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ABSTRACT

The properties of pulse-train induced multiphoton excitation in anharmonic progressions and the accu-
mulation of population in a specific rung state are investigated by means of numerical simulations. It is
shown how and under which conditions resonant n-pulses and multiple-n pulses can be split into trains
of fractional n-pulses driving the same transition. Standardized train forms are considered with sub-
pulses of equal (gaussian) shapes and equal, but tunable pulse-to-pulse delays and pulse-to-pulse phase
shifts. The increased number of tuning parameters together with the handle on the number of sub-pulses
gives rise to a remarkable variability in the control of state-specific population transfer, where simple
zero-order estimates assist the determination of the parameters. Each n- or multiple-r pulse is replaced
by a resonance locus in parameter space representing an infinite set of n-trains. The loci span extended
frequency ranges that increase with increasing sub-pulse number. Their projection onto the frequency-
field strength plane gives rise to elliptically shaped closed curves, termed resonance ridges, which replace
the singular points mapped out by simple n- and multiple-r pulses. In the subspace of pulse-to-pulse
delays and pulse-to-pulse phase shifts the resonance loci are characterized by phase recurrence relations,
whose number and complexity increases with increasing numbers of sub-pulses. Our results indicate that
pulse trains may be a powerful tool for the control of parallel or branching multiphoton transitions and

for the elimination of background and intruder state population.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In N-level systems (NLSs), pulse trains can be used to accumu-
late population in pre-selected levels [1-10]. This aspect of popu-
lation control has been studied in particular for population
transfer in 2-level systems (2LSs) [1-3,9] and in harmonic and
anharmonic N-level progressions [4-8]. In dipolar systems, this
mechanism also covers multiphoton (mp) transitions without
intermediate levels, e.g. in 2LSs [9]. Recently, trains of pulse pairs
effecting adiabatic passage in pump-dump transitions have been
considered [10].

The findings in these investigations imply that in effect a (gen-
eralized) =-pulse [11-14] driving specific transitions may be
replaced by a train of properly adjusted fractional n-pulses. The
additional parameters characterizing pulse trains, most promi-
nently the pulse-to-pulse (ptp) time delays and the ptp-phase
shifts, together with the number of sub-pulses, provide new han-
dles for the control of state-specific population transfer. In this
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context, a highly useful feature is the possibility to achieve full
population transfer for detuned frequencies over a range whose
size varies with the number of sub-pulses [1].

The purpose of the present paper is to explore in detail the
properties of pulse-train driven mp ladder climbing along anhar-
monic progressions as well as the limitations of the method. We
split resonant n-pulses into trains of fractional n-pulses and deter-
mine the conditions, under which constructive superposition gives
rise to accumulation of population in the target state. In particular,
we investigate the conditions on the ptp time delays and ptp phase
shifts that allow the design of “n-trains” as equivalents of simple n-
pulses, i.e. trains that overall act like n- or multiple-order rn-pulses.
While pulse-train control of population transfer in simple anhar-
monic progressions has been considered before [4-8], we take an
extended look at this problem by way of numerical simulations,
in which we address aspects that are important as reference for
pulse-train control in more complex situations. We thereby extend
the analytical results for 2LSs obtained Vitanov and Knight [1]
within the rotating wave approximation (RWA) [11,14] to mp pro-
cesses in NLSs, dropping the RWA in view of expected shortcom-
ings under these more demanding conditions [15,16]. Note by
working with trains of fractional n-pulses we use only the Fourier
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frequency components coming from the individual sub-pulses, and
do not exploit the properties of the associated frequency comb
[17]. Use of the latter has been suggested as a means for achieving
ultrahigh vibrational excitation in anharmonic progressions [18-
20]. Ultimately, our goal is to employ pulse trains as a tool for con-
trolling parallel or branching processes. If the competing processes
differ in photonicity or involve near-degenerate transitions, their
different response to the ptp-characteristics of pulse trains will al-
low separating the processes.

The present paper is organized as follows. In Section 2 we intro-
duce our model systems. In Section 3 we describe the properties of
resonant n-pulses and pulse trains. We restrict our attention to
what we denote “m-trains” as trains of m non-overlapping gauss-
ian sub-pulses [21,22] with identical shapes, amplitudes, central
frequencies, ptp time delays and ptp phase shifts. We deal with
the role of the number of sub-pulses, identifying two regimes
corresponding to “few” and “many” sub-pulses. In Section 4 we
summarize results obtained from numerical solutions of the Schro-
dinger equation. We first deal with simple n-pulses, which form
the reference frame for the design of n-trains. We then present
our results for pulse-train control. In particular, we explore the
properties of rm-trains, and the conditions under which control
can be robust with respect to any of the control parameters. We
characterize 4-dimensional resonance loci in parameter space
comprising infinite sets of n-trains, and resonance ridges as their
projections onto the amplitude-frequency plane. We then address
multiple-order rn-trains, and show that the resonance loci of n-
trains of different order are coupled and connected. Finally, in Sec-
tion 5 we present our conclusions and discuss the implications for
pulse-train control of branching or parallel processes.

2. The model N-level ladder systems

In this section, we describe the specific NLSs that are used in our
simulations. As illustrated in Fig. 1, our systems are sequentially
coupled anharmonic progressions of N levels |1) to |N). For N=3-
6, respectively, we abbreviate our systems 3LS, 4LS, 5LS, and 6LS.
The corresponding level energies are denoted ¢; to ¢y, and are given
by a Morse progression, where in each system the uppermost rung
spacing (ey — en_1) is set to 0.00425 a.u., and consecutively lower
level spacings are incremented by 0.00025 a.u. These values are
adapted from the HCN bend state progression [23], so that our re-
sults can be related to a typical molecular situation. However, the re-
sults are in fact more general and by invoking reduced units they
will also scale to different frequency regimes.

Furthermore, for the 3LS we explore the consequences of
“embedding” the ladder states into a longer anharmonic progres-
sion by adding one level below |1) (denoted |-)), and one level
above |N) (denoted |+)). Fig. 1 includes a sketch of this embedding
extension. Nominally it defines a 5-level system, for which we use
the notation “embedded 3LS”. The findings for the embedded sys-
tem carry over to the larger systems, for which embedding exten-
sions are not considered explicitly.

In order to use a notation that is independent of the specific sys-
tem, we will also denote, interchangeably, level |1) as initial state
|I) and level |N), the target state of the (N — 1)-photon transitions
to be driven, as final state |F).

The zero-order resonance frequencies of the (N — 1)-photon
transitions |I) — |F) are

2 For the characterization of our NLSs and laser fields we use atomic units (a.u.),
with the following conversion factors [24]: 1a.u. of energy =1 hartree =
435981 x 10718, 1a.u. of circular frequency = 6.57968 x 10'> Hz (corresponding
to a wavenumber of 219,474 cm™!), 1 a.u. of field strength = 514.225 GV m™!, and
1 a.u. of dipole moment = 2.54176 D = 8.47841 x 103° C m.

wg = (er — 1)/ (N = Dh. (M

For a pulse or pulse train at central frequency , the individual lev-
els |j) of the anharmonic ladder (with zero-order transition frequen-
cies wg) are detuned by ds; (denoted “rung detuning”), and

dej = |(g — &1) = = Do) (2)
For the special case o = off, we have
de) = |(5 — 1) = ( = Dosg |- 3)

It is our objective to study the phenomena associated with
pulse-train control in a systematic way. Therefore all NLSs are as-
sumed to be non-polar and to be purely sequentially coupled, so
that for the elements of the N x N dipole matrix M we have

My, l:]77N717]:l+17
Hij = Hji = {0 else. “)

The value p = 0.2 a.u., adapted from the bend progression of the
HCN molecule [25-27], is used throughout. Dropping the simplifica-
tions in M by including permanent dipole moments and overtone
couplings, as e.g. in realistic molecular systems, does not lead to
significant changes in the control properties, and all phenomena
described in the following sections are still observed. However, in
this case their appearance can be obscured by effects arising from
interference with alternative excitation pathways that involve
direct or dipole-induced [28-30] overtone transitions. Characteris-
tic properties of the systems are shown in Table 1.

3. Pulse-train driven multiphoton ladder climbing
3.1. Resonant excitation by simple pulses

We first consider a state-specific k-photon transition in an
anharmonic (k + 1)-level progression driven by a pulse of given
shape and length. In particular, we use pulses with gaussian enve-
lopes, which we characterize by the pulse length T, the full-width
at half-height (fwhh) in field strength; the width of the intensity
envelope is narrower by a factor +/0.5. Under these conditions, res-
onance occurs at frequency 'f, displaced from the zero-order tran-
sition frequency ff by the Bloch-Siegert shift [31,32] yF.> The
corresponding peak amplitude of the gaussian envelope is A;. With
the typical molecular parameters used for our model systems, the
shortest time domain for which the situation described above ob-
tains is the T, range of one to few picoseconds. For pulses in the
sub-picosecond domain the spectral width of the pulses covers the
anharmonic detunings of intermediate rung states, allowing final
population of such states and destroying state-specificity. In view
of this situation, throughout this paper we use a standard value
T, = 8 ps. A resonant process will be understood to mean that the ini-
tial state population P; is numerically zero at the end of the pulse.

In the time regime of few picoseconds and for low photonicities,
»'F remains reasonably small, and the population dynamics show a
nearly unperturbed Rabi-type [11,14,33] sinusoidal variation of
and P; and the final state population P, with at most small tran-
sient contributions from intermediate rung states. It is important
to note that under the conditions laid out, and provided it is
possible at all, for fixed T, two pulse parameters (i.e. »'f and A;)
are required to achieve the avoided crossing conditions among
instantaneous Floquet quasienergy states [34] that define a
generalized n-pulse [13] or higher-order nr-pulse, and that the n-
dependent pairs (off,A;) represent a set of discrete points in the
(w,Ap)-plane.

3 We use the term “Bloch-Siegert shift” generally for any field-induced resonance
shift in pulse-driven transitions in N-level systems. The term is often used more
restrictively, see e.g. Refs. [14,31,32].
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Fig. 1. Level diagrams and notation for the model systems. Left: the 3-level and embedded 3-level systems. Right: the 6-level system. The energies of the anharmonic
progression are to scale. The levels are sequentially coupled by transition dipole moments of 0.2 a.u.

Table 1

Properties of the model anharmonic ladder systems

System 3LS emb. 3LS 4LS 5LS 6LS
of? .004375 .004375000, .004500 .004625 .004750
Emin’ .000125 .000125 .000250 .000375 .000500
Msw© 5 5 10 15 20

¢ Zero-order resonance frequency (circular frequency in a.u.) for (N — 1)-photon
transition in the NLS system.

> Smallest rung-state detuning (energy in a.u.) at zero-order frequency of.

¢ Switch-over sub-pulse number from m-regime I to II: estimated onset of rung-
state participation for m-trains with T,=8ps and central frequency wlf; from
Egs. (6) and (7).

3.2. Resonant excitation by pulse trains

We now split the driving n-pulse into m equal and equally
spaced sub-pulses [1], again with gaussian shape [21,22], width
(fwhh) T, =Tp/m, ptp time delay A, ptp-phase shift dpp, fre-
quency o and sub-pulse amplitude A,. Except for T,,, the parame-
ters are left unspecified for the moment, but we may assume
that w and Ay are, respectively, close to »f and A,. Furthermore,
Apyp is limited (from below) by the requirement that the sub-pulses
should be effectively non-overlapping. If 4y, is chosen as small as
possible complying with this condition, then the entire m-train of
densely spaced, but non-overlapping sub-pulses covers about the
same time span as the original n-pulse, so that no additional phe-
nomena such as rotational motion or spontaneous emission are
introduced. Although the experimental design of such closely
spaced sub-pulses is out of reach of present technology, we will
stick to this vision of a control tool. Pulse trains approaching the
nanosecond time scale clearly offer less exciting control prospects.

The condition of effectively non-overlapping gaussian sub-
pulses is approximately fulfilled for 4, >2.5 T, which for the
standard parameters used means Ap, > 20/m ps. Down to this va-
lue the results from the simulations retain their regular patterns.

We call a uniform sequence of m non-overlapping pulses as de-
scribed above an “m-train” (a 4-train is schematically shown in
Fig. 2). Note that the assumption of equal values of Ty, 4ptp, Spep
and Ap is one of experimental and computational convenience
and could be relaxed, if required. An m-train may be interpreted
as a single pulse of special shape and special phase relations, and
within certain limitations it can be made into a n-pulse with its

4-train
AP‘P
%0
[0
©
=
S
£
©
o
&2 T,
time

Fig. 2. Envelope function for a 4-train of gaussian sub-pulses with width (fwhh) Ty,
pulse-to-pulse delay 4, and pulse-to-pulse phase shift . In all simulations T4 =
2ps (for m-trains T, =8/mps) and Ay, >20/m ps (with standard value Ap,=
25/m ps).

own resonance parameters for frequency, amplitude, ptp-phase
shift and ptp time delay. For such trains we will use the term
“n-train”, noting that its individual sub-pulses represent fractional
n-pulses.

The concept can be extended to multiple-order = trains. In anal-
ogy to nr-pulses (n=1,3,5,7,...) of successively higher fluence,
which drive transitions sinusoidally in n Rabi half-cycles, nr-trains
can be devised, again with n an odd integer. However, since each
sub-pulse in an nt m-train represents an (n/m)r-pulse, the popula-
tion dynamics display a complex oscillatory evolution of target
state population rather than stepwise accumulation of population.
Illustrations of multiple-order = trains and some of their remark-
able properties will be given in Section 4.3.

In any case, it is the crux of pulse-train control that an m-train
possesses more parameters than are required to uniquely define a
generalized n- or nr-pulse [13]. This means that the concept of a
singular resonant w-pulse gives way to a “resonance locus” in (w,
Ao, dpip, dprp)-space characterizing an infinite set of resonant n-
trains. In particular, as we will demonstrate in Section 4, the pair
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of resonance parameters {w!f,A;} of a gaussian pulse of given
length, i.e. a point in the (w,Ag)-plane, to an excellent approxima-
tion is replaced by a curve representing the projection of the reso-
nance locus onto this plane, which we denote “resonance ridge”.
This increased flexibility allows making convenient choices for
some of the parameters, and will strongly facilitate the control of
parallel and branching processes.

3.3. The number of sub-pulses

The adiabaticity requirement [34], which demands that the
pulse envelope must vary much more slowly than the oscillatory
field, puts a constraint on the number of sub-pulses in a pulse train
of given total width Tj, so that m cannot be made arbitrarily large.
Furthermore, even before reaching this “few-cycle” limit for the
sub-pulses, another important aspect comes into play. The narrow-
ing of the sub-pulses associated with increasing m increases the
width of the frequency distribution, so that the detuned intermedi-
ate levels will increasingly come into play. An m-train can lead to
significant final rung-state population, as soon as T;;, drops below
a critical sub-pulse width T,

Te = 21 /demin, (5)

where dep;y is the smallest of the individual rung detunings de; de-
fined in Eq. (2). In this case, the Fourier spectrum covers transition
frequencies to at least one intermediate rung state |j), which could
now be populated in a (j — 1)-photon transition. The quantity T
translates into a critical sub-pulse number m,,

me = TP/TC:« (6)

which marks the transition between two regimes of m-trains.

Since denin, depends on w, upon sweeping the frequency the
occurrence of accidental near-degeneracies of w with wg for single
specific levels j may lead to erratic behavior of m.. For a “regular”
anharmonic progression, e.g. a Morse progression, driven near
o = off no such accidental degeneracies can arise, and m. is a char-
acteristic parameter of a system. Since intermediate state partici-
pation becomes noticeable well before reaching m. as a
parameter characterizing the effective onset of rung-state intrusion
we use the switch-over number

Mgy = 0.75m,, (7)

where the choice of the factor 0.75 is purely empirical. We will use
values of my,, derived for w = ol to define two regimes of “few” and
“many” sub-pulses. Corresponding values of ms,, for our model sys-
tems are included in Table 1.

In m-regime I, defined by m < ms,, final rung-state population
will be negligible in general, and then the situation for n-trains will
be comparable to that of simple n-pulses, except that the sinusoi-
dal increase (decrease) of Pr (P;) will be replaced by a stepwise
sinusoidal one. Rung-state population will at most be a transient
phenomenon. In m-regime II, m > my,, and participation of rung
states, which may become sizable for certain train parameters, will
be the rule. However, this state of affairs need not imply final rung-
state population, since Ag, 4pp and dpp can be used as adjustable
parameters maximizing Pg.

3.4. Few sub-pulses, m-regime |

We will now develop the conditions required for complete
accumulation of population in the target state by a pulse train,
iie. Pr—» 1. We start by considering a k-photon excitation at
w = off. In a zero-order picture the time evolution of the target
state remains in phase with the field oscillations for all times, pro-
vided the dy, are adjusted such that

dptp = Opep = v- 2m/k, v any integer. (8)

There is no dependence on 4, which thus may be chosen arbi-
trarily, e.g. as small as possible compatible with the requirement
of non-overlapping sub-pulses, or so as to satisfy experimental de-
mands. Although there may be perturbations introduced by Fourier
components from the pulse envelopes, we find that these can be ne-
glected in all our examples.

From Eq. (8) it follows that in [0,2n] there are k different,
equally spaced “constructive” values J,,,. In a zero-order picture,
for each of these values and for arbitrary A, the fractional
n-pulses forming the train will combine to an overall n-pulse, i.e.
a n-train. Importantly, by choosing a suitable v, one can discrimi-
nate degenerate transitions of different photonicity and hence
has control over parallel or branching processes.

For realistic systems the zero-order assumptions are not strictly
fulfilled. First, in NLSs the area theorem [11] is not obeyed
[12,13,34], especially in mp processes, sometimes not even
approximately. Hence the area under the envelope of differently
shaped “n-pulses” is not invariant, and A; will not be the optimal
field amplitude. Also, in the same way as for simple n-pulses,
where y'F = 0 holds only in the limit of vanishing field, an m-train
tuned to wf and 4,,,, will only be an approximate n-train.

Since an m-train has more tunable parameters than are required
to define a generalized n-pulse, we can proceed from zero-order n-
trains to “proper” ones by readjusting the parameter set {w, Ao,
Aptps Optp). As discussed below, an additional relation links these
parameters, so that three variables are available to meet the condi-
tion for a generalized n-pulse. Instead of a unique resonant n-pulse,
a set of n-trains will exist forming a “resonance locus” in parameter
space, where within limits two of the parameters can be chosen
freely. In Section 4 we will explore resonance loci for our model
systems by numerical means. A full understanding of their proper-
ties requires an in-depth theoretical analysis. Sidestepping this for
the present paper, we provide only a brief phenomenological
discussion.

It is particularly instructive to take w as a parameter to be fixed
in advance, and to distinguish the cases = off and o # off. For
trains in m-regime I tuned to w = wlf, Ap, is arbitrary and is not
available for optimization. Hence 4, can be chosen freely (but
see below for some additional observations). The remaining
parameters Ao and Jp, can be adjusted to define a set of n-trains
differing only in dyp, as implied by the periodicity shown in Eq.
(8). Upon optimization, d,p, Will deviate from the zero-order esti-
mates in Eq. (8), so that

Optp = Opep + Adprp v ANy integer. 9)
For a k-photon process, in [0,2x] there are k equally spaced con-
structive values of Jp¢,. For a given m, the optimized values of Ag
and Jp¢, together with ol and any convenient value of Ay, define
n-trains. We note that even in m-regime I rung contributions are
not strictly zero. If required, the remaining dependence on 4, usu-
ally negligible by construction, could be used to maximize Pg.

In contrast to the zero-detuning case treated above, for an m-
train detuned from off the choice of 4, is not arbitrary. Construc-
tive interference between the sub-pulse contributions maximizing
Pr occurs only for certain parameter triples {Ao, dptp, Apep). Apart
from its general m-dependence, for all practical purposes Ag de-
pends only on w, while for any given d,p, the associated value of
Apyp Tecurs with period Tj,

T; = 2n/khjo — off (10)

the phase recurrence time. Hence with » fixed and Ag as deter-
mined, there exists an infinite set of pairs {dpp, 4ptp} fulfilling the
conditions for a n-train. Again dp, also obeys the k-photon period-
icity rule of Eq. (8). In praxis a convenient value of either dp, or dpep
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can be pre-selected. The first method, with the possibility of using
phase-locked trains e.g. with ¢, =0 or = [35], may be useful in
the laboratory. In this paper, for better comparability of different
n-trains we will mainly make use of a pre-selected value for Ap,.
Note since Eq. (10) does not hold for overlapping sub-pulses, an
accurate explicit equation for Jp¢, connecting to Ape, = 0 is not read-
ily available. Suitable values may be found by numerical optimiza-
tion, from which other n-pulse parameters may be derived using
Egs. (8) and (10). Predictably, apart from their m-dependence the
constructive parameter triples {Ao, dptp, 4ptp} also depend on o,
and in Section 4.3 we will show the interesting patterns arising.

So far we have assumed there is no accidental near-degeneracy
of w with one of the rung transition frequencies wg. For w # off
such a situation may occur, and then in order to avoid final popu-
lation of level |j), methods suitable for m-regime II, as elaborated
below, must be used. A pair {dpp, 4pep} has to be found that takes
care of Eq. (10) and minimizes the rung-state populations P;.

3.5. Many sub-pulses, m-regime Il

In addition to the optimization of Ay, and 6y, the design of n-
trains in m-regime Il requires adjustment of 4, in order to avoid
final population of rung states. At any , except at one of the zero-
order frequencies oy relating to the |I) - |j) (j-1)-photon transition,
the rung states |j) are subject to phase recurrence, with phase
recurrence time

Tj = 2n/(j — 1)hjo — ol]. (11)

Again, as for T; in Eq. (10), accurate explicit equations for the T; con-
necting to 4p, = 0 are not readily derived. Furthermore, additional
oscillations may be superimposed due to coupling among different
transitions.

Successful population transfer to the target state requires iden-
tifying parameter quadruples {w,Ao, dptp, 4ptp} Such that |F) behaves
constructively, while simultaneously all relevant rung states inter-
fere destructively. Note in this context that rung-state participation
may also become manifest as finial initial state population of vary-
ing degree, if the train is not “x” with respect to the rung transi-
tions (which is likely).

The requirement to simultaneously fix several parameters with
different periodicities means the optimization has to be screened
over extended ranges of 4p,. This implies optimization in a huge
rugged parameter space and the possibility of trading in perturba-
tions from rotation or spontaneous emission. The task will be
weakly alleviated by keeping to ff, so that d,, can be fixed at
one of its constructive values from Eq. (9), and Pr need not be mon-
itored for its phase recurrence.

3.6. Embedded progressions

We conclude this section addressing the question under which
conditions ladder climbing within an extended anharmonic pro-
gression can be described by the minimal system, i.e. an (n + 1)LS
for an n-photon excitation, and how “outer” rung states would af-
fect the train-driven dynamics. Note in order to arrive at general
conclusions, in the following we disregard accidental degeneracies
of w with an outer rung transition, assuming e.g. that o is chosen to
lie in the vicinity of wf.

In m-regime I, in a regular anharmonic progression no changes
with respect to the unembedded system are expected, because the
outer rung states are more strongly detuned than the inner ones,
and hence will not be covered by the spectral width of the train.
Under such conditions the embedded system can be reduced to a
minimal one involving only the rungs from |I) to |F). This is in
strong contrast to harmonic progressions, where an equivalent of

m-regime I does not exist, and a cutoff of outer states causes arti-
ficial accumulation of population in the lowest and/or uppermost
levels.

In m-regime II, participation of outer states will naturally arise
as soon as they get into the reach of the frequency spread, and an
obvious extension of Eq. (10) holds for these states. For regular
anharmonic progressions, again due to the larger detuning of outer
states, this will happen well inside m-regime II, while as long as m
is not too large, differences to the unembedded systems will re-
main moderate. In Section 4, these features will be demonstrated
for the embedded 3LS.

4. Results

All simulations reported in this section are based on numerical
integration of the Schrodinger equation (for technical details see
Ref. 36). The gaussian pulses are considered to be negligibly weak
when the envelope drops to about 0.1% of the maximum field
strength, corresponding to an integration interval of 3.125 T, (i.e.
25 ps for our standard pulse length T, = 8 ps). As reference values
for pulse-train control, parameters for simple gaussian r-pulses
are collected in Table 2. Selected higher-order n-pulses are in-
cluded in some of the following figures.

The main body of this section is made up by our results for n-
and nr-trains obtained numerically following the prescriptions in
Sections 3.4 and 3.5. As a pragmatic definition of n-trains we use
the criterion P;< 1073, with the additional goal to maximize P,
possibly beyond 0.99. We concentrate on the 2-photon transition
in the embedded 3LS and the 5-photon transition in the 6LS, which
cover all aspects of interest and show the full variation from near-
ideal to complex behavior. The 4LS and 5LS are intermediate in all
aspects; selected results are included in Table 2.

We recall that all results relate to m-trains with equal total sub-
pulse length, such that mT,, = 8 ps. The train duration may vary due
to the variable ptp time delay, although whenever there is a choice,
for better comparability we use 4y, = 25/m ps, corresponding to a
duration of 25 ps from effective “field on” to effective “field off”,
ignoring current experimental limitations which would call for dis-
tinctly longer values of Ap,.

4.1. Pulse trains at wlf
Parameters for n-trains tuned to w = wf as obtained in our opti-

mizations are collected in Table 2. Near-ideal behavior is found in
m-regime I, most cleanly for 2-photon excitation in the 3LSs. In the

Table 2
Properties of n-trains at o = off
m? 3LS emb. 3LS 4LS 5LS 6LS
AP 1 .0002903 .0002893 .0008299 .001733 .003086
Ao© 4 .0002875 .0002862 .0008230 .001728 .003095
8 .0002743 .0002728 .0008069 .001708 .003055
16 -8 .0002840 .0006920 .001582 .002940
24 f -f -f - .002586
§Fd 1 07 0001 40 1.26 2.94
Adpip® 4 .0009 —.000003 .0048 .0145 .0333
8 .0004 —.00003 .0022 .0068 .0158
16 -8 -2 -8 .0028 .0072

2 Number of sub-pulses.

b Resonance amplitude (field strength in a.u.) for gaussian n-pulse with T,=8ps.
¢ Resonance amplitude (field strength in a.u.) for n-train.

4 Bloch-Siegert shift (in 107° a.u.) for gaussian n-pulse with T, =8 ps.

¢ ptp-phase shift (in units of 2x) for n-train.

' Not calculated.

& In m-regime II; pronounced 4, dependence.
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Fig. 3. Results for the embedded 3-level system driven by m-trains at the zero-order resonance frequency i and the respective resonance field amplitude Ao (values shown
in Table 1). Top row: sub-pulse number m = 4; middle row: m = 8; bottom row: m = 16. Left column: phase portraits (d,,-dependence) at optimum 4y,,; middle column: 4,,-
dependence at d,¢, = 0. Right column: population dynamics for n-trains. Bold full lines (online blue): target state population Pg; gray broken lines: initial state population P;;

thin full lines (online magenta): rung population P,.

top row of Fig. 3 we show results obtained for the embedded 3LS
driven by 4-trains at central frequency i, noting that the results
are extremely close to those for the pure (minimal) 3LS, as antici-
pated in Section 3.6.

The three top panels, showing in turn the phase portrait and the
Aprp dependence for 4-trains, and the population dynamics for a n-
train, demonstrate, respectively, the constructive behavior near
dptp =0 and =, in agreement with Eq. (8), the independence of the
control parameters from Ap,, and the accumulation of population
in the target state by stepwise sinusoidal evolution of P. As in sim-
ple n-pulse excitation, there is some transient rung-state popula-
tion. Other deviations from ideal behavior, although present, are
insignificant, and target state populations close to 100% are
obtained with the zero-order parameters, independent of App.

More pronounced deviations from zero-order behavior become
gradually apparent for the 8- and 16-train results in the middle
and bottom row panels of Fig. 3. Here the conditions correspond
to m-regime II, so that 4, must be monitored for rung-state par-

ticipation. For m = 8, just inside m-regime I, the perturbations are
weak and readily handled, while for 16-trains we are already faced
with an involved optimization problem, accompanied by a strong
degradation of the robustness of the method. Furthermore the
population dynamics attain signs of irregularities, indicating that
some of the intrinsic deviations from ideality can be, and actually
are, compensated by elements of brute-force parameter
optimization.

Fig. 4 is equivalent to Fig. 3, but for 5-photon excitation in the
6LS. Since mys,, = 20, both m =8 and 16 are in m-regime 1. We still
observe near-ideal behavior, the main difference to the 2-photon
transition being the more pronounced transitional rung-state par-
ticipation. This behavior, though, is not specific to train-driven
dynamics, and is also found for simple n-pulses. In m-regime II
(m =24 1is chosen in our example, noting that the maximum num-
ber of sub-pulses due the onset of the regime of few-cycle pulses is
about 50), matters become more complicated, as there are now
four rung states, all with their own phase recurrence times. The
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appearance of the phase portrait and the delay dependence are
more congested and less symmetric than in the 3LS, indicating
fairly involved parameter optimization. For Morse progressions,
at olf degeneracies arise for the rung detunings, which give rise
to simplifications in the phase recurrence patterns. For perturbed
progressions, as in realistic molecular systems, such commensura-
bility-related reduction in complexity will be absent, and the
parameter search may be even more involved.

Altogether, Figs. 3 and 4 together with the data in Table 2
illustrate the following observations concerning the effects of
increasing the number of sub-pulses, which all hold across both
m-regimes.

(1) Specificity and selectivity of train-driven population transfer
increase with m. Thus the phase portraits in the left hand
panels of Fig. 3 show the narrowing of the peaks of construc-
tive interference, with widths decreasing as m~!. This behav-
ior parallels many well-known interference phenomena.
Obviously the increase in selectivity is traded in by a reduc-
tion of the robustness. Although in the present context of

~—

~—

simple ladder climbing excitations there is no need to go
for the increased selectivity, this may become an important
issue in the separation of competing processes.

For n-trains run at »f, the shift Ad,, given in Eq. (9), which
specifies the deviation of dy, from the zero-order values §;
(i.e. 0 and = for the 2-photon process in the 3LS), decreases
approximately as m~'. It thus tends to zero in the limit
m — oo (which obviously can only be taken naively). Still
this behavior is of pragmatic interest, as for the case of large
sub-pulse numbers it indicates the possibility of fixing dpp
ab initio at its zero-order value, or at least it allows a consid-
erable reduction of the tuning range. The entries shown in
Table 2 demonstrate that the trends in the Adp, reproduce
those in y for the corresponding gaussian n-pulses.

Due to the failure of the area theorem, splitting a gaussian
n-pulse into an m-train requires re-adjustment of A, (per-
formed in conjunction with adjusting the remaining param-
eters). The optimized values decrease with increasing m.
This behavior becomes more pronounced for more extended
ladders.



M. Seidl et al./ Chemical Physics 349 (2008) 296-307

4.2. Detuning: pulse trains at w # wff

Using trains with » detuned from ol requires simultaneous
optimization of Ao, dpip and App, €ven in m-regime 1. Representative
results are shown in Figs. 5 and 6, which are the “detuned” coun-
terparts of Figs. 3 and 4. The specific frequencies used in our exam-
ples, denoted o, have no particular meaning in the context of this
paper, but are reference frequencies for intruder state control trea-
ted elsewhere.

A significant qualitative difference to the zero-detuning case oc-
curs for the App,—dependence. From Eq. (10), in both m-regimes
there are successive “constructive” 4., windows separated by Ts.
There are also some remarkable effects on the population dynam-
ics, which will be discussed in Section 4.3. In all other respects the
mechanisms of train-induced population transfer are remarkably
robust against variations in w. For all systems, the resulting phase
portraits are shifted versions of those for wil (with small deviations
in m-regime II as discussed below). Across both ranges, the “con-
structive peaks” in the phase portraits become narrower with
increasing m, the widths decreasing as m~'. The changes and addi-
tional features seen in m-regime II, which do not affect the proper-
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ties of the n-trains themselves, derive from the different detunings
of the rung states. Consequently the patterns are affected mainly
by the different spacing of the individual recurrences, and by the
differences in strength and fractional = character of the rung
transitions.

Contour plots of P in the (4pep, dptp)-plane are shown in Fig. 7
for various values of o (here demonstrated for 4-trains in the
embedded 3LS, well inside m-regime I). The recurrences in Ay
and the periodicities in dp¢, are clearly apparent in these 2D plots,
which also illustrate the dependence of the phase recurrence on
the detuning. The slope of the ridges is related, via Eq. (8), to the
detuning, the sign of the slope indicating the direction of detuning.
The plots also illustrate how the detuning affects the robustness,
switching from completely robust with respect to 4, to mildly ro-
bust against variations in dpp.

Since Ay is constant for n-trains at a given w, the ridges of max-
imum P remain at constant height (~1). An important point con-
cerns the variation of Ay as function of w. This includes the
questions about the minimum value of Ay, denoting the =n-train
of lowest fluence, i.e. the most efficient, “optimum” resonant driv-
ing field, and about the range of w-values permitting resonant
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Fig. 5. Results for the embedded 3-level system driven by m-trains detuned from off by —3.8 x 10° a.u. (see text). Plot layout and conventions are as in Fig. 3.
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excitation. These properties, which are best visualized by the pro-
jection of the resonance loci onto the (w,Ap)-plane, and the varia-
tion of the population dynamics with w, are closely linked to the
existence and behavior of multiple-order = trains. In the following
subsection we will cover these topics jointly.

4.3. Resonance ridges and multiple-order = trains

In Fig. 8 we show projections of resonance loci for the embed-
ded 3LS and the 6LS onto the (w,Ao) plane, covering the first few
(odd) nr-trains. We refer to the resulting curves as resonance ridges.
The most striking feature is the emergence of extended closed-loop
curves representing conditions for complete resonant population
transfer. For reasons of mutual comparability we use fixed values
of App (8.5 ps for 2-trains, 4.25 ps for 4-trains, and 2.125 ps for
8-trains) and accordingly adjusted values of dp; in view of the
regular phase recurrences this represents no loss of generality.
We also keep the trains in m-regime I, where these conditions
can be maintained.

Comprehensive information on the full 4-dimensional reso-
nance loci is obtained by combining the resonance ridges with con-
tour plots in the (4pep, dptp)-plane. The combination of Figs. 8a and 7
provides a visualization of the resonance locus for 4-train excita-
tion in the embedded 3LS; the respective subspaces are mutually
connected at the points marked in the plots. Lines superimposed
on the contour plots indicate the continuation of the resonance
ridge into the (4pep, dpep)-subspace, hence these lines represent pro-
jections of the resonance loci onto the (4pp, dptp)-plane. In general,
in m-regime I there is an infinite manifold of nr-trains associated
with each point of a resonance ridge. Note however that in fre-
quency ranges with rung intrusion Pr may not reach unity. In m-re-
gime II the topography of the resonance loci is far more
complicated and rugged, and we do not further investigate this
regime.

The variability of the parameters on the resonance loci puts n-
trains in strong contrast to simple nr-pulses. In Fig. 8, the latter
are indicated as open circles; the displacements from the curves
representing nr-trains show the extent of failure of the area
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Fig. 7. Contour plots in the (4, dprp)-plane for the final target population Pr in the
embedded 3-level system driven by 4-trains. Panels (a-c) are for different freque-
ncies . In all cases, the field amplitudes are the optimized n-train values. The
points indicated by triangles (online blue) correspond to the positions on the res-
onance ridge indicated by analogous marks in the upper panel of Fig. 8.

theorem. Around these points Pr declines in Lorentzian fashion.
Along the resonance ridges a similar decline occurs in direction
orthogonal to the curve, suggesting the notion of a resonance ridge.

The minimum of Ag on the lowest resonance ridge specifies the
n-train of minimum fluence. We denote its value Ans and the cor-
responding frequency oy In the embedded 3LS, wpy¢ is close to off,
and the shift (about 1077 a.u. ~ 0.01 cm™') cannot be discerned on
the scale of Fig. 8a. In fact the numerical determination of the
“true” minimum position wy is irrelevant for practical purposes.
In contrast, in the 6LS w,s, and along with it the entire closed-loop
ridge structure, are more distinctly shifted (by about 1 cm™!) from
of. The difference reflects much higher field intensities required
for the 5-photon transition than for the 2-photon transition, and
is also present on the level of simple n-pulses. In fact the values
of olf and wy are close for all systems treated. In conclusion,
due to the variability of n-trains, the train-analogue of the Bloch-
Siegert shift has different manifestations, such as a pure extra
ptp-phase shift in the special case w = f, but also an interpreta-
tion as frequency shift from »ff to wme that characterizes the most
efficient way of train-induced resonant excitation.
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Fig. 8. Resonance ridges for nr-trains in the embedded 3-level system (top panel)
and the 6-level system (bottom panel). Open circles denote gaussian nrn-pulses
(n=1,3,5,7,9,11,13). In the top panel, triangles (online blue) marked a, b and ¢
indicate parameter pairs relating to Fig. 7a-c, and crosses (online red) marked 1-5
indicate parameter pairs relating Fig. 11. In the bottom panel, triangles (online blue)
marked a and b indicate parameter pairs relating to Fig. 9a and b, and resonance
ridges for different sub-pulse numbers m are shown as identified in the labels: thin
full line (online magenta): m = 2; broken lines (online purple): m =4; bold black
line: m=38.

The full ensemble of multiple n-trains accounts for a remarkable
robustness of population transfer in m-regime 1. The extent to
which the resonance loci fill the parameter space is illustrated in
Fig. 9. For the example of 8-train 5-photon excitation in the 6LS,
we show that the resonance loci fill extended stretches of the
(Ao, Optp) plane fairly densely. This behavior persists for a range of
frequencies: compare the two panels taken at different values of
o. Furthermore, 4, is kept at 3.125 ps in both example, however
some sensitivity with respect to 4p;, must be expected due to
phase recurrence. In any case, sizable pulse-train induced popula-
tion transfer occurs over extended regions of the parameter space.

Since due to its robustness against the ptp time delay, of is a
useful choice for control purposes, we next consider the sequence
of nr-trains at the zero-order transition frequency. For the embed-
ded 3LS the usual properties known from simple nrn-pulses are
recovered, with increasingly complex piecewise sinusoidal popula-
tion dynamics; examples are included in Fig. 10. If an analogous
analysis is performed for the 6LS, then as seen in Fig. 8b a gap ap-
pears, with the 7n- and 9n-trains apparently missing. These irreg-
ularities are caused by the frequency shift to wy,s Repeating the
exercise at wpy, the completeness of the nr-trains is re-established.

We conclude this section with a phenomenological discussion
on the origins of the closed-loop form of the resonance ridges. A
symmetry principle operates such that the closed curves connect
nr-trains with identical intermediate populations P; and Pr after
each sub-pulse. This means that for an m-train the 1z and the
(2m-1)r-train interact, or more generally, the (odd) krn- and In
trains with k +[=2m. Thus for 4-trains the 1r-and 7=-trains both
have intermediate populations 1/4, 1/2, 3/4, 1, and similarly 3=
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and 5= trains show the sequence 3/4, 1/2, 1/4, 1. We did not inves-
tigate the continuation to n-trains beyond order 2m — 1.

Fig. 8b also illustrates how the frequency range covered by the
loops increases with m. For the lowest branch, the m-dependence
and the dependence of Ag on the detuning qualitatively agree with
the trends of the RWA results for 2LSs as obtained by Vitanov and
Knight [1], except that the detuning should be considered relative
to o!f rather than to off. Note the results are not directly compara-
ble, since in Ref. 1 the authors consider the m-dependence at con-
stant sub-pulse width.

It is instructive to follow the change in the population dynamics
along a resonance ridge. The dynamics transform smoothly, e.g.
from one to seven Rabi half-cycles in the example shown in
Fig. 11. Well away from w,¢ the population dynamics do not allow
to unequivocally identify the order n of the “nn-train”.

5. Conclusions

If m-trains consisting of fractional n-pulses with suitably
adjusted ptp phase shifts and ptp time delays are substituted for
simply-shaped n-pulses, additional tuning parameters become
available for the control of state-specific ladder climbing mp tran-
sitions. Even under the restriction to equal sub-pulse properties,
the additional tunable parameters Ay, and e, together with the
handle on m, the number of sub-pulses, open up an extended con-
trol space.

At fixed overall pulse width, to each m there are infinite sets of
n- and multiple-n trains. They occupy resonance loci in parameter
space. Multiple-rn trains of different order interact and couple
according to a symmetry law imposed by m. In m-regime I, they
form well structured extended 4-dimensional objects, which pro-
ject onto the (w, Ag)-plane as manifolds of concentric ellipsoidal
curves. We term these closed curves resonance ridges.

The fact the frequency can be tuned freely over a certain range
and is not restricted to the singular resonance frequency associated
with simply-shaped r-pulses can be a formidable asset in the
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control of background state population or of competing parallel or
branching transitions. It strongly enhances the possibilities offered
by the zero-order properties of 4, and d,p, which are, respectively,
sensitive to the photonicity of the transitions and the level detu-
nings. In m-regime I, zero-order estimates for the tuning parameters
will at least facilitate the optimization, and for mp transitions of low
photonicity, which do not show sizable transient rung-state popula-
tion, these estimates can be applied more or less directly.

Complications arise upon entering m-regime II, where the short
and hence spectrally broad sub-pulses can populate even strongly
detuned rung states. The necessity to control all these states simul-
taneously turns the extended resonance loci into scattered
stretches in parameter space, and closed-loop self-learning
algorithms, similar to those used in optimal control [37-39], may
be useful for an efficient optimization. Although reverting to
m-regime II looks unfavourable in view of these complications, this
option may be of practical interest for the control of parallel, com-
peting or entangled transitions, since an increase in m increases
the specificity of the transitions and may thus help to separate
such processes.

Elsewhere (M. Seidl, M. Etinski, Ch. Uiberacker, W. Jakubetz, in
preparation) we will make use of the properties of pulse-train dri-
ven mp excitation to demonstrate pulse-train control of resonance
leaking [36,40-42] and intruder state population.

Finally we note that while we concentrate on gaussian pulses
and sub-pulses considered as “finite” (i.e. the fields are cut off
when they become negligibly weak in the context of the transitions
driven), the results can be carried over to other shapes, such as
sine-square- or plateau-pulses.
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