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Kurzfassung

Diese Masterarbeit wurde in Zusammenarbeit mit dem österreichischen Forschungsinstitut

Austrian Institute of Technology (AIT) im Rahmen des GEOFIT Forschungsprojektes durch-

geführt, welches Teil des Förderprogrammes Horizon 2020 der Europäischen Union ist. Das

Ziel dieser Masterarbeit ist die Modellierung des Wärmeflusses im unmittelbaren Umfeld von

kompakten Erdwärmetauschern in unterschiedlichen Substraten. Die Lösungen dieser so-

genannten Nahfeldmodelle werden als Eingabeparameter für die weitere Fernfeldmodellie-

rung dienen, die von den GEOFIT -Partnern des AIT durchgeführt wird. Erdwärmekörbe und

Ringgrabenkollektoren stellten sich für diesen Zweck als am besten geeignete geometrische

Erdwärmetauscherkonfigurationen heraus und entsprechende Modelle mit der CFD-Software

ANSYS Fluent wurden entwickelt.

Der Einfluss der Materialeigenschaften Wärmeleitfähigkeit und Wärmediffusivität des wärme-

leitenden Mediums auf den Wärmetransport wurde für Sande und Humuserden mit unter-

schiedlichem Feuchtegehalt untersucht. Da die Variation des wärmeleitenden Substrats im

großräumigen Erdwärmekorbexperiment des AIT einen großen Zeit- und Arbeitsaufwand er-

fordert, wurde ein kleineres „Thermo-Pipe“ Experiment entwickelt. Das Ziel des Thermo-Pipe

Experimentes ist, das thermische Verhalten verschiedener wärmeleitender Substrate zu mo-

dellieren und zu testen, bevor sie im großen Erdwärmekorbexperiment eingesetzt werden.

Das entsprechende CFD-Modell wurde im Rahmen dieser Arbeit ebenfalls entwickelt und

dessen Ergebnisse mit den experimentell gemessenen Daten verglichen. Um die Ergebnisse

der Erdwärmetauschermodelle weiter zu untermauern, wurden außerdem die maßgeblichen

physikalischen Konzepte des Wärmetransports der numerischen ANSYS Fluent Software un-

tersucht. Um den analytischen Rechenaufwand zu reduzieren und damit eine analytische

Lösung zu ermöglichen, wurde ein geometrisch vereinfachtes Modell erstellt. Die analytisch

berechnete Lösung wurde dann mit der numerisch berechneten Lösung der Software ver-

glichen und zeigte sehr genaue Übereinstimmungen für unterschiedliche zeitunabhängige

Wärmeeinträge. Aus der analytischen Lösung lässt sich ableiten, dass die Wärmeleitfähig-

keit die einzige Materialeigenschaft ist, die in der stationären Lösung auftritt und somit die

maximal auftretende Temperatur beim Erreichen des thermischen Gleichgewichts direkt be-

einflusst. Die Wärmediffusivität, die auch Temperaturleitfähigkeit genannt wird, tritt dagegen

ausschließlich im instationären Bereich der Lösung auf und beeinflusst die Zeit die benötigt

wird, bis das thermische Gleichgewicht im System erreicht ist. Um die Ergebnisse der Wärme-

tauschermodelle zu validieren, wurden sie mit einem bereits vorhandenen Modell und einem

entsprechenden Experiment verglichen, welche vom AIT erstellt wurden.

Diese Arbeit trägt zur Grundlage der Zielsetzung des GEOFIT -Projekts bei, nämlich ein „Engi-

neering Tool“ basierend auf akkuraten Wärmestrommodellen zur genauen Auslegung kom-

pakter Erdwärmetauscher zu entwickeln, welche zur geothermischen Nachrüstung europäi-

scher Haushalte geeignet sind.
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Abstract

This master’s thesis was conducted in collaboration with the Austrian Institute of Technology

(AIT) as part of the GEOFIT research project’s framework, funded by the European Union’s

Horizon 2020 programme.

The objective of this thesis is to model heat flow in the vicinity or “near-field” of non-standard

compact ground source heat exchangers in varying substrates. Earth baskets and horizontal

slinky heat exchangers have been chosen as the most suitable geometric configurations to

be examined and corresponding models with the CFD software ANSYS Fluent were devel-

oped.

The influence of the heat conducting medium’s material properties affecting the heat transport,

namely the thermal conductivity and thermal diffusivity, was investigated for sands and soils

with varying moisture content. As the variation of the heat conducting substrate in the AIT’s

large-scale earth basket experiment requires significant time and man-power, a small-scale

experiment named the “Thermo-Pipe” was developed at AIT. The objective of the Thermo-

Pipe is to model and test the thermal response of varying heat conducting substrates before

they qualify to be used in the large-scale experiment. The corresponding model has been de-

veloped as part of the framework of this thesis as well and its matching results were compared

to the experimentally measured data. Additionally, to further substantiate the models’ results,

the governing physical concepts of heat transport incorporated in the numeric ANSYS Fluent

solver were investigated. This was accomplished through creating a geometrically simplified

model, to reduce the calculation effort and thus make an analytical solution possible.

The analytically calculated solution was then compared to the solver’s numerically calculated

solution and showed highly accurate matches for varying time-independent heat inputs. The

analytical solution has shown that the thermal conductivity is the sole material property ap-

pearing in the steady-state solution and thus directly influences the maximum temperature

reached at the system’s thermal equilibrium. The thermal diffusivity on the other hand ap-

pears in the transient solution and influences the time it takes until the thermal equilibrium is

reached. This could be observed in the CFD solutions for varying substrates as well. To vali-

date the results of the heat exchangers’ models, they were compared to a pre-existing model

and corresponding experiment, developed at AIT.

The solutions of these near-field models will serve as input parameters for further far-field

modelling, conducted by the AIT’s GEOFIT partners. This thesis aims to contribute to the

groundwork of the GEOFIT project’s greater objective, to develop an engineering design tool

through accurate heat flow modelling for compact ground source heat exchangers applicable

in large-scale geothermal retrofitting of pre-existing European housing.
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1 Introduction 1

1 Introduction

Technologies which increase the energy efficiency of residential buildings are beginning to

play a central role in renewable energy policies of European states. A multitude of European

governments have placed considerable attention and resources, aimed at retrofitting residen-

tial housing to higher energy efficiency standards, through direct government grants or funded

research projects (Rau et al., 2019). Thus, an opportunity presents itself for geothermal heat-

ing technologies.

The research project GEOFIT, funded by the European Union’s Horizon 2020 programme,

aims to take this opportunity and address a variety of research topics connected to geother-

mal retrofitting of residential housing. One of the research topics is the design and construc-

tion of shallow ground source heat exchangers in urban environments, where surface area is

limited and drilling solutions for vertical borehole heat exchangers in individual households are

not viable. This is due to pre-existing underground city services infrastructure. An objective

of the GEOFIT research project is the creation of a better understanding of unconventional

compact shallow ground source heat exchangers and to subsequently increase their technol-

ogy readiness level. The focus of this thesis is placed on two non-standard ground source

heat exchanger designs, namely the earth basket and the horizontal slinky heat exchanger.

Furthermore, Computational Fluid Dynamics (CFD) models simulating the heat flow in the im-

mediate vicinity or near-field of these heat exchanger types have been created as part of the

framework of this thesis. They will contribute to the necessary research groundwork and sub-

sequently aid in the development of accurate engineering tools for compact shallow ground

source heat exchangers.

To substantiate these models, a pre-existing earth basket experiment with a corresponding

model was developed by the AIT. As previously mentioned, the heat flow in the near-field of

the earth basket heat exchanger geometry is investigated by the AIT’s GEOFIT team. In order

to accurately measure this heat flow in the substrate surrounding the heat exchanger under

experimental conditions, the direction of the heat flow has been reversed in the experiment.

A heating cable, on which a constant and measurable heat input can be applied to, was used

as a heat source and has been moulded into the helical shape of an earth basket. Accurate

temperature sensors were placed in the substrate surrounding the heating coil. In order to

accurately control the ambient temperature, the large box containing this experimental setup

was placed in a cooling chamber. The temperature field inside the container is then recorded

until the thermal equilibrium is reached. Probes of the experiment’s substrate were taken and

the material properties thermal conductivity, specific heat capacity and in-situ bulk density

were accurately measured by the AIT laboratory engineers. These material parameters were

then used to develop CFD models with the measured parameters describing the heat con-

ductive medium. In order to create a basis for a meaningful comparison between experiment

and simulation, the models have been setup identically to the experiment. The recorded tem-
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perature data of the AIT’s earth basket experiment and the corresponding CFD simulation’s

results are compared in chapter seven. An accurate match will further validate the additional

models of geometric and material property variations, that were created with identical external

parameters such as control volume, boundary and initial conditions and heat input as part of

the framework of this thesis. Their results will be presented towards the end of this thesis, in

chapters eight and nine.

To further support these models, the physical concepts of heat conduction used by the numeric

solver have been verified by comparing an analytically calculated solution with results of the

numeric solver. In order to make an analytical solution possible, the calculation effort had to be

significantly reduced. Thus, a geometrically simplified rod model was created, whose solution

could be calculated by solving the one-dimensional heat equation with a time-independent

source term. The solutions’ accuracy was then tested for a heat input function depending on

the position with varying amplitudes, maximum positions and curve widths. These results, as

well as the calculation steps are presented in chapter five.

As the previously explained earth basket experiment has large dimensions, varying the heat

conductive medium is a time-consuming process. Therefore, a small-scale experiment named

the "Thermo-Pipe" was developed by the AIT, to test the heat conductive behaviour of sub-

strates before they are implemented in the large-scale earth basket experiment. If the "Thermo-

Pipe" experiment and corresponding model provide matching and satisfying results, the tested

heat conductive medium may be used in an experimental run of the slinky heat exchanger ex-

periment. The corresponding CFD model was developed as part of the framework of this

thesis and the experimental results are compared to the simulated data in chapter six.

Before the developed double earth basket and horizontal slinky heat exchanger models, as

well as the material property variation, are presented and discussed, a brief literature review

of the functionality and applications of shallow ground source heat exchangers and the basic

physical principles behind heat transport will be presented in chapters three and four respec-

tively. In the following chapter two, the GEOFIT research project and the contribution of this

thesis will be presented in detail.
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2 The GEOFIT Research Project

GEOFIT (Grant Agreement No. 792210) is a research project funded by the European Union’s

Horizon 2020 programme incorporating 24 partners across the EU. The project began in May

2018 and its expected duration is 4 years; furthermore, the coordination of the project is lo-

cated in Italy. The goal of the project is to implement and deploy cost effective geothermal

systems through energy efficient building retrofitting. According to “GEOFIT – Project Ob-

jectives” (2020), the building industry is responsible for over a third of Europe’s annual CO2

emissions. Hence, the call for the project arose due to European targets for energy efficient

and renewable energy in existing buildings.

2.1 Objectives

An opportunity presents itself, whereby shallow geothermal applications can be utilised in

buildings. However, it should be noted that its adoption is hampered by long installation times

and costs. Additionally, technical difficulties arise when coupling heat pumps with existing high

temperature heating systems, as well as the risk of structural damages resulting from drilling

activities. The GEOFIT project intends to mitigate these hindrances through the following

goals: 1

1. Innovative geothermal systems, whereby the systems are specifically developed for geother-

mal based retrofitting. This encompasses an optimisation and integration of the geothermal

system’s components, as well as novel heat exchange concepts. Furthermore, the project will

incorporate cost effective heat pumps, innovative heating and cooling components, as well as

progressive IT control and monitoring technologies.

2. Integrate advanced methods of work site inspection, such as ground research, building

structural monitoring, Thermal Response Test (TRT) methods and work site characterisation.

The approach used to achieve this is a multi-stakeholder and collaborative method, grounded

predominantly on integrated delivery projects.

3. For the stock of existing buildings in Europe, the goal is to implement a global, energy-

efficient retrofitting strategy.

1GEOFIT – project objectives. (2020). Retrieved February 26, 2020, from https://geofit-project.eu/
project/objectives/
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2.2 Problem Description

The GEOFIT project intends to use compact geothermal heat exchangers, as an alternative

to the currently most wide spread ground source heat exchanger systems in Europe, namely;

vertical borehole heat exchangers. These heat exchangers are installed at depths ranging

between 100 m and 300 m and have been used for more than 30 years worldwide. However,

this technology has a number of disadvantages, which do not make it suitable for efficient

large-scale building retrofitting in densely populated areas. Namely, high installation costs

created through drilling and environmental concerns when water bearing formations are tra-

versed. Furthermore, in urban environments this technology isn’t suitable due to pre-existing

and complex underground city services infrastructure. The solution to these issues are shal-

low compact ground source heat exchangers such as helical slinky heat exchangers or “earth

baskets”. These non-standard heat exchangers are pivotal in retrofit applications, to reduce

costs and to enable the retrofitting to geothermal heating systems, where drilling is not possi-

ble and large available surface areas are not a given (“GEOFIT – Compact Geothermal Heat

Exchangers”, 2020).

Thus, a study has been conducted on the limiting factors of non-standard, compact ground

source heat exchangers (“GEOFIT – Compact Geothermal Heat Exchangers”, 2020). One

of the limiting factors is the absence of standardised TRT methods specifically designed for

non-standard and highly flexible configurations. The lack of specific TRT methods makes con-

tractors and installers choose other types of heat exchangers with standardised TRT methods,

such as vertical borehole heat exchangers. Due to the high grade of uncertainty and since the

optimal heat exchanger configurations (depending on the required thermal capacity) are not

exactly known, most of these installations have been drastically over-sized. Often to the point,

where their initial cost benefits over other technologies were mitigated. This reduced the ac-

ceptance of the technology, due to the perceived risks and higher costs due to over-sizing.

2.3 Work Package Three

The AIT’s GEOFIT deliverable addresses this issue as a part of the GEOFIT work package

three. As described in “GEOFIT – Project Objectives” (2020), in order to allow geothermal

systems to be retrofitted in urban areas where drilling proves to be economically not viable,

as well as to reduce the overall cost, alternatives such as compact geometries based on

helical slinky heat exchangers or “earth baskets” have been considered and will be optimised.

Such non-standard heat exchangers for limited spaces are essential in retrofit applications,

for reducing costs and allowing systems to be realised where deep drilling is not possible.

The state of the art will be advanced through field-test campaigns in a variety of European

countries and with a variety of housing types and by developing new test methods. The

GEOFIT project aims to target the development and standardisation of special TRT methods

for novel shallow heat exchanger designs, such as basket and helix configurations (“GEOFIT
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– Compact Geothermal Heat Exchangers”, 2020).

Experimentally validated CFD models of heat exchangers will enable the optimisation of indi-

vidual heat exchangers’ configurations and thus, further significantly advance the current state

of the art (“GEOFIT – Compact Geothermal Heat Exchangers”, 2020). The ultimate goal of

the WP3 deliverable, namely the development of design tools which are derived from accurate

heat flow models, will ensure that the ground source heat exchanger is not over or under-

sized and possesses the optimal thermal and economical design required for the respective

heating or cooling capacity at the intended efficiency (“GEOFIT – Compact Geothermal Heat

Exchangers”, 2020).

2.3.1 Thesis Contribution

This thesis contributes to the AIT’s work package three deliverable of the GEOFIT project.

A CFD analysis with the software ANSYS Fluent of different slinky heat exchanger geome-

tries will be performed in order to advance the understanding of heat flow around slinky heat

exchangers in different substrates. The models’ results are then compared to a pre-existing

experiment with a corresponding model conducted by the AIT. The AIT is responsible for

researching the heat flow through the ground’s substrate in the compact heat exchanger’s

vicinity or "near-field" through CFD modelling and experimental runs. The work package three

partners like EURECAT from Spain or Groenholland from the Netherlands simultaneously

model the thermal "far-field" behaviour and use the AIT’s computed near-field results as in-

put data. Therefore, the results of the models presented in this thesis can be exported onto a

cylindrical shaped surface at every time step, which serves as an input parameter for the AIT’s

GEOFIT partners responsible for further far-field modelling. This will contribute towards the

larger GEOFIT goal previously discussed, namely the development of TRT methods and engi-

neering design tools for compact shallow ground source heat exchangers (“GEOFIT – Project

Objectives”, 2020). Addressing the issue from the point of view of the client, the risks and

costs involved with over and under-sized ground source heat exchangers will be mitigated, as

the engineering tool will allow designers and engineers to accurately verify site conditions and

design parameters (“GEOFIT – Project Objectives”, 2020). Therefore, the risk of choosing

geothermal technology will be greatly reduced and its acceptance increased.
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3 Shallow Ground Source Heat Exchangers

Shallow geothermal energy is a renewable energy source which is available almost every-

where, offering a clean energy form as an alternative to fossil fuels (Javadi et al., 2019).

Generally, shallow geothermal energy systems pertain wells with a depth fewer than 250 m,

whereby heat is exchanged with the ground to provide heating and cooling to buildings (Javadi

et al., 2019). As discussed by Florides and Kalogirou (2007), the temperature of the ground

at a specific depth remains fairly constant throughout the year and the ground capacitance

can therefore be regarded as a passive source of heating and cooling. They further elabo-

rate, that the reason for this constant temperature is due to the diminishment of temperature

fluctuations below the surface of the ground. This is a result of the high thermal inertia of the

soil as the depth of the ground increases. Thus, at a sufficient depth, the ground temperature

will always be higher than that of the outside air in winter and lower in summer (Florides &

Kalogirou, 2007). This difference in temperature between the ground and outside air can be

utilised as preheating means in winter and pre-cooling in summer. In order to harness this

heat effectively, a heat-exchanger system is constructed (Florides & Kalogirou, 2007).

3.1 Open Loop Systems

There are two types of ground source heat exchangers; namely, open (ground-water) and

closed (ground-coupled) systems (Javadi et al., 2019). As shown in Figure 1a below, in most

cases in open systems two wells are required, one is required to extract the ground water

and the other injects it back into the water-bearing layer (Florides & Kalogirou, 2007). Proper

planning is required when using a production / injection doublet, for example the amount and

rate of water abstraction and the distance between the two wells (Manzella, 2015). However,

it is possible that a single open well can be utilised instead, whereby the ground water is not

re-injected back into the aquifer. Instead, the water is released at the surface and the cost

of a second borehole is mitigated. However, this is only recommended when there are no

negative environmental impacts or risk of reducing the groundwater level (Manzella, 2015).

Open systems pertain the advantages of utilising natural water which is “free” for cooling or

drinking depending on its quality (Manzella, 2015). Additional cost reductions can be realised

by using the single well configuration, whereby the water is released at the surface into a

nearby pond, stream or sewage system. Open loop systems generally absorb more heat from

the ground than a comparable closed loop configuration of similar size (Manzella, 2015).

3.2 Closed Loop Systems

The other type of ground source heat exchanger is a closed system, where continuous pipe

loops are placed horizontally or vertically in the ground and circulate the heat carrier fluid

(Eswiasi & Mukhopadhyaya, 2020). These pipes are typically made from high-density polyethy-
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lene and contain a mixture of water and anti-freeze on Glycol basis (Manzella, 2015). In

shallow geothermal applications these closed systems are the most common. A schematic

representation of a closed loop system is displayed in Figure 1b below. In the horizontal op-

tion, pipes are placed in either series or parallel arrangements. Furthermore, in the horizontal

configuration pipes are also occasionally placed in curled loops called "slinky" arrangements,

for land space saving purposes, while still maximising the heat exchanger’s surface contact

with the ground (Eswiasi & Mukhopadhyaya, 2020).

(a) Open Loop System (b) Closed Loop System

Figure 1: Schematic representation of open and closed loop geothermal systems. 1

3.2.1 Borehole Heat Exchangers

Vertical ground source heat exchangers, also more commonly known as borehole heat ex-

changers, are installed when a significant heat exchange capacity is required and the surface

area is limited (Florides & Kalogirou, 2007). The depth of borehole heat exchangers varies

significantly and largely depends on the required capacitance and the local geothermal gra-

dient. Said gradient has an average value of 3.5 ◦C per 100 m, but may vary significantly

depending on the geographic location. Depending on national law, private applications may

reach depths between 250m and 300m. The high temperatures reached in these installations

may therefore not only be utilised for spatial room heating, but also for hot water applications,

thus mitigating the necessity for electric or gas powered boilers. After the borehole is drilled

the tubing is installed in various configurations, such as single or double U-tubes or coaxial

tubing, and fixated by a thermally conductive grouting (Javadi et al., 2019). The challenge in

these installations lies in the high temperature difference between inlet and outlet, whereby

the flow and return tubing are situated in each others vicinity inside the borehole. To minimise

the cooling effect of the return flow in the upper part of the borehole, insulation material should

be applied cautiously.

1Reprinted from Al-Khoury, R. (2011). Computational modeling of shallow geothermal systems. CRC
Press, p. 4
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3.2.2 Horizontal Heat Exchangers

Horizontal ground source heat exchangers are the most cost-effective arrangement, as their

trenches are easy to dig (Javadi et al., 2019). However, it should be noted that horizontal

ground source heat exchangers require a large surface area and are therefore rarely used

in the heating and cooling of larger buildings in densely populated areas (Manzella, 2015).

In order to maximise the horizontal heat exchanger’s surface contact with the ground and to

minimise the large surface area required, the underground piping may be arranged in many

geometrical variations of beneficial loops and coils. Horizontal slinky heat exchangers consist

out of coiled piping connected in series with a specified overlap called the loop pitch. The

schematic of a possible horizontal slinky heat exchanger configuration is displayed in Figure

2a below. This interesting configuration minimises the required surface area to be dug up

and is often placed around the outer edges of properties, with minimally invasive installation

procedures. This geothermal ground source heat exchanger configuration is also modelled

as part of the framework of this thesis.

(a) Horizontal Slinky 2 (b) Earth Baskets 3

Figure 2: Schematic representation of horizontal slinky and earth basket heat exchangers.

2Reprinted from Xiong, Z., Fisher, D. E., & Spitler, J. D. (2015). Development and validation of a
slinkyTM ground heat exchanger model. Applied Energy, 141, 57–69. https://doi.org/10.1016/j.
apenergy.2014.11.058, p. 58

3Reprinted from Manzella, A. (2015). Geothermal energy [Publisher: EDP Sciences]. EPJ Web of

Conferences, 98(4004), 22. https://doi.org/10.1051/epjconf/20159804004, p. 7
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3.2.3 Earth Baskets

An attractive and cost-efficient alternative to vertical borehole heat exchangers and horizontal

ground source heat exchangers is a vertical helix heat exchanger. These helical shaped bas-

kets are commonly known as earth baskets and will be referred to as earth baskets throughout

this thesis. Earth baskets consist of a heat exchanging loop, which is buried at a shallow depth

in the ground, forming a cylindrical or a truncated cone helix, as shown in Figure 2b above

(Conti, 2018). The advantages of using earth baskets as opposed to vertical boreholes, is

that they have significantly less installation costs due to trench excavation being considerably

less expensive than drilling vertical boreholes (Xiong et al., 2015). In comparison to horizon-

tal ground source heat exchangers, earth baskets require significantly less land surface area

for installation. Therefore, one can argue that earth baskets boast a hybrid cost effective al-

ternative, whereby they mitigate costs such as drilling and materials in addition to requiring

less land surface area. For geothermal building retrofitting in densely populated areas, where

underground city infrastructure makes the drilling of numerous borehole heat exchangers eco-

nomically unviable and the surface space required for extensive horizontal heat exchangers is

sparse, the earth basket’s advantages make this type of ground source heat exchanger highly

interesting for the GEOFIT research project.
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4 Principles of Heat Transport

Wetzel and von Böckh (2012) define the essence of heat transport as the following: "Heat

transfer is the transport of thermal energy, due to a spacial temperature difference" (p. 1). The

second law of thermodynamics describes the direction of heat transfer, whereby heat always

flows spontaneously from a hotter region to a colder region. As Al-Khoury (2011) explains,

this heat flow between two regions posing a spacial temperature difference will continue until

both regions reach thermal equilibrium or "steady-state" conditions. In this state they both

possess the same temperature and no further change in temperature over time is recorded.

The temperature gradient over time is thus zero: ∂T
∂t

= 0. If the observed system’s heat

flow has not reached steady-state conditions yet and is in the "transient" state, the change

in temperature recorded over the change in time is equal to a function f depending on the

time t: ∂T
∂t

= f(t). Heat may be transferred in three different ways called modes, namely

thermal conduction, convection and radiation. These three heat transfer modes are graphically

depicted in Figure 3 below.

(a) Conduction (b) Convection / Advection (c) Radiation

Figure 3: Modes of heat transfer. 1

4.1 Thermal Conduction

Figure 3a above visualises the process of heat transfer through a solid medium. This mode

is called thermal conduction and is also sometimes referred to as heat diffusion (Al-Khoury,

2011). In solid materials or static fluids thermal conduction occurs when a spatial temperature

gradient is present, as indicated with the higher temperature ϑ1 and lower temperature ϑ2 in

Figure 3a above. Heat is transferred from the solid’s hot surface through the body to its cold

surface. On a microscopic level, heat is transferred through collisions of adjacent molecules or

atoms. An increase in temperature coincides with an energy increase of molecules and atoms,

which in return causes them to move or vibrate faster resulting in more frequent collisions with

neighbouring molecules or atoms. This transfer in kinetic energy is called heat conduction and

1Reprinted from Wetzel, T., & von Böckh, P. (2012). Heat transfer: Basics and practice. Berlin,
Heidelberg, Springer. https://doi.org/10.1007/978-3-642-19183-1, p. 3
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thus thermal energy can be seen as a form of kinetic energy. Therefore thermal conduction

is the dominant mode of heat transfer in solids and static fluids, where molecules and atoms

are packed closely together (Al-Khoury, 2011). As Al-Khoury (2011) states, on a macroscopic

level thermal conduction is described by the heat flux, defined as the heat transfer rate per

unit area normal to the direction of heat flow. This heat flux is defined by Fourier’s law of heat

conduction and takes the following form for one-dimensional heat conduction as depicted in

Eq. (1) below (Al-Khoury, 2011):

qx = −λx ·
∂T

∂x
(1)

This law is the governing principle behind heat transport in the heat exchanger models created

as part of the framework of this thesis. Fourier’s law of heat conduction in Eq. (5) and the heat

conduction or diffusion equation will be discussed in further detail during the calculation of a

geometrically simplified model’s analytical solution in the following chapter.

4.2 Thermal Convection

As Wetzel and von Böckh (2012) explain, heat transfer is differentiated between solids or

static fluids and fluids in motion. Heat transfer within a fluid in motion is called convective heat

transfer or thermal convection. In Figure 3b above, heat transport between a solid wall and a

moving fluid is visualised. The solid wall has a higher temperature ϑ1 than the fluid in contact

with the wall ϑ2. This results in heat being transported from the static wall to the fluid in motion.

Wetzel and von Böckh (2012) explain, that this heat transport occurs through two modes, firstly

through thermal conduction between the solid wall and the fluid’s static boundary layer which

is in contact with the wall and secondly, through convective heat transport within the fluid.

Once heat has been transferred through thermal conduction to the static fluid molecules in

the boundary layer, these molecules expand due to the experienced increase in temperature.

Expanded molecules with a higher temperature have a lower density than the surrounding

colder molecules and begin to rise within the static fluid. The heat transported through this

diffusion of molecules with higher temperature and lower density is called free convection. A

further differentiation is made between free convection and forced convection, also referred

to as advection. While during free convection the fluid’s motion is created by gravity due to

the molecule’s difference in density caused by a spatial temperature gradient, during forced

convection or advection, the fluid flow is created by an external pressure gradient (Wetzel &

von Böckh, 2012). This is displayed in Figure 3b above. Al-Khoury (2011) states, that on a

microscopic scale thermal convection is caused by thermal diffusion, while on a macroscopic

scale heat is being transported through the resulting bulk fluid motion. This combination

between diffusion and advection can also be recognised in the convective heat flux, which is

displayed in its one-dimensional form in Eq. (2) below (Al-Khoury, 2011):

qx = −λx ·
∂T

∂x
+ ρ · cp · ux · T (2)
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In Eq. (2) above, the first term with the thermal conductivity in x-direction λx is the diffusive

term, while the latter term with the material properties like density ρ and specific heat capacity

cp and the fluid’s velocity in x-direction ux is called the advective term. Al-Khoury (2011)

further elaborates, that convective heat transports from a boundary surface of temperature ϑ1

that is exposed to a low velocity fluid of temperature ϑ2, as it is depicted in Figure 3b above,

may be described by Newton’s law of cooling:

q = h · (ϑ1 − ϑ2) (3)

Whereby h in Eq. (3) above is the convective heat transfer coefficient.

4.3 Thermal Radiation

The third and last possible mode of heat transport is thermal radiation. Wetzel and von Böckh

(2012) explain, that all matter which consists out of more than two atoms per molecule and

possesses a finite temperature, will emit energy in the from of electromagnetic waves. This

means that thermal radiation is the only form of heat transport that can occur without contact

or the existence of an intervening medium (Wetzel & von Böckh, 2012). This is displayed in

Figure 3c above, whereby two solid bodies with different temperatures ϑ1 and ϑ2 are sepa-

rated by a vacuum. Both bodies will emit and absorb a heat flux, yet the emission of the body

with the higher temperature ϑ1 has a higher intensity (Wetzel & von Böckh, 2012). Thus, ac-

cording to Wetzel and von Böckh (2012), thermal radiation can be defined as the result of the

exchange of electromagnetic waves between two surfaces with differing temperature. This

is formulated by Stefan Boltzmann’s law. In reality, heat transport occurs as a combination

of all three heat transfer modes that contribute to the total transferred heat with significantly

different proportions. Al-Khoury (2011) agrees, that for the purpose of investigating heat flow

in the vicinity of shallow geothermal heat exchangers, heat transfer through thermal radiation

has a negligible effect and is therefore not further discussed in this thesis.
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5 Analytical Solution

In order to display and verify the physical concepts behind the numeric ANSYS Fluent solver,

a hand-calculated analytical solution and the numerically solved solution of a simplified heat

conduction model are compared in the following chapter.

5.1 Rod Model Description

As shown below in Figure 4, a thin rod has been chosen as the heat conductive body of the

model, so that the one-dimensional heat conduction can be accurately evaluated along the

centred x-axis of the rod model. The rod is 1 metre long and 0.01 metres deep and high.

The rod possesses uniform material properties, whereby the density, thermal conductivity and

specific heat capacity are all set to a value of 1 in their respective SI units. The temperature on

the left and right boundary of the model, as well as the initial temperature throughout the rod

is set to a constant value of 0 Kelvin. It is important to mention, that the boundary temperature

and material property values of the rod model do not attempt to represent real-life applicable

problems. They were chosen as values of 1 and 0 respectively, to make a calculation of the

analytical solution possible, by reducing the mathematical complexity. A time-independent

heat source Q(x), with a quarter of the amplitude used in the analytical calculation
(

A
4

)

, is

applied to each of the four remaining boundaries. As one can see on the right-end boundary

in Figure 4, the mesh has a resolution of (1 000|10|10) cells along the respective axes, which

adds up to a total of 100 000 uniform cubic cells with a cell size of 10−9 m3.

Figure 4: Rod model with a resolution of 100 000 cells.

5.1.1 Mesh Independence

Before the numerical solutions of the model can be compared to the analytical solutions, their

accuracy needs to be verified. Even though the residuals have converged to an acceptable

low value and the steady state has been reached, the effect of the model’s mesh resolution on

the numerical solution cannot be neglected yet. Therefore, for every new mesh type, a mesh



5 Analytical Solution 14

independence study has to be conducted. This is done by increasing and decreasing the cell

numbers of the mesh, or in other words the mesh resolution. The solutions of these varying

mesh resolutions are then compared. Some of the mesh sizes compared to the regular model

with a mesh size of 100 000 cells were 211 250 cells, 53 311 cells, 32 683 cells and lastly 12 500

cells. Due to the small size and uniform shape of the model there are almost no detectable

differences between the solutions with varying mesh resolution. Therefore the solution is

deemed "mesh independent" and we may proceed with the analysis and comparison of the

model’s solution.

5.2 The One-Dimensional Heat Conduction Equation

In this section the governing physical principles behind the heat transfer through the rod model

from the previous section are examined.

A body with a non-uniform temperature distribution, like a rod with a heat source is considered.

The second law of thermodynamics states, that heat or thermal energy is transferred from

regions of higher temperature to regions of lower temperature. According to Widder (1976),

the following three physical principles describe this transfer of thermal energy within a solid

body: Absorption, Conduction and Conservation of Energy.

If a body consists out of a uniform material, then the amount of increase in heat quantity ∆Q

is directly proportional to the mass m of the body and to the increase in temperature ∆T : 1

∆Q = cp ·m ·∆T (4)

The constant of proportionality cp from Eq. (4) is dependent on the material of the body and

is called the specific heat capacity of the material at constant pressure. It is defined as the

energy required to raise a unit mass of the material by one unit of temperature, while the

pressure remains constant (Hancock, 2006).

In 1822, Joseph Fourier first formulated what is known today as Fourier’s law of thermal con-

duction: "The heat flux resulting from thermal conduction is proportional to the magnitude of

the temperature gradient and opposite to it in sign" (Connor, 2019, p. 1). Hancock (2006)

simplifies this formulation by stating, that heat is transferred from areas of higher temperature

to areas of lower temperature.

~q = −~λ · ∇T (5)

The proportionality constant from Eq. (5) above is known as the thermal conductivity ~λ. For

three-dimensional heat conduction ~λ is a vector representing the varying thermal conductivity

of the heat conducting medium in multiple dimensions, while ∇ is the gradient operator. The

heat flux ~q is defined as the rate of heat transfer per unit area normal to the direction of the

1Widder, D. V. (1976). The heat equation (Vol. 76). Academic Press, p. 2
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heat transfer. As the heat flux possesses a magnitude as well as a direction, it is defined as a

vector field for heat conduction in multiple dimensions.

Now, similarly to the previously mentioned rod model, a uniform long rod with a length l and

a non-uniform heat distribution is considered. Uniform in this case means, that material and

geometric properties like density ρ, specific heat capacity c, thermal conductivity λ and cross-

sectional area A all remain constant throughout the rod. Additionally, the rod may be des-

ignated as long, as its length in x-axis direction is multiple factors larger than it’s width in

the y and z-axes. Therefore, the heat conduction within the rod may be described as one-

dimensional heat conduction in x-direction. Once the material properties and geometry of

the rod are defined, an arbitrary thin slice with the width ∆x between x and x + ∆x is cho-

sen (Hancock, 2006). According to Showalter (2013), the amount of heat stored in a section

[x, x+∆x] of the rod, with ∆x > 0 is given by Eq. (6) below:

Q(∆x) =

∫ x+∆x

x

ρ cpAT (s, t) ds (6)

Applying the law of conservation of energy, the rate at which heat is stored within the section

of the rod is equal to the sum of the rate of heat that flows in and out of the section and the

the rate at which heat is generated in the section (Showalter, 2013).

∂

∂t

∫ x+∆x

x

ρ cpAT (s, t) ds = A (q(x, t)− q(x+∆x, t)) +

∫ x+∆x

x

AQ(s) ds (7)

The term Q(s) from Eq. (7) is the heat generation or source term and is the heat gener-

ated within the slice per unit volume. This source term may be dependent on time and po-

sition. However, for simplification of the analytical solution, the term used in the model is

time-independent and will be further defined in the next section.

According to Showalter (2013), dividing Eq. (7) by A∆x while letting ∆x → 0, yields the

following conservation of energy equation:

ρ cp
∂T

∂t
(x, t) +

∂q

∂x
(x, t) = Q(x) (8)

Lastly, Showalter (2013) substitutes Fourier’s law of thermal conduction from Eq. (5) into the

energy conservation law from Eq. (8) above:

ρ cp
∂T

∂t
(x, t)− ∂

∂x

(

λ
∂T

∂x
(x, t)

)

= Q(x) (9)

This is the one-dimensional heat conduction equation, also known as the diffusion equation

and can be re-written into following compact form:

∂T

∂t
(x, t)− α

∂2T

∂x2
(x, t) =

1

ρ cp
Q(x) (10)

Whereby α = λ
ρ cp

from Eq. (10) is the thermal diffusivity of the material. Showalter (2013)
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defines the thermal diffusivity as a measure of the material’s rate of change in temperature.

Subsequently, the basic form of the one-dimensional heat equation without a heat source is

the following (Widder, 1976):
∂T

∂t
= α

∂2T

∂x2
(11)

According to Widder (1976), Eq. (11) can be generalised for heat conduction in uniform ma-

terials to higher dimensions accordingly:

ρ cp
∂T

∂t
= λ1

∂2T

∂x21
+ λ2

∂2T

∂x22
+ ...+ λn

∂2T

∂x2n
(12)

5.2.1 Defining a Time-Independent Source Term

Taking a closer look at the one-dimensional heat conduction equation from Eq. (11), the tem-

perature T is a function of the position x and time t, while α is the thermal diffusivity. As

explained previously, the thermal diffusivity can be re-written as a fraction of the thermal con-

ductivity λ , the density ρ and the specific heat capacity at constant pressure cp. Furthermore,

a time-independent heat source Q(x) is added into the model:

ρ cp
∂T

∂t
= λ

∂2T

∂x2
+Q(x) (13)

This source term Q(x) in Wm−3 from Eq. (13) may be an arbitrary function of the position x,

defined over the length L of the model. For the verification of the model, a Gaussian function

with an amplitude A at the position ξ was chosen as a source term. A Gaussian function

was chosen, as it finds many applications in descriptions of natural processes who’s entropy

is maximised. Additionally, its asymptotic shape does not drastically interfere with the fixed

boundary conditions on either side of the rod.

Q(x) = Ae−σ(x−ξ)2 (14)

Whereby σ describes the width of the bell curve. Substituting Eq. (14) into Eq. (13) results in:

ρ cp
∂T

∂t
= λ

∂2T

∂x2
+Ae−σ(x−ξ)2 (15)

Now the one-dimensional heat equation with a given source term can be solved.

5.3 Steady-State Solution

In order to solve Eq. (15), the time-independent solution has to be considered first. Hereby,

the time-dependent term on the left-hand side disappears and the equation is rearranged as
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follows:
∂2T

∂x2
= −A

λ
e−σ(x−ξ)2 (16)

By integrating the time-independent Eq. (16) after the position twice, a general steady-state

solution T ∗(x) of the one-dimensional heat equation with a time-independent source term is

achieved.

T ∗(x) = −A

λ

∫∫

x

e−σ(s−ξ)2 ds dx+ C1x+ C2 (17)

Through integrating after the additional position variable s through substitution (see Appendix

A), the equation below follows, whereby the Gauss error function is denoted as erf :

T ∗(x) = − A

2λ

√

π

σ

∫

erf
(√

σ(x− ξ)
)

dx+ C1x+ C2 (18)

By further integrating through substitution after the location x (see Appendix A), the general

steady-state solution for the heat equation is the following:

T ∗(x) = − A

2λσ

[√
πσ (x− ξ) erf

(√
σ(x− ξ)

)

+ e−σ(x−ξ)2
]

+ C1x+ C2 (19)

Analysing the units from Eq. (19), the steady-state solution T ∗(x) is a temperature in Kelvin,

if the source term Q(x) is given in Wm−3 and the heat conductivity λ in its International

System of Units (SI) Wm−1 K−1. The integration constants C1 and C2 will be defined through

the boundary conditions of the model:

T ∗(0) = T ∗(L) = 0 (20)

The first boundary condition T ∗(x = 0) = 0 leads to the following expression for the integration

constant C2:

C2 =
A

2λσ

[√
πσξ erf

(√
σξ
)

+ e−σξ2
]

(21)

Subsequently, the second boundary condition T ∗(x = L) = 0 leads to an expression for the

integration constant C1:

C1 =
A

2λσL

[√
πσ
[

(L− ξ) erf
(√

σ (L− ξ)
)

− ξ erf
(√

σξ
)]

+ e−σ(L−ξ)2 − e−σξ2
]

(22)

Substituting the integration constants back into Eq. (19) leads to the general steady-state

solution of the one-dimensional heat equation for a model with Dirichlet boundary conditions

from Eq. (20) and a source term from Eq. (14).

T ∗(x) =− A

2λσ

[√
πσ (x− ξ) erf

(√
σ(x− ξ)

)

+ e−σ(x−ξ)2
]

+
A

2λσ

[√
πσ
[

(L− ξ) erf
(√

σ (L− ξ)
)

− ξ erf
(√

σξ
)]

+ e−σ(L−ξ)2 − e−σξ2
] x

L

+
A

2λσ

[√
πσξ erf

(√
σξ
)

+ e−σξ2
]

(23)
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Interestingly, the temperature difference between the analytically and numerically calculated

solutions from Figure 15 and 16 above display a change of sign at the heat function’s re-

spective maximum position. Furthermore, the absolute and relative temperature difference

increases with increasing maximum position respective to the coordinate systems point of

origin at x = 0 m. The temperature difference at the maximum position is almost doubled

between the heat source function’s maximum at x = 0.33 m and x = 0.66 m. This effect

may hint to an interesting non-symmetrical way that the numeric solver approaches certain

geometries. Yet, the relative temperature difference is still below 0.025 percent and therefore

the solutions for the heat source function’s maximum position variations can also be deemed

as accurate.

5.4 Transient Solution

The steady-state solution is now no longer an unknown and can therefore be used to obtain

the time-dependent solution of the heat equation from Eq. (15). According to Hancock (2006)

the solution of the heat equation consists out of a transient part and a steady-state part.

T (x, t) = T̃ (x, t) + T ∗(x) (25)

Whereby the steady-state term is denoted as T ∗(x), a function of the position x and the

transient term is denoted as T̃ (x, t), a function of the position x and the time t. Equation (25)

is then substituted into the heat equation with a heat source:

∂T

∂t
(x, t) = α

∂2T

∂x2
(x, t) +Q(x) (26)

Substituting Eq. (25) into Eq. (26) above, results in the following expression for T̃ (x, t):

∂T̃

∂t
(x, t) = α

∂2T̃

∂x2
(x, t) (27)

As ∂2T ∗

∂x2 (x) = −Q(x), the source term is dropped in the Partial Differential Equation (PDE)

and Eq. (27) satisfies the homogeneous heat equation. The same Dirichlet boundary condi-

tions apply for the transient PDE:

T̃ (0, t) = T̃ (L, t) = 0 for t > 0 (28)

This homogeneous PDE can be solved by separation of variables. The homogeneous bound-

ary conditions create a Sturm-Liouville problem. By applying the principle of superposition, a

solution of the PDE from Eq. (27), which satisfies the boundary conditions from Eq. (28), is

obtained. This is shown in detail in the upcoming sections and finally leads to a first expression

of the transient solution in Eq. (52).
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5.4.1 Separation of Variables

The Fourier method is used to solve the PDE from Eq. (27). After separating the variables,

the dependence of the solution T̃ on x and t is expressed through the following product:

T̃ (x, t) = F (x)G(t) (29)

Therefore, the relevant partial derivatives are:

∂T̃

∂t
(x, t) = F (x)G′(t) ∧ ∂2T̃

∂x2
(x, t) = F ′′(x)G(t) (30)

Whereby the primes denote the differentiation of a variable function. These are now inserted

into Eq. (27) and rearranged, so that the corresponding variables are on the same side.

G′(t)

αG(t)
=

F ′′(x)

F (x)
(31)

Now, the left hand side (l.h.s.) only depends on the time t and the right hand side (r.h.s.) only

depends on the position x. Therefore, both sides must equal a constant, as shown by Eq. (32)

below (Ganster, 2015, p. 5). This constant is called the separation constant and is set to −µ

by convention.
G′(t)

αG(t)
=

F ′′(x)

F (x)
= −µ (32)

5.4.2 Solving for F (x): A Sturm-Liouville Eigenvalue Problem

From Eq. (32) we obtain the following two homogeneous Ordinary Differential Equations

(ODEs):

G′(t) + αµG(t) = 0 (33)

F ′′(x) + µF (x) = 0 (34)

The same Dirichlet boundary conditions from Eq. (28) still apply for Eq. (34) and can be

re-written as follows:

T̃ (0, t) = F (0)G(t) = 0 for t > 0 (35)

T̃ (L, t) = F (L)G(t) = 0 for t > 0 (36)

As Ganster (2015) explains, G(t) is not the zero function and therefore the boundary condition

can be simplified to:

F (0) = F (L) = 0 (37)

With the boundary condition from Eq. (37), the ODEs from Eq. (33) and (34) can be solved.

For the ODE F ′′(x) + µF (x) = 0 the mathematical approach F (x) = ekx is chosen, which
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delivers the auxiliary equation k2 + µ = 0 (Ganster, 2015; see also Hancock, 2006). This

boundary value problem is called a Sturm-Liouville Eigenvalue problem, for which three differ-

ent cases have to be considered: µ < 0, µ = 0 and µ > 0.

5.4.2.1 First Case: µ < 0

For the first case µ < 0 is assumed. Therefore, for all µ < 0, the expression k1,2 = ±√
µ is

obtained from the auxiliary equation k2 + µ = 0. According to Ganster (2015), the solution to

Eq. (34) is the following:

F (x) = a e
√
µx + b e−

√
µx (38)

The constants a and b can be obtained by inserting the boundary conditions from Eq. (37):

F (0) = 0 ⇒ a+ b = 0

∧ F (L) = 0 ⇒ a e
√
µL + b e−

√
µL = 0

(39)

From this, the solution for a, b and F (x) can be derived:

a = b = 0 ⇒ F (x) ≡ 0 (40)

F (x) ≡ 0 is the trivial solution and thus, the first case is discarded.

5.4.2.2 Second Case: µ = 0

For the second case µ = 0 is assumed. As Ganster (2015) shows, inserted into the auxiliary

equation from above this leads to k1,2 = 0 and the following solution for F (x) is obtained:

F (x) = a+ b x (41)

Inserting the boundary conditions from Eq. (37) again, the solution for a, b and F (x) is the

following:

F (0) = 0 ⇒ a = 0

∧ F (L) = 0 ⇒ a+ b L = 0

⇒ a = b = 0 ⇒ F (x) ≡ 0

(42)

Again, F (x) ≡ 0 is a trivial solution and thus, the second case is discarded as well.

5.4.2.3 Third Case: µ > 0

In the third and last case, the separation constant is set to µ > 0. Now, the expression

k1,2 = ±√−µ for all µ > 0 is obtained from the auxiliary equation k2 + µ = 0. The solution
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for k can be re-written as follows: k1,2 = ±i
√
µ, whereby i is the imaginary unit. As Ganster

(2015) and Hancock (2006) explain, for µ > 0 Eq. (34) is the simple harmonic equation with a

general solution for F (x) in the following form:

F (x) = a cos (
√
µx) + b sin (

√
µx) (43)

Now, the boundary conditions from Eq. (37) are used again to obtain a solution for a, b and

F (x):

F (0) = 0 ⇒ a = 0

∧ F (L) = 0 ⇒ a cos (
√
µL) + b sin (

√
µL) = 0

⇒ b sin (
√
µL) = 0

(44)

The solution to b in the term b sin (
√
µL) = 0 can be split into two cases again. Firstly, simply

setting b = 0 provides a solution. However, this would lead to the trivial solution of F (x) ≡ 0

again and is therefore discarded. Thus, only for b 6= 0 a non-trivial solution is obtained.

sin (
√
µL) = 0 ⇔ √

µL = nπ for n ∈ N (45)

From Eq. (45), for any nonzero integer n (n = 1, 2, 3, ...), the following expression for
√
µn is

obtained:
√
µ =

nπ

L
=

√
µn (46)

The subscript is used to label the particular n-value. According to Hancock (2006) and

Ganster (2015), the following Eigenwerte of the Sturm-Liouville Problem are obtained:

µn =
(nπ

L

)2
(47)

The corresponding non-trivial solutions of Eq. (34) to the Eigenwerte in Eq. (47), are the

following Eigenfunctions of the Sturm-Liouville Problem: 2

Fn(x) = sin
(nπ

L
x
)

(48)

5.4.3 Solving for G(t)

In the previous section, while solving for F (x), the non-trivial solutions µn for all nonzero

integers n were obtained. These Eigenwerte from Eq. (47) are now inserted into the second

ODE from Eq. (33):

G′(t) = −αµG(t) (49)

2Ganster, M. (2015). Partielle differentialgleichungen [Mathematik 2 Bauingenieure SS 2015]. Graz
University of Technology. Mathematik 2 Bauingenieure SS 2015. Retrieved June 10, 2020, from
https://www.math.tugraz.at/~ganster/lv_mathematik_2_bau_ss_2015/08_partielle_dgln.
pdf , p. 6
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As Ganster (2015) and Hancock (2006) explain, the exponential approach delivers the follow-

ing solutions to this ODE above, with the inserted Eigenwerte µn:

Gn(t) = bn e
−αµnt = bn e

−αn2π2

L2 t for n ∈ N (50)

5.4.4 Solution for T̃ (x, t)

Now, inserting the solutions for F (x) from Eq. (48) and G(t) from Eq. (50) into the initial

expression for T̃ (x, t) after the separation of variables from Eq. (29), the following solutions

are obtained:

T̃n(x, t) = Gn(t)Fn(x) = bn e
−αn2π2

L2 t sin
(nπ

L
x
)

(51)

As Ganster (2015) and Hancock (2006) explain, by applying the principle of superposition to

Eq. (51) above, the following function for T̃ (x, t) is obtained:

T̃ (x, t) =
∞
∑

n=1

bn e
−αn2π2

L2 t sin
(nπ

L
x
)

(52)

Equation (52) is a solution to the PDE from Eq. (27), which also satisfies the boundary condi-

tions from Eq. (28).

Taking a closer look at Eq. (52), one can see, that the transient solution consists out of

three distinct terms. Firstly, the term e
−αn2π2

L2 t is responsible for the transient characteristic,

as it ensures that T̃ (x, t)
t→∞−−−→ 0. Secondly, the term sin

(

nπ
L
x
)

ensures that the transient

solution also satisfies the Dirichlet boundary conditions from Eq. (28). Without the factor bn,

the solution in Eq. (52) does not satisfy the initial condition of the PDE. Therefore, the third

term bn depends on the initial condition of the homogeneous PDE and will be developed with

a Fourier Series in the next section.

However, the initial condition at the time t = 0 for the transient PDE from Eq. (27) has to be

defined first. In the model, the initial temperature is set to zero Kelvin:

T (x, 0) = 0 (53)

Inserting this into Eq. (25), the following initial condition for the transient term T̃ (x, t) is ob-

tained:

T̃ (x, 0) = −T ∗(x) (54)

With Eq. (54) above, bn from Eq. (52) can now be developed.
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5.4.4.1 Obtaining bn from the Initial Condition

In order to find an expression for bn, which satisfies the initial condition T (x, 0), the resulting

transient initial condition from Eq. (54) is substituted into the solution of the PDE from Eq.

(52):

T̃ (x, 0) = −T ∗(x) ⇒
∞
∑

n=1

bn sin
(nπ

L
x
)

= −T ∗(x) (55)

Ganster (2015) defines an arbitrary function f(x), which may be set as the initial condition, if

f(x) satisfies the given boundary conditions and is piecewise smooth over the defined interval.

Applying the Dirichlet boundary conditions from Eq. (28), the function f(x) satisfies f(0) =

f(L) = 0 and is piecewise smooth over the interval [0, L].

Equation (55) is now adjusted for the arbitrary function f(x), which possesses the above

mentioned characteristics:

f(x) =

∞
∑

n=1

bn sin
(nπ

L
x
)

(56)

Hancock (2006) identifies Eq. (56) as the Fourier Sine Series of f(x). The Fourier Sine Series

of f(x) is odd and two periodic in space. It therefore converges to the following odd periodic

extension of f(x) over the interval [−L,L], with a period T = 2L, for all x ∈ R:

f(x) =
∞
∑

n=1

an sin
(nπ

L
x
)

with an =
2

L

∫ L

0
f(x) sin

(nπ

L
x
)

dx (57)

A comparison of coefficients leads to the following expression for bn: 3

an = bn =
2

L

∫ L

0
f(x) sin

(nπ

L
x
)

dx (58)

It has been shown in the beginning of this chapter, that the steady-state solution T ∗(x) sat-

isfies the Dirichlet boundary conditions. Since the steady-state solution is piecewise smooth

over the interval [0, L] as well, f(x) = −T ∗(x) is substituted into Eq. (58) and the following

expression for bn is gained:

bn = − 2

L

∫ L

0
T ∗(x) sin

(nπ

L
x
)

dx (59)

Now, the integral from Eq. (59) above is solved in order to gain a solution for bn, which is then

3Ganster, M. (2015). Partielle differentialgleichungen [Mathematik 2 Bauingenieure SS 2015]. Graz
University of Technology. Mathematik 2 Bauingenieure SS 2015. Retrieved June 10, 2020, from
https://www.math.tugraz.at/~ganster/lv_mathematik_2_bau_ss_2015/08_partielle_dgln.
pdf , p. 7
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inserted into Eq. (52) to obtain a full expression for the transient solution T̃ (x, t).

bn =
2

L

∫ L

0

[

[√
πσ (x− ξ) erf

(√
σ(x− ξ)

)

+ e−σ(x−ξ)2
]

−
[√

πσ
[

(L− ξ) erf
(√

σ (L− ξ)
)

− ξ erf
(√

σξ
)]

+ e−σ(L−ξ)2 − e−σξ2
] x

L

−
[√

πσξ erf
(√

σξ
)

+ e−σξ2
]

]

A

2λσ
sin
(nπ

L
x
)

dx

(60)

In order to reduce the integration effort, terms which do not include a variable x are sum-

marised as constants C3 and C4 respectively:

C3 =
√
πσ
[

(L− ξ) erf
(√

σ (L− ξ)
)

− ξ erf
(√

σ ξ
)]

+ e−σ(L−ξ)2 − e−σξ2 (61)

C4 =
√
πσξ erf

(√
σ ξ
)

+ e−σξ2 (62)

This simplifies the expression for bn from Eq. (60) accordingly:

bn =
A

λσL

∫ L

0
sin
(nπ

L
x
)

[√
πσ (x− ξ) erf

(√
σ(x− ξ)

)

+ e−σ(x−ξ)2 − x

L
C3 − C4

]

dx (63)

Using the sum rule, this term can be split into five separate terms, which can be integrated

separately. The solutions to these five integrals have been named with a capital I and the

respective subscript m. These five integrals differ significantly in complexity, whereby the

first two integrals with the constants C3 and C4 are not very complex and have the following

solutions:

I1 = −C4

∫ L

0
sin
(nπ

L
x
)

dx = −(L− L cos (nπ))

nπ
C4 (64)

The second integral can be integrated through substitution (see Appendix B).

I2 = −C3

∫ L

0
sin
(nπ

L
x
)x

L
dx = −(L sin (nπ)− Lnπ cos (nπ))

π2n2
C3 (65)

The remaining three integrals however, show an increasing degree of complexity and have

therefore been integrated with the aid of the Computer Algebra System (CAS) Wolfram Math-

ematica 12.1. The solution to the third integral is shown below in Eq. (66):

I3 =

∫ L

0
sin
(nπ

L
x
)

e−σ(x−ξ)2 dx

=
1

4

√

π

σ
e
−n2π2

+4inπξσL

4σL2

[

i erf

(

inπ + 2Lσ(L− ξ)

2L
√
σ

)

− i erf

(

inπ − 2Lσξ

2L
√
σ

)

+ e
2inπξ

L

(

erfi

(

nπ − 2iLσξ

2L
√
σ

)

− erfi

(

nπ + 2iLσ(L− ξ)

2L
√
σ

))]

(66)

Whereby erfi is the imaginary Error function in Eq. (66) and is defined as erfi (z) = −i erf (iz).
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The fourth integral has the following solution:

I4 =− ξ
√
πσ

∫ L

0
sin
(nπ

L
x
)

erf
(√

σ(x− ξ)
)

dx

=− Lξ

2n

√

π

σ

[

−2 cos (nπ) erf
(√

σ(L− ξ)
)

− 2 erf (ξ
√
σ)

− ie
−n2π2

+4inπξσL

4σL2

(

e
2inπξ

L

(

erfi

( nπ
L

− 2iσ(L− ξ)

2
√
σ

)

− erfi

( nπ
L

− 2iσξ

2
√
σ

))

+ erfi

(

nπ + 2iσξL

2L
√
σ

)

− erfi

(

nπ − 2iσL(L− ξ)

2L
√
σ

))]

(67)

The fifth and last integral has the highest degree of complexity, as it possesses an additional

variable x, compared to the fourth integral I4. Unfortunately, the solution of the fifth integral is

too long to be displayed in this section. Therefore, the full solution to the integral I5 from Eq.

(68) below is displayed in Appendix B.

I5 =
√
πσ

∫ L

0
x sin

(nπ

L
x
)

erf
(√

σ(x− ξ)
)

dx (68)

Now, the sum of all five solved integrals from Eq. (64) – (68) provides the following solution

for bn:

bn =
A

λσL

5
∑

m=1

Im (69)

This expression for bn from Eq. (69) above is now substituted into Eq. (52):

T̃ (x, t) =
A

λσL

∞
∑

n=1

(I1 + I2 + I3 + I4 + I5) e
−αn2π2

L2 t sin
(nπ

L
x
)

(70)

Equation (70) now displays the transient solution T̃ (x, t) depending on time t and position

x. It not only adheres to the boundary conditions from Eq. (28), but also satisfies the initial

condition from Eq. (54) of the original transient PDE from Eq. (27). This means, that the

transient term T̃ (x, t) is initially equal to the negative steady state solution −T ∗(x) at time

t = 0 and gradually disappears with progressing time. This is crucial for the full solution

T (x, t) = T̃ (x, t) + T ∗(x), as it allows it to first adhere to the initial condition T (x, 0) =

T ∗(x)−T ∗(x) = 0 and then progress towards the steady-state solution T ∗(x) with increasing

time t, as the negative transient term T̃ (x, t) disappears.

Thus, the full solution T (x, t) is the sum of the individual transient and steady-state solutions

from Eq. (23) & (70), displayed in Eq. (71) on the following page.
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(71)

By inspecting the final solution from Eq. (71) in detail, the effect of the material properties on

the whole solution become clearer. The thermal conductivity λ in the denominator is the only

material property affecting the steady state solution from Eq. (23). Therefore, the thermal

conductivity alone affects the absolute maximum value of the solution at steady-state con-

ditions at any given point. The lower the thermal conductivity λ is, the higher the achieved

temperature T̃ (x, t) in the rod will be. On the other hand, the thermal diffusivity α = λ
ρ cp

is

found in the exponent of the transient solution. Therefore, the relationship between the ther-

mal conductivity λ and the specific heat capacity combined with the density ρ cp determines

how fast the steady state solution is achieved. If the rod is made out of a material with a high

thermal conductivity and low specific heat capacity and density, then the material will react

very quickly to transient external conditions (Showalter, 2013).

This solution demonstrates the importance of numeric computational modelling, as the analyt-

ical solution of a simple rod model with a Gaussian function as a heat source already requires

a significant mathematical effort. Thus, it becomes evident that solving and modelling com-

plex and applicable heat flow problems, without the aid of numeric computational software, is

simply impossible.

5.4.5 Transient Solution Comparison

The accuracy of the analytically calculated full solution during the transient period is analysed

in the following section. In Figure 17 below, the with time exponentially disappearing transient

solution is neatly visualised. As already discussed in detail in the previous section, at time t =

0 s the negative transient part of the total solution is equal to the steady-state solution and thus,

the temperature at T (x, t = 0 s) is zero Kelvin. With progressing time, the negative transient

solution T̃ (x, t) is exponentially increasing in value towards zero at steady-state. Therefore,

the total solution is exponentially approaching the steady-state solution with passing time (see

Figure 17).

Even though the temperature at the rod model’s centre is already within a few degrees of

the steady-state solution after t = 0.5 s, true steady-state conditions are only achieved after

t = 1.3 s. At this point the maximum temperature of 315.97 K at the rod’s centre is reached

and the total net heat transfer rate to the rod model’s boundaries is sufficiently close to the
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(a) Transient at time t = 0.01 s.

(b) Transient at time t = 0.05 s.

(c) Transient at time t = 0.2 s.

(d) Steady-state from approximately time t = 1.3 s onward.

Figure 21: Contour plots of the rod model’s xy-plane from transient to steady-state conditions.

This concludes the analytical solution’s chapter, whereby the physical heat conduction con-

cepts of the numeric ANSYS Fluent solver have been accurately verified. Furthermore, the

basic processes behind numeric modelling and how a model’s accuracy is determined and

tested, have been displayed to the reader. Furthermore, the effect of material properties on

the heat conduction equation could be investigated. The thermal conductivity alone affects

the absolute maximum value of the solution at steady-state conditions at any given point. The

lower the thermal conductivity λ is, the higher the achieved temperature at the thermal equilib-

rium will be. The thermal diffusivity α = λ
ρ cp

, which is defined as the relationship between the

thermal conductivity λ and the specific heat capacity combined with the density ρ cp, deter-

mines how fast the steady state solution is achieved. Understanding these effects is important

for the CFD model’s material property variation presented in chapter eight.
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6 Thermo-Pipe Model

In the following chapter, a developed "Thermo-Pipe" model and its corresponding experiment,

which was conducted by the AIT research team as a part of the GEOFIT project’s framework,

will be discussed. Due to the large dimensions of the earth basket experiment, which will

be analysed in the next chapter, a down-scaled experimental setup was chosen to observe

the heat conductive behaviour of different sands and soils before a time consuming large-

scale experiment is conducted. The "Thermo-Pipe" has a similar height as the large slinky

heat exchanger experiment, in order to create similar conditions regarding the consolidation

of the heat conductive medium inside the pipe. This experimental setup was modelled with the

ANSYS Fluent solver as well. If the experiment and model provide matching and satisfying

results, the tested substrate may be used in an experimental run of the slinky heat exchanger

experiment. Furthermore, the numeric model of the "Thermo-Pipe" – once validated – can be

used to further "pre-select" sand and soil types with known material properties.

6.1 Experiment Setup

The experimental setup of the "Thermo-Pipe" consists out of two DN160 PVC temperature

resistant pipes with a wall thickness of 3.9 mm, which are joined by a sleeve. The total length

of the "Thermo-Pipe" is 1140 mm. A heating plate, which acts as the heat source, was placed

into the sleeve at the centre of the pipe. With a radius of 56 mm, the heating plate’s radius is 2

cm smaller than the pipe’s inner radius, in order to avoid exceeding the plastic’s temperature

rating. The pipe is then filled with a heat conducting substrate like sand or soil. As shown in

Figure 22 below, PT1000 Resistance Temperature Detectors (RTDs) were then placed along

the centre of the pipe on either side of the heating plate during the first test runs. The sketch

in Figure 22 below was mirrored, as the "Thermo-Pipe" setup was identical on either side for

this test run.

Figure 22: Sketch of the Thermo-Pipe sensor placements during test runs. 1

As the heating plate emits heat equally in both axial directions, this test was done to en-

sure correct and uniform sand placement in the zones affected by a measurable temperature

1AIT Austrian Institute of Technology. (2020). GEOFIT research project
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change. Once this was proven during the first test run, the sensors were then only placed on

one side of the heating plate, so that not only the linear heat conduction in the centre of the

"Thermo-Pipe", but also the temperature drop towards the walls could be measured. Since

the experiment was not conducted in a controlled climate chamber, the ambient temperature

was logged as well. This was done, so that the influence of the change in ambient tempera-

ture onto the experiment could be evaluated and quantified. However, for no experimental run

the change in ambient temperature proved to be severe enough to have a detectable effect on

the insulated "Thermo-Pipe". Figure 23 below depicts the final sensor placement.

Figure 23: Sketch of the final Thermo-Pipe sensor placement. 2

An analysis of the expected maximum temperatures and extent of the measurable tempera-

ture increase along the length of the "Thermo-Pipe" was conducted with the numeric model

beforehand. This lead to the following sensor positions displayed in Figure 23 above, whereby

sensors T1, T2 and T3 are placed in the pipe’s longitudinal centre axis at 44 mm, 114 mm

and 164 mm respectively from the heat source’s centre. The RTD sensors T4 and T5 are

placed 5 mm from the wall and are aligned with the furthest centre RTD sensors T2 and T3

respectively. T6 is denoted as the ambient temperature sensor.

6.2 Material Parameters

For the model’s validation run, the same dry sand as the one from the large-scale earth-basket

experiment was used as a heat conducting medium. Probes from the experimental earth

basket setup were taken and the material’s density ρ, specific heat capacity cp and thermal

conductivity λ were measured in the AIT’s laboratory. Whereby the thermal conductivity was

measured using a Heat-Flow-Meter (HFM), which uses the hot-plate-method. When speaking

of density, it should be noted that the bulk density of the probes was measured and used

2AIT Austrian Institute of Technology. (2020). GEOFIT research project
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in the model. Since pore space and porosity cannot be separately factored into the ANSYS

Fluent model, the accurately measured bulk density is used to account for porous spaces. The

mentioned measured material properties have been summed up in Table 1 below, whereby

multiple measurement runs per probe have been recorded and the mean value from these

was taken. Charts of all runs and their statistical analysis are attached in Appendix C.

Table 1: Mean values from AIT measurements of dry sand in large-scale earth basket experiment.

Mean Material Property Values of Dry Sand Probes

Temperature (◦C) λ (Wm−1 K−1) cp (J g−1 K−1) ρ (g cm−3)

-10 0.3809 0.889 1.8220

0 0.3784 0.947 1.8220

10 0.3796 0.941 1.8220

20 0.3840 0.962 1.8220

25 0.3884 x-x-x 1.8220

30 0.3874 0.985 1.8220

40 0.3896 1.027 1.8220

50 0.3915 1.065 1.8220

60 0.3929 1.038 1.8220

70 0.3873 1.061 1.8220

After the "Thermo-Pipe" was filled with dry sand with the material properties listed in Table

1 above, the pipe was additionally insulated as well. This was done, to firstly isolate the

heat conducting medium sand from ambient temperature effects and secondly, to create a

lower temperature difference at the transition from the small model’s boundaries to the sur-

rounding environment. The latter is important to generate a comparable model in the next

section. According to the PVC pipe’s manufacturer, the plastic has a thermal conductivity of

0.22 Wm−1 K−1, a specific heat capacity of 1.9 J g−1 K−1 and a density of 0.950 g cm−3. In

order to sufficiently insulate the "Thermo-Pipe", it was wrapped in 13 mm thick Kaiflex ST

insulation material.

The change of the insulation material’s thermal conductivity with change in temperature, de-

picted in Table 2 on the following page, has been provided by the manufacturer through the

following formula displayed as Eq. (72) below: 3

λIns.(T ) = 0.034 + 7.2 · 10−5T + 1.2 · 10−6T 2 (72)

3Reprinted from Kaimann GmbH. (2020). Kaiflex ST Datenblatt. Retrieved June 17, 2020, from
https://www.kaimann.com/authoring/auth/Documents/Kaiflex_ST-AUTDE.pdf
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Table 2: Material values provided by the manufacturer of the 13 mm Kaiflex ST c© insulation.

Material Property Values of Thermo-Pipe Insulation Material

Temperature (◦C) λ (Wm−1 K−1) cp (J g−1 K−1) ρ (g cm−3)

-10 0.0334 1.450 0.090

0 0.0340 1.450 0.090

10 0.0348 1.450 0.090

20 0.0359 1.450 0.090

30 0.0372 1.450 0.090

40 0.0388 1.450 0.090

50 0.0406 1.450 0.090

60 0.0426 1.450 0.090

70 0.0449 1.450 0.090

80 0.0474 1.450 0.090

90 0.0502 1.450 0.090

100 0.0532 1.450 0.090

Figure 24 below depicts the aforementioned "Thermo-Pipe" experimental setup.

(a) Filling process of the Thermo-Pipe. (b) Insulated Thermo-Pipe setup.

Figure 24: Pictures of the Thermo-Pipe filling and experimental setup. 4

4AIT Austrian Institute of Technology. (2020). GEOFIT research project
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6.3 Model Setup

A corresponding "Thermo-Pipe" model with the same dimensions and material parameters

was developed. Since the "Thermo-Pipe" model is radially uniform in shape and material, a

two dimensional mesh of the cross-section of the vertically halved pipe, with the x-axis run-

ning through the pipe’s longitudinal centre axis, was created with the ANSYS Computer-Aided

Design (CAD) software SpaceClaim and meshing program (see Figure 25 below). The nu-

meric solver Fluent can then model this two dimensional space with an "axisymmetric" option,

whereby the solution is projected 360 degrees radially. This was done to significantly decrease

the computational calculation time to further enhance the model’s capability as a numerical

and experimental "quick-testing" station. Due to the model’s geometry, the axisymmetric cal-

culation does not significantly decrease the model’s accuracy, as the solution has no spatial

dependence in the circumferential direction. Only the radial coordinates and distance to the

heat source are influencing factors.

(a) View of the full length Thermo-Pipe model in ANSYS SpaceClaim.

(b) Enlarged half of the Thermo-Pipe model in ANSYS SpaceClaim.

Figure 25: Cross-sectional area of half the Thermo-Pipe in the x-y plane.

In Figure 25 above, the cross-sectional area of the heating-plate with a radius of 56 mm is

depicted in orange. In the experimental setup the heat source has a spiral shape, which was

simplified as a heating plate in the model. A variety of shapes approximating the heat source’s

geometry have been tested, including a thin wall extending over the pipe’s entire diameter and

individual rings with varying diameters. However, the heating plate’s solution has shown no

significant deviation to geometries of higher complexities and was thus chosen as a good

geometrical approximation of the spiral heat source in the experiment. The heat conductive

medium sand is depicted in green, the PVC pipe’s wall with a wall-thickness of 3.9 mm and

an inner radius of 76.1 mm in yellow and lastly the 13 mm Kaiflex ST insulation material in

blue. Identical to the experimental setup, the full length of the "Thermo-Pipe" is 1 140 mm

— excluding the insulation material on either side. The heat source is situated exactly at the

pipe’s centre, where the added thickness of the joining sleeve is visible as well.
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Figure 26: Enlarged view of the Thermo-Pipe mesh with the sensor data-point locations.

After the design of the Thermo-Pipe has been created and meshed, it is imported into the

numeric CFD modelling software ANSYS Fluent. The borders between the different types of

interior solids, namely copper (heating plate), sand, plastic and insulation are defined as walls

and displayed in black in Figure 26 below. The x-axis is defined as an axis (orange) in Fluent

as well, around which the model’s solution is rotated as previously explained. Point-surfaces

are added at the same locations where the RTD sensors were placed in the experiment and

can be observed as red dots in Figure 26 above. The mesh itself has an element size of 2

mm, with 28 246 cells in the two dimensional planar space. On the three exterior insulation

walls, namely the top, bottom and mantle, a constant temperature of 296.65 K is applied as a

boundary condition. This temperature is equal to the average ambient temperature measured

with the RTD sensor T6. During the experimental run the heating plate in the centre of the

pipe emitted a constant heat of 21.9 W. Therefore, at steady-state conditions the total trans-

ferred heat through the model’s outer boundary walls should approach −21.9 W. The total

transported heat through all three exterior walls after 200 000 s is precisely −21.8798 W and

is still gradually advancing towards the constant heat input with passing time.

Figure 27: Temperature contour plot of the full cross-sectional pipe area at t = 200 000 s

In Figure 27 above, the temperature distribution across the "Thermo-Pipe’s" entire cross-

section at steady-state conditions can be observed. The heat conduction in x-axis direction

caused by the heat source at the centre of the pipe and the temperature drop towards the

pipe’s wall in the y-axis direction is visualised here.
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The temperature distribution over time in the "Thermo-Pipe" is visualised in Figure 28 below.

(a) Temperature contour plot of the cross-sectional pipe area at t = 5.000 s.

(b) Temperature contour plot of the cross-sectional pipe area at t = 25.000 s.

(c) Temperature contour plot of the cross-sectional pipe area at t = 50.000 s.

(d) Temperature contour plot of the cross-sectional pipe area at t = 150.000 s.

Figure 28: Temperature contour plots of the Thermo-Pipe during the transient period.

The coordinates of the RTD sensors are indicated by the black point surfaces. The model is

behaving as expected, was deemed mesh-independent and the time-step size of 1 000 s also









6 Thermo-Pipe Model 49

Taking a closer look at the temperature difference curves of sensor points T1, T2 and T3 in

Figure 31 above, all three sensor points follow the same trend. The temperature spike, which

is visible in Figures 29 and 31, as well as the temperature decrease at sensor point T1 after

steady-state conditions have been reached, completely fall out of the trend and are therefore

declared as an anomaly. Disregarding these anomalies, the trends at the centred sensor

positions as well as at the wall show good parallel behaviour. The large positive temperature

difference at T1 during the early transient period could be explained by the close vicinity of the

sensor point to the heat source. With a distance of 44 mm from the heating plate, a sensor

placement inaccuracy of 1 mm could already cause detectable temperature differences. The

other sensor points, which are placed further away from the heat source, are more resistant

to inaccuracies in sensor positioning.

6.5 Implications for Large-Scale Experiments

The results of the "Thermo-Pipe" validation have to be interpreted by keeping the nature and

purpose of the experiment and corresponding model in mind. As discussed previously, the

pipe’s scale and geometrical shape causes a deviation regarding the maximum temperature

at steady-state conditions between model and experiment. Nonetheless, the transient temper-

ature profile during the transient period is satisfyingly accurate. The goal of the "Thermo-Pipe"

experiment and model is to serve as a pre-selection and testing tool for potential soil and sand

combinations, to be used as a heat conductive medium in further large-scale and time con-

suming experiment runs. If the previously discussed and analysed deviations between model

and experiment are factored into future simulations, the model can be deemed as sufficiently

accurate to serve its purpose as a fast heat conductive simulation for varying material proper-

ties, with a corresponding small-scale and fast experiment.
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7 Earth Basket Experiment

As part of the framework of the GEOFIT research project, an earth basket experiment and

corresponding model was created by the AIT’s GEOFIT research team. A successful match

between the model’s solution and the recorded experimental data will validate the exported

near-field model-data used by the AIT’s GEOFIT partners in further far-field modelling, as

described previously in chapter two. Additionally, it will further substantiate models of different

heat exchanger types, as well as geometrical and material property variations, conducted

under similar parameters in this thesis and to which further experimental runs may follow.

7.1 Experiment Setup

In this experiment, the helical shape of an earth basket heat exchanger has been recon-

structed by a heating cable with a diameter of 350 mm, a height of 1 m and a loop-pitch of 100

mm, resulting in 10 vertical turns (as seen in Figure 33 and 34 below). This helix has been

placed in a container with the following dimensions in mm: 1 115 x 720 x 1 340 and filled with

dry sand. As explained in the previous chapter and displayed in Table 1, multiple probes of the

in-situ sand were taken and the sand’s material properties like density, thermal conductivity

and specific heat capacity were measured in the AIT’s laboratory.

Figure 33: Plan view sketch and dimensions of the earth basket experiment. 1

1AIT Austrian Institute of Technology. (2020). GEOFIT research project



7 Earth Basket Experiment 51

The sensors with which the temperature measurements inside the box have been taken, vary

slightly from the ones used in the "Thermo-Pipe" model from the previous chapter. As indi-

cated by the crosses in Figure 33 above and the red dots in Figure 34 below, the same PT1000

RTD sensors used in the "Thermo-Pipe" experiment were placed around the helix and used

for far-field measurements. Six RTD sensors each were placed at the indicated coordinates

in Figure 33 with a vertical spacing of 200 mm along the entire height of the heat source.

Figure 34: Side view sketch and dimensions of the earth basket experiment. 2

Additionally to the RTD sensors, helically formed fibre-optic thermometer cables with a reso-

lution of a quarter of a metre were used in the heating cable’s vicinity and on the heating

cable itself. The fibre-optic cable measuring the temperature of the heat source was named

"Middle", while the other two fibre-optic cables with the same loop pitch of 100mm and a larger

and smaller diameter of 500 mm and 200 mm were named "Inner" and "Outer" respectively.

The placement of the PT1000 RTD and helically shaped fibre-optic cable temperature sensors

are neatly displayed in Figure 35 below. The RTD sensors indicated in red can be seen

mounted onto the inner walls of the box and protrude 50 mm to 150 mm, depending on the

position, into the interior of the box. The helical shaped fibre-optic cable thermometers are

displayed in green at the centre of the sketch displayed in Figure 35, while the heating cable

situated directly next to the "Middle" fibre-optic cable is orange coloured.

This sand filled box, weighing almost two tons, is situated in a cooling chamber, which can ac-

curately regulate the ambient temperature at a constant 10 ◦C. These 10 ◦C are the boundary

and initial conditions. It may take up to three weeks until the entire interior of the box is cooled

down to said temperature and all temperature sensors read 10 ◦C. Once the initial condition

in the experiment has been reached, the experimental run can be started. Hereby, a constant

2AIT Austrian Institute of Technology. (2020). GEOFIT research project
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heat input, which has been logged at exactly 113.1 W, is applied to the heating cable and

the thermal response at the temperature sensors is recorded. One full experimental run, until

steady-state conditions are reached, takes approximately an additional two weeks.

Figure 35: 3D sketch of the earth basket experiment’s temperature sensor placement. 3

7.2 Comparison between Experiment and Model

In Figure 36 below, the experimentally measured temperature (transparent) and the simulated

data (bold) at the respective fibre-optic cable sensor positions are plotted against the model’s

height in z-axis direction at the thermal equilibrium reached at time t = 788 000 s, which

approximates to 9 days. As previously explained, the helical fibre-optic cable next to the

heat source is denoted as "Middle" and plotted in orange. The other two helical fibre-optic

cables, with a radial distance of 75 mm to the heat source, are denoted as "Inner" and "Outer"

and plotted in blue and green respectively. Overall, Figure 36 shows a good match between

experiment and model. The best fit is at the centre of the model, while a slight deviation

towards the boundaries at the top can be observed. This deviation in the upper half of the box

may be credited to sand consolidation due to movement of the box. The rectangular shape of

the box, in which the earth basket is placed, can be observed at the model’s "Outer" fibre-optic

temperature sensors. There is a stronger temperature difference between data points placed

directly next to each other along the helical path of fibre optic cable, as the distance to the

boundaries vary in x and y axis directions. This effect is the strongest on the "Outer" fibre-

optic sensors, because the effect of the boundary conditions is stronger, as they are radially

placed closer to the boundaries and experience lower temperatures.

3AIT Austrian Institute of Technology. (2020). GEOFIT research project
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absolute temperatures at the centre of the box into account, a deviation of 1.5 ◦C at steady-

state conditions can still be deemed as accurate. Furthermore, as depicted in Figure 37 above,

the rate of the temperature increase during the transient period shows a very good match

between model and experiment. This is an indication that the thermal diffusivity and therefore

the relation between the measured material properties of the heat conducting medium sand

are accurate and representative of the experiment’s in-situ conditions.

In the following chapters models with varying geometries and material properties, but similar

setups regarding inputs like initial and boundary conditions, solver and mesher settings, model

volume, heat input, etc. will be presented and their results discussed. These results are sub-

stantiated by the good match of the comparison between the AIT’s earth basket experiment

and the corresponding simulation previously discussed.
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8 Double Earth Basket Model

In the following chapter a geometric variation of the previously discussed earth basket model

is presented. Hereby two helical heat sources are placed side by side in a box with the same

dimensions as the single earth basket model and their effect on each other will be studied.

Additionally, the model’s heat conducting medium is varied with measured material properties

of sands and soils and the results are compared.

8.1 Model Setup

The model has the same dimensions as the previous earth basket model in order to provide

a basis for an accurate comparison between the two and to additionally create the possibility

of performing a corresponding experiment with the AIT’s resources and facilities in place. As

previously stated, the rectangular box has the dimensions 1 115 x 720 x 1 340 in mm while the

two helical heat sources are identical in shape. They possess a cable diameter of 6 mm, a

helix diameter of 350 mm with a loop pitch of 100 mm, which results in 10 turns over a vertical

height of 1 000 mm. As seen in Figure 39 below, the two helical heat sources are evenly

spaced along the model’s y-axis at a distance equal to their radius.

Figure 39: Helical heat source placement and geometry of the double earth basket model.

The mesh consists out of 1 964 925 elements with a minimal element size of 1.85 mm on the

heating coil’s surface and a maximum element size of 50 mm on the walls of the box (see

Figures 40 and 41 below). The growth rate of the elements or cells has been limited to a

factor of 1.9 . These settings create a sufficiently accurate mesh with a high resolution on
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the surface of the thin heating cables, between the cables’ helical turns and between the two

separate helices as well. Additionally, the specified maximum growth rate and larger element

sizes on the model’s outer boundaries ensure a manageable mesh size without compromising

accuracy.

Figure 40: Close-up of the heating cable’s surface meshing in the double earth basket model.

Figure 41: Cross-section (yz-plane) of the double earth basket model’s tetrahedral and triangular mesh.
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As shown in Figure 41 above, the model consists out of tetrahedral elements in the body’s

three dimensional volume space and triangular elements on the body’s two dimensional sur-

faces, which are namely the six walls of the box as well as the heating cables’ surfaces. Figure

42 below shows an enlarged view of the mesh in the heating cable’s vicinity. The gradual in-

crease in element size through the growth factor is visualised here.

Figure 42: Close-up of the double earth basket model’s cell structure at the heating cable.

Similar to the single earth basket model discussed in the previous chapter, a boundary con-

dition of a constant 10 ◦C is applied to all walls of the box. The same temperature is applied

as an initial condition throughout the model. Then, a constant heat input is applied to both

heating cable’s surfaces, which are also defined as walls in the model. In order to accurately

compare the single earth basket model with the double earth basket model, the total heat input

into the model remains the same as well, as the dimensions of the model have not changed.

This means a constant heat input of 113.1 W into the model or 56.55 W on each heating ca-

ble’s mantle surface. The time-step size of 1 000 s is still sufficiently accurate for this model

as well, with 50 iterations per time-step. After 1 500 time-steps, steady-state conditions have

been reached, with the the total heat flux flowing from the heating cable to the model’s walls

measured at −113.098 W and therefore matching the heat input.

Figure 43 below depicts the static temperature distribution in the yz-plane as well as on the

two helical heating cables after 1 500 time-steps, at steady-state conditions. This figure serves

as a visualisation purpose to indicate the position and shape of the helical heat sources, which

may no longer be depicted in further plane-view contour plots. The temperature range in the

contour plot from Figure 43 below ranges from the initial condition of 283.15 K to the maxi-

mum temperature reached at the heat source during steady-state conditions, which is 315.78

K in this case. In the following sections contour plots taken during different time-steps or

even different models will be compared. These are always plotted against the same specified

maximum temperature, in order to enable a meaningful qualitative comparison between the

individual models and time-steps.
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Figure 43: Contour plot depicting the temperature of the earth basket model at steady-state.

8.2 Results

In Figure 44 below, smooth contour plots of the model’s cross-sectional yz-plane are displayed

at four different time-steps. For better visualisation purposes, the protruding helical heating

cables have been projected onto the yz-plane, similarly to the previous Figure 43 above. Once

the heat input of 113.1 W is applied to the mantle surface of the heating cables, their surfaces

begin to heat up and possess a higher temperature than the medium which surrounds them.

This is still clearly visible after 13.3 hours at the protruding heating cables’ surfaces (see Figure

44a below). In the cross-section of the yz-plane the radial heat conduction from the heating

cables through the surrounding medium sand is visible as well. This results in a gradual tem-

perature increase of approximately 10 ◦C after 13.3 hours between the cable’s helical turns

and the two neighbouring earth baskets. Taking a closer look at Figure 44b and doubling

the passed time to approximately 26.6 hours, the distinct shape of the maximum tempera-

ture field at steady-state conditions is already beginning to form. Approximately doubling the

passed time to 2.3 days again, the temperature is beginning to uniformly increase between

the two earth baskets, as well as inside the individual helices (see Figure 44c below). After

t = 800 000 s, which is approximately 9.3 days, the total heat transfer through the model is

measured at −113.096 W and thus sufficient near steady-steady state conditions have been

reached. This means that the temperature increase with time has diminished to the second

decimal order and is visually undetectable in the static temperature contour plots. In Figure

44d below, the final maximum temperature distribution at steady-state conditions is visualised.

The distinct oval shape of the high temperature zone is directly dependent on the shape of the

heat source and will be further discussed during the comparison with other geometric heat

exchanger variations in the following section.
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(a) t = 48 000 s (approx. 13.3 hours) (b) t = 96 000 s (approx. 26.6 hours)

(c) t = 200 000 s (approx. 2.3 days) (d) t = 800 000 s (approx. 9.3 days)

Figure 44: Double earth basket model contour plots in the yz-plane from transient to steady-state.

In Figure 45 below, the double earth basket model’s cross-section in the xz-plane is visualised

at the same time-steps as in Figure 44 above. The distinct difference to the yz-plane projection

lies in the double earth basket model’s geometry, as one full earth basket is now projected onto

the xz-plane, while the second earth basket is not visible, as it is positioned behind the cross-

sectional plane. The plane therefore has no intersections with the heating cable, as it passes

through the centre of the space situated between the two earth baskets visible in Figure 44
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above.

(a) t = 48 000 s (b) t = 96 000 s (c) t = 200 000 s (d) t = 800 000 s

Figure 45: Double earth basket model contour plots in the xz-plane from transient to steady-state.

8.3 Material Parameter Variation

Two further simulation runs have been performed with varying substrates. For the first mate-

rial parameter variation, moisture has been added to the same type of sand which has been

used in the previously presented experiments and simulations and whose material parame-

ters have been listed in Table 1. The moisture content and the resulting change in material

parameters have been measured by the AIT’s laboratory with the same procedures as previ-

ously explained. A measured moisture content of 6.18 % resulted in the following material’s

thermal conductivity, specific heat capacity and density listed in Table 3 below.

The measured material parameters are all in accordance with literature values (Männer, 2012).

Additionally, the change in thermal conductivity, specific heat capacity and density of the two

additional measured substrates moist sand and humus soil show expected trends. The den-

sity of the moist sand increased in comparison to its dry counterpart, as denser water has

replaced some air in its pore space. This increased water content also leads to a significant

increase in thermal conductivity, as explained by Männer (2012). Coarser grained soil with a

high content in irregularly shaped organic matter has a significant lower density than sand.

Interestingly, the trend of increasing thermal conductivity with increasing temperature is re-

versed for humus soil (see Table 4 below), but according to Männer (2012) this phenomenon

is supported by existing literature as well.



8 Double Earth Basket Model 62

Table 3: Mean values from AIT probe measurements of sand with a moisture content of 6.18 %.

Mean Material Property Values of Moist Sand Probes

Temperature (◦C) λ (Wm−1 K−1) cp (J g−1 K−1) ρ (g cm−3)

-10 1.2435 1.070 1.9279

0 0.9788 x-x-x 1.9279

10 0.9514 1.095 1.9279

20 0.9339 1.152 1.9279

25 0.9619 1.100 1.9279

30 0.9728 1.116 1.9279

40 1.09 1.134 1.9279

50 1.19 1.139 1.9279

60 1.31 1.184 1.9279

70 1.46 1.295 1.9279

As a third heat conducting medium conventional dry garden humus soil with the following

material parameters listed in Table 4 has been used. Just as before, the mean values from

multiple measurement runs conducted by the AIT’s engineers have been listed in Table 3 and

4, while all measurement runs and their statistical analysis can be found Appendix C as well.

The temperature dependence of the thermal conductivity λ and the specific heat capacity cp

are integrated into the model as well, while the density ρ is constant again.

Table 4: Mean values from AIT probe measurements of dry humus soil.

Mean Material Property Values of Dry Humus Soil Probes

Temperature (◦C) λ (Wm−1 K−1) cp (J g−1 K−1) ρ (g cm−3)

-10 0.3401 0.913 1.6424

0 0.3370 0.966 1.6424

10 0.3251 0.974 1.6424

20 0.3162 1.006 1.6424

25 0.3121 x-x-x 1.6424

30 0.3068 1.056 1.6424

40 0.2991 1.086 1.6424

50 0.3058 1.085 1.6424

60 0.3024 1.072 1.6424

70 0.2972 1.106 1.6424

In Figure 46 below, the model’s temperatures at full steady-state conditions after approxi-

mately two and a half weeks (t = 1500 000 s) for the three different materials dry sand, moist

sand and dry humus soil have been compared. It should be noted that the colour map legend

has changed, compared to previous figures, due to the increased maximum temperature in

the simulation run with humus soil as a heat conducting medium. Therefore, the other two

contour plots have been plotted relative to said new maximum temperature of 324 K. As ex-
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pected, the maximum temperature of the moist sand with 297 K is the lowest, followed by the

same sand without moisture content with 316 K.

(a) Moist Sand (b) Dry Sand (c) Dry Humus Soil

Figure 46: Double earth basket model temperature contour plots of different materials (steady-state).

As previously explained and derived during the calculation of the analytical solution of the

rod model in chapter five, the steady-state solution depicted in Eq. (23) is responsible for

the model’s maximum temperature. The only material property appearing in the steady-state

solution is the thermal conductivity and it is inversely proportional to the temperature. As the

the thermal conductivity increases with rising water content, the maximum temperature of the

moist sand (see Table 1 & 3) will be lower than the corresponding simulation run with the same

type of sand but without water content. In return the significantly lower thermal conductivity of

conventional garden humus soil, depicted in Table 4 above, causes a maximum temperature

increase of approximately 8 ◦C.

In order to visually display the effect that the change of the heat conducting medium has on

the transient solution, the models’ colour map legends are plotted relative to the individual

model’s maximum temperature. This means that in Figure 47 below, the static temperature

contour plots taken at the early transient stage at approximately 26.7 hours (t = 96 000 s) are

all showing temperature legends to their left, that depict each model’s maximum temperature

at steady-state conditions. Through that the speed, at which the double earth basket model

with the respective heat conducting medium reaches steady-state conditions, can be neatly

visualised. After approximately 26.7 hours the model with moist sand (see Figure 47a) is much

closer to steady-state conditions than the models with the other two materials. Analogically

dry humus soil depicted in Figure 47c takes the longest to reach steady-state conditions. As

previously shown in chapter five, the thermal diffusivity α in the transient solution displayed

in Eq. (71) is responsible for the time it takes to reach steady-state conditions (see Table 5

below). The moist sand has the highest average thermal diffusivity of 45.23 · 10−4 cm2 s−1 at
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a temperature of 30 ◦C, while humus soil has the lowest with 17.69 · 10−4 cm2 s−1.

Table 5: Calculated thermal diffusivity from mean values of AIT measurements of sand and humus soil.

Mean Thermal Diffusivity Values for varying Materials and Temperatures

Temperature (◦C)
α Moist Sand

(10−4 cm2 s−1)
α Dry Sand

(10−4 cm2 s−1)
α Dry Humus

(10−4 cm2 s−1)

-10 60.31 23.52 22.67

0 x-x-x 21.93 21.24

10 45.09 22.13 20.33

20 42.06 21.91 19.14

25 45.34 x-x-x x-x-x

30 45.23 21.58 17.69

40 50.1 20.82 16.77

50 54.1 20.17 17.16

60 57.2 20.78 17.18

70 58.4 20.03 16.36

(a) Moist Sand (b) Dry Sand

(c) Dry Humus Soil

Figure 47: Double earth basket model temperature contour plots of different materials at t = 96 000 s
(scaled to individual models’ maximum temperature at thermal equilibrium).
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While disregarding the further far-field modelling that is necessary to fully quantify the thermal

behaviour of heat exchangers in varying substrates, some conclusions for realistic applications

can already be drawn from the near-field models. Substrates with a higher bulk density, like

consolidated sand, and a significant moisture or water content are better thermal conductors

than unconsolidated dry substrates with a high content of irregularly shaped organic matter.

Additionally, the thermal equilibrium in such consolidated substrates with a high moisture con-

tent is reached significantly faster as well. However, convective heat transport may play a

large role in the far-field heat transport in poorly consolidated substrates with high moisture

contents. Therefore, this will be separately investigated by the AIT’s GEOFIT project partners,

responsible for far-field modelling.

8.4 Comparison to Single Earth Basket Model

In the following section the double earth basket configuration will be compared to the AIT’s

pre-existing single earth basket model. In Figure 48 below, these two models are depicted in

the yz-plane at steady-state conditions after 800 time-steps, which approximates to 9.3 days.

The single earth basket model is shown in Figure 48a on the left, while the double earth basket

model is depicted on the right-hand-side in Figure 48b.

(a) Single Earth Basket Model 1 (b) Double Earth Basket Model

Figure 48: Comparison between single and double earth basket model at steady-state in the yz-plane.

1Steurer, A. (2020). GEOFIT research project - CFD modelling. Austrian Institute of Technology
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To make a qualitative comparison possible, the two models have been set up in the same con-

trol volume with the same material properties of dry sand, who’s measurements have been

previously displayed in Table 1. The heat input in these control volumes, as well as the external

parameters like boundary and initial conditions are identical. The single earth basket model

displayed in Figure 48a above reaches significantly higher temperatures at steady-state, with

a maximum temperature of 333 K compared to the 316 K of the double earth basket model

displayed in Figure 48b, at identical heat input and material parameter values. Even when

taking the closer distance of the two helical heat sources from Figure 48b to the model’s

boundaries into consideration, the temperature distribution at the centre of the two models

significantly differ in magnitude and shape. This was expected, as the heat exchanger’s sur-

face area is effectively doubled. On the one hand, this indicates that heat can be transferred

away from the heating cable effectively, without stagnant temperature build-ups in the centre

of model, as seen in the single earth basket model in Figure 48a. A good heat transport from

the model’s heat source throughout the control volume is usually desirable, as it indicates a

good geometric efficiency of the respective heat exchanger’s design. However, as the two

earth baskets in Figure 48b above act as separate units, the depicted temperature field also

indicates that the two earth baskets drastically influence each other at a distance equal to one

earth basket’s radial length. Therefore, the fact that twice as many loops have been used in

the heat exchanger model displayed in Figure 48b and thus twice as much material is needed

has to be kept in mind. The best practice of spacing earth baskets several diameters apart,

to ensure no significant influence on the adjacent earth basket’s temperature field, should al-

ways be adopted. This aspect no longer plays a role in the comparison to the horizontal slinky

heat exchanger in the upcoming chapter, as both models possess a comparable amount of

loops.
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9 Horizontal Slinky Heat Exchanger Model

Additionally to the vertical earth basket heat exchanger, a model of a section of a horizontal

slinky heat exchanger has been created and is presented in the following chapter. The results

will be compared to the heat exchanger geometries discussed in the previous chapters.

9.1 Model Setup

In order to ensure a meaningful and qualitative comparison between the horizontal slinky heat

exchanger model and the earth basket model, quantities like the overall volume of the body,

diameters of the heating cable and slinky coils, total heat input and meshing parameters were

kept constant to the previously discussed models and have been described in the previous

chapter. Due to the horizontal slinky heat exchanger’s geometric nature, the height of the

box has been halved and its length doubled. This results in the same control volume with the

new box dimensions 2 230 x 720 x 670 in mm. In Figures 49 and 50 the model’s side and top

view are displayed, in which nine horizontally spaced and on one side connected loops at the

centre of the previously described box are visible.

Figure 49: 3D sketch of the horizontal slinky heat exchanger model.

As previously discussed in chapter three, horizontal slinky heat exchangers consist of horizon-

tally spaced helical loops, which usually overlap each other in order to maximise the surface

contact with the ground. This overlap is called the loop pitch in this case and is the horizontal

distance between two neighbouring loops measured from the same relative position on each

ring. As shown in the plane view sketch of the model in Figure 50 below, a common loop pitch
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equal to the helical radius of 175 mm was chosen for the horizontal slinky heat exchanger

model. This results in an overlap of exactly half a loop. Analogically, doubling the loop pitch to

the helical diameter would result in the loops lying adjacent to each other with no overlap at

all.

Figure 50: Plane view sketch of the horizontal slinky heat exchanger model.

To ensure good mesh quality at the adjacent points of neighbouring loops, a vertical spacing

of 6 mm – which is equal to the heating cable’s diameter – was chosen to separate the indi-

vidual loops lying on top of each other (see Figure 51 below). This is agreeable with industry

standards, as it is best practice to avoid surface contact between adjacent loops with small

vertical spacers, in order to minimise the influence of the marginally colder working fluid from

the previous loop onto the current loop. The close spacing of the heating cable’s loops also

has an effect on the mesh size, as smaller and thus more cells between the heating cable’s

loops are required. This leads to more than double the mesh size with 4 484 675 tetrahedral

volume and triangular surface elements, compared to the previously discussed double earth

basket model. The mesher’s settings of a minimal element size of 1.85 mm on the cable’s

surface and a maximum mesh size of 50 mm on the surface of the box with a maximum

growth factor of 1.9 has been kept constant to the previously presented models. Similarly, the

boundary conditions applied to the walls of the box and the initial condition remain equal to

10 ◦C, while a constant heat input of 113.1 W has been applied to the heating cable’s mantle

surface.
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Figure 51 above displays three dimensional views of the horizontal slinky heat exchanger

model. Both are taken at steady-state condition and subsequently scaled to the maximum

temperature of 338 K reached at the thermal equilibrium. A cross-section of the temperature

distribution in the model’s yz-plane is depicted in Figure 51a. The vertically uniform tempera-

ture distribution and the vertical spacing between adjacent loops equal to one heating cable’s

diameter with 6 mm is visualised here. On the other hand, the temperature distribution at

steady-state in the cross-sectional xz-plane is depicted in Figure 51b above. The non uniform

horizontal distribution, due to the horizontal slinky heat exchanger’s geometric configuration,

is visualised here. These aspects of the horizontal slinky heat exchanger’s temperature distri-

bution will be discussed in the further detail in the following sections.

9.2 Results

In Figure 52 below, temperature contour plots at different time-steps from transient to steady-

state conditions of the cross-section through the model in the horizontal xy-plane are depicted.

The maximum temperature reached at steady-state conditions is 338 K. These maximum

temperatures develop as expected on one side of the heat exchanger, where the adjacent

loops connect and at the overlaps, even with a vertical spacing of one coil diameter. The

geometric asymmetry of the horizontal slinky heat exchanger is also clearly visible in the

temperature field around the heating cables in the xy-plane, whereby a temperature difference

of 10 ◦C between the two inner sides of heat exchanger can be detected in Figure 52d.

The heating cable’s surface temperature is almost doubled in value between the sides with

and without connections. Similarly to the previously discussed model, sufficient steady-state

conditions with no change in temperature up to the first decimal point have been achieved

after 800 time-steps, which approximates to 9.3 days (see Figure 52d below).

In the following Figure 53 below, temperature contour plots at the same time-steps of the

vertical cross-section in the yz-plane are depicted. They will be discussed in further detail on

the following page. Similarly to the temperature contour plots from the previous chapter, the

heating cable and its temperature have been projected onto the cross-sectional yz-plane in

order to indicate and visualise its position. The actual intersections of the helical loops are

indicated by the radial temperature increase in the xy-plane, visible during the early transient

stage in Figure 53a above. This radial heat conduction can be observed in the early transient

stage in Figure 53a and begins to form a uniform temperature field of 310 K between the heat

exchanger’s individual loops after approximately 26.6 hours in Figure 53b. At steady-state

conditions in Figure 53d this increased temperature field has fully expanded.
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(a) t = 48 000 s (approx. 13.3 hours)

(b) t = 96 000 s (approx. 26.6 hours)

(c) t = 200 000 s (approx. 2.3 days)

(d) t = 800 000 s (approx. 9.3 days)

Figure 52: Temperature contour plots in the xy-plane from transient to steady-state.
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(a) t = 48 000 s (approx. 13.3 hours)

(b) t = 96 000 s (approx. 26.6 hours)

(c) t = 200 000 s (approx. 2.3 days)

(d) t = 800 000 s (approx. 9.3 days)

Figure 53: Temperature contour plots in the yz-plane from transient to steady-state.
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As previously explained in chapter two, just like the earth basket model, the results of this

horizontal slinky heat exchanger model will be recorded at every time step on a radially uniform

surface. This exported data can then be used by the AIT’s GEOFIT partners, responsible for

far-field heat conduction modelling, as time dependent input parameters.

9.3 Comparison between Heat Exchanger Geometries

In the following section the three varying geometries presented in this thesis are compared.

Contour-plots at steady-state conditions of all three models with a colour map scaled to the

maximum temperature of the horizontal slinky heat exchanger model are displayed in Figure

54 below. The three models were all modelled with the material properties of dry sand, dis-

played previously in Table 1, as the heat conducting medium. After approximately 9.5 days

(t = 800 000 s) the horizontal slinky model in Figure 54c shows the highest temperature of

338 K, closely followed by the single earth basket model in Figure 54a with 333 K. The double

earth basket model in Figure 54b has by far the lowest maximum temperature at steady-state

conditions with 316 K. The varying maximum temperatures can be traced back to the respec-

tive heat exchanger’s distance between the heating cable’s loops. Even though the horizontal

slinky model has a slightly larger heating cable surface area of 0.21596 m2, compared to the

earth basket model with a heating cable surface area of 0.20429 m2, the horizontal slinky

model displays the highest temperatures at steady-state. Yet, the minimum vertical distance

between adjacent loops is 6 mm in the horizontal slinky model and 94 mm in the earth bas-

ket model. This creates small zones of higher temperatures between the horizontally spaced

loops. The single and double earth basket models have already been compared in detail in

the previous chapter.

While a uniform vertical temperature distribution is observed in the horizontal slinky model’s

yz-plane, the horizontal temperature distribution is asymmetric in the xy-plane (see Figure

54c below). This geometric asymmetry is the most prominent difference to the single earth

basket model depicted in Figure 54a below. Even though the horizontal slinky heat exchanger

displays a 5 ◦C higher maximum temperature on its asymmetric side, where the adjacent

loops are connected, the internal temperature field between the slinky loops is higher and

significantly larger in the single earth basket model. Temperatures above 320 K are only

limited to a small area on the inner side of the horizontal heat exchanger, where its loop

connections are situated (see Figure 54c below). This high temperature field is significantly

larger inside the single earth basket model, as it also extends radially inside the helix (see

Figure 54a below). Naturally, the loops situated the furthest from the models’ centres are

affected the strongest by the boundary conditions and therefore display significantly lower

temperatures than their adjacent counterparts in both models. If identical material properties

and heat inputs are used, zones of high temperature build-ups, which are not situated directly

on the heating cable’s surface, indicate a lower efficiency of transporting heat from the model’s

heat source to its boundaries. Thus, for realistic heat exchanger applications the conclusion

can be drawn, that the portrayed stagnant temperature build-up inside the single earth basket



9 Horizontal Slinky Heat Exchanger Model 74

at thermal equilibrium displayed in Figure 54a indicates a disadvantage regarding efficiency,

compared to the horizontal slinky heat exchanger displayed in Figure 54c. The heat input

applied on the heating cable’s surface is not transported as efficiently away from the earth

basket’s centrally placed loops, as is the case with the horizontal exchanger’s loops.

(a) Single Earth Basket Model (yz-plane) 1 (b) Double Earth Basket Model (yz-plane)

(c) Horizontal Slinky Heat Exchanger Model (xy-plane)

Figure 54: Comparison between single, double earth basket and horizontal slinky at steady-state.

The only significant temperature build-up in the horizontal slinky model is visible at the ad-

jacent loop’s overlaps and where the connections are situated (see Figure 54c above). It

should be noted, that varying types of horizontal slinky heat exchangers exist, which do not

only vary in diameter and loop pitch configurations, but also in the way their flow and return

pipes are placed. The modelled geometry presented in this chapter represents a more effi-

cient configuration, whereby the individual slinky coils are placed in a loop around buildings,

1Steurer, A. (2020). GEOFIT research project - CFD modelling. Austrian Institute of Technology
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which separates the flow and return piping. In geometrically symmetric applications, that are

placed in horizontally spaced rows, the return flow is located on the opposite side of the loop

connections and thus affects the heat exchangers efficiency. A sketch of such a configuration

is displayed in Figure 2a in the second chapter. Implemented in a model, this would mitigate

the horizontal heat exchangers asymmetric temperature profile in the xy-plane, displayed in

Figure 54c above. However, the temperature build-up at the horizontal heat exchanger’s cen-

tre would still be significantly lower than at the earth basket’s centre displayed in Figure 54a

above.

Additionally, the coils or loops placed at the outer positions and thus closest to the bound-

ary conditions of all models experienced significantly lower temperatures than their centrally

placed counterparts, whereby at every model’s centre a stagnant high temperature area has

formed at steady-state conditions. As previously described, this effect is the strongest in the

earth basket heat exchanger configuration displayed in Figure 54a above. These observa-

tions make further planned loop pitch variations of the individual heat exchanger configura-

tions highly interesting. In the earth basket’s case, non-uniform loop pitch distributions may

prove to be a viable concept to increase the heat exchanger’s efficiency. The loop pitch is

decreased towards both vertical ends and subsequently increased at the earth basket’s cen-

tre. This results in a higher number of loops at the earth basket’s vertical ends, where the

heat transport efficiency could be increased with a larger surface area of the heat exchanger,

i.e. loops. Subsequently, less loops will exist at the earth basket’s centre, where the stagnant

temperature distribution lowers the efficiency of the heat transport from the heat exchanger’s

surrounding to its surface. However, this investigation would reach beyond the scope of this

thesis. Nonetheless, it proves to be an interesting topic waiting to be addressed in future

GEOFIT research.

The GEOFIT research project aims to accurately analyse and quantify this difference in heat

transfer efficiency caused by varying geometric parameters of shallow ground source heat

exchangers. This goal will be achieved through the design of an engineering tool for accurate

heat exchanger dimensioning. Together with the far-field models, conducted by the AIT’s

GEOFIT partners, the presented horizontal slinky heat exchanger model’s exported data at

every time-step provides the necessary research groundwork for this design tool.
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10 Conclusion

Lastly, the previously presented and discussed models and their results will be briefly con-

cluded in the following chapter.

The comparison between the analytically calculated solution and the numeric results of the

geometrically simplified rod model has shown extremely accurate matches. The temperature

difference relative to the maximum temperature reached at thermal equilibrium between the

two solutions at steady-state conditions lay well below 0.025 percent for varying amplitudes

and maximum positions of the time-independent heat source function. Naturally, the deviation

between the two solutions is larger in the early transient period, but the relative temperature

difference is still well below 0.3 percent. The accurate match of these results substantiates

the use of the ANSYS Fluent numeric solver to perform CFD simulations with the developed

models presented in this thesis. This is extremely important, as further far-field modelling and

design tool development, as part of the GEOFIT work package three deliverable, is dependent

on accurate solutions of the CFD heat exchanger models. Furthermore, it has proven to be a

neat way to display the applied physical concepts of heat conduction by the numeric solver to

the reader.

The pre-existing earth basket heat exchanger model is further substantiated by a correspond-

ing experimental setup, whose comparison is presented in this thesis. However, the large-

scale experiment is highly time-consuming and possesses a fairly low and static data reso-

lution, depending on the physical placement of temperature sensors. Hence, the need for

accurate CFD models, whose data can be exported at very high resolutions and adjustable

locations, once a sufficient match between model and experiment has been proven. This com-

parison between the simulated temperature distribution and experimentally measured data

has shown sufficiently good matches. Naturally, the difference between model and experi-

ment in high temperature areas during the early transient period is the largest. This is due

to the high temperature increase over a short period of time, which leads to larger absolute

temperature differences. Nonetheless, if the initial temperature off-sets at the PT1000 sen-

sors due to an existing non-uniform initial temperature distribution within the experiment are

taken into account, the earth basket model and corresponding experiment show sufficiently

accurate matches throughout the entire experimental run.

Solving the heat conduction equation with a time-independent source term in chapter five has

provided the theoretical basis needed to analyse the double earth basket model’s behaviour

during the material parameter variation, which has been conducted as part of the framework

of this thesis as well. As mentioned in the introduction, the AIT took accurate material prop-

erty measurements of the thermal conductivity, specific heat capacity and bulk density from

in-situ probes of varying substrates. As previously indicated by the heat conduction equation

during the calculation of the analytical solution, the thermal conductivity is the sole material
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parameter influencing the maximum temperature reached at the thermal-equilibrium. There-

fore, substrates with a low thermal conductivity like conventional dry garden humus displayed

the highest temperatures. The thermal diffusivity, a combination of all three previously men-

tioned material parameters, influences the time it takes for the solution to reach the thermal

equilibrium. Inversely, the garden humus soil’s low thermal conductivity coincides with its low

bulk density and thus the resulting low thermal diffusivity caused the model with humus soil

as a heat conducting medium to take the longest time to reach steady-state conditions.

As previously explained in the introduction, due to the large dimensions of the earth basket

experiment, varying the heat conductive medium is a time-consuming process. Therefore, a

small-scale experiment named the "Thermo-Pipe" was developed by the AIT to test the heat

conductive behaviour of substrates before they are implemented in the large-scale earth bas-

ket experiment. The corresponding CFD Model was developed as part of the framework of

this thesis. While the pipe’s scale and elongated geometrical shape causes a deviation be-

tween experiment and simulation at the furthest placed senors positions from the heat source,

the temperature profile during the transient period is satisfyingly accurate. The results of the

"Thermo-Pipe" have to be interpreted while keeping the nature and purpose of the experiment

and corresponding model in mind. The experiment and model may serve as a pre-selection

tool for different materials with varying moisture contents to be chosen as heat conducting

substrates in the large-scale heat exchanger experiments.

The heat exchanger CFD models developed as part of the framework of this thesis, were de-

signed with the same external parameters as the earth basket experiment and corresponding

model. Factors like the initial and boundary condition, control volume and total heat input were

kept constant for two reasons. Firstly, to make further corresponding experimental runs with

the existing facilities at the AIT possible and secondly, to create a viable comparison between

the different heat exchanger models. The latter is important, as the previously mentioned

match between earth basket model and experiment therefore also substantiates the results of

the other models with a high degree of certainty. Therefore, the results of the horizontal slinky

heat exchanger model will be exported at every time-step and may serve as high resolution

input data for further far-field modelling and a basis for the development of an engineering tool

conducted by the AIT’s GEOFIT partners. The horizontal slinky heat exchanger’s results have

also shown expected differences to the earth basket model, whereby the most visible differ-

ence lies in the geometric asymmetry of the chosen horizontal slinky variant. Naturally, the

coils or loops placed at the outer positions and thus closest to the boundary conditions of all

models experienced significantly lower temperatures than their centrally placed counterparts.

Whereby at the model’s centre a stagnant high temperature area has formed at steady-state

conditions. This effect is the strongest in the earth basket heat exchanger configuration.
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These observations make further planned loop pitch variations of the individual heat ex-

changer configurations highly interesting. In the earth basket’s case, non-uniform loop pitch

distributions may prove to be a viable concept to increase the heat exchanger’s efficiency. The

loop pitch would be decreased towards both vertical ends and subsequently increased at the

earth basket’s centre. This results in a higher number of loops at the earth basket’s vertical

ends and less loops at the earth basket’s centre, which may drastically influence the heat

exchanger’s efficiency. This can be addressed in further GEOFIT research in the near future

with the validated methodology and the parameterised models developed within this thesis.
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Appendix A

Steady-State Solution Integration Steps

In the following section the calculation steps for the steady-state solution of Eq. (17) from

chapter 5 displayed below are shown.

T ∗(x) = −A

λ

∫∫

x

e−σ(s−ξ)2dsdx

The first integral is displayed and calculated below. The additional positional integration vari-

able s is the substituted by the standard positional variable x.

T ∗(s) = −A

λ

∫

x

e−σ(s−ξ)2ds (17.1)

Substitute u =
√
σ(s− ξ) ⇒ du

ds =
√
σ ⇒ ds = 1√

σ
du :

= − A

2λ

√

π

σ

∫

2e−u2

√
π

du (17.2)

Now, the constant is carried over to the solution and the integral is solved. This specific integral

is special though, as its solution is the Gaussian error function:

∫

2e−u2

√
π

du = erf (u) (17.3)

The full solution, including constants is thus:

T ∗(s) = − A

2λ

√

π

σ

∫

x

2e−u2

√
π

du = − A

2λ

√

π

σ
erf (u) (17.4)

Through re-substitution of u =
√
σ(s− ξ), while the standard positional variable s = x is used

again, the following solution of the first integral is reached, which is presented as Eq. (18) in

chapter 5:

T ∗(x) = − A

2λ

√

π

σ

∫

erf
(√

σ(x− ξ)
)

+ C1 dx

Applying the constant and sum rule, C1 dx = C1x and other constants will be added later.

The integral to be solved is therefore the following:

∫

erf
(√

σ(x− ξ)
)

dx (18.1)
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The following expression is substituted again u = σ(x − ξ) ⇒ du
dx =

√
σ ⇒ dx =

1√
σ
du and leads to the following integral:

=
1√
σ

∫

erf (u) du (18.2)

The integral
∫

erf (u) du in Eq. (18.2) above is a standard integral and will be solved with

the aid of partial integration:
∫

f ′g = fg −
∫

fg′. Whereby f ′ = 1 ⇒ f = u and

g = erf (u) ⇒ g′ = 2e−u2

√
π

leads to the following expression:

∫

erf (u) du = u erf (u)−
∫

2ue−u2

√
π

du (18.3)

The integral from Eq. (18.3) above is now solved through further substitution: v = −u2 ⇒
dv
dx = −2u ⇒ du = − 1

2u dv which leads to the following solvable integral:

= − 1√
π

∫

ev dv (18.4)

As
∫

ev dv = ev, v = −u2 is re-substituted into the solution of Eq. (18.4) above and thus leads

to the following solution for Eq. (18.2) above:

1√
σ

∫

erf (u) du =
1√
σ

(

u erf (u) +
e−u2

√
π

)

(18.5)

Re-substituting u =
√
σ(x − ξ) into Eq. (18.5) above leads to the following solution for the

calculated integral from Eq. (18.1) above:

= (x− ξ) erf
(√

σ(x− ξ)
)

+
e−σ(x−ξ)2

√
πσ

(18.6)

Now, the integration constants and − A
2λ

√

π
σ

from Eq. (18) may be added to Eq. (18.6) dis-

played above again. This expression is then further simplified, while keeping in mind that
σ√
σ
=

√
σ, which eventually leads to the following steady-state solution displayed as Eq. (19)

in chapter 5:

T ∗(x) = − A

2λσ

[√
πσ (x− ξ) erf

(√
σ(x− ξ)

)

+ e−σ(x−ξ)2
]

+ C1x+ C2

The integration constants C1 and C2 will be calculated in chapter 5 again and their solutions

are presented as Eq. (22) and Eq. (21) respectively.
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Appendix B

Transient Solution: Integral I2 Integration Steps

In the following section the calculation steps of the second integral I2 of the transient solution

from Eq. (65) in chapter 5 are shown.

I2 = −C3

∫ L

0
sin
(nπ

L
x
)x

L
dx

Due to the linearity rules of integration, the constant multiplication term −C3

L
can be excluded

and multiplied with the integral’s solution at a later stage. Thus, the simplified integral to be

calculated is the following:

=

∫ L

0
x sin

(πnx

L

)

dx (65.1)

Firstly, this integral is solved without the integration boundaries [0, L] by substituting u =
x
L

⇒ du
dx = 1

L
⇒ dx = Ldu. This leads to the following integral dependent on the

substituted variable u:

= L2

∫

u sin (πnu) du (65.2)

Applying the linearity rules of integration again and carrying over the constant L2 to the inte-

gral’s solution, the integral
∫

u sin (πnu) du will be solved through partial integration, whereby
∫

f ′g = fg −
∫

fg′. This leads to: f ′ = sin (πnu) ⇒ f = − cos (πnu)
πn

and subsequently

g = u ⇒ g′ = 1. Applying the previous rules of partial integration yields the following

expression:

= −u cos (πnu)

πn
−
∫

−cos (πnu)

πn
du (65.3)

The integral
∫

− cos (πnu)
πn

du from Eq. (65.3) above may be solved through further substitution,

whereby v = πnu ⇒ dv
du = πn ⇒ du = 1

πn
dv. This resulting integral displayed

below can now be solved with ease.

= − 1

π2n2

∫

cos (v) dv (65.4)

The solvable integral has the following solution:

∫

cos (v) dv = sin (v) (65.5)

The solved integral may now be multiplied with the previously excluded constant − 1
π2n2 , while

the re-substitution of v = πnu leads to the following expression:

= −sin (πnu)

π2n2
(65.6)
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Inserting the solved integral into Eq. (65.3) from above and multiplying the solution with the

previously excluded constant L2 yields the following equation:

L2

∫

u sin (πnu) du =
L2 sin (πnu)

π2n2
− L2u cos (πnu)

πn
(65.7)

Now, the substitution variable u = x
L

is re-substituted and multiplied with the previously ex-

cluded constant −C3

L
from the original Eq. (65).

−C3

L

∫

x sin
(πnx

L

)

dx =
C3x cos

(

πnx
L

)

πn
− C3L sin

(

πnx
L

)

π2n2
(65.8)

Further simplification leads to the following solution without integration boundaries:

= −C3L sin
(

πnx
L

)

− C3πnx cos
(

πnx
L

)

π2n2
(65.9)

Inserting and subtracting the integration boundaries [0, L], the following solution for Eq. (65)

depicted in chapter 5 is reached:

= −C3L (sin (πn)− πn cos (πn))

π2n2

The solutions for the remaining integrals Im, which are needed to solve the bn factor and

subsequently reach the transient solution of the rod model’s analytical solution, are continued

in chapter 5 again.
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Appendix C

Material Property Measurements Conducted by the AIT’s Laboratory

Dry Sand

Measurements and statistical analysis of thermal conductivity of dry sand probes. 1

Measurements and statistical analysis of specific heat capacity of dry sand probes. 1

1AIT Austrian Institute of Technology. (2020). GEOFIT research project
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Same Sand with 6.18 % Moisture Content

Measurements and statistical analysis of thermal conductivity of moist sand probes. 2

Measurements and statistical analysis of specific heat capacity of moist sand probes. 2

2AIT Austrian Institute of Technology. (2020). GEOFIT research project
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Dry Humus Soil

Measurements and statistical analysis of thermal conductivity of dry humus probes. 3

Measurements and statistical analysis of specific heat capacity of dry humus probes. 3

3AIT Austrian Institute of Technology. (2020). GEOFIT research project
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