## NEW CHARACTERISATION RESULTS FOR SHIFT RADIX SYSTEMS

For $\mathbf{r} \in \mathbb{R}^{\mathbf{d}}$ define the mapping

$$
\tau_{\mathbf{r}}: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{d}, \mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \mapsto\left(x_{2}, \ldots, x_{d},-\lfloor\mathbf{r} \cdot \mathbf{x}\rfloor\right)
$$

$\tau_{\mathbf{r}}$ is called a shift radix system (SRS) if $\forall \mathbf{x} \in \mathbb{Z}^{d} \exists n \in \mathbb{N}: \tau_{\mathbf{r}}^{n}(\mathbf{x})=\mathbf{0}$. Shift radix systems are strongly related to other well known notions of number systems as $\beta$-expansion $[9,11]$ or canonical number systems [10]. Let

$$
\begin{aligned}
& \mathcal{D}_{d}:=\left\{\mathbf{r} \in \mathbb{R}^{\mathbf{d}} \mid \tau_{\mathbf{r}} \text { is ultimately periodic }\right\} \text { and } \\
& \mathcal{D}_{d}^{0}:=\left\{\mathbf{r} \in \mathbb{R}^{\mathbf{d}} \mid \tau_{\mathbf{r}} \text { is an SRS }\right\} .
\end{aligned}
$$

Obviously $\mathcal{D}_{d}^{0} \subset \mathcal{D}_{d}$. The set $\mathcal{D}_{d}$ is bounded and connected. Its interior can be described relatively easy: for an $\mathbf{r}=\left\{r_{1}, \ldots, r_{d}\right\} \in \mathbb{R}^{d}$ define

$$
R(\mathbf{r}):=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
\vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & 1 & 0 \\
0 & 0 & \cdots & 0 & 1 \\
-r_{1} & -r_{2} & \cdots & -r_{d-1} & -r_{d}
\end{array}\right)
$$

and the set

$$
\mathcal{E}_{d}:=\left\{\mathbf{r} \in \mathbb{R}^{d} \mid \rho(R(\mathbf{r}))<1\right\},
$$

where $\rho(A)$ denotes the spectral radius of the matrix $A$. Then $\operatorname{int} \mathcal{D}_{d}=$ $\mathcal{E}_{d}$ (see [1, section 4]). An analysis of the boundary seems to be difficult and has been done only partially (for $d=2$, see [1] or [3]). The set $\mathcal{D}_{d}^{0}$ can be obtained by cutting out polyhedra (cutout-polyhedra) from $\mathcal{D}_{d}$. Each of these polyhedra corresponds to a period of $\tau_{\mathbf{r}}$ of integer vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ such that $\tau_{\mathbf{r}}: \mathbf{v}_{1} \mapsto \mathbf{v}_{1} \mapsto \cdots \mapsto \mathbf{v}_{n} \mapsto \mathbf{v}_{1}$. Such a period induces a system of linear inequalities which is sufficient exactly for the corresponding polyhedron. Each closed set $Q \subset \operatorname{int} \mathcal{D}_{d}$ intersects with only finitely many cutout-polyhedra, but infinitely many cutoutpolyhedra are needed to describe $\mathcal{D}_{d}^{0}$. The difficulties are at the boundary. Up to now, the 2-dimensional case is the best known one. In [1] and [2] big areas of $\mathcal{D}_{2}$ have been analysed in order to characterse $\mathcal{D}_{2}^{0}$. Especially near the boundary of $\mathcal{D}_{2}$ we have a very complicated structure. Ideas for algorithms, that can help characterising $\mathcal{D}_{d}^{0}$, and some basic applications of them were also presented in [1] and [2]. In [12] these algorithms have been improved and implemented in Mathematica ${ }^{\circledR}$. We


Figure 1. An overview of $\mathcal{D}_{2}^{0}$
present these results that yield a very good image of the set $\mathcal{D}_{2}^{0}$ as it is shown in figure 1 . The whole triangle represents the set $\mathcal{D}_{2}$, the black polygons are cut out. Less than $1.86 \%$ (grey) of the entire area of $\mathcal{D}_{2}$ is left to analyse whether it is part of $\mathcal{D}_{2}^{0}$. For the visualization the program $c d d$ of Fukuda [6] has been used which converts a given system of inequalities into the list of vertices of the polygon.

Beside algorithmic ways to solve the problem of characterising $\mathcal{D}_{2}^{0}$ there are other approaches. From $[1,12]$ we know two infinite families of cutout-polyhedra. One cuts out triangles, the other one quadrangles from $\mathcal{D}_{2}$. Each neighbourhood of the point $(1,1)$ intersects with infinitely many polyhedra of the first family, each neighbourhood of $(1,0)$ intersects with infinitely many polyhedra of the second one.

The mentioned algorithms' aim is, to find all the periods that have corresponding cutout-polyhedra within a closed set $Q \subset \mathcal{D}_{d}$. One of them is based on Brunotte [5]: construct the set $\mathcal{V}(Q) \subset \mathbb{Z}^{d}$ recursively by observing

$$
\begin{aligned}
\mathcal{V}_{0}(Q) & := \\
\mathcal{V}_{i+1}(Q): & \left\{ \pm\left(\delta_{1 i}, \delta_{2 i} \ldots, \delta_{d i}\right) \mid i=1, \ldots, d\right\} \\
& \bigcup_{\mathbf{x} \in \mathcal{V}_{i}(Q)}\left\{\left(x_{2}, \ldots, x_{d}, j\right) \mid j=\min _{\mathbf{r} \in Q_{\mathbf{x}}}\lfloor-\mathbf{r x}\rfloor, \ldots, \max _{\mathbf{r} \in Q_{\mathbf{x}}}-\lfloor\mathbf{r x}\rfloor\right\} \\
& \cup \mathcal{V}_{i}(Q) .
\end{aligned}
$$

$\delta_{j i}$ denotes the Kronecker delta, $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$ and the set $Q_{\mathbf{x}} \subset \partial Q$ consists of the points where $\mathbf{r x}$ is extreme. For sufficiently small $Q$ this recursion stabilises, i.e. $\exists k: \mathcal{V}_{k+1}(Q)=\mathcal{V}_{k}(Q)$. Then we set $\mathcal{V}(Q):=$ $\mathcal{V}_{k}(Q)$. With this set we build up a directed graph $G=V \times E$ with set
of vertices $V=\mathcal{V}(Q)$ and edges $E \subset \mathcal{V}(Q) \times \mathcal{V}(Q)$ with

$$
(\mathbf{x}, \mathbf{y}) \in E \Leftrightarrow \exists \mathbf{r} \in Q: \tau_{\mathbf{r}}(\mathbf{x})=\mathbf{y}
$$

Now each period, that induces a cutout-polyhedron intersecting with $Q$, coresponds to a cycle of this graph. Hence all these periods can be obtained by analyzing the cycles of $G$. For big $Q$ the set $\mathcal{V}(Q)$ can be infinite. Then $Q$ is subdivided into sufficiently small subsets and the procedure is applied on each of them separately. However, the graph can be very big, especially for $Q$ near the boundary of $\mathcal{D}_{d}$. Handling them without a computer is nearly impossible.

The mapping $\tau_{\mathbf{r}}$ can be modified in the following way:

$$
\tilde{\tau}_{\mathbf{r}}: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{d}, \mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \mapsto\left(x_{2}, \ldots, x_{d},-\left\lfloor\mathbf{r} \cdot \mathbf{x}+\frac{1}{2}\right\rfloor\right)
$$

for an $\mathbf{r} \in \mathbb{R}^{\mathbf{d}}$. If $\forall \mathbf{x} \in \mathbb{Z}^{d} \exists n \in \mathbb{N}: \tilde{\tau}_{\mathbf{r}}^{n}(\mathbf{x})=\mathbf{0}$, we call $\tilde{\tau}_{\mathbf{r}}$ a symmetric shift radix system (SSRS). The sets $\tilde{\mathcal{D}}_{d}$ and $\tilde{\mathcal{D}}_{d}^{0}$ are defined in an analogous manner. Again we have $\mathcal{E}_{d} \subset \tilde{\mathcal{D}}_{d} \subset \overline{\mathcal{E}_{d}}$, but note that $\partial \tilde{\mathcal{D}}_{d} \neq \partial \mathcal{D}_{d}$, and analagously $\tilde{\mathcal{D}}_{d}^{0}$ can be obtained by cutting out polyhedra from $\tilde{\mathcal{D}}_{d}$. This symmetric case is interesting because finitely many polyhedra seem to suffice, at least for small $d$. Akiyama and Scheicher [4] analysed the case $d=2$ and completely characterised the set $\tilde{\mathcal{D}}_{2}^{0}$. It is a triangle with two lines of the boundary removed. The three dimensional case is a little more complex. The analysis of $\tilde{\mathcal{D}}_{3}^{0}$ requires the support of the computer by using an adapted version of the above algorithm. As result we gain a rather simple figure, a composition of three convex bodies.

Supported by FWF Project Nr. P9610-N13.

## References

[1] S. Akiyama, T. Borbély, H. Brunotte, A. Pethő and J. M. Thuswaldner, Generalized radix representations and dynamical systems I, Acta Math. Hungar. 108 (2005), no. 3, 207-238.
[2] S. Akiyama, H. Brunotte, A. Pethő and J. M. Thuswaldner, Generalized radix representations and dynamical systems II, Acta Arithmetica 121 (2006), no. 1, 21-61.
[3] S. Akiyama, H. Brunotte, A. Pethő and W. Steiner, Remarks on a conjecture on certain integer sequences, Period. Math Hungar., to appear
[4] S. Akiyama, K. Scheicher, Symmetric shift radix systems and finite expansions, preprint
[5] H. Brunotte, On trinomial bases of radix representations of algebraic integers, Acta Sci. Math. Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 521-527.
[6] K. Fukuda, cdd and cddplus Homepage, ETHZ, Zürich, Switzerland, http://www.ifor.math.ethz.ch/~fukuda/cdd_home/index.html.
[7] T. S. Motzkin, H. Raiffa, G. L. Thompson,R. L. Thrall, The double description method Contributions to the theory of games, vol. 2, pp. 51-73.

Annals of Mathematics Studies, no. 28. Princeton University Press, Princeton, N. J., (1953).
[8] S. Pemmaraju, S. Skiena, Computational Discrete Mathematics, Combinatorics and Graph Theory with Mathematica ${ }^{\circledR}$, Cambridge University Press (2003).
[9] W. Parry, On the $\beta$-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416.
[10] A. Реthő, On a polynomial transformation and its application to the construction of a public key cryptosystem, in: Computational Number Theory, A. Pethő, M. Pohst, H. C. Williams and H. G. Zimmer (eds.), de Gruyter (1991), 31-43.
[11] A. RÉnyı, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493.
[12] P. Surer, New characterisation results for shift radix systems, preprint
[13] R. TarJan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972), no. 2, 146-160.

