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ABSTRACT 

The authors introduce and describe pulse train control (PTC) of population branching in 

strongly coupled processes as a novel control tool for the separation of competing multiphoton 

processes. Control strategies are presented based on the different responses of processes with 

different photonicities and/or different frequency detunings to the pulse-to-pulse time delay 

and the pulse-to-pulse phase shift in pulse trains. The control efficiency is further enhanced by 

the property of pulse trains that complete population transfer can be obtained over an extended 

frequency range that replaces the resonance frequency of simple pulses. The possibility to 

freely tune the frequency assists the separation of the competing processes and reduces the 

number of sub-pulses required for full control. As a sample application, PTC of leaking 

multiphoton resonances is demonstrated by numerical simulations. In model systems exhibiting 

sizable background- (intruder-) state population if excited with single pulses, PTC leading to 

complete accumulation of population in the target state and elimination of background 

population is readily achieved. The analysis of the results reveals different mechanisms of 

control and provides clues on the mechanisms of the leaking process itself. In an alternative 

setup, pulse trains can be used as a phase-sensitive tool for level switching. By changing only 

the pulse-to-pulse phase shift of a train with otherwise unchanged parameters, population can 

be transferred to any of two different target states in a near-quantitative manner. 
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1. INTRODUCTION 

Recently, three of us1 have explored the conditions under which simple -pulses 2,3 (more 

precisely, generalized -pulses 4) governing multiphoton (mp) transitions along anharmonic 

progressions can be replaced by trains of fractional -pulses. In particular, we characterized 

fitness landscapes for train-induced population transfer, and demonstrated that there exist 

extended regions in parameter space, denoted “resonance loci”, which are associated with pulse 

trains effecting complete state-specific population transfer (“ -trains”). The control properties 

are sensitive to variations of the pulse-to-pulse (ptp) time delays and ptp phase shifts, as well as 

to the obvious parameters frequency and field strength, such that the projection of the 

resonance loci onto the frequency-field strength plane produces closed curves (“resonance 

ridges”). As an important consequence, as first pointed out by Vitanov and Knight,5 an 

extended frequency range is available for complete population transfer, where specific 

resonance field strengths are associated which each frequency value in the range spanned by 

the resonance ridges.1 

In conjunction with earlier papers on pulse-train induced population transfer,5-9 the 

results of ref. 1 provide a starting point for pulse train control (PTC) of parallel or branching 

processes. If such processes involve near-degenerate transition frequencies and/or different 

photonicities, they should be separable due to their different responses to the ptp time delays 

and ptp phase shifts. Furthermore, control should be facilitated by the option to freely tune the 

frequency without loss of transfer efficiency, and also to “tune” the number of sub-pulses. With 

these properties, PTC based on phase-matching and phase-recurrence properties is a novel tool 

for the control of competing mp population transfer processes, e.g. competing reaction 

channels. Pulse trains (“multipulses”) with properties as required in the present application 

have become available in the laboratory 7,10,11 Very recently, they have been applied for control 

purposes in population transfer by adiabatic passage 10 and state-specific vibronic excitation.11 
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A scenario for an application of the control properties of pulse trains is PTC of leaking 

resonances.12-14 Resonance leaking occurs if in a transition driven by a -pulse or multiple-

order -pulse population is diverted (“leaks”) to an intruder state. Even very weakly coupled 

states (background states) may act as efficient intruders quenching the primary transition 

strongly or completely, and if the coupling to a background state occurs in -configuration, 

leaking can be a robust phenomenon.13 As such a situation involves near-degenerate processes 

of different photonicities, it naturally addresses the dominant aspects of PTC and thus provides 

a suitable testing ground for our proposed control strategies. While the control of leaking 

resonances by pairs of optimized phase-adjusted pulses has been discussed before,13,14 pulse 

trains offer a considerably higher degree of flexibility. Even tuning a single train parameter 

may suffice to achieve far-reaching control, at least in cases where zero-order relations based 

on the rotating-wave approximation (RWA) 2,3 hold. However, in more complex situations 

restrictions will apply which dictate how closely the idealized limits may be approached under 

realistic conditions. 

In the present paper, by numerical simulations on model systems we demonstrate PTC of 

background- (or intruder-) state population. In Section 2 we summarize the properties of our 

model systems consisting of Morse progressions augmented by a weakly bound background 

level. The systems are designed to exhibit considerable resonance leaking if driven with simple 

(gaussian) pulses in the low picosecond range, thus quenching the targeted mp transition and 

producing massive population transfer to the background state. In Section 3 we describe the 

pulse trains used, and elaborating from the results for population transfer in anharmonic 

progressions in ref. 1, we suggest specific PTC strategies for the elimination of intruder state 

population. Section 4, arranged in several subsections, contains the results of our simulations 

together with a discussion. We show that resonance leaking in a two-photon transition can be 

readily controlled starting from zero-order estimates. PTC of a five-photon transition is also 
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readily achieved, but requires more extended parameter optimization. We identify different 

mechanisms of PTC and show how this can reveal different mechanisms of resonance leaking. 

In Sec. 5 we describe a variant of PTC set up as tool for phase-controlled level switching. 

Finally, in Section 6 we summarize the advantages and limitations of PTC and its application 

to other forms of population branching. 

 

2. MODEL SYSTEMS 

Our model systems are constructed from anharmonic progressions, augmented with a 

background state weakly coupled to the anharmonic ladder. The pure ladder systems and their 

behavior under resonant mp excitation by pulse trains have been investigated in ref. 1; we use 

these results as reference for the present study. 

In the augmented systems we study n-photon excitation along the anharmonic ladder 

from an initial state I  to a final (or target) state F . The 1nN  ladder states are also 

labeled 1  to N , and connecting to previous work on resonance leaking,13,14 the level 

energies 1 to N  are given by Morse states adapted from the HCN bend progression. In each 

system the rung spacing ( N  N 1) is set to 0.00425 a.u., and consecutively lower level 

spacings are incremented by 0.00025 a.u. To these ladder systems we add a background (or 

intruder) state B  weakly coupled to F , either in -configuration with level energy FB , 

so that F  becomes the apex of an extended -system, or in ladder-configuration with 

FB . 

In the context of PTC, an important difference between the ladder and extended-  

configurations is the fact that in the former the overall photonicity for the I B  excitation 

is n 1, while in the latter B  is reached in a process of overall photonicity n 1. 
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For each of the augmented systems, B is adjusted such that appreciable resonance 

leaking occurs for gaussian pulses with durations of few picoseconds. In such a case the zero-

order resonance frequency of the n-photon transition I F  along the ladder,  

nIF
IF
0 , (1) 

and the 1-photon F B  transition frequency

BF
FB
0  (2)

are near-degenerate 14 – not strictly degenerate due to their different Bloch-Siegert shifts.16 The 

values of FB
0  used in our model systems are given in Table I. We note that for a pulse or 

pulse train at central frequency IF
r  the individual levels i  of the anharmonic ladder are 

characterized by their rung detuning id ,  

IF
r1 )( id ii . (3) 

All systems are assumed to be non-polar, and to be sequentially coupled, with dipole 

matrix elements a.u.2.0Lji ; these values are again adapted from the HCN bend 

progression.17 As in previous investigations,13,14 B  is assumed to be weakly coupled to F , 

with dipole matrix element 02.0BF  a.u. 

In the present paper we focus on three model systems illustrated in Fig. 1. With 6N , 

the system denoted “(6+1) S” is an extended -system, so that B  is energetically near-

degenerate with rung state 5 . The nominal 6-level systems denoted “embedded (3+1) S” 

and “embedded (3+1)LS” are derived from standard (3+1)-level systems and are used to study 

PTC of resonance leaking for a 2-photon transition. In order to explore the consequences of 

embedding the ladder states into a longer anharmonic progression,1 we add one level below 

I , denoted , and one level above F , denoted  Hence B  is energetically near-
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degenerate with rung state 2  in the embedded (3+1) S, and near-degenerate with the outer 

rung state  in the embedded (3+1)LS. In the vast majority of simulations reported here, the 

results for the systems with and without the embedding extension are almost indistinguishable. 

Therefore we will not continue to make the distinction and drop the term “embedded”.  

We have also investigated systems with 4 and 5 ladder states, but we will gloss only 

briefly over the corresponding results, which do not provide additional insight into PTC. 

Pulse parameters for resonant, but leaking mp excitation by gaussian pulses with pulse 

length Tp  8 ps, measured as full-width at half-height (fwhh) in field strength, are collected in 

Table II, together with corresponding data for population branching. Results for -train 

excitation in the simple anharmonic ladders have been given in ref. 1.  

 

3. PULSE TRAIN CONTROL OF INTRUDER STATE POPULATION 

3.1. Pulse trains 

We employ pulse trains in a setup that we have previously denoted m-trains.1 Such m-

trains consist of m equal gaussian (sub-) pulses of frequency , gaussian amplitude A0 and 

length Tm (again measured as fwhh in field strength), with equal ptp phase shifts ptp  and ptp 

time delays ptp , the latter limited from below by the requirement that the sub-pulses be 

effectively non-overlapping. We keep mTTm /p , thus focusing on the problem to split a 

single (resonant) -pulse into fractional -pulses, such that the parameters , A0, ptp  and 

ptp , and also m, can be tuned to control specific processes. In this setup the total fluence of 

the -train is (approximately) equal to that of the -pulse for any mp process driven. 

Another limiting setup for equal fractional -pulses would be to keep the sub-pulse width 

at Tm  Tp and to reduce the field strength accordingly. Giving rise both to extended overall 
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train duration and increased total fluence, this strategy is of little relevance in the control of 

resonance leaking, although it may be an option in applications where strong fields must be 

avoided. A sketch of both setups is shown in Fig. 2. 

 

3.2. Implications from the background-free systems 

In an RWA-related zero-order picture a k-photon transition along an anharmonic ladder 

can be driven on resonance ( k
0 ) with a suitable -pulse, or equivalently1 with -trains, 

i.e. m-trains of arbitrary ptp  with ptp  chosen as  

k/2ptp ,     integer, (4) 

while the transition is quenched if   in eq. (4) is taken half-integer. 

Assume now that in a system incorporating such a ladder a targeted k-photon transition 

I F  is perturbed by a second process I B  of different photonicity l, with almost or 

even exactly the same resonance parameters ( l
rA , l

r ), and, for simplicity, kl
00 , so that 

both processes are driven by the original -pulse and are subject to competition, interaction and 

interference. It should then be possible to separate the two processes on the basis of m-trains 

with suitably chosen phase relations. The k-photon process would run selectively with any ptp 

phase shift k/2ptp  that is not also element of l/2 , and vice versa for the l-photon 

process. Since lk  is assumed, such choices are always possible except for ,3,2 kkl , 

when only the process of higher photonicity may be separated. Dropping zero-order 

assumptions, this simple picture has to be modified. Depending on the system and the 

remaining train parameters, appropriate values of ptp  deviate from the estimates in eq. (4).1 

Since with pulse trains complete (resonant) population transfer  can be maintained over a 

range of frequencies,1,5 separation of two processes with near-degenerate zero-order resonance 
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frequencies kl
00  by m-trains may be achieved by tuning to a suitable  and adjusting ptp  

and/or ptp . Thus at frequency  and fixed ptp , for any k-photon process constructive 

interference accumulating population in the target state recurs with phase recurrence time T , 

kk
T

0

2
. (5) 

This gives rise to oscillatory target populations as a function of ptp ; the pattern may be 

irregular due to contributions from other states. The different phase recurrence times of two 

non-degenerate processes enable control of their branching by optimization of ptp  and ptp  

such that the two processes are in turn subject to constructive and destructive interference. This 

behavior is simplified if the frequency is set to k
0  or to l

0  (see items A and B in 

Sec. 3.3). 

The availability of free frequency variation along extended resonance ridges is a strong 

asset in the separation of branching transitions, which due to their different photonicities will 

respond differently to frequency tuning. 

The results in ref. 1 also indicate the role of m as an adjustable parameter. As the number 

of sub-pulses increases, the frequency range available for resonant excitation increases, and the 

interference peaks that give rise to accumulation of population become narrower with respect 

to ptp  and ptp . Both effects assist the separation of competing population transfer processes. 

Conversely, it also means reduced robustness, and in particular it is clear that a switch to “m-

regime II” (the regime of many sub-pulses 1) with its manifest rung population will make PTC 

a much more complex exercise. 
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3.3. Strategies for the elimination of intruder state population 

We start by considering leaking as a simple perturbation, such that control of the target 

state population in the presence of the intruder is as in the simple background-free anharmonic 

NLSs. Among the set of (n) -trains occupying the resonance loci of the background-free 

system, we have to identify those that suppress intruder state population. In real systems we 

must expect that the presence of the intruder state will modify the -train parameters, and 

hence readjustment of these parameters will be required. These changes may be weak for a 

truly leaking resonance, or sizable if the intruder transition imprints its properties onto the 

overall process (see ref. 11 and Sec. 4.3 for a discussion of different leaking mechanisms).  

Together with conclusions from Section 3.2, these considerations suggest the following 

specific PTC strategies: 

A. Tuning to IF
0 . Due to T  in eq. (5), PF will be enhanced independent of ptp  for any 

of the constructive values of ptp ; suitable zero-order estimates are given by eq. (4), and 

ptp  drops out of the optimization. With the resonance value of A0, ptp  must be adjusted to 

minimize intruder- and rung populations. This can be achieved because of the different 

phase recurrence times of the different levels. 

B. Tuning to IB
0 . A situation comparable to method A occurs for IB

0 , whence intruder 

population will be suppressed independent of ptp  by the choice of a value of ptp  

destructive for the I B  transition. 

C. Free frequency tuning. As noted above, variation of  will assist the separation of branching 

transitions and should allow efficient solutions in the sense that the number of sub-pulses 

can be minimized. 
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Methods A and B carry elements of a priori planning, and useful results may be obtained 

from zero-order estimates used either directly or as startup values. For method C there are no a 

priori hints other than from simulations; in theoretical work initial conditions for optimization 

could be obtained from the resonance ridges of the background-free systems.  

In all three cases we should also expect that the regular behavior of pulse train excitation 

in anharmonic progressions will be modified by interference contributions from the intruder, 

constructively or destructively. Exploiting such multiple specific interferences, there may also 

be solutions without counterpart in the background-free system, i.e., away from the resonance 

ridges of the simple systems, that are not based on the systematic properties of PTC. Such 

“irregular” solutions can be seen as cases of general pulse-shaping and are best obtained by 

(constrained) optimal control,18 most efficiently by self-learning algorithms.19,20 

4. RESULTS FOR PULSE-TRAIN-CONTROL OF RESONANCE LEAKING 

4.1. Overview 

An overview of the performance of PTC in the suppression of resonance leaking is given 

in Fig. 3 and 4, where we compare the population dynamics for resonant, but leaking gaussian 

-pulses (with parameters shown in Table II) for the (3+1) S and the (6+1) S, respectively, 

with those for suitably optimized m-trains. We note that results for the (4+1) S and (5+1) S 

are in close qualitative agreement with those for the (6+1) S. While 8 ps gaussian pulses 

designed to pump the I F  transitions induce strong background leaking, it is seen that for 

equivalent -trains PF reaches or exceeds 0.99. The examples cover various control strategies 

introduced above including also multiple-  trains and are “efficient” implementations of the 

PTC strategies suggested in Sec. 3.3 in the sense of keeping the number of sub-pulses low and 

the train duration as short as possible. 
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In the (3+1) S, all PTC fields shown can be classified as regular solution closely 

resembling -trains for corresponding 3LS. With methods A and B, at least 6-trains as shown 

in Fig. 3b and c are required to meet the control criterion PF 0.99. Detuning  is a very 

efficient strategy that can produce fully selective 4-trains (Fig. 3d). 

More irregular behavior is displayed by the solutions for the (6+1) S, most auspiciously 

by the 4-train solution. Here the population dynamics retains none of the characteristics of 

pulse train excitation in the background-free system. It obviously belongs to the irregular 

solutions anticipated above. 

In the following subsections we will discuss the properties of the types of solutions of the 

control problem, and will work out the systematic features in the behavior of PTC and the 

relation to simple pulse train excitation in the corresponding background-free systems. 

 

4.2. Resonance ridges, regular and irregular solutions 

In the background-free systems, the multiple points in parameter space denoting -trains 

due to their phase recurrence properties can be projected on resonance ridges in the ( , A0)-

plane. As a working assumption, with the intruder fully suppressed a -train in an augmented 

system might resemble that in the background-free ladder system. In Fig. 5a we compare 

resonance ridges for 4-trains driving the 3LS 1 with corresponding PTC results for (3+1) S. 

Indeed we observe only weak changes in the train amplitudes, and negligible ones in the 

frequency range covered. Furthermore the profiles along cuts at fixed , shown in Fig 5b and 

c, are very close. In the presence of the intruder state the resonance ridge is thus retained as 

projection of the loci of at least approximate -trains. The qualification is made because the 

points shown for the (3+1) S do not consistently match the criterion PF 0.99. They do near 
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the coalescence points, e.g. along the cut marked “c”. The population dynamics for the 

corresponding control field is the one shown in Fig. 3d. 

A very different picture emerges for the (6+1) S, where the concept of a resonance ridge 

seizes to be applicable. As displayed in Fig. 6, in the vicinity of the resonance ridge of the 6LS 

PF fluctuates through a multitude of local maxima and minima of different height due to 

additional interference contributions involving B , and the projection of the global maxima in 

the (A0, ptp , ptp )-subspace at fixed  onto the ( , A0)-plane becomes irregular. This behavior 

is particularly pronounced for 4-trains, and finds its expression also in the population 

dynamics: the massively irregular pattern in Fig. 4c corresponds to the first maximum along 

the cut in Fig. 6b. Irregular elements are also manifest in the 8-trains in form of transient 

intruder state population, as e.g. in Fig. 4b and d, although below we will see that the regular 

elements still dominate and determine the behavior. 

 

4.3. Phase recurrence and zero-order estimates 

We now consider regular solutions obtained for methods A ( IF
0 ) and B ( BI

0 ) 

of Sec. 3.3, and relate them to the zero-order estimates given in Sec. 3. Characteristic features 

connected with the phase recurrence behavior are found in contour plots of target- and intruder 

state populations over the ( ptp , ptp )-plane. Fig. 7 and 8 show the results for 2-photon 

transitions by 4-trains in the (3+1) S and the (3+1)LS, respectively, and Fig. 9 shows 8-train 

excitation of the 5-photon transition in the (6+1)LS. In all examples the sub-pulses are 

spectrally narrow enough to avoid final population of the anharmonically detuned rung states; 

hence all setups belong to m-regime I. The results are obtained for trains with optimized 

amplitudes A0  The question whether the ( , A0)-pairs are thus points on a resonance ridge as in 

the background-free systems was already addressed in Section 4.2.  
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For IF
0  (method A), PF is accumulated at ptp -independent optimal values of ptp , 

and population transfer to the target state is impeded only by the recurring contribution of the 

intruder. Caution with this statement is required in cases where the transition to the background 

state is dominant. Then the recurring contribution of the intruder may still imply that only those 

narrow ranges of ptp  are available, where the intruder transition is fully quenched. In such a 

case it may be preferable to use method B, where at BI
0  the intruder state has infinite 

recurrence time, and with ptp  taken appropriately, PB is quenched by destructive interference 

for all values of ptp . 

According to eq. (5), the apparent phase recurrence time for a transition with photonicity 

n is reduced by a factor 1/n due to the multiplicity of the recurrence pattern. Hence for a 

suitable value of ptp , in method A n-photon population transfer to the target state proceeds 

optimally for values of ptp  spaced by nT / . Analogously, in method B maximum quenching 

of intruder state population occurs along straight lines in the ( ptp , ptp )-plane spaced by 

'/ nT , n’ being the total photonicity of the I B  transition. 

Zero-order estimates for -trains driving selectively the I F  transition are obtained 

as crossings of constructive loci for PF and destructive ones for PB. These estimates are derived 

from eqs. (4). and (5); furthermore for each of the transitions a straight-line locus of 

constructive interference must emanate from the plot origin, which corresponds to the limit that 

all sub-pulses collapse into a single -pulse. Figs. 4 to 6 bear out the expected phase-recurrence 

behavior: the computed probabilities closely match the estimates. 

For the (3+1) S and the (3+1)LS, the target-intruder energy mismatch is 6108.3 au, 

corresponding to T 40 ps. Hence in Figs. 7 and 8, for method A we observe periodicities in 
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PB with respect to ptp  of 40 ps for the (3+1) S, with n’  1, and of 13.33 ps for the (3+1)LS, 

with n’  3. In method B, the periodicity of PF is 20 ps in both systems (n  2). 

An appropriate zero-order estimate for -train control in the (3+1) S by method A is 

ptp  at ptp  40 ps. With this choice and an optimized value of A0 we obtain 984.0FP . 

For all practical purposes, this zero-order choice produces the best specificity that can be can 

obtained with a 4-train in method A. A search for the global population maximum within 

method A gives only minimal improvement. Note however that the resulting train has an 

effective overall duration of 160 ps. Aiming at short train durations, a “pragmatic optimum” is 

981.0FP  at ptp  for ptp  5 ps, with effectively just non-overlapping sub-pulses. Within 

methods A and B, selectivity approaching 100% can only be obtained by increasing the 

number of sub-pulses. Very selective PTC with 4-trains is obtained by detuning  along the 

resonance ridge, as e.g. in the example in Fig. 4d. 

For the (6+1) S, the energy mismatch is 510  au, with T 15.2 ps and effective 

recurrence times of 3.04 ps for the 5-photon I F  excitation. The contour plots in Fig. 9 

show that the loci of maximum population transfer have the shape of steep, narrow ridges. The 

zero-order estimates seem to fall almost spot-on, yet due to the steepness of the ridges of 

maximum population, results obtained with zero-order train parameters are far off the 100% 

mark. Thus the zero-order estimate at (0.4 , ptp  2.88 ps) leads to PF .796. Upon re-

optimization onto the slightly shifted true resonance locus at (0.411 , ptp  3.07 ps) we find 

PF .994. The persistence of partially irregular behavior contributes to these deviations from 

the zero-order estimates, but the narrowing of the features on the control landscapes 

accompanying the change from the (3+1) S to the (6+1) S also drastically reduces the 

robustness of control solutions. This narrowing has its roots both in multiplicity effects for 
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higher photonicities and in the higher number of sub-pulses required for high selectivity. On 

the other hand, due to the increased multiplicity a large array of possible zero-order solutions is 

at hand, naturally including also such of short train duration.  

The similarities and the essential differences between methods A and B are evident in the 

one-dimensional cuts through the probability landscapes shown in Fig. 10. The ptp -

dependence of PF and PB highlights the reciprocal role of target and intruder states in the two 

methods, while the phase portraits are closely alike and demonstrate that the underlying 

interference mechanisms are identical. 

 

4.4. The number of sub-pulses 

Whereas for irregular solutions the number of sub-pulses required for full control is 

hardly predictable, for the regular solutions there are clear trends in the m-dependence of the 

selectivity. For a systematic investigation of these effects we focus on the (3+1) S and method 

A. In Fig. 11 we compare results for optimized 4-, 6-, 8- and 12-trains, which are analogous to 

the results of the background-free systems.1 The plots indicate how the number of sub-pulses 

influences branch separation, and hence the achievable target population and residual intruder 

population. (PF reaches 0.984 for 4-trains, 0.993 for 6-trains, 0.996 for 8-trains and 0.998 for 

12-trains). They also show the trends in deviations from the zero-order solutions. With 

increasing m, the ptp  approach the zero-order values of eq. (4), and simultaneously the Am 

decrease weakly.1 

For the (3+1)LS, 12-trains fall already well into m-regime II, and the transition to this 

regime is accompanied by undesirable effects. Final rung state population becomes possible, 

and with their short phase-recurrence periods the rung states dominate the excitation pattern. In 

the (3+1) S driven at IF
0 , massive rung state population recurs with T 1.22 ps, and it is 
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tedious to locate a parameter set where both the intruder and the rung state are fully suppressed 

and the total train duration remains short. For more extended systems, these problems are 

further amplified by recurring contributions from several rung states with different values of 

T , and a further reduction of the apparent recurrence times due to the higher multiplicities. 

This puts heavy demands on finding and keeping a suitable value of ptp , so that a practical 

implementation may be difficult.  

 

4.5. Pulse train control and the mechanisms of resonance leaking 

Close inspection of the contour plots in Sec. 4.3 provides more clues about the nature of 

the leaking processes. In the (3+1) S the intruder transition is seen to be dormant over 

extended stretches of parameter space, and is revived only under conditions for which target 

population is also present. The field driving the 2-photon target transition is too weak to 

directly excite the I B  process, which involves 3 photons. Leaking occurs through the 

one-photon F B  transition, which follows target state excitation in a sequential two-step 

process. Hence intruder population appears together with target population where permitted by 

the phase relations, and is absent if the target transition is suppressed, and the peaks in PB are 

aligned with PF and do not follow the direction given by the zero-order estimates. 

In contrast, in the (6+1) S resonance leaking is an autonomous process using the target 

as intermediate ladder state in a (5-1)-photon transition, which occurs in parallel with the 5-

photon target transition. In the contour plots the maxima of both PF and PB are ridge-shaped 

and aligned along the respective zero-order estimates. This indicates that except for the ptp 

phase shift both transitions are driven efficiently and independently by the same pulse train. 

Analysis of adiabatic Floquet states has led to similar conclusions about the existence of 

different mechanisms of resonance leaking.13 
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Our considerations support the interpretation that in the irregular solutions found for the 

(6+1) S - but not for the (3+1) S - the characteristic PTC mechanism based on phase 

matching and phase recurrence is more or less strongly augmented by two-pathway 

interferences of coherent-control type.19 

 

5. PHASE-SENSITIVE LEVEL SWITCHING WITH PULSE TRAINS 

The last statement of the previous section suggests an alternative application of PTC. 

According to eq. (4), processes of different photonicity have different optimal (constructive) 

ptp phase shifts. These properties render pulse trains a tool for phase-sensitive level switching. 

Indeed, as is evident from Fig. 10, tuning ptp  in the (6+1) S causes a switch of population 

between target state (99 %) and intruder state (76 %). Both switch positions correspond to 

closely state-selective excitation: even if the population does not reach 100%, the remaining 

fraction always resides largely in the initial state. By readjustment of the train parameters for 

improved switching rather than for intruder control, PB can be increased to 90%, with the target 

state population still 99%. The switch characteristics can also be made symmetric. Figs.12 and 

13 illustrate a device operating with populations of 97% for both switch positions. 

Furthermore the device is neutral for ptp phase shifts in between the switch positions, where 

the system to a large extent remains in the initial state. 

We note that a phase-driven switch between two available final states was also found for population 

transfer in dipolar systems by an mp variant of STIRAP (stimulated Raman-adiabatic passage).22 
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6. SUMMARY AND CONCLUSIONS 

In this paper we have introduced and discussed PTC of branching and competing mp 

transitions. Our control strategies rely on phase-matching and phase-recurrence properties of 

resonant population transfer by pulse trains and the different response of these properties for 

processes with different photonicities and possibly different, but near-degenerate transition 

frequencies.1 Based on the choice of the central frequency of the pulse trains, three specific 

control strategies are suggested, which are capable of eliminating an undesirable branch and 

promoting a desirable one in branching and competing population transfer processes, and thus 

can steer the system specifically to a selected target state. As an example of PTC of competing 

processes, elimination of background- (intruder-) state population in resonance leaking has 

been demonstrated on the basis of simulations for N-level model systems. This situation 

involves processes with different photonicities and near-degenerate transition frequencies. 

We observe what we call regular and irregular solutions to the control problem. The 

regular mechanism is based on phase-matching and phase-recurrence and is identical to the one 

governing mp pulse train excitation in unperturbed ladder progressions.1,5-9 Control strategies 

using zero-order resonance frequencies can be applied and investigated systematically starting 

out from zero-order estimates. We find that this way a leaking two-photon transition can be 

controlled with ease, and the trains and the ensuing population dynamics strongly resemble the 

trains effecting population transfer in the background-free reference system. The option to 

freely tune the frequency over a range approximately given by the resonance ridges of the 

background-free systems greatly assists the separation of the competing processes and helps 

keeping the number of sub-pulses small.  

In more complex systems and for transitions of higher photonicity fully selective regular 

control solutions based on phase matching and phase recurrence may require many sub-pulses 

to an extent becoming awkward in practical implementation. In this case optimal control can 
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produce more efficient irregular solutions, i.e. specific solutions that have no direct counterpart 

in the background-free system, but tend to retain the qualitative features of the simple control 

schemes. This involves optimization on a rugged control landscape with multiple local 

maxima, rendering an a priori treatment of PTC based on zero-order estimates difficult or 

unlikely. 

In alternative setup, the control properties of -trains can be utilized for a phase-sensitive 

level switch, such that by varying only the ptp-phase shift, population is switched between the 

final states of the branching processes. In the present investigation we have demonstrated such 

a population switch between target and intruder state of a leaking resonant mp transition; 

however the concept can be extended to other situations involving population branching.  

Work in progress in this laboratory indicates that PTC is applicable e.g. in the control of 

population branching involving strongly coupled intruder states. In a different connection, we 

draw attention to the control fields obtained by Laarman et al. 23 in a closed-loop self learning 

pulse shaping experiment, in which the cleavage yield of a pre-selected backbone bond in an 

amino acid complex is optimized. The genetic algorithm steering this optimization produces  a 

3-train with a ptp-phase shift of . In the light of the discussions in ref. 1 and the present paper 

one could speculate that the algorithm found a PTC strategy promoting two-photon (or other 

even mp) processes and blocking one-photon (or other uneven mp) transitions. 
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Tables 

TABLE I.  Zero-order transition frequencies in the model systems  

         (3+1) S 

        (3+1)LS a 

(6+1) S 

IF
0  

b
 .004 375 .004 750 

FB
0  

c
 .004 379 .004 790 

a  Same values for simple and embedded systems 

b  (k-1)-photon initial state-to-target state zero-order transition frequency (circular frequency)in  

a.u. in the (k+1)LS 

c  One-photon target state-to-background state zero-order transition frequency (circular 

frequency) in a.u. 

 

TABLE II.  Properties of 8 ps gaussian -pulses in the model systems a 

 (3+1) S (3+1)LS (6+1) S 

r
 a  0.00437504 0.00437491 0.00479162 

A r
 b  0.000295 0.000295 0.003127 

PB
 c  34.2 34.2 83.5 

a  Resonance frequency (circular frequency) in a.u. 

b  Peak field strength in a.u. 

c  Background (intruder) state population in %  (amount of leaking) 
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Figure Captions 

Fig.1: Level schemes of the model systems. A state B  is weakly coupled to a ladder state F  

of a strongly coupled anharmonic progression. Left: the [embedded] (3+1)-level system in -

configuration denoted (3+1) S. Middle: the [embedded] (3+1)-level system in ladder-

configuration denoted (3+1)LS. Right: The (6+1)-level system in -configuration denoted 

(6+1) S. Resonant multiphoton transitions from the initial state I  to the final (target) state 

F  indicated by arrows strongly leak to the background (intruder) state B . 

Fig. 2: Envelope functions of gaussian pulses and pulse trains. (a): A gaussian pulse envelope 

(online red) with pulse width (fwhh) Tp  8 ps, and a 6-train (of /6 pulses) with sub-pulse 

width Tp/6 and the pulse-to-pulse time delay ptp adjusted for equal effective pulse and train 

durations. (b) The gaussian pulse compared with a 6-train with non-overlapping sub-pulses of 

width Tp (dashed line) and the 6-train of panel a with ptp increased to span the same effective 

train duration (full line). All shapes are to scale for resonant two-photon transitions in the 

(3+1) S. 

Fig. 3: PTC solutions for intruder suppression in the two-photon transition for the (3+1) S. 

Top row: the envelope functions (field strength in arbitrary units, but to scale for the four fields 

a-d). Bottom row: the corresponding population dynamics. Bold lines (online blue): target 

population PF, thin lines (online red): intruder population PB, dashed gray lines: initial state 

population PI. (a) The leaking resonant transition induced by the gaussian reference pulse. (b) 

6-train solution with IF
0  (method A). (c) 6-train solution with IB

0  (method B) for a 

5 -train of 5 /6 sub-pulses. (d) 4-train solution at strongly detuned frequency (point marked 

“A” in Fig. 5). 
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Fig. 4: PTC solutions as in Fig 3, but for the five-photon transition in the (6+1) S. (a) The 

leaking resonant transition with the gaussian reference pulse. (b) 8-train solution with IF
0  

(method A with irregular contributions; point marked “B” in Fig. 6). (c) 4-train solution with 

IF
0  (irregular solution, point marked “C” in Fig. 6). (d) 4-train solution at detuned 

frequency (point marked “D” in Fig. 6). 

Fig. 5: Frequency dependence of PTC solutions in the (3+1) S. (a) Projections of the 

parameters of the 4-train giving maximum target population at fixed  onto the ( , A0)-plane, 

shown as filled circles, are compared with the resonance ridge of the 3LS (continuous line). 

Lower and upper parts of the resonance ridge and the PTC solutions in the vicinity correspond 

respectively to -trains and 7 -trains. Line segments marked “b” and “c” refer to panels b and 

c. (b) Target population along line segment “b” of panel (a), corresponding to IF
0 . Full 

line: 3LS; symbols: (3+1) S. (c) Tp along line segment “c” of panel a. Plot details as in panel 

a. Population dynamics for train indicated by “A” are shown in Fig. 3d. 

Fig. 6: Frequency dependence of PTC solutions in the (6+1) S. (a) Projections as in Fig. 5a, of 

the parameters for 4-trains (full circles) and 8-trains (open squares), and corresponding 

resonance ridges for the 6LS (dashed line: 4-trains; full line: 8-trains). Only the -branches of 

the resonance ridges are included.  (b)  Target populations along the cut IF
0  for 4-trains. 

Full line: 6LS; symbols: (6+1) S.  (c):  As panel (b), but for 8-trains. Population dynamics for 

trains indicated by “B”, “C” and “D” are shown in Fig. 4b-d. 
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Fig. 7: Contour plots of final populations PF and PB over the ( ptp , ptp )-plane for two-photon 

excitation with 4-trains in the (3+1) S. Results obtained for IF
0  or IB

0  as indicated; train 

amplitude A0 fixed at optimal value within parameter subspace orthogonal to . Various zero-

order estimates are indicated by straight lines: Bold full lines (online cyan): constructive for 

target state, dashed lines (online red): constructive for intruder state, thin full lines (online 

green): destructive for intruder state. In the top row panels, intersection points of full lines 

indicate zero-order estimates for full target population. 

Fig. 8: Contour plots as in Fig. 7, but for 4-trains in the (3+1)LS. 

Fig. 9: Contour plots as in Fig. 7, but for 8-trains in the (6+1) S. 

Fig. 10: Comparison of phase matching and phase recurrence properties in method A, IF
0  

(top row), and method B, IB
0  (bottom row). Results are for 8-trains in the (6+1) S with 

individually optimized train amplitudes A0. Bold lines (online blue): target population PF; thin 

lines (online red): intruder population PB. Panels (a), (b): ptp-dependence of PF and PB with 

ptp fixed as indicated by arrows in panels (c) and (d). Panels (c), (d): Phase portraits ( ptp-

dependence of PF and PB) with ptp fixed as indicated by arrows in panels (a) and (b). 
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Fig. 11: Dependence of pulse train properties on the number of sub-pulses for method A, 

IF
0 . Results are for the (3+1) S. Blue lines: target population PF; red lines: intruder 

population PB; dark green lines: rung population P2; dashed gray lines: initial state population 

PI (where shown). Left column: ptp-dependence of PF, PB and P2. Middle column: Phase 

portraits. Right column: Population dynamics for optimized PTC fields. Rows a to d in turn 

show 4-, 6-, 8- and 12-trains. In this setup, 8-trains fall just and 12-trains fall well into m-

regime II. 

Fig. 12: Population response of a phase sensitive level switch operating between levels F  and 

B  of the (6+1) S. Parameters of an 8-train tuned to IF
0  are adjusted to produce the best 

symmetric population switch between switch positions marked “B” and “F”. Bold line (online 

blue): PF; thin line (online red): PB; dashed gray line: PI. 

Fig. 13: Envelope functions (top panels) and population dynamics (bottom panels) for the two 

switch positions “F” and “B” of the level switch of Fig. 12. Plot details are also as in Fig. 12. 
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