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Abstract—Strength measurements become more and more important for electroceramics. 

Bending specimens small enough to be cut out of the usually small electroceramic components 

may be a simple possibility. Therefore the miniaturisation of the 4-point bend-test for ceramic 

specimens is being analysed. The errors in determined flexural strength arising from the test 

principle itself, geometry and measuring inaccuracies are calculated and expressed depending 

on the outer span length. Contact pressure and a tolerable total measuring inaccuracy motivates 

dimensions of miniature specimens and fixtures. The possibilities of appropriate specimen 

preparation are investigated. 

Ceramic materials show a volume, i.e. specimen size, dependence of strength which is 

described by Weibull's statistical theory. The applicability of the miniature bend-fixtures is 

demonstrated by measuring this volume effect. 

NOMENCLATURE 

b =  specimen's breadth 

E1, E2 =  Young's moduli of two different materials 

F =  load at failure 

h =  specimens height 

l, L =  inner and outer span length 

m =  Weibull exponent 

Mb =  maximum bending moment 

p =  contact pressure 

PF =  probability of failure 

r =  roller radius 

V, V0, VE =  volume, normalising volume, effective volume 

Wmax =  maximum section modulus of bend specimen 

x, y, z =  rectangular coordinates 

, i, ran =  total error, error caused by one single source, random error 

 =  Poisson's ratio 

k, r =  coefficient of kinetic and rolling friction 

 =  stress 

0, y =  characteristic strength, yield strength 

b, x,i =  maximum flexural stress by simple beam theory and actual stress 

INTRODUCTION 

To gain uniaxial strength data of ceramic materials, flexural testing of beams with rectangular 

cross-section in 4-point geometry is a simple and widely used standardised method [1]. Some 

ceramic materials -those for structural applications, where high mechanical loads are 
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expected- have been designed to exhibit high strength values. Often components from such 

ceramics are large enough to cut out specimens of the required size. Another class of ceramic 

materials is designed to exhibit optimised electric or magnetic properties. Despite of the 

electric or magnetic loading, such components may fail due to mechanical stresses building 

up as a consequence ohmic heating. Therefore emphasis has to be put on improving and 

measuring their mechanical properties. Since electroceramic components are usually too small 

for commonly used flexure specimens to be cut out of them, strength testing has to be 

performed by other test methods, e.g. by laser heating of a disc-specimen, as proposed by 

Schneider [2], by component testing [3], or by testing bending specimens that are small 

enough. In this work the last method is pursued because of the fact the 4-point bend-test is 

well investigated [4-6] and to be carried out easily. Small specimens cut out from different 

locations of a large component will furthermore allow a locally resolved determination of 

strength. 

The down-scaling of the common 4-point bend-test set-up is limited by several factors. The 

contact pressure between loading rollers and specimen should not exceed the yield strength of 

the fixture material or the compressive strength of the tested ceramic. Systematic errors in 

determined flexural strength arise as a consequence of an inadequate description of the testing 

principle. They could be taken into account on an average when the flexural strength is 

calculated. Random errors occur due to inexact knowledge of span lengths, specimen 

geometry and force. Based on the detailed work by Baratta et al. [4] the errors are evaluated 

depending on specimen size and span length. An acceptable total error of ||  5 % motivates 

the size of the test set-up. Such a testing device has been built. 

A different problem originates in the defect controlled failure which is typical for ceramics 

and also the reason for the volume dependence of strength. Ceramic specimens break due to 

inherent defects. The tensile surface of the specimens has to be prepared in such a way that no 

defects that may cause fracturer are introduced. The volume dependence of strength, as 

described by Weibull’s theory [7], will be measured with two specimen sizes. Together with 

failure origins of the same type in both specimen sets this volume dependence should prove 

the fitness for purpose of the miniature 4-point bend fixtures. 

LIMITATIONS AND ERRORS IN FLEXURAL TESTS 

The errors associated with flexure tests have been analysed and calculated in an exemplary 

way by Baratta et al. [4]. Their objective was to define conditions to minimise the error for an 

approximately given specimen size. Basing on their calculations we want to determine how 

the total error depends on span lengths and specimen size in order to find out the minimal 

specimen size which can be tested without putting up with an unacceptable error.  

The flexural strength b will be calculated as the maximum outer fibre stress according to the 

simple beam theory [8]: 

 
 

b
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F is the maximum load at failure and L and l are the outer and inner span length respectively, 

see fig. 1. For the section modulus Wmax the correct value for a cross-section with two 

chamfers on the tensile side should be used. The relative error in percent due to each single 

source (i) is calculated as 

 
 


i

x, i b

b




100     , (2) 

with x, i the actual stress and b according to eq. (1). The individual errors are supposed to be 

independent and the total error  should be the sum of all individual errors. i < 0 indicates an 

overestimation of flexural strength with the simple beam formula, i > 0 an underestimation. 

 

 

Fig. 1. 4-point bend-test set-up: L outer span length, l inner span length, b specimen's breadth, h specimen's 

height, r roller radius, F load. 

 

 

Some considerations about the construction of the fixtures, fig. 1 were made before any 

calculations started [9]. It was decided to use an inner span of l L 3 , because this set-up is 

easy in handling, especially when dimensions become small, and less sensitive to positioning 

errors. All four free rollers (hardened steel) are held in place by a guide until a small initial 

load is applied. Three of them are supported by cambered faces to avoid twisting of the 

specimen around it's longitudinal axis. A pivoting loading head was used. The fixture, loading 

head and guide were made from steel because of it's good machinability which allows 

sufficient small tolerances. 

Limitation contact stress 

A limiting factor in down-scaling the 4-point bend test which is likely to be underestimated is 

the high compressive stress between rollers and specimen or rollers and supporting fixture 

respectively. To avoid plastic deformation and thus ruining of the fixture or local crushing of 

the specimen, it should not exceed the yield strength of the steel fixture or the compressive 
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strength of the tested ceramic. The pressure p depends on the elastic properties of the involved 

materials (E1, E2), the load (or flexural strength b if the volume effect is neglected), the 

specimen's height h and the roller diameter r [10]: 

 p h
E E

r L E E

b 


 



 

1 2

2

1 22 1( )( )
   . (3) 

Two cases for the contact ceramic/roller are considered in fig. 2: the solid line has been 

calculated for typical values for an electroceramic material (E1 = 100 GPa and b = 100 MPa) 

on hardened steel rollers and fixtures with E2 = 210 GPa, the dashed line for a high strength 

ceramic (e.g. dense SiC with E1 = 400 GPa and b = 1000 MPa or dense Si3N4 with 

E1 = 330 GPa and b = 1100 MPa [11]). The dotted line refers to the contact fixture/roller in 

the latter case. All calculations were made for a specimen height of h = 1.5 mm and  = 0.27. 

From fig. 2 it follows that crushing of the specimen will not occur before plastic deformation 

of the fixture. For a steel test-jig and for testing high strength ceramics the outer span length is 

therefore limited to approximately 12 mm. 

 

Fig. 2. Contact pressure between ceramic and steel roller (low strength ceramic: solid, high strength ceramic: 

dashed) and steel roller and steel fixture (dotted). 

 

 

Systematic errors 

Wedging stresses arise from load application only on the surface of the specimen and not over 

the cross-section, fig. 3a. They lead to additional tensile stresses on the tensile surface. Fig. 3a 

compares the ideal loading through pure bending moments and the actual situation. Usually 

only specimens that fracture within the inner span length are used for the evaluation. This 

procedure will very likely also exclude specimens that fracture in the region where x,1 < b 

(fig. 3a). As a consequence only the positive portion of the error due to wedging stresses will 

be calculated [4] and taken into account. For height to length ratios h/L  0.1 this error is 

approximately 1  1.2%. 
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(a) (b) 

 

Fig. 3. Systematic errors: (a) Wedging stress: actual stress x, 1 on the tensile surfaces with respect to the 

wedging stress for the actual loading situation (solid), stress b according to the simple beam theory and pure 

bending (dotted). (b) Error 3 due to friction calculated for k = 0.5 (knife edges) and r = 0.03 (free rollers). 

 

 

Deflection of the specimen during the test leads to a tangential shift of the contact points 

between rollers and specimen. The contact points on the lower rollers move inwards, those on 

the inner rollers outwards, thus resulting in a smaller outer and a larger inner span length 

respectively. The corresponding error depends on the ratio of roller radius to specimen height. 

It is in the order of 2  1.0% if r/h  1.0 and l L 3 [4]. 

Friction at the points of load application gives rise to moments acting out of plane on the 

beam at this points and to additional axial forces [6]. The corresponding error may be 

calculated as [4] 

 
 






3

2

100 





L l

h

   . (4) 

The plot in fig. 3b has been calculated for a specimen height of h = 1.5 mm, using the 

coefficient of kinetic friction k = 0.5 (as a typical value for steel/ceramic and steel/steel 

pairings [12]) for the case of load application via knife edges and the coefficient of rolling 

friction for free rollers. The coefficient of rolling friction is typically 15 to 50 times lower 

than the coefficient of kinetic friction [13, 14], so here the value r = 0.03 is used. The 

determination of friction coefficients is nevertheless a delicate problem and an uncertainty 

about their values will always remain. Fig. 3b shows clearly that the error due to friction 

becomes the more pronounced the smaller the outer span length is. Free rollers are therefore 

indispensable for small bend-jigs. For h = 1.5 mm, L = 15 mm and l L 3eq. (4) gives 3  -

1%. 

Even more errors may arise from violations of the simple beam theory: if for example the 

Young's modulus of the tested material is unequal in tension and compression or the 

maximum deflection is large compared to the beam height. These errors have been discussed 
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by Baratta et al. [4]. They are an order of magnitude smaller than those discussed above and 

will be neglected. 

Random errors 

Random errors arise from deviations of the test-jig geometry from ideal values, from the 

definite resolution of the screw gauge with which the specimen's dimensions are measured 

and the accuracy of the load cell. For these errors a maximum magnitude can be calculated.  

Wrong span lengths, even if the roller pairs are properly centered with respect to each other, 

result in an altered bending moment. Eccentric loading with a pivoting loading head will 

result in an non-constant bending moment between the inner rollers [6]. From the design 

concept of the used fixtures it follows that the deviations of span lengths and the amount of 

eccentricity are determined by the clearance of the rollers in the slots of the guide, as shown 

in the inset in fig. 4a. This clearance is mainly determined by the used machining methods. A 

good workshop with standard equipment will be able to keep it to  = 0.05 mm, if not better. 

The resulting errors 4 and 5 for  = 0.05 mm are plotted in fig. 4a depending on outer span 

length for l L 3 . The errors are 25% to 50% larger for l L 2 . 

Torsion of the specimen around it's longitudinal axis is kept to a minimum by cambering three 

of the four faces that support the roller. The possible misalignment of the rollers is so small 

(because of the small clearance in the guide) that the resulting error of some tenths percent 

may be neglected. 

For a rectangular cross section eq. (1) reads as follows: 

 
 

b 
3

2 2

F L l

bh
   . (5) 

From eq. (5) is evident that the dimension measurement precision, with which breadth b and 

height h of the specimens are measured, enters in the error 6. Fig. 4b shows this error 6 [4] 

for several breadths if the specimen's size is measured with a micrometer gauge to 0.01 mm. 

Neglecting the chamfers will result in an underestimation of strength of about 1%. 

Since the precision of the determination of the maximum load is directly translated into the 

corresponding error 7, the load cell has to be chosen to fit the expected maximum load. An 

accuracy of 0.1 % of the nominal load will lead to an error |7| = 0.1%. 
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(a) (b) 

 

Fig. 4. Random errors. (a) Error due to wrong spans (dashed lines) and eccentric loading (solid lines). (b) Error 

due to definite (0.01 mm) resolution of the screw gauge depending on specimen's breadth for different indicated 

heights. 

 

 

Test jig 

Considering the above discussed limitation and errors "small" flexure fixtures with 

L = 13 mm, l = 13 3 mm and r = 1 mm for specimens with b = 2 mm and h = 1.5 mm and a 

length of 15 mm were built. With this configuration the total error may be 

between -2.2% <  < 5%. This uncertainty is about three times larger (depending on the 

Weibull exponent) than the statistical uncertainty when 30 specimens are tested. With the 

usual DIN configuration [1] an error of approximately -0.8% <  < 2.5% has to be expected.  

EXPERIMENTAL 

Weibull statistics 

Structural ceramics are known to show a decrease of characteristic strength with increasing 

specimen volume. This volume dependence of strength can be explained with fracture 

statistics concepts. In most cases Weibull statistics describe this effect satisfactory. 

The probability of failure PF (Weibull distribution) for an uniaxial but inhomogeneous stress 

state can be written as [7]: 

 P
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In terms of flexural strength b and the effective volume VE eq. (6) reads: 
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The characteristic strength 0 and the Weibull exponent m are a measure for the position and 

width of the distribution respectively. The effective volume is the volume of a hypothetical 

tensile specimen which, when subjected to the stress b, would have the same probability of 

failure, eq. (8): 

 
 
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x y z
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It permits the comparison of strength values of two different sized and loaded specimens: 
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Eq. (9) will be used to compare the strength values generated with two specimen sizes: 

standard DIN specimens and small specimens tested on the new developed test-jig. 

Materials 

Tests were made with the above described specimens (in future referred to as "small") and 

with standard DIN specimens [1] with b = 4 mm and h = 3 mm on fixtures with L = 40 mm 

and l = 20 mm. All specimens were cut out of larger ceramic plates. Three different materials 

were investigated: a fine grained dense silicon nitride, a medium grained alumina and a 

porous barium titanate with a bi-modal grain size distribution. Micrographs of all three 

materials are depicted in fig. 5. The silicon nitride and alumina were chosen because they are 

known to show the volume effect [15-17]. 

All sets were tested under such conditions that sub-critical crack growth [18] was avoided. 

The small and DIN specimens were investigated with respect to their surface quality, the 

fracture origins and the coincidence of characteristic strengths according to Weibull’s theory. 

 

   

Fig. 5. Micrographs of the tested materials. (a) silicon nitride, (b) alumina, (c) barium titanate. 

 

(b) (c) (a) 

5 µm 30 µm 30 µm 
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Fig. 6. Tensile surfaces, upper row: DIN specimens, lower row: small specimens. (a), (b) silicon nitride, (c), (d) 

alumina, (e), (f) barium titanate. The magnification is the same for all pictures. 

 

 

Specimen preparation 

In strength testing of ceramics it is assumed that failure starts from material inherent defects 

and not from artificially introduced surface defects [1]. Therefore special attention has to be 

paid to the preparation of the tensile surfaces of the specimens. 

All specimens were manufactured by grinding with diamond tools. SEM pictures of tensile 

surfaces were used to compare the surface finish of the two specimen sizes. DIN-specimens 

were ground as proposed [1] with a D15 diamond grit finish. The resulting surface quality 

was used as a control reference for the small specimens. Small specimens were, in a first 

attempt, ground in the same way. If no comparable result could be obtained, the tensile 

surfaces were further polished with a 9 m diamond paste. The resulting tensile surfaces are 

shown in fig. 6. On the DIN silicon nitride specimens machining grooves can be seen parallel 

to the specimen's longitudinal axis. The small silicon nitride specimens have no grooves 

because of a 9 m polishing step after grinding. The alumina DIN specimens show grooves 

and some break-out. In the case of the small specimens it was impossible to avoid the large 

amount of break-out on the surfaces with the preparation means provided. The surfaces of 

both barium titanate sizes are comparable with grooves (slightly curved on the small 

specimens due to polishing) and pores. 

Fractography 

To assure that small and DIN specimens failed due to inherent defect populations the fracture 

surfaces were investigated in a SEM. Most of the silicon nitride and the barium titanate 

specimens -both DIN and small ones- failed due to inherent defects, sometimes large pores, 

sometimes poorly sintered, porous regions. About half of the alumina DIN-specimens also 

(f) 

(e) 

(d) 

(c) 

(b) 

(a) 

30 µm 
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fractured at pores, but only surface defects could be identified in the small alumina 

specimens. Examples for fracture origins in all three materials can be seen in fig. 7. From the 

viewpoint of failure origins the requirements for the presence of the volume effect, eq. (9) are 

fulfilled for the silicon nitride and the barium titanate but not for the alumina. 

 

   

Fig. 7. Fracture origins. The tensile surface is at the bottom of the pictures. (a) silicon nitride: large pore, (b) 

alumina: surface defects, indicated by arrows, (c) barium titanate: coarse grain zone with increased porosity. 

 

Strength 

To allow a proper statistical evaluation thirty specimens of each kind were tested (with one 

exception: small alumina: 13). High strength materials were tested on a servohydraulic 

machine with a constant loading rate, low strength materials on a small universal testing 

machine with constant crosshead speed. The Weibull parameters were determined with the 

maximum likelihood method. The characteristic strengths and Weibull exponents of all 

materials, together with the corresponding 95%-confidence intervals are summarised in table 

1. Details about testing conditions are also included. 

Weibull diagrams and volume effect on strength according to eq. (9) are plotted in fig. 8. 

 

DISCUSSION 

Silicon nitride 

The data of both sets of specimen sizes fit nicely to straight lines in the representation in 

fig. 8a, indicating that they can be described using Weibull statistics. Chi-square tests for both 

sets showed that the samples cannot be distinguished from their populations. The slopes of the 

lines (representing the Weibull exponent m) are nearly identical indicating, that the same 

defect population was responsible for failure. The characteristic strength of the DIN 

specimens is smaller than that of the small specimens. This can be explained by the defect 

controlled failure characteristic of ceramics: it is more likely to encounter a large defect which 

leads to a low strength value in a large specimen than in a small one. The volume dependence 

of the characteristic strength is plotted in fig. 8b. The solid line represents eq.(9), the 

diverging dashed lines the propagation of the statistical uncertainty for the 95% confidence 

interval. The error bars correspond to the measurement errors discussed above. The 

characteristic strength of the small specimens lies within the scatter band of the prediction 

(a) (b) (c) 15 µm 30 µm 75 µm 

  
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based on the DIN specimens values. The volume effect which has already been measured for 

silicon nitride [15, 16] is thereby confirmed. Thus the small test set-up is suitable for strength 

measurements. 

 

 

Table 1: Results of strength measurements 

 

Material 

 

loading 

conditions 



0 [MPa] 
(95% confidence interval) 

 

m 
(95% confidence interval) 

eff. volume 

[mm
3
] 

(95% confidence 

interval) 

Si3N4, DIN 100 MPa/s 802 
(791 - 814) 

23 
(18 - 29) 

5.12 

(4.20 - 6.82) 

Si3N4, small 1 mm/min  

100 MPa/s 

882 
(871 - 893) 

28 
(21 - 34) 

0.24 

(0.20 - 0.32) 

Al2O3, DIN 1 GPa/s 398 
(391 - 406) 

17 
(13 - 21) 

6.98 

(5.73 - 9.29) 

Al2O3, small 15 mm/min  

 1 GPa/s 

429 
(420 - 439) 

25 
(15 - 33) 

0.27 

(0.20 - 0.45) 

BaTiO3, DIN 2 mm/min    

10 MPa/s 

93 
(91 - 94) 

21 
(16 - 26) 

5.60 

(4.60 - 7.46) 

BaTiO3, small 0.2 mm/min  

 10 MPa/s 

89 
(88 - 91) 

21 
(15 - 25) 

0.33 

(0.27 - 0.44) 

 

Alumina 

The alumina data too may be well described by Weibull statistics. The Weibull exponents 

differ apparently, fig. 8c, but since the confidence intervals overlap the difference is not 

significant. Although the volume effect of strength has been measured for alumina [17] it does 

not appear in our case as can be seen in fig. 8d. In all probability the strength distributions of 

small and DIN specimens do not match. This is confirmed by the investigations of failure 

origins and tensile surfaces. The small specimens seem to have fractured due to an artificial 

surface defect population - the large break-out regions, observable in fig. 8d. A large fraction 

of the DIN specimens failed due to inherent defects. This example shows clearly, how 

important -and also how difficult- an appropriate specimen preparation is. 

Barium titanate 

Each barium titanate data-set can be fitted well by a Weibull distribution. Both sets have the 

same Weibull exponent, but the strength of the DIN specimens is higher than the strength of 

the small specimens, fig. 8e. Therefore the expected volume effect does occur. The diagram in 

fig. 8f with errors-bars depicting the experimental error shows that the strengths of both 

specimen sizes are actual the same. The fracture origins are mostly large regions composed of 

large grains with an increased porosity, see also the micrograph in fig. 8c. 
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(a) (c) (e) 

 
(b) (d) (f) 

 

Fig. 8. Weibull plots and volume extrapolations. Triangles indicate datasets from DIN-specimens, open circles 

datasets from small specimens. (a) silicon nitride, (b) alumina, (c) barium titanate. 

 

 

Sometimes more than one of these regions is present on the same fracture surface. One of the 

presumptions for the validity of Weibull statistics is a dilute solution of defects [19] so that 

they cannot interact. This presumption is not fulfilled in highly porous materials like the 

tested barium titanate and Weibull statistics do not describe the test results properly. 

The data were thus fitted with other distribution functions, a standard Gaussian and a 

logarithmic Gaussian distribution. Chi-square tests revealed that all three distributions fit the 

data comparably well. This may be explained by the fact that a small sample of 30 specimens 

will only cover the peak region of the distribution functions, while the extremities, where the 

differences between the distributions are more pronounced, are omitted. This is a fundamental 

problem of fracture statistical evaluations. 

CONCLUSION 

 The most important limiting factor for bend-test miniaturisation seems to be the contact 

pressure between fixture (or rollers) and specimen. Using high yield steel fixtures and 

rollers (y  2000 MPa) and testing high strength ceramics, these contact stresses limit the 

outer span length to about 12 mm. If ceramic fixtures and rollers are used an outer span 
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length of 7 mm or even less (depending on the compressive strength of the fixture and 

roller material) may be possible. If electroceramics, which usually have low strength 

values, are tested, even much smaller span lengths may be practicable. 

 Load application by free rollers instead of knife edges is necessary in order to minimise 

frictional forces. For knife edges these forces may be higher than 5% of the applied load 

even at a span length of 40 mm. In the case of free rollers the frictional forces are much 

smaller than for knife edges, but they increase strongly for outer span lengths smaller than 

5 mm. Friction is an important but difficult determinable source of measuring errors. In the 

case of L = 13 mm it is estimated to produce a systematic error of approximately -1%. 

 A possible specimen size is 2 mm × 1.5 mm × 15 mm for L = 13 mm and l L 3 . For this 

configuration the measuring error is in the range of -2.2% <  < 5% using fixtures and 

specimens produced in a standard workshop. If the systematic errors are taken into account 

when the strength is evaluated the error is reduced to ran < ±3.5%. A further reduction of 

the measuring error for specimens of this size is only possible if highly sophisticated 

manufacturing procedures for fixtures and specimens are applied. 

 Apart from errors due to the test set-up an essential requirement for successful testing of 

brittle materials on small fixtures is that small specimens can be prepared in such a way 

that no additional defect populations are introduced through the grinding process. This 

cannot be assured by simply following preparation directions. A sufficient surface quality 

is strongly material dependent and has to be checked in each case. 

 The good agreement of strength values from DIN and small samples in the case of silicon 

nitride proves that reliable results can be achieved using the small 4-point bend fixtures. 

 Barium titanate, a porous material shows no volume dependence of strength. Fractography 

and micrographs evoke the assumption, that the material tested here fails due to an 

mechanism which cannot be included in the Weibull formalism. Until now porous 

ceramics are generally characterised by Weibull statistics and therefore this seems to be an 

important new result. 
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