhalb des gleichen Pegmatitkörpers (z.B. [GASSNER 2001; SENZENBERGER 2001; MALI 2004; AHRER 2014; STEINER 2017; HORVAT 2018; KNOLL et al. 2018]). Der Differentiationsgrad geht oft mit der Mineralzusammensetzung einher. Höher differenzierte Pegmatite neigen dazu, Spodumen bzw. Nb-Ta-Minerale zu enthalten, jedoch finden sich auch einfache, hochdifferenzierte Pegmatite [GASSNER 2001; SENZENBERGER 2001; AHRER 2014].

Während die Genese der einfachen Pegmatite und Leukogranite eine anatektische ist [THÖNI & MILLER 2000; HABLER et al. 2007; ERTL et al. 2010], gibt es für die Bildung der hochdifferenzierten bzw. spodumenführenden Pegmatite zwei Möglichkeiten. Zählt man die Spodumenpegmatite zu der Seltene-Elemente-Klasse, [ČERNÝ & ERCIT 2005] können diese nur durch fraktionierte Kristallisation eines granitischen Plutons entstanden sein [GöD 1989; MALI 2004]. Wahrscheinlicher ist jedoch eine rein anatektische Genese. Lithostratigraphisches Auftreten, Petrologie und Geochemie deuten auf eine Verwandtschaft zwischen Leukograniten und Spodumenpegmatiten mit kontinuierlicher Fraktionierung von z.B. Li, Be, Ge, Rb, Sn, Cs und Ba hin [KNOLL et al. 2018]. Demnach sind strukturell niedrige Bereiche durch Migmatite, Gänge oder Netzwerke in aluminosilikat- und granatführenden Glimmerschiefern oder Paragneisen gekennzeichnet (Abbildung 7 A). Diese Strukturen haben pegmatoiden Charakter, bestehen zumeist aus Quarz und Feldspat und erreichen Mächtigkeiten im Zentimeter- bis Dezimeterbereich. Strukturell höhere Bereiche zeigen einfache Pegmatite aus Feldspat, Quarz, Muskovit, Granat und Turmalin (Abbildung 7 B). Diese weisen keine Zonierung auf und können Mächtigkeiten von einigen Metern erreichen. Der Kontakt zum Nebengestein ist meist scharf und konkordant. Mit den einfachen Pegmatiten assoziiert kommen heterogene, pegmatitische und aplitische Leukogranite vor (Abbildung 7 C). Diese erreichen Mächtigkeiten von mehreren hundert Metern. Hochdifferenzierte, zonierte (Abbildung 7 D) bzw. spodumenführende (Abbildung 7 E) Pegmatite treten in den strukturell höchsten Bereichen auf. Der scharfe Kontakt zum Nebengestein kann konkordant oder diskordant sein [KNOLL et al. 2018; SCHUSTER et al. 2019]. Diese hochdifferenzierten Pegmatitgänge können mehrere Meter an Mächtigkeit und mehrere Kilometer

an Länge erreichen [GÖD 1989; MALI 2004]. In Glimmerschiefern, Paragneisen, Quarziten und Amphiboliten liegen die Pegmatite zumeist lagig, in Marmoren zumeist als Boudins vor [KNOLL et al. 2018]. Der Zusammenhang zwischen einfachen Pegmatiten, Leukograniten, höher differenzierten Pegmatiten und Spodumenpegmatiten durch kontinuierliche Fraktionierung zeigt sich vor allem durch die Korrelation von K/Rb-Verhältnissen mit Li- und Tl-Gehalten von Muskoviten [SCHUSTER et al. 2019].

Als Lithiumlieferant für die hochdifferenzierten, spodumenführenden Pegmatite dienen Metapelite mit etwa 120 ppm Li [HUET et al. 2018]. Die Hauptquelle des Li in diesem Protolithen sind vor allem Staurolithe [DUTROW et al. 1986; WUNDER et al. 2007].

Bei Aufschmelzungsgraden zwischen 15 Vol% und 25 Vol% und Destabilisierung des Stauroliths entweicht eine Schmelze mit mehr als 200 ppm Li aus dem Migmatit. Kristallisiert diese Ausgangsschmelze unter Bildung von einfachen Pegmatiten und Leukograniten mit Gehalten von 100 ppm Li zu 99 %, entsteht eine an Li angereicherte Restschmelze [HUET et al. 2018]. Diese erreicht Gehalte von 10000 ppm Li, welche zur Kristallisation von Spodumen ausreichen [LONDON 2008; HUET et al. 2018].

Abbildung 7: Beziehung und Bildungsbedingungen von Migmatiten, (einfachen) Pegmatiten, Leukograniten und Spodumenpegmatiten. [SCHUSTER et al. 2019]

3. Pegmatite

Pegmatite sind magmatische Gesteine, die meistens granitische Zusammensetzung aufweisen. Einfache, granitische Pegmatite bestehen demnach aus Feldspat, Quarz und Muskovit. Unterschiede zwischen Pegmatiten ergeben sich aus der Anreicherung von z.B. Li, Be, Rb, Cs, Nb, Ta, Sn, B, P, F und REE (Rare Earth Elements). Zu anderen magmatischen Gesteinen erfolgt eine Abgrenzung durch strukturelle und texturelle Merkmale. Dazu zählen eine variable Kirstallgrößenverteilung, Zonierung, gerichtetes Kristallwachstum oder graphische bzw. skelettartige Verwachsungen. Die Kristallgröße nimmt meist vom Rand zum Kern zu und unterscheidet sich zusammen mit der Mineralvergesellschaftung teilweise sehr stark von Zone zu Zone. Dabei sind Pegmatite im Allgemeinen immer grobkristalliner als ihr Nebengestein und bilden teilweise riesenhafte Kristalle aus. Pegmatitische Texturen und Strukturen sind nicht auf eine granitische Zusammensetzung begrenzt und finden sich z.B. auch in Gabbros, Komatiiten, Syeniten oder Karbonatiten [LONDON 2008].

3.1. Klassifizierung

Frühe Klassifizierungen unterteilen Pegmatite z.B. anhand ihrer Bildungstemperatur [FERSMAN 1930] oder ihrer Geochemie und Komplexität [LANDES 1933]. Spätere Klassifizierungen treffen eine Einteilung anhand der Bildungstiefe [BUDDINGTON 1959; GINSBURG et al. 1979] bzw. der Bildungsdrücke in unterschiedliche Klassen [ČERNÝ 1991a; ČERNÝ & ERCIT 2005]. Anhand der Druckbedingungen und Bildungstemperaturen des Nebengesteines ergeben sich für diese Klassen Metamorphosebedingungen, welche aber nicht immer ident mit jenen der darin vorkommenden Pegmatite sind. Die nach ČERNÝ & ERCIT [2005] insgesamt fünf Klassen werden bei grundlegend anderer geochemischer Signatur weiter in Subklassen bzw. Typen gegliedert. Eine weitere Unterteilung in Subtypen ist bei wesentlichen Unterschieden der Mineralvergesellschaftung und geochemischer Signatur möglich (Abbildung 8) [ČERNÝ & ERCIT 2005].

Daneben wird eine Einteilung in petrogenetische Familien getroffen, die die durch magmatische Differentiation entstandenen Pegmatite mit ihren Muttergraniten über Spurenelementsignaturen in Beziehung setzt. Diese Einteilung fand zunächst nur Anwendung auf die Seltene-Elemente-Klasse und miarolitische Klasse [ČERNÝ 1991a; ČERNÝ & ERCIT 2005], wurde aber auf alle Klassen und hin zu einer eigenständigeren Klassifizierung ausgeweitet [ČERNÝ et al. 2012]. Pegmatite können demnach in drei Familien eingeteilt werden: NYF (Nb-Y-F), LCT (Li-Cs-Ta) und eine gemischte (oder auch hybridisierte) NYF-LCT-Familie [ČERNÝ & ERCIT 2005; ČERNÝ et al. 2012]. Während die NYF-Klasse mit A-Typ Graniten und die LCT-Klasse mit S-Typ Graniten assoziiert wird, spielen I-Typ Magmen eine untergeordnete Rolle. Obwohl diese in beiden Klassen auftreten, [ČERNÝ & ERCIT 2005] sind ihre Gehalte an Flussmitteln wie B, P und F zu niedrig, um Pegmatite in signifikantem Ausmaß zu generieren [ČERNÝ et al. 2012].

Die *NYF-Familie* stammt von sub- bis metaluminosen A-Typ Graniten, die sich teilweise mit Hotspots und Riftzonen assoziieren lassen, und reichert Nb (Nb > Ta), Y, F, HREE (Heavy REE), Ti, U und Th an. Dabei können eigenständige Mineralphasen wie z.B. Euxenit/Aeschynit, Samarskit/Fergusonit, Gadolinit und Allanit-Y entstehen. Durch die erhöhten Gehalte an F finden sich häufig Fluorit und Topas, während Turmalin selten ist [ČERNÝ et al. 2012]. Die geochemische Signatur von NYF-Pegmatiten und ihren A-Typ Muttergraniten zeigen eine Ähnlichkeit zu peralkalinen Magmen aus

Mantelquellen. Letztere reichern bevorzugt LREE (Light REE) gegenüber HREE an, haben höhere Gehalte von P und im Fall von Karbonatiten hohe Ca-Gehalte [MARTIN & DE VITO 2005].

Charakteristisch für die *LCT-Familie* sind hohe Gehalte an Li, Cs, Ta (Ta > Nb), Rb, Be, Sn, B, P und F, wobei sich z.B. Spodumen, Petalit, Lepidolith, Elbait, Li-Phosphate und, bei sehr hohen Cs-Gehalten, Pollucit als eigenständige Mineralphasen bilden können. Die Pegmatite stammen von peraluminosen S-Typ Graniten und zeigen als Teil ihrer Mineralvergesellschaftung eine Kombination aus Muskovit, Granat, Cordierit, Sillimanit oder Andalusit, Turmalin und Gahnit. Pegmatite der LCT-Familie treten häufiger auf als jene der NYF-Familie [ČERNÝ et al. 2012].

Die *gemischte NYF-LCT-Familie* zeigt geochemische und mineralogische Charakteristika beider vorher beschriebenen Familien. Der LCT-Anteil ist meist untergeordnet. Dabei zeigen Hauptgemengteile eine LCT-Signatur, es treten LCT-typische akzessorische Mineralphasen auf oder LCT-Pegmatite bilden sich als Teil einer der letzten Entstehungsphasen von NYF-Pegmatiten [ČERNÝ & ERCIT 2005]. Ein eindeutiges Genesemodell besteht nicht. In Frage kommen z.B. die Kontamination von abgereichertem Magma mit nicht abgereicherten Lithologien [ČERNÝ 1991b], gleichzeitige Anatexis von abgereicherten und nicht abgereicherten Protolithen [WHALEN et al. 1987] oder einer Anreicherung von LCT-Komponenten in einem NYF-Magma durch selektive hydrothermale Lösungsvorgänge [MARTIN & DE VITO 2005].

Das CMS (Chemical composition - Mineral assemblage - Structural geology)-Schema nach DILL [2016] klassifiziert Pegmatite und Aplite nach ihrem Erzkörper und der Zusammensetzung des Erzes. Der Erzkörper wird einerseits als 1. Ordnung durch den Typ des Pegmatites bzw. Aplites, andererseits als 2. Ordnung durch seine Form und strukturgeologischen Merkmale weiter charakterisiert. Die Pegmatit- und Aplittypen sind die einzige Ordnung, die sich nach einer festen Nomenklatur richtet. Dabei wird nach den lithologischen Eigenschaften des Nebengesteins unterteilt: Pseudopegmatite, Metapegmatite, Pegmatoide (in Metamorphiten), Pegmatite (in Metamorphiten und Magmatiten) oder plutonische Pegmatite (in Magmatiten). Aplite werden nach der gleichen Terminologie unterteilt und dann als solche bezeichnet, wenn der Erzkörper homogen und feinkristalliner als sein Nebengestein ist. Das Erz selbst wird als 3. und 4. Ordnung anhand seiner chemischen Zusammensetzung und Mineralogie charakterisiert.

Class	<i>P-T</i> conditions of regional host rocks	Subclass	Typical minor elements	Type	Subtype	Family
Abyssal (AB)	94 kbar 700800 °C	AB-HREE AB-LREE AB-U AB-Be	U, Th, Zr, Ti, Nb, Y, LREE, HREE			NYF NYF NYF LCT
Muscovite (MS)	8–5 kbar 650–580 °C		Ca, Ba, Sr, Fe>Mn			,
Muscovite-rare element (MSREL)	7–3 kbar 650–520 °C	MSREL-REE	Be, Y, REE, Ti, U, Th, Nb-Ta			NYF
Rare element (REL)	4–2 kbar 650 450 °C	MSREL-Lİ REL-REE	Li, Be, Nb Be, Y, REE, U, Th, Nb>Ta, F	Allanite-monazite		LCT NYF
				Euxenite Gadolinite		NYF NYF
		REL-Li	Li, Rb, Cs, Be, Ga,Sn, Hf,	Beryl	Beryl-columbite Beryl-columbite-phosphate	LC LC
			Nb.Ta, B, P, F	Complex	Spodumene	LCT
					Petalite Lepidolite	LC LC
					Elbaite Amblvaonite	LC T
				Albite-spodumene		LCT
Miarolitic (MI)	3_1 5 khar	MLRFF	Ra V Nh RFF	Albite Tonaz-hand		LCT NVF
	500-400°C	1	F, Ti, U, Th, Zr	Gadolinite-fergusonite		NYF
		MI-Li	Li, Be, B, F, Ta>Nb	Beryl-topaz		LCT
				Spodumene Petalite		LCT
				Lepidolite		LCT

Abbildung 8: Einteilung von Pegmatiten nach ČERNÝ & ERCIT [2005] und ČERNÝ et al. [2012].**NYF** Nb-Y-F-Familie **LCT** Li-Cs-Ta-Familie. [MÜLLER et al. 2018]

3.2. Zonierung

Obwohl auch unzonierte Pegmatite teilweise sogar spodumenführend sein können, ist ein charakteristisches Merkmal von Pegmatiten eine Zonierung. Dabei unterscheiden sich die Zonen nicht nur anhand der Mineralvergesellschaftung, sondern auch anhand des Habitus und der Orientierung der Minerale [LONDON 2008]. Im Allgemeinen werden dabei eine Kontakt-, eine Rand-, eine Zwischen- und eine Kernzone voneinander unterschieden [CAMERON et al. 1949; LONDON 2008].

Die feinkristalline *Kontaktzone* ist meist nur wenige Zentimeter mächtig und besteht hauptsächlich aus Plagioklas, Quarz und Muskovit. Es können jedoch auch z.B. Granat, Apatit, Turmalin, Beryll, Biotit oder Columbit auftreten. Quarz und Feldspat zeigen ein mikrographisches Gefüge. Ab der *Randzone* nimmt die Kristallgröße abrupt zu und Minerale wie K-Feldspat, Turmalin, Glimmer und Beryll bilden sich orthogonal zum Nebengesteinskontakt. Es treten skelettartige und graphische Verwachsungen auf. Kontakt- und Randzone sind bzgl. ihrer Mineralogie ähnlich, unterscheiden sich aber anhand ihres Gefüges und ihrer Struktur [LONDON 2008, 2018].

In der *Zwischenzone* nimmt der Gehalt an K-Feldspat und Quarz im Vergleich zur Randzone zu und es können, vor allem in den weiter innenliegenden Bereichen von LCT-Pegmatiten, Li-Aluminosilikate und Li-Phosphate auftreten. Je nach Komplexität der Zwischenzone wird diese weiter unterteilt. Ausschlaggebend dafür ist meist eine Änderung des modalen Mineralbestandes von K-Feldspat, Quarz, Muskovit und Plagioklas [CAMERON et al. 1949; LONDON 2018]. So werden z.B. die spodumenführenden Pegmatite der Ostalpen nach KNOLL et al. [2018] in vier verschiedene Zwischenzonen untergliedert. Zone 1, 2 und 3 enthalten K-Feldspat, Quarz, Muskovit und Plagioklas mit wechselnder modaler Zusammensetzung. Die inneren Zonen 2 und 3 sind spodumenführend. Die innerste Zone 4 besteht aus reinem Quarz, welche nach CAMERON et al. [1949] der *Kernzone* entspricht.

3.3. Geochemie

Neben einer internen Zonierung von einzelnen Pegmatitkörpern tritt auch eine regionale Zonierung bei Pegmatitpopulationen mit gemeinsamem Ursprung auf. Diese Pegmatitgruppen werden mit zunehmender distaler Lage höher fraktioniert und weisen eine komplexere mineralogische Zonierung auf [ČERNÝ et al. 1985; LONDON 2008]. Dabei ändern sich die Verhältnisse von Elementen während der voranschreitenden Kristallisation teils drastisch. Als petrologischer Indikator werden dabei vor allem die Gruppe der Alkali- und Erdalkalielemente (Abbildung 9) und inkompatible Elemente mit hohen Ionenwertigkeiten (high-field-strength elements; HFSE), sowie das Verhältnis von Fe/Mn (Abbildung 10) verwendet [LONDON 2008].

Bei den Alkali- und Erdalkalielementen ist Rb im Vergleich zu Ba, Sr und K inkompatibler. Ba und K werden in Glimmern und K-Feldspat, Sr in Feldspäten gegenüber Rb bevorzugt eingebaut. Cs ist ebenfalls sehr inkompatibel und verhält sich in Glimmern und K-Feldspäten ähnlich zu Rb [LONDON 2005, 2008]. Ähnlich zu Seltene-Elemente-Graniten steigt bei Pegmatiten der LCT-Klasse zuerst der Gehalt an K-Feldspat gegenüber dem Gehalt an Plagioklas an und sinkt danach mit weiterer Fraktionierung wieder [ČERNÝ et al. 2005; LONDON 2008].

Bei der Gruppe der HFSE und dem Verhältnis Fe/Mn können Fraktionierungstrends bei REE, Mn und Fe in Granat, Zr und Hf in Zirkon-Hafnon, Nb und Ta in Columbit-Tantalit (Minerale der Columbitgruppe, CGM) beobachtet werden. Gehalte an REE nehmen mit steigender Fraktionierung ab, da diese bereits vorher eigene, akzessorische Mineralphasen bilden (z.B. [ERCIT 2005]). Pegmatite der NYF-Familie zeigen höhere Gehalte an REE und haben meist höhere HREE/LREE-Verhältnisse als Pegmatite der LCT-Familie (siehe Kapitel 3.1) [LONDON 2008]. Das Mn/Fe-Verhältnis in Granat nimmt mit fortschreitender Fraktionierung zu [ČERNÝ et al. 1985]. Grund dafür ist nicht der bevorzugte Einbau von Mn in Granat selbst, sondern die gleichzeitige Bildung von z.B. Turmalin, Cordierit und Biotit, welche bevorzugt Fe und Mg statt Mn einbauen [MANER et al. 2019]. Das Verhältnis von Zr zu Hf und Nb zu Ta wird von Zirkon-Hafnon und Columbit-Tantalit bestimmt. Dabei reichern sich die Elemente mit höherem Atomgewicht und geringeren Ausgangsgehalten, Hf und Ta, gegenüber Zr und Nb an (Abbildung 11) [LONDON 2008]. In metaluminosen bis peraluminosen granitischen Schmelzen zeigt sich eine geringere Löslichkeit der Endglieder Zirkon und Columbit, wodurch diese zuerst ausfallen und die Schmelze an Hf und Ta angereichert wird [LINNEN & CUNEY 2005]. Vom Fraktionierungspfad der CGM kann auf den Typ des Pegmatits geschlossen werden [ČERNÝ 1989].

Abbildung 9: Verhältnis von K/Rb zum Cs-Gehalt bei Kalifeldspäten aus Pegmatiten. [LONDON 2008]

Abbildung 10: Fraktionierungstrends der HFSE und Fe/Mn in Graniten und Pegmatiten. [LONDON 2008]

Abbildung 11: Fraktionierungstrends der CGM . X_{Mn} X_{Mn}=(Mn/(Mn+Fe), X_{Ta} X_{Ta}=(Ta/(Ta+Nb), **BeT** Beryll-Typ, **SpT** Spodumen-Typ, **KSpT** Komplex-Spodumen-Typ, **KLT** Komplex-Lepidolith-Typ, **KPT** Komplex-Petalit-Typ. [GRAUPNER et al. 2010]

3.4. Genese

Die Genese von Schmelzen, die zur Bildung von Pegmatiten führen, ist nicht eindeutig geklärt und die Genesemodelle sind nicht universell einsatzbar [SIMMONS & WEBBER 2008]. Klassischerweise werden Pegmatite einem Muttergranit zugeordnet und kristallisieren aus dessen residualer Schmelze [ČERNÝ 1991b; LONDON 2008; ČERNÝ et al. 2012]. Diese wird durch Fraktionierung an inkompatiblen Elementen, Flussmitteln und volatilen Elementen angereichert. Dadurch werden die Kristallisationstemperatur und die Viskosität erniedrigt, die Keimbildung verringert, sowie die Diffusion und die Löslichkeit in der Schmelze erhöht [LONDON 2008; SIMMONS & WEBBER 2008].

Neben der Genese aus einem Pluton kommt für manche Pegmatite auch eine rein anatektische Bildung in Frage [SIMMONS & WEBBER 2008]. Dies ist z.B. dort der Fall, wo Muttergranite fehlen oder die Geochemie gegen eine plutonische Bildung sprechen (z.B. SIMMONS et al. [2016], MÜLLER et al. [2017], KNOLL et al. [2018]). Fehlt ein Muttergranit, ist die Zusammensetzung der anatektischen Schmelze von der Zusammensetzung des Ausgangsgesteines abhängig. So können sich aus Li- oder Färmeren Gesteinen durch Anatexis anstelle von LCT- oder NYF-Pegmatiten auch CT-(Cs-Ta-)Pegmatite bzw. NY-(Nb-Y-)Pegmatite bilden(Abbildung 12) [MÜLLER et al. 2017].

Abbildung 12: Schematische Darstellung der Bildungsweise von orogenen und anorogenen Pegmatiten. NY(F) Nb-Y(-F)-Familie (L)CT (Li-)Cs-Ta-Familie. [MÜLLER et al. 2017]

3.5. Lagerstätten

Neben den hier beschriebenen Rohstoffen enthalten Pegmatite eine Vielzahl an Elementen und Mineralen, die potenziell von wirtschaftlichem Interesse sind. Nicht alle davon werden, zumindest im großen Stil, gewonnen bzw. haben einige im Laufe der Zeit an Bedeutung verloren. Eine vollständigere Aufzählung und Beschreibung findet sich z.B. in LONDON [2008], DILL [2010, 2015] oder LONDON [2016].

Erzlagerstätten

Lithium tritt in eigenständigen Mineralphasen als Spodumen (8,03 % Li₂O), Petalit (4,5 % Li₂O), Amblygonit (7,4 % Li₂O), Lepidolith (7,7 % Li₂O) oder Zinnwaldit (3,4 % Li₂O) auf und wird als Festgestein bei Gehalten ab etwa 0,5 % Li₂O abbauwürdig [DILL 2015]. Dabei sind Spodumen und Petalit die wichtigsten Erz- und Industrieminerale. Für die direkte Verwendung als Industriemineral in der Glas- und Keramikindustrie eignet sich Petalit oder pseudomorpher Spodumen + Quarz nach Petalit, da hier die Gehalte an Fe, Mn und Cr besonders niedrig sind [LONDON 2016]. Als Erz dienen die Li-führenden Minerale zur Herstellung von z.B. Li₂CO₃, LiCl, LiBr und LiOH. Diese finden ihre Anwendung als Flussmittel und als Bestandteil von Schmiermitteln, synthetischen Gummis, Arzneimitteln, Batterien und Akkumulatoren [KESLER et al. 2012; DILL 2015].

Neben Pegmatiten spielen Brinelagerstätten eine wichtige Rolle bei der Gewinnung von Li. Diese erreichen im Durchschnitt höhere Reserven pro Lagerstätte (1,45 Mt Li im Vergleich zu 0,11 Mt Li bei Pegmatitlagerstätten), was einen langfristigen Abbau und Versorgungssicherheit gewährleisten würde. Li-Lagerstätten aus Pegmatiten sind hingegen wirtschaftlicher, was den Chemismus und die Gehalte an Li betrifft. Wichtige Lagerstätten in Brines finden sich am Puna Plateau (z.B. Salar de Atacama, Chile oder Hombre Muerto, Argentinien) und am Qinghai-Tibet Plateau (Qaidam Becken, China). Pegmatitlagerstätten sind geographisch weiter verbreitet und befinden sich z.B. in Australien (Greenbushes), USA (Black Hills, Bessemer City, Kings Mountain), Zimbabwe (Kamativi, Barkam, Bikita), DR Kongo (Manono–Kitolo), Kanada (Tanco) aber auch Brasilien, Spanien, Portugal, China, Russland u.a. [KESLER et al. 2012].

In Österreich befindet sich ein Spodumenpegmatitvorkommen auf der Weinebene im Stadium der abgeschlossenen Vorabmachbarkeitsstudie (Stand: Jänner 2021). Dabei wurden Reserven von 6,3 Mt mit einem Li₂O-Gehalt von 1.17 % ermittelt [European Lithium 2018]. Das Vorkommen liegt konkordant in verfalteten kyanitführenden Glimmerschiefern und eklogitischen Amphiboliten und erreicht Spodumengehalte von 15 Vol% bzw. 22 Vol% [Göd 1989].

Cäsium und *Rubidium* treten gemeinsam mit Li in LCT-Pegmatiten auf [ČERNÝ 1991a]. Dabei ist Lepidolith der wichtigste Rb-Träger und Cs bildet bei hohen Gehalten Pollucit, welcher oft mit Petalit vergesellschaftet ist [POHL 2005]. Die Cs-Gehalte von einer an Pollucit gesättigten Schmelze weisen auf extensive fraktionierte Kristallisation und damit sehr hochdifferenzierte Pegmatite hin [LONDON et al. 1998; LONDON 2008]. Cs wird in den Bereichen des GPS, der Telekommunikation, der Medizin, bei Uhren, Legierungen und zur Entkeimung verwendet. Neben einer ähnlichen Anwendungspalette wie Cs findet Rb seinen Einsatz in der Elektrotechnik, der Pyrotechnik und in Photozellen [DILL 2015]. Die wichtigste Lagerstätte für Cs und Rb ist Tanco (Kanada), wo Pollucit in einzelnen Zonen Gehalte von 75 Vol% erreicht [STILLING et al. 2006; LINNEN et al. 2012]. *Beryllium* wird hauptsächlich in der Elektroindustrie, in Flugzeug- und Raumfahrzeugteilen und in Legierungen eingesetzt. In Pegmatiten wird Beryll als Beiprodukt bei der Gewinnung von Feldspat und Glimmer gewonnen, spielt aber heute nur noch eine untergeordnete Rolle. Hauptproduzent von Be ist Spor Mountain (USA), wo es aus epithermal alterierten Vulkaniten in Form von Bertrandit gewonnen wird [DILL 2015].

Niob und Tantal werden aus Mineralen der Mischungsreihe Coltan (Columbit-Tantalit) und der Pyrochlor Supergruppe gewonnen. Neben den Vorkommen in Pegmatiten tritt vor allem Pyrochlor in Karbonatiten und Nephelinsyeniten auf und bildet dort gemeinsam mit Apatit, Magnetit und Phlogopit Lagerstätten, wie z.B. in Australien (Mt. Weld) und Brasilien (Araxa) [POHL 2005]. Nb und Ta werden in Pegmatiten kontinuierlich angereichert und bilden deshalb in Seltene-Elemente-Pegmatiten der LCT- und NYF-Familie eigene Mineralphasen. Lagerstätten finden sich z.B. in Kanada (Tanco, Bernic Lake), Australien (Greenbushes) und Afrika (Ruanda, Nigeria, DR Kongo, u.a.) [MELCHER et al. 2015; MELCHER et al. 2017]. Pegmatite der LCT-Klasse weisen ein niedrigeres Nb/Ta-Verhältnis auf als jene der NYF-Klasse. Verantwortlich dafür ist die Anreicherung von Nb in restitischen Glimmern bei der Bildung von S-Typ Magmen die den Ausgang von LCT-Pegmatiten darstellen [STEPANOV & HERMANN 2013; LONDON 2016]. Ebenso wie Nb findet Ta seine Anwendung in Spezialstählen und Legierungen. Zusätzlich wird Ta auch in der Elektronikindustrie, in Katalysatoren und in der Medizintechnik eingesetzt [DILL 2015].

Zinn kommt in Pegmatiten vor allem in Kassiterit vor und wird als Legierung, Lötzinn, Farbpigment und in der Glas-, Keramik- und Elektronikindustrie verwendet [DILL 2015]. Im Hartgestein ist Sn ab 0,3 %, in Seifen bereits ab 0,01 % bauwürdig. In Seifen aus Sn-Ta-Nb-Pegmatiten sind Coltanminerale aufgrund ähnlicher Eigenschaften meist mit Sn-Mineralen angereichert [POHL 2005; DILL 2015]. Solche Zinnseifen finden sich z.B. in Malaysia oder Thailand Sn-Ta-Nb bzw. Seltene-Elemente-Pegmatite mit Sn finden sich z.B. in Afrika [MELCHER et al. 2015] oder in Australien (Greenbushes) [POHL 2005].

Industrieminerallagerstätten

Feldspäte machen zumeist mehr als zwei Drittel des Volumens eines granitischen Pegmatites aus. Dabei handelt es sich in der Regel um Plagioklas mit hohem Albitgehalt und K-Feldspat [LONDON 2008]. Feldspäte werden vor allem in der Glas-, Keramik- und Porzellanindustrie eingesetzt, aber auch z.B. als Füllstoff oder Abrasiva [GLOVER et al. 2012].

Quarz findet seine Anwendung in der Glas- und Keramikindustrie und als Abrasiva. Quarz aus Pegmatiten ist besonders rein und wird als ultrahochreiner (< 10 ppm Verunreinigungen) und hochreiner (< 100 ppm Verunreinigungen) Quarz in der Prozessortechnik als Halbleiter, in der Lichttechnik, in Spezialkeramiken und für Spiegel eingesetzt [GLOVER et al. 2012].

Als *Glimmer* wird vor allem Muskovit in Füllstoffen, Beschichtungen, Schmiermittel und Kosmetika verwendet. Der früher große Bedarf an Muskovit für Kondensatoren und Vakuumröhren wurde durch Transistoren und keramische Werkstoffe ersetzt. Aufgrund seiner Farbe und Fe-Gehaltes wird Biotit dort äquivalent zu Muskovit eingesetzt, wo elektrische Eigenschaften und Farbe nicht von Bedeutung sind [GLOVER et al. 2012]. Phlogopit besitzt ähnliche Eigenschaften wie Muskovit, ist aber hitzebeständiger. Dort, wo Biotit oder Phlogopit hydrothermal alteriert wird oder tropisch verwittert, entsteht durch Hydratisierung und Abfuhr von Kalium Vermiculit. Dieser wird als Dämm- und Feuerfestmaterial verwendet [POHL 2005].

Ebenfalls als Alterationsprodukt tritt *Kaolin* auf. Dieser entsteht durch die Laugung von Al-Silikaten bei der Na, K und Ca abgeführt werden [POHL 2005]. Seine Anwendung findet Kaolin in keramischen Werkstoffen, als funktionaler Füller und als Glasfaser in der Elektronikindustrie [GLOVER et al. 2012].

Graphit aus Pegmatiten wird vor allem in stückiger, kristalliner Form gehandelt und wird z.B. in Sri Lanka gewonnen. Seine Anwendung findet Graphit als Schmiermittel, Füllstoff, Elektrodenmaterial, in der Eisen- und Stahlerzeugung oder als Moderator in Kernreaktoren [РОНL 2005]. Für eine wirtschaftliche Gewinnung von kristallinem Graphit aus Pegmatiten sollte der Gehalt an C mindestens 22 % bis 35 % betragen [DILL 2015].

Edelsteinlagerstätten

Pegmatite sind eine Quelle für eine große Varietät an Edelsteinen. Zu den bekanntesten gehören dabei Berylle, Topas, Turmaline, Spessartin und Spodumene. Diese Edelsteine kommen meist in miarolitischen Hohlräumen, in einer Quarz- oder Feldspatmatrix im Kern oder in der Reaktionszone um Pegmatite in mafischen Gesteinen vor. Berylle (Aquamarin, Heliodor, Morganit), Spessartin, Spodumene (Kunzit, Hiddenit), Topas und Turmalin finden sich hauptsächlich in den miarolitischen Hohlräumen. Edelsteine in einer Quarz- oder Feldspatmatrix sind meist Aquamarin und Turmalin. Dort, wo Pegmatite mafische Gesteine intrudiert haben, finden sich typischerweise Smaragd und Alexandrit. Edelsteine aus Pegmatiten werden z.B. in Brasilien, Madagaskar, Russland, USA, Afghanistan, Pakistan und Afrika gewonnen [SIMMONS et al. 2012].

3.6. Exploration

Neben der Literaturrecherche, welche typischerweise das bevorzugte tektonische und geologische Setting und bereits bekannte Vorkommen berücksichtigt, ist die Prospektion und Exploration von Pegmatiten, mit wenigen Ausnahmen, von Aufschlusskartierungen abhängig [BRADLEY et al. 2017; LONDON 2018; STEINER 2019]. Im regionalen Maßstab können (hyperspektrale) Fernerkundung [CARDOSO-FERNANDES et al. 2019] und geophysikalische Methoden wie Radiometrie und Magnetik [SCHETSELAAR et al. 2000], bei entsprechenden petrophysikalischen Eigenschaften, eingesetzt werden.

Während Industrieminerale auch in einfachen, niedrigdifferenzierten Pegmatiten vorkommen, beschränken sich Erzminerale wie z.B. Spodumen und Coltan auf hochdifferenzierte, zonierte, Seltene-Elemente-Pegmatite [LONDON 2018]. Seltene-Elemente-Pegmatite haben geringere Volumina und sind weniger häufig, wie z.B. in den Black Hills, wo sie nur etwa 2 % aller Pegmatite ausmachen [NORTON & REDDEN 1990].

Aufgrund ihrer Seltenheit und Minerale sind Pegmatite der LCT-Klasse ein häufiges Explorationsziel [LONDON 2018; GOURCEROL et al. 2019; STEINER 2019]. Dabei wird vor allem versucht, Minerale und Elemente, die auf eine hohe Differentiation hinweisen, zu finden. Nach STEINER [2019] können dafür z.B. Bachsedimentanalysen auf Schwerminerale, Boden- und Lithogeochemie auf Anomalien von Sn, W, Nb, Ta, Li, K, Cs, Rb, Zr, Hf, Cu, Be und B untersucht werden.

Für Ta-Vererzungen eignen sich besonders die Fraktionierungstrends der Alkalielemente und die Gehalte von Ta in primären Hellglimmern. Ta-Gehalte von > 70 ppm in hochdifferentierten, granitischen Pegmatiten sind ein wesentlicher Indikator für eine Ta-Lagerstätte. Exokontakte sind von ihren Mineralalterationen und ihrer geochemischen Signatur nicht homogen genug für Explorationszwecke [GAUPP et al. 1984].

4. Methodik

4.1. Probennahme

Die Probennahme erfolgte von August bis September 2020. Dafür wurden Hammer und Meißel für Handstücke, sowie eine Stihl TS 360 mit Diamantsägeblatt für Schlitzproben verwendet (Abbildung 13). Durch die Zonierung verursachte Heterogenität der Pegmatitkörper und der damit verbundenen, nicht repräsentativen Größe der Handstücke handelt es sich sensu stricto nicht um Proben, sondern um Muster.

Abbildung 13: Werkzeug für die Probennahme. Unterer Bildrand: 80 cm.

Im Rahmen der Probennahme erfolgte eine Beschreibung des zugehörigen Aufschlusses, Blockfeldes oder Blocks. Dabei wurde die Position mit einem eTrex 10 von Garmin in WGS84-Koordinaten bestimmt. Die Genauigkeiten der Standortbestimmungen lagen dabei im Bereich von 1 m bis 5 m. Zusätzlich wurden die Mächtigkeit, der Mineralbestand, die Zonierung, die Kristallgröße, die Schieferung, Konkordanz/Diskordanz und das Nebengestein aufgenommen (Tabelle 1).

Merkmal	Beschreibung		
Mineralbestand	Makroskopisch oder mit Handlupe erkennbar		
Zonierung	Änderung im M	Änderung im Mineralbestand und/oder Kristallgröße	
Kristallgröße	Fein	wenige Millimeter	
	Mittel	mehrere Millimeter bis wenige Zentimeter	
	Grob	mehrere Zentimeter	
Schieferung	Schwach	keine bis schwach ausgeprägte Mineraleinregelung	
	Mittel	erkennbare Mineraleinregelung	
	Stark	deutliche Mineraleinregelung	
	Mylonitisiert	Anzeichen duktiler Verformung	

Tabelle 1: Beschreibung der aufgenommenen Merkmale von Aufschlüssen, Blockfeldern und Blöcken.

4.2. Probenaufbereitung und -präparation

Muskovite

Aus den genommenen Proben wurden möglichst unalterierte und unverwitterte Muskovite separiert. Diese wurden anschließend in Harz eingebettet und poliert. Die so hergestellten Anschliffe wurden mit Laserablation – induktiv-gekoppelter-Plasma-Massenspektrometrie (LA-ICP-MS) analysiert. Für die Messungen wurde ein theoretischer Si-Gehalt von 21 Masse% angenommen. Die tatsächlichen Si-Gehalte der Muskovite wurden mit energiedispersiver Rasterelektronenmikroskopie (REM-EDS) bestimmt und nach folgender Formel für die Korrektur der Ergebnisse der LA-ICP-MS verwendet:

$$Elementgehalt (korrigiert) [ppm] = \frac{Messwert (LA-ICP-MS) [ppm] \times Si-Gehalt (REM) [\%]}{21,00 [\%]}$$

Die in dieser Arbeit verwendeten Werte sind korrigierte Messwerte.

Schwerminerale

Für die Gewinnung der Schwermineralkonzentrate wurden insgesamt 8 Proben aus spodumenführenden Pegmatitgängen ausgewählt. Die Aufgabemenge betrug zwischen 0,5 kg und 1 kg. Die Proben wurden per Hand auf eine Korngröße von < 4 cm gebracht und anschließend mit Electric Pulse Disaggregation (EPD) auf eine Korngröße von < 1 mm fragmentiert. Danach wurden die Mineralkörner per Nasssiebung nach ihrer Korngröße klassiert und mit einer Waschpfanne an Schwermineralen vorangereichert. Die anschließende Dichtetrennung erfolgte mit Na-Polywolframat bei einer Dichte zwischen 3,02 g/cm³ und 3,07 g/cm³. Abschließend wurden die

Schwermineralkonzentrate mit einem Magnetscheider bei 0,35 A bis 0,4 A in eine unmagnetische (UM) und magnetische (M) Fraktion getrennt.

Aus diesen klassierten und sortierten Schwermineralfraktionen wurden Anschliffe hergestellt. Die qualitative Identifizierung der Schwermineralphasen und die Bestimmung der Elementgehalte dieser erfolgte mit REM-EDS.

Gesamtgestein

Probenmaterial von spodumenführenden und einfachen Pegmatiten wurden für eine Gesamtgesteinsanalyse der Haupt- und Spurenelemente bei der Firma Activation Laboratories Ltd., Kanada (Actlabs) ausgewählt.

Die Proben wurden vor dem Versand mit einem Backenbrecher zerkleinert und mit einer Wolframcarbid (WC)-Kugelmühle zu einem analysefeinen (95 % < 74 µm) Pulver gemahlen. Die Analysen für Haupt- und Spurenelemente wurden von Actlabs mit einem Li-Metaborat/Tetraborat-Aufschluss (Fusion) mit anschließender optischer Emissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP-OES) und ICP-MS durchgeführt. Die Li-Gehalte wurden mit einem Peroxidaufschluss und anschließender ICP-OES-Analytik bestimmt.

4.3. Lichtmikroskopie

Die Mikroskopie wurde mit einem Durch- und Auflichtmikroskop BX 60 von Olympus gemacht. Zur Aufnahme von Fotos diente eine angeschlossene Jenoptik ProGres CF Scan.

4.4. Electric Pulse Disaggregation (EPD)

Die Fragmentierung durch EPD erfolgte am Lehrstuhl für Aufbereitung und Veredlung der Montanuniversität Leoben mit einem SELFRAG Lab (Abbildung 14). Anders als bei herkömmlichen Zerkleinerungsverfahren, bricht das Gestein durch EPD vorwiegend an den Korngrenzen.

Beim EPD-Verfahren wird die Probe in einem Wasserbad in Pulsen einer Hochspannung ausgesetzt. Die größte mechanische Spannung tritt dabei an den Grenzen der einzelnen Mineralkörner auf, wo diese bevorzugt brechen.

EPD	SELFRAG Lab
Elektrodenabstand	40 mm bis 15 mm
Pulszahl	ca. 200 pro Probe
Frequenz	3 Hz bis 5 Hz
Spannung	200 kV
Summe Funkenenergie	ca. 60 kJ

Tabelle 2: Messkonfiguration d	des EPD-Gerätes
--------------------------------	-----------------

Abbildung 14: EPD-Gerät von Selfrag am Lehrstuhl für Aufbereitung und Veredlung.

4.5. Energiedispersive Rasterelektronenmikroskopie (REM-EDS)

Die Messungen wurden am REM (Tabelle 3) des Lehrstuhls für Geologie und Lagerstättenlehre der Montanuniversität Leoben durchgeführt. Die analysierten Anschliffe wurden vor der Messung mit Kohlenstoff bedampft.

Bei der REM-EDS Messung selbst wird die Probe unter Hochvakuum mit Primärelektronen beschossen. Diese stammen aus einer Glühkathode und werden durch ein elektrisches Feld beschleunigt. Diese Elektronen rastern die Probe gitterförmig ab. Der auftretende Primärelektronenstrahl wird entweder von der Probe zurückgeworfen oder eingefangen. Schwere Elemente werfen mehr Elektronen zurück als leichte, weshalb Minerale, welche solche eingebaut haben, heller erscheinen. Ein Effekt der Wechselwirkung zwischen Probe und Primärelektronenstrahl ist, dass die Probe selbst Elektronen emittiert. Da diese Sekundärelektronen (backscattered electrons, BSE) nur von der obersten Schicht der Probe kommen, geben sie Auskunft über die Oberfläche.

Trifft der Primärstrahl auf ein Elektron in einem niedrigen Orbital, schlägt er dieses aus seiner Position. Die Position wird von einem Elektron aus einem höheren Orbital eingenommen, wobei Energie in Form von Röntgenstrahlung frei wird. Diese Röntgenstrahlung wird in Quanten frei und ist charakteristisch für jedes Element. Misst man diese charakteristischen Röntgenquanten und deren Intensitäten, dann können die einzelnen Elementgehalte der Probe ermittelt werden.

REM-EDS	Zeiss Evo MA 10
Detektor	Bruker Nano XFlash 430-M
Messspannung	15 kV bis 20 kV
Messabstand	9,5 mm bis 10,5 mm
Auswertung	Bruker Esprit

Tabelle 3: Messkonfiguration des REM.

4.6. Laserablation – induktiv-gekoppelte-Plasma-Massenspektrometrie (LA-ICP-MS)

Die in-situ Spurenelement Messungen wurden mit einem ESI NWR213 Nd:YAG Laserablationssystem, welches an eine NexION 2000 ICP-MS von PerkinElmer gekoppelt war, gemessen (Tabelle 4). Das Prinzip der Messung beruht auf der einer ICP-MS Messung, wobei zuerst mit Hilfe eines Lasers die Probe an einem Punkt abladiert wird. Die so gewonnenen feinen Probenpartikel werden mit einem inerten Trägergas zum Plasma der ICP-MS-Einheit transportiert. Die im Plasma erzeugten Ionen gelangen über die Konen (Lochblenden) und ein Linsensystem in das Massenspektrometer. Die Ionen werden im Quadrupolmassenspektrometer aufgrund ihres Massen-Ladung-Verhältnisses nach Elementen getrennt und danach vom Detektor erfasst.

Gemessen wurden (Zahlen in Klammern sind die Elementisotope): Li(7), Be(9), B(10), B(11), Mg(25), Si(29), P(31), Ca(43), Ca(44), Ti(47), V(51), Cr(52), Mn(55), Fe(57), Co(59), Ni(60), Cu(63), Cu(65), Zn(66), Zn(67), Ga(71), Ge(74), Rb(85), Sr(88), Zr(90), Nb(93), Mo(95), Sn(118), Cs(133), Ba(137), Hf(178), Ta(181), W(182), Tl(205), Pb(208), Th(232) und U(238). Als Hauptstandard wurde dabei das USGS basaltische Glas Referenzmaterial BCR-2G [JOCHUM et al. 2016] verwendet. Für die Elemente Be, B, Ga, Ge, Sn, Cs, W und TI wurde auf das Glasreferenzmaterial SRM NIST 612 [JOCHUM et al. 2011] zurückgegriffen, da mit dem BCR-2G Standard keine zufriedenstellenden Ergebnisse erzielt wurden.

LA	ESI NWR213 Nd:YAG
Durchmesser Messpunkt	50 μm
Laserstrahlenergie	9 J/cm ²
Laserfrequenz	10 Hz
Trägergas	Не
Flussrate Trägergas	0,75 L/min
Hintergrunddetektion	25 Sek vor Messung
Messdauer	60 Sek
Dauer zwischen den Messungen	30 Sek
	NevION 2000 PerkinElmer
Standards extern	BCK-2G [JOCHUM et al. 2016]
	SRM NIST 612 [ЈОСНИМ et al. 2011]
Standards intern	Si
Datenreduktion	Iolite 4 [PATON et al. 2011]

Tabelle 4: Messkonfiguration und Datenauswertung LA-ICP-MS.

5. Aufschluss- und Probenbeschreibung

Neben Aufschlüssen wurden auch Blöcke und Blockfelder aufgenommen (Abbildung 1). Auf Proben aus Blöcken und Blockfeldern wurde dort zurückgegriffen, wo keine eindeutige Herkunft von anstehenden Pegmatitaufschlüssen nachvollziehbar war. Auf Proben aus Moränenmaterial wurde weitestgehend verzichtet, da die Transportweite und das Herkunftsgebiet nicht eindeutig bestimmt werden konnten. Neben primär gebildeten, magmatogenen Muskoviten finden sich auch sekundäre, metamorphogene Muskovite. Diese treten parallel und in der Nähe zum Nebengesteinskontakt auf und sind an ihrer Kristallgröße und -dicke von wenigen Millimetern zu erkennen. Diese metamorphogenen Muskovite wurden vermutlich während des alpidischen Ereignisses gebildet und nicht als Probe genommen. Die anstehenden Pegmatite treten stets in Glimmerschiefern bis Paragneisen auf, wobei eine eindeutige Unterscheidung nicht immer möglich war.

Die Abschätzungen von Gehalten an Spodumen, Mächtigkeiten und Längen wurden im Gelände makroskopisch bestimmt. Vor allem der Gehalt an Spodumen variiert meist schon im Zentimeterbereich sehr und kann deshalb nur als Anhaltspunkt genommen werden. Im Nachfolgenden beziehen sich die Zahlen in Klammer auf die dementsprechenden Probennahmepunkte.

Den Probennahmepunkten wurde nach ihrer zeitlichen Nahme in aufsteigender Reihe, beginnend mit 1, eine Nummer zugewiesen. Proben, die aus dem gleichen Aufschluss stammen, wurden mit einem fortlaufenden numerischen Suffix versehen (z.B.: 14_1, 14_2, usw.). Proben, die nicht aus demselben Aufschluss stammen, aber aufgrund ihrer geographischen Nähe und Ähnlichkeit zueinander nicht eindeutig trennbar sind, wurden mit einem alphabetischen Suffix versehen (z.B.: 62a, 62b, usw.). Proben aus dem Steinbruch in St. Johann erhalten zur klaren Abgrenzung den Präfix *S* (z.B.: S1, S2, usw.).

Die Schlitzprobe der Lokalität Ratzell (60_3) wurde für die Schwermineral- und Gesamtgesteinsanalytik in 30 cm mächtige Bereiche geviertelt. Vom Hangenden ins Liegende ergeben sich daraus die Proben 60_3_03, 60_3_36, 60_3_69 und 60_3_912.

5.1. Spodumenpegmatite

Im Arbeitsgebiet gibt es insgesamt vier Spodumenpegmatitlokalitäten: Poling (1, 2, 67), Ratzell (14, 15, 60), Glanzalm (56) und Großer Zunig (9, 63). Obwohl alle Spodumenpegmatite in Glimmerschiefer bzw. Gneis auftreten, kommen in unmittelbarer Nähe immer Quarzite vor. Des Weiteren finden sich spodumenführende Blöcke westlich des Rottörl (65, 66) und ein Block mit Spodumen zwischen Poling und Naßfeld (28). Diesen zwei Vorkommen konnte kein eindeutiges Herkunftsgebiet zugeordnet werden. Alle spodumenführenden Pegmatite liegen im Petzeck-Rotenkogel-Komplex.

Poling

Etwa 200 m nördlich des Senders Poling ist ein spodumenführender Pegmatit auf einer Länge von 100 m mit einer maximalen Mächtigkeit von 4 m stellenweise aufgeschlossen. Der Pegmatitkörper streicht NW-SO, fällt steil nach SW ein und zeigt auf mehreren Metern eine ausgeprägte Trennfläche die hangabwärts, in Richtung NW, einfällt. Dieser Richtung folgend finden sich mehrere Blöcke bzw. Aufschlüsse, die ebenfalls Spodumen enthalten und eine ähnliche Mächtigkeit aufweisen. Die geringe Änderung des Einfallens der Aufschlüsse im zentralen Teil deutet auf einen zweiten Pegmatitgang hin. Die Trennfläche, der Wechsel des Einfallens bei den randlichen Blöcken und das steile Gefälle sprechen für eine Abrutschung des oberen Pegmatitkörpers.

Der Pegmatit lässt sich in einen NW- und einen SO-Teil, welche durch eine kleinräumige Rutschung voneinander getrennt sind, untergliedern. Der NW-Teil (1, 2) ist im Allgemeinen grobkristalliner und die Spodumene erreichen Größen von bis zu 3 cm. Die spodumenführende Zone ist weitestgehend homogen mit Gehalten an Spodumen zwischen 40 Vol% und 50 Vol%. Der SO-Teil (67) zeigt duktile Scherbänder im Zentimeterbereich. Als einzelne Bereiche können unterschieden werden:

- Scherband: feinkristallines, zuckriges Gefüge mit Spodumen mit einer maximalen Kristallgröße von 0,5 cm
- 2. Feinkristallines, zuckriges Gefüge mit Turmalin
- 3. Feinkristallin Gefüge aus Quarz, Feldspat und wenig Muskovit
- 4. Grobkristallines Gefüge, hauptsächlich aus Quarz bestehend

Die Bereiche 1. und 2. enthalten Quarz, Feldspat und Muskovit mit einer maximalen Kristallgröße von 1 cm. Der Großteil des SO-Teils besteht aus den Bereichen 2. und 3. in denen unscharf begrenzte Bereiche nach 4. auftreten. Die Bereiche 2., 3. und 4. können nicht eindeutig zueinander abgegrenzt werden. Die wenigen spodumenführenden Scherbänder sind über mehrere Meter verfolgbar (Abbildung 15, Abbildung 17). Ob es sich bei dem gesamten Aufschluss um einen Mylonit handelt oder nur die Scherbänder mylonitische Strukturen zeigen konnte nicht eindeutig festgestellt werden.

Der Pegmatit ist zum aus Glimmerschiefer bestehenden Nebengestein konkordant, zeigt aber im topographischen niedrigeren Teil des Aufschlusses diskordante, pegmatitische Zufuhrkanäle [pers. Komm. SCHUSTER R.] (Abbildung 18). In der Nähe zum Kontakt finden sich im Nebengestein vermehrt Quarzaugen bzw. quarzitische Schlieren.

Abbildung 16: Aufschluss Spodumenpegmatit Poling (67). Detailansicht östliches Ende.

Abbildung 17: Aufschluss Spodumenpegmatit Poling (67). Blickrichtung nach O.

Abbildung 18: Diskordanter, pegmatitscher Zufuhrkanal. Lokalität Poling.

Ratzell

Unterhalb von Ratzell zwischen einer Seehöhe von 1320 m und 1360 m finden sich mehrere Pegmatitgänge. Mindestens zwei davon sind spodumenführend und streichen konkordant in Richtung NW-SO bei mittelsteilem Einfallen nach NO. Der südwestlichere Spodumenpegmatit (60) (Abbildung 19, Abbildung 20) kann für etwa 15 m im Streichen verfolgt werden, während der nordöstlichere (14, 15) nur an der Straßenböschung aufgeschlossen ist. Hangaufwärts wird die Aufschlusssituation schlechter und es finden sich nur mehr kleinere Aufschlüsse, die teilweise ebenfalls spodumenführend sind. Aufgrund der Lage in Streichrichtung und der Spodumene handelt es sich bei diesen kleineren Aufschlüssen vermutlich um die Verlängerung der weiter unten aufgeschlossenen Spodumenpegmatite. Daraus ergibt sich für die beiden spodumenführenden Pegmatitkörper eine Länge von etwa 50 m mit einer maximalen Mächtigkeit von 2 m.

Die Pegmatitkörper weisen eine Bänderung im Zentimeterbereich auf. Bis auf den Randbereich enthalten diese Bänder meistens Spodumen, wodurch die spodumenführenden Zonen meist die Hälfte bis zwei Drittel der Gesamtmächtigkeit ausmachen. Die Spodumene zeigen eine variierende Kristallgröße zwischen den Zonen von 1 cm bis 5 cm und erreicht Gehalte von 20 Vol% bis 40 Vol%. Aus dem südwestlicheren Spodumenpegmatit wurde quer zum Streichen eine Schlitzprobe (60_3) über die volle Mächtigkeit des Pegmatitganges genommen (Abbildung 61).

Abbildung 19: Aufschlussskizze Spodumenpegmatit Ratzell (60). Details Schlitzprobe siehe Abbildung 61.

Abbildung 20: Aufschluss Spodumenpegmatit Ratzell (60).

Glanzalm

Oberhalb der Glanzalm, am Kamm in Richtung Rotes Kögele, ist ein Pegmatitkörper (56) auf einer Länge von 30 m mit einer Mächtigkeit von etwa 10 m aufgeschlossen (Abbildung 24). Der Pegmatit streicht NW-SO, wobei eine genaue Einfallsrichtung auf Grund der komplexen Aufschlusssituation nicht bestimmt werden kann. Der Kontakt zum Nebengestein wechselt zwischen konkordant und diskordant (Abbildung 21, Abbildung 22). Die anstehenden Bereiche sind größtenteils verbrochen, wodurch der Aufschluss einen subanstehenden Charakter aufweist. Eine Unterteilung in einzelne Zonen ist deshalb nicht eindeutig möglich, jedoch setzen sich die einzelnen Blöcke zum Großteil aus folgenden Zonen zusammen:

- 1. Mittelkristallines Gefüge aus Quarz, Feldspat und Muskovit
- 2. Wie 1., zusätzlich mit Spodumen mit einer maximalen Kristallgröße von 7 cm
- 3. Mittel- bis grobkristallines Gefüge mit Quarz, Feldspat, Muskovit und Spodumen mit einer maximalen Kristallgröße von 10 cm
- 4. Mittel- bis grobkristallines Gefüge mit Quarz, wenig Muskovit und Feldspäten mit einer maximalen Kristallgröße von 8 cm

Als dünne Bänder und in Nestern, sowie im Kontaktbereich tritt feinstängeliger Turmalin auf. Granat tritt selten in kleinen Bereichen auf. Exemplarisch wurde ein etwa 5 m mal 2 m mächtiger Block auf seine Zonierung hin aufgenommen (Abbildung 21).

Hangaufwärts, 200 m Richtung Westen beginnt ein Blockfeld, welches teilweise spodumenführende Blöcke enthält. Auf etwa 100 m Richtung Rotes Kögele treten immer wieder Pegmatitblöcke auf, wobei vor allem jene im unteren Bereich Spodumen enthalten. Den Abschluss an spodumenführenden Pegmatiten in diesem Bereich bildet ein Aufschluss knapp unterhalb des Roten Kögele (53). Die Erstreckung zwischen dem topographisch niedrigsten Aufschluss (56) und dem topographisch höchstem Aufschluss (53) betragen etwa 500 m.

Abbildung 21: Skizze Spodumenpegmatitblock Glanzalm (56).

Abbildung 22: A) Spodumenpegmatitblock Glanzalm (56). B) Detailansicht des diskordanten Kontaktes zum Nebengestein.

Abbildung 23: Spodumenpegmatit. Lokalität Glanzalm (56).

Großer Zunig

Östlich des Großen Zunigs, etwa 100 Höhenmeter bis 150 Höhenmeter unterhalb des Gipfels (Abbildung 24), findet sich ein Blockfeld (9) aus Glimmerschiefern, Gneisen, Quarziten und Pegmatiten. Davon machen die pegmatitischen Blöcke etwa 5 % bis 10 % aus, wobei etwa die Hälfte dieser spodumenführend ist. Aufgrund der Tatsache, dass die Pegmatitblöcke sich auf den östlichen Teil des Blockfeldes beschränken, hangaufwärts sich keine anstehenden Pegmatite mehr finden und die größten Blöcke des Blockfeldes Pegmatite sind, ist der Pegmatitkörper vermutlich subanstehend.

Die pegmatitischen Blöcke setzen sich aus folgenden Zonen zusammen:

- 1. Mittelkristallines Gefüge aus Quarz, Feldspat, wenig Muskovit und Spodumen mit einer maximalen Kristallgröße von 5 cm
- 2. Mittel- bis grobkristallines Gefüge aus Quarz, Feldspat, Muskovit und Spodumen mit einer maximalen Kristallgröße von 10 cm
- 3. Feinkristallines Gefüge aus Quarz, Feldspat und wenig Muskovit
- 4. Wie 3., nur grobkkristallines Gefüge
- 5. Mittelkristallines Gefüge aus Quarz, Feldspat und Muskovit

Am Wandersteig südlich des Großen Zunigs finden sich immer wieder kleinere, maximal 0,5 m mal 0,5 m mächtige, Pegmatitaufschlüsse. Diese Pegmatite setzen sich aus Quarz und Feldspat zusammen und enthalten nur akzessorisch Muskovit. Die Ausnahme bildet ein 0,5 m mal 0,3 m mächtiger Pegmatit (65) in dem sich auch Spodumen findet (Abbildung 25). Ob diese kleineren Aufschlüsse einen gemeinsamen Pegmatitkörper bilden oder mit dem subanstehenden Spodumenpegmatit östlich des Großen Zunigs zusammenhängen, konnte nicht eindeutig bestimmt werden.

Abbildung 24: **A)** Übersichtsaufnahme mit Blickrichtung nach NW. **Rote Markierungen:** Lage der Spodumenpegmatitlokalitäten Glanzalm (links) und Großer Zunig (rechts). **B)** Aufschluss Spodumenpegmatit Glanzalm (56). **C)** Spodumenpegmatitblock Großer Zunig (9).

Abbildung 25: Aufschluss Spodumenpegmatit Großer Zunig (65).

5.2. Einfache Pegmatite

Alle Aufschlüsse der einfachen Pegmatite befinden sich im Petzeck-Rotenkogel-Komplex, bis auf jene im Bereich Michelbach, welche im gleichnamigen Komplex liegen. Soweit im Folgenden nicht anders beschrieben sind alle Pegmatite zumindest aus Quarz, Feldspat und Muskovit zusammengesetzt. Zusätzlich tritt Turmalin, vor allem im Kontaktbereich zum Nebengestein, auf. Die Pegmatite sind im Allgemeinen meist fein- bis mittelkristallin, zeigen eine mittel bis stark ausgeprägte Schieferung und liegen konkordant zum Nebengestein. Eine Ausnahme zur sonst erkennbaren alpidischen Überprägung bilden die Pegmatite des Michelbach-Komplexes.

Pegmatite Südlich des Defereggentals

Die südlichsten Probennahmepunkte befinden sich im Gebiet *Michelbach* (73, 74, 75, 76) im Michelbach-Komplex und zeigen alle wenig bis keine alpidische Überprägung. Die beprobten Pegmatite sind schlecht geschiefert, zoniert und erreichen Mächtigkeiten von mehreren Metern. Besonders auffallend ist das orientierte Wachstum von Turmalin, welcher teilweise mehrere Zentimeter an Kristallgröße erreicht (74) (Abbildung 26). Aus einem Pegmatitaufschluss (75) ist ein Granatalter bekannt. Die Sm-Nd-Datierung ergibt dort ein Alter von 253 Ma ± 7 Ma (Abbildung 27) [SCHUSTER et al. 2001b].

Weiter nördlich ist direkt im *Steinbruch St. Johann* der Firma Gebr. Dietrich GmbH ein Pegmatitgang (S1) über mehrere Etagen aufgeschlossen. Dieser besteht hauptsächlich aus Quarz und Muskovit und zeigt im Kontakt zum Nebengestein besonders viel Graphit. Der Pegmatitgang, sowie das Nebengestein, sind stark gestört (Abbildung 28). Die Trennflächen des Nebengesteines enthalten keinen Graphit. Etwas nördlich des Steinbruches findet sich ein schmaler Pegmatitgang (S2), der makroskopisch keinen Graphit enthält. Ein Pegmatitblock, der am Fuß des Steinbruches gefunden wurde, enthält, anders als S1 und S2, dickstapeligen Muskovit mit einer maximalen Kristallgröße von 3 cm. Das Herkunftsgebiet dieses Blockes ist nicht eindeutig feststellbar.

Die Pegmatite im Bereich *Rudnig* (39, 40, 41), *Naßfeld* (42, 43) und *Poling* (3, 4, 21, 22, 23, 25, 26, 27, 29, 31, 32, 44, 45, 46, 47) sind zumeist mittel- bis feinkristalline Pegmatite, die konkordant zum Nebengestein auftreten. Die Eigenschaften variieren mit der Mächtigkeit der Pegmatitgänge. Geringmächtige (etwa <1 m) Pegmatite zeigen keine Zonierung und bestehen aus einem Hauptgemenge aus Quarz, Feldspat und Muskovit. Gänge, die mehrere Meter an Mächtigkeit erreichen, bilden eine Zonierung aus und sind grobkristalliner. Einzelne Zonen enthalten zusätzlich Turmalin. Dieser zeigt schlechtes bis kein orientiertes Wachstum. An größeren Aufschlüssen sind Störungen, die durch die Pegmatite laufen, zu beobachten. Der Störungsversatz beträgt dabei einige Zentimeter bis mehrere Dezimeter (Abbildung 29).

Bei den Pegmatiten nördlich des *Gossnerbaches* (33, 34, 35, 36, 37, 38) handelt es sich um mehrere engständige Pegmatitgänge, die steilstehend nach OSO-WNW streichen und zumeist mittel- bis grobkristallin sind (Abbildung 30). Die topographisch tiefergelegenen Pegmatite im Bereich *Kienburg* (16, 17, 19, 20) erreichen wesentlich geringere Mächtigkeiten und sind stärker mit dem Nebengestein verfaltet als die übrigen Pegmatite des Gebietes. Die Pegmatite im Bereich *Grünalmbach* (70, 71, 72) enthalten makroskopisch keine Hinweise auf Spodumen, erreichen aber ähnliche K/Rb-Fraktionierungsgrade wie Spodumenpegmatite [MRI Peg | Projekt, unpub. Daten].

Östlich der Isel im Gebiet *Unterpeischlach* (62) finden sich mehrere parallele Pegmatitgänge (Abbildung 31). Diese sind vor allem wegen ihren Mächtigkeiten von mehreren Metern zu erwähnen, weisen aber neben Quarz, Feldspat und Muskovit nur selten Turmalin auf. Auch im Bachbett des Kalserbach finden sich keine Pegmatitblöcke die Spodumen enthalten. Weiter flussaufwärts fehlen diese komplett.

Nach Karten von SCHULZ [1999] und SCHULZ et al. [2008] verläuft die DAV durch das Arbeitsgebiet (Abbildung 5). Die Pegmatite des Gossnerbaches liegen nördlich, die Pegmatite der Gebiete Rudnig, Steinbruch St. Johann und Michelbach südlich der DAV. Makroskopisch kann zwischen diesen Pegmatiten kein relevanter Unterschied festgestellt werden.

Abbildung 26: Aufschluss Pegmatit Michelbach (74).

Abbildung 27: A) Aufschluss Pegmatit Michelbach (75). B) Sm-Nd-Alter aus Granaten [SCHUSTER et al. 2001b].

Abbildung 28: Aufschluss Pegmatit Steinbruch St. Johann (S1).

Abbildung 29: Aufschluss Pegmatit Poling (29). Senkrechte Störung durch Pegmatit verlaufend (Bildmitte).

Abbildung 30: Aufschluss Pegmatit Gossnerbach (35).

Abbildung 31: Aufschluss Pegmatit Unterpeischlach (62).

Pegmatite Nördlich des Defereggentals

Die Pegmatite im Bereich *Zöschken* (6) sind meist nur wenige Dezimeter mächtige, an- und abschwellende Gänge, welche sehr wenig Muskovit enthalten. Das Nebengestein enthält hier teilweise Disthen.

Neben den Spodumenpegmatiten finden sich im Gebiet *Ratzell* (61) und *Zunig* (10, 63, 64) einfache Pegmatite. Obwohl diese keinen Spodumen enthalten ähneln diese, was Gefüge, Zonierung und Mineralogie betrifft, den Spodumenpegmatiten. Nordöstlich des Bereiches *Glanzalm* (11, 50, 51, 52) gibt es mehrere Aufschlüsse von mittel- bis grobkristallinen Quarz-Muskovit-Pegmatiten (Abbildung 32). Diese streichen O-W bis OSO-WNW und sind entweder Teil eines Pegmatitganges oder mehrerer engständiger Pegmatite. Die Mineralogie und die Zonierung ähneln jenen im Bereich Gossnerbach.

Abbildung 32: Aufschluss Pegmatit Glanzalm (52), westlich des Roten Kögele.

6. Mineralogie und Petrographie

Für die petrographische Beschreibung wurden insgesamt 10 Dünnschliffe hergestellt. Diese Dünnschliffe stammen aus den Spodumenpegmatiten Ratzell (Schliffe HO1, HO2, HO5, HO11, HO12 und HO20), Poling (Schliffe HO15 und HO19) und Glanzalm (Schliffe HO21 und HO22).

6.1. Hauptgemengteile

Quarz

Quarz tritt in allen Pegmatiten des Arbeitsgebietes auf. Dabei kommt er entweder als leicht durchsichtiger, grauer Bestandteil der Matrix von Pegmatitgängen oder als weiße, milchige Varietät in Schlieren im Nebengestein vor. Ob diese Schlieren pegmatitisch sind oder hydrothermal gebildet wurden, konnte nicht eindeutig festgestellt werden. Ein proximales, leicht boudiniertes Auftreten, z.B. bei der Lokalität Poling, spricht für eine Verwandtschaft mit den Pegmatiten.

Mikroskopisch zeigt Quarz eine undulöse Auslöschung, welche durch alpidische Rekristallisation entstanden ist. Quarz tritt als, teilweise schriftgranitische, Verwachsung mit Spodumen und Feldspat auf.

Kalifeldspat

Kalifeldspat tritt in allen Pegmatiten des Arbeitsgebietes auf und bildet mit Quarz und Plagioklas einen Bestandteil der feinkristallinen Gesteinsmatrix. Eine makroskopische Unterscheidung zum Plagioklas ist nur selten möglich. Mikroskopisch sind die Kalifeldspäte durch die Bildung eines Mikroklingitters (Abbildung 33) leicht zu identifizieren. Fehlt ein solches Mikroklingitter, ist eine Unterscheidung zum Plagioklas schwierig.

Plagioklas

Plagioklas tritt in allen Pegmatiten des Arbeitsgebietes auf und kommt entweder als Teil der Gesteinsmatrix oder, wie z.B. in einzelnen Zonen der Lokalität Glanzalm, als Augen mit einer maximalen Größe von 8 cm vor. Sind die Kristalle hypidiomorph ausgebildet zeigen sie, ähnlich wie Spodumen, gute Spaltbarkeit in ein bis zwei Richtungen, tafeligen Habitus und Perlmuttglanz.

Mikroskopisch ist Plagioklas durch polysynthetische Zwillingsbildung von Quarz und Kalifeldspat zu unterscheiden. Fehlt eine solche Zwillingsbildung ist eine Unterscheidung zum Kalifeldspat schwierig. Die Verzwilligung erfolgt nach dem Albitgesetz mit schmalen Zwillingslamellen. Zusammen mit Quarz bildet er die feinkristalline Gesteinsmatrix, in der z.B. hypidiomorphe Spodumene liegen. Größere Albitkristalle besitzen häufig Muskoviteinschlüsse und zeigen deformierte Zwillingslamellen.

Muskovit

Muskovit kommt in allen Pegmatiten des Arbeitsgebietes vor. In geringmächtigen Pegmatitgängen tritt Muskovit zurück und findet sich nur mehr akzessorisch mit maximalen Kristallgrößen von wenigen Millimetern. Die maximale Kristallgröße der Muskovite liegt bei 8 cm.

Mikroskopisch lässt sich Muskovit gut durch seine Interferenzfarben und vollkommene Spaltbarkeit in eine Richtung parallel zur c-Achse erkennen (Abbildung 35). Dabei tritt dieser schlecht bis gut eingeregelt als muskovitreiche Bänder oder als Einschlüsse in Feldspat oder Spodumen auf.

Spodumen

Spodumen tritt bei den Lokalitäten Poling, Ratzell, Glanzalm und Großer Zunig auf. In spodumenführenden Zonen findet sich als Hauptbestandteil Quarz, Feldspat und Spodumen. Muskovit und Turmalin kommen in diesen Zonen gar nicht oder nur akzessorisch vor. Dabei bildet Spodumen hypidiomorphe Kristalle, die in einer feinkristallinen Gesteinsmatrix liegen. Die größten Spodumene finden sich bei der Lokalität Großer Zunig bzw. Glanzalm und erreichen maximal 10 cm. Auf Grund der schlechten Verwitterungsresistenz des Spodumens ist dieser z.B. in Bereichen der Lokalität Rottörl und Poling nicht mehr direkt ansprechbar. Eine Identifikation erfolgt dann indirekt über charakteristische Hohlräume, die durch das Herauswittern des Spodumens zurückbleiben.

Mikroskopisch zeigt Spodumen gute Spaltbarkeit in zwei in etwa senkrecht aufeinander stehende Richtungen und schiefe Auslöschung (Abbildung 35). Eine Zwillingsbildung ist nur an einem Spodumenkristall im Schliff H021 (Glanzalm) zu beobachten. Typisch für Spodumen ist eine

schriftgranitische Verwachsung mit Quarz (Abbildung 36) und ein myrmekitischer Saum am Rand der Kristalle.

Turmalin und Granat

Turmalin und Granat treten selten in einzelnen Zonen als Hauptgemenge auf, finden sich aber hauptsächlich im Kontaktbereich zum Nebengestein oder in Nebengesteinsschlieren im Pegmatit (Abbildung 37, Abbildung 38). Turmalin und Granat erreicht dabei Kristallgrößen von mehreren Zentimetern bzw. Millimetern. Bei den Granaten handelt es um Spessartin oder Mn-reiche Almandine (Abbildung 39). So liegen z-B. in Probe 1b_2 (Poling) die Fe/Mn-Verhältnisse von Granat zwischen 0,87 und 1,58. Unter dem REM zeigt der Granat keine erkennbare Zonierung. Bei den Turmalinen handelt es sich um Schörl.

Mikroskopisch ist Granat leicht durch seine optische Isotropie, Turmalin durch seinen bräunlichgrünlichen Pleochroismus erkennbar (Abbildung 37). Beide Minerale treten zerbrochen auf, wobei die Klüfte mit Quarz und Muskovit verheilt sind. Granat zeigt Einschlüsse von einer nicht eindeutig bestimmten opaken Phase.

Abbildung 33: Kalifeldspat mit Mikroklingitter (HO5). X Polarisator.

Abbildung 34: Albit mit polysynthetischen Zwillingslamellen und Muskoviteinschlüssen (HO3). X Polarisator.

Abbildung 35: Spodumen mit Quarz- und Muskoviteinschlüssen und Kluftfüllung aus Muskovit (HO2). X Polarisator.

Abbildung 36: Schriftgranitische Verwachsung von Spodumen mit Quarz (HO2). X Polarisator.

6.2. Kontakt zum Nebengestein

Beim Nebengestein handelt es sich im gesamten Arbeitsgebiet um Gneis bzw. Glimmerschiefer. Im Kontaktbereich zum Pegmatit lässt sich dabei makroskopisch und mikroskopisch eine Turmalinisierung erkennen (Abbildung 37). Die Turmaline sind stark zerbrochen und weisen keine eindeutige Wachstumsrichtung auf. Granat tritt im Endo- und Exokontakt auf. Dabei handelt es sich, anders als in inneren Zonen des Pegmatites, um Mn-armen Almandin mit einigen Atomprozent an Ca (Abbildung 39). Die Granate des Exokontaktes sind stärker zerbrochen und zeigen eine Chloritisierung (Abbildung 38).

Biotit findet sich ausschließlich im Nebengestein und ist durch seinen bräunlichen Pleochroismus von Muskovit leicht zu unterscheiden. Durch das abrupte Wegfallen von Biotit lässt sich mikroskopisch ein scharfer Kontakt zum Pegmatit bestimmen (Abbildung 38). In allen Dünnschliffen, die Nebengestein enthalten (HO12, HO19 und HO20), handelt es sich um Granatglimmerschiefer. Als opake Phase im Exokontakt tritt Ilmenit auf. Dieser bildet, der Schieferung folgende, elongierte Minerale. Die größten Ilmenitkristalle erreichen dabei einige hundert Mikrometer.

Abbildung 37: Turmalinisierung im Exokontakt (HO19). // Polarisator.

Abbildung 38: Kontaktbereich zwischen Pegmatit und Granatglimmerschiefer. Obere Bildhälfte: Exokontakt mit Biotit und stark zerbrochenem, teilweise chloritisiertem Granat (Grt). Untere Bildhälfte: feinkristalliner Endokontakt mit Granat (HO20). // Polarisator.

Abbildung 39: Ternäre Diagramme der Granatzusammensetzung. Adr Andradit Grs Grossular.

6.3. Akzessorien

Apatit

Apatit tritt in prismatischer Form in den unmagnetischen Fraktionen der Schwermineralkonzentrate und im Schliff HO1 (Ratzell) auf. Die Körner erreichen Größen von bis zu 1 mm. Die Körner zeigen entweder keine Einschlüsse, sind mit Zirkon verwachsen oder haben Xenotim- und Monaziteinschlüsse wie in Probe 14_3 (Ratzell).

Minerale der Columbitgruppe

Minerale der Columbitgruppe wurden mit Hilfe des REM identifiziert und finden sich in den Spodumenpegmatiten der Lokalitäten Glanzalm (56_4, 56_5), Poling (1b_2, 67_1) und Ratzell (14_3, 60_3). Die größten Körner erreichen 0,5 mm. Nicht zerbrochene Körner zeigen eine idiomorphe, tafelige Form.

Die Columbite haben eine Zonierung, welche nur sehr selten konzentrisch ausgebildet ist. Die Zonen unterscheiden sich anhand ihres Ta/Nb-Verhältnisses, wobei Zonen mit hohem Ta-Gehalt unter dem REM heller erscheinen (Abbildung 42). Neben den orthorhombischen Mineralen Columbit und Tantalit die zu den Mineralen der Columbitgruppe zählen tritt in Probe 56_4 Tapiolit, welcher tetragonal ist, auf.

Kassiterit

Kassiterit kommt vor allem in den Proben 56_4 und 56_5 der Lokalität Glanzalm vor und bildet dort den Hauptanteil der unmagnetischen Fraktionen der Schwermineralkonzentrate (> 3,2 g/cm³). Die

einzelnen Körner zeigen eine hypidiomorphe, prismatische Form im REM und zeigen im Handstück eine braune Farbe. Die maximale Mineralgröße erreicht in Probe 56_5 3 mm.

Mikroskopisch zeigt Kassiterit einen bräunlichen Pleochroismus und in Schliff HO21 (Glanzalm) Zwillingsbildung (Abbildung 40). Bei den opaken Einschlüssen handelt es sich um CGM. Eine Identifizierung erfolgte mit Hilfe des REM (Abbildung 41).

REM-Aufnahmen zeigen, dass Kassiterit entweder homogen oder zoniert ausgebildet ist. Die einzelnen Zonen unterscheiden sich anhand ihrer Ta-Gehalte. Erhöhte Gehalte von Ta gehen auf eine Substitution von (Fe, Mn)²⁺ + 2(Ta, Nb)⁵⁺ für 3Sn⁴⁺ zurück [ČERNÝ & ERCIT 1989]. Zonierte Kassiterite zeigen Einschlüsse aus Sn-reichen CGM und erreichen Durchmesser von wenigen Mikrometern.

Minerale der Monazitgruppe

Monazit tritt in den Schwermineralkonzentraten der Lokalitäten Glanzalm (56_4), Poling (67_1) und Ratzell (14_3, 60_3_03) auf. Die einzelnen Körner erreichen Größen von maximal 100 μ m. In der Probe 14_3 findet sich Monazit verwachsen mit Xenotim und Zirkon (Abbildung 43).

Ce ist in den Monaziten gegenüber La, Nd und Sm angereichert. So zeigen die Monazite der Lokalität Ratzell (60_3_03) Ce-Gehalte von 17,80 Masse% bis 19,64 Masse%, La-Gehalte von 7,90 Masse% bis 7,99 Masse% und Nd-Gehalte von 7,19 Masse% bis 9,43 Masse%, sowie Sm-Gehalte von 1,17 Masse% bis 1,82 Masse%. In Probe 60_3_03 findet sich Cheralith, ein Ca-hältiger Monazit, welcher in diesem Fall mehrere Prozent U und Th enthält.

In Schliff HO1 (Ratzell) tritt neben CGM auch Ce-reicher Monazit im Gesteinsgefüge auf. Die Körner erreichen Größen von einigen Mikrometern. Eine Identifizierung erfolgte mit Hilfe des REM-EDS.

Pyrochlorsupergruppeminerale

Pyrochlor konnte nur mit dem REM nachgewiesen werden und tritt entweder als hypidiomorphe bis xenomorphe Minerale oder als runde bis elongierte Einschlüsse in Columbit auf (Abbildung 42). Dabei erreichen die Einschlüsse Durchmesser von 10 μ m bis 30 μ m. Die Minerale können nach HOGARTH [1977] der Mikrolithgruppe (Nb + Ta > 2Ti und Ta ≥ Nb) zugeordnet werden, wobei für alle Proben Ca > Na gilt. Die Probe 60_3_36 enthält Uranmikrolith.

Rutil

In Probe 60_3_03 und dem zugehörige Schliff HO1 (Ratzell) wurden Rutile gemessen. Zusätzlich tritt dort auch Strüverit auf. Dabei handelt es sich um eine Ta- und Nb-hältige Varietät von Rutil mit Ta > Nb, häufig mit Fe > Mn [ČERNÝ & ERCIT 1989]. Der Strüverit aus Probe 60_3_03 erreicht ein

Ta/(Ta+Nb)-Verhältnis von 0,88 und ein Mn/(Mn+Fe)-Verhältnis von 0,02. Die maximale Korngröße liegt bei etwa 100 μ m.

Uraninit

Uraninit bildet runde Einschlüsse in Apatit, Columbit, Monazit, Pyrochlor und Zirkon. Diese erreichen Durchmesser von einigen Mikrometern (Abbildung 43, Abbildung 44).

Minerale der Xenotimgruppe

Xenotim tritt seltener als Monazit auf und wurde in den Schwermineralkonzentraten der Proben 1b_2 (Poling) und 14_3 (Ratzell) identifiziert. In Ratzell beträgt die maximale Größe der Xenotime 90 µm. Die schlecht ausgebildeten Körner zeigen Verwachsungen mit Monazit, Zirkon und Uraninit (Abbildung 43). Die Minerale der Xentimgruppe enthalten neben Y auch Dy, Gd und U. Diese erreichen in der Probe 14_3 (Ratzell) Gehalte von 6,14 Masse% Dy, 3,11 Masse% Gd und 6,36 Masse% U.

Zirkon

Zirkon kommen in idiomorpher, prismatischer Form vor und erreicht Größen von bis zu 1 mm. Typisch sind Apatit- und Uraniniteinschlüsse mit Durchmesser von mehreren Mikrometern. Außerdem tritt Zirkon verwachsen mit Columbit, Monazit und Xenotim auf.

Zirkone kommt unzoniert und zoniert vor. Die Zonen unterscheiden sich anhand ihres Zr/Hf-Verhältnisses, wobei hellere Zonen höhere Hf-Gehalte aufweisen (Abbildung 44). Die Uraniniteinschlüsse korrelieren mit diesen Zonen. Nur helle, Hf-reiche Zonen enthalten Einschlüsse.

Weitere Minerale

Von gediegen Wismut wurde in den Schwermineralkonzentraten nur ein Einzelkorn gefunden und analysiert. Wismutphosphatphasen treten in dem Schwermineralkonzentrat aus Probe 56_4 (Glanzalm) und dem Schliff HO1 (Ratzell) auf und erreichen P_2O_5 - und Bi_2O_3 -Gehalte von 16,68 % und 83,32 % bzw. 9,13 % und 88,49 %. Bei dem Wismutphosphat handelt es sich vermutlich um eine alterierte bzw. hydratisierte Mineralphase, wie Petitjeanit ($Bi_3O(OH)(PO_4)_2$) oder Smrkovecit ($Bi_2O(OH)(PO_4)$). In Schliff HO1 (Ratzell) wurden mehrere Kristalle eines Fe-, Mn-Phosphat Minerals gefunden. Dabei handelt sich wahrscheinlich um eine sekundär gebildete Mineralphase.

Abbildung 40: Kassiterit (Bildmitte) und Spodumen (links oben) in Matrix aus Quarz und Feldspat (HO21). // Polarisator.

Abbildung 41: Kassiterit (Mineral aus Abbildung 40 – 180° gedreht) mit CGM-Einschlüssen (HO1, REM).

Abbildung 42: Konzentrisch zoniertes CGM mit wechselndem Ta/Nb-Verhältnis und Pyrochloreinschlüssen (Bereiche mit erhöhten Ca-Gehalten) (1b_2, REM).

Abbildung 43: Verwachsung aus Monazit (Mnz), Xenotim (Xtm) mit Uraniniteinschlüssen (Urn) und Zirkon (Zrn) (14_3, REM).

Abbildung 44: Zonierter Zirkon mit Uraniniteinschlüssen (Urn) (60_3_36, REM). Zr/Hf-Atomverhältnis.

7. Ergebnisse und Auswertung

7.1. Gesamtgesteinschemie

Insgesamt wurden die Gehalte von 56 Elementen (Li₂O, SiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, TiO₂, P₂O₅, Sc, Be, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, In, Sn, Sb, Cs, Ba, Bi, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Tl, Pb, Th und U) von 13 unterschiedlichen Proben mit ICP-MS und ICP-OES gemessen (Anhang Tabelle 11). Die Elemente V, Cr, Ni, Cu, Zn, Mo, Ag, In, Sb, Tb und Ho ergaben in allen Proben Messwerte unterhalb bzw. knapp oberhalb der Nachweißgrenze und werden deshalb nicht weiter berücksichtigt. Die Ergebnisse von W und Co wurden verworfen, weil die Proben mit einer WC-Mühle vor den Analysen gemahlen wurden (siehe Kapitel 4.2). 8 Proben kommen aus Spodumenpegmatiten und 5 aus einfachen Pegmatiten (Tabelle 5).

Die Gehalte der Hauptelemente liegen in einem für Pegmatite typischen Rahmen (z.B. [MALI 2004], [KNOLL et al. 2018]). Die erhöhten Gehalte von Na₂O (2,08 % bis 7.84 %) gegenüber K₂O (0,65 % bis 3.42 %) zeigen einen höheren Albitgehalt gegenüber Kalifeldspat. Die Gehalte von Li₂O erreichen in den Spodumenpegmatiten 0,09 % bis 2,28 % und liegen bei den einfachen Pegmatiten knapp oberhalb oder unterhalb der Nachweisgrenze von 0,01 %. Die Gehalte von Rb, Cs und Tl liegen zwischen 70 ppm und 776 ppm, bzw. 4,9 ppm und 71 ppm bzw. 0,5 ppm und 5,1 ppm. Hohe Gehalte dieser Elemente zeigen einen höheren Differentiationsgrad an, korrelieren bei den Proben dieser Arbeit aber nicht mit dem Auftreten von Spodumen. Der Sn-Gehalt erreicht in Probe 56 (Glanzalm) mit 1330 ppm den höchsten Gesamtgesteinswert. In dieser Probe wurde bereits mikroskopisch Kassiterit (Abbildung 40) identifiziert. Mit Hilfe des REM wurden in diesen Kassiteriten CGM nachgewiesen (Abbildung 41) auch die erhöhten was Gesamtgesteinsgehalte von Nb und Ta von 88 ppm bzw. 122 ppm zeigen. Die höchsten Nb- und Ta-Gehalte stammen aus Probe S2 (Steinbruch St. Johann) mit 99 ppm Nb und 249 ppm Ta. Probe 71 (Grünalmbach) zeigt neben dem höchsten Ba-Gehalt (276 ppm) auch die höchsten Gehalte an REE von z.B. 19 ppm Y, 4,8 ppm La, 9,8 ppm Ce und 4,3 ppm Nd.

		einfache Pegmatite (n=5)			Spodumenpegmatite (n=8)			
		Max	Min	Mean	Max	Min	Mean	
Li	%	0.01	< 0.01		1.06	0.04	0.52	
Li2O	%	0.03	< 0.01		2.28	0.09	1.12	
LOI	%	2.83	0.44	1.48	1.35	0.55	0.99	
SiO2	%	76.0	74.7	75.2	77.9	75.5	76.6	
Al2O3	%	16.1	14.6	15.6	16.7	14.8	15.5	
Fe2O3	%	0.65	0.17	0.40	0.94	0.34	0.51	
MnO	%	0.037	0.009	0.022	0.127	0.03	0.087	
MgO	%	0.18	0.02	0.08	0.11	0.02	0.05	
CaO	%	0.71	0.25	0.41	0.35	0.14	0.21	
Na2O	%	7.84	2.08	4.83	6.29	2.51	4.08	
К2О	%	3.34	0.65	2.21	3.42	1.15	2.16	
TiO2	%	0.103	0.006	0.030	0.044	0.004	0.026	
P2O5	%	0.32	0.11	0.24	0.52	0.06	0.29	
Total	%	100.8	100.1	100.4	100.7	100.4	100.5	
K/Rb		75.5	16.1	35.6	36.9	12.4	22.0	
Ве	ppm	198	25	111	310	124	179	
Ga	ppm	26	15	21	32	21	25	
Ge	ppm	7	4	5	7	4	5	
Rb	ppm	496	70	323	776	218	451	
Sr	ppm	89	59	74	141	16	59	
Zr	ppm	20	11	15	45	15	27	
Nb	ppm	99	9	44	88	10	39	
Sn	ppm	496	15	151	1330	28	230	
Cs	ppm	70.9	4.9	29.4	44.1	11.7	31.6	
Ва	ppm	276	41	116	160	31	60	
Bi	ppm	4.4	< 0.4		2.7	< 0.4		
Hf	ppm	1.7	0.6	1.1	2.2	0.7	1.4	
Та	ppm	249	7.1	86.4	122	13.1	37.0	
TI	ppm	2.3	0.5	1.6	5.1	1.2	2.7	
Pb	ppm	48	8	25	33	9	22	
Th	ppm	2.8	0.3	1.0	1.1	0.4	0.8	
U	ppm	14.3	2.6	7.0	15	2	9	
Y	ppm	19	< 2		5	< 2		
Σ REE	maa	34.19	1.40	11.33	10.39	2.88	7.29	

Tabelle 5: Gesamtgesteinschemie der einfachen Pegmatite und Spodumenpegmatite (ohne V, Cr, Ni, Cu, Zn, Mo, Ag, In, Sb, Tb, Ho und W). **Min** Minimaler Messwert **Max** Maximaler Messwert **Mean** Durchschnittlicher Gehalt. Σ REE ohne Y.

7.2. Geochemie der Muskovite

Von den 83 aufgenommenen Pegmatiten enthielten 74 analysefähigen Muskovit. Daraus wurden 112 Muskovitproben genommen und insgesamt 220 LA-ICP-MS-Messungen durchgeführt (Anhang Tabelle 12). Davon sind 88 Analyseergebnisse aus Spodumenpegmatiten. Eine Messung wurde jeweils im Randbereich (Probenendung: _1) bzw. in der Mitte (Probenendung: _2) der Muskovite durchgeführt. Die Doppelmessungen dienen der Qualitätskontrolle der Muskovite und der Messung selbst. Stark verwitterte bzw. teilweise alterierte Muskovite würden signifikante Messunterschiede zwischen Rand und Mitte zeigen. Bei 7 Muskoviten war nur eine Einfachmessung möglich. Für die Erstellung der Karten wurde zur besseren Übersicht der Mittelwert zwischen Rand- und Mittemessung verwendet. Im Folgenden werden die Elementgehalte von Li, Be, Zn, Ga, Ge, Rb, Sr, Nb, Sn, Cs, Ba, Ta und TI zur Auswertung verwendet. Alle anderen gemessenen Elementgehalte (siehe Kapitel 4.6) liegen unter der Messgrenze oder zeigen keine relevanten Korrelationen.

Die Hauptelementgehalte der Muskovite wurden mit REM-EDS gemessen. Die Si-Gehalte dienen der Korrektur der LA-ICP-MS-Messungen (siehe Kapitel 4.2) und liegen zwischen 19,3 Masse% und 22,0 Masse%. Der K-Gehalt wird für die Korrelation des Differentiationsgrades benötigt und liegt zwischen 7,5 Masse% und 9,4 Masse%.

Das Verhältnis K/Rb bzw. die Rb-Gehalte zeigen eine eindeutige, logarithmischen Korrelation mit einer sehr geringen Streuung der Datenpunkte. Umso höher die Differentiation, desto niedriger ist das K/Rb-Verhältnis (siehe Kapitel 3.3). Der Pegmatit mit dem höchsten Differentiationsgrad findet sich im Bereich Zunig (Probe 64) und erreicht mit 6992 ppm Rb ein K/Rb-Verhältnis von 11,5 (Abbildung 45). Obwohl Probe 64 keinen Spodumen enthält, zeigen die Spodumenpegmatite erniedrigte K/Rb-Verhältnisse von 11,7 bis 66,7 und erhöhte Rb-Gehalte von 1335 ppm bis 6858 ppm.

Regional folgt das K/Rb-Verhältnis nördlich der DAV einem alternierenden N-S-Trend, mit O-W Streifen ähnlicher Differentiationsgrade (Anhang: Karten). Von S nach N tritt zuerst ein mitteldifferenzierter Bereich im Gebiet Gossnerbach und Naßfeld auf, der dann in einen niedrigdifferenzierten Streifen im Bereich Kienburg übergeht. Darauf folgen mittel- bis hochdifferenzierte Pegmatite im Bereich Poling und Ratzell. Der anschließende Bereich um den Großen Zunig hat die niedrigsten K/Rb-Verhältnisse.

Die Elementgehalte von Be, Zn, Ga, Ge, Nb, Sn, Cs, Ta und Tl zeigen eine eindeutige Korrelation mit dem K/Rb-Verhältnis und nehmen mit steigender Differentiation zu (Abbildung 49 bis Abbildung 54). Der regionale Differentiationstrend ähnelt dem von K/Rb. Die Daten deuten zwei Punktwolken an, dabei finden sich Muskovite aus den Lokalitäten Poling, Naßfeld, Kienburg, Unterpeischlach und Rudnig in beiden. Die Punktwolke mit den niedrigdifferenzierten Muskoviten enthält nur Messungen

aus Pegmatiten die nicht spodumenführend sind. Besonders gute Korrelation mit dem K/Rb-Verhältnis zeigen dabei Sn, Cs, Ba, Ta und Tl. Der regionale Trend des Faltenbaues zeigt sich auch bei den Rb-, Sn-, Nb-, Ta- und Tl-Gehalten (Anhang Abbildung 72 bis Abbildung 92).

Sr und Ba zeigen eine positive Korrelation mit dem K/Rb-Verhältnis bzw. der Differentiation (Abbildung 55, Abbildung 56). Die Sr- und Ba-Gehalte lassen keine Bildung einer zweiten Punktwolke erkennen. Der gleiche, regionale Differentiationstrend wie bei dem K/Rb-Verhältnis ist erkennbar.

Der Li-Gehalt in den Muskoviten lässt sich mit dem Auftreten von Spodumen korrelieren. Die Muskovite aus Spodumenpegmatiten erreichen die höchsten Gehalte an Li. Der höchste, absolut gemessene Wert stammt dabei aus Probe 9_2 (Zunig) mit 1204 ppm Li. Der niedrigste Li-Gehalt von 9,8 ppm wurde an der Probe 62b (Unterpeischlach) gemessen.

Die Bestimmung des Fraktionierungsgrades ist anhand der Li-Gehalte nicht möglich, da die Werte zu stark streuen (Abbildung 57). Eine mineralogische Korrelation mit Spodumen zeigt sich aber z.B. bei der Lokalität Zunig, wo alle Proben hochdifferenziert sind. Muskovitanalysen aus spodumenhältigen Zonen liegen zwischen 622 ppm und 1204 ppm Li bzw. 33 ppm und 215 ppm Li aus nicht spodumenhältigen Zonen.

Hoch differenzierte Muskovite stammen nicht ausschließlich aus Spodumenpegmatiten. Muskovite mit den niedrigsten Differentiationstrends kommen aber immer aus einfachen Pegmatiten (Tabelle 6).

Die Einteilung der Muskovite nach CERNY & BURT [1984] zeigt, dass die hier analysierten Muskovite nicht eindeutig in ein Typenfeld fallen. Die allgemeinen Differentiationstrends die durch die Lage der Typenfelder gezeigt werden, ergeben sich auch mit den Muskovitdaten dieser Arbeit.

Eine Faktoranalyse der Elementchemie der Muskovite (Abbildung 58) zeigt als ersten Faktor (F1) die Differentiation an. Mit 37 % ist die Anreicherung der Elemente Rb, Sn, Tl, Ge, Ga, B, Be, Ta, Nb, Cs, P und Zn gegenüber Sr, Ba und Mg der bedeutendste geochemische Prozess. Der zweite Faktor (F2) beschreibt mit einer Abnahme von Al und einer Zunahme von Fe die Phengitsubstitution der Muskovite. Der dritte Faktor (F3) beschreibt einen nicht bekannten geochemischen Prozess bei dem sich die inkompatiblen Elemente Ti, Zr, W gegenüber Cs und Pb anreichern.

Abbildung 45: K/Rb-Verhältnis zu Rb-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung.

Abbildung 46: K/Rb-Verhältnis zu Ge-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45.

Abbildung 47: K/Rb-Verhältnis zu Nb-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45.

Abbildung 48: K/Rb-Verhältnis zu Ta-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45.

Abbildung 49: K/Rb-Verhältnis zu Be-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. **MSC** Muscovite **MNG** Mongolia **MOZ** Mozambique. Einteilung nach CERNY & BURT [1984]

Abbildung 50: K/Rb-Verhältnis zu Zn-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. **MNG** Mongolia **MOZ** Mozambique. Einteilung nach CERNY & BURT [1984]

Abbildung 51: K/Rb-Verhältnis zu Ga-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. **BD** Brown Derby **MNG** Mongolia **MOZ** Mozambique. Einteilung nach CERNY & BURT [1984]

Abbildung 52: K/Rb-Verhältnis zu Sn-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. **BD** Brown Derby **MNG** Mongolia **MOZ** Mozambique. Einteilung nach CERNY & BURT [1984]

Abbildung 53: K/Rb-Verhältnis zu Cs-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. MSC Muscovite Class MSCB Muscovite Class - Barren MSCRE Muscovite Class - RE enriched MNG Mongolia MOZ Mozambique SPD Spodumene Type.Einteilung nach CERNY & BURT [1984]

Abbildung 54: K/Rb-Verhältnis zu Tl-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. **MSC** Muscovite **MNG** Mongolia **SAY** Sayan Mountain. Einteilung nach CERNY & BURT [1984]

Abbildung 55: K/Rb-Verhältnis zu Ba-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. **BD** Brown Derby **MSC** Muscovite **MOZ** Mozambique. Einteilung nach CERNY & BURT [1984]

Abbildung 56: K/Rb-Verhältnis zu Sr-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45.

Abbildung 57: K/Rb-Verhältnis zu Li-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. **MSC** Muscovite Class **MSCB** Muscovite Class - Barren **MSCRE** Muscovite Class - RE enriched **MOZ** Mozambique **SPD** Spodumene Type. Einteilung nach CERNY & BURT [1984]

	Minimum	Maximum	Spodumen-		
	(meang amerenziert)	(noch unterenziert)	Grenzwert		
Be	2,4	63	16		
Zn	4,4	310	8,1		
Ga	16	237	90		
Ge	0,8	17	2,0		
Rb	137	6992	1307		
Nb	13	396	124		
Sn	9,3	1181	168		
Cs	2,0	1953	18		
Та	0,6	130	14		
TI	0,6	61	6,3		
	Maximum	Minimum	Spodumen-		
	(niedrig differenziert)	(hoch differenziert)	Grenzwert		
K/Rb	650	11,5	67		
Sr	77	0,1	11		
Ва	1829	0,3	137		

Tabelle 6 : Minimale und maximale Spurenelementgehalte der Muskovite (Werte in ppm). **Spodumen-Grenzwert** Spurenelementgehalte des Muskovits aus dem jeweils am niedrigsten differenzierten Spodumenpegmatit.

Faktoranalyse (log-transformed)

Abbildung 58: Log-transformierte Faktoranalyse der Elementchemie der Muskovite (Si, Al, Na, Ca, Fe, K, Li, Be, B, Mg, P, Ti, Mn, Zn, Ga, Ge, Rb, Sr, Zr, Nb, Sn, Cs, Ba, Ta, W, Tl und Pb).

7.3. Geochemie ausgewählter Schwerminerale

Als akzessorische Schwerminerale treten in den untersuchten Pegmatiten Apatit, Kassiterit, Rutil bzw. Strüverit, Uraninit, Wismut, Wismutphosphat, Zirkon, sowie Minerale der Columbit-, Monazitund Xenotimgruppe und Pyrochlorsupergruppe auf (Tabelle 7). Die häufigste Schwermineralphase, nach Spodumen, Turmalin und Granat sind die CGM und Zirkon. Diese treten in jeder Spodumenpegmatitprobe auf und wurden daher auf ihre Verhältnisse von Ta/Nb und Mn/Fe bzw. Zr/Hf analysiert.

Tabelle 7: Vorkommen der einzelne	n Schwerminerale (nicht dargeste	ellt: Spodumen, Turmalin, Granat).

Zirkon	×	×	×	×	×	×	×	×	×
Xenotim- gruppe			×		×				
Wismut- Phosphat	×					×			
Wismut					×				
Uraninit	×	х	х	х	х	х	х	х	x
Rutil (Strüverit)						х			
Mikrolith- gruppe		х	х	х			х	х	
Monazit- gruppe	×			Х	Х	Х			
Kassiterit	×	×	х	×	х	×		х	x
CGM	×	×	×	×	×	×	×	×	×
Apatit	×	×	×	×	×	×	×	×	×
Lokalität	Glanzalm	Glanzalm	Poling	Poling	Ratzell	Ratzell	Ratzell	Ratzell	Ratzell
Probe	56_4	56_5	1b_2	67_1	14_{-3}	60_3_03	60_3_36	60_3_69	60_3_912

Minerale der Columbitgruppe

Insgesamt wurden 696 REM-EDS Messungen an CGM durchgeführt. Die CGM stammen aus den jeweiligen Spodumenpegmatiten der Lokalitäten Glanzalm, Poling, Ratzell (Abbildung 59). Die höchsten Ta/(Ta+Nb)-Verhältnisse erreichen 0,71 und 0,91 in Probe 1b 2 (Poling) bzw. Probe 56 4 (Glanzalm). Bei letzterer handelt es sich um einen, nicht zu den CGM gehörenden, Tapiolit. Die CGM der Lokalitäten Glanzalm und Poling sind im Verhältnis zu Fe und Nb reicher an Mn und Ta als jene der Lokalität Ratzell. Dort zeigt die Schlitzprobe im Liegenden (60_3_912) des Spodumenpegmatitganges eine Erhöhung des Mn/(Mn+Fe)-Verhältnisses gegenüber der hangenden Bereiche. Die CGM aus den drei hangenden Bereichen der Schlitzropbe (60_3_03, 60_3_36 und 60_3_69) fallen alle in das Fe-reiche Columbitfeld des CGM-Vierecks (Abbildung 61). Zusätzlich wurden von allen CGM und den Tapioliten die Gehalte von Ti, Zr, Sn und U ermittelt (Tabelle 8). Dabei erreichen die maximalen Gehalte: 3,9 Atom% Ti, 1,1 Atom% Zr, 0,79 Atom% Sn, 0,81 Atom% W und 0,69 Atom% U.

Zirkon

Insgesamt wurden 156 Messungen mit dem REM-EDS an Zirkonen durchgeführt (Abbildung 60). Alle Proben der Spodumenpegmatite enthielten Zirkon. Dabei zeigt Probe 60_3_03 (Ratzell) die niedrigsten Hf-Gehalte und höchsten Zr/Hf-Verhältnisse von 0,39 Masse% bzw. 260,75. Die höchsten Hf-Gehalte und niedrigsten Zr/Hf-Verhältnisse werden in Probe 67_1 (Poling) mit 7,48 Masse% bzw. 11,93 erreicht.

Abbildung 59: Verhältnis Ta/(Ta+Nb) zu Mn/(Mn+Fe) in CGM.
Probennr. Lokalität		Ti	Mn	Fe	Zr	Nb	Sn	Та	W	U	Ta/ (Ta+Nb)	Mn/ (Fe+Mn)
1b_2	Max	0.86	7.6	9.8	0.49	18.9	0.17	15.2	0.81	0.51	0.71	0.71
Poling	Min	0.03	2.8	3.1	0.00	6.2	0.00	2.6	0.00	0.00	0.12	0.24
67_1	Max	0.80	7.7	9.1	0.77	20.6	0.16	13.5	0.15	0.19	0.62	0.59
Poling	Min	0.00	2.9	4.8	0.00	8.4	0.00	1.8	0.00	0.00	0.08	0.24
56_4	Max	1.9	6.5	11.3*	1.1	19.6	0.79*	19.7*	0.31	0.20*	0.91*	0.54
Glanzalm	Min	0.13	1.3*	5.6	0.00	2.0*	0.00	1.3	0.00	0.00	0.06	0.11*
56_5	Max	1.7	5.4	9.0	0.68	18.7	0.61	11.9	0.24	0.69	0.56	0.47
Glanzalm	Min	0.19	3.8	5.0	0.00	9.1	0.00	2.0	0.00	0.00	0.10	0.35
14_3	Max	2.3	5.7	8.6	0.50	20.0	0.54	9.2	0.53	0.05	0.45	0.56
Ratzell	Min	0.61	2.7	4.5	0.07	11.2	0.00	1.6	0.03	0.00	0.08	0.25
60_3_03	Max	2.9	4.6	10.8	0.61	18.7	0.30	9.8	0.25	0.46	0.46	0.38
Ratzell	Min	0.00	2.7	5.5	0.00	11.2	0.00	1.6	0.00	0.00	0.08	0.25
60_3_36	Max	3.9	4.3	9.8	0.88	18.3	0.46	9.8	0.14	0.27	0.48	0.38
Ratzell	Min	0.26	2.7	5.9	0.00	10.5	0.00	2.1	0.00	0.00	0.10	0.26
60_3_69	Max	2.2	4.6	10.8	0.64	18.8	0.20	9.6	0.31	0.28	0.45	0.39
Ratzell	Min	0.47	3.2	5.7	0.00	11.6	0.00	1.6	0.00	0.00	0.08	0.25
60_3_912	Max	2.1	6.2	11.9	0.64	19.7	0.27	9.5	0.32	0.16	0.47	0.54
Ratzell	Min	0.31	3.1	4.0	0.00	10.6	0.00	1.6	0.00	0.00	0.08	0.25

Tabelle 8: Maximale und Minimale Gehalte in CGM und Tapiolit von: Ti, Mn, Fe, Zr, Nb, Sn, Ta, U [Atom%] und Verhältnisse von Ta/(Ta+Nb) und Mn/(Fe+Mn) [Atomverhältnis]. **Min** Minimaler Messwert **Max** Maximaler Messwert ***** Tapiolit.

Abbildung 60: Hf-Gehalt zu Zr/Hf-Verhältnis der Zirkone.

7.4. Schlitzprobe Ratzell

Über die volle Mächtigkeit des Spodumenpegmatits der Lokalität Ratzell (Probe 60_3) wurde eine etwa 5 cm bis 15 cm breite Schlitzprobe genommen (Abbildung 61). Der Kontakt zum Granatglimmerschiefer ist konkordant und von Turmalinisierung und Nebengesteinseinschaltungen geprägt. Nach einer wenigen Zentimeter mächtigen Zone ohne Spodumen folgen über eine Mächtigkeit von etwa 90 cm spodumenführende Zonen. Diese unterscheiden sich anhand der maximalen Größe der hypidiomorphen Spodumenkristalle und werden von turmalinisierten Nebengesteinsschlieren unterbrochen. Die Größe der Spodumenkristalle nehmen vom Liegenden ins Hangende zu. Für die geochemischen Analysen wurde der Schlitz in vier etwa 30 cm Abschnitte unterteilt.

Die Gesamtgesteinsanalysen der vier einzelnen Teile der Schlitzprobe zeigen den gleichen Trend wie die Spurenelementanalysen der Muskovite. Die Li-Gehalte betragen vom Liegenden ins Hangende: 0,14 % Li₂O, 0,94 % Li₂O, 1,49 % Li₂O und 1,54 % Li₂O.

Die CGM werden im Liegenden des Pegmatitganges Mn-reicher und erreichen in der Mitte mit 0,48 das höchste Ta/(Ta+Nb)-Verhältnis. Von den 374 Messungen sind 3 Columbit-(Mn) und 371 Columbit-(Fe).

Die Spurelementgehalte der Muskovite zeigen höhere Cs- und TI-Gehalte und niedrigere K/Rb-Verhältnisse im Hangenden. Li, Nb und Ta folgen diesem Differentiationstrend nicht. Die Li-Gehalte sind in den inneren Zonen am höchsten. Die Nb- und Ta-Gehalte sind gegengleich verteilt. Die Summen aus beiden ergeben vom Liegenden ins Hangende: 362 ppm, 364 ppm, 401 ppm, 367 ppm.

Abbildung 61: Skizze Schlitzprobe 60_3 (Ratzell). Unterteilung in 4 Zonen zu je 30 cm mit den jeweiligen Verhältnissen von Ta/(Ta+Nb) zu Mn/(Mn+Fe) in CGM, den durchschnittlichen Muskovitspurenelementgehalten und den Gesamtgesteinsgehalten ausgewählter Elemente. **KZ** Kontaktzone **NG** Nebengestein **WR** Gesamtgesteinsanalyse.

8. Diskussion

Geländebeobachtungen

Die Pegmatitvorkommen des östlichen Defereggentals liegen in einem Gebiet das stark glazial geprägt wurde und in unmittelbarer Nähe zu größeren Störungssystemen, wie z.B. der Iselstörung und der DAV. Diese Umstände machen eine regionale Korrelation von einzelnen Aufschlüssen zu ausgedehnteren Pegmatitgängen schwierig. Die Mineralogie liefert hier keine Anhaltspunkte. Durch eine ausgeprägte Zonierung mächtigerer Pegmatite sind mineralogische Eigenschaften nicht von Aufschluss zu Aufschluss übertragbar. Bis auf Spodumen korrelieren makroskopisch erkennbare Minerale nicht mit dem Differentiationsgrad.

Alle Pegmatitaufschlüsse liegen konkordant in Glimmerschiefer oder Gneis. Die Ausnahme bildet der Spodumenpegmatit der Lokalität Glanzalm. Hier wurde der primäre, permische Kontakt zum Nebengestein nicht überprägt. Eine weitere Ausnahme zum restlichen Arbeitsgebiet bilden die Pegmatite des Michelbach-Komplexes. Diese liegen konkordant im Nebengestein, wurden aber durch die alpidische Metamorphose schwächer überprägt als jene des Petzeck-Rotenkogel-Komplexes. Dadurch blieb die permische Schieferung möglicherweise erhalten, liegt aber parallel zur konkordanten Intrusion der Pegmatitgänge.

Gesamtgesteinschemie

Die durchschnittlichen Li₂O-Gehalte der Proben von Spodumenpegmatiten liegen bei 1,12 % und erreichen in Probe 56 (Glanzalm) ihr Maximum bei 2,28 %. Bei einem theoretischen Li₂O-Gehalt von 8,03 % in Spodumen ergeben sich daraus Spodumengehalte von durchschnittlich 14 % bzw. maximal 28 %. Die Ergebnisse sind damit vergleichbar mit den Werten von MALI [2004], wo bei Proben von Spodumenpegmatiten im Gebiet Pusterwald/Lachtal durchschnittliche Gehalte von ca. 25 % Spodumen bzw. 1,59 % Li₂O erreicht werden. Andere Proben aus Spodumenpegmatiten der Ostalpen liegen im selben Bereich: 1,62 % Li₂O am Riesenferner (Südtirol) [PROCHASKA 1981], 1,53 % Li₂O bzw. 1,83 % Li₂O in St. Radegund, 1,81 % Li₂O bzw. 1,94 % Li₂O auf der Gleinalpe [KOLLER et al. 1983], 1,37 % bzw. 2,13 % bei Edling [LUECKE & UCIK 1986] und durchschnittlich 2,22 % Li₂O bzw. 1,28 % Li₂O auf der Weinebene [GöD 1989] (Tabelle 9).

Die Nb- und Ta-Gehalte der Proben von Spodumenpegmatiten von durchschnittlich 39 ppm bzw. 37 ppm (Tabelle 5) sind, wie die Li₂O-Gehalte, im Vergleich zu den Werten von KNOLL et al. [2018] wesentlich erhöht (Tabelle 9). Ähnliche Gehalte finden sich in Proben von Spodumenpegmatiten der Niederen Tauern: 30 ppm Nb bzw. 79 ppm Ta am Scharnitzfeld und 51 ppm Nb bzw. 86 ppm Ta im Weittal. Die höchsten Gehalte von Nb und Ta dieser Arbeit finden sich in Probe S2 (Steinbruch St.

75

Johann) und betragen 99 ppm Nb bzw. 249 ppm Ta. Dabei handelt es sich um einen einfachen Pegmatit.

Erhöhte Gehalte von Be (z.B. 310 ppm, Probe 9, Lokalität Zunig) und REE lassen wahrscheinlich auf erhöhte Gehalte an Beryllium bzw. Monazit, Xenotim, o.ä. schließen. Die REE sind im Vergleich mit anderen Spodumenpegmatiten niedrig (Tabelle 9).

Tabelle 9: Vergleich der Gesamtgesteinschemie ausgewählter Spodumenpegmatitproben. Referenzen: A KNOLL et al. [2018] B MALI [2004] C Göd [1989] . Spodumenpegmatit im: Amp Amphibolit Glischi Glimmerscheifer. ΣREE ohne Y.

Probennr.9561b60_304R4514R1615R42AmpGillSchiLokalitätZunigGlanzalmPolingRatzellHohenwartMitterbergLachtalWeittalWeintbereLi20%1.442.281.001.030.140.040.042.462.221.28Si02%77.6776.7977.9375.9977.7370.5173.9173.9574.174.78Al203%15.0516.7414.9215.5912.6416.8614.4315.3815.7515.49Fe203%0.940.370.380.521.423.410.850.130.690.66MnO%0.110.020.020.040.130.120.050.060.090.06MgO%0.110.020.020.040.130.120.050.060.090.06MgO%0.110.020.020.040.130.120.050.060.090.06CaO%0.350.190.20.190.550.480.510.290.360.3Na2O%2.513.544.364.264.736.044.353.152.843.4K2O%0.520.420.060.310.010.020.030.060.330.020.010.010.020.35P2O5%0.
Lokalität Zunig Glanzalm Poling Ratzell Hohenwart Mitterberg Lachtal Weittal Weinebene Li2O % 1.44 2.28 1.00 1.03 0.14 0.04 0.04 2.46 2.22 1.28 SiO2 % 77.67 76.79 77.93 75.99 77.73 70.51 73.91 73.95 74.1 74.78 Al2O3 % 15.05 16.74 14.92 15.59 12.64 16.86 14.43 15.38 15.75 15.49 Fe2O3 % 0.94 0.37 0.38 0.52 1.42 3.41 0.85 0.13 0.69 0.66 MD0 % 0.11 0.02 0.02 0.04 0.13 0.12 0.05 0.06 0.09 0.06 MgO % 0.11 0.02 0.02 0.19 0.55 0.48 0.51 0.29 0.36 0.3 Na2O % 2.51
Li2O % 1.44 2.28 1.00 1.03 0.14 0.04 0.04 2.46 2.22 1.28 SiO2 % 77.67 76.79 77.93 75.99 77.73 70.51 73.91 73.95 74.1 74.78 Al2O3 % 15.05 16.74 14.92 15.59 12.64 16.86 14.43 15.38 15.75 15.49 Fe2O3 % 0.94 0.37 0.38 0.52 1.42 3.41 0.85 0.13 0.69 0.66 MnO % 0.127 0.072 0.074 0.099 0.38 0.72 0.3 0.08 0.06 CaO % 0.35 0.19 0.2 0.19 0.55 0.48 0.51 0.29 0.36 0.3 Na2O % 2.51 3.54 4.36 4.26 4.73 6.04 4.35 3.15 2.84 3.4 K2O % 2.13 1.15 2.08 2.50 0.65 0.9 3.7 3.68 2.71 2.43
SiO2 % 77.67 76.79 77.93 75.99 77.73 70.51 73.91 73.95 74.1 74.78 Al2O3 % 15.05 16.74 14.92 15.59 12.64 16.86 14.43 15.38 15.75 15.49 Fe2O3 % 0.94 0.37 0.38 0.52 1.42 3.41 0.85 0.13 0.69 0.66 MnO % 0.127 0.072 0.074 0.099 0.38 0.72 0.3 0.08 0.09 0.66 MgO % 0.11 0.02 0.02 0.04 0.13 0.12 0.05 0.06 0.09 0.06 CaO % 0.35 0.19 0.2 0.19 0.55 0.48 0.51 0.29 0.36 0.3 Na2O % 2.51 3.54 4.36 4.26 4.73 6.04 4.35 3.15 2.84 3.4 K2O % 0.52 0.42 0.06 0.31 0.01 0.05 0.03 0.06 0.38
Al2O3 % 15.05 16.74 14.92 15.59 12.64 16.86 14.43 15.38 15.75 15.49 Fe2O3 % 0.94 0.37 0.38 0.52 1.42 3.41 0.85 0.13 0.69 0.66 MnO % 0.127 0.072 0.074 0.099 0.38 0.72 0.3 0.08 0.08 0.06 MgO % 0.11 0.02 0.02 0.04 0.13 0.12 0.05 0.06 0.09 0.06 CaO % 0.35 0.19 0.2 0.19 0.55 0.48 0.51 0.29 0.36 0.3 Na2O % 2.51 3.54 4.36 4.26 4.73 6.04 4.35 3.15 2.84 3.4 K2O % 0.13 1.15 2.08 2.50 0.65 0.9 3.7 3.68 2.71 2.43 TiO2 % 0.52 0.42 0.06 0.31 0.01 0.05 0.03 0.06 0.38
Fe2O3 % 0.94 0.37 0.38 0.52 1.42 3.41 0.85 0.13 0.69 0.66 MnO % 0.127 0.072 0.074 0.099 0.38 0.72 0.3 0.08 0.08 0.06 MgO % 0.11 0.02 0.02 0.04 0.13 0.12 0.05 0.06 0.09 0.06 CaO % 0.35 0.19 0.2 0.19 0.55 0.48 0.51 0.29 0.36 0.33 Na2O % 2.51 3.54 4.36 4.26 4.73 6.04 4.35 3.15 2.84 3.4 K2O % 2.13 1.15 2.08 2.50 0.65 0.9 3.7 3.68 2.71 2.43 TiO2 % 0.044 0.015 0.004 0.0358 0.03 0.02 0.01 0.01 0.02 0.03 P2O5 % 0.52 0.42 0.62 0.99 0.57 0.75 0.42 0.82 0.51 0.78<
MnO % 0.127 0.072 0.074 0.099 0.38 0.72 0.3 0.08 0.08 0.06 MgO % 0.11 0.02 0.02 0.04 0.13 0.12 0.05 0.06 0.09 0.06 CaO % 0.35 0.19 0.2 0.19 0.55 0.48 0.51 0.29 0.36 0.3 Na2O % 2.51 3.54 4.36 4.26 4.73 6.04 4.35 3.15 2.84 3.4 K2O % 2.13 1.15 2.08 2.50 0.65 0.9 3.7 3.68 2.71 2.43 TiO2 % 0.044 0.015 0.004 0.358 0.03 0.02 0.01 0.02 0.03 P2O5 % 0.52 0.42 0.66 0.31 0.01 0.05 0.03 0.06 0.38 0.41 LOI % 1.14 1.06 0.6
MgO % 0.11 0.02 0.02 0.04 0.13 0.12 0.05 0.06 0.09 0.06 CaO % 0.35 0.19 0.2 0.19 0.55 0.48 0.51 0.29 0.36 0.3 Na2O % 2.51 3.54 4.36 4.26 4.73 6.04 4.35 3.15 2.84 3.4 K2O % 2.13 1.15 2.08 2.50 0.65 0.9 3.7 3.68 2.71 2.43 TiO2 % 0.044 0.015 0.004 0.0358 0.03 0.02 0.01 0.01 0.02 0.03 P2O5 % 0.52 0.42 0.06 0.31 0.01 0.05 0.03 0.06 0.38 0.41 LOI % 1.14 1.06 0.62 0.99 0.57 0.75 0.42 0.82 0.51 0.78 Total % 100.6 10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Na2O % 2.51 3.54 4.36 4.26 4.73 6.04 4.35 3.15 2.84 3.4 K2O % 2.13 1.15 2.08 2.50 0.65 0.9 3.7 3.68 2.71 2.43 TiO2 % 0.044 0.015 0.004 0.0358 0.03 0.02 0.01 0.01 0.02 0.03 P2O5 % 0.52 0.42 0.06 0.31 0.01 0.05 0.03 0.06 0.38 0.41 LOI % 1.14 1.06 0.62 0.99 0.57 0.75 0.42 0.82 0.51 0.78 Total % 100.6 100.4 100.7 100.5 98.84 99.86 98.57 100.06 99.68 99.61 Be ppm 30 c 20 c 5 c 5 c 5 6 c 5 c 5 c 5 6 c 5 c 5 c 6 c 5 c 5 c 6 c 5 c 5 c 7 c 7 1 c 1 c 1 <th< td=""></th<>
K2O % 2.13 1.15 2.08 2.50 0.65 0.9 3.7 3.68 2.71 2.43 TiO2 % 0.044 0.015 0.004 0.0358 0.03 0.02 0.01 0.01 0.02 0.03 P2O5 % 0.52 0.42 0.06 0.31 0.01 0.05 0.03 0.06 0.38 0.41 LOI % 1.14 1.06 0.62 0.99 0.57 0.75 0.42 0.82 0.51 0.78 Total % 100.6 100.4 100.7 100.5 98.84 99.86 98.57 100.06 99.68 99.61 Be ppm 310 146 179 144 48 30 19 49 <
TiO2 % 0.044 0.015 0.004 0.0358 0.03 0.02 0.01 0.01 0.02 0.03 P2O5 % 0.52 0.42 0.06 0.31 0.01 0.05 0.03 0.06 0.38 0.41 LOI % 1.14 1.06 0.62 0.99 0.57 0.75 0.42 0.82 0.51 0.78 Total % 100.6 100.4 100.7 100.5 98.84 99.86 98.57 100.06 99.68 99.61 Be ppm 310 146 179 144 48 30 19 40 40 40 40 40 40 40 40 <t< td=""></t<>
P205 % 0.52 0.42 0.06 0.31 0.01 0.05 0.03 0.06 0.38 0.41 LOI % 1.14 1.06 0.62 0.99 0.57 0.75 0.42 0.82 0.51 0.78 Total % 100.6 100.4 100.7 100.5 98.84 99.86 98.57 100.06 99.68 99.61 Be ppm 310 146 179 144 48 30 19 49 V ppm <5 <5 <5 6 <5 5 6 <5 Cr ppm 30 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 </td
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Beppm 310 146 179 144 48 30 19 49 Vppm < 5 < 5 < 5 < 5 6 < 5 Crppm 30 < 20 < 20 160 < 20 < 20 Coppm 1 < 1 < 1 < 1 < 1 Nippm < 20 < 20 < 20 < 20 < 20 Cuppm < 10 < 10 < 10 < 10 < 10 Znppm 60 40 30 65 160 250 50 13 Gappm 26 32 22 25 16 20 13 22 Geppm 5 7 4 5 5 7 5 Asppm<<<5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ni ppm < 20 < 20 < 20 < 20 < 20 Cu ppm < 10 < 10 < 10 < 10 < 10 < 10 Zn ppm 60 40 30 65 160 250 50 13 Ga ppm 26 32 22 25 16 20 13 22 Ge ppm 5 7 4 5 5 7 5 As ppm< <5 < 5 < 5 < 5 < 5 < 5
Cu ppm < 10 < 10 < 10 < 10 < 10 Zn ppm 60 40 30 65 160 250 50 13 Ga ppm 26 32 22 25 16 20 13 22 Ge ppm 5 7 4 5 5 7 5 As ppm<
Zn ppm 60 40 30 65 160 250 50 13 Ga ppm 26 32 22 25 16 20 13 22 Ge ppm 5 7 4 5 5 7 5 As ppm <5
Ga ppm 26 32 22 25 16 20 13 22 Ge ppm 5 7 4 5 5 7 5 As ppm <5
Ge ppm 5 7 4 5 5 7 5 As ppm <5 <5 <5 <5 <5 <5 <5
As ppm <5 <5 <5 <5 <5 <5 <5
Rb ppm 384 386 250 592 86 97 372 706 1108 878
Sr ppm 100 141 73 29 14 13 21 158
Zr ppm 17 15 17 36 109 142 35 15
Nb ppm 29 88 10 44 14 8 1 86 55 85
Mo ppm <2 <2 <2 <2 <2 <2 <2 59 54
Ag ppm < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5
In ppm < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2
Sn ppm 88 1330 28 92 9 18 6 25 138 85
Sb ppm 1.3 < 0.5 < 0.5 < 0.5 < 0.5
Cs ppm 42.3 34.2 11.7 35.8 13 20 43.3 99 62 25
Ba ppm 32 41 31 54 7 13 27 50
Bi ppm 2.7 < 0.4 < 0.4 1 0.7 2.8
Hf ppm 0.7 1.3 1 1.7 6.9 7.8 1.8 1.3
Ta ppm 23.0 122 13.1 30.4 9.9 5.0 0.7 51 19 24
W ppm <1 <1 <1
TI ppm 2.4 2.0 1.5 3.7 0.4 0.4 2.1
Pb ppm 22 9 33 21 49 57 87 49
Th ppm 0.6 0.9 0.5 0.9 1.7 6.6 1.3 0
U ppm 12.8 13.9 3.1 10.9 81 69 17 23 6 87
Y ppm 5 3 < 2 48 112 41 10
Σ REE ppm 10.39 5.33 4.00 8.92 31.65 129.82 31.41

Differentiationsgrad der Muskovite

Der Differentiationsgrad der Muskovite lässt sich am besten durch das K/Rb-Verhältnis bzw. die Gehalte von Sn, Cs und Tl zeigen. Ge, Ga, Nb, Ta und Zn zeigen eine positive, Sr und Ba eine negative Korrelation mit dem K/Rb-Verhältnis. Li korreliert anders als nach CERNY & BURT [1984] nicht mit dem K/Rb-Verhältnis. Im Vergleich zu den Muskovitanalysen von z.B. GASSNER [2001], SENZENBERGER [2001], AHRER [2014] und STEINER [2017] zeigen sich Ähnlichkeiten, was die Korrelation der Spurenelemente und der Einteilung nach CERNY & BURT [1984] betrifft.

Unterschiede ergeben sich bei einigen absoluten Spurenelementgehalten aus vorangegangen Arbeiten. Die Rb-Gehalte vom Großen Zunig sind mit fast 0,7 % die höchsten, die bisher im Rahmen des MRI Peg I und Peg II Projektes an Muskoviten gemessen wurden (Abbildung 62). Dieser Trend spiegelt sich auch bei den K/Rb-Verhältnissen (Großer Zunig: 11,5 K/Rb) wider, die z.B. am Hohenwart ein Verhältnis von 16 ([AHRER 2014]) und am Millstätter-See-Rücken ein Verhältnis von 34 ([STEINER 2017]) aufweisen. Gleiches gilt für die Gehalte von Tl und Cs. Der maximale Tl-Gehalt aus einem Muskovit am Großen Zunig erreicht mit 61 ppm mehr als das doppelte als jene am Hohenwart (27 ppm Tl, [AHRER 2014]). Die Nb-,Ta- und Li-Gehalte dieser Arbeit liegen mit maximal 396 ppm Nb, 130 ppm Ta und 1204 ppm Li im gleichen Bereich wie bei GASSNER [2001], SENZENBERGER [2001], AHRER [2014] und STEINER [2017].

AHRER [2014] trifft eine Einteilung in niedrig-, mittel- und hochdifferenzierte Bereiche mit den Grenzwerten zwischen niedrig/mittel und mittel/hoch bei K/Rb-Verhältnissen von 180 bzw. 80. Demnach wären 164 von 220 Muskovitmessungen dieser Arbeit hochdifferenziert und 24 Messungen mitteldifferenziert.

Die Gehalte von Be, Ga, Ge, Rb, Nb, Sn, Cs, Ta und Tl der Muskovite deuten keinen durchgehenden Verlauf der Differentiation, sondern die Bildung einer zweiten Punktwolke an. Auffällig ist, dass Muskovite aus gleichen Aufschlüssen in beiden Punktwolken liegen. Dafür kommen mehrere Gründe in Frage: Das Pegmatitsystem wurde 1) permisch reaktiviert oder 2) die Muskovite wurden alpidisch teilweise geochemisch alteriert oder 3) die Datenlage zeigt eine Unterbrechung der Differentiationstrends obwohl diese tatsächlich durchgängig sind.

Die Spurenelementgehalte der Muskovite zeigen nördlich der DAV einen regionalen Trend. Die Differentiationsgrade ändern sich immer wieder abrupt nach mehreren hunderten Metern. Diese Bereiche gleicher Differentiation verlaufen O-W und haben damit die gleiche Streichrichtung wie die regionalen Faltenachsen (Abbildung 6). Zum Zeitpunkt ihrer Bildung intrudierten höher differenzierte Pegmatite seichtere Formationen und niedrig differenzierte nahmen tiefere Lagen ein. Durch

77

Verfaltung und Erosion finden sich heute hochdifferenzierte neben niedrigdifferenzierten Pegmatiten.

Im Bereich Rudnig und Naßfeld, wo nach SCHULZ [1999] die DAV verlaufen sollte, ist diese aufgrund des Differentiationsgrades der Muskovite nicht erkennbar. Südlich der DAV im Steinbruch St. Johann sind die Pegmatite wesentlich höher differenziert als am Rudnig oder im Michelbach. Diese regionale Verteilung lässt auf keinen zugrundeliegenden Trend schließen. Die Iselstörung trennt die niedrigdifferenzierten Vorkommen der Lokalität Unterpeischlach vom Rest des Arbeitsgebietes. Unterschiede zu den angrenzenden Pegmatiten auf der gegenüberliegenden Seite können am wahrscheinlichsten durch den Versatz der Iselstörung erklärt werden.

Die Einteilung nach CERNY & BURT [1984] ist auf die Muskovite des Arbeitsgebietes nicht anwendbar. Die Steigungen der Differentiationstrends zeigen Ähnlichkeiten, liegen aber tendenziell außerhalb der Wertebereiche der Typenfelder (z.B. Abbildung 52). Ähnliche Beobachtungen wurden auch von z.B. GASSNER [2001], SENZENBERGER [2001], AHRER [2014] und STEINER [2017] gemacht. Die Einteilung nach CERNY & BURT [1984] verwendet magmatisch gebildete Pegmatite zur Definition der Typenfelder. Die Annahme einer anatektischen Genese der permischen Pegmatite würde eine Erklärung für die Unterschiede in den Daten liefern.

Abbildung 62: K/Rb-Verhältnis zu Rb-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Die Daten stammen aus der MRI Peg I Projektdatenbank (Stand: Juli 2020).

Schwerminerale

Die komplexe Geochemie und Mineralogie zeigt sich durch die Mineralphasen der Schwermineralkonzentrate. Ein eindeutiger Grenzwert der Spurenelementgehalte der Muskovite kann nicht mit dem Auftreten eigenständiger Mineralphasen korreliert werden. Muskovitanalyse aus Spodumenpegmatiten gehören zwar nie zu den am niedrigsten differenzierten, jedoch finden sich unter den nicht spodumenführenden Pegmatiten auch Muskovitanalysen, die eine hohe Differentiation anzeigen (Tabelle 6). Ein eindeutiges Ergebnis bezüglich der Korrelation zwischen Muskovitspurenelementgehalten und der Bildung eigenständiger Mineralphasen ist demnach noch nicht möglich.

Unter den Schwermineralphasen finden sich keine Sulfidminerale. Dies spricht für eine Bildung aus einer S-armen Schmelze und einer geringen Assimilation von S aus dem Nebengestein. Grund dafür ist vermutlich das Fehlen von sulfidreicheren Nebengesteinen.

Ein Differentiationstrend zeigt sich durch die Analyse von Ta und Nb bzw. Mn und Fe in CGM und Hf und Zr in Zirkonen aus Spodumenpegmatiten. Die Verhältnisse von Ta/Nb und Mn/Fe nehmen mit steigender Fraktionierung linear zu. Nach der Einteilung von ČERNÝ [1989] handelt es sich bei den Spodumenpegmatiten des Arbeitsgebietes um den Spodumen-Typ (Abbildung 11, Abbildung 59). Andere CGM-Analysen der permischen Pegmatite zeigen ein diverseres Bild was Ta/Nb- bzw. Mn/Fe-Verhältnis betrifft (z.B [MALI 2004], [MELCHER et al. 2010], [SCHNEIDER 2013], [AHRER 2014]). Ähnliche Verhältnisse wie in dieser Arbeit werden von AHRER [2014] in Pegmatiten des Rappold Komplexes am Mitterberg beschrieben. Ein allgemeiner Fraktionierungstrend der CGM-Körner ist, wie bei AHRER [2014], nicht zu beobachten. Konzentrisch zonierte Exemplare (Abbildung 42) bilden die Ausnahme.

Die Gehalte an Hf und Zr in Zirkon aus den beprobten Spodumenpegmatiten folgen dem Trend einer Anreicherung von Hf gegenüber Zr (Abbildung 60), welcher auch an anderen Pegmatiten nachgewiesen werden konnte (z.B. [ČERNÝ et al. 1985], [LONDON 2008], [WANG et al. 2010]). Die am höchsten fraktionierten Zirkone stammen bei dieser Arbeit aus dem Spodumenpegmatit der Lokalität Poling und erreichen maximale Werte von 7,48 Masse% Hf bzw. ein Zr/Hf-Verhältnis von 11,93. Damit sind die Spodumenpegmatite des Defereggentals im Vergleich zu granitischen Zirkonen an Hf angereichert [WANG et al. 2010]. Hohe Fraktionierungsgrade von < 5 Zr/Hf wie bei rein magmatisch gebildeten, pegmatitischen Zirkonen wie von VAN LICHTERVELDE et al. [2009] aus Tanco (Kanada) beschrieben, werden jedoch nicht erreicht.

Probe 67_1 (Poling) zeigt höhere Fraktionierung anhand der CGM- und Zirkon-Messungen als die übrigen Spodumenpegmatite. Diese Daten decken sich nicht mit den Ergebnissen der Elementchemie

der Muskovite, welche für die Lokalität Poling die niedrigste Differentiation unter den Spodumenpegmatiten anzeigen.

Schlitzprobe Ratzell

Die Ergebnisse des K/Rb-Verhältnisses der Muskovite aus der Schlitzprobe des Spodumenpegmatites bei Ratzell zeigen eine Abnahme des Differentiationsgrades vom Hangenden ins Liegende. Auch die Verteilungen an Nb, Cs, Ta, Tl zeigen den gleichen Trend. Dies spricht für eine Kristallisation bzw. Differentiation, die im Liegenden begonnen hat und im Hangenden endete. Auch die Spodumenkristalle die in der oberen Hälfte des Ganges ihre maximale Kristallgröße erreichen sprechen für einen lagigen Pegmatitaufbau wie z.B von LONDON [2008, 2018] beschrieben.

9. Schlussfolgerung

Die Bearbeitung der Pegmatite des Gebietes Defereggen in Osttirol lässt folgende Ergebnisse zu:

- Nördlich und südlich des Defereggentals finden sich einfache Pegmatite und Spodumenpegmatite. Einfache Pegmatite treten auch östlich der Isel auf und kommen ebenso südlich der DAV im Michelbach Komplex vor.
- Die Pegmatite liegen konkordant in Glimmerschiefer bis Gneis. Eine Ausnahme bildet der Spodumenpegmatit der Lokalität Glanzalm; hier ist eine diskordante, permische Schieferung erkennbar.
- Der Kontakt zum Nebengestein ist von Turmalinisierung geprägt. Almandin tritt im Endo- und Exokontakt auf. Biotit findet sich nur im Nebengestein.
- Die Pegmatite setzen sich aus Quarz, Kalifeldspat, Plagioklas, Muskovit, Turmalin und Granat (Spessartin und Mn-reicher Almandin) als Hauptgemenge zusammen. M\u00e4chtigere (ca. > 1 m)
 Pegmatite sind zoniert. Li-Pegmatite enthalten zus\u00e4tzlich Spodumen. Je nach Zone wechselt die mineralogische Zusammensetzung teilweise drastisch.
- Spodumenpegmatite enthalten akzessorisch die Schwerminerale Apatit, CGM, Kassiterit, Monazit, Mikrolith, Rutil (Strüverit), Uraninit, gediegen Wismut, ein nicht genau definiertes Wismutphosphat, Xenotim und Zirkon. Bei den CGM handelt es sich zum Großteil um Columbit-(Fe).
- Die maximalen Gesamtgesteinsgehalte erreichen bei der Lokalität Glanzalm (Probe 56)
 2,28 % Li₂O bzw. 1330 ppm Sn und bei der Lokalität Steinbruch St. Johann (Probe S2) 99 ppm
 Nb bzw. 249 ppm Ta. Die höchsten REE-Gehalte stammen von der Lokalität Grünalmbach (Probe 71).

- Die Spurenelementgehalte von 112 Muskoviten aus 74 Pegmatiten zeigen korrelierende Gehalte von Be, Zn, Ga, Ge, Rb, Sr, Nb, Sn, Cs, Ba, Ta und Tl mit dem Differentiationsgrad. Der höchste Differentiationsgrad liegt bei einem K/Rb-Verhältnis von 11,5.
- Die Gesamtgesteinsanalysen von 5 Proben aus einfachen Pegmatiten und 8 Proben aus Spodumenpegmatiten zeigen den gleichen Differentiationstrend wie die Muskovite.
- Nördlich der DAV wechseln höher differenzierte Bereiche mit niedriger differenzierten Bereichen. Diese Verteilungstrends der Differentiation spiegeln den regionalen Faltenbau wider.
- Die CGM und Zirkone aus Spodumenpegmatiten zeigen eine Differentiation anhand der Ta/Nb- und Mn/Fe- bzw. Hf/Zr-Verhältnissen. Nach CERNY & BURT [1984] handelt es sich dabei um den Spodumen Typ.
- Eine Schlitzprobe über die volle Mächtigkeit des Spodumenpegmatitganges bei Ratzell zeigt eine Erhöhung des Differentiationsgrades und Zunahme der Spodumenkristallgrößen vom Liegenden ins Hangende.
- Die Pegmatitvorkommen des Arbeitsgebietes sind mit den bisher bekannten
 Spodumenpegmatiten der Ostalpen gut vergleichbar und zeigen ähnliche Eigenschaften.

Die Spodumenpegmatite und die einfachen Pegmatite des östlichen Defereggentals enthalten potentiell wirtschaftlich interessante Vorkommen. Besonders hervorzuheben ist das Mineral Spodumen, welches das Batteriemetall Li enthält. Eine erste Abschätzung der anstehenden Spodumenpegmatite im Arbeitsgebiet lässt insgesamt auf eine zweidimensionale Erstreckung von mehreren hundert Quadratmetern schließen. Für eine konkrete Angabe der Kubatur bzw. Tonnagen wären Bohrungen nötig, jedoch kann zumindest von einer Fortsetzung der Spodumenpegmatite von einigen Metern in die Tiefe ausgegangen werden. Daraus ergibt sich insgesamt für alle in dieser Arbeit beschriebenen Spodumenpegmatite eine vermutete Ressource von < 10.000 t Spodumenpegmatitgestein. Dabei erreichen die Li₂O-Gehalte der 8 Gesamtgesteinsproben aus Spodumenpegmatiten zwischen 0,09 % und 2,28 %, mit einem durchschnittlichem Gehalt von 1,12 %.

Neben den akzessorischen Schwermineralen ist auch bei Quarz und Feldspat eine potentielle wirtschaftliche Verwendbarkeit gegeben. Die im Rahmen dieser Arbeit aufgenommenen und beprobten einfachen Pegmatite und Spodumenpegmatite stellen keinen Anspruch auf Vollständigkeit der in diesem Gebiet zu findenden Vorkommen eben dieser. Zum jetzigen Zeitpunkt kann ohne weitere Explorationsarbeiten keine Beurteilung über das wirtschaftliche Potenzial dieser Vorkommen getroffen werden.

Literaturverzeichnis

AHRER S. (2014): Geowissenschaftliche und aufbereitungstechnische Untersuchungen an ausgewählten Pegmatiten und deren Nb-Ta-Vererzungen in den Ostalpen, Steiermark, Österreich. Unveröffentlichte Masterarbeit Montanuniversität Leoben, 105 S.

BORSI S., ZANFERRARI A., DEL MORO A., SASSI F. & ZIRPOLI G. (1978): New geopetrologic and radiometric data on the Alpine history of the Austridic continental margin south of the Tauern window (Eastern Alps). Memorie di Scienze geologiche 32, S. 1–18.

BRADLEY D., MCCAULEY A. & STILLINGS L. (2017): *Mineral-deposit model for lithium-cesium-tantalum pegmatites*. U.S. Geological Survey Scientific Investigations Report (2010-50700), 48 S.

BUDDINGTON A. (1959): *Granite emplacement with special reference to North America*. Geological Society of America Bulletin 70 (6), S. 671–747.

CAMERON E., JAHNS R., MCNAIR A.& PAGE L. (1949): *Internal Structure of Granitic Pegmatites*, Society of Economic Geologists, Economic Geology Monograph Series 2.

CARDOSO-FERNANDES J., TEODORO A. & LIMA A. (2019): *Remote sensing data in lithium (Li) exploration: A new approach for the detection of Li-bearing pegmatites*. International Journal of Applied Earth Observation and Geoinformation 76, S. 10–25.

CERNY P. & BURT D. (1984): Paragenesis, crystallochemical characteristics, and geochemical evolution of the micas in granite pegmatites. Reviews in Mineralogy and Geochemistry 13 (1), S. 257–297.

ČERNÝ P. (1989): *Characteristics of pegmatite deposits of tantalum*, S. 195–239. In: P. Möller, P. Černý & F. Saupe (Hg.): Lanthanides, Tantalum and Niobium (Special publication of the Society for Geology Applied to Mineral Deposits, 7), Springer Verlag, Berlin.

ČERNÝ P. (1991a): Rare-element Granitic Pegmatites. Part I: Anatomy and Internal Evolution of Pegmatitic Deposits. Geoscience Canada 18 (2), S. 49–67.

ČERNÝ P. (1991b): Fertile granites of Precambrian rare-element pegmatite fields: is geochemistry controlled by tectonic setting or source lithologies? Precambrian Research 51 (1-4), S. 429–468.

ČERNÝ P., BLEVIN P., CUNEY M. & LONDON D. (2005): *Granite-Related Ore Deposits*. In: J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb & J. P. Richards (Hg.): One Hundredth Anniversary Volume, Society of Economic Geologists.

ČERNÝ P. & ERCIT T. (1989): *Mineralogy of Niobium and Tantalum: Crystal Chemical Relationships, Paragentic Aspects and Their Economic Implications*, S. 27–79. In: P. Möller, P. Černý & F. Saupe (Hg.): Lanthanides, Tantalum and Niobium (Special publication of the Society for Geology Applied to Mineral Deposits, 7), Springer Verlag, Berlin.

ČERNÝ P. & ERCIT T. (2005): *The classification of granitic pegmatites revisited*. The Canadian Mineralogist 43 (6), S. 2005–2026.

ČERNÝ P., LONDON D. & NOVAK M. (2012): Granitic Pegmatites as Reflections of Their Sources. Elements 8 (4), S. 289–294.

ČERNÝ P., MEINTZER R. & ANDERSON A. (1985): *Extreme fractionation in rare-element granitic pegmatites; selected examples of data and mechanisms*. The Canadian Mineralogist 23 (3), S. 381–421.

CESARE B. (1999): Multi-stage pseudomorphic replacement of garnet during polymetamorphism: 1. Microstructures and their interpretation. Journal of Metamorphic Geology 17 (6), S. 723–734.

DAVIES H. & BLANCKENBURG F. v. (1995): Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters 129 (1-4), S. 85–102.

DILL H. (2010): *The "chessboard" classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium.* Earth-Science Reviews 100 (1-4), S. 1–420.

DILL H. (2015): Pegmatites and aplites: Their genetic and applied ore geology. Ore Geology Reviews 69, S. 417–561.

DILL H. (2016): *The CMS classification scheme (Chemical composition – Mineral assemblage – Structural geology) – linking geology to mineralogy of pegmatitic and aplitic rocks*. Neues Jahrbuch für Mineralogie - Abhandlungen Journal of Mineralogy and Geochemistry 193 (3), S. 231–263.

DUTROW B., HOLDAWAY M.J. & HINTON R.W. (1986): *Lithium in staurolite and its petrologic significance*. Contributions to Mineralogy and Petrology 94, S. 496–506.

ERCIT T. (2005): *REE-Enriched Granitic Pegmatites*, S. 175–199. In: R. L. Linnen & I. M. Samson (Hg.): Rare-Element Geochemistry and Mineral Deposits (GAC Short Course Notes, 17), Geological Association of Canada.

ERTL A., MALI H., SCHUSTER R., KÖRNER W., HUGHES J., BRANDSTÄTTER F. & TILLMANNS E. (2010): *Li-bearing, disordered Mg*rich tourmaline from a pegmatite-marble contact in the Austroalpine basement units (Styria, Austria). Mineralogy and Petrology 99 (1-2), S. 89–104.

European Lithium (2018): *European Lithium Completes Positive PFS*. European Lithium Limited. https://wcsecure.weblink.com.au/pdf/EUR/01968218.pdf, aufgerufen am 21.01.2021.

FAVARO S., HANDY M., SCHARF A. & SCHUSTER R. (2017): Changing patterns of exhumation and denudation in front of an advancing crustal indenter, Tauern Window (Eastern Alps). Tectonics 36 (6), S. 1053–1071.

FERSMAN A. (1930): A geochemical genetic classification of pegmatites. Monograph Akademiia Nauk SSSR, Moscow.

FRISCH W., DUNKL I. & KUHLEMANN J. (2000): *Post-collisional orogen-parallel large-scale extension in the Eastern Alps*. Tectonophysics 327 (3-4), S. 239–265.

FRISCH W., KUHLEMANN J., DUNKL I. & BRÜGEL A. (1998): Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary tectonic extrusion. Tectonophysics 297 (1-4), S. 1–15.

FROITZHEIM N., PLASIENKA D. & SCHUSTER R. (2008): *Alpine tectonics of the Alps and Western Carpathians*, S. 1141–1232. In: T. McCann (Hg.): The geology of central Europe, Geological Society, London.

GASSNER M. (2001): Geochemische und petrologische Untersuchungen an ausgewählten steirischen Pegmatiten (Koralpe, Stubalpe, Kristallin von St. Radegund, Anger Kristallin). Unveröffentlichte Masterarbeit Montanuniversität Leoben, 176 S.

GAUPP R., MÖLLER P.& MORTEANI G. (1984): *Tantal-Pegmatite*. Geologische, petrologische und geochemische Untersuchgen, Berlin, Bornträger, Monograph series on mineral deposits 23.

GINSBURG A., TIMOFEYEV L. & FELDMAN L. (1979): Principles of geology of the granitic pegmatites. Nedra, Moscow, 296 S.

GLOVER A., ROGERS W. & BARTON J. (2012): Granitic Pegmatites: Storehouses of Industrial Minerals. Elements 8 (4), S. 269–273.

Göd R. (1989): The spodumene deposit at Weinebene, Koralpe, Austria. Mineralium Deposita 24 (4), S. 270–278.

GOURCEROL B., GLOAGUEN E., MELLETON J., TUDURI J. & GALIEGUE X. (2019): *Re-assessing the European lithium resource potential – A review of hard-rock resources and metallogeny*. Ore Geology Reviews 109, S. 494–519.

GRAUPNER T., MELCHER F., GÄBLER H.-E., SITNIKOVA M., BRÄTZ H. & BAHR A. (2010): Rare earth element geochemistry of columbite-group minerals: LA-ICP-MS data. Mineralogical Magazine 74 (4), S. 691–713.

HABLER G., THÖNI M. & MILLER C. (2007): Major and trace element chemistry and Sm–Nd age correlation of magmatic pegmatite garnet overprinted by eclogite-facies metamorphism. Chemical Geology 241 (1-2), S. 4–22.

HANDLER R., NEUBAUER F., HERMANN S. & DALLMEYER D. (1999): Silurian-devonian 40Ar/39Ar mineral ages from the Kaintaleck Nappe: Evidence for mid-Paleozoic tectonothermal activity in upper Austroalpine basement units of the Eastern Alps (Austria). Geologica Carpathica 50, S. 229–239.

HANDY M., SCHMID S., BOUSQUET R., KISSLING E. & BERNOULLI D. (2010): *Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps*. Earth-Science Reviews 102 (3-4), S. 121–158.

HOGARTH D. (1977): Classification and nomenclature of the pyrochlore group. American Mineralogist 62, S. 403-410.

HOINKES G., KOLLER F., RANTITSCH G., DACHS E., HOECK V., NEUBAUER F. & SCHUSTER R. (1999): *Alpine metamorphism in the Eastern Alps*. Schweizerische Mineralogische und Petrographische Mitteilungen 79, S. 155–181.

HOKE L. (1990): The Altkristallin of the Kreuzeck Mountains, The Altkristallin of the Kreuzeck Mountains, SE Tauern Window, Eastern Alps - Basement Crust in a Convergent Plate Boundary Zone. Jahrbuch der Geologischen Bundesanstalt 133 (1), S. 5–87.

HORVAT C. (2018): Elementchemie und Differentiation von Muskoviten aus Pegmatiten des Rappold Komplex (Wölzer Tauern). Unveröffentlichte Bachelorarbeit Montanuniversität Leoben, 44 S.

HUET B., KNOLL T., SCHUSTER R. & PAULICK H. (2018): Albite-spodumene pegmatites without large granite intrusions? Exploring the feasibility of the alternative anatectic model. PANGEO 2018 Wien.

JAGOUTZ O. (1998): Bericht über Kartierungen im ostalpinen Altkristallin nordwestlich von Hopfgarten (Blatt ÖK 178 Hopfgarten in Defreggen) SE des Tauernfensters in Osttirol, Österreich. Geologische Bundesanstalt Wien.

JANÁK M., FROITZHEIM N., YOSHIDA K., SASINKOVÁ V., NOSKO M., KOBAYASHI T., HIRAJIMA T. & VRABEC M. (2015): *Diamond in metasedimentary crustal rocks from Pohorje, Eastern Alps: a window to deep continental subduction*. Journal of Metamorphic Geology 33 (5), S. 495–512.

JOCHUM K., WEIS U., SCHWAGER B., STOLL B., WILSON S., HAUG G., ANDREAE M. & ENZWEILER J. (2016): *Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials*. Geostandards and Geoanalytical Research 40 (3), S. 333–350.

JOCHUM K., WEIS U., STOLL B., KUZMIN D., YANG Q., RACZEK I., JACOB D., STRACKE A., BIRBAUM K., FRICK D., GÜNTHER D. & ENZWEILER J. (2011): *Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines*. Geostandards and Geoanalytical Research 35 (4), S. 397–429.

KESLER S., GRUBER P., MEDINA P., KEOLEIAN G., EVERSON M. & WALLINGTON T. (2012): *Global lithium resources: Relative importance of pegmatite, brine and other deposits.* Ore Geology Reviews 48, S. 55–69.

KNOLL T., SCHUSTER R., HUET B., MALI H., ONUK P., HORSCHINEGG M., ERTL A. & GIESTER G. (2018): Spodumene Pegmatites and Related Leucogranites from the AustroAlpine Unit (Eastern Alps, Central Europe): Field Relations, Petrography, Geochemistry, and Geochronology. The Canadian Mineralogist 56 (4), S. 489–528.

KOLLER F., GÖTZINGER M., NEUMAYER R. & NIEDERMAYR G. (1983): Beiträge zur Mineralogie und Geochemie der Pegmatite des St. Radegunder Kristallins und der Gleinalpe. Archiv für Lagerstättenforschung der GBA 3, S. 47–65.

KOROKNAI B., NEUBAUER F., GENSER J. & TOPA D. (1999): *Metamorphic and tectonic evolution of Austroalpine units at the western margin of the Gurktal nappe complex, Eastern Alps*. Schweizerische Mineralogische und Petrographische Mitteilungen 79, S. 277–295.

KRENN E., SCHULZ B. & FINGER F. (2012): Three generations of monazite in Austroalpine basement rocks to the south of the Tauern Window: evidence for Variscan, Permian and Eo-Alpine metamorphic events. Swiss Journal of Geosciences 105 (3), S. 343–360.

KRENN K., KURZ W., FRITZ H. & HOINKES G. (2011): Eoalpine tectonics of the Eastern Alps: implications from the evolution of monometamorphic Austroalpine units (Schneeberg and Radenthein Complex). Swiss Journal of Geosciences 104 (3), S. 471–491.

KREUSS O., PAVLIK W., BAYER I. & SCHIEGL M. (2014): Geofast - Provisorische Geologische Karte der Republik Österreich 1:50.000 - 178 Hopfgarten in Defereggen: Stand 21.4.2006. Geologische Bundesanstalt Wien.

KRONER U. & ROMER R. (2013): *Two plates — Many subduction zones: The Variscan orogeny reconsidered*. Gondwana Research 24, S. 298–329.

LAMBERT R. (1970): *A potassium-argon study of the margin of the Tauernfenster at Döllach, Austria*. Eclogae Geologicae Helvetiae 63 (1), S. 197–205.

LANDES K. (1933): Origin and classification of pegmatites. American Mineralogist 2 (18), S. 33-56.

LINNEN R. & CUNEY M. (2005): Granite-Related Rare-Element Deposits and Experimental Constraints on Ta-Nb-W-Sn-Zr-Hf Mineralization, S. 45–68. In: R. L. Linnen & I. M. Samson (Hg.): Rare-Element Geochemistry and Mineral Deposits (GAC Short Course Notes, 17), Geological Association of Canada.

LINNEN R., VAN LICHTERVELDE M. & ČERNÝ P. (2012): Granitic Pegmatites as Sources of Strategic Metals. Elements 8 (4), S. 275–280.

LINNER M., HABLER G. & GRASEMANN B. (2009): *Switch of kinematics in the Austroalpine basement between the Defereggen-Antholz-Vals (DAV) and the Pustertal-Gailtal fault.* Poster 9th Workshop on Alpine Geological Studies.

LINNER M., REITNER J. & PAVLIK W. (2013): ÖK 179 Lienz. Geologische Karte der Republik Österreich 1:50.000.

LINNER M., RICHTER W. & THÖNI M. (1998): Frühalpidische Metamorphose- und Abkühlgeschichte der Eklogite im ostalpinen Kristallin südlich vom Tauernfenster (Schobergruppe). Mitteilungen der Österreichischen Mineralogischen Gesellschaft 143, S. 334–335.

LONDON D. (2005): *Geochemistry of Alkali and Alkaline Earth Elements in Ore-Forming Granites, Pegmatites, and Ryolithes,* S. 17–43. In: R. L. Linnen & I. M. Samson (Hg.): Rare-Element Geochemistry and Mineral Deposits (GAC Short Course Notes, 17), Geological Association of Canada. LONDON D. (2008): Pegmatites. The Canadian Mineralogist Special Publication 10, 347 S.

LONDON D. (2016): *Rare-Element Granitic Pegmatites*, S. 165–193. In: P. L. Verplanck & M. W. Hitzman (Hg.): Rare Earth and Critical Elements in Ore Deposits (Reviews in Ecomic Geology, 18), Society of Economic Geologists.

LONDON D. (2018): Ore-forming processes within granitic pegmatites. Ore Geology Reviews 101, S. 349–383.

LONDON D., MORGAN G. & ICENHOWER J. (1998): *Stability and solubility of pollucite in the granite system at 200 MPa H20*. The Canadian Mineralogist 36 (2), S. 497–510.

LUECKE W. & UCIK F. (1986): Die Zusammensetzung der Pegmatite von Edling und Wolfsberg bei Spittal/Drau (Kärnten) im Rahmen der Pegmatitvorkommen des Millstätter See-Rückens. Archiv für Lagerstättenforschung der GBA 7 (173-187).

LUTH S. & WILLINGSHOFER E. (2008): *Mapping of the post-collisional cooling history of the Eastern Alps*. Swiss Journal of Geosciences 101, S. 207–223.

MALI H. (2004): Die Spodumenpegmatite von Bretstein und Pusterwald (Wölzer Tauern, Steiermark, Österreich). Joannea – Mineralogie 2, S. 5–53.

MANCKTELOW N., STÖCKLI D., GROLLIMUND B., MÜLLER W., FÜGENSCHUH B., VIOLA G., SEWARD D. & VILLA I. (2001): *The DAV and Periadriatic fault systems in the Eastern Alps south of the Tauern window*. International Journal of Earth Sciences 90 (3), S. 593–622.

MANER J., LONDON D. & ICENHOWER J. (2019): Enrichment of manganese to spessartine saturation in granite-pegmatite systems. American Mineralogist 104 (11), S. 1625–1637.

MARTIN R. & DE VITO C. (2005): *The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting*. The Canadian Mineralogist 43 (6), S. 2027–2048.

MELCHER F., GÖD R., KONZETT J. & MALI H. (2010): *Niobium-tantalum-tin-bearing minerals in pegmatites of the Eastern Alps: case studies.* Pangeo 2010 Abstracts. Journal of Alpine Geology 178.

MELCHER F., GRAUPNER T., GÄBLER H.-E., SITNIKOVA M., HENJES-KUNST F., OBERTHÜR T., GERDES A. & DEWAELE S. (2015): Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology. Ore Geology Reviews 64, S. 667–719.

MELCHER F., GRAUPNER T., GÄBLER H.-E., SITNIKOVA M., OBERTHÜR T., GERDES A., BADANINA E. & CHUDY T. (2017): Mineralogical and chemical evolution of tantalum–(niobium–tin) mineralisation in pegmatites and granites. Part 2: Worldwide examples (excluding Africa) and an overview of global metallogenetic patterns. Ore Geology Reviews 89, S. 946–987.

MILLER C., THÖNI M., KONZETT J., KURZ W. & SCHUSTER R. (2005): *Eclogites from the Koralpe and Saualpe type-localities, eastern Alps, Austria*. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 150, S. 227–263.

MÜLLER A., ROMER R. & PEDERSEN R.-B. (2017): *The Sveconorwegian Pegmatite Province – Thousands of Pegmatites Without Parental Granites*. The Canadian Mineralogist 55 (2), S. 283–315.

MÜLLER A., SIMMONS W., BEURLEN H., THOMAS R., IHLEN P., WISE M., RODA-ROBLES E., NEIVA A. & ZAGORSKY V. (2018): A Proposed New Mineralogical Classification System For Granitic Pegmatites – Part I: History and the Need For a New Classification. The Canadian Mineralogist, S. 1–25.

NORTON J. & REDDEN J. (1990): Relations of zoned pegmatites to other pegmatites, granite, and metamorphic rocks in the southern Black Hills, South Dakota. American Mineralogist 75 (5-6), S. 631–655.

PATON C., HELLSTROM J., PAUL B., WOODHEAD J. & HERGT J. (2011): *Iolite: Freeware for the visualisation and processing of mass spectrometric data*. Journal of Analytical Atomic Spectrometry 26 (12), 2508 S.

PERESSON H. & DECKER K. (1997): Far-field effects of Late Miocene subduction in the Eastern Carpathians: E-W compression and inversion of structures in the Alpine-Carpathian-Pannonian region. Tectonics 16 (1), S. 38–56.

PESTAL G., HEJL E., BRAUNSTINGL R. & SCHUSTER R. (2009): *Erläuterungen - Geologische Karten von Salzburg 1:200000*. Geologische Bundesanstalt Wien, 162 S.

POHL W. (2005): *Mineralische und Energie-Rohstoffe.* Eine Einführung zur Entstehung und nachhaltigen Nutzung von Lagerstätten. 5. Aufl., Stuttgart, Schweizerbart,

PROCHASKA W. (1981): *Ein spodumenführender Pegmatit im Altkristallin der Rieserfernergruppe, Südtirol.* Anzeiger der Österreichischen Akademie der Wissenschaften, S. 33–38.

RATSCHBACHER L., FRISCH W., NEUBAUER F., SCHMID S. & NEUGEBAUER J. (1989): *Extension in compressional orogenic belts: The eastern Alps*. Geology 17 (5), S. 404–407.

RAUMER J. v., BUSSY F., SCHALTEGGER U., SCHULZ B. & STAMPFLI G. (2013): *Pre-Mesozoic Alpine basements—Their place in the European Paleozoic framework*. Geological Society of America Bulletin 125 (1-2), S. 89–108.

REPOLUST T., SCHUSTER R., HOINKES G. & HAUZENBERGER C. (2007): *Meta-Pegmatites in the Prijakt-Polinik Complex (Eastern Alps)*. Poster MinPet 2007.

ROSENBERG C. (2004): Shear zones and magma ascent: A model based on a review of the Tertiary magmatism in the Alps. Tectonics 23, TC3002.

SCHARF A.: Lateral extrusion and exhumation of orogenic crust during indentation by rigid Adriatic continental lithosphere – tectonic evolution of the eastern Tauern Window (Eastern Alps, Austria). Doktorarbeit Freie Universität Berlin, 203 S.

SCHETSELAAR E., CHUNG C.-J. & KIM K. (2000): Integration of Landsat TM, Gamma-Ray, Magnetic, and Field Data to Discriminate Lithological Units in Vegetated. Remote Sensing of Environment 71 (1), S. 89–105.

SCHMID S., FÜGENSCHUH B., KISSLING E. & SCHUSTER R. (2004): *Tectonic map and overall architecture of the Alpine orogen*. Eclogae Geologicae Helvetiae 97 (1), S. 93–117.

SCHMID S., SCHARF A., HANDY M. & ROSENBERG C. (2013): *The Tauern Window (Eastern Alps, Austria): a new tectonic map, with cross-sections and a tectonometamorphic synthesis.* Swiss Journal of Geosciences 106 (1), S. 1–32.

SCHNEIDER T. (2013): Petrologie und Strukturgeologie eines Nb-Ta-Sn-führenden Pegmatits im Austtroalpin des Texel-Komplexes. Unveröffentlichte Masterarbeit Universität Innsbruck.

SCHULZ B. (1989): Jungalpidische Gefügeentwicklung entlang der Defereggen-Antholz-Vals-Linie (Osttirol, Österreich). Jahrbuch der Geologischen Bundesanstalt 132, S. 775–789.

SCHULZ B. (1999): Bericht 1999 über geolgische Aufnahmen im ostalpinen Altkristallin zwischen Zwenewaldbach und Michelbach auf Blatt ÖK 178 Hopfgarten in Defereggen. Geologische Bundesanstalt Wien.

SCHULZ B. & BOMBACH K. (2003): Single zircon Pb-Pb geochronology of the Early-Palaeozoic magmatic evolution in the Austroalpine basement to the south of the Tauern Window. Jahrbuch der Geologischen Bundesanstalt 143, S. 303–321.

SCHULZ B., BOMBACH K., PAWLIG S. & BRTZ H. (2004): *Neoproterozoic to Early-Palaeozoic magmatic evolution in the Gondwana-derived Austroalpine basement to the south of the Tauern Window (Eastern Alps)*. International Journal of Earth Sciences 93 (5), S. 824–843.

SCHULZ B., STEENKEN A. & SIEGESMUND S. (2008): *Geodynamic evolution of an Alpine terrane—the Austroalpine basement to the south of the Tauern Window as a part of the Adriatic Plate (eastern Alps)*. Geological Society London Special Publications 298 (1), S. 5–44.

SCHUSTER R. (2003): Das eo-Alpine Ereignis in den Ostalpen: Plattentektonische Situation und interne Struktur des Ostalpinen Kristallins. Geologische Bundesanstalt -Arbeitstagung 2003: Blatt 148 Brenner 2003, S. 141–159.

SCHUSTER R. (2015): Zur Geologie der Ostalpen. Abhandlungen der Geologischen Bundesanstalt 64, S. 143–165.

SCHUSTER R., KNOLL T., MALI H., HUET B. & GRIESMEIER G. (2019): *Field trip guide: A profile from migmatites to spodumene pegmatites (Styria, Austria)*. Berichte der Geologischen Bundesanstalt 134, 29 S.

SCHUSTER R., PROYER A., HOINKES G. & SCHULZ B. (2001a): *Indications for a Permo-Triassic metamorphic imprint in the Austroalpine crystalline rocks of the Defereggen Alps (Eastern Tyrol)*. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 146, S. 275–277.

SCHUSTER R., SCHARBERT S., ABART R. & FRANK W. (2001b): *Permo-Triassic extension and related HT/LP metamorphism in the Austroalpine - Southalpine realm*. Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten in Österreich 45, S. 111–141.

SCHUSTER R. & STÜWE K. (2008): Permian metamorphic event in the Alps. Geology 36 (8), S. 603-606.

SCHUSTER R. & STÜWE K. (2010): *Die Geologie der Alpen im Zeitraffer*. Mitteilungen des naturwissenschaftlichen Vereines für Steiermark 140, S. 5–21.

SENARCLENS-GRANCY W. (1964): Zur Grundgebirgs- und Quartärgeologie der Deferegger Alpen und ihrer Umgebung. Zeitschrift der Deutschen Geologischen Gesellschaft 116, S. 502–511.

SENARCLENS-GRANCY W. (1972): Geologische Karte der westlichen Deferegger Alpen 1:25 000. Geologische Bundesanstalt Wien.

SENZENBERGER D. (2001): Zonarbau und geochemische Charakteristik von Pegmatiten des Hohenwart (Wölzer Tauern, Steiermark). Unveröffentlichte Masterarbeit Montanuniversität Leoben, 176 S.

SIMMONS W., FALSTER A., WEBBER K., RODA-ROBLES E., BOUDREAUX A., GRASSI L. & FREEMAN G. (2016): Bulk Composition of Mt. Mica Pegmatite, Maine, USA: Implications For the Origin of An Lct Type Pegmatite By Anatexis. The Canadian Mineralogist 54 (4), S. 1053–1070.

SIMMONS W., PEZZOTTA F., SHIGLEY J. & BEURLEN H. (2012): *Granitic Pegmatites as Sources of Colored Gemstones*. Elements 8 (4), S. 281–287.

SIMMONS W. & WEBBER K. (2008): Pegmatite genesis: state of the art. European Journal of Mineralogy 20 (4), S. 421–438.

STEENKEN A. & SIEGESMUND S. (2000): Evidence for an Alkaline-Basaltic Volcanism at the Northern Margin of Gondwana Within the Austroalpine Basement Complex of the Eastern Alps (Austrian/Italian Border). Jahrbuch der Geologischen Bundesanstalt 142, S. 235–247.

STEENKEN A., SIEGESMUND S., HEINRICHS T. & FÜGENSCHUH B. (2002): *Cooling and exhumation of the Rieserferner Pluton* (*Eastern Alps, Italy/Austria*). International Journal of Earth Sciences 91 (5), S. 799–817.

STEINER B. (2019): Tools and Workflows for Grassroots Li–Cs–Ta (LCT) Pegmatite Exploration. Minerals 9 (8).

STEINER R. (2017): *Differentiation der Pegmatite des Millstätter See-Rückens*. Unveröffentlichte Masterarbeit Montanuniversität Leoben, 196 S.

STEPANOV A. & HERMANN J. (2013): Fractionation of Nb and Ta by biotite and phengite: Implications for the "missing Nb paradox". Geology 41 (3), S. 303–306.

STILLING A., ČERNÝ P. & VANSTONE P. (2006): The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance. The Canadian Mineralogist 44 (3), S. 599–623.

STÜWE K. & SCHUSTER R. (2010): Initiation of subduction in the Alps: Continent or ocean? Geology 38 (2), S. 175–178.

THÖNI M. (1999): *A review of geochronological data from the Eastern Alps*. Swiss Journal of Geosciences Supplement 79, S. 209–230.

THÖNI M. (2006): Dating eclogite-facies metamorphism in the Eastern Alps – approaches, results, interpretations: a review. Mineralogy and Petrology 88 (1-2), S. 123–148.

THÖNI M. & MILLER C. (2000): Permo-Triassic pegmatites in the eo-Alpine eclogite-facies Koralpe complex, Austria: age and magma source constraints from mineral chemical, Rb-Sr and Sm-Nd isotope data. Schweizerische Mineralogische und Petrographische Mitteilungen 80, S. 169–186.

THÖNI M. & MILLER C. (2004): Ordovician meta-pegmatite garnet (N-W Ötztal basement, Tyrol, Eastern Alps): preservation of magmatic garnet chemistry and Sm–Nd age during mylonitization. Chemical Geology 209, S. 1–26.

THÖNI M. & MILLER C. (2010): Andalusite formation in a fast exhuming high-P wedge: Textural, microchemical, and Sm-Nd and Rb–Sr age constraints for a Cretaceous P–T–t path at Kienberg, Saualpe (Eastern Alps). Austrian Journal of Earth Sciences 103 (2), S. 118–131.

VAN LICHTERVELDE M., MELCHER F. & WIRTH R. (2009): Magmatic vs. hydrothermal origins for zircon associated with tantalum mineralization in the Tanco pegmatite, Manitoba, Canada. American Mineralogist 94 (4), S. 439–450.

WANG X., GRIFFIN W. & CHEN J. (2010): Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Journal 44, S. 65–72.

WHALEN J., CURRIE K. & CHAPPELL B. (1987): *A-type granites: geochemical characteristics, discrimination and petrogenesis*. Contributions to Mineralogy and Petrology 95 (4), S. 407–419.

WILLINGSHOFER E. & NEUBAUER F. (2002): *Structural evolution of an antiformal window: the Scheiblingkirchen Window* (*Eastern Alps, Austria*). Journal of Structural Geology 24 (10), S. 1603–1618.

WUNDER B., MEIXNER A., ROMER R., FEENSTRA A., SCHETTLER G. & HEINRICH W. (2007): Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An experimental study. Chemical Geology 238, S. 277–290.

Abbildungs- und Tabellenverzeichnis

Abbildung 1: Übersichtskarte des Arbeitsgebietes mit Probennahmepunkten und bereits bearbeiteten Pegmatiten des MRI Peg I Projektes. Literatur Pegmatite nach Karten von: JAGOUTZ [1998], SCHULZ [1999], LINNER et al. [2013].	6
Abbildung 2: Tektonische Karte der Alpen mit pegmatitführenden Einheiten, Leukograniten und Spodumenpegmatiten und vereinfachtem Aufbau des austroalpinen Deckenstapels. Rote Markierung: Lage des Arbeitsgebietes (überzeichnet). Verändert nach KNOLL et al. [2018]	7
Abbildung 3: Karte des permischen Metamorphoseereignisses in den Alpen. Rote Markierung: Lage des Arbeitsgebietes (überzeichnet). Verändert nach SCHUSTER & STÜWE [2008]	8
Abbildung 4: Karte des eoalpidischen Metamorphoseereignisses der Ostalpen. Rote Markierung: Lage des Arbeitsgebietes (überzeichnet). [SCHUSTER 2003]	10
Abbildung 5: A) Tektonische Karte der Ostalpen. B) Detailkarte des Gebietes südlich des Tauernfensters. C) Abkühlalter von Glimmern. Rote Markierung: Lage des Arbeitsgebietes. Verändert nach KRENN et al. [2012]	12
Abbildung 6: N-S Profil: Matrei-Großer Zunig-Deferegger Riegel-Rudnig-Schneideck (Lage: siehe Abbildung 5 B)). Verändert nach SCHULZ et al. [2008]	12
Abbildung 7: Beziehung und Bildungsbedingungen von Migmatiten, (einfachen) Pegmatiten, Leukograniten und Spodumenpegmatiten. [SCHUSTER et al. 2019]	17
Abbildung 8: Einteilung von Pegmatiten nach ČERNÝ & ERCIT [2005] und ČERNÝ et al. [2012]. NYF Nb-Y-F-Familie LCT Li-Cs-Ta-Familie. [MÜLLER et al. 2018]	20
Abbildung 9: Verhältnis von K/Rb zum Cs-Gehalt bei Kalifeldspäten aus Pegmatiten. [LONDON 2008]	22
Abbildung 10: Fraktionierungstrends der HFSE und Fe/Mn in Graniten und Pegmatiten. [LONDON 2008]	23
Abbildung 11: Fraktionierungstrends der CGM . X _{Mn} X _{Mn} =(Mn/(Mn+Fe), X _{Ta} X _{Ta} =(Ta/(Ta+Nb), BeT Beryll-Typ, SpT Spodumen-Typ, KSpT Komplex-Spodumen-Typ, KLT Komplex- Lepidolith-Typ, KPT Komplex-Petalit-Typ. [GRAUPNER et al. 2010]	23
Abbildung 12: Schematische Darstellung der Bildungsweise von orogenen und anorogenen Pegmatiten. NY(F) Nb-Y(-F)-Familie (L)CT (Li-)Cs-Ta-Familie. [Müller et al. 2017]	24
Abbildung 13: Werkzeug für die Probennahme. Unterer Bildrand: 80 cm.	28
Abbildung 14: EPD-Gerät von Selfrag am Lehrstuhl für Aufbereitung und Veredlung.	31
Abbildung 15: Aufschlussskizze Spodumenpegmatit Poling (67). Detailausschnitt siehe Abbildung 16.	35
Abbildung 16: Aufschluss Spodumenpegmatit Poling (67). Detailansicht östliches Ende.	35
Abbildung 17: Aufschluss Spodumenpegmatit Poling (67). Blickrichtung nach O.	36
Abbildung 18: Diskordanter, pegmatitscher Zufuhrkanal. Lokalität Poling.	36
Abbildung 19: Aufschlussskizze Spodumenpegmatit Ratzell (60). Details Schlitzprobe siehe Abbildung 61.	37
Abbildung 20: Aufschluss Spodumenpegmatit Ratzell (60).	38
Abbildung 21: Skizze Spodumenpegmatitblock Glanzalm (56).	39

Abbildung 22: A) Spodumenpegmatitblock Glanzalm (56). B) Detailansicht des diskordanten Kontaktes zum Nebengestein.	39
Abbildung 23: Spodumenpegmatit. Lokalität Glanzalm (56).	40
Abbildung 24: A) Übersichtsaufnahme mit Blickrichtung nach NW. Rote Markierungen: Lage der Spodumenpegmatitlokalitäten Glanzalm (links) und Großer Zunig (rechts). B) Aufschluss Spodumenpegmatit Glanzalm (56). C) Spodumenpegmatitblock Großer Zunig (9).	41
Abbildung 25: Aufschluss Spodumenpegmatit Großer Zunig (65).	41
Abbildung 26: Aufschluss Pegmatit Michelbach (74).	43
Abbildung 27: A) Aufschluss Pegmatit Michelbach (75). B) Sm-Nd-Alter aus Granaten [SCHUSTER et al. 2001b].	44
Abbildung 28: Aufschluss Pegmatit Steinbruch St. Johann (S1).	44
Abbildung 29: Aufschluss Pegmatit Poling (29). Senkrechte Störung durch Pegmatit verlaufend (Bildmitte).	45
Abbildung 30: Aufschluss Pegmatit Gossnerbach (35).	45
Abbildung 31: Aufschluss Pegmatit Unterpeischlach (62).	46
Abbildung 32: Aufschluss Pegmatit Glanzalm (52), westlich des Roten Kögele.	47
Abbildung 33: Kalifeldspat mit Mikroklingitter (HO5). X Polarisator.	49
Abbildung 34: Albit mit polysynthetischen Zwillingslamellen und Muskoviteinschlüssen (HO3). X Polarisator.	50
Abbildung 35: Spodumen mit Quarz- und Muskoviteinschlüssen und Kluftfüllung aus Muskovit (HO2). X Polarisator.	50
Abbildung 36: Schriftgranitische Verwachsung von Spodumen mit Quarz (HO2). X Polarisator.	51
Abbildung 37: Turmalinisierung im Exokontakt (HO19). // Polarisator.	52
Abbildung 38: Kontaktbereich zwischen Pegmatit und Granatglimmerschiefer. Obere Bildhälfte: Exokontakt mit Biotit und stark zerbrochenem, teilweise chloritisiertem Granat (Grt). Untere Bildhälfte: feinkristalliner Endokontakt mit Granat (HO20). // Polarisator.	52
Abbildung 39: Ternäre Diagramme der Granatzusammensetzung. Adr Andradit Grs Grossular.	53
Abbildung 40: Kassiterit (Bildmitte) und Spodumen (links oben) in Matrix aus Quarz und Feldspat (HO21). // Polarisator.	56
Abbildung 41: Kassiterit (Mineral aus Abbildung 40 – 180° gedreht) mit CGM-Einschlüssen (HO1, REM).	56
Abbildung 42: Konzentrisch zoniertes CGM mit wechselndem Ta/Nb-Verhältnis und Pyrochloreinschlüssen (Bereiche mit erhöhten Ca-Gehalten) (1b_2, REM).	57
Abbildung 43: Verwachsung aus Monazit (Mnz), Xenotim (Xtm) mit Uraniniteinschlüssen (Urn) und Zirkon (Zrn) (14_3, REM).	57
Abbildung 44: Zonierter Zirkon mit Uraniniteinschlüssen (Urn) (60_3_36, REM). Zr/Hf Zr/Hf- Atomverhältnis.	58
Abbildung 45: K/Rb-Verhältnis zu Rb-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung.	62

Abbildung 46: K/Rb-Verhältnis zu Ge-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45.	62
Abbildung 47: K/Rb-Verhältnis zu Nb-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45.	63
Abbildung 48: K/Rb-Verhältnis zu Ta-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45.	63
Abbildung 49: K/Rb-Verhältnis zu Be-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. MSC Muscovite MNG Mongolia MOZ Mozambique. Einteilung nach CERNY & BURT [1984]	64
Abbildung 50: K/Rb-Verhältnis zu Zn-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. MNG Mongolia MOZ Mozambique. Einteilung nach CERNY & BURT [1984]	64
Abbildung 51: K/Rb-Verhältnis zu Ga-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. BD Brown Derby MNG Mongolia MOZ Mozambique. Einteilung nach CERNY & BURT [1984]	65
Abbildung 52: K/Rb-Verhältnis zu Sn-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. BD Brown Derby MNG Mongolia MOZ Mozambique. Einteilung nach CERNY & BURT [1984]	65
Abbildung 53: K/Rb-Verhältnis zu Cs-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. MSC Muscovite Class MSCB Muscovite Class - Barren MSCRE Muscovite Class - RE enriched MNG Mongolia MOZ Mozambique SPD Spodumene Type.Einteilung nach CERNY & BURT [1984]	66
Abbildung 54: K/Rb-Verhältnis zu Tl-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. MSC Muscovite MNG Mongolia SAY Sayan Mountain. Einteilung nach CERNY & BURT [1984]	66
Abbildung 55: K/Rb-Verhältnis zu Ba-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. BD Brown Derby MSC Muscovite MOZ Mozambique. Einteilung nach CERNY & BURT [1984]	67
Abbildung 56: K/Rb-Verhältnis zu Sr-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45.	67
Abbildung 57: K/Rb-Verhältnis zu Li-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Legende: siehe Abbildung 45. MSC Muscovite Class MSCB Muscovite Class - Barren MSCRE Muscovite Class - RE enriched MOZ Mozambique SPD Spodumene Type. Einteilung nach CERNY & BURT [1984]	68
Abbildung 58: Log-transformierte Faktoranalyse der Elementchemie der Muskovite (Si, Al, Na, Ca, Fe, K, Li, Be, B, Mg, P, Ti, Mn, Zn, Ga, Ge, Rb, Sr, Zr, Nb, Sn, Cs, Ba, Ta, W, Tl und Pb).	69
Abbildung 59: Verhältnis Ta/(Ta+Nb) zu Mn/(Mn+Fe) in CGM.	71
Abbildung 60: Hf-Gehalt zu Zr/Hf-Verhältnis der Zirkone.	72
Abbildung 61: Skizze Schlitzprobe 60_3 (Ratzell). Unterteilung in 4 Zonen zu je 30 cm mit den jeweiligen Verhältnissen von Ta/(Ta+Nb) zu Mn/(Mn+Fe) in CGM, den durchschnittlichen Muskovitspurenelementgehalten und den Gesamtgesteinsgehalten ausgewählter Elemente K7 Kontaktzone NG Nebengestein WB Gesamtgesteinsanalvse	74
Abbildung 62: K/Rb-Verhältnis zu Rb-Gehalt von Muskoviten. Doppeltlogarithmische Darstellung. Die Daten stammen aus der MRI Peg I Projektdatenbank (Stand: Juli 2020).	78

Abbildung 63: Übersichtskarte mit der Lage der Detailkarten.	93
Abbildung 64:Detailkarte A). Art, Lage und Lokalitätsbezeichnung der Vorkommen.	94
Abbildung 65: Detailkarte B). Art, Lage und Lokalitätsbezeichnung der Vorkommen.	95
Abbildung 66: Detailkarte C). Art, Lage und Lokalitätsbezeichnung der Vorkommen.	96
Abbildung 67: Geologische Detailkarte A). Grundlage: ÖK 178 [KREUSS et al. 2014].	97
Abbildung 68: Geologische Detailkarte B). Grundlage: ÖK 178 [KREUSS et al. 2014] und ÖK 179 [LINNER et al. 2013].	98
Abbildung 69: Geologische Detailkarte C). Grundlage: ÖK 178 [KREUSS et al. 2014] und ÖK 179 [LINNER et al. 2013].	99
Abbildung 70: Legende ÖK178. Verändert nach KREUSS et al. [2014]	100
Abbildung 71: Legende ÖK179. Verändert nach LINNER et al. [2013]	101
Abbildung 72: Detailkarte A). K/Rb-Verhältnis der Muskovite.	102
Abbildung 73: Detailkarte B). K/Rb-Verhältnis der Muskovite.	103
Abbildung 74: Detailkarte C). K/Rb-Verhältnis der Muskovite.	104
Abbildung 75: Detailkarte A). Rb-Gehalte der Muskovite.	105
Abbildung 76: Detailkarte B). Rb-Gehalte der Muskovite.	106
Abbildung 77: Detailkarte C). Rb-Gehalte der Muskovite.	107
Abbildung 78: Detailkarte A). Sn-Gehalte der Muskovite.	108
Abbildung 79: Detailkarte B). Sn-Gehalte der Muskovite.	109
Abbildung 80: Detailkarte C). Sn-Gehalte der Muskovite.	110
Abbildung 81: Detailkarte A). Nb-Gehalte der Muskovite.	111
Abbildung 82: Detailkarte B). Nb-Gehalte der Muskovite.	112
Abbildung 83: Detailkarte C). Nb-Gehalte der Muskovite.	113
Abbildung 84: Detailkarte A). Ta-Gehalte der Muskovite.	114
Abbildung 85: Detailkarte B). Ta-Gehalte der Muskovite.	115
Abbildung 86: Detailkarte C). Ta-Gehalte der Muskovite.	116
Abbildung 87: Detailkarte A). Tl-Gehalte der Muskovite.	117
Abbildung 88: Detailkarte B). Tl-Gehalte der Muskovite.	118
Abbildung 89: Detailkarte C). Tl-Gehalte der Muskovite.	119
Abbildung 90: Detailkarte A). Li-Gehalte der Muskovite.	120
Abbildung 91: Detailkarte B). Li-Gehalte der Muskovite.	121
Abbildung 92: Detailkarte C). Li-Gehalte der Muskovite.	122

Tabelle 1: Beschreibung der aufgenommenen Merkmale von Aufschlüssen, Blockfeldern und	
Blöcken.	29
Tabelle 2: Messkonfiguration des EPD-Gerätes.	30
Tabelle 3: Messkonfiguration des REM.	32

Tabelle 4: Messkonfiguration und Datenauswertung LA-ICP-MS.	32
Tabelle 5: Gesamtgesteinschemie der einfachen Pegmatite und Spodumenpegmatite (ohne V, Cr, Ni, Cu, Zn, Mo, Ag, In, Sb, Tb, Ho und W). Min Minimaler Messwert Max Maximaler Messwert Mean Durchschnittlicher Gehalt. ΣREE ohne Y.	59
Tabelle 6 : Minimale und maximale Spurenelementgehalte der Muskovite (Werte in ppm).Spodumen-GrenzwertSpurenelementgehalte des Muskovits aus dem jeweils am niedrigsten differenzierten Spodumenpegmatit.	68
Tabelle 7: Vorkommen der einzelnen Schwerminerale (nicht dargestellt: Spodumen, Turmalin, Granat).	70
Tabelle 8: Maximale und Minimale Gehalte in CGM und Tapiolit von: Ti, Mn, Fe, Zr, Nb, Sn, Ta, U [Atom%] und Verhältnisse von Ta/(Ta+Nb) und Mn/(Fe+Mn) [Atomverhältnis]. Min Minimaler Messwert Max Maximaler Messwert * Tapiolit.	72
Tabelle 9: Vergleich der Gesamtgesteinschemie ausgewählter Spodumenpegmatitproben. Referenzen: A KNOLL et al. [2018] B MALI [2004] C Göd [1989] . Spodumenpegmatit im: Amp Amphibolit Glischi Glimmerscheifer. ΣREE ohne Y.	76
Tabelle 10: Aufschlussbeschreibungen. A Aufschluss B Block BF Blockfeld Qz Quarz Fsp Feldspat Mus Muskovit Spd Spodumen Gr Graphit Grt Granat Tur Turmalin Bt Biotit KG Kristallgröße SF Schieferung NG Nebengestein Gl/Gn Glimmerschiefer/Gneis. Erläuterung siehe Tabelle 1.	123
Tabelle 11: Ergebnisse der Gesamtgesteinschemie (ohne W und Co). Lokalitäten: Zösch Zöschken GA Glanzalm GAB Grünalmbach STB Steinbruch St. Johann. Analysemethoden: A Fusion-Na2O2 B Fusion-ICP C Fusion-MS. Spd Spodumenpegmatit.	126
Tabelle 12: Muskovitmesswerte in Masse%. Probenendung: 1 Randmessung 2 Mittemessung. Spd Spodumenpegmatit STB Steinbruch.	128

Anhang

Karten

Abbildung 63: Übersichtskarte mit der Lage der Detailkarten.

Abbildung 64:Detailkarte A). Art, Lage und Lokalitätsbezeichnung der Vorkommen.

Abbildung 65: Detailkarte B). Art, Lage und Lokalitätsbezeichnung der Vorkommen.

Abbildung 66: Detailkarte C). Art, Lage und Lokalitätsbezeichnung der Vorkommen.

Abbildung 67: Geologische Detailkarte A). Grundlage: ÖK 178 [KREUSS et al. 2014].

Abbildung 68: Geologische Detailkarte B). Grundlage: ÖK 178 [KREUSS et al. 2014] und ÖK 179 [LINNER et al. 2013].

Abbildung 69: Geologische Detailkarte C). Grundlage: ÖK 178 [KREUSS et al. 2014] und ÖK 179 [LINNER et al. 2013].

Abbildung 70: Legende ÖK178. Verändert nach KREUSS et al. [2014]

QUARTÄRE SEDIMENTE UND FORMEN

1.5		:21	4	
	÷	-		
22	3	21	1	
1.4.1	2	+	2	

Hangschutt mit umgelagerter Moräne (Spätglazial bis Holozän) Blockgletscherablagerung (Schutt; Spätglazial bis Holozān), mit Wallform

Grundmoršne (z. T. oberflächlich umgelagert; Hochglazial bis Spätglazial), in den Lienzer Dolomiten inkl. Ablationsmoräne (Spätglazial)

PERIADRIATISCHE MAGMATITE (Oligozän) Tonalit, porphyrisch mit Granat-, Amphibol-, Biotit,- Plagioklas- oder Quarz-Einsprenglingen,

OBEROSTALPIN

Drauzug-Gurktal-Deckensystem

Deferegger Komplex Zweiglimmerschlefer mit Granat, z.T. Staurolith, 89 etwas phyllonitisch; Paragneis, biotitbetont, mitunter quarzitisch Quarzit, Glimmerquarzit Michelbach-Komplex A 93 Gangquarz Pegmatit, meist grobkörnig, schwach geschiefert, wenig Muskovit und Turmalin (Perm); Aplit (südöstlich + 94 Wirtsalm)

Muskovit-Orthogneis mit Augentextur 95

Biotit-Orthogneis, mitunter Amphibol führend; Zweiglimmer-Orthogneis mit Augentextur

Amphibolit, feinkörnig, fein gebändert, selten mit Granat oder Biotit

Zweiglimmerschiefer und Paragneis, meist quarzbetont, mit Quarzitlagen, wenn biotitreich mit Granat, Sillimanit

Kalkmarmor, leuchtend weiß, feinkristallin, selten mit - 99 Kalksilikatlagen

Koralpe-Wölz-Deckensyste

roraipe-	more-	Decken	ayaten		
Petzeck-F	Roteni	kogel-Ka	omplex		
4 114	Ga	ngquarz	(konko	ordant, diskordant)	
+	Peg Gra	gmatitgr anat (Pe	neis, gro rm)	obblättriger Muskovit, Turmalin und	
- 116	Ort get Gra	hogneis bändert; anat (Ore	, biotitt Orthog doviziur	betont, grobkörnige Augentextur ode gneis, leukokrat mit Muskovit, selten m)	r
- 117	Am z.T. Gra	phibolit gebänd anat-Am	mit Bio dert ode phibol-	otit, selten Granat, Epidot, er plagioklasreich; mitunter Garbengneis	
118	Am Lag (Ne	phibolit gen, vere oproten	, grob g einzelt r ozoikun	gebändert mit hellen plagioklasreiche mit Granat und Amphibolgarben n - Kambrium)	n
~ 119	Zw ber Par	eiglimm eichswe ragneis	erschie eise Sta	fer und Paragneis mit Granat und urolith, mitunter quarzitischer	
120	Qu	arzit, Gli	immerq	uarzit	
+ 121	Dol	iomitma	rmor (G	jößnitzkopf)	
- 122	Kal (Ho (Mi	kmarmo chschol rschach	or, grau ber); my scharte	und mit Kalksilikatlagen yfonitischer Kalkmarmor i)	
Diverse Z	eiche	an			
	Kat	aklastis	ch defo	ormiertes Gestein	
1.	Stö	irung (na	achgew	iesen, vermutet)	
17	Dec	ckengre	nze (na	chgewiesen, vermutet)	
FF FF	Sch	uppeng	prenze (nachgewiesen, vermutet)	
Streichen in den Lie	und F nzer (¹ allen de Dolomite	er Schie en auch	aferung, i der Schichtung	
0.00	-30*	-80*	-96*	-90°	
0-5"	20	-00	-0-0	-00	

Abbildung 71: Legende ÖK179. Verändert nach LINNER et al. [2013]

Abbildung 72: Detailkarte A). K/Rb-Verhältnis der Muskovite.

Abbildung 73: Detailkarte B). K/Rb-Verhältnis der Muskovite.

Abbildung 74: Detailkarte C). K/Rb-Verhältnis der Muskovite.

Abbildung 75: Detailkarte A). Rb-Gehalte der Muskovite.

Abbildung 76: Detailkarte B). Rb-Gehalte der Muskovite.

Abbildung 77: Detailkarte C). Rb-Gehalte der Muskovite.

Abbildung 78: Detailkarte A). Sn-Gehalte der Muskovite.

Abbildung 79: Detailkarte B). Sn-Gehalte der Muskovite.

Abbildung 80: Detailkarte C). Sn-Gehalte der Muskovite.

Abbildung 81: Detailkarte A). Nb-Gehalte der Muskovite.

Abbildung 82: Detailkarte B). Nb-Gehalte der Muskovite.

Abbildung 83: Detailkarte C). Nb-Gehalte der Muskovite.

Abbildung 84: Detailkarte A). Ta-Gehalte der Muskovite.

Abbildung 85: Detailkarte B). Ta-Gehalte der Muskovite.

Abbildung 86: Detailkarte C). Ta-Gehalte der Muskovite.

Abbildung 87: Detailkarte A). Tl-Gehalte der Muskovite.

Abbildung 88: Detailkarte B). Tl-Gehalte der Muskovite.

Abbildung 89: Detailkarte C). Tl-Gehalte der Muskovite.

Abbildung 90: Detailkarte A). Li-Gehalte der Muskovite.

Abbildung 91: Detailkarte B). Li-Gehalte der Muskovite.

Abbildung 92: Detailkarte C). Li-Gehalte der Muskovite.

Aufschlussbeschreibungen

Tabelle 10: Aufschlussbeschreibungen. A Aufschluss B Block BF Blockfeld Qz Quarz Fsp Feldspat Mus Muskovit Spd Spodumen Gr Graphit Grt Granat Tur Turmalin Bt Biotit KG Kristallgröße SF Schieferung NG Nebengestein Gl/Gn Glimmerschiefer/Gneis. Erläuterung siehe Tabelle 1.

	Steinbruch St. Johann	Steinbruch St. Johann	Steinbruch St. Johann	Poling	Poling	Poling	Poling	Poling	Poling	Poling	Zöschken	Glanzalm	Zunig	Zunig	Glanzalm	Glanzalm	Glanzalm	Ratzell	Ratzell	Ratzell	Ratzell	Kienburg	Kienburg	Poling	Kienburg	Kienburg	Poling	Poling
Anmerkung	egmatitgang mehrfach gestört		undstück aus Steinbruch	vW der Störung: Spd KG zur Störung hin grobkörniger	sO der Störung; Zuhname von Spd nach Störung	Durch kleine Rutschung (ca.3m) von 1b getrennt	siehe Probennr. 67						eventuell subanstehend; :a. 10% der Blöcke sind Peg., davon ca. 50% mit Spd					Jnterer Pegmatita ufschluss	Oberer Pegmatitaufschluss	Unterer Pegmatitaufschluss	Dberer Pegmatitaufschluss; siehe Probennr. 60	/erfaltet	Mehrere pegmatitische Schlieren im gleichen Aufschluss	nehrere Blöcke entlang der Forststraßenböschung	Pegmatitische Schlieren in stark geschiefertem/gestörtem Gestein	Mus-Nester; Pegmatitische Schlieren; störungszone (ca. 10m mächtig) in 5m Abstand nach NNW	star verfaltet und geschiefert; Tur im Kontaktbereich zum NG	eilweise diffuser Kontakt zum NG; Tur und Bt im Kontaktbereich zum NG
D N	GI/Gn	Gl/Gn	GI/Gn	Gl/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn		GI/Gn			GI/Gn	GI/Gn			GI/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn		GI/Gn	GI/Gn	GI/Gn	GI/Gn
20niert	ja	nein	nein	ja	ja	ja	ja	nein	ja	nein	nein	ja	ja	nein	nein	ja	į	ja	ja	ja	ja	ja	ja	ja	ja	nein	ja	ē
SF	E	s	E	E	s/n	n/s	s	n/s	n/s	٤	s	n/s	s/u	n/s	n/s	n/s	n/s	s/u	n/s	n/s	n/s	s	s	n/s	s	s/u	s	s/n
КG	g/m	f/m	m/g	f/m	- E	٤	÷	+ +	- -	٤	÷	f/m	n/g	- -	÷	f/m	f/m	2	f/m 1	f/m	f/m	f/m	f/m	f/m	f/m	f/m	٤	n/g
Mus [cm]	5	0.5	m	0.5	0.3	0.3	0.5	0.5	0.5	0.7	0.3	0.5		0.3	0.7	1.5	0.7	1.5	ч	1.2	ч	ч	1.2	1.5	S	2.5	4	ъ
Mineralbestand	Qz, Fsp, Mus, Gr	Qz, Fsp, Mus, Gr	Qz, Fsp, Mus	Qz, Fsp, Mus, Spd, Tur, Grt, Gr	Qz, Fsp, Mus, Spd, Tur, Grt, Gr	Qz, Fsp, Mus	Qz, Fsp, Mus, Spd, Tur, Grt, Gr	Qz, Fsp, Mus	Qz, Fsp, (Mus)	Oz, Fsp, Mus	Qz, Fsp, Mus	Qz, Fsp, Mus	Qz, Fsp, Mus, Spd	Qz, Fsp, (Mus), Gr	Qz, Fsp, Mus	Qz, Fsp, Mus, Gr	Qz, Fsp, Mus	Qz, Fsp, Mus, Spd, Tur, Gr	Qz, Fsp, Mus, Spd	Qz, Fsp, Mus, Spd	Qz, Fsp, Mus, Spd	Qz, Fsp, Mus, Gr	Qz, Fsp, Mus, Gr	Qz, Fsp, Mus	Qz, Fsp, Mus	Qz, Fsp, Mus	Qz, Fsp, Mus, Tur	Qz, Fsp, Mus, Tur, Bt
Göße [m]	15 x 0,5	3 x 0,5	0,3 x 0,3	10 x 2	5 x 1,5	5 x 1	40 x 4	2 x 1	7 x 5	0,5 x 0,5	5 x 0,5	2 x 2	5 x 3	0,5 x 0,5	0,5 x 0,5	1 x 0,5	2 x 2	3 x 2	1,5 x 0,5	7 x 2	5 x 2	5 x 1	2 x 1,5	0,5 x 0,5	2 x 0,2	0,5 x 0,2	3 x 0,5	3 x 1
Typ	A	A	8	A	A	٩	A	٩	٩	8	٩	в	BF	٩	٩	в	BF	٨	٩	٩	٩	٩	٩	в	۲	A	۷	A
E [°]	12.615366	12.613455	12.615931	12.578639	12.578783	12.578783	12.579337	12.579769	12.579928	12.577899	12.569611	12.538609	12.518559	12.517473	12.528116	12.528244	12.528623	12.544177	12.544177	12.543337	12.543337	12.597781	12.600508	12.590581	12.593815	12.601316	12.587285	12.587567
[。] N	46.903286	46.906048	46.905978	46.921626	46.921645	46.921645	46.921672	46.921855	46.921999	46.919770	46.925498	46.940367	46.956297	46.954703	46.944290	46.942495	46.941823	46.929148	46.929148	46.928958	46.928958	46.918177	46.916319	46.918284	46.917644	46.916044	46.916896	46.916561
	S1	S2	ß	1a	1b	1c	2	m	4	S	9	∞	б	10	11	12	13	14a	14b	15a	15b	16	17	18	19	20	21	22a

NITFTVIGlobeMorablestand264 50156112.567561A2.21Cut5p, Mors)1.3<		Poling	Poling	Poling	Poling	Poling	Poling	Poling	Poling	Poling	Poling	Poling	Gossnerbach	Gossnerbach	Gossnerbach	Gossnerbach	Gossnerbach	Gossnerbach	Rudnig	Rudnig	Rudnig	Na ßfe Id	Na ßfe Id	Na ßfe Id	Poling	Poling	Poling	Poling	Zunig	Glanzalm	Glanzalm	Glanzalm	Glanzalm	Glanzalm	Gla nza lm
NUT ET Vp Gene Mneralbestand Ms S Zonet Ms 22b 469.16561 12.87567 A 1.55.057 A 1.55.057 S	Anmerkung	bildet zusammen mit 22a eventuell die Herkunft von 18	stark zeriebener Pegmatit in kleiner Rutschung				zuckriges Gefüge	einzelner Block	Störung mit ca. 30cm Versatz verläuft durch Pegmatit	mehrere Blöcke entlang der Forststraßenböschung		durch Störung von 31 getrennt	streicht OSO-WNW; taucht über ca. 10m immer wieder auf; sehr grobkörnig	ä hnlich zu 33	ä hnlich zu 33	feinkörniger als 33, 34 und 35, aber etwa in einer Linie in Richtung des Streichens (OSO-WNW)	taucht über ca. 10m immer wieder auf	nur ein kleiner Bereich mit Mus		makros kopisches Schriftgefüge	ä hnlich zu 40	Fsp teilweise rosa/fileischfarben		Fsp teilweise rosa/fileischfarben	viel Tur			direkt im Bachlauf	einzelner Block direkt neben Steig	Hauptsächlich Qz und Mus	gleich wie 50	gleich wie 50 und 51		Eventuell subanstehend	
NIT EfT Typ Gole (m) Mineralbestand Mis S S 22 46:103-1 12:87:67 A 15:0.3 Cut-Fsp.Mus 5 T 2 23 46:103-1 12:87:67 A 2:x1 Cut-Fsp.Mus 15 T 7 7 7 24 46:9163-1 12:8373-6 A 2:x1 Cut-Fsp.Mus 15 T 7 <td>BN</td> <td>GI/Gn</td> <td>GI/Gn</td> <td></td> <td>GI/Gn</td> <td>GI/Gn</td> <td>GI/Gn</td> <td></td> <td>GI/Gn</td> <td></td> <td>GI/Gn</td> <td>GI/Gn</td> <td>GI/Gn</td> <td>GI/Gn</td> <td>GI/Gn</td> <td>Gl/Gn</td> <td>GI/Gn</td> <td>GI/Gn</td> <td>GI/Gn</td> <td>Gl/Gn</td> <td>GI/Gn</td> <td>Gl/Gn</td> <td>GI/Gn</td>	BN	GI/Gn	GI/Gn		GI/Gn	GI/Gn	GI/Gn		GI/Gn		GI/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn	Gl/Gn	GI/Gn	GI/Gn	GI/Gn	Gl/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn	GI/Gn	Gl/Gn	GI/Gn
NI ^I E ^I Ni ^I K ^I S ^I	Zoniert	ja	nein	nein	ja	nein	nein	ja	nein	nein	ja	nein	ja	ja	ja	ja	ja	ja	nein	nein	nein	nein	nein	nein	nein	ja	nein	ja	nein	nein	nein	nein	nein	ja	
N(T) E(T) Typ Gole (m) Mineralbestand Mus Ki 22b 46.916561 1.5574870 A 2.31 Cur, Fsp. Mus 3 m 23b 46.918361 1.2574870 A 2.31 Cur, Fsp. Mus 3 m 24 46.918391 1.2534870 A 2.31 Cur, Fsp. Mus 3 m 25 46.917361 1.2534832 A 4.4.1 Cur, Fsp. Mus, Tur 3 m 25 46.917361 1.257531 A 4.4.1 Cur, Fsp. Mus, Tur 7 m 28 46.917561 1.2 A 3.31 Cur, Fsp. Mus, Tur 7 m 28 46.917561 1.2 A 3.31 Cur, Fsp. Mus, Tur 7 m 28 46.917561 1.2 A A A A A A A A A A A A A A A A Cur, Fsp. Mus, Tur	SF	s	s	٤	m/s	٤	٤	٤	m/s	٤	٤	m/s	m/s	m/s	m/s	E	s	٤	m/s	m/s	m/s	m/s	٤	s	m/s	m/s	m/s	m/s	m/s	s	s	s	s	E	s
N(T) $F(T)$ Typ $Golde F(m)$ $Mineralbestand$ $Mineralbestandde$	ВХ	٤	f	f/m	m/g	f	┯	٤	f/m	٤	m/g	m/g	Ø	00	00	f/m	÷	÷	f/m	f/m	f/m	f/m	f/m	f/m	f/m	f/m	f/m	f/m	f/m	٤	٤	٤	f/m	m/g	┯
N[T] $E[T]$ TypGöle (m)Mineralbestand22b $6.5.16501$ $1.5.87567$ A 1.5×0.3 $0.2. Fsp. Mus234.6.9163011.2.584730A2.710.2. Fsp. Mus244.6.9163141.2.584731A2.710.2. Fsp. Mus254.6.9163051.2.583731A2.710.2. Fsp. Mus264.6.9173501.2.583731A2.70.2. Fsp. Mus274.6.9173501.2.583731A2.70.2. Fsp. Mus284.6.9173501.2.573351A2.70.2. Fsp. Mus294.6.9173501.2.573351A1.5 \times 0.50.2. Fsp. Mus214.6.9153651.2.57331A1.5 \times 0.50.2. Fsp. Mus214.6.9153651.2.57331A1.0 \times 0.50.2. Fsp. Mus214.6.9153651.2.57331A1.0 \times 0.50.2. Fsp. Mus214.6.917861.2.57331A1.0 \times 0.50.2. Fsp. Mus214.6.9053761.2.57331A1.0 \times 0.50.2. Fsp. Mus234.6.9064301.2.57331A1.0 \times 0.50.2. Fsp. Mus344.6.9064301.2.573342A1.0 \times 0.50.2. Fsp. Mus354.6.9064301.2.573342A1.0 \times 0.50.2. Fsp. Mus364.6.907861.2.573342A1.0 \times 0.20.2. Fsp. Mus374.6.906430$	Mus	m	0.5	1.5	∞	m	-	-	m	0.8	2	ъ	ъ	2	ъ	2	1	2	2	0.5	Ч	ъ	0.5	0.7	1.5	-	1.5	Ч	0.5	-	-	1	2	0.5	0.1
NI[] E[] YP Gölse [m] 22b 46.916561 12.587567 A 1,5 × 0.3 23 46.918438 12.574870 A 2×1 24 46.918436 12.583723 A 2×1 25 46.918436 12.574951 B 2×1 26 46.917387 12.583723 A 4×1 27 46.917387 12.583733 A 4×1 28 46.917387 12.583731 A 2×1 21 46.917387 12.583731 A 3×1 21 46.917387 12.576312 A 3×1 21 46.91566 12.576312 A 3×1 21 46.915767 12.576312 A 4×1 21 46.915683 12.576312 A 4×1 21 46.915761 12.576364 A 4×1 21 46.915683 12.557836 A 2×1,5 21 46.9157616	Mineralbestand	Qz, Fsp, Mus	Qz, Fsp, Mus	Qz, Fsp, (Mus)	Qz, Fsp, Mus, (Tur)	Qz, Fsp, (Mus), (Tur)	Oz, Fsp, (Mus)	Qz, Fsp, Mus, Spd	Oz, (Mus), (Fsp)	Qz, Fsp, Mus, Tur	Qz, Fsp, Mus, Tur	Qz, Fsp, Mus	Qz, Fsp, Mus	Qz, Fsp, Mus	Qz, Fsp, Mus	Qz, Fsp, Mus	Qz, Fsp, Mus	Oz, Fsp, (Mus)	Qz, Fsp, (Mus)	Qz, Fsp, (Mus)	Qz, Fsp, Mus	Qz, Fsp, Mus	Qz, Fsp, Mus	Qz, Fsp, Mus	Qz, Fsp, Mus, Tur	Qz, Fsp, Mus, Tur	Qz, Fsp, Mus	Qz, Fsp, Mus, Tur	Qz, Fsp, Mus	Oz, Mus, (Fsp)	Qz, Mus, (Fsp)	Qz, Mus, (Fsp)	Qz, Fsp, Mus, Spd	Qz, Fsp, Mus, Spd, Grt	Qz, Fsp, Mus, Grt
N[] E[] Typ 22b 46.916561 12.587567 A 23 46.916314 12.574870 A 23 46.916314 12.574870 A 24 46.916314 12.588753 A 25 46.916314 12.574870 A 24 46.916315 12.574951 B 27 46.917387 12.576373 A 28 46.917505 12.576371 A 29 46.914515 12.576371 A 31 46.915505 12.576371 A 32 46.915152 12.576347 A 31 46.91566 12.576347 A 32 46.915152 12.576347 A 33 46.915152 12.576347 A 34 46.906490 12.576347 A 33 46.906490 12.576347 A 34 46.907786 12.5763413 A 35 46.907786	Göße [m]	1,5 × 0,3	2 x 1	5 x 2	2 x 1	4 × 1	3 x 1	1,5 × 0,5	5 x 1	0,5 x 0,5	10 x 1	4 × 1	10 × 0,5	3 x 2	20 x 1	3 x 2	2 x 0,5	4 x 3	10 x 2	20 x 1	2 x 2	20 x 1,5	10 x 3	5 x 0,5	5 x 0,5	5 x 1,5	1×1	$1 \times 0,5$	0,3 x 0,2	2 x 1	2 × 1	15 x 0,5	2 × 1	2 x 2	0,5 × 0,5
N[] E[] 22b h.9.916561 12.587567 23 46.918438 12.574870 23 46.918438 12.574870 24 46.916314 12.58373 25 46.917350 12.58373 26 46.917350 12.582581 27 46.917350 12.582581 28 46.915365 12.574951 29 46.917350 12.58373 21 46.915365 12.576361 21 46.915365 12.576361 21 46.915365 12.576361 23 46.915365 12.576361 34 46.915365 12.576361 31 46.915365 12.576361 32 46.906430 12.588740 33 46.907768 12.578361 34 46.907768 12.578361 34 46.907768 12.577343 34 46.907768 12.578361 34 46.907768 12.577343 34	Typ	۲	A	в	۲	A	۲	в	٩	в	۲	٩	A	۲	۲	٨	٩	٩	۲	۲	٩	۲	۷	A	A	A	۲	٩	ш	۲	A	۲	٩	ΒF	в
N[7] 22b 46.916561 23 46.916361 23 46.916314 25 46.916314 25 46.916314 25 46.916314 26 46.917350 27 46.917350 28 46.9163165 29 46.917365 31 46.917365 32 46.915365 33 46.915365 31 46.915365 32 46.915152 33 46.906490 34 46.907786 35 46.907786 36 46.907786 37 46.907786 38 46.907786 39 46.907786 41 46.907786 46.907768 46.907768 47 46.917788 47 46.917788 47 46.917788 47 46.917788 47 46.917788 47 46.917788	E [°]	12.587567	12.574870	12.584959	12.583723	12.582568	12.582531	12.574951	12.575801	12.576776	12.576315	12.576347	12.588723	12.588540	12.587962	12.587712	12.585682	12.584113	12.573430	12.575388	12.575205	12.575854	12.579310	12.579343	12.584489	12.581333	12.577676	12.578179	12.513675	12.524789	12.522851	12.522106	12.526178	12.529549	12.530505
22b 22 23b 23b 23b 24b 25 25 26 27 25 26 27 25 26 27 27 28 31 31 32 333 333 334 335 333 334 335 336 341 41 42 433 333 334 440 441 442 443 445 54 54 55 54 55	[。] N	46.916561	46.918438	46.916314	46.916895	46.917350	46.917387	46.916506	46.914615	46.915365	46.915056	46.915152	46.906441	46.906537	46.906490	46.906685	46.907875	46.907786	46.902187	46.900010	46.899970	46.905468	46.907768	46.907786	46.913786	46.917563	46.917788	46.917814	46.965376	46.944028	46.943341	46.943337	46.942068	46.940952	46.941066
		22b	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43a	43b	44	45	46	47	48	50	51	52	53	54	55

	Glanzalm	Ratzell	Ratzell	Unterpeischlach	Unterpeischlach	Unterpeischlach	Unterpeischlach	Zunig	Zunig	Zunig	Zunig	Poling	Grünalmbach	Grünalmbach	Grünalmbach	Michelbach	Michelbach	Michelbach	Michelbach	Gla nza lm	Glanzalm
Anmerkung	Teilweise diskordant und konkordant zum NG	Schlitzprobe; Verlängerung von 15b hangaufwärts	mehrere Aufschlüsse in Verlängerung von 14 und 15 hangaufwärts; teilweise mit Spd	bildet mit 62c und 62d parallele Gänge				3 Aufschlüsse, nur einer davon mit Mus			kein eindeutiges Herkunftsgebiet feststellbar	Schlitzproben; feine Bänderung im cm-Bereich			NG teilweise Quarzit	wenig/keine al pidische Überprägung	wenig/keine alpidische Überprägung; 2 Aufschlüsse (5m x 3m) durch Rutschung (ca . 5m) getrennt	wenig/keine alpidische Überprägung, Sm-Nd-Alter: 253 Ma ± 7 Ma [Schuster et al. 2001b]	wenig/keine al pidische Überprägung		
ВN	Gl/Gn	Gl/Gn	GI/Gn	Gl/Gn		Gl/Gn	Gl/Gn	Gl/Gn	Gl/Gn	Gl/Gn		GI/Gn	Gl/Gn	Gl/Gn	Gl/Gn	Gl/Gn	Gl/Gn	Gl/Gn	Gl/Gn	GI/Gn	Gl/Gn
Zoniert	.e	ja	ja	nein	nein	nein	nein	nein	nein	ja	ja	ja	nein	nein	nein	ja	<u>ja</u>	ja	nein	ja	nein
SF	5	s	s	٤	٤	٤	٤	s	s	s	٤	s	m/s	s	s	3	≥	≥	3	٤	٤
ВХ	m/g	f/m	f/m	٤	٤	٤	٤	÷	f/m	f/m	٤	÷	Ŧ	m/g	f/m	Ŧ	f/m	f/m	٤	٤	٤
Mus	ъ	2	0.5	ε	4	ε	ε	1	1	S	ъ	0.5	1	ъ	2	0.3	1.5	0.7	2	ß	1
Mineralbestand	Qz, Fsp, Mus, Spd, Tur, Grt	Qz, Fsp, Mus, Spd, Tur	Qz, Fsp, Mus, (Spd)	Qz, Fsp, Mus, Tur	Qz, Fsp, Mus, Tur	Qz, Fsp, Mus, Tur	Qz, Fsp, Mus, Tur	Qz, Fsp, Spd, (Mus)	Oz, Fsp, (Mus)	Qz, Fsp, Mus, Spd	Qz, Fsp, Mus, Spd	Qz, Fsp, Mus, Spd, Tur, Gr	Oz, Fsp, (Mus)	Oz, Fsp, Mus, Tur	Qz, Fsp, Mus, Tur, Grt	Qz, Fsp, (Mus), (Tur)	Qz, Fsp, Mus, Tur	Qz, Fsp, Mus, Tur	Qz, Fsp, Mus	Qz, Fsp, Mus	Qz, Fsp, Mus
Göße [m]	30 x 10	15 x 1,5	1 × 1	15 x 2	0,5 x 0,5	15 x 2	15 x 2	0,5 x 0,3	3 x 1	0,3 x 0,3	5 x 3	40 x 4	3 x 2	5 x 1	5 x 0,5	10×1	15 x 3	10 x 10	0,5 x 0,5	1 × 7	0,5 x 0,5
Typ	۲	۲	۲	۲	в	۲	٩	٩	٩	B	BF	۲	۲	۲	۲	۲	۲	۲	۲	۲	۷
E [°]	12.532432	12.543337	12.543184	12.593416	12.593416	12.594134	12.594807	12.516204	12.512749	12.511507	12.510630	12.579337	12.552266	12.552178	12.551687	12.585934	12.583240	12.587272	12.577486	12.530590	12.528600
N [°]	46.940824	46.928958	46.929232	46.929473	46.929473	46.929916	46.929916	46.954402	46.952389	46.951308	46.950848	46.921672	46.919619	46.918689	46.919122	46.884554	46.872789	46.872741	46.875441	46.941090	46.941200
	56	60	61	62a	62b	62c	62d	63	64	65	99	67	70	71	72	73	74	75	76	77	78
		_				_	_	_	_	_	_		_		_	_				_	_

Gesamtgesteinschemie

Tabelle 11: Ergebnisse der Gesamtgesteinschemie (ohne W und Co). Lokalitäten: Zösch Zöschken GA Glanzalm GAB Grünalmbach STB Steinbruch St. Johann. Analysemethoden: A Fusion-Na2O2 B Fusion-ICP C Fusion-MS. Spd Spodumenpegmatit.

Prob	Probennr. Lokalität		1b	6	9	50	56	67	71	72	60_3 _03	60_3 _36	60_3 _69	60_3 _912	S2
Loka	alität		Poling	Zösch	Zunig	GA	GA	Poling	GAB	GAB	Ratzell	Ratzell	Ratzell	Ratzell	STB
			Spd		Spd		Spd	Spd			Spd	Spd	Spd	Spd	
Li	%	А	0.46	< 0.01	0.67	< 0.01	1.06	0.04	< 0.01	0.01	0.71	0.69	0.44	0.06	< 0.01
Li 20	%	А	1	< 0.01	1.44	< 0.01	2.28	0.09	0.01	0.03	1.54	1.49	0.94	0.14	< 0.01
LOI	%		0.62	0.44	1.14	1.31	1.06	1.18	1.07	2.83	0.55	1.35	1.32	0.73	1.76
SiO2	%	в	77.93	74.72	77.67	74.69	76.79	76.52	76.03	75.04	76.94	75.98	75.54	75.5	75.29
AI 203	%	в	14.92	15.62	15.05	16.11	16.74	14.84	14.59	15.74	15.42	16.06	15.49	15.37	15.74
Fe 2O3 (T)	%	в	0.38	0.17	0.94	0.31	0.37	0.34	0.65	0.56	0.48	0.58	0.51	0.51	0.31
MnO	%	в	0.074	0.009	0.127	0.018	0.072	0.03	0.021	0.037	0.106	0.104	0.107	0.079	0.023
MgO	%	в	0.02	0.07	0.11	0.02	0.02	0.09	0.18	0.09	0.05	0.04	0.03	0.03	0.03
CaO	%	в	0.2	0.71	0.35	0.25	0.19	0.2	0.35	0.29	0.17	0.22	0.14	0.21	0.44
Na 2O	%	в	4.36	7.84	2.51	5.65	3.54	5.17	3.76	2.08	3.03	3.6	4.12	6.29	4.82
К2О	%	в	2.08	0.65	2.13	1.71	1.15	1.94	3.33	3.34	3.42	2.17	2.85	1.55	2.03
Ti O2	%	в	0.004	0.012	0.044	0.01	0.015	0.004	0.103	0.021	0.036	0.038	0.031	0.038	0.006
P2O5	%	в	0.06	0.27	0.52	0.25	0.42	0.09	0.24	0.11	0.35	0.38	0.24	0.25	0.32
Total	%	в	100.7	100.5	100.6	100.3	100.4	100.4	100.3	100.1	100.5	100.5	100.4	100.6	100.8
Sc	ppm	в	1	1	2	2	2	1	3	3	2	3	2	2	1
Ве	ppm	в	179	60	310	198	146	223	25	182	141	158	124	151	91
V	ppm	в	< 5	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	6	< 5	< 5
Cr	ppm	в	< 20	< 20	30	< 20	< 20	< 20	< 20	20	< 20	< 20	20	< 20	< 20
Со	ppm	в	134	156	108	276	400	178	122	454	106	532	245	104	95
Ni	ppm	в	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Cu	ppm	в	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Zn	ppm	в	30	< 30	60	< 30	40	30	40	50	40	80	80	60	< 30
Ga	ppm	в	22	15	26	23	32	21	18	24	21	28	26	26	26
Ge	ppm	в	4	4	5	7	7	4	4	5	5	5	5	5	6
As	ppm	в	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Rb	ppm	в	250	70	384	440	386	218	183	496	776	563	653	377	428
Sr	ppm	в	73	78	100	75	141	39	59	71	17	16	36	48	89
Y	ppm	в	< 2	2	5	< 2	3	< 2	19	< 2	2	< 2	3	< 2	< 2
Zr	ppm	в	17	18	17	11	15	18	14	20	45	37	31	32	13
Nb	ppm	в	10	9	29	49	88	14	10	51	39	47	45	43	99
Мо	ppm	в	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Ag	ppm	в	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
In	ppm	в	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Sn	ppm	в	28	15	88	496	1330	28	29	95	75	95	91	106	118
Sb	ppm	в	< 0.5	< 0.5	1.3	1.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.1	< 0.5	< 0.5	< 0.5
Cs	ppm	в	11.7	4.9	42.3	36.7	34.2	20.9	14.1	70.9	44.1	40.7	39.3	19.2	20.6
Ва	ppm	в	31	54	32	41	41	160	276	165	63	42	65	44	44
Bi	ppm	в	< 0.4	< 0.4	2.7	< 0.4	< 0.4	< 0.4	0.7	< 0.4	0.7	< 0.4	0.9	0.7	4.4

Prob	ennr.		1b	6	9	50	56	67	71	72	60_3 _03	60_3 _36	60_3 _69	60_3 _912	S2
Loka	alität		Poling	Zösch	Zunig	GA	GA	Poling	GAB	GAB	Ratzell	Ratzell	Ratzell	Ratzell	STB
			Spd		Spd		Spd	Spd			Spd	Spd	Spd	Spd	
La	ppm	в	0.6	0.8	1	0.9	0.5	0.5	4.8	0.7	1.6	1.1	1.4	1	0.1
Ce	ppm	В	1	1.6	2	2.2	1	0.8	9.8	1.5	3.1	2.3	2.8	2	0.2
Pr	ppm	В	0.1	0.16	0.31	0.37	0.13	0.08	1.08	0.15	0.35	0.21	0.31	0.22	< 0.05
Nd	ppm	в	0.3	0.6	1	2.2	0.6	0.2	4.3	0.5	1.5	1	1.1	1	< 0.1
Sm	ppm	в	0.2	0.2	0.7	0.8	0.3	< 0.1	1.5	0.1	0.4	0.4	0.4	0.3	0.1
Eu	ppm	в	< 0.05	0.26	0.07	0.12	< 0.05	< 0.05	0.26	0.19	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Gd	ppm	в	0.2	0.2	0.9	0.6	0.4	0.1	1.8	0.1	0.3	0.3	0.4	0.3	< 0.1
Tb	ppm	в	< 0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dy	ppm	в	0.3	0.2	1.1	0.4	0.4	0.2	3.1	0.2	0.3	0.4	0.3	0.4	< 0.1
Но	ppm	в	< 0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Er	ppm	в	0.1	< 0.1	0.4	< 0.1	< 0.1	< 0.1	1.6	< 0.1	0.1	0.2	0.2	0.2	< 0.1
Tm	ppm	В	< 0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	0.24	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Yb	ppm	в	0.2	< 0.1	0.4	< 0.1	< 0.1	< 0.1	1.5	< 0.1	0.2	0.2	0.2	0.2	< 0.1
Lu	ppm	в	< 0.04	< 0.04	0.06	< 0.04	< 0.04	< 0.04	0.21	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Hf	ppm	в	1	1.2	0.7	0.6	1.3	1.4	0.6	1.7	1.9	2.2	1.3	1.3	1.4
Та	ppm	в	13.1	9.6	23	66.9	122	16.6	7.1	99.2	35.9	33.8	26.1	25.8	249
W	ppm	в	1630	1730	1420	3370	4550	2110	1390	5320	1440	6220	2890	1200	1680
TI	ppm	в	1.5	0.5	2.4	2.3	2	1.2	0.8	2.2	5.1	3.6	4.2	1.9	2.1
Pb	ppm	в	33	8	22	18	9	27	48	19	27	15	25	18	32
Th	ppm	В	0.5	0.5	0.6	0.5	0.9	0.4	2.8	0.7	1.1	0.9	1	0.7	0.3
U	ppm	в	3.1	4.9	12.8	2.6	13.9	2	5.5	14.3	9.6	15	10.5	8.5	7.7

LA-ICP-MS- und REM-EDS-Messwerte

3_2_2		21.1	18.8	0.68	0.07	1.0	9.4		644	33	84	1204	91	452	175	82	118	3.4	2008	1.3	0.62	294	446	59	17	72	9.5	9.0	14	47		RUIIDA	
3_2_1		21.1	18.8	0.68	0.07	1.0	9.4		651	33	72	1169	101	578	227	97	110	2.6	1835	2.8	0.63	318	322	48	27	63	11	9.0	16	51		POILING	
3_1_2		20.28	19.9	0.45	0.04	0.88	8.4		1031	25	119	3337	54	787	83	27	85	3.1	2046	19	0.45	136	289	252	106	130	14	6.7	23	41		PUILIB	
3_{-1}		20.28	19.9	0.45	0.04	0.88	8.4		1076	29	110	3739	41	848	100	27	80	2.8	1093	24	0.29	108	186	105	648	102	16	4.4	26	77		РОПЛВ	
2_4_2		21.8	20.20	0.43	0.00	1.3	8.8		400	37	335	2655	69	262	220	101	128	3.2	2254	7.9	0.32	207	234	91	47	22	4.1	8.6	26	39		Pulling	Spd
$2_{4_{1}}$		21.8	20.20	0.43	0.00	1.3	8.8		445	31	379	3350	73	239	266	95	121	4.5	2334	11	0.21	233	281	96	39	29	2.3	9.0	39	38		Poing	Spd
2_3_2		20.45	20.84	0.81	0.00	0.79	9.0		555	44	107	908	65	547	207	92	114	2.5	2356	0.29	0.71	304	331	40	2.5	46	10	11	14	38		РОППВ	Spd
2_3_1		20.45	20.84	0.81	0.00	0.79	9.0		577	46	79	853	55	1601	256	112	111	2.0	1896	0.56	0.92	187	168	18	62	24	10	9.4	12	48		PUIIDS	Spd
2_1_2		22.0	19.1	0.51	0.06	0.93	8.3		450	27	132	1078	130	235	148	87	110	3.3	1560	1.6	0.47	305	303	59	44	64	10	8.7	23	53	100	POILING	Spd
$2_{-1_{-1}}$		22.0	19.1	0.51	0.06	0.93	8.3		359	32	92	1117	86	426	167	87	111	2.5	1429	7.4	0.55	256	224	34	85	35	8.9	7.4	36	58		POIIDS	Spd
1c_1_2		20.94	18.4	0.47	0.01	1.6	8.6		442	33	283	1306	42	435	293	158	125	3.3	3098	0.20	0.38	183	508	309	0.59	141	3.8	16	12	28	100	Bund	
$1c_1_1$		20.94	18.4	0.47	0.01	1.6	8.6		446	33	247	1544	56	403	283	175	128	2.8	3043	0.45	0.40	216	442	330	1.2	127	4.9	16	20	28		Roung	
1b_1_2		21.0	19.1	0.42	0.06	1.5	9.1		255	40	220	1441	55	379	347	237	106	2.9	2140	0.47	0.57	172	367	86	13	33	7.2	9.1	12	42		Roung	Spd
$1b_{-1}$		21.0	19.1	0.42	0.06	1.5	9.1		136	44	260	1565	39	396	397	269	115	2.8	2924	0.56	0.77	246	362	133	7.1	22	5.9	12	9.9	31		SUIUS	Spd
1a_4_2		20.83	19.2	0.51	0.05	1.4	8.9		677	24	156	2471	71	389	181	93	66	3.4	1335	1.0	0.54	161	327	44	65	24	21	6.3	12	67		- 81110	pds
la_4_1		20.83	19.2	0.51	0.05	1.4	8.9		509	25	123	2607	87	382	193	87	104	3.3	1365	0.86	0.63	176	337	48	99	25	23	6.3	11	65		1 8010	bd
la_2_2		20.59	19.8	0.50	0.05	1.4	8.5		180	38	220	1086	53	387	357	310	126	2.6	2294	0.18	0.70	166	265	81	0.44	14	4.0	12	9.0	37		1 8010	bd
.a_2_1_1		20.59	19.8	0.50	0.05	1.4	8.5		235	36	130	837	69	940	318	186	140	2.9	2026	0.27	0.63	231	330	47	3.8	31	10	9.8	14	42		oling r	pd S
a_1_2 1		21.1	19.1	0.65	0.00	1.5	7.9		644	36	145	2271	79	383	223	101	66	3.3	1307	1.9	0.52	138	302	45	71	20	20	6.5	17	60		OIINS F	pd S
a_1_1 1		21.1	19.1	0.65	0.00	1.5	7.9		635	41	111	2301	85	422	176	92	108	2.6	1343	1.2	0.51	124	284	42	65	17	18	6.6	16	59		- Bullo	od S ₁
16	REM-EDS [%]	Si	AI	Na	g	Fe	х	LA-ICP-MS [ppm]		Be	в	BR	٩	ц	Mn	Zn	Ga	Ge	Rb	Sr	Zr	ЧN	Sn	ട	Ba	Та	8	Ħ	Pb	K/Rb	-		SF

Tabelle 12: Muskovitmesswerte in Masse%. Probenendung: **_1** Randmessung **_2** Mittemessung. **Spd** Spodumenpegmatit **STB** Steinbruch.

12_{-1}		21.1	19.9	0.67	0.00	0.56	8.9		171	38	66	718	96	1908	330	115	129	3.6	2944	1.5	1.4	371	429	63	2.2	60	25	15	13	30	Glanzalm	
11_2		21.5	20.75	1.1	0.14	0.61	8.5		27	15	161	249	136	394	43	26	120	4.5	2677		1.0	261	571	84	2.2	33	19	14	11	32	Glanzalm	
11_1		21.5	20.75	1.1	0.14	0.61	8.5		34	22	162	172	154	435	75	39	124	4.3	2580	0.29	1.0	256	532	74	2.8	30	21	13	5.6	33	Glanzalm	
$10_{-}2$		21.5	20.22	0.55	0.16	1.2	8.5		57	51	207	746	257	822	755	206	108	5.4	4582	3.4	0.81	243	924	233	26	84	6.5	29	61	19	Zunig	
10_{-1}		21.5	20.22	0.55	0.16	1.2	8.5		102	48	182	519	273	413	413	133	111	7.5	4641	3.3	0.55	188	916	243	4.5	89	3.4	29	23	18	Zunig	
9_3_2		19.8	19.8	0.41	0.00	1.3	8.8		1153	38	100	2962	71	1982	210	113	103	3.1	1685	3.8	0.76	223	370	51	84	33	16	11	21	52	Zunig	Spd
9_3_1		19.8	19.8	0.41	0.00	1.3	8.8		1088	37	98	3090	69	1812	206	145	91	3.0	1649	5.5	0.49	210	356	62	78	35	15	10	24	54	Zunig	Spd
9_2_2		21.0	17.6	0.37	0.00	1.6	8.5		1191	56	60	2932	73	2070	254	142	114	2.7	2017	2.4	1.1	280	398	71	57	45	17	12	15	42	Zunig	Spd
9_2_1		21.0	17.6	0.37	0.00	1.6	8.5		1204	44	58	3063	115	2010	262	144	111	3.2	1864	2.2	1.1	267	346	50	52	40	18	11	12	46	Zunig	Spd
9_1_2		21.3	19.1	0.46	0.10	1.4	8.5		871	56	154	1506	124	992	222	153	111	3.9	2363	1.2	1.3	261	444	68	4.8	35	11	13	12	36	Zunig	Spd
9_{-1}^{-1}		21.3	19.1	0.46	0.10	1.4	8.5		858	50	179	1626	92	1179	231	163	107	3.2	2192	2.1	0.89	261	390	104	6.6	32	12	12	13	39	Zunig	Spd
8_1		21.4	19.9	0.55	0.04	0.61	9.0		263	54	193	598	111	766	326	244	100	4.9	1669	43	0.13	181	439	25	139	71	6.3	8.4	45	54	Glanzalm	
6_2		21.2	19.9	0.75	0.03	0.65	8.4		392	19	39	2525	97	1132	111	84	103	3.2	1635	2.9	0.73	297	234	24	162	39	13	8.6	12	51	Zöschken	
6_{-1}		21.2	19.9	0.75	0.03	0.65	8.4		427	24	39	3132	58	3226	33	47	104	2.9	1378	4.6	1.2	217	152	22	361	25	14	7.0	12	61	Zöschken	
5_2		20.87	19.4	0.54	0.02	0.89	8.9		63	19	91	529	91	122	131	85	124	3.9	2542	0.08	0.62	342	289	124	0.57	28	12	11	6.4	35	Poling	
5_1		20.87	19.4	0.54	0.02	0.89	8.9		45	17	101	615	06	122	163	75	104	3.5	1978	0.33	0.41	314	251	114	3.0	31	12	7.8	8.1	45	Poling	
4_1_2		20.91	19.1	0:30	0.03	1.3	8.5		425	25	89	2724	60	92	252	85	65	3.3	1027	5.0	0.40	107	480	142	83	186	15	4.8	15	83	Poling	
$4_{-1_{-1}}$		20.91	19.1	0.30	0.03	1.3	8.5		322	32	87	2343	49	57	225	85	58	2.9	964	5.1	0.29	100	406	144	86	162	13	4.6	17	88	Poling	
	REM-EDS [%]	Si	A	Na	g	Fe	К	LA-ICP-MS [ppm]	:5	Be	В	Mg	٩	Ħ	Mn	Zn	Ga	Ge	Rb	Sr	Zr	qN	Sn	ട	Ba	Та	8	F	Pb	K/Rb	Lokalität	

15_3_2		21.9	19.3	0.63	0.08	0.70	9.1		824	40	167	1684	122	2775	309	145	129	3.8	3849	1.9	1.4	361	685	125	32	61	33	21	9.6	24	Ratzell		Spd
$15_{-3_{-1}}$		21.9	19.3	0.63	0.08	0.70	9.1		894	50	161	1755	103	3719	361	121	133	4.2	3408	2.3	1.5	386	573	92	28	53	33	19	12	27	Ratzell		Spd
15_2_2		21.8	21.3	0.78	0.00	1.4	9.4		607	43	195	1010	178	2398	253	127	138	4.8	3683	0.92	1.1	366	660	106	12	58	31	19	6.6	26	Ratzell		Spd
15_2_1		21.8	21.3	0.78	0.00	1.4	9.4		838	50	222	1187	193	2658	332	119	132	5.7	3691	3.4	0.94	342	776	157	33	74	32	20	14	25	Ratzell		Spd
15_1_2		20.54	21.7	0.57	0.02	1.0	8.8		346	39	158	950	136	2306	98	74	133	3.4	2876	1.0	1.3	342	468	75	18	38	40	16	5.1	31	Ratzell		Spd
15_{-1}		20.54	21.7	0.57	0.02	1.0	8.8		412	44	184	1258	148	2394	49	33	117	4.4	2859	3.1	1.3	347	511	80	15	35	42	16	11	31	Ratzell		Spd
14_6_2		20.61	18.7	0.38	0.00	1.3	8.6		831	51	199	1206	108	4338	368	107	126	3.0	1968	1.0	1.8	291	357	36	16	27	34	11	8.9	44	Ratzell		Spd
$14_{-6_{-1}}$		20.61	18.7	0.38	0.00	1.3	8.6		866	49	254	1350	107	4002	389	100	127	4.0	2455	1.7	1.3	288	516	93	19	52	41	14	11	35	Ratzell		Spd
14_5_2		21.0	19.4	0.86	0.09	0.35	8.0		547	34	259	499	295	1028	256	97	140	7.7	6858	0.81	0.92	280	727	393	8.1	111	29	38	4.9	12	Ratzell		Spd
$14_{-5}1$		21.0	19.4	0.86	0.09	0.35	8.0		523	37	287	383	221	662	216	84	130	5.4	5900	1.2	0.59	223	595	239	18	83	18	33	5.2	14	Ratzell		Spd
14_4_2		21.3	19.6	0.70	0.09	0.70	8.0		611	48	177	690	147	1763	194	180	134	4.9	3518	0.35	1.6	332	631	142	5.4	47	40	17	4.7	23	Ratzell		Spd
$14_{-}4_{-}1$		21.3	19.6	0.70	0.09	0.70	8.0		539	52	207	602	172	2122	176	150	130	4.8	3157	0.48	1.2	323	527	177	7.6	41	41	16	7.1	25	Ratzell		Spd
14_3_2		20.80	18.1	0.26	0.02	2.0	9.1		820	45	131	1156	66	4198	309	111	124	2.7	1887	0.72	1.8	292	325	35	13	25	37	11	6.7	48	Ratzell		Spd
$14_{-3_{-1}}$		20.80	18.1	0.26	0.02	2.0	9.1		799	45	116	1170	89	3891	315	111	121	3.0	1986		1.8	273	320	39	13	26	35	11	6.9	46	Ratzell		Spd
14_2_1		20.63	19.8	0.54	0.05	0.45	8.1		552	42	177	128	133	355	238	123	110	6.8	3357	3.0	0.21	167	631	734	12	64	16	19	17	24	Ratzell		Spd
13_2		20.30	18.9	0.37	0.15	1.0	8.7		269	36	132	2077	104	223	34	40	92	4.0	2360	6.3	0.74	246	480	86	8.9	59	28	13	16	37	Glanzalm	5	
13_{-1}		20.30	18.9	0.37	0.15	1.0	8.7		284	38	127	1994	90	349	43	48	98	3.8	2117	2.5	0.83	291	445	69	8.8	64	29	12	12	41	Glanzalm	5	
12_2		21.1	19.9	0.67	0.00	0.56	8.9		167	36	93	652	106	1665	305	105	125	3.7	2760	3.2	1.2	360	425	60	4.0	54	23	14	14	32	Glanzalm	5	
	REM-EDS [%]	Si	A	Na	പ	Fe	А	LA-ICP-MS [ppm]	:⊐	Be	в	Mg	٩	Ħ	Mn	Zn	Ga	Ge	Rb	Sr	Zr	qN	Sn	ട	Ba	Та	8	F	Pb	K/Rb	lokalität		

24_2		20.90	20.02	0.62	0.02	0.47	9.1		26	12	120	1625	104	630	115	42	54	3.0	354	3.3	1.5	99	31	4.8	82	3.5	8.0	1.0	17	256	Poling	
24_1		20.90	20.02	0.62	0.02	0.47	9.1		30	12	87	1641	133	1284	114	33	50	2.1	294	4.6	1.1	49	24	3.0	162	3.3	14	1.0	17	308	Poling	
23_1		20.46	19.8	0.47	0.01	0.72	8.6		408	28	212	3338	129	971	39	42	83	7.3	3242	32	0.50	66	405	667	33	116	4.2	9.7	34	27	Poling	
22a_2		20.38	20.30	0.71	0.01	0.67	8.5		88	5.1	69	2651	88	1405	85	26	60	1.5	278	6.7	1.5	52	21	3.9	107	2.4	30	0.87	5.7	304	Poling	
22a_1		20.38	20.30	0.71	0.01	0.67	8.5		82	11	87	2315	120	1317	135		62	2.3	304	6.4	1.4	54	32	5.3	81	2.7	30	1.0	7.4	278	Poling	
21_2		20.58	19.8	0.51	0.00	1.3	8.9		81	5.4	57	3247	60	1854	126	13	67	1.8	250	14	2.4	57	17	2.9	351	2.4	27	0.70	7.8	356	Poling	
21_1		20.58	19.8	0.51	0.00	1.3	8.9		27	2.5	54	2198		976	91	13	24	0.86	137	6.3	0.10	21	9.3	14	228	1.5	8.5	0.56	6.9	650	Poling	
20_1_2		20.37	19.8	0.84	0.05	0.67	7.9		125	8.3	57	3144	79	1043	18	20	81	2.7	1221	4.2	0.70	177	197	45	261	35	9.9	6.8	22	65	Kienburg	
$20_{-1_{-1}}$		20.37	19.8	0.84	0.05	0.67	7.9		187	13	59	3623	82	1250	20	14	85	2.9	1165	21	0.92	141	167	44	242	30	7.8	4.5	35	68	Kienburg	
19_2		21.3	21.2	1.1	0.02	0.56	8.1		92	8.0	87	3763	95	438	78	14	72	2.8	996	27	1.2	173	55	35	208	25	10	1.8	48	84	Kienburg	
19_{-1}		21.3	21.2	1.1	0.02	0.56	8.1		123	10	45	2471	97	915	50	154	66	1.8	281	77	0.91	66	33	12	1393	17	8.6	1.1	36	290	Kienburg	
18_2_2		21.6	20.10	0.75	0.02	0.90	8.9		184	3.1	50	3617	88	1781	30	9.6	69	2.2	327	23	2.3	44	20	4.0	471	2.1	25	1.3	13	272	Poling	
18_2_1		21.6	20.10	0.75	0.02	0.90	8.9		157	5.3	63	3854	95	1803	38	12	61	1.7	298	56	1.1	32	25	7.1	1009	4.6	12	1.3	24	298	Poling	
18_1_2		20.11	20.92	0.84	0.01	0.37	8.8		198	3.7	61	3002	104	1035	49	25	54	2.2	300	20	1.1	42	30	6.3	474	2.4	23	0.86	12	292	Poling	
18_{-1}		20.11	20.92	0.84	0.01	0.37	8.8		198	3.0	69	3181	86	1823	61	18	60	1.6	320	18	1.8	44	34	5.5	466	2.5	22	1.2	10	274	Poling	
17_{-1}		20.86	20.27	06.0	0.00	0.54	8.4		58	3.5	44	3600	56	2986	84	21	61	1.5	217	24	2.3	28	13	2.2	1731	1.4	18	0.71	14	388	Kienburg	
16_2		21.5	20.61	0.80	0.00	0.57	8.9		241	11	59	3458	75	2465	68	37	77	1.8	502	12	1.8	91	73	29	1322	23	13	2.4	12	177	Kienburg	
16_{-1}		21.5	20.61	0.80	0.00	0.57	8.9		240	8.0	51	3276	61	3067	49	37	70	1.6	427	12	1.6	55	44	18	1384	8.7	18	1.9	12	209	Kienburg	
	REM-EDS [%]	Si	A	Na	ല	Fe	х	LA-ICP-MS [ppm]	:=	Be	В	Mg	٩	i	Mn	Zn	Ga	Ge	Rb	Sr	Zr	qN	Sn	പ	Ba	Та	N	F	Pb	K/Rb	Lokalität	

33_2		19.6	19.6	0.64	0.01	0.69	8.3		64	33	79	1098	103	537	64	116	74	3.4	1063	2.0	0.51	136	219	31	87	19	12	5.5	11	78	Goss narhach	
33_1		19.6	19.6	0.64	0.01	0.69	8.3		61	34	102	1156	141	543	70	121	77	4.1	1092	2.4	0.59	138	210	29	88	18	12	5.5	15	76	Gott narhach	ממספוובו המכוו
32_2		20.84	21.0	0.67	0.06	0.59	9.0		43	6.8	71	1867	06	466	97	16	23	2.3	273	12	0.82	22	20	4.0	1829	2.8	4.5	0.74	21	328	Doling	2
32_1		20.84	21.0	0.67	0.06	0.59	9.0		49	8.2	75	1849	94	622	96	17	29	2.1	302	12	0.93	32	23	4.6	1574	3.7	7.8	0.84	19	297	Doling	2011102
31_2_2		20.43	19.99	0.59	0.00	1.3	9.0		80	7.0	72	2497	111	1334	95	18	50	1.9	255	15	1.5	28	21	3.7	970	1.3	14	0.65	18	351	Doling	2
31_2_1		20.43	20.29	0.62	0.02	0.95	9.0		06	4.8	73	2743	117	1459	98	16	52	2.5	252	14	1.6	31	18	3.1	1057	1.3	14	0.59	14	356	Doling	۲ 0 1 1 8
$31_{-1_{-1}}$		20.37	20.29	0.62	0.02	0.95	8.5		50	13	86	2096	114	1254	87	23	51	2.5	250	11	1.4	31	27	3.1	886	1.4	16	0.71	11	340	Doling	רט מ
30_2		20.02	20.16	0.88	0.01	0.89	8.1		13	29	122	686	302	129	64	31	62	7.2	846	0.12	1.1	118	121	30	2.1	12	14	2.6	5.4	96	Doling	2
30_1		20.02	20.16	0.88	0.01	0.89	8.1		13	24	117	617	380	111	64	31	67	7.4	869	0.08	1.0	120	110	25	1.1	7.9	13	2.7	4.1	94	Doling	201110 10
29_2		20.01	20.01	1.1	0.08	0.79	7.8		50	2.4	24	3185	84	2669	20	4.4	39	0.81	179	59	0.71	18	14	2.0	1109	0.60	15	0.43	20	434	Doling	רטווו מ
29_1		20.01	20.01	1.1	0.08	0.79	7.8		99	6.7	52	4187	95	2776	27	4.4	39	1.3	187	58	0.77	19	14	2.5	1518	0.73	15	0.54	23	415	Doling	1011 1011 101
28_2		20.71	20.53	0.38	0.00	1.1	9.0		664	19	236	33	102	150	187	66	133	4.8	3946	0.10	0.48	288	672	190	0.62	35	18	20	5.1	23	Doling	2011102
28_1		20.71	20.53	0.38	0.00	1.1	9.0		541	21	281	33	103	139	210	96	123	5.2	3794	0.12	0.33	281	669	210	0.75	36	21	19	5.1	24	Doling	Ω
27_2		20.05	20.58	0.63	0.06	0.79	8.6		550	10	37	2276	51	716	139	29	78	1.3	537	5.5	0.63	13	31	6.8	156	1.9	2.6	2.2	13	160	Doling	10 10 10
27_1		20.05	20.58	0.63	0.06	0.79	8.6		408	11	73	3407	70	1994	252	46	71	1.4	365	7.3	1.3	53	32	7.5	185	3.6	26	1.4	8.7	235	Doling	1 2 2 2
26_1		19.95	20.00	0.51	0.00	0.95	8.9		295	14	227	2247	61	87	66	23	105	6.5	2153	2.7	0.36	75	585	333	9.7	91	3.9	9.7	17	42	Doling	2
25_2		21.7	20.44	0.68	0.02	1.0	9.0		106	7.1	74	3728	54	1726	117	34	61	1.5	310	12	2.3	43	17	3.3	246	1.9	18	0.90	9.3	290	Doling	1 1 2 1 2
25_1		21.7	20.44	0.68	0.02	1.0	9.0		118	3.7	83	3980	58	1722	114	26	61	1.5	327	14	2.3	43	18	3.3	261	1.9	18	1.0	9.4	275	Doling	ר בייד מ
	REM-EDS [%]	Si	A	Na	g	Fe	У	LA-ICP-MS [ppm]	:=	Be	в	Mg	۹.	Ħ	Mn	Zn	Ga	Ge	Rb	Sr	Zr	qN	Sn	ප	Ba	Та	N	F	Pb	K/Rb	+::+: 070	LUKAIILau

39_1		20.52	19.7	0.57	0.03	2.0	9.1			192	39	122	1722	116	244	268	130	104	2.9	1331	1.0	0.88	144	318	56	3.5	14	18	5.7	9.1	68	Rudnig
38_2		20.24	20.58	0.53	0.04	0.78	8.6			152	24	95	1775	88	386	85	81	85	3.1	1334	1.8	0.45	154	196	25	16	15	11	6.5	11	64	Gossnerbach
38_1		20.24	20.58	0.53	0.04	0.78	8.6			131	32	78	1658	96	784	81	58	87	3.3	1412	6.1	0.60	179	220	33	38	21	8.9	6.9	18	61	Gossnerbach
37_2		20.15	20.83	0.94	0.05	1.1	8.1			414	32	107	3607	206	219	19	25	59	6.1	2256	39	0.56	166	301	164	52	65	7.2	11	62	36	Gossnerbach
37_1		20.15	20.83	0.94	0.05	1.1	8.1			143	16	149	2008	172	141	25	28	78	6.7	2963	5.5	0.89	223	652	245	10	72	9.5	21	22	27	Gossnerbach
36_2		20.03	19.6	0.65	0.04	1.2	8.4			34	26	183	521	109	282	109	116	66	4.2	2894	0.27	0.55	280	616	125	0.82	37	13	15	10	29	Gossnerbach
36_1		20.03	19.6	0.65	0.04	1.2	8.4			53	35	66	679	139	315	67	33	102	5.0	2563	1.3	0.43	203	481	113	6.0	58	9.6	13	19	33	Gossnerbach
35_2		20.48	20.48	0.84	0.00	0.65	8.2			47	40	72	1296	136	1494	49	153	79	3.8	1153	2.8	1.0	157	210	52	130	21	15	5.7	14	71	Gossnerbach
35_1		20.48	20.48	0.84	0.00	0.65	8.2			53	33	69	1422	116	1558	53	148	78	3.7	1169	2.7	0.91	156	206	33	126	21	14	5.9	13	70	Gossnerbach
34_2		20.55	20.67	0.77	0.01	0.61	8.4			74	18	110	804	121	409	109	179	79	4.8	1363	0.91	0.81	166	278	37	44	23	11	7.3	11	62	Gossnerbach
34_1		20.55	20.67	0.77	0.01	0.61	8.4			33	31	111	674	120	397	86	193	75	4.9	1313	1.6	0.73	161	288	43	43	23	11	6.9	17	64	Gossnerbach
	REM-EDS [%]	Si	AI	Na	Ca	Fe	Х	LA-ICP-MS	[mdd]	ij	Be	в	Mg	٩	Έ	Mn	Zn	Ga	Ge	Rb	Sr	Zr	qN	Sn	CS	Ba	Та	×	F	Pb	K/Rb	Lokalität

46_2		21.3	22.8	1.2	0.03	0.30	8.6		127	19	06	453	101	253	109	74	121	2.9	1036	1.8	0.65	256	192	23	164	41	5.1	6.1	26	83	Poling	0
46_{-1}		21.3	22.8	1.2	0.03	0.30	8.6		144	20	82	275	81	167	98	78	103	2.6	696	2.3	0.44	208	192	20	80	40	4.7	5.1	39	68	Poling	0
45_2_2		20.05	20.90	1.0	0.04	0.72	8.1		489	26	77	1784	57	875	73	50	110	1.7	1920	0.92	0.79	202	135	8.6	11	16	8.9	10	15	42	Poling	0
45_2_1		20.05	20.90	1.0	0.04	0.72	8.1		290	25	84	2068	76	134	87	63	132	2.5	2373	3.0	0.31	267	476	61		21	4.4	12	16	34	Poling	0
45_1_2		20.61	19.9	0.67	0.05	1.0	8.4		190	19	77	2066	122	467	92	48	79	2.2	809	3.1	0.55	95	178	31	106	188	12	3.5	16	104	Poling	0
45_{11}		20.61	19.9	0.67	0.05	1.0	8.4		155	19	73	2180	105	427	66	73	83	2.6	808	3.3	0.35	58	173	29	123	66	16	3.5	15	104	Poling	0
43b_2		19.9	19.8	1.0	0.06	0.92	7.7		191	21	83	1488	121	1038	31	43	82	3.2	1197	10	0.69	155	189	28	67	21	20	5.7	19	65	Naßfeld	
43b_1		19.9	19.8	1.0	0.06	0.92	7.7		241	22	97	1595	142	943	34	61	61	3.9	1130	63	0.60	155	160	37	76	21	17	5.3	42	69	Naßfeld	
43a_2		19.3	19.2	0.49	0.01	0.56	8.8		147	31	40	1770	128	2724	142	107	92	2.9	1030	3.1	0.81	116	198	12	297	13	16	5.5	8.7	85	Naßfeld	
43a_1		19.3	19.2	0.49	0.01	0.56	8.8		140	29	76	1711	148	2667	153	86	91	3.5	1032	5.9	0.78	113	253	45	311	15	13	5.7	12	85	Naßfeld	
42_3_2		19.7	19.9	0.81	0.03	0.93	8.1		67	4.3	76	2770	182	525	82	17	60	3.1	357	4.4	1.7	52	39	8.3	299	3.8	29	1.1	15	228	Naßfeld	
42_3_1		19.7	19.9	0.81	0.03	0.93	8.1		50	4.8	102	2393	182	477	79	16	57	2.8	324	5.7	1.5	48	35	7.2	300	3.5	24	1.0	20	251	Naßfeld	
42_2_2		19.9	19.0	0.72	0.03	0.57	8.2		59	2.9	73	2861	114	733	73	16	46	1.6	203	11	1.2	32	20	2.8	1341	2.2	24	0.90	16	405	Naßfeld	
42_2_1		19.9	19.0	0.72	0.03	0.57	8.2		65	2.6	57	3173	120	760	72	18	45	1.5	214	9.5	1.2	35	18	2.9	1325	2.1	24	0.76	13	384	Naßfeld	
42_1_2		20.50	19.7	0.70	0.01	0.78	8.7		57	2.7	102	3121	122	565	64	17	60	2.1	381	4.9	1.9	60	44	10	279	3.9	26	1.4	18	228	Naßfeld	
42_1_1		20.50	19.7	0.70	0.01	0.78	8.7		57	2.8	100	3108	153	571	67	17	68	2.4	403	4.7	1.9	61	50	10	299	4.3	28	1.2	17	215	Naßfeld	
40_{-1}		20.21	19.4	0.53	0.00	1.0	9.0		48	10	59	3712	79	2253	115	18	75	2.1	229	26	1.5	87	41	7.1	328	4.7	34	0.72	14	391	Rudnig	0
39_2		20.52	19.7	0.57	0.03	2.0	9.1		214	30	95	1851	94	177	248	143	101	2.7	1309	0.41	1.1	132	289	32	3.0	10	19	5.8	5.5	69	Rudnig	0
	REM-EDS [%]	Si	A	Na	പ	Fe	К	LA-ICP-MS [ppm]	:=	Be	в	Mg	۵.	μ	Mn	Zn	Ga	Ge	Rb	Sr	Zr	qN	Sn	ട	Ba	Та	3	F	Pb	K/Rb	Lokalität	

54_1		20.34	19.9	0.57	0.03	1.7	8.3		648	51	145	827	117	1242	372	101	115	4.2	2396	0.93	1.1	329	491	76	5.1	39	35	13	10	35		Glanzalm	
53_2		21.0	21.1	0.81	0.03	1.0	8.3		180	27	136	653	126	1469	118	72	124	4.5	3053	1.2	1.2	281	528	83	3.6	52	25	16	8.4	27	-	Glanzalm	Spd
53_1		21.0	21.1	0.81	0.03	1.0	8.3		165	27	134	948	129	1799	154	82	116	3.9	2314	0.88	1.3	333	416	61	8.4	51	31	12	9.3	36	-	Glanzalm	Spd
52_2		20.56	20.95	0.64	0.03	0.44	8.7		56	26	155	83	256	494	81	144	127	6.9	5724	0.37	0.48	211	694	685	2.0	88	17	36	7.0	15	-	Glanzalm	
52_1		20.56	20.95	0.64	0.03	0.44	8.7		50	21	218	111	288	541	145	85	146	7.2	6121	0.39	0.46	231	745	800	4.4	95	20	40	7.5	14	-	Glanzalm	
51_2		19.8	20.52	0.74	0.00	0.67	8.2		110	20	163	376	175	201	187	164	58	5.5	2870	0.23	0.45	100	733	728	5.8	43	13	18	7.6	29	-	Glanzalm	
51_{-1}		19.8	20.52	0.74	0.00	0.67	8.2		74	25	167	213	174	111	71	75	73	5.4	2721	0.38	0.29	113	719	768	3.7	64	14	16	9.0	30	-	Glanzalm	
50_2_2		20.04	21.2	0.71	0.00	0.64	8.0		70	20	175	684	190	149	75	33	90	4.9	1988	9.7	1.3	227	430	97	11	41	29	11	17	40	-	Glanzalm	
50_2_1		20.04	21.2	0.71	0.00	0.64	8.0		65	16	189	211	242	127	78	34	92	5.3	1954	1.1	1.6	203	361	85	4.8	34	23	12	7.3	41		Glanzalm	
50_1^2		20.77	20.62	1.0	0.03	0.39	8.4		126	24	202	118	300	1158	113	45	131	6.5	4904	0.16	1.2	267	1028	171	0.50	58	27	29	5.6	17		Glanzalm	
$50_{-1_{-1}}$		20.77	20.62	1.0	0.03	0.39	8.4		74	30	198	105	209	1385	105	53	133	5.7	3904	1.0	1.2	252	700	120	1.5	45	26	23	10	22	-	Glanzalm	
48_2		20.79	20.01	0.56	0.01	1.3	8.9		215	28	191	748	131	1092	340	145	105	3.9	3067	0.93	0.87	268	634	97	3.0	63	11	20	13	29		Zunig	
48_{-1}		19.7	20.01	0.56	0.01	1.3	8.9		181	25	142	556	141	933	346	208	105	4.2	3617	0.48	0.83	260	741	135	2.1	70	8.8	24	7.9	25	•	Zunig	
47_2		20.79	18.8	0.39	0.00	0.74	8.9		576	20	63	3624	84	4628	264	43	81	2.0	674	9.8	1.6	85	93	16	715	14	14	3.4	18	132	-	Poling	
47_{-1}		19.7	18.8	0.39	0.00	0.74	8.9		492	20	167	3453	95	475	245	43	76	2.8	2238	6.2	0.64	173	236	114	14	16	4.5	7.4	16	40	:	Poling	
	REM-EDS [%]	Si	A	Na	ca	Fe	К	LA-I CP-MS [ppm]	::	Be	в	Mg	Ч	Ħ	Mn	Zn	Ga	Ge	Rb	Sr	Zr	qN	Sn	ട	Ba	Та	N	F	Pb	K/Rb		Lokalität	

60_3 03_2_1		20.59	20.04	0.39	0.01	0.75	8.9		631	31	361	716	215	774	190	131	130	6.3	5309	0.46	0.76	241	751	245	15	108	17	32	6.5	17		Katzell	Spd
60_3 03_1_2		20.59	20.55	0.85	0.00	0.80	8.6		607	52	205	1005	111	1649	166	117	121	4.3	3511	0.59	1.1	313	969	180	15	89	17	20	7.3	25		Katzell	Spd
60_3 03_1_1		20.59	20.55	0.85	0.00	0.80	8.6		638	56	270	1044	178	1467	160	122	125	4.8	3870	1.0	1.1	284	704	190	17	87	16	22	7.6	22		Katzell	Spd
60_1_2		20.69	20.00	0.63	0.03	0.78	9.0		1060	25	105	2126	234	1868	255	250	107	3.8	2347	0.80	1.4	305	510	71	14	65	26	13	8.8	38		Katzell	Spd
60_{-1}		20.69	20.00	0.63	0.03	0.78	9.0		645	40	129	1418	118	1986	205	211	113	3.0	2412	1.0	1.2	348	478	81	24	60	22	14	7.3	37		Katzell	Spd
56_8_2		19.4	20.22	0.44	0.05	1.2	8.5		883	55	246	748	176	2111	236	201	118	3.8	2622	0.21	1.7	275	488	55	0.32	29	27	14	8.4	33		Glanzalm	Spd
56_8_1		19.4	20.22	0.44	0.05	1.2	8.5		798	54	170	551	175	1956	264	179	127	3.2	2802	0.10	1.6	261	448	51	0.34	25	23	14	4.8	30		Glanzalm	Spd
56_7_2		19.4	19.4	0.43	0.02	0.84	8.2		473	63	239	171	247	627	185	220	126	6.6	5035	0.10	0.71	230	816	306		52	32	27	5.5	16		Glanzalm	Spd
56_7_1		19.4	19.4	0.43	0.02	0.84	8.2		493	53	284	165	282	550	185	233	125	6.4	4350		1.1	223	936	235		47	33	25	4.8	19		ପାa nzal m	Spd
56_2_2		19.9	19.9	0.49	0.05	0.32	8.4		655	25	136	919	150	1993	210	133	121	3.0	2375	0.56	1.5	316	391	44	4.8	32	22	12	7.9	35		ิปลทza เm	Spd
56_2_1		19.9	19.9	0.49	0.05	0.32	8.4		648	40	131	814	136	2014	198	164	114	2.6	2300	0.50	1.8	321	391	44	5.0	33	25	12	8.5	37		Glanzalm	Spd
56_1_2		19.9	19.3	0.48	0.02	1.4	8.5		305	19	186	172	164	501	200	141	117	3.2	2988	0.15	0.70	274	522	68	2.2	39	16	16	5.4	29		ิ ปลาzalm	Spd
56_{-1}		19.9	19.3	0.48	0.02	1.4	8.5		365	43	205	211	204	538	188	161	122	4.3	3271	1.5	0.88	303	545	83	2.8	44	18	17	8.4	26		ิ ปลาzalm	Spd
54_2		20.34	19.9	0.57	0.03	1.7	8.3		582	47	134	832	170	1250	335	163	117	4.1	2370	0.63	1.1	319	456	69	4.7	38	35	12	8.0	35		ଧାa nza l m	
	REM-EDS [%]	Si	AI	Na	g	Fe	К	LA-ICP-MS [ppm]	:=	Be	В	Mg	Ч	Ξ	Mn	Zn	Ga	Ge	Rb	Sr	Zr	ЧN	Sn	ട	Ba	Та	N	F	Pb	K/Rb	-	Lokalität	

60_3_36_4_2		19.4	19.7	0.74	0.04	0.93	8.1		683	44	130	553	382	1244	147	110	136	5.2	4322	0.15	1.5	238	943	133	1.3	128	13	26	7.0	19	Ratzell	Spd
60_3_36_4_1		19.4	19.7	0.74	0.04	0.93	8.1		654	34	194	733	269	1539	159	101	130	4.3	4168	0.25	1.4	276	947	130	5.8	97	23	25	6.3	19	Ratzell	Spd
60_3_36_3_2		19.8	19.98	0.82	0.00	0.63	8.2		661	52	186	639	319	1461	130	91	129	4.6	4034	0.27	1.9	262	993	118	4.8	142	27	26	6.9	20	Ra tzell	Spd
60_3_36_3_1		19.8	19.98	0.82	0.00	0.63	8.2		575	62	211	634	413	1491	130	34	151	5.6	4234	0.64	1.7	257	1099	126	5.3	136	27	30	12	19	Ratzell	Spd
60_3_36_2_2		20.38	19.9	0.54	0.07	0.55	9.1		741	25	203	813	272	1727	282	168	136	5.0	4385	0.23	2.3	313	940	124	4.5	110	29	27	5.9	21	Ratzell	Spd
60_3_36_2_1		20.38	19.9	0.54	0.07	0.55	9.1		703	37	168	833	502	1821	145	111	126	4.4	4001	2.1	2.2	319	910	118	5.0	106	28	26	6.4	23	Ratzell	Spd
60_3_36_1_2		19.8	21.3	0.38	0.04	0.52	8.2		759	28	180	846	246	1716	214	110	127	5.1	4025	0.49	1.8	290	835	105	8.7	83	22	25	6.5	20	Ratzell	Spd
60_3_36_1_1		19.8	21.3	0.38	0.04	0.52	8.2		590	50	196	1051	461	2231	192	121	126	4.2	4189	2.8	1.4	351	855	145	17	98	34	23	7.1	20	Ratzell	Spd
60 3 2		20.37	20.04	0.45	0.03	0.74	8.6		586	50	212	974	296	1200	200	133	121	5.3	3320	1.2	1.0	250	759	124	14	121	24	20	9.9	26	Ratzell	Spd
60_3 03_3_2		19.9	20.21	0.41	0.04	0.63	8.9		652	43	252	849	205	1253	168	112	128	4.7	5047	1.0	0.70	231	730	285	25	112	15	28	7.5	18	Ratzell	Spd
60_3 03_3_1		19.9	20.21	0.41	0.04	0.63	8.9		577	46	267	903	189	1340	153	128	126	4.3	4603	1.0	1.0	285	784	192	12	85	23	24	9.3	19	Ra tzell	Spd
60_3 03_2_2		20.59	20.04	0.39	0.01	0.75	8.9		574	34	280	617	264	707	232	107	138	6.1	6327	0.28	1.0	263	943	276	6.9	105	19	36	5.2	14	Ratzell	Spd
	REM-EDS [%]	Si	А	Na	മ	Fe	У	LA-ICP-MS [nnm]	[Be	в	Mg	٩	Ħ	Mn	Zn	Ga	Ge	Rb	Sr	Zr	qN	Sn	പ	Ba	Та	8	F	Pb	K/Rb	Lokalität	

	60 3 912 4 2	61 1 1	61 1 2	61 2 1	61 2 2	6131	6137	61 4 1	61 4 7	67h 1	62h 7	67r 1	675 7
			4 4 4 7 7	+	1					1	1		1
(EM-EDS [%]													
Si	19.7	19.6	19.6	20.83	20.83	21.1	21.1	20.48	20.48	20.11	20.11	20.09	20.09
A	19.2	20.03	20.03	21.5	21.5	20.59	20.59	19.3	19.3	20.48	20.48	20.05	20.05
Na	0.33	0.74	0.74	0.81	0.81	0.79	0.79	0.62	0.62	0.75	0.75	0.37	0.37
Ca	0.03	0.06	0.06	0.04	0.04	0.05	0.05	0.06	0.06	0.02	0.02	0.00	0.00
Fe	1.2	1.4	1.4	0:30	0:30	1.3	1.3	1.1	1.1	1.0	1.0	0.94	0.94
К	8.2	8.0	8.0	8.7	8.7	8.6	8.6	8.5	8.5	8.4	8.4	8.9	8.9
-A-ICP-MS													
[mdd]													
:	642	688	623	359	341	330	327	1115	841	12	9.8	79	69
Be	47	16	29	34	23	36	39	44	33	25	21	17	19
в	155	106	115	125	106	333	325	278	184	163	150	97	68
Mg	776	1793	1755	2292	2273	1113	1004	1434	1169	721	568	2618	2397
٩	197	82	75	72	101	185	252	106	146	139	184	119	88
Ξ	2079	4151	4360	3801	3860	1830	910	3219	2103	298	276	062	798
Mn	257	316	311	75	139	36	32	332	286	153	176	166	178
Zn	119	138	135	72	114	8.1	9.7	126	134	35	49	19	24
Ga	136	126	136	137	137	237	149	145	140	102	110	06	94
Ge	5.3	2.4	3.0	2.6	2.7	8.5	9.1	5.6	5.4	3.9	4.9	3.4	3.1
Rb	3189	1861	2025	2231	2333	4373	4408	3175	3372	707	841	694	718
Sr	0.52	0.57	0.66	0.92	0.74	1.9	1.9	7.7	1.3	0.33	0.34	0.72	0.58
Zr	1.1	1.8	1.8	1.5	2.0	0.57	0.42	0.86	1.6	0.81	0.87	1.8	1.6
qN	317	282	301	352	369	169	226	208	332	130	178	79	79
Sn	628	290	330	351	381	675	767	797	679	89	133	94	95
S	97	33	38	35	39	749	476	788	111	17	27	16	17
Ba	9.4	20	23	30	24	25	14	137	33	2.6	1.2	20	21
Та	61	25	27	30	33	122	96	128	54	7.0	10	10	10
×	34	33	36	30	35	46	33	40	36	13	13	9.5	11
F	17	10	11	11	12	27	26	18	19	2.7	3.4	3.0	3.2
Pb	5.9	4.8	6.2	6.5	6.7	7.5	7.1	13	4.5	3.1	2.9	17	15
K/Rb	26	43	40	39	37	20	20	27	25	119	100	128	123
-													
Lokalität	Katzell	Katzell	Katzeli	Katzeli	Katzeli	Katzeli	Katzeli	Katzeli	Katzeli	Unterpeischlach	Unterpeischlach	Unterpeischlach	Unterpeischiach
	Spd	Spd	Spd	Spd	Spd	Spd	Spd	Spd	Spd				

1_1 71_		0.81 20.8	7.70 20.7	.73 0.75	.01 0.01	1.4 1.4	0.6 0.6		52 286	16 19	72 75	237 282	106	756 364	241	44 49	89 92	2.4 2.8	742 736	5.9 5.3	2.0 2.1	84 82	11 127	24 18	314	13 13	16 16	3.7 3.7	14 10	121 122	lmhach Grünalm
7 7		.69 2(0.01 2(29 0	02 0	.95	8.0		97	27	60	989 3	55	14 3	35	06	39	0.1	963	56	.28	05	51 1	79	80	27	10	9.6	3	t5 1	mhach Grüna
7		20	. 50	0	0	0	8				-			7	-	-	-	4	÷	0	0	7						ω	w	'	ach Grüna
2 70_1		1 20.65	5 20.01	9 0.29	1 0.02	5 0.95	8.8		102	30	3 101	3 1824	5 61	7 298	L 157	98	5 142	3.3	7 1927	1.1	0.45) 157	L 532	73	3.2	24	9.7	8.4	11	45	a Grünalm
99		19.	19.	0.6	0.0	0.5	8.3		623	26	133	107	10	160	42:	242	11	3.4	216	0.5	1.3	279	40	49	3.1	27	27	11	6.5	38	Zuni
66_1		19.4	19.5	0.69	0.04	0.55	8.3		639	38	121	1160	80	1555	465	247	109	3.1	2083	0.74	1.0	255	345	59	5.8	26	28	11	6.4	40	Zunia
65_2		19.99	19.5	0.42	0.00	1.3	8.5		942	45	127	1561	89	1326	214	264	111	3.3	1771	0.56	0.87	170	262	47	9.8	16	26	9.2	8.9	48	7 unia
65_1		19.99	19.5	0.42	0.00	1.3	8.5		069	45	177	1127	152	1605	190	160	123	4.3	1918	1.1	1.1	223	418	60	11	21	30	14	20	45	Zunia
64_2		19.6	19.8	0.56	0.12	0.89	8.1		33	42	212	263	190	358	249	76	138	8.2	6992	1.3	0.57	200	702	447	1.3	99	12	54	11	12	Zunia
64_{-1}		19.6	19.8	0.56	0.12	0.89	8.1		37	37	227	240	201	322	265	98	140	9.6	6799	1.4	0.38	190	766	896	1.6	88	13	61	11	12	Zunia
63_2		19.3	18.9	0.72	0.04	1.6	8.1		60	26	206	1299	85	813	227	102	96	3.2	2108	7.3	0.55	234	438	63	36	39	10	12	21	39	Zunia
63_1		19.3	18.9	0.72	0.04	1.6	8.1		77	28	215	1121	160	510	240	79	06	4.1	2227	11	0.50	173	580	99	24	60	7.1	14	29	36	Zunia
62d_2		20.69	20.63	0.81	0.06	0.63	8.3		30	8.5	86	1347	80	312	57	25	41	1.9	317	5.3	0.61	18	33	4.9	54	6.8	9.9	1.0	20	262	Interneischlach
62d_1		20.69	20.63	0.81	0.06	0.63	8.3		25	9.9	82	1311	81	321	70	30	43	1.9	352	3.4	0.49	24	33	5.9	51	6.6	7.6	1.4	13	236	Interneischlach
	REM-EDS [%]	Si	A	Na	g	Fe	×	LA-ICP-MS [ppm]	:=	Be	в	Mg	٩	μ	M	Zn	Ga	Ge	Rb	Sr	Zr	qN	Sn	ട	Ba	Та	×	F	Pb	K/Rb	

78_2		19.3	19.8	0.91	0.14	0.53	7.8			259	29	178	433	223	274	48	50	124	8.5	3922	10	0.25	150	539	734	6.8	120	19	22	8.7	20	Glanzalm
78_1		19.3	19.8	0.91	0.14	0.53	7.8			234	37	131	510	194	146	59	65	132	13	4550	8.5	0.25	94	591	1953	24	163	19	26	8.2	17	Glanzalm
77_2		20.51	20.84	0.87	0.01	0.75	8.2			255	21	121	927	06	1559	54	72	120	2.9	2811	1.3	1.0	297	458	56	3.1	36	20	15	8.4	29	Glanzalm
77_1		20.51	20.84	0.87	0.01	0.75	8.2			251	23	123	1224	103	1533	59	74	116	3.4	2806	4.2	1.0	322	488	59	3.2	39	21	16	12	29	Glanzalm
76_2		20.84	20.38	0.71	0.04	1.3	8.8			141	21	59	2085	211	794	169	119	117	3.8	2441	0.27	1.0	396	340	75	13	34	25	11	2.9	36	Michelbach
76_1		20.84	20.38	0.71	0.04	1.3	8.8			150	20	68	2090	190	678	104	97	113	3.1	2205	0.42	1.1	332	334	80	12	35	21	10	3.5	40	Mi chel bach
75_2		20.04	19.4	0.49	0.00	0.92	8.9			182	13	52	2574	80	675	106	83	95	2.1	841	0.85	1.3	108	94	13	7.8	5.6	23	2.8	5.1	106	Michelbach
75_1		20.04	19.4	0.49	0.00	0.92	8.9			191	11	55	2859	94	784	126	75	95	2.0	818	1.1	1.4	103	94	19	16	5.4	26	3.0	6.0	109	Michelbach
74_2		20.41	19.5	0.65	0.05	1.4	8.8			431	19	59	2567	70	513	133	96	94	2.3	859	0.62	1.3	111	184	25	4.6	8.8	24	3.1	4.4	103	Michelbach
74_1		20.41	19.5	0.65	0.05	1.4	8.8			305	16	63	2347	86	628	142	79	103	2.3	857	0.86	1.1	112	174	18	6.1	8.7	22	3.1	4.3	103	Michelbach
72_2		19.5	19.98	0.72	0.02	0.49	8.1			123	25	322	132	228		110	68	16	17	2416	0.41	0.28	66	673	582	12	170	3.7	17	26	33	Grünalmbach
72_1		19.5	19.98	0.72	0.02	0.49	8.1			113	31	339	12	217		200	116	17	17	2475	0.86	0.22	66	655	565	9.8	162	4.4	17	27	33	Grüna Imbach
	REM-EDS [%]	Si	A	Na	g	Fe	к	LA-ICP-MS	[mdd]	:=	Be	в	Mg	٩	i	Mn	Zn	Ga	Ge	Rb	Sr	Zr	ЧN	Sn	ප	Ba	Та	×	F	Pb	K/Rb	Lokalität

53 <u>2</u>		216	19.9	1.0	0.03	0.22	7.6			26	23	85	199	302	216	34	37	88	9.9	3550	0.31	0.44	247	828	330	3.2	82	6.1	22	12	21	STB St. Johann
S3_1		179	19.9	1.0	0.03	0.22	7.6			17	16	67	209	443	179	29	27	68	3.7	3131	0.58	0.36	132	688	593	24	184	3.4	24	16	24	STB St. Johann
S2_2		147	20.77	1.0	0.01	0.55	7.7			54	25	76	72	431	147	49	30	91	4.3	4893	2.7	0.65	157	698	471	1.1	143	4.2	33	34	16	STB St. Johann
S2_1		20.08	20.77	1.0	0.01	0.55	7.7			40	32	85	131	339	173	55	33	98	5.2	4949	3.4	0.40	198	691	397	2.9	116	3.9	30	34	16	STB St. Johann
51 <u>_</u> 2		19.6	22.0	1.2	0.00	0.19	7.5			25	20	101	492	237	218	13	24	91	6.4	3261	0.48	0.37	254	709	271	5.1	70	5.5	20	15	23	STB St. Johann
S1_2_1		19.6	22.0	1.2	0.00	0.19	7.5			32	15	74	365	308	225	7.8	9.0	71	6.3	3230	2.8	0.73	240	580	281	4.6	70	9.9	16	44	23	STB St. Johann
S1_1_2		20.69	20.36	1.1	0.01	0.63	7.8			143	19	154	555	983	200	10		113	10	4244	1.4	1.1	230	1143	402	1.7	88	12	29	47	18	STB St. Johann
S1_1_1		20.69	20.36	1.1	0.01	0.63	7.8			105	26	164	425	843	186	17		130	10	4449	0.42	1.0	241	1181	412	2.1	80	11	33	21	17	STB St. Johann
	REM-EDS [%]	Si	A	Na	പ	Fe	Х	LA-I CP-MS	[mdd]	:-	Be	в	Mg	٩	Ħ	Mn	Zn	Ga	Ge	Rb	Sr	Zr	qN	Sn	ട	Ba	Та	X	F	Pb	K/Rb	Lokalität