Visual Classification of Images by Learning Geometric Appearances through Boosting

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Chair of Information Technology University of Leoben Austria

August 30, 2006

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

University of Leoben

Introduction

Classification of images through boosting Feature types and preprocessing steps LPBoost Weak learner

Multiclass image classification Weight optimization method

Evaluation and results

Xerox dataset PASCAL Visual object classes challenge 2006

Example

・ロマ・白マ・山マ・山マ シック

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Multiclass image classification

Evaluation and results

Example

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Multiclass image classification

Evaluation and results

Example

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Multiclass image classification

Evaluation and results

Example

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Multiclass image classification

Evaluation and results

Example

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ④ ● ●

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

University of Leoben

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

University of Leoben

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ■ ● ● ●

Outline

Introduction

Classification of images through boosting Feature types and preprocessing steps LPBoost Weak learner

Multiclass image classification Weight optimization method

Evaluation and results

Xerox dataset PASCAL Visual object classes challenge 2006

Outline	Introduction	Classification of images through boosting	Multiclass image classification	Evaluation and results		
Feature types and preprocessing steps						

ϕ	feature type	int. norm.	whitening	$k_{\phi} = \lfloor 2 \sqrt{m_{\phi}} floor$
1	subsampled grayval.		X	1 848
2		X	X	1 848
3	basic moments		X	1 846
4		X	X	1 848
5	moment invariants [3]		X	1 848
6		X	X	1 848
7	SIFTS [4]		X	1 798
8			PCA 40	1 798
9	segments [2]		x	1 661
				<u>></u> 16 343
				"reference

features"

Outline

Outline

Introduction

Classification of images through boosting

Feature types and preprocessing steps LPBoost

Weak learner

Multiclass image classification Weight optimization method

Evaluation and results

Xerox dataset PASCAL Visual object classes challenge 2006

Outline Introduction

LPBoost

Classification of images through boosting

Multiclass image classification

Evaluation and results

combines weak hypotheses to a strong hypothesis:

$$f(x_i) = sign\left(\sum_{t=1}^T \alpha_t h_t(x_i)\right) \in \{+1, -1\}$$

► Primal:

Dual:

$$\begin{array}{ll} \min_{\beta,w} & \beta \\ s.t. & \sum_{i=1}^{m} y_i w_i h_t(x_i) \leq \beta & t = 1, \dots, T \\ & \sum_{i=1}^{m} w_i = 1 & 0 \leq w_i \leq D \end{array}$$

+ has a well-defined stopping criterior
+ is a soft-margin classifier

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Classification of images through boosting

Multiclass image classification

Evaluation and results

combines weak hypotheses to a strong hypothesis:

$$f(x_i) = sign\left(\sum_{t=1}^T \alpha_t h_t(x_i)\right) \in \{+1, -1\}$$

Primal:

$$\begin{array}{ll} \max_{\rho,a,\xi} & \rho - D \sum_{i=1}^{m} \xi_i \\ s.t. & y_i \sum_{t=1}^{T} \alpha_t h_t(x_i) + \xi_i \ge \rho \quad i = 1, \dots, m \\ & \sum_{t=1}^{T} \alpha_t = 1 & \alpha_t \ge 0 \\ & \xi_i \ge 0 & i = 1, \dots, m \end{array}$$

Dual:

$$\begin{array}{ll} \min_{\beta,w} & \beta \\ s.t. & \sum_{i=1}^{m} y_i w_i h_t(x_i) \leq \beta & t = 1, \dots, T \\ & \sum_{i=1}^{m} w_i = 1 & 0 \leq w_i \leq D \end{array}$$

+ has a well-defined stopping criterior
+ is a soft-margin classifier

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

University of Leoben

Classification of images through boosting

Multiclass image classification

Evaluation and results

combines weak hypotheses to a strong hypothesis:

$$f(x_i) = sign\left(\sum_{t=1}^T \alpha_t h_t(x_i)\right) \in \{+1, -1\}$$

► Primal:

$$\begin{array}{ll} \max_{\rho,a,\xi} & \rho - D \sum_{i=1}^{m} \xi_i \\ s.t. & y_i \sum_{t=1}^{T} \alpha_t h_t(x_i) + \xi_i \ge \rho \quad i = 1, \dots, m \\ & \sum_{t=1}^{T} \alpha_t = 1 & \alpha_t \ge 0 \\ & \xi_i \ge 0 & i = 1, \dots, m \end{array}$$

Dual:

$$\begin{array}{ll} \min_{\beta,w} & \beta \\ s.t. & \sum_{i=1}^{m} y_i w_i h_t(x_i) \leq \beta & t = 1, \dots, T \\ & \sum_{i=1}^{m} w_i = 1 & 0 \leq w_i \leq D \end{array}$$

+ has a well-defined stopping criterior+ is a soft-margin classifier

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

University of Leoben

Classification of images through boosting

Multiclass image classification

Evaluation and results

combines weak hypotheses to a strong hypothesis:

$$f(x_i) = sign\left(\sum_{t=1}^T \alpha_t h_t(x_i)\right) \in \{+1, -1\}$$

► Primal:

$$\begin{array}{ll} \max_{\rho, a, \xi} & \rho - D \sum_{i=1}^{m} \xi_i \\ s.t. & y_i \sum_{t=1}^{T} \alpha_t h_t(x_i) + \xi_i \ge \rho \quad i = 1, \dots, m \\ & \sum_{t=1}^{T} \alpha_t = 1 & \alpha_t \ge 0 \\ & \xi_i \ge 0 & i = 1, \dots, m \end{array}$$

Dual:

$$\begin{array}{ll} \min_{\beta, w} & \beta \\ s.t. & \sum_{i=1}^{m} y_i w_i h_t(x_i) \leq \beta & t = 1, \dots, T \\ & \sum_{i=1}^{m} w_i = 1 & 0 \leq w_i \leq D \end{array}$$

+ has a well-defined stopping criterion

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Classification of images through boosting

Multiclass image classification

Evaluation and results

combines weak hypotheses to a strong hypothesis:

$$f(x_i) = sign\left(\sum_{t=1}^T \alpha_t h_t(x_i)\right) \in \{+1, -1\}$$

► Primal:

$$\begin{array}{ll} \max_{\rho, a, \xi} & \rho - D \sum_{i=1}^{m} \xi_i \\ s.t. & y_i \sum_{t=1}^{T} \alpha_t h_t(x_i) + \xi_i \ge \rho \quad i = 1, \dots, m \\ & \sum_{t=1}^{T} \alpha_t = 1 & \alpha_t \ge 0 \\ & \xi_i \ge 0 & i = 1, \dots, m \end{array}$$

Dual:

$$\begin{array}{ll} \min_{\beta, w} & \beta \\ s.t. & \sum_{i=1}^{m} y_i w_i h_t(x_i) \leq \beta & t = 1, \dots, T \\ & \sum_{i=1}^{m} w_i = 1 & 0 \leq w_i \leq D \end{array}$$

- + has a well-defined stopping criterion
- + is a soft-margin classifier

Outline

Introduction

Classification of images through boosting

Feature types and preprocessing steps LPBoost

Weak learner

Multiclass image classification Weight optimization method

Evaluation and results

Xerox dataset PASCAL Visual object classes challenge 2006

Outline	Introduction	Classification of images through boosting	Multiclass image classification	Evaluation and results
Weak learn	ner			

$$\max_{h\in\mathcal{H}}\left(\sum_{i=1}^m h(x_i)y_iw_i\right) = \sum_{i=1}^m h^*(x_i)y_iw_i.$$
(1)

- kinds of weak learners:
- 'none' selects reference feature of type ϕ and an optimal threshold to it w.r.t. current **w**
- 'relations A' uses geometric primitives 'up', 'down', 'left', 'right', relating up to three ^(*) reference features.
- 'relations B' same, but uses eight sections.

(*/if an object category needs more than three features, our search algorithms builds hierarchies modelled as trees

Outline	Introduction	Classification of images through boosting	Multiclass image classification	Evaluation and results
Weak lear	ner			

$$\max_{h\in\mathcal{H}}\left(\sum_{i=1}^m h(x_i)y_iw_i\right) = \sum_{i=1}^m h^*(x_i)y_iw_i.$$
(1)

kinds of weak learners:

'none' selects reference feature of type ϕ and an optimal threshold to it w.r.t. current **w** relations A' uses geometric primitives 'up', 'down', 'left', 'right', relating up to three ^(*) reference features.

'relations B' same, but uses eight sections.

(*) if an object category needs more than three features, our search algorithms builds hierarchies modelled as trees

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Outline	Introduction	Classification of images through boosting	Multiclass image classification	Evaluation and results
Weak lear	ner			

$$\max_{h\in\mathcal{H}}\left(\sum_{i=1}^m h(x_i)y_iw_i\right) = \sum_{i=1}^m h^*(x_i)y_iw_i.$$
(1)

kinds of weak learners:

'none' selects reference feature of type ϕ and an optimal threshold to it w.r.t. current ${\bf w}$

'relations A' uses geometric primitives 'up', 'down', 'left', 'right', relating up to three ^(*) reference features.

'relations B' same, but uses eight sections.

(*) if an object category needs more than three features, our search algorithms builds hierarchies modelled as trees

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Outline	Introduction	Classification of images through boosting	Multiclass image classification	Evaluation and results
Weak lear	ner			

$$\max_{h\in\mathcal{H}}\left(\sum_{i=1}^m h(x_i)y_iw_i\right) = \sum_{i=1}^m h^*(x_i)y_iw_i.$$
(1)

kinds of weak learners:

'none' selects reference feature of type ϕ and an optimal threshold to it w.r.t. current **w**

'relations A' uses geometric primitives 'up', 'down', 'left', 'right', relating up to three (*) reference features.

'relations B' same, but uses eight sections.

(*) if an object category needs more than three features, our search algorithms builds hierarchies modelled as trees

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Outline	Introduction	Classification of images through boosting	Multiclass image classification	Evaluation and results
Weak lear	ner			

$$\max_{h\in\mathcal{H}}\left(\sum_{i=1}^m h(x_i)y_iw_i\right) = \sum_{i=1}^m h^*(x_i)y_iw_i.$$
(1)

kinds of weak learners:

'none' selects reference feature of type ϕ and an optimal threshold to it w.r.t. current **w**

- 'relations A' uses geometric primitives 'up', 'down', 'left', 'right', relating up to three (*) reference features.
- 'relations B' same, but uses eight sections.

(*) if an object category needs more than three features, our search algorithms builds hierarchies modelled as trees

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Multiclass image classification

Evaluation and results

Weak learner

Example for a geometric hypothesis

Multiclass image classification

Evaluation and results

Weak learner

Example for a geometric hypothesis

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

University of Leoben

Greedy search strategy

1. Select *h** (eq. 1)

- 2. For all previously generated hypotheses h_p , p = 1, ..., t 1 do:
 - 2.1 Create a hypothesis with a logical AND: $h_{and} = h^*$ AND h_p .
 - 2.2 Search geometric relations:
 - The two sub hypotheses from h_{and} are applied on every image yielding two point sets. We seek a common geometric relation between these sets, yielding a geometric hypothesis h_{geom} .
- 3. Compare performance (eq. 1) of h^* and h_{geom} , output the better.

Greedy search strategy

- 1. Select *h** (eq. 1)
- 2. For all previously generated hypotheses h_p , p = 1, ..., t 1 do:
 - 2.1 Create a hypothesis with a logical AND: $h_{and} = h^* \text{ AND } h_p$.
 - 2.2 Search geometric relations:

The two sub hypotheses from h_{and} are applied on every image yielding two point sets. We seek a common geometric relation between these sets, yielding a geometric hypothesis h_{geom} .

3. Compare performance (eq. 1) of h^* and h_{geom} , output the better.

Greedy search strategy

- 1. Select *h** (eq. 1)
- 2. For all previously generated hypotheses h_p , p = 1, ..., t 1 do:

2.1 Create a hypothesis with a logical AND:

 $h_{and} = h^* \text{ AND } h_p.$

2.2 Search geometric relations:

The two sub hypotheses from h_{and} are applied on every image yielding two point sets. We seek a common geometric relation between these sets, yielding a geometric hypothesis h_{geom} .

3. Compare performance (eq. 1) of h^* and h_{geom} , output the better.

Greedy search strategy

- 1. Select *h** (eq. 1)
- 2. For all previously generated hypotheses h_p , p = 1, ..., t 1 do:

2.1 Create a hypothesis with a logical AND:

 $h_{and} = h^* \text{ AND } h_p.$

2.2 Search geometric relations:

The two sub hypotheses from h_{and} are applied on every image yielding two point sets. We seek a common geometric relation between these sets, yielding a geometric hypothesis h_{geom} .

3. Compare performance (eq. 1) of h^* and h_{geom} , output the better.

Multiclass image classification

Evaluation and results

Weak learner

Example for a hierarchy

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ■ ● ● ●

Multiclass image classification

Evaluation and results

Weak learner

Example for a hierarchy

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Multiclass image classification

Evaluation and results

Weak learner

Example for a hierarchy

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Multiclass image classification

Evaluation and results

Weak learner

Example for a hierarchy

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Multiclass image classification

Evaluation and results

Weak learner

Example for a hierarchy

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Multiclass image classification

Evaluation and results

Weak learner

Example for a hierarchy

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Multiclass image classification

Evaluation and results

Weak learner

Example for a hierarchy

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Multiclass image classification

Evaluation and results

Weak learner

Example for a hierarchy

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Multiclass image classification

Evaluation and results

Weak learner

Example for a hierarchy

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Outline

Introduction

Classification of images through boosting Feature types and preprocessing steps LPBoost Weak learner

Multiclass image classification Weight optimization method

Evaluation and results

Xerox dataset PASCAL Visual object classes challenge 2006

▶ *r* categories \Rightarrow *r* · (*r* − 1) classifiers

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ④ ○ ○

classifier

$$\delta(\mathbf{x}_i) = \sum_{t=1}^T \alpha_t h_t(\mathbf{x}_i)$$

2. build $\mathbf{c}_i = (\delta_{1,2}(x_i), \delta_{2,1}(x_i), ..., \delta_{r-1,r}(x_i), \delta_{r,r-1}(x_i))^T$

3. search weights \mathbf{w}_{l} (l = 1, ..., r) such that

$$class(x_i) = \underset{l}{\operatorname{argmax}} \mathbf{w}_l \cdot \mathbf{c}_i + b_l$$

 \Rightarrow e.g. formulate following SVM

$$\begin{array}{ll} \min & \| \left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{r} \right) \|^{2} + C \cdot \sum_{i} \xi_{i} \\ s.t. \quad \mathbf{w}_{l} \cdot \mathbf{c}_{i} + b_{l} \geq 1 - \xi_{i}, \qquad l = class(x_{i}) \\ -\mathbf{w}_{l} \cdot \mathbf{c}_{i} - b_{l} \geq 1 - \xi_{i}, \qquad \forall l : l \neq class(x_{i}) \\ \xi_{i} \geq 0 \qquad \qquad i = 1, \ldots, m, \\ l = 1, \ldots, r \end{array}$$

$$class(x_i) = \underset{l}{\operatorname{argmax}} \mathbf{w}_l \cdot \mathbf{c}_i + b_l$$

 \Rightarrow e.g. formulate following SVM

$$\begin{array}{ll} \min & \| \left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{r} \right) \|^{2} + C \cdot \sum_{i} \xi_{i} \\ s.t. \quad \mathbf{w}_{l} \cdot \mathbf{c}_{i} + b_{l} \geq 1 - \xi_{i}, \qquad l = class(x_{i}) \\ -\mathbf{w}_{l} \cdot \mathbf{c}_{i} - b_{l} \geq 1 - \xi_{i}, \qquad \forall l : l \neq class(x_{i}) \\ \xi_{i} \geq 0 \qquad \qquad i = 1, \ldots, m, \\ l = 1, \ldots, r \end{array}$$

2. build $\mathbf{c}_i = (\delta_{1,2}(x_i), \delta_{2,1}(x_i), ..., \delta_{r-1,r}(x_i), \delta_{r,r-1}(x_i))^T$

3. search weights \mathbf{w}_{l} (l = 1, ..., r) such that

$$class(x_i) = \underset{l}{\operatorname{argmax}} \mathbf{w}_l \cdot \mathbf{c}_i + b_l$$

 \Rightarrow e.g. formulate following SVM

1. signed distance to the decision boundary of a 1-vs-1 classifier

$$\delta(\mathbf{x}_i) = \sum_{t=1}^T \alpha_t h_t(\mathbf{x}_i)$$

2. build $\mathbf{c}_i = (\delta_{1,2}(x_i), \delta_{2,1}(x_i), ..., \delta_{r-1,r}(x_i), \delta_{r,r-1}(x_i))^T$

3. search weights \mathbf{w}_{l} (l = 1, ..., r) such that

$$class(x_i) = \underset{l}{\operatorname{argmax}} \mathbf{w}_l \cdot \mathbf{c}_i + b_l$$

 \Rightarrow e.g. formulate following SVM

$$\begin{array}{ll} \min & \| \left(\mathbf{w}_{1}, ..., \mathbf{w}_{r} \right) \|^{2} + C \cdot \sum_{i} \xi_{i} \\ s.t. & \mathbf{w}_{l} \cdot \mathbf{c}_{i} + b_{l} \geq 1 - \xi_{i}, & l = class(x_{i}) \\ - \mathbf{w}_{l} \cdot \mathbf{c}_{i} - b_{l} \geq 1 - \xi_{i}, & \forall l : l \neq class(x_{i}) \\ \xi_{i} \geq 0 & i = 1, ..., m, \\ l = 1, ..., r \\ \end{array}$$

Outline

Introduction

Classification of images through boosting Feature types and preprocessing steps LPBoost Weak learner

Multiclass image classification Weight optimization method

Evaluation and results

Xerox dataset

PASCAL Visual object classes challenge 2006

Outline	Introduction	Classification of images through boosting	Multiclass image classification	Evaluation and results	
Xerox data	aset				
	▶ 1774	real-world images			

- ▶ r = 7 categories, uneven class distribution
 - ► faces
 - buildings
 - ► trees
 - cars
 - phones
 - bikes
 - books
- 1. preliminary 50-50-split of data
- 2. optimize parameter *D* (LPBoost) and *C* (SVM) upon test-set
- 3. fix parameters
- 4. stratified 10-fold cross-validation

Multiclass image classification

Evaluation and results

Xerox dataset

Selected feature types (50-50-split + 'none')

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

Multiclass image classification

Evaluation and results

Xerox dataset

Weak hypotheses learned

correct detections for buildings-vs-trees

misclassified examples

Multiclass image classification

Evaluation and results

Xerox dataset

Weak hypotheses learned (cont.)

(g)

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

University of Leoben

Multiclass image classification

Xerox dataset

Accuracy upon 10CV

voting	geometry	parameter	mean	(std)
majority voting	none	—	64.25	(3.21)
majority voting	relations A	—	74.78	(2.92)
majority voting	relations B	—	75.08	(2.51)
[1]	—	—	85	n/a
SVM	none	C = 0.2583	90.60	(2.06)
SVM	relations A	C = 0.7622	90.90	(2.16)
SVM	relations B	<i>C</i> = 0.1666	91.28	(2.28)

Multiclass image classification

Evaluation and results

Confusion matrix for 'relations B' upon 10CV

\rightarrow	faces	bldgs	trees	cars	phones	bikes	books
faces	98.99	0.66	1.33	8.47	2.64	0	0.71
bldgs	0	70.66	8.00	0	0	2.84	8.92
trees	0	10.00	87.33	0	0	0.83	1.42
cars	0.50	0	0.66	84.09	9.41	0	0
phones	0.50	0	0	7.42	87.93	0	0
bikes	0	2.67	2.66	0	0	94.65	2.14
books	0	16.00	0	0	0	1.66	86.78

PASCAL Visual object classes challenge 2006

Outline

Introduction

Classification of images through boosting Feature types and preprocessing steps LPBoost Weak learner

Multiclass image classification Weight optimization method

Evaluation and results

Xerox dataset

PASCAL Visual object classes challenge 2006

PASCAL Visual object classes challenge 2006

- 5304 real-world images
- ightarrow r = 10 categories, uneven class distribution
- additional new feature: color-based segments
- data split: 25% training, 25% validation, 50% test
 - 1. learning 1-vs-1 on training set
 - 2. optimize parameter *D* (LPBoost) and *C* (SVM) for validation set
 - 3. fix parameters
 - 4. eval on test set using area under ROC-curve (AUC)

AUC on test set

(†)	INRIA		QMUL		XRCE	MUL
	Marsz.	Moosm.	HSLS	LSPCH		1vs1
bicycle	0.929	0.903	0.944	0.948	0.943	0.864
bus	0.984	0.933	0.984	0.981	0.978	0.945
car	0.971	0.957	0.977	0.975	0.967	0.928
cat	0.922	0.883	0.936	0.937	0.933	0.826
COW	0.938	0.895	0.936	0.938	0.940	0.789
dog	0.856	0.825	0.874	0.876	0.866	0.764
horse	0.908	0.824	0.922	0.926	0.925	0.733
motorbike	0.964	-	0.966	0.969	0.957	0.906
person	0.845	0.780	0.845	0.855	0.863	0.718
sheep	0.944	0.930	0.946	0.956	0.951	0.872

^(†)Selection of all participants having a top rank w.r.t. the AUC reported at the PASCAL VOC challenge workshop, ECCV 2006 < $\square + A = +$

Martin Antenreiter, Christian Savu-Krohn, Peter Auer

References and further reading I

 Gabriela Csurka, Cedric Bray, Christopher Dance, and Lixin Fan.
 Visual categorization with bags of keypoints.
 In European Conference on Computer Vision, ECCV'04, Prague, Czech Republic, May 2004.

Michael Fussenegger, Andreas Opelt, Axel Pinz, and Peter Auer.

Object recognition using segmentation for feature detection.

In ICPR (3), pages 41-44, 2004.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ④□ ◇ ◇

References and further reading II

Luc J. Van Gool, Theo Moons, and Dorin Ungureanu. Affine/photometric invariants for planar intensity patterns. In ECCV '96: Proceedings of the 4th European Conference on Computer Vision-Volume I, pages 642–651. Springer-Verlag, 1996.

D.G. Lowe.

Object recognition from local scale-invariant features. In <u>Seventh International Conference on Computer Vision</u>, pages 1150–1157, 1999.

▲□▶▲□▶▲三▶▲三▶ 三三 釣ゑ?