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The present work provides an analytic solution for the stiffness to crack length relation inmicroscopic cantilever
shaped fracture specimens based on classical beam theory and substitution of the crack by a virtual rotational
spring element. The resulting compact relationship allows for accounting of the actual beamgeometry and agrees
very well with accompanying finite element simulations. Compared with the only other model present in
literature the proposed relationship reduces the deviation between model and data to a maximum of 1.6%
from the previous minimum of 15%. Thus, the novel solution will help to reduce the necessity for individual sim-
ulations and aim to increase the comparability of elastic-plastic microcantilever fracture experiments in the
future.
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Most approaches quantify crack extension in an indirect way,
through either sequential unloading segments [4] or by an overlaid
sinusoidal signal to the applied force [5,6] to measure the change in
specimen stiffness. Thereafter, this change in stiffness is used to derive
the crack extension.While this seems a trivial elasticity problemand so-
lutions for other geometries are already present in literature [7], for
cantilever shaped specimens various different ways were suggested so
far. Wurster et al. [4] first assumed a classical Euler-Bernoulli beam
with the height being reduced due to the crack extension to describe
the stiffness to crack length relation in their experiments. This initial
beam height reduction (bhr) approach (shown in detail as Supplemen-
tary A) gives a straightforward mathematical formulation. However,
comparing it to recent results from finite element modelling and in-
situ experiments it appears to deviate rather distinct from the actual re-
lation between stiffness and crack length, as shown in [6]. The reason for
this characteristic is because this analysis results in a globally reduced
bending stiffness, whereas the stiffness reduction originating from a
sharp crack is of local nature and therefore less pronounced.

Ast et al. [5] later employed finite element modelling for their
specific geometry,while Alfreider et al. [6] used a polynomialfit through
awide range offinite element data, validated by experiments on various
different materials to ensure a certain degree of geometrical and mate-
rial independence of their approach. However, the correct physical fun-
damental translation from experimentally determined stiffness changes
to actual crack length is still unknown, therefore giving rise to ambiguity
in evaluation of nominally analogous experiments in literature.

To model the realistic situation, a concept in recent works by Biondi
and Caddemi [8] as well as Alijani et al. [9] is adopted, where such sin-
gularities are addressed analytically through Dirac's delta function δ(x)
as a bending slope discontinuity at the crack position by substitution
with a virtual rotational spring ks, in a two-dimensional Euler-
Bernoulli framework, as shown in feature I of the graphical abstract.

The detailedmathematical derivation of the problemcan be found as
supplementary material (Supplementary B), but the final compact rela-
tion states:
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where a is the crack length,W and L are geometric parameters shown in
the graphical abstract (feature I), k and k0 are the stiffnesses of the
cracked and unnotched beam respectively, ν is Poisson's ratio,
r = (L − xc) / L (with xc being the offset of the crack from the base)
and Y(a/W) is a geometry factor. This factor has previously been calcu-
lated for the shown cantilever geometry by various groups, with only
slight deviations among each other as shown by Brinckmann et al.
[10]. The first term of Eq. (1) cannot be solved analytically in the general
case. However, with nowadays computational efficiency it is trivial to
compute the integral approximately, e.g. trapezoidal rule, for a sensible
range of a/W and find the corresponding a by interpolation.

To study the accuracy of the model, it was compared with
two-dimensional linear elastic finite element simulations. They were
conducted using 4-node plane-stress and plane-strain elements and
an isotropic material behaviour with an elastic modulus E0 =
130 GPa and a Poisson's ratio ν = 0.34. The cantilever base was con-
sidered rigid, with a displacement equal to zero, in accordance with
the analytical assumptions taken herein. The calculations were con-
ducted for three different cantilever lengths 3W, 5W and 10W with
W = 2 μm, while r ranges from 0.5 to 0.9 in increments of 0.1,
and a/W spans from 0.05 to 0.9 in 0.05 increments. Thus, a total of
540 different simulations were performed. As expected, no difference
in a/W over k/k0 data was found in comparison between plane stress
and plane strain state, respectively. Hence, all the results summarized
in feature II of the graphical abstract are shown in plane strain con-
dition. There, the finite element data is depicted by symbols, and the
analytical model is shown by the dotted curves in colours
corresponding to the given geometries. The continuous black curve
depicts the bhr model [4]. As shown in Supplementary A the bhr
model is independent of the cantilever geometry when considered
in a normalized manner.

It is evident from the presented data that the proposed analytical
model is in very good agreement with the finite element data and
the changes in geometry are reflected quite well. To estimate the
differences between analytical model and finite element data,
the root mean square deviation was calculated for all combinations of
r and L, revealing the highest deviation to be 1.6% for r = 0.5, L =
10W. In comparison, the bhr model would deviate by 15% from the
data for L = 3W, r = 0.9, which represents the minimum discrepancy
between finite element data and bhrmodel. Notably, isotropic elasticity
was used for convenience. However, due to normalization by the
unnotched beam configuration Eq. (1) is independent of elastic proper-
ties and therefore, errors originating from elastic anisotropy can be
neglected in the given form. In conclusion, the proposed simple and
straight forward analytical model describes the observed physical be-
haviour very well and is recommended to address the stiffness to
crack length conversion in the analysis of miniaturized elastic-plastic
fracture experiments as schematically depicted in feature III of the
graphical abstract.
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In this supplementary document, we will provide the derivation of the beam height reduction 

(bhr) model as well as our novel approach. Note that for convenience we will stay in the frame 

of isotropic elasticity. However, as the final formulation is independent of elastic properties 

due to the normalization by an unnotched configuration possible errors due to anisotropic 

crystal structures can be neglected. 

 

Supplementary A:  

The beam height reduction (bhr) approach after Wurster et al. [1] 

The classical analytical description for the stiffness of an isotropic cantilever, neglecting 

transverse shear stresses, is the Euler-Bernoulli theory: 

 𝑘 =
∆𝑃

∆𝜔
=

3𝐸0𝐼0

𝐿3
=

𝐸0𝐵𝑊3

4𝐿3
 (A1) 

with B being the in-plane thickness of the beam and all other variables as defined previously. 

It is a reasonable first order assumption that a crack of length a reduces the initial unnotched 

beam height W, so that virtually a beam of height W-a remains. Thus, substituting W by W-a 

and rearranging leads to: 

 𝑎 = 𝑊 − √
4𝑘𝐿3

𝐵𝐸0

3

 (A2) 

Furthermore, formulating equation A1 in a normalized manner, i.e. k/k0 results in: 
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𝑘

𝑘0
=

(𝑊 − 𝑎)3

𝑊3
 (A3) 

which leads to: 

 
𝑎

𝑊
= 1 − √

𝑘

𝑘0

3

 (A4) 

Thus, when normalized as shown in feature II of the graphical abstract, this approach is 

independent of the geometric shape of the specimen, which is contradictory to the presented 

finite element simulations. 

 

 

Supplementary B:  

Detailed derivation of the correlation between crack length and cantilever 

stiffness 

To model the realistic situation, a concept from recent works by Biondi and Caddemi [2] as 

well as Alijani et al. [3] is adopted, where such singularities are addressed analytically through 

Dirac’s delta function δ(x) as a bending slope discontinuity at the crack position. Applying this 

to the depicted problem leads to an Euler-Bernoulli beam equation as follows: 

 𝐸0𝐼0 (1 − 𝛾𝛿(𝑥 − 𝑥c)) 𝜔′′(𝑥) = 𝑃(𝐿 − 𝑥) (B1) 

where E0 is the elastic modulus and I0 the moment of inertia of the unnotched beam, xc is the 

position of the crack, ω is the deflection, thus ω’’(x) is the second derivative with respect to x 

and represents the curvature, and P is the point load acting on the cantilever. Deflection and 

load are positive in downward direction, as is common for these experiments. The strength of 

the Dirac delta singularity is described by γ and is a function of the crack length relative to the 

specimen height a/W for the present problem.  

Laplace transformation is a well-known method to address differential mathematical 

problems that inhibit singularities, e.g. Dirac’s delta or step functions, such as the initial 

mathematical problem of interest herein. Hence, one can start with a transformation of 

equation B1 as: 

 

 𝐸0𝐼0 𝓛 ((1 − 𝛾𝛿(𝑥 − 𝑥c)) 𝜔′′(𝑥)) = 𝑃𝓛(𝐿 − 𝑥) (B2) 

resulting in: 

 𝐸0𝐼0[𝑠2𝑾(𝑠) − 𝑠𝜔(0) − 𝜔′(0) − 𝛾𝜔′′(𝑥c)𝑒−𝑥𝑐𝑠] = 𝑃
𝐿𝑠 − 1

𝑠2
 (B3) 
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where s is the complex variable and W(s) =ℒ(ω(x)) is the Laplace transformation of the 

deflection. In the classical picture of a beam with an infinitely rigid base it is known that ω(0)=0 

and ω’(0)=0. Furthermore, it is assumed that ω’’(xc) is constant. Thus, one can rearrange 

equation B3 into: 

 𝑾(𝑠) =
𝑃

𝐸0𝐼0

𝐿𝑠 − 1

𝑠4
+ 𝛾𝜔′′(𝑥𝑐)

𝑒−𝑥𝑐𝑠

𝑠2
 (B4) 

hence 

 𝜔(𝑥) = 𝓛−𝟏(𝑾(𝑠)) =
𝑃

𝐸0𝐼0

3𝐿𝑥2 − 𝑥3

6
+ 𝛾𝜔′′(𝑥𝑐)(𝐿 − 𝑥𝑐) 𝜎(𝐿 − 𝑥𝑐) (B5) 

where σ(x) is the Heaviside function, which equals 1 for L-xc>0 (the only physically reasonable 

case). As the focus lies solely on the load line displacement, one can evaluate ω(L) from 

equation B5, resulting in: 

 
𝜔(𝐿) =

𝑃𝐿3

3𝐸𝐼
+ 𝛾 𝜔′′(𝑥c)(𝐿 − 𝑥c) = 𝜔0 + 𝛾 𝜔′′(𝑥c)(𝐿 − 𝑥c) (B6) 

It is evident that the deflection is increasing compared to the deflection of the unnotched 

cantilever ω0 by a term dependent on the strength of Dirac’s delta γ, the curvature at the 

position of the crack ω’’(xc), and the lever between load and crack position (L-xc). Substituting 

the crack virtually by a discrete rotational spring, as shown schematically in feature I of the 

graphical abstract, allows a connection between spring stiffness ks and the strength of the 

singularity γ [3]: 

 
𝛾 =

𝐸0𝐼0

𝑘s + 𝐸0𝐼0𝐴
 (B7) 

where A=2.013 is a constant value, based on the product of two Dirac delta functions at the 

same position [2]. The stiffness ks of this rotational spring is known to be described by [3]: 

 
𝑘𝑠

−1 =
2𝐵(1 − 𝜈2)

𝐸0
∫ (

𝐾I

𝑀
)

2

𝑑𝑎
𝑎

0

 (B8) 

where B is the depth of the cantilever in plane, ν is Poisson’s ratio, M=PL is the bending 

moment, and KI is the stress intensity factor at the notch under mode I loading condition. 

Given the classical formulation for stress intensity and loading geometry [4,5], one can write: 

 
𝐾I = 𝜎√𝜋𝑎 𝑌 (

𝑎

𝑤
) =

6𝑃𝐿

𝐵𝑊2 √𝜋𝑎 𝑌 (
𝑎

𝑤
) (B9) 

where Y(a/W) is a geometry factor. This has previously been calculated for the shown 

cantilever geometry by various groups [1,5–7], with only slight deviations from each other as 

shown by Brinckmann et. al. [8]. All calculations shown herein are conducted using the 

analytical solution for Y(a/W) by Riedl et al. [5], which takes into account only bending 

stresses. Substituting equation B5 into equation B4, and rearranging leads to: 



 
 

4/5 
 

 
𝑘s

−1 =
6𝜋(1 − 𝜈2)

𝐸0𝐼0
∫

𝑎

𝑊
 𝑌 (

𝑎

𝑤
)

2

𝑑𝑎
𝑎

0

=
6𝜋(1 − 𝜈2)

𝐸0𝐼0
 

1

𝐺(𝑎, 𝑊)
 (B10) 

where G(a,W) is a function of the crack length a and the cantilever height W only, and can be 

easily evaluated numerically for a given configuration and a sensible range of a/W. 

As all of the experimental specimens have slightly different geometries depending on the 

fabrication route and material features, the stiffness change is commonly not used as an 

absolute value, but rather as a relative measure, normalized by the stiffness of the unnotched 

beam k0: 

 𝑘

𝑘0
=

𝜔0

𝜔(𝐿)
 (B11) 

Thus, substituting equations B6, B7 and B10 into B11 and rearranging leads to: 

 
𝐺(𝑎, 𝑊) = 6𝜋(1 − 𝜈2) (

3𝑟2

(𝑘0/𝑘 − 1)𝐿
− 𝐴)  (B12) 

under the assumption of E0I0ω’’(xc)=P(L-xc) and with r=(L-xc)/L. 

Notably, the result is a rather compact relation between the stiffness of a cracked cantilever k 

and the function of its crack length G(a,W) which is only depending on the actual specimen 

geometry. Furthermore, as A=2.013 is a constant value and L usually in the range of  

10-4 – 10-6 m for microcantilever experiments, A does not have a noticeable contribution. For 

a typical specimen of L=10 µm and r=0.8 the average deviation between equation B8 with and 

without the term A is 20 ppm. Even up to L=10-3 m it is only 0.56% for r=0.9 and increases up 

to 1.83% for r=0.5, which is already a rather unlikely geometry, thus suggesting that A can be 

safely neglected for the experiments considered herein. Therefore, equation B12 simplifies 

to: 

 
∫

𝑎

𝑊
𝑌 (

𝑎

𝑊
)

2

𝑑𝑎 =
1

𝐺(𝑎, 𝑊)
=

𝑎

0

(𝑘0/𝑘 − 1)𝐿

18𝜋(1 − 𝜈2)𝑟2
 (B13) 

The translation from G(a,W) to the crack length a cannot be solved analytically, as the 

geometry functions Y(a/W) turn out to be very complex or of higher order polynomial degree, 

which, to the best of the authors knowledge, makes finding an inverse function impossible. 

However, with nowadays improved computational efficiency the dependency of a over 

G(a,W) for a sensible range of a/W can be carried out numerically, for example spanning 

values from 0.1-0.9, to then conveniently find the corresponding a for a given G(a,W), i.e. a 

given stiffness k, by interpolation. 
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