

# Chair of Mining Engineering and Mineral Economics

Master's Thesis

Raw Material's Production Data: An Analysis of International Data Collections and Their Applications

# Marie-Theres Kügerl, BSc BSc

February 2020

# **Declaration of Authorship**



#### EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt, und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Ich erkläre, dass ich die Richtlinien des Senats der Montanuniversität Leoben zu "Gute wissenschaftliche Praxis" gelesen, verstanden und befolgt habe.

Weiters erkläre ich, dass die elektronische und gedruckte Version der eingereichten wissenschaftlichen Abschlussarbeit formal und inhaltlich identisch sind.

Datum 08.01.2020

Unterschrift Verfasser/in Marie-Theres, Kügerl

# Preface, Dedication, Acknowledgement

This thesis was completed as the final part of my Master's degree "Mining Engineering" at the Chair of Mining Engineering and Mineral Economics, at the Montanuniversitaet Leoben.

First of all, I thank Vice Rector Univ.-Prof. Peter Moser, from Montanuniversitaet Leoben, for his support and guidance during the preparation of this thesis.

The contributions of Dipl.-Ing. Christian Reichl, from the Austrian Federal Ministry of Sustainability and Tourism, Univ.-Prof. Fridolin Krausmann, Mrs Teresa J. Brown, Mineral Commodity Geologist, BGS, and Mr Michael Magyar, USGS, were of great help and I would like to thank them for their inputs.

Last but not least, I want to thank Mr Andreas Okorn, and my parents Marina and Johannes Kügerl, for their revisions and continuous support.

### Abstract

This Master's Thesis is divided into three parts. First, three international data collections (World Mining Data, British Geological Survey, United States Geological Survey) of raw material's production data, and one collection on European level (Eurostat) are evaluated. The assessment includes commodities reported, countries covered, additional information on the commodity, as well as strengths and weaknesses of each report.

Secondly, applications using these reports are discussed, showing numerous studies and policy measurements relying on the figures by the data collections. This includes the criticality study of the European Union, Material Flow Analysis, and Sustainable Development Goals.

Thirdly, two power plants are compared in terms of material requirements for their construction – a combined heat and power plant and a wind farm. The amount of materials used per kilowatt hour of electricity production is assessed, as well as their recyclability and criticality for the EU.

# Zusammenfassung

Diese Diplomarbeit ist in drei Teile gegliedert.

Zunächst werden drei internationale Datensammlungen (World Mining Data, British Geological Survey, United States Geological Survey) von Produktionsdaten von Rohstoffen und eine Sammlung auf europäischer Ebene (Eurostat) ausgewertet. Die Bewertung umfasst die erfassten Rohstoffe, die berücksichtigten Länder, zusätzliche Informationen über den jeweiligen Rohstoff, sowie die Stärken und Schwächen der einzelnen Berichte.

Zweitens werden Anwendungen, die diese Berichte nutzen, diskutiert, wobei zahlreiche Studien und politische Maßnahmen gezeigt werden, die sich auf die Zahlen der Datensammlungen stützen. Dazu gehören die Kritizitätsstudie der Europäischen Union, Materialflussanalysen und die nachhaltigen Entwicklungsziele.

Drittens werden zwei Kraftwerke in Bezug auf den Materialbedarf für ihre Konstruktion miteinander verglichen - ein Heizkraftwerk und ein Windpark. Die Menge der verwendeten Materialien pro Kilowattstunde Stromerzeugung wird ebenso bewertet, wie ihre Recyclingfähigkeit und ihre Kritizität für die EU.

# **Table of Contents**

| Declar            | ation of Authorship                                     | I   |  |  |  |
|-------------------|---------------------------------------------------------|-----|--|--|--|
| Prefac            | e, Dedication, Acknowledgement                          | I   |  |  |  |
| Abstra            | ct                                                      | 111 |  |  |  |
| Zusam             | nmenfassung                                             | IV  |  |  |  |
| Table of Contents |                                                         |     |  |  |  |
| 1                 | Introduction                                            | 1   |  |  |  |
| 2                 | Collections of Raw Material's Production Data           | 3   |  |  |  |
| 2.1               | World Mining Data                                       | 3   |  |  |  |
| 2.2               | World Mineral Production                                | 7   |  |  |  |
| 2.3               | Minerals Yearbook                                       | 9   |  |  |  |
| 2.4               | Eurostat                                                | 12  |  |  |  |
| 2.5               | Comparison                                              | 17  |  |  |  |
| 3                 | Applications                                            | 38  |  |  |  |
| 3.1               | European Commission List of Critical Raw Materials      | 38  |  |  |  |
| 3.1.1             | Evaluation of criticality                               | 40  |  |  |  |
| 3.2               | Circular Economy                                        | 44  |  |  |  |
| 3.3               | Global Material Flow                                    | 49  |  |  |  |
| 3.3.1             | Demand Drivers                                          | 55  |  |  |  |
| 3.4               | Sustainable Development Goals                           | 60  |  |  |  |
| 4                 | Raw Material's Consumption in Light of New Technologies | 71  |  |  |  |
| 4.1               | Thermal Power Plant                                     | 71  |  |  |  |
| 4.2               | Wind Turbine                                            | 76  |  |  |  |
| 4.3               | Comparison                                              | 84  |  |  |  |
| 5                 | Conclusion                                              | 90  |  |  |  |
| 6                 | Bibliography                                            | 95  |  |  |  |
| 7                 | List of Figures                                         | 100 |  |  |  |
| 8                 | List of Tables                                          | 102 |  |  |  |
| 9                 | List of Equations                                       | 103 |  |  |  |
| 10                | List of Abbreviations                                   | 104 |  |  |  |
| Annex             |                                                         | VI  |  |  |  |

### 1 Introduction

Raw materials are an integral part of our everyday lives. They influence our living standards – starting at the "simple roof over our heads" to cars we drive and the smartphones we own. They influence the industry providing jobs and driving our economy, they affect our health and well-being by ensuring clean drinking water, and they are vital to our future and the future of our planet helping us to expand renewable energy systems, build electric cars, etc.

"Raw materials are not an exclusive concern of the mining industry, they are the concern of all of us." (Pesonen, 2019)

In order to evaluate the amount of raw materials we need, recordings of the amounts of raw materials mined are of vital importance. Production of raw materials influences company planning, not only by companies involved in the mining sector, but also by downstream companies depending on those materials. Policy making also depends on availability and demand of raw materials, such as the Circular Economy Initiative by the European Union.

There are currently three major providers of data on raw materials production on an international level that are publicly available – the British Geological Survey, the United States Geological Survey, and the Austrian Federal Ministry on Tourism and Sustainability. The first step of this thesis is a comparison of these three providers evaluating what data they offer (raw materials and countries reported, metal content vs ore, additional information), how the data is collected, and if there are any differences. Moreover, an evaluation of strengths and weaknesses is conducted, and if possible, a guideline on how and when to use which provider shall be proposed. To focus more on the European level also Eurostat data is included which is not as expansive, in terms of raw materials and countries evaluated, but does also include different data sets such as import and export, or domestic consumption figures. Is this a valuable addition covering "blind spots" of the other providers, does it have different applications, where are the similarities?

The second part of this thesis is a literature review on applications of the data provided by the institutions evaluated in the first part. This includes studies on (global) material flows, and demand drivers, but also policies, such as the circular economy package by the EU, the critical raw materials list, or the Sustainable Development Goals are considered. The aim of this part is to show different applications of raw material's production data as well as its importance for policy makers, and to see whether there are any differences in data reported vs data required.

Thirdly, the data is used to conduct a comparison of two different electric energy production methods, wind power farms and thermal power plants. This comparison shall evaluate "new vs old technology" in terms of material input required to build such a power plant also looking into the type of materials used, e.g. materials considered critical by the European Union, or materials connected to issues such as conflicts, environmental problems, etc. This part has the purpose of showing that renewable energy sources still rely heavily on the input of primary raw materials, maybe even more than conventional energy production methods. It shall also show possible issues connected to the materials used for renewable energy production, such as availability of materials, dependency on certain countries, and recyclability.

Note: In this thesis figures are stated using "." as decimal points and "," as thousands separators.

# 2 Collections of Raw Material's Production Data

In this thesis the three main publications of mineral raw material's world production data are evaluated in detail regarding data provided, method of data collection and their advantages and disadvantages compared to each other. Only publications that are available for free were chosen and that cover the broadest selection of countries and mineral raw materials.

These publications are the World Mining Data (WMD) published by the Federal Ministry Republic of Austria Sustainability and Tourism, the World Mineral Production by the British Geological Survey (BGS) and the Minerals Yearbook by the United States Geological Survey (USGS).

Data provided by Eurostat in their material flow accounts for European production of raw materials is evaluated and compared to the other statistics as well in order to have a comparison to a slightly different type of data collection and evaluate its advantages and disadvantages.

### 2.1 World Mining Data

World Mining Data (WMD) is an annual publication by the Federal Ministry Republic of Austria Sustainability and Tourism which includes production figures of 63 mineral commodities from 168 countries. It is usually delayed two years, meaning the most current data in the publication of the year 2019 is from 2017. It is the "youngest" publication of the three global data providers, with 34 reports by 2019.

The commodity figures are grouped by:

- Continents
- World regions (according to IIASA)
- Development status (according to OECD definitions) of producer countries
- Per capita income of producer countries
- Country groups and economic blocks (e.g. EU or BRICS countries)
- Political stability using the Worldwide Governance Indicators of producer countries
- Groups of commodities
- Concentration of producer countries using the Herfindahl-Hirschman Index (HHI)

(Reichl et al., 2019)

Moreover, the World Mining Data provides charts giving an overview on current production developments and visualising production data, such as the total production of minerals in the year 2017 by continents (Figure 1).

**Total production 2017** 



# Figure 1: Distribution of mineral production per continent (Reichl *et al.*, 2019)

The 68 commodities are organised in five groups according to geological principles by Univ.Prof. Dr. Leopold Weber, former publisher of the World Mining data. The only exception to this is coal; here also the utilisation is considered (e.g. coking coal).

The groups and contained minerals are:

- Iron and Ferro-Alloy Metals
  - Iron, Chromium, Cobalt, Manganese, Molybdenum, Nickel, Niobium, Tantalum, Titianium, Tungsten, Vanadium
- Non-Ferrous Metals
  - Aluminium, Antimony, Arsenic, Bauxite, Bismuth, Cadmium, Copper, Gallium, Germanium, Lead, Lithium, Mercury, Rare Earth Minerals, Rhenium, Selenium, Tellurium, Tin, Zinc
- Precious Metals
  - o Gold, Platinum-Group Metals (Palladium, Platinum, Rhodium), Silver
- Industrial Minerals
  - Asbestos, Baryte, Bentonite, Boron Minerals, Diamond (Gem/Industrial), Diatomite, Feldspar, Fluorspar, Graphite, Gypsum and Anhydrite, Kaolin (China-Clay), Magnesite, Perlite, Phosphates (incl. Guano), Potash, Salt, Sulfur, Talc (incl. Steatite and Pyrophyllite), Vermiculite, Zircon
- Mineral Fuels
  - Steam Coal (incl. Anthracite and Sub-Bituminous Coal), Coking Coal,
    Lignite, Natural Gas, Crude Petroleum, Oil Sands, Oil Shales, Uranium

(Reichl et al., 2019)

The metal figures usually indicate the contained metal content not the ore in order to ensure a global comparability of the amounts. Due to the widely varying metal contents a comparison of the mined ore would be pointless, e.g. iron ore in Carajás, Brazil (Vale) has an iron content of 67%, in Kiruna, Sweden (LKAB) approx. 48%. (Vale, 2017; LKAB, 2017)

As the output changes regularly due to changes in efficiency of the processing it is favourable to use the content of traded concentrate, or for example the content is calculated using the amount of mined ore multiplied by the metal content provided by mining companies.

The authors collect data using different methods. On the one hand questionnaires are sent out globally to Austrian embassies that distribute it among responsible authorities. The response rate is between 20 to 25%. Moreover, companies are consulted, especially in areas with a low number of producers (e.g. Latin America).

Other sources are the central bank, study groups and other data providers, such as BGS and USGS. The ministry also cooperates with World Mining Congress which is providing essential data of their members.

Unfortunately, there are some countries and commodities where little or no data is available. Lithium production, for example, is calculated from the products sold on the world market. Also, Cadmium is a problematic mineral where mainly export numbers are used to estimate the production.

A major strength of World Mining Data is the section on political stability, development status, etc. of producer countries, as well as the concentration of producer countries showing economic interdependencies.

World Mining Data is publicly available as PDF- and Excel-files that can be downloaded from the designated website. The Excel-files include all data available between 1984 and 2017.

(Information on data collection and reporting kindly provided by Dipl.-Ing. Christian Reichl, Federal Ministry of Sustainability and Tourism)

### 2.2 World Mineral Production

British Geological Survey, BGS, annually publish the World Mineral Production a collection of production figures of 75 commodities in total, 73 reported globally and 2 for Europe only. BGS have a long-standing history of providing data on raw materials, the predecessors of the World Mineral Production - World Mineral Statistics and Statistical Summary of the Mineral industry - date back to 1913.

Commodities reported are:

- A. Alumina, Aluminium, Antimony, Arsenic, Asbestos, Aggregates (Europe only)
- B. Barytes, Bauxite, Bentonite, Beryl, Bismuth, Borates, Bromine
- C. Cadmium, Chromium, Coal, Cobalt, Copper, Cement (Europe only)
- D. Diamond, Diatomite
- F. Feldspar, Ferro alloys, Fluorspar, Fuller's earth
- G. Gallium, Germanium, Gold, Graphite, Gypsum
- I. Indium, lodine, Iron ore, Iron and steel
- K. Kaolin
- L. Lead, Lithium
- M. Magnesite, Magnesium, Manganese, Mercury, Mica, Molybdenum
- N. Natural gas, Natural sodium carbonate, Nepheline syenite, Nickel, Niobium
- P. Perlite, Petroleum, Phosphates, Platinum, Potash, Pyrites
- R. Rare earths, Rhenium
- S. Salt, Selenium, Silicon, Sillimanite, Silver, Strontium, Sulphur
- T. Talc, Tantalum, Tellurium, Tin, Titanium, Tungsten
- U. Uranium
- V. Vanadium, Vermiculite
- W. Wollastonite
- Z. Zinc, Zirconium

(Brown et al., 2019)

The metals are often reported as metal content, for aluminium, cobalt, copper, iron, lead, nickel, tin, and zinc both ore and metal production are indicated separately. This can either be the calculated metal content of a concentrate, or in other cases the content is calculated using gross weight of ore and a grade estimate according to commodity, deposit and/or country. As an example, the table for mine production of antimony reported as metal content is shown in Figure 2.

#### Mine production of antimony

tonnes (metal content)

| Country       | 2013    | 2014    | 2015    | 2016     | 2017      |
|---------------|---------|---------|---------|----------|-----------|
| Russia        | * 6 520 | * 6 400 | 7 420   | 6 620    | 6 120     |
| Turkey        | 4 512   | 3 013   | 1 917   | 2 700    | 4 750     |
| South Africa  | 2 332   | 816     | 400     | •_       | *         |
| Canada        | 177     | 5       | 1       | 0        | 0         |
| Guatemala     | 159     | —       | —       | 25       |           |
| Honduras      |         | 13      | 14      | _        | _         |
| Mexico        | 294     | 266     | 90      | 166      | 240       |
| Bolivia       | 5 053   | 4 186   | 3 843   | 2 669    | 2 844     |
| Ecuador       | _       | _       | _       |          | 579       |
| Burma (a)     | * 7 000 | 4 234   | 5 777   | 2 780    | 3 060     |
| China         | 152 104 | 140 389 | 120 732 | 107 535  | * 101 000 |
| Iran          | 400     | 432     | 1 020   | 1 765    | * 1 800   |
| Kazakhstan    | * 900   | * 800   | * 700   | * 900    | * 200     |
| Kyrgyzstan    | * 900   | * 1 450 | * 1 200 | * 1 880  | * 1 100   |
| Laos          | 804     | 620     | 1 166   | 242      | 320       |
| Pakistan (b)  | 89      | 127     | 114     | 21       | 15        |
| Tajikistan    | 7 307   | * 7 000 | * 6 800 | * 12 700 | * 12 500  |
| Thailand      | 488     | 706     | * 700   | 32       | _         |
| Vietnam       | 990     | 1 098   | 219     | 229      | 243       |
| Australia (b) | 3 062   | 3 680   | 3 926   | 5 004    | 4 294     |
| World total   | 193 000 | 175 000 | 156 000 | 145 000  | 139 000   |

Note(s)

(1) This table includes antimony content of antimonial lead alloys.

(a) Years ended 31 March following that stated

(b) Years ended 30 June of that stated

#### Figure 2: Mine production of antimony in tonnes (metal content) (Brown *et al.*, 2019)

BGS also provides regional publications, for example for Europe, Africa, China and South East Asia. The European Mineral Statistics include additional statistics on import and export, and information on European mineral production as percentage of world production. For some minerals, for example Coal and Lithium, Mineral Profiles are published, including information on mineralogy, deposits, extraction, processing methods, and uses. All publications can be downloaded from BGS homepage as PDF-files and additionally production, export and import data from 1970-2017 can be downloaded as Excel-files in steps of 10 years maximum.

Considering data collection, BGS uses various methods. As a first step questionnaires are sent out individualised for each country contacted. Moreover, internet research is conducted, consulting websites of government organisations and companies and also other publications are consulted. Previously, BGS was supported by UK Embassies providing data of their country, but this is not very common anymore.

(Information on data collection and reporting kindly provided by Mrs Teresa J. Brown, Mineral Commodity Geologist, BGS)

### 2.3 Minerals Yearbook

The Minerals Yearbook is a publication by United States Geological Survey (USGS). It consists of three volumes:

- Volume I: Metals and Minerals
- Volume II: Area Reports, Domestic
- Volume III: Area Reports, International

Volume I on metals and minerals includes individual reports for 90 commodities that are published annually. These reports include an extensive review of consumption, prices and trade with focus on the United States. They also include a world review analysing industry and world market structure, as well as an outlook considering future demand and applications.

Statistics given in Volume I again focus on the USA, providing imported and exported amounts, apparent consumption, and price development. Production figures document global production. (U.S. Geological Survey, 2019e)

Commodities reported in Volume I are:

- A. Manufactured Abrasives (incl. Fused Aluminium Oxide, Corundum, Silicon), Aggregates (Construction Sand and Gravel, Crushed Stone), Bauxite and Alumina, Aluminium, Antimony, Arsenic, Asbestos
- B. Barite, Bentonite (Clay Minerals) Beryllium, Bismuth, Boron, Bromine
- C. Cadmium, Cement, Chromium, Clay Minerals (incl. Bentonite, Fuller's Earth, Kaolin), Cobalt, Niobium (Columbium), Copper, Crushed Stone (incl. Calcium Carbonate, Granite, Limestone, Marble, Sandstone, Slate, Traprock)
- D. Diamond (industrial), Diatomite, Dimension Stone (incl. Granite, Limestone, Marble, Sandstone, Slate)
- F. Feldspar (incl. Nepheline Syenite), Ferro-alloys, Fluorspar
- G. Gallium, Garnet (industrial), Gemstones (incl. Shell), Germanium, Gold, Graphite, Gypsum
- H. Hafnium Helium
- Iodine, Iron Ore, Iron and Steel, Iron and Steel Scrap, Iron and Steel Slag, Iron Oxide Pigments
- K. Kyanite and Related Minerals (incl. Synthetic Mullite)
- L. Lead, Lime, Lithium
- M. Magnesium, Magnesium Compounds, Manganese, Mercury, Mica, Molybdenum
- N. Nickel, Niobium, Nitrogen
- P. Peat, Perlite, Phosphate Rock, Platinum-Group-Metals (Iridium, Osmium, Palladium, Rhodium, Ruthenium), Potash, Pumice and Pummicite
- R. Rare Earths (incl. Yttrium), Rhenium
- S. Salt, Construction Sand and Gravel, Selenium, Silica (incl. Quartz Crystal, Industrial Sand and Gravel, Tripoli), Silicon, Silver, Soda Ash, Strontium, Sulfur
- T. Talc (incl. Pyrophyllite), Tantalum, Tellurium, Thorium, Tin, Titanium (incl. Ilmenite, Rutil), Tungsten
- V. Vanadium, Vermiculite
- W. Wollastonite
- Z. Zeolites, Zinc, Zirconium
- (U.S. Geological Survey, 2019a)

However, there are exceptions; some of the 90 commodities are only reported for the USA:

Manufactured Abrasives, Construction Sand and Gravel, Crushed Stone, Dimension Stone, Industrial Garnet, Helium, Iron and Steel Scrap, Iron and Steel Slag, Wollastonite (no production or trade figures at all), Zeolites

USGS usually reports metal content to enable a comparison between mines, plants, and facilities at various stages of the supply chain. The value reported is adapted to industry standards.

The main method of data collection is via survey forms, a Mineral Questionnaire, developed for each country according to its current mineral industry.

Volume II focuses on statistical data and information for the United States on a Stateby-State basis and is therefore not relevant for this analysis.

Volume III indicates mineral production, trade, policy and industry developments for 175 countries. It is possible that Volume I and Volume III provide different production figures for one commodity. This depends on the different methods of data collection and different sources used by the respective specialist. However, lately USGS is trying to reconcile the numbers internally and agree on one value in order to avoid discrepancies (this is not valid for historical data).

The Minerals Yearbook is published with a delay of three to four years. At the time of this assessment the most current data available was from 2015 or 2016 depending on the commodity. It has a longstanding history with the first volume published in 1932. There is also historic data available for some commodities dating back until 1900.

More recent data is published in the so-called Mineral Commodity Summaries that are already available for 2018. This publication focuses on the US industry and market and is not as extensive as the Minerals Yearbook. It covers 90 minerals and materials providing domestic production and use, imports and exports, prices, stocks, recycling and substitutes, notable events, trends, and issues, as well as some details on world production, resources, and reserves.

(U.S. Geological Survey, 2019a, 2019b, 2019c, 2019d, 2019e)

All publications are available online, on the USGS website.

(Information on data collection and reporting kindly provided by Mr Michael Magyar, USGS)

### 2.4 Eurostat

Eurostat records economy-wide material flow accounts (EW-MFA) with the purpose of providing information on the interaction of national economy with the natural environment and with global economy. Data collection for these accounts started in 2017 including material inputs to national economies (domestic extraction, physical imports, balancing items), and material output from national economies (domestic processed output, physical exports, balancing items).



Figure 3: Main material flows of an economy (Eurostat, 2018)

Flows inside one economy (that do not cross borders) are not recorded in MFA.

The EW-MFA reports a number of different material groups:

- Biomass
  - Crops
    - Cereals; Roots, tubers; Sugar crops; Pulses; Nuts; Oil-bearing crops; Vegetables; Fruits; Fibres; Other crops (excluding fodder crops n.e.c.)
    - Crop residues (used), fodder crops and grazed biomass
  - o Wood
  - Wild fish catch, aquatic plants and animals, hunting and gathering
  - Live animals and animal products (excluding wild fish, aquatic plants and animals, hunted and gathered animals)
  - Products mainly from biomass
- Metal ores (gross ores)
  - o Iron
  - Non-ferrous metal: Copper; Nickel; Lead; Zinc; Tin; Gold, silver, platinum and other precious metals; Bauxite and other aluminium; Uranium and thorium; Other non-ferrous metals
  - o Products mainly from metals
- Non-metallic minerals
  - Marble, granite, sandstone, porphyry, basalt, other ornamental or building stone (excluding slate)
  - Chalk and dolomite
  - o Slate
  - Chemical and fertiliser minerals
  - o Salt
  - Limestone and gypsum
  - Clays and kaolin
  - Sand and gravel
  - Other non-metallic minerals n.e.c.
  - Excavated earthen materials (including soil), only if used (optional reporting)
  - Products mainly from non-metallic minerals

- Fossil energy materials/carriers
  - Coal and other solid energy materials/carriers
  - Liquid and gaseous energy materials/carriers
  - Products mainly from fossil energy products
- Other products
- Waste for final treatment and disposal
- Domestic processed output
  - Emissions to air
  - Waste disposal to the environment
  - Emissions to water
  - Dissipative use of products
  - Dissipative losses
- Balancing items: net output (= Balancing item: output side Balancing item: input side)

#### (Eurostat, 2019a)

Relevant for this assessment is the domestic extraction of metals and minerals. Here the "run-of-mine" concept is applied, reporting extraction of ores rather than metal content. It is measured before any separation or concentration excluding any materials not containing wanted metals or minerals. If available, gross ores reported by the mine operator are used. Otherwise run-of-mine amounts have to be calculated using conversion factors. National and international statistics tend to report metal content or concentrates, and these values are converted to gross ores by multiplying them with a factor determined according to commodity and mine, country, and year. In case specific data is not available a general conversion factor has to be used. These general factors are based on annual business reports of mines calculated for each metal individually. An issue requiring special attention is ore containing more than one metal in order to avoid double counting. (Eurostat, 2018)

Eurostat collects data from three different sources: 1) National statistical institutes using digital questionnaires which are mandatory since 2013. 2) EU-wide harmonised sources of statistical data, and 3) data provided by international sources such as UN Food and Agricultural Organisation (FAO), BGS, and USGS. (Eurostat, 2018)

Figure 4 shows all tables covered in the questionnaires.

| Questionnaire's tables                                                                                                    | 2000                      | 2001        |          | 2016       | 2017 |  |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|----------|------------|------|--|
| Table A <sup>*</sup>                                                                                                      |                           |             |          |            | 3    |  |
| MF.1 Biomass                                                                                                              |                           |             |          |            |      |  |
| MF.2 Metal ores                                                                                                           |                           | Dome        | stic ext | raction    |      |  |
| MF.3 Non-metallic minerals                                                                                                |                           |             |          |            |      |  |
| MF.4 Fossil energy materials/carriers                                                                                     |                           |             |          |            |      |  |
| Tables B <sup>*</sup> and D <sup>*</sup>                                                                                  |                           |             |          |            |      |  |
| MF.1 Biomass (with additional material classes for animal and biomass products)                                           |                           |             |          |            |      |  |
| MF.2 Metal ores (with additional material class for metal products)                                                       |                           |             |          |            |      |  |
| MF.3 Non-metallic minerals (with additional material class for products mainly from non-<br>metallic minerals)            | F                         | Physical in | nports a | and export | s    |  |
| MF.4 Fossil energy materials/carriers (with additional material class for products mainly<br>from fossil energy material) |                           |             |          |            |      |  |
| MF.5 Other products                                                                                                       |                           |             |          |            |      |  |
| MF.6 Waste traded for final treatment and disposal                                                                        |                           |             |          |            |      |  |
| Table F                                                                                                                   |                           |             |          |            |      |  |
| MF.7.1 Emissions to air                                                                                                   |                           |             |          |            |      |  |
| MF.7.2 Waste disposal                                                                                                     |                           |             |          |            |      |  |
| MF.7.3 Emissions to water                                                                                                 | Domestic processed output |             |          |            |      |  |
| MF.7.4 Dissipative use of products                                                                                        |                           |             |          |            |      |  |
| MF.7.5 Dissipative losses                                                                                                 |                           |             |          |            |      |  |
| Table G                                                                                                                   |                           |             |          |            |      |  |
| MF.8.1 Balancing items: input side                                                                                        | Balancing items           |             |          |            |      |  |
| MF.8.2 Balancing items: output side                                                                                       |                           |             |          |            |      |  |
| Table H                                                                                                                   |                           |             |          |            |      |  |
| DE - Domestic extraction                                                                                                  |                           |             |          |            |      |  |
| IMP - Imports                                                                                                             |                           |             |          |            |      |  |
| EXP - Exports                                                                                                             |                           |             |          |            |      |  |
| DMI - Direct material input                                                                                               |                           | EW-MFA      | lerived  | indicators |      |  |
| DMC - Domestic material consumption                                                                                       |                           |             |          |            |      |  |
| PTB - Physical trade balance                                                                                              |                           |             |          |            |      |  |
| DPO - Domestic processed output                                                                                           |                           |             |          |            |      |  |
| NAS - Net additions to stock                                                                                              |                           |             |          |            |      |  |
| Table I                                                                                                                   |                           |             |          |            |      |  |
| DE - Domestic extraction                                                                                                  |                           |             |          |            |      |  |
| IMP_RME - Imports in RME                                                                                                  |                           | TA in sec   |          | Lanuinal   |      |  |
| RMI - Raw material input                                                                                                  | M                         | FA IN raw I | materia  | requivaler | its  |  |
| EXP_RME - Exports in RME                                                                                                  |                           |             |          |            |      |  |
| RMC - Raw material consumption                                                                                            |                           |             |          |            |      |  |

\* These tables record mandatory data according to Regulation (EU) No 691/2011

#### Figure 4: Exemple questionnaire used by Eurostat (Eurostat, 2018)

#### Table A is viewed in more detail in Figure 5.



Figure 5: Table A - Domestic Extraction (Eurostat, 2019b)

So-called MEMO items visible in Figure 5 are items that can be reported voluntarily for information purposes only.

Eurostat provides an online data explorer, where the required material, the environmental indicator (domestic extraction, imports, exports, domestic material consumption, direct material inputs, physical trade balance), year, unit of measure, and country can be selected. Countries reported include all EU member states, as well as Norway, Switzerland, North Macedonia, Albania, Serbia, Turkey, and Bosnia and Herzegovina.

(Eurostat, 2018, 2019b)

### 2.5 Comparison

This chapter will provide a comparison and an overview of advantages and possible disadvantages of the different data providers.

| World Mining Data     | World Mineral         | Minerals Yearbook    | MFA                 |  |  |
|-----------------------|-----------------------|----------------------|---------------------|--|--|
| (Austrian Ministry)   | Production            | (USGS)               | (Eurostat)          |  |  |
|                       | (BGS)                 |                      |                     |  |  |
| Advantages            | Advantages            | Advantages           | Advantages          |  |  |
|                       | Long history, data    | Long history,        |                     |  |  |
|                       | from 1913 onward      | yearbook from 1932   |                     |  |  |
|                       |                       | onward (additional   |                     |  |  |
|                       |                       | historical data from |                     |  |  |
|                       |                       | 1900)                |                     |  |  |
| Groupings             | (Some additional      | A lot of additional  | Different data then |  |  |
| according to          | information in        | information on       | other providers     |  |  |
| development           | European Mineral      | commodities (use,    | (ores rather than   |  |  |
| status, regional      | Statistics and        | consumption, etc.)   | content)            |  |  |
| groups, economic      | Mineral Profiles, not |                      |                     |  |  |
| blocks, and political | in World Mineral      |                      |                     |  |  |
| stability             | Production)           |                      |                     |  |  |
| Share of world        |                       | (Commodity           | Data on             |  |  |
| mineral production    |                       | Summaries are only   | consumption,        |  |  |
| by countries, incl.   |                       | provider of          | imports, exports    |  |  |
| Herfindahl-           |                       | information on       |                     |  |  |
| Hirschman Index       |                       | global               |                     |  |  |
| (HHI)                 |                       | resources/reserves)  |                     |  |  |

|                     |              |               |                                         | _    |      |
|---------------------|--------------|---------------|-----------------------------------------|------|------|
| Table 1: Comparison | advantages & | disadvantages | of WMD.                                 | BGS. | USGS |
|                     |              |               | ••••••••••••••••••••••••••••••••••••••• | ,    |      |

| World Mining Data   | World Mineral        | Minerals Yearbook    | MFA                   |  |
|---------------------|----------------------|----------------------|-----------------------|--|
| (Austrian Ministry) | Production           | (USGS)               | (Eurostat)            |  |
|                     | (BGS)                |                      |                       |  |
| Advantages          | Advantages           | Advantages           | Advantages            |  |
| Graphs providing    |                      |                      | Easy to use           |  |
| an overview on      |                      |                      | database with a lot   |  |
| distribution of RM  |                      |                      | of different settings |  |
| production, key     |                      |                      |                       |  |
| commodities (e.g.   |                      |                      |                       |  |
| battery RM)         |                      |                      |                       |  |
| Pdf and Excel-files | Pdf and Excel-files  | Pdf and Excel-files  | Data publicly         |  |
| publicly available  | publicly available   | publicly available   | available, can be     |  |
|                     |                      |                      | downloaded as         |  |
|                     |                      |                      | Excel-files           |  |
|                     | Provide information  | Provide information  | Very current data     |  |
|                     | on form of raw       | on form of raw       | (one-year delay,      |  |
|                     | material production  | material production  | newest data from      |  |
|                     | (e.g. sulphur from   | (e.g. sulphur from   | 2018)                 |  |
|                     | pyrites, by-product, | pyrites, by-product, |                       |  |
|                     | etc.)                | etc.)                |                       |  |
| Supported by World  |                      | Most manpower        |                       |  |
| Mining Congress     |                      | employed             |                       |  |
| Clear indication of | Clear indication of  | Clear indication of  | Clear indication of   |  |
| estimated figures   | estimated figures    | estimated figures    | estimated figures     |  |
| Sources of data are |                      |                      |                       |  |
| clearly stated      |                      |                      |                       |  |

| World Mining Data   | World Mineral        | Minerals Yearbook   | MFA                |  |
|---------------------|----------------------|---------------------|--------------------|--|
| (Austrian Ministry) | Production           | (USGS)              | (Eurostat)         |  |
|                     | (BGS)                |                     |                    |  |
| Disadvantages       | Disadvantages        | Disadvantages       | Disadvantages      |  |
| Shortest period of  | No additional        | Separate Pdf/Excel- | Very aggregated    |  |
| available data      | information on       | file for every      |                    |  |
| (compared to BGS    | global level         | commodity           |                    |  |
| and USGS)           |                      |                     |                    |  |
| No additional       | Pdf-files are highly | Published with a    | Only for Europe    |  |
| information on raw  | protected (e.g.      | long delay          |                    |  |
| materials           | copying not          |                     |                    |  |
|                     | possible), makes it  |                     |                    |  |
|                     | hard to work with    |                     |                    |  |
|                     |                      | Additional          | No additional      |  |
|                     |                      | information focused | information on raw |  |
|                     |                      | on USA              | materials          |  |
|                     |                      |                     | Metal production   |  |
|                     |                      |                     | data not           |  |
|                     |                      |                     | comparable to      |  |
|                     |                      |                     | international data |  |
|                     |                      |                     | (ores)             |  |
|                     |                      |                     | Many figures are   |  |
|                     |                      |                     | not reported       |  |
|                     |                      |                     | because they are   |  |
|                     |                      |                     | marked as          |  |
|                     |                      |                     | confidential       |  |
|                     | I                    | I                   | I                  |  |

The global data providers, World Mining Data (Federal Ministry Republic of Austria Sustainability and Tourism), World Mineral Production (British Geological Survey), and Minerals Yearbook (United States Geological Survey) are very similar considering the actual figures they report. For many metals they have established an annual meeting to discuss sources and numbers together with different study groups. Usually, all three report metal content and only in some cases ores. For instance, WMD, BGS, and USGS report both Aluminium and Bauxite. BGS and USGS additionally provide information on alumina (Al<sub>2</sub>O<sub>3</sub>).

In the following two tables the commodities reported are compared in more detail. Table 2 lists all commodities reported by the four data providers (WMD, BGS, USGS, and Eurostat) allowing a comparison of commodities reported and the unit (metal content, ore) this is done in. Table 3 shows a detailed comparison of actual production figures reported by all four data providers for the European Union (EU-28) only, in order to allow a comparison with Eurostat data. However, it must not be forgotten that Eurostat reports ores rather than metal content.

| WMD        |                   |        | BGS            |                                                                                                                                                                    |        | USGS                   |                                                                                                                                                                                                                               |        |   |
|------------|-------------------|--------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|
| Commodity  |                   | Unit   | Commodity      |                                                                                                                                                                    | Unit   | Commodity              |                                                                                                                                                                                                                               | Unit   | C |
|            |                   |        | Iron ore       |                                                                                                                                                                    | metr.t | Iron ore               | gross and iron ore content                                                                                                                                                                                                    | metr.t | I |
|            |                   |        | Iron and steel | pig iron                                                                                                                                                           | metr.t | Iron and Steel         | pig iron                                                                                                                                                                                                                      | metr.t |   |
|            |                   |        |                | crude steel                                                                                                                                                        | metr.t |                        | direct-reduced iron                                                                                                                                                                                                           | metr.t |   |
|            |                   |        |                |                                                                                                                                                                    |        |                        | raw steel                                                                                                                                                                                                                     | metr.t |   |
| Iron       | Fe                | metr.t | Ferro allovs   | ferro-chrome, -molybdenum, -<br>nickel, -vanadium, -manganese,<br>-silico-manganese, -silicon,<br>Silicon metal, -silico-chrome, -<br>titanium, other ferro-allovs | metr.t | Ferroallovs            | ferro-chromium, -molybdenum,<br>-nickel, -vanadium, -<br>manganese, -silicomanganese,<br>-silicon, -niobium,<br>Silicomanganese, -chromium<br>silicon, -titanium, Spiegeleisen,<br>other (Blast furnace, electric<br>furnace) | metr.t |   |
|            |                   |        | Silicon        |                                                                                                                                                                    |        | Silicon metal          |                                                                                                                                                                                                                               | metr.t |   |
|            |                   |        |                |                                                                                                                                                                    |        | Iron oxide pigments    | w/o USA                                                                                                                                                                                                                       | metr t | - |
|            |                   |        |                |                                                                                                                                                                    |        | Chromite               |                                                                                                                                                                                                                               | metr t | - |
| Chromium   | Cr2O3             | metr.t | Chromium       | ores and concentrates                                                                                                                                              | metr.t | Ferrochromium          |                                                                                                                                                                                                                               | metr.t |   |
| Cobalt     | Co                | motr t | Cobalt         | metal content                                                                                                                                                      | metr.t | Cobalt                 | cobalt content, mine                                                                                                                                                                                                          | metr.t |   |
| Cobait     | 0                 | meu.u  | Cobait         | refined                                                                                                                                                            | metr.t | Cobait                 | cobalt content, refined                                                                                                                                                                                                       | metr.t |   |
| Manganese  | Mn                | metr.t | Mangan         | ore                                                                                                                                                                | metr.t | Manganese              | ore and Mn content                                                                                                                                                                                                            | metr.t |   |
| Molybdenum | Мо                | metr.t | Molybdenum     | metal content                                                                                                                                                      | metr.t | Molybdenum             | mine, Molybdenum content                                                                                                                                                                                                      | metr.t |   |
| Nickel     | Ni                | metr.t | Nickel         | metal content                                                                                                                                                      | metr.t | Nickel                 | mine, Ni content                                                                                                                                                                                                              |        | Ν |
|            |                   |        |                | smelter/refinery                                                                                                                                                   | metr.t |                        |                                                                                                                                                                                                                               |        |   |
| Niobium    | Nb2O5             | metr.t | Niobium        | Tantalum and Niobium minerals                                                                                                                                      | metr.t | Niobium                | concentrate, Nb content                                                                                                                                                                                                       | kg     |   |
|            |                   |        |                |                                                                                                                                                                    |        | Ferroniobium           | Nb content                                                                                                                                                                                                                    | metr.t |   |
| Tantalum   | Ta2O5             | metr.t | Tantalum       |                                                                                                                                                                    |        | Tantalum               | concentrate, Ta content                                                                                                                                                                                                       | metr.t |   |
| Titesiuse  | Tion              |        | Titonium       | Titonium minonala                                                                                                                                                  |        | Ilmenite and leucoxene |                                                                                                                                                                                                                               | metr.t |   |
| Titanium   | 1102              | metr.t | Titanium       |                                                                                                                                                                    | metr.t | Rutile                 |                                                                                                                                                                                                                               | metr.t |   |
|            |                   |        |                |                                                                                                                                                                    |        | Titaniferous slag      |                                                                                                                                                                                                                               | metr.t |   |
| Tungsten   | W                 | metr.t | Tungsten       | metal content                                                                                                                                                      | metr.t | Tungsten               | concentrate, tungsten content                                                                                                                                                                                                 | metr.t |   |
| Vanadium   | V2O5              | metr.t | Vanadium       | metal content                                                                                                                                                      | metr.t | Vanadium               | ore, concentrate, slag;<br>Vanadium content                                                                                                                                                                                   | metr.t |   |
|            |                   |        |                |                                                                                                                                                                    |        |                        |                                                                                                                                                                                                                               |        | E |
| Aluminium  | Al, smelter prod. | metr.t | Aluminium      | primary                                                                                                                                                            | metr.t | Aluminum               |                                                                                                                                                                                                                               | metr.t | а |
|            |                   |        | Alumina        | AI2O3                                                                                                                                                              | metr.t | Alumina                |                                                                                                                                                                                                                               | metr.t |   |
| Antimony   | Sb                | metr.t | Antimony       | metal content                                                                                                                                                      | metr.t | Antimony               | metal content                                                                                                                                                                                                                 | metr.t |   |
| Arsenic    | As2O3             | metr.t | Arsenic        | white arsenic                                                                                                                                                      | metr.t | Arsenic                | Arsenic Trioxide                                                                                                                                                                                                              | metr.t |   |
| Bauxite    | crude ore         | metr.t | Bauxite        |                                                                                                                                                                    | metr.t | Bauxite                |                                                                                                                                                                                                                               | metr.t |   |
| Bismuth    | Bi                | metr.t | Bismuth        | metal content                                                                                                                                                      | metr.t | Bismuth                | refined                                                                                                                                                                                                                       | metr.t |   |
| Cadmium    | Cd, smelter       | metr t | Cadmium        | primary (and secondary for some countries)                                                                                                                         | metr.t | Cadmium                | refined                                                                                                                                                                                                                       | metrit |   |

#### Table 2: Comparison of reported commodities for WMD, BGS, USGS, Eurostat

| Eurostat          | t   |        |
|-------------------|-----|--------|
| Commodity         |     | Unit   |
| ron               | ore | metr.t |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
| Nickel            |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
| - · · · · ·       |     |        |
| Bauxite and other |     |        |
|                   |     | L      |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |
|                   |     |        |

| WMD         |      | BGS    |                |                                            | USGS   |                                 |                                                                                |        |   |
|-------------|------|--------|----------------|--------------------------------------------|--------|---------------------------------|--------------------------------------------------------------------------------|--------|---|
| Commodity   |      | Unit   | Commodity      |                                            | Unit   | Commodity                       |                                                                                | Unit   | С |
| Copper      | Cu   | metr.t | Copper         | metal content                              | metr.t | Copper                          | mine production, copper content                                                | metr.t | С |
|             |      |        |                | smelter                                    | metr.t |                                 | smelter, primary and secondary                                                 | metr.t |   |
|             |      |        |                | refined                                    | metr.t |                                 | refined, primary and secondary                                                 | metr.t |   |
| Gallium     | Ga   | metr.t | Gallium        | primary                                    | metr.t | Gallium                         | low-grade primary world production                                             | kg     |   |
| Germanium   | Ge   | metr.t | Germanium      | primary (and secondary for some countries) | metr.t | Germanium                       |                                                                                | kg     | ] |
| Lead        | Pb   | metr.t | Lead           | metal content                              | metr.t | Lead                            | mine, lead content                                                             | metr.t | T |
|             |      |        |                | refined                                    | metr.t |                                 | refinery, primary and secondary, lead content                                  | metr.t | _ |
| Lithium     | Li2O | metr.t | Lithium        | Li content                                 | metr.t | Lithium                         | Li content; mineral concentrate,<br>li carbonate, li chloride, li<br>hydroxide | metr.t |   |
| Mercury     | Hq   | metr.t | Mercury        |                                            | kg     | Mercury                         | mine                                                                           | metr.t | 1 |
| Rare Earths | REO  | metr.t | Rare Earths    | REO                                        | metr.t | Rare Earths                     | rare-earth osice equivalent                                                    | metr.t | 1 |
| Rhenium     | Re   | ka     | Rhenium        |                                            | metr.t | Rhenium                         | •                                                                              | ka     | 1 |
| Selenium    | Se   | metr.t | Selenium       | refined                                    | metr.t | Selenium                        | refined, Se content, w/o USA                                                   | kg     | 1 |
| Tellurium   | Те   | metr.t | Tellurium      | refined                                    | metr.t | Tellurium                       | refined, Te content, w/o USA                                                   | kg     | 1 |
| Tin         | Sn   | metr.t | Tin            | metal content                              | metr.t | Tin                             | mine, tin content                                                              | metr.t | Т |
|             |      |        |                | smelter                                    | metr.t |                                 | smelter, primary and secondary, tin content                                    | metr.t |   |
| Zinc        | Zn   | metr.t | Zinc           | metal content                              | metr.t | Zinc                            | mine, Zn content                                                               | metr.t | Z |
|             |      |        |                | slab zinc                                  | metr.t |                                 | smelter, primary and secondary, Zn content                                     | metr.t |   |
|             |      |        |                |                                            |        |                                 |                                                                                |        | G |
| Gold        | Au   | kg     | Gold           |                                            | kg     | Gold                            | metal content                                                                  | kg     | n |
| Palladium   | Pd   | kg     |                |                                            |        | Platinum                        | metal content                                                                  | kg     |   |
| Platinum    | Pt   | kg     | Platinum       | Platinum group metals, metal content       | kg     | Palladium                       | metal content                                                                  | kg     |   |
| Rhodium     | Rh   | kg     |                |                                            |        | Other Platinum-<br>Group Metals | metal content                                                                  | kg     |   |
| Silver      | Ag   | kg     | Silver         | metal content                              | kg     | Silver                          | mine                                                                           | metr.t |   |
| Asbestos    |      | metr.t | Asbestos       |                                            | metr.t | Asbestos                        |                                                                                | metr.t |   |
| Baryte      |      | metr.t | Barytes        |                                            | metr.t | Barite                          |                                                                                | metr.t |   |
| Bentonite   |      | metr.t | Bentonite      | Bentonite and Fuller's earth               | metr.t | Bentonite                       |                                                                                | metr.t |   |
|             |      |        | Fuller's earth |                                            |        | Fuller's earth                  |                                                                                | metr.t |   |
| Boron       |      | metr.t | Borates        |                                            | metr.t | Boron minerals                  |                                                                                | metr.t |   |

| Unit   |
|--------|
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
| metr.t |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |

| WMD         |       |        | BGS         | USGS                                                          |        |                |                           |        |     |
|-------------|-------|--------|-------------|---------------------------------------------------------------|--------|----------------|---------------------------|--------|-----|
| Commodity   |       | Unit   | Commodity   |                                                               | Unit   | Commodity      |                           | Unit   | С   |
| Diam. (Gem) |       | carats |             |                                                               |        |                | gemstone                  | carats |     |
|             |       |        | Diamond     |                                                               | carats | Diamond        | industrial (synthetic and |        |     |
| Diam. (Ind) |       | carats |             |                                                               |        |                | natural)                  | carats | 4   |
| Diatomite   |       | metr.t | Diatomite   |                                                               | metr.t | Diatomite      |                           | metr.t | _   |
| Feldspar    |       | metr.t | Feldspar    |                                                               | metr.t | Feldspar       |                           | metr.t |     |
| Fluorspar   |       | metr.t | Fluorspar   |                                                               | metr.t | Fluorspar      |                           | metr.t |     |
| Graphite    |       | metr.t | Graphite    |                                                               | metr.t | Graphite       | natural                   | metr.t |     |
|             |       |        |             |                                                               |        |                |                           |        | Li  |
| Gypsum      |       | metr.t | Gypsum      |                                                               | metr.t | Gypsum         |                           | metr.t | gy  |
| Kaolin      |       | metr.t | Kaolin      |                                                               | metr.t | Kaolin         |                           | metr.t | C   |
| Magnesite   |       | metr.t | Magnesite   |                                                               | metr.t | Magnesite      |                           | metr.t |     |
|             |       |        | Magnesium   | primary magnesium metal                                       | metr.t |                |                           |        |     |
| Perlite     |       | metr.t | Perlite     |                                                               | metr.t | Perlite        |                           | metr.t |     |
| Phosphates  | P2O5  | metr.t | Phosphates  | Phosphate rock                                                | metr.t | Phosphate rock |                           | metr.t |     |
| Potash      | K2O   | metr.t | Potash      | K2O                                                           | metr.t | Potash         | K2O equivalent            | metr.t |     |
| Salt        |       | metr.t | Salt        |                                                               | metr.t | Salt           |                           | metr.t | Sa  |
| Sulfur      |       | metr.t | Sulphur     | Sulphur and Pyrites, Sulphur content                          | metr.t | Sulfur         | all forms, incl. Pyrite   | metr.t |     |
|             |       |        | Pyrites     |                                                               | metr.t |                |                           |        |     |
| Talc        |       | metr.t | Talc        |                                                               | metr.t | Talc           | Talc and Pyrophyllite     | metr.t |     |
| Vermiculite |       | metr.t | Vermiculite |                                                               | metr.t | Vermiculite    |                           | metr.t |     |
| Zircon      | conc. | metr.t | Zirconium   | Zirconium minerals                                            | metr.t | Zirconium      | concentrates              | metr.t | ]   |
| Steam Coal  |       | metr.t | Coal        | Bituminous, Subbitminous,<br>Lignite, Brown coal, Anthracite) |        |                |                           |        | Н   |
| Coking Coal |       | metr.t |             |                                                               |        |                |                           | I      |     |
| Lianite     |       | metr.t | -           |                                                               |        |                |                           |        | Li  |
|             |       |        |             |                                                               | Mio    |                |                           |        |     |
| Nat. Gas    |       | Mio m3 | Natural Gas |                                                               | m3     |                |                           |        | N   |
|             |       |        |             |                                                               |        |                |                           |        | 0   |
| Oilsands    | crude | metr.t | _           |                                                               |        |                |                           |        | sa  |
| Oil shales  |       | metr.t |             |                                                               |        | -              |                           |        |     |
|             |       |        |             |                                                               |        |                |                           |        | C   |
|             |       |        |             |                                                               |        |                |                           |        | ar  |
| Petroleum   | crude | metr.t | Petrolium   | crude                                                         | metr.t | 4              |                           |        | lic |
| Uranium     | U3O8  | metr.t | Uranium     | metal content                                                 | metr.t |                |                           |        | U   |

| Eurostat                 |   |        |
|--------------------------|---|--------|
| ommodity                 |   | Unit   |
|                          |   |        |
|                          |   |        |
|                          |   |        |
|                          |   |        |
|                          |   |        |
| meetene end              |   |        |
| ypsum                    |   |        |
| lays and kaolin          |   |        |
|                          |   |        |
|                          |   |        |
|                          |   |        |
|                          |   |        |
| alt                      |   | metr.t |
|                          |   |        |
|                          |   |        |
|                          |   |        |
|                          |   |        |
|                          |   |        |
|                          |   |        |
| ard coal                 |   |        |
| anite                    |   |        |
| ginto                    |   |        |
| atural gas               |   |        |
| il shale and tar<br>ands |   |        |
|                          | L | L      |
| rude oil condensate      |   |        |
| nd natural gas           |   |        |
| uids (NGL)               |   |        |
| ranium and Thorium       |   |        |

| WMD       |      |                             | BGS                                     |        |                              | USGS                             |        |           |
|-----------|------|-----------------------------|-----------------------------------------|--------|------------------------------|----------------------------------|--------|-----------|
| Commodity | Unit | Commodity                   |                                         | Unit   | Commodity                    |                                  | Unit   | Co        |
|           |      |                             |                                         |        |                              | Beryllium content (estimated     |        |           |
|           |      | Beryl                       |                                         | metr.t | Beryllium                    | based on 4% Be content)          | metr.t |           |
|           |      | Bromine                     |                                         | kg     | Bromine                      |                                  | metr.t |           |
|           |      | Indium                      | refinery                                | metr.t | Indium                       | primary                          | kg     |           |
|           |      | lodine                      |                                         | kg     | lodine                       | w/o USA                          | metr.t |           |
|           |      | Mica                        |                                         | metr.t | Mica                         | estimated                        | metr.t |           |
|           |      | Natural sodium<br>carbonate |                                         | metr.t | Soda ash                     |                                  | metr.t |           |
|           |      | Nepheline Syenite           |                                         | metr.t |                              |                                  |        |           |
|           |      |                             |                                         |        | Kyanite and related          |                                  |        |           |
|           |      | Sillimanite                 | Sillimanite minerals                    | metr.t | minerals                     | Kyanite, Sillimanite, Andalusite | metr.t |           |
|           |      | Strontium                   |                                         | metr.t | Strontium                    | Celestite                        | metr.t |           |
|           |      | Wollastonite                |                                         | metr.t | 4                            |                                  |        |           |
|           |      | Cement clinker              | Europe only                             | metr.t |                              |                                  | 1      |           |
|           |      | Finished cement             | Europe only                             | metr.t | Hydraulic Cement             | estimated                        | metr.t |           |
|           |      |                             |                                         |        | Garnet                       | crude                            | metr.t |           |
|           |      |                             |                                         |        | Lime                         |                                  | metr.t |           |
|           |      |                             |                                         |        | Ammonia                      | N content                        | metr.t |           |
|           |      |                             |                                         |        | Peat                         |                                  | metr.t | Pea       |
|           |      |                             |                                         |        | Pumice and related materials |                                  | metr.t |           |
|           |      |                             |                                         |        | Silica                       |                                  | metr.t |           |
|           |      |                             |                                         |        | Thorium                      | Monazite                         | metr.t | <u>.</u>  |
|           |      |                             |                                         |        | Zeolites                     | estimated                        | metr.t |           |
|           |      |                             |                                         |        |                              |                                  |        | Otł<br>me |
|           |      |                             |                                         |        |                              |                                  |        | Ma        |
|           |      |                             |                                         |        |                              |                                  |        | sar       |
|           |      |                             |                                         |        |                              |                                  |        | orn       |
|           |      |                             |                                         |        |                              |                                  |        | sto       |
|           |      |                             |                                         |        |                              |                                  |        | Ch        |
|           |      |                             |                                         |        |                              |                                  |        | sla       |
|           |      |                             |                                         |        |                              |                                  |        | che       |
|           |      |                             | 1                                       |        | -                            |                                  |        | mir       |
|           |      | Primary Aggregates          | Europe only, sand, gravel, crushed rock | metr.t |                              |                                  |        | Sa        |
|           |      |                             |                                         |        |                              |                                  |        | oth       |
|           |      |                             |                                         |        |                              |                                  |        | mir       |

| Eurostat                         |      |
|----------------------------------|------|
| mmodity                          | Unit |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
| at                               |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
|                                  |      |
| ner non-ferrous                  |      |
| เสเร                             |      |
|                                  |      |
| rble, granite,                   |      |
| astone, porpnyry,<br>salt. other |      |
| amental or building              |      |
| ne (excluding slate)             |      |
| alk and dolomite                 |      |
| ie                               |      |
| emical and fertiliser            |      |
| 101010                           |      |
| nd and gravel                    |      |
| er non-metallic                  |      |
| nerals                           |      |

### Comparison of Production Data for the European Union

#### Table 3: Comparison of production figures for EU-28 between WMD, BGS, USGS, Eurostat

| Iron              | 1990        | 1991        | 1992        | 1993        | 1994        | 1995        | 1996        | 1997        | 1998        | 1999        | 2000        | 2001        | 2002        | 2003        |
|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| WMD               | 18,558,536  | 14,594,291  | 16,592,307  | 15,053,288  | 15,479,383  | 13,400,338  | 11,740,005  | 11,231,784  | 14,714,412  | 13,501,798  | 14,507,494  | 13,697,919  | 14,180,977  | 15,031,087  |
| BGS pig iron      | 128,742,660 | 116,995,582 | 111,229,249 | 112,009,931 | 119,389,558 | 120,267,978 | 112,828,028 | 120,005,410 | 117,076,782 | 110,037,566 | 115,266,150 | 108,957,489 | 110,000,099 | 113,479,582 |
| BGS iron ore      | 38,349,087  | 35,783,242  | 34,846,994  | 30,667,817  | 30,903,437  | 31,492,104  | 30,769,608  | 28,680,614  | 28,377,463  | 25,334,074  | 27,716,035  | 25,490,724  | 26,411,750  | 28,398,128  |
| USGS iron content | 19,811,000  | 17,387,000  | 14,799,000  | 15,771,000  | 16,359,000  | 15,861,000  | 17,088,000  | 15,277,000  | 14,136,700  | 13,123,000  | 15,666,000  | 14,399,000  | 14,940,443  | 15,982,423  |
| USGS iron ore     | 41,089,000  | 38,713,000  | 33,253,414  | 29,998,000  | 30,251,000  | 26,468,000  | 29,296,000  | 26,123,000  | 25,026,000  | 23,585,000  | 25,486,000  | 24,398,502  | 25,080,371  | 27,262,170  |
| Eurostat          | :           | -           | :           | :           | :           | :           | :           | :           | :           | :           | •           | :           | :           | :           |

|                   | 2004        | 2005        | 2006        | 2007        | 2008        | 2009       | 2010       | 2011       | 2012       | 2013       | 2014       | 2015       | 2016       | ]         |
|-------------------|-------------|-------------|-------------|-------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|
| WMD               | 15,284,267  | 15,838,075  | 15,871,506  | 16,755,051  | 16,119,985  | 11,992,162 | 16,889,900 | 17,469,881 | 17,718,112 | 18,265,763 | 18,882,476 | 16,849,285 | 18,179,223 | -         |
| BGS pig iron      | 116,801,908 | 112,586,378 | 115,883,101 | 117,409,950 | 108,237,879 | 72,684,597 | 94,498,239 | 94,293,465 | 91,359,874 | 92,418,115 | 95,762,459 | 93,565,286 | 91,320,079 | -         |
| BGS iron ore      | 29,055,225  | 30,243,198  | 29,744,021  | 31,004,993  | 31,826,916  | 23,011,830 | 31,256,206 | 33,536,001 | 34,787,770 | 40,147,727 | 38,656,757 | 33,112,017 | 35,134,264 | -         |
| USGS iron content | 16,278,631  | 16,539,229  | 16,536,138  | 17,523,200  | 18,044,245  | 13,481,870 | 19,773,987 | 18,800,355 | 17,034,200 | 16,530,200 | 16,774,000 | 16,152,000 | 17,537,000 | -         |
| USGS iron ore     | 27,126,657  | 28,023,056  | 28,028,996  | 48,779,010  | 32,106,671  | 24,268,830 | 33,471,353 | 31,063,091 | 31,112,000 | 30,308,000 | 30,454,000 | 29,547,000 | 31,889,000 | -         |
| Eurostat          | :           | :           | :           | :           | :           | 23,015,856 | 31,259,555 | 33,536,018 | 34,791,387 | :          | :          | :          | :          | -         |
|                   |             |             | -           |             |             |            |            | -1         |            |            |            |            |            | _         |
| Nickel            | 1990        | 1991        | 1992        | 1993        | 1994        | 1995       | 1996       | 1997       | 1998       | 1999       | 2000       | 2001       | 2002       | 2003      |
| WMD               | 34,128      | 29,930      | 26,520      | 20,575      | 23,382      | 21,555     | 21,701     | 20,909     | 17,000     | 14,762     | 21,126     | 21,875     | 24,029     | 21,529    |
| BGS               | 27,412      | 29,632      | 27,311      | 21,802      | 26,473      | 24,329     | 24,430     | 24,248     | 20,511     | 17,286     | 27,665     | 24,442     | 26,200     | 22,500    |
| USGS              | 30,872      | 29,200      | 27,311      | 21,802      | 26,473      | 23,386     | 23,736     | 21,671     | 18,952     | 16,120     | 22,882     | 23,430     | 25,790     | 25,050    |
| Eurostat          | :           | :           | :           | :           | :           | :          | :          | :          | :          | :          | 3,010,440  | 2,739,124  | 2,962,533  | 3,385,480 |
|                   | 1           |             |             | I           |             |            |            |            |            | ·          |            | ·          | ·          | _         |
|                   | 2004        | 2005        | 2006        | 2007        | 2008        | 2009       | 2010       | 2011       | 2012       | 2013       | 2014       | 2015       | 2016       |           |
| WMD               | 23,416      | 32,406      | 28,245      | 29,505      | 31,506      | 19,751     | 36,242     | 41,454     | 42,620     | 46,684     | 50,153     | 38,491     | 43,454     |           |
| BGS               | 22,951      | 29,586      | 31,501      | 29,256      | 29,136      | 18,964     | 35,066     | 40,794     | 42,911     | 46,504     | 49,292     | 38,236     | 43,224     | 1         |
| USGS              | 25,400      | 31,982      | 31,053      | 31,427      | 70,125      | 22,638     | 34,741     | 40,510     | 43,968     | 46,114     | 48,766     | 36,206     | 40,085     | 1         |
| Eurostat          | 3,352,031   | 4,079,423   | 3,743,632   | 3,953,674   | 5,391,457   | 9,285,647  | 13,594,014 | 11,691,225 | 1,243,683  | 23,682,244 | 8,011,396  | 9,651,277  | 19,123,959 | -         |

| Copper   | 1990      | 1991      | 1992      | 1993       | 1994       | 1995       | 1996       | 1997    | 1998    | 1999    | 2000      | 2001      | 2002      | 2003      |
|----------|-----------|-----------|-----------|------------|------------|------------|------------|---------|---------|---------|-----------|-----------|-----------|-----------|
| WMD      | 664,501   | 675,606   | 666,702   | 728,496    | 705,497    | 732,739    | 763,990    | 758,069 | 777,704 | 769,006 | 757,945   | 776,893   | 775,161   | 797,063   |
| BGS      | 708,164   | 723,317   | 672,759   | 727,937    | 708,360    | 733,017    | 759,926    | 757,352 | 779,411 | 761,155 | 758,968   | 773,519   | 775,089   | 797,292   |
| USGS     | 660,300   | 657,270   | 667,783   | 729,400    | 709,304    | 735,088    | 765,774    | 774,706 | 782,278 | 764,073 | 759,007   | 766,945   | 786,084   | 811,765   |
| Eurostat | :         | :         | :         | :          | :          | :          | :          | :       | :       | :       | :         | :         | :         | :         |
|          | 2004      | 2005      | 2006      | 2007       | 2008       | 2009       | 2010       | 2011    | 2012    | 2013    | 2014      | 2015      | 2016      |           |
| WMD      | 826,476   | 838,149   | 820,940   | 709,879    | 754,690    | 734,913    | 762,487    | 803,023 | 830,925 | 856,310 | 850,039   | 878,146   | 931,386   | _         |
| BGS      | 825,671   | 839,588   | 820,741   | 746,315    | 714,328    | 729,679    | 766,348    | 796,475 | 837,385 | 858,002 | 841,410   | 855,702   | 911,471   |           |
| USGS     | 848,298   | 829,326   | 804,524   | 737,714    | 706,617    | 725,880    | 753,921    | 772,746 | 798,271 | 809,067 | 807,990   | 818,620   |           | -         |
| Eurostat | :         | :         | :         | 70,250,345 | 69,032,113 | 72,143,502 | 79,906,866 | :       | •       | :       | :         | :         | :         |           |
| Lood     | 1000      | 1001      | 1002      | 1002       | 1004       | 1005       | 1006       | 1007    | 1009    | 1000    | 2000      | 2004      | 2002      | 2002      |
| Lead     | 1990      | 1991      | 1992      | 1993       | 1994       | 1995       | 1996       | 1997    | 1990    | 1999    | 2000      | 2001      | 2002      | 2003      |
| WMD      | 367,163   | 351,130   | 336,794   | 320,496    | 337,178    | 327,447    | 298,496    | 314,735 | 300,452 | 305,508 | 319,730   | 286,363   | 204,433   | 198,748   |
| BGS      | 387,157   | 365,893   | 340,980   | 325,592    | 333,545    | 321,324    | 301,683    | 310,660 | 303,445 | 305,826 | 319,761   | 286,912   | 217,925   | 231,224   |
| USGS     | 378,850   | 364,164   | 344,316   | 326,885    | 347,384    | 350,908    | 294,682    | 311,788 | 298,202 | 325,315 | 306,394   | 286,951   | 207,707   | 250,212   |
| Eurostat | :         | :         | :         | :          | :          | :          | :          | :       | :       | :       | 4,744,436 | 3,886,220 | 2,957,347 | 2,954,666 |
|          | 2004      | 2005      | 2006      | 2007       | 2008       | 2009       | 2010       | 2011    | 2012    | 2013    | 2014      | 2015      | 2016      |           |
|          | 200.447   | 217 555   | 204 550   | 201 710    | 216 407    | 200 521    | 194.069    | 101.045 | 202.026 | 217.264 | 220.690   | 102 122   | 191.070   |           |
|          | 209,447   | 217,555   | 204,559   | 201,719    | 210,407    | 209,521    | 104,200    | 191,045 | 223,030 | 217,304 | 229,000   | 195,155   | 101,279   |           |
| BGS      | 243,144   | 256,889   | 238,534   | 216,606    | 209,636    | 226,097    | 180,755    | 199,696 | 243,374 | 220,861 | 231,749   | 215,874   | 203,696   |           |
| USGS     | 219,512   | 227,310   | 264,469   | 227,900    | 230,200    | 223,730    | 192,636    | 201,125 | 207,342 | 202,252 | 192,000   | 183,000   |           |           |
| Furostat | 2 919 054 | 2 714 605 | 2 760 09/ |            | 2 645 220  | 0 440 057  | -          |         |         | 1       | 1         |           |           | _         |

| Tin      | 1990      | 1991      | 1992    | 1993    | 1994    | 1995      | 1996       | 1997       | 1998       | 1999       | 2000      | 2001       | 2002       | 2003    |
|----------|-----------|-----------|---------|---------|---------|-----------|------------|------------|------------|------------|-----------|------------|------------|---------|
| WMD      | 7,158     | 5,467     | 5,062   | 7,568   | 6,237   | 6,629     | 6,739      | 5,970      | 3,363      | 2,270      | 1,228     | 2,163      | 361        | 222     |
| BGS      | 6,961     | 5,488     | 5,055   | 7,566   | 6,252   | 6,599     | 6,740      | 5,962      | 3,406      | 2,163      | 1,246     | 1,201      | 345        | 203     |
| USGS     | 10,607    | 10,804    | 8,611   | 7,568   | 6,258   | 6,602     | 6,742      | 5,065      | 3,478      | 2,202      | 1,230     | 1,176      | 574        | 465     |
| Eurostat | :         | :         | :       | :       | :       | :         | :          | :          | :          | :          | 730,245   | 672,529    | 210,059    | 135,005 |
|          | 2004      | 2005      | 2006    | 2007    | 2008    | 2009      | 2010       | 2011       | 2012       | 2013       | 2014      | 2015       | 2016       | 7       |
|          | 2004      | 2003      | 2000    | 2007    | 2000    | 2003      | 2010       | 2011       | 2012       | 2013       | 2014      | 2013       | 2010       | _       |
| WMD      | 225       | 232       | 25      | 41      | 49      | 34        | 22         | 48         | 110        | 84         | 75        | 58         | 206        |         |
| BGS      | 200       | 243       | 25      | 41      | 29      | 34        | 22         | 48         | 111        | 84         | 75        | 42         | 221        |         |
| USGS     | 451       | 243       | 25      | 41      | 29      | 34        | 22         | 39         | 42         | 84         | 75        | 42         | 45         |         |
| Eurostat | 152,004   | 171,045   | 43,141  | 42,142  | 40,299  | 46,241    | 34,479     | 36,981     | 38,355     | 35,152     | 31,515    | 17,576     | 22,727     | -       |
|          |           |           |         |         |         |           |            |            |            |            |           |            |            |         |
| Zinc     | 1990      | 1991      | 1992    | 1993    | 1994    | 1995      | 1996       | 1997       | 1998       | 1999       | 2000      | 2001       | 2002       | 2003    |
| WMD      | 1,050,762 | 1,020,821 | 930,384 | 837,312 | 782,179 | 795,240   | 727,757    | 766,970    | 738,628    | 763,715    | 871,083   | 857,616    | 754,046    | 853,810 |
| BGS      | 1,074,106 | 1,076,734 | 921,630 | 835,369 | 780,096 | 793,248   | 725,107    | 763,618    | 737,200    | 758,189    | 869,534   | 864,925    | 750,858    | 851,182 |
| USGS     | 1,049,370 | 1,042,052 | 927,816 | 834,161 | 772,558 | 787,732   | 729,226    | 789,532    | 745,811    | 741,555    | 881,813   | 808,908    | 727,526    | 856,765 |
| Eurostat | :         | :         | :       | :       | :       | :         | :          | :          | :          | :          | :         | :          | :          | :       |
|          |           |           |         |         |         |           |            |            | 1          |            | -<br>-    |            |            | _       |
|          | 2004      | 2005      | 2006    | 2007    | 2008    | 2009      | 2010       | 2011       | 2012       | 2013       | 2014      | 2015       | 2016       |         |
| WMD      | 847,400   | 867,243   | 845,807 | 844,917 | 821,269 | 760,211   | 748,510    | 764,864    | 758,571    | 743,828    | 753,963   | 722,336    | 698,141    |         |
| BGS      | 849,214   | 875,850   | 845,794 | 844,358 | 821,320 | 760,529   | 764,280    | 767,840    | 754,815    | 741,857    | 739,108   | 704,451    | 687,367    |         |
| USGS     | 851,941   | 808,908   | 843,556 | 841,103 | 818,954 | 751,907   | 721,109    | 733,338    | 726,114    | 720,498    | 745,573   | 702,594    | 675,714    | -       |
| Eurostat | :         | :         | :       | :       | :       | 8,916,807 | 11,683,071 | 10,771,425 | 10,582,934 | 12,123,351 | 9,224,075 | 12,178,355 | 12,838,771 | -       |

| Salt     | 1990       | 1991       | 1992       | 1993       | 1994       | 1995       | 1996       | 1997       | 1998       | 1999       | 2000       | 2001       | 2002       | 2003       |
|----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| WMD      | 52,674,263 | 48,166,690 | 44,130,376 | 44,238,668 | 45,494,922 | 50,367,921 | 50,816,812 | 52,573,788 | 47,486,195 | 49,717,275 | 49,580,879 | 48,738,824 | 48,053,797 | 48,385,378 |
| BGS      | 48,351,092 | 43,557,398 | 41,672,208 | 41,237,675 | 46,010,755 | 49,674,854 | 51,739,105 | 49,336,747 | 48,050,155 | 48,867,016 | 47,560,485 | 49,132,746 | 48,948,685 | 50,453,727 |
| USGS     | 50,835,000 | 50,965,000 | 45,716,000 | 46,152,000 | 50,092,000 | 52,860,000 | 53,756,000 | 51,965,000 | 52,505,000 | 47,294,000 | 34,185,572 | 48,636,585 | 49,847,497 | 52,563,265 |
| Eurostat | :          | :          | :          | :          | :          | :          | :          | :          | :          | :          | :          | :          | :          | :          |

|          | 2004       | 2005       | 2006       | 2007       | 2008       | 2009       | 2010       | 2011       | 2012       | 2013       | 2014       | 2015       | 2016       |
|----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| WMD      | 52,705,920 | 54,380,666 | 54,970,866 | 49,920,723 | 50,536,952 | 53,847,115 | 57,617,135 | 55,164,611 | 51,703,803 | 55,847,279 | 50,507,719 | 50,268,164 | 50,153,118 |
| BGS      | 52,893,344 | 55,161,253 | 57,474,363 | 50,786,214 | 52,581,580 | 53,146,688 | 57,522,208 | 58,066,262 | 56,133,649 | 57,253,637 | 47,246,263 | 50,740,661 | 49,759,232 |
| USGS     | 55,456,903 | 56,553,521 | 58,028,988 | 52,525,582 | 45,047,434 | 48,645,437 | 51,650,855 | 47,979,457 | 44,626,187 | 48,778,000 | 41,121,000 | 41,038,000 | 40,534,000 |
| Eurostat | :          | 61,621,762 | :          | :          | 55,328,553 | 54,070,125 | 54,747,241 | :          | 49,393,445 | 54,842,749 | 47,298,268 | 48,421,447 | 47,237,717 |

| Hydraulic |             |             |             |             |             |             |             |             |             |             |             |             |             |             |
|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Cement    | 1990        | 1991        | 1992        | 1993        | 1994        | 1995        | 1996        | 1997        | 1998        | 1999        | 2000        | 2001        | 2002        | 2003        |
| BGS       | 2,374,200   | 2,393,900   | 13,294,300  | 13,137,900  | 14,470,500  | 14,350,300  | 14,672,000  | 14,910,000  | 201,267,858 | 227,571,887 | 233,222,547 | 228,176,121 | 227,365,606 | 233,830,813 |
| USGS      | 233,356,000 | 215,215,000 | 215,309,000 | 204,284,000 | 211,039,000 | 209,677,000 | 207,319,000 | 218,170,000 | 226,684,000 | 231,202,000 | 235,191,000 | 230,228,000 | 229,573,000 | 236,529,763 |

|      | 2004        | 2005        | 2006        | 2007        | 2008        | 2009        | 2010        | 2011        | 2012        | 2013        | 2014        | 2015        | 2016        |
|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| BGS  | 236,537,563 | 248,517,382 | 264,548,495 | 268,408,120 | 250,753,408 | 199,171,192 | 193,104,287 | 196,439,231 | 176,176,339 | 166,786,192 | 168,650,257 | 165,296,334 | 167,732,834 |
| USGS | 244,968,068 | 246,797,679 | 270,228,659 | 282,810,817 | 256,815,000 | 199,491,000 | 190,646,000 | 192,904,000 | 170,002,000 | 165,119,000 | 166,126,000 | 169,953,000 | 168,403,000 |

| Sand and Gravel | 1990 | 1991 | 1992       | 1993        | 1994        | 1995        | 1996       | 1997       | 1998          | 1999          | 2000          | 2001          |
|-----------------|------|------|------------|-------------|-------------|-------------|------------|------------|---------------|---------------|---------------|---------------|
| BGS             | 0    | 0    | 98,912,000 | 100,017,000 | 109,419,000 | 101,732,000 | 93,947,000 | 98,383,000 | 1,128,257,905 | 1,345,525,918 | 1,283,223,513 | 1,307,543,059 |
| Eurostat        | :    | :    | :          | :           | :           | :           | :          | :          | :             | :             | 2,475,155,646 | 2,486,034,488 |

|          | 2002          | 2003          | 2004          | 2005          | 2006          | 2007          | 2008          | 2009          | 2010          | 2011          | 2012          | 2013          |
|----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| BGS      | 1,273,294,310 | 1,278,857,979 | 1,424,319,638 | 1,456,689,616 | 1,514,818,664 | 1,518,128,347 | 1,482,074,554 | 1,277,865,282 | 1,177,969,757 | 1,210,285,288 | 1,066,611,584 | 1,034,575,262 |
| Eurostat | 2,376,108,177 | 2,352,946,685 | 2,391,109,155 | 2,502,707,725 | 2,626,227,552 | 2,770,542,982 | 2,680,518,968 | 2,320,185,983 | 2,158,056,464 | 2,326,514,105 | 2,078,394,573 | 1,975,698,616 |

|          | 2014          | 2015          | 2016          |
|----------|---------------|---------------|---------------|
| BGS      | 1,024,434,671 | 1,058,641,303 | 1,078,969,912 |
| Eurostat | 1,988,369,022 | 2,068,326,480 | 2,084,080,567 |

As the comparison of the four data providers in Table 2 demonstrates the difference between the three international collections (WMD, BGS, USGS) is minor. BGS and USGS provide additional data in some cases, for example iron, where they also report iron ore, pig iron, steel, etc. However, BGS does not report iron content. WMD focuses on the content or the form traded on the world market (e.g. Arsenic as diarsenic trioxide As<sub>2</sub>O<sub>3</sub>) for maximum comparability. USGS does not provide any data on energy raw materials in the Minerals Yearbook, for that they have a separate collection. Eurostat on the other hand does not report as many commodities, and in some cases, they are very aggregated, for example Gold, silver, platinum and other precious metals.

In terms of reported figures Table 3 shows a comparison of certain commodities. Also, in this case it can be seen that WMD, BGS, and USGS are very similar. Minor differences are probably due to different sources. A comparison with Eurostat data is difficult, as they have major issues with the confidentiality of data. Many companies and countries report data as confidential, but they are already available in other collections. This is an issue Eurostat is working on and tries to resolve. Moreover, Eurostat usually reports ores (run-of-mine) in contrast to the three other collections. However, if a general conversion factor (listed in (Eurostat, 2018) is applied, Eurostat figures can be compared to WMD, BGS, and USGS.

| Copper   | 2010       |         |         |
|----------|------------|---------|---------|
| WMD      | 762,487    |         |         |
| BGS      | 766,348    |         |         |
| USGS     | 753,921    |         |         |
| Eurostat | 79,906,866 | *0.0104 | 831,031 |

The remaining deviation is likely due to the fact that not an exact conversion factor is applied, but only an estimation and generalisation for the copper content in ore.

An objective recommendation on which data source to use cannot be given following this evaluation, it truly depends on the intended purpose.

Considering the three global providers, BGS is preferable if long-term observations are conducted. USGS is very useful if additional information about the raw material is required, i.e. information on uses, deposits, prices, etc. WMD is very easy to use and provides ready-made comparisons of country groups and economic blocks, as well as concentration of production with the Herfindahl-Hirschman Index.

Eurostat MFA data on European level might not be useful for comparisons of metal production data, as it reports ores rather than metal content.

However, it offers an overview of material flows (incl. imports and exports) of European countries and can be a useful tool for sustainability considerations, if the confidentiality issues are resolved.

Moreover, Eurostat gives figures of aggregates, such as sand and gravel.

As a next step the countries covered by the three international data providers are compared. This comparison can be seen in Table 4. As a reference the list of independent states by the Bureau of Intelligence and Research of the U.S. Department of State is used. (Bureau of Intelligence and Research, 2019) Written in red are countries not covered by a data collection, highlighted in yellow

are additional (non-independent) countries separately covered by a collection, and highlighted in green are alternative or former names and country conglomerates.
# Table 4: Comparison of countries covered by WMD, BGS, USGS red...country not covered, yellow...additional (non-independent) country,

#### green...alternative/former name of country

| WMD                       | BGS                       | USGS                      |
|---------------------------|---------------------------|---------------------------|
| 1. Afghanistan            | 1. Afghanistan            | 1. Afghanistan            |
| 2. Albania                | 2. Albania                | 2. Albania                |
| 3. Algeria                | 3. Algeria                | 3. Algeria                |
| 4. Andorra                | 4. Andorra                | 4. Andorra                |
| 5. Angola                 | 5. Angola                 | 5. Angola                 |
| 6. Antigua and Barbuda    | 6. Antigua and Barbuda    | 6. Antigua and Barbuda    |
| 7. Argentina              | 7. Argentina              | 7. Argentina              |
| 8. Armenia                | 8. Armenia                | 8. Armenia                |
| 9. Australia              | 9. Australia              | 9. Australia              |
| <mark>a. Christmas</mark> | <mark>a. Christmas</mark> | <mark>a. Christmas</mark> |
|                           |                           |                           |
| 10. Austria               | 10. Austria               | 10. Austria               |
| 11. Azerbaijan            | 11. Azerbaijan            | 11. Azerbaijan            |
| 12. Bahamas               | 12. Bahamas               | 12. Bahamas               |
| 13. Bahrain               | 13. Bahrain               | 13. Bahrain               |
| 14. Bangladesh            | 14. Bangladesh            | 14. Bangladesh            |
| 15. Barbados              | 15. Barbados              | 15. Barbados              |
| 16. Belarus               | 16. Belarus               | 16. Belarus               |
| 17. Belgium               | 17. Belgium               | 17. Belgium               |
| 18. Belize                | 18. Belize                | 18. Belize                |
| 19. Benin                 | 19. Benin                 | 19. Benin                 |
| 20. Bhutan                | 20. Bhutan                | 20. Bhutan                |
| 21. Bolivia               | 21. Bolivia               | 21. Bolivia               |
| 22. Bosnia-               | 22. Bosnia and            | 22. Bosnia and            |
| Herzegovina               | Herzegovina               | Herzegovina               |
| 23. Botswana              | 23. Botswana              | 23. Botswana              |
| 24. Brazil                | 24. Brazil                | 24. Brazil                |
| 25. Brunei                | 25. Brunei                | 25. Brunei                |
| 26. Bulgaria              | 26. Bulgaria              | 26. Bulgaria              |
|                           | 27. Burkina Faso          | 27. Burkina Faso          |
| 28. Myanmar               | 28. Burma                 | 28. Burma                 |
| 29. Burundi               | 29. Burundi               | 29. Burundi               |
| 30. Cape Verde (Cabo      | 30. Cape Verde (Cabo      | 30. Cabo Verde            |
| Verde)                    | Verde)                    |                           |
| 31. Cambodia              | 31. Cambodia              | 31. Cambodia              |
| 32. Cameroon              | 32. Cameroon              | 32. Cameroon              |
| 33. Canada                | 33. Canada                | 33. Canada                |
| 34. Central African       | 34. Central African       | 34. Central African       |
| Republic                  | Republic                  | Republic                  |
| 35. Chad                  | 35. Chad                  | 35. Chad                  |
| 36. Chile                 | 36. Chile                 | 36. Chile                 |

| WMD                       | BGS                       | USGS                      |
|---------------------------|---------------------------|---------------------------|
| 37. China                 | 37. China                 | 37. China                 |
| <mark>a. Hong Kong</mark> | <mark>a. Taiwan</mark>    | <mark>a. Hong Kong</mark> |
| <mark>b. Taiwan</mark>    |                           | <mark>b. Taiwan</mark>    |
| 38. Colombia              | 38. Colombia              | 38. Colombia              |
| 39. Comoros               | 39. Comoros               | 39. Comoros               |
| 40. Congo, D.R.           | 40. Congo, D.R.           | 40. Congo (Kinshasa)      |
| a. Zaire                  |                           |                           |
| 41. Congo, Rep.           | 41. Congo                 | 41. Congo (Brazzaville)   |
| 42. Costa Rica            | 42. Costa Rica            | 42. Costa Rica            |
| 43. Cote d'Ivoire         | 43. Ivory Coast           | 43. Cote d'Ivoire         |
| 44. Croatia               | 44. Croatia               | 44. Croatia               |
| 45. Cuba                  | 45. Cuba                  | 45. Cuba                  |
| 46. Cyprus                | 46. Cyprus                | 46. Cyprus                |
| 47. Czech Republic        | 47. Czech Republic        | 47. Czechia               |
| <mark>a. Czecho-</mark>   |                           |                           |
| <mark>slovakia</mark>     |                           |                           |
| 48. Denmark               | 48. Denmark               | 48. Denmark               |
| <mark>a. Greenland</mark> | <mark>a. Greenland</mark> | <mark>a. Greenland</mark> |
| 49. Djibouti              | 49. Djibouti              | 49. Djibouti              |
| 50. Dominica              | 50. Dominica              | 50. Dominica              |
| 51. Dominican Republic    | 51. Dominican Republic    | 51. Dominican Republic    |
| 52. Ecuador               | 52. Ecuador               | 52. Ecuador               |
| 53. Egypt                 | 53. Egypt                 | 53. Egypt                 |
| 54. El Salvador           | 54. El Salvador           | 54. El Salvador           |
| 55. Equatorial Guinea     | 55. Equatorial Guinea     | 55. Equatorial Guinea     |
| 56. Eritrea               | 56. Eritrea               | 56. Eritrea               |
| 57. Estonia               | 57. Estonia               | 57. Estonia               |
| 58. Eswatini              | 58. Swaziland             | 58. Swaziland             |
| a. Swaziland              |                           |                           |
| 59. Ethiopia              | 59. Ethiopia              | 59. Ethiopia              |
| 60. Fiji                  | 60. Fiji                  | 60. Fiji                  |
| 61. Finland               | 61. Finland               | 61. Finland               |
| 62. France                | 62. France                | 62. France                |
| a. French                 | a. French                 | a. French                 |
| Guiana                    | Guiana                    | Guiana                    |
| D. New                    | D. New                    | D. New                    |
|                           |                           |                           |
|                           |                           |                           |
|                           |                           |                           |
| 62 Caban                  | 62 Cabon                  | 62 Cabon                  |
| 03. Gabon                 | 03. Gabon                 | 03. Gabon                 |

|                                    | WMD                    |                               | BGS               |                    | USGS          |
|------------------------------------|------------------------|-------------------------------|-------------------|--------------------|---------------|
| 64. Gar                            | nbia, Rep. of The      | 64. Gar                       | nbia, Rep. of The | 64. Gan            | nbia          |
| 65. Geo                            | orgia                  | 65. Georgia                   |                   | 65. Geo            | orgia         |
| 66. Ger                            | many                   | 66. Ger                       | many              | 66. Ger            | many          |
|                                    | a. <mark>German</mark> |                               | ,                 |                    | ,             |
|                                    | Dem. Rep.              |                               |                   |                    |               |
| 67. Gha                            | ana                    | 67. Gha                       | ana               | 67. Gha            | ina           |
| 68. Gre                            | ece                    | 68. Gre                       | ece               | 68. Gre            | ece           |
| 69. Gre                            | nada                   | 69. Gre                       | nada              | 69. Gre            | nada          |
| 70. Gua                            | atemala                | 70. Gua                       | atemala           | 70. Gua            | atemala       |
| 71. Gui                            | nea                    | 71. Gui                       | nea               | 71. Guir           | nea           |
| 72. Gui                            | nea-Bissau             | 72. Gui                       | nea-Bissau        | 72. Guii           | nea-Bissau    |
| 73. Gu                             | /ana                   | 73. Gu                        | vana              | 73. Guy            | rana          |
| 74. Hait                           | ti                     | 74. Hait                      | i                 | 74. Hait           | i             |
| 75. Holy                           | v See                  | 75. Hol                       | / See             | 75. Holy           | / See         |
| 76. Hor                            | nduras                 | 76. Hor                       | duras             | 76. Hon            | duras         |
| 77. Hur                            | ngary                  | 77. Hur                       | igary             | 77. Hun            | gary          |
| 78. Icel                           | and                    | 78. Icel                      | and               | 78. Icela          | and           |
| 79. Indi                           | а                      | 79. Indi                      | а                 | 79. India          | а             |
| 80. Indo                           | onesia                 | 80. Indo                      | onesia            | 80. Indo           | onesia        |
| 81. Iran                           | 1                      | 81. Iran                      |                   | 81. Iran           |               |
| 82. Iraq                           | l                      | 82. Iraq                      |                   | 82. Iraq           |               |
| 83. Irela                          | and                    | 83. Ireland, Rep. 83. Ireland |                   | and                |               |
| 84. Isra                           | el                     | 84. Israel                    |                   | 84. Isra           | el            |
| 85. Italy                          | /                      | 85. Italy                     |                   | 85. Italy          | ,             |
| 86. Jan                            | naica                  | 86. Jamaica                   |                   | 86. Jam            | naica         |
| 87. Jap                            | an                     | 87. Japan 8                   |                   | 87. Japa           | an            |
| 88. Jord                           | dan                    | 88. Joro                      | dan               | 88. Jord           | lan           |
| 89. Kaz                            | akhstan                | khstan 89. Kazakhstan         |                   | 89. Kaz            | akhstan       |
| 90. Ken                            | iya                    | 90. Ker                       | ya                | 90. Ken            | уа            |
| 91. Kiril                          | bati                   | 91. Kiril                     | pati              | 91. Kirik          | pati          |
| 92. Kor                            | ea, North              | 92. Korea, Dem. P.R.          |                   | 92. Korea, North   |               |
| 93. Kor                            | ea, South              | 93. Korea, Rep.               |                   | 93. Korea, Rep. of |               |
| 94. Kos                            | OVO                    | 94. Kosovo                    |                   | 94. Kosovo         |               |
| 95. Kuv                            | 95. Kuwait             |                               | 95. Kuwait        |                    | <i>r</i> ait  |
| 96. Kyrgyzstan 96. Kyrgystan 96. k |                        | 96. Kyrg                      | gyzstan           |                    |               |
| 97. Lao                            | 97. Laos               |                               | 97. Laos          |                    | S             |
| 98. Latv                           | 98. Latvia             |                               | 98. Latvia        |                    | via           |
| 99. Leb                            | 99. Lebanon            |                               | anon              | 99. Leb            | anon          |
| 100.                               | Lesotho                | 100.                          | Lesotho           | 100.               | Lesotho       |
| 101.                               | Liberia                | 101.                          | Liberia           | 101.               | Liberia       |
| 102.                               | Libya                  | 102.                          | Libya             | 102.               | Libya         |
| 103.                               | Liechtenstein          | 103.                          | Liechtenstein     | 103.               | Liechtenstein |
| 104.                               | Lithuania              | 104.                          | Lithuania         | 104.               | Lithuania     |
| 105.                               | Luxembourg             | 105.                          | Luxembourg        | 105.               | Luxembourg    |
| 106.                               | Macedonia              | 106.                          | Macedonia         | 106.               | Macedonia     |

|       | WMD              |      | BGS              | ι        | JSGS                    |
|-------|------------------|------|------------------|----------|-------------------------|
| 107.  | Madagascar       | 107. | Madagaskar       | 107.     | Madagascar              |
| 108.  | Malawi           | 108. | Malawi           | 108.     | Malawi                  |
| 109.  | Malaysia         | 109. | Malaysia         | 109.     | Malaysia                |
| 110.  | Maldives         | 110. | Maldives         | 110.     | Maldives                |
| 111.  | Mali             | 111. | Mali             | 111.     | Mali                    |
| 112.  | Malta            | 112. | Malta            | 112.     | Malta                   |
| 113.  | Marshall         | 113. | Marshall         | 113.     | Marshall                |
| Islar | nds              | Isla | nds              | Islan    | lds                     |
| 114.  | Mauritania       | 114. | Mauritania       | 114.     | Mauritania              |
| 115.  | Mauritius        | 115. | Mauritius        | 115.     | Mauritius               |
| 116.  | Mexico           | 116. | Mexico           | 116.     | Mexico                  |
| 117.  | Micronesia,      | 117. | Micronesia,      | 117.     | Micronesia,             |
| Fed   | erated States of | Fed  | erated States of | Fede     | erated States of        |
| 118.  | Moldova          | 118. | Moldova          | 118.     | Moldova                 |
| 119.  | Monaco           | 119. | Monaco           | 119.     | Monaco                  |
| 120.  | Mongolia         | 120. | Mongolia         | 120.     | Mongolia                |
| 121.  | Montenegro       | 121. | Montenegro       | 121.     | Montenegro              |
| 122.  | Morocco          | 122. | Morocco          | 122.     | Morocco                 |
|       |                  |      |                  | a        | <mark>a. Western</mark> |
|       |                  |      |                  |          | <mark>Sahara</mark>     |
| 123.  | Mozambique       | 123. | Mozambique       | 123.     | Mozambique              |
| 124.  | Namibia          | 124. | Namibia          | 124.     | Namibia                 |
| 125.  | Nauru            | 125. | Nauru            | 125.     | Nauru                   |
| 126.  | Nepal            | 126. | Nepal            | 126.     | Nepal                   |
| 127.  | Netherlands      | 127. | Netherlands      | 127.     | Netherlands             |
|       |                  |      |                  | a        | a. Netherlands          |
|       |                  |      |                  |          | Antilles                |
|       |                  |      |                  | <u>k</u> | <mark>o. Aruba</mark>   |
|       |                  |      |                  | C        | <mark>c. Curaçao</mark> |
| 128.  | New Zealand      | 128. | New Zealand      | 128.     | New Zealand             |
| 129.  | Nicaragua        | 129. | Nicaragua        | 129.     | Nicaragua               |
| 130.  | Niger            | 130. | Niger            | 130.     | Niger                   |
| 131.  | Nigeria          | 131. | Nigeria          | 131.     | Nigeria                 |
| 132.  | Norway           | 132. | Norway           | 132.     | Norway                  |
| 133.  | Oman             | 133. | Oman             | 133.     | Oman                    |
| 134.  | Pakistan         | 134. | Pakistan         | 134.     | Pakistan                |
| 135.  | Palau            | 135. | Palau            | 135.     | Palau                   |
| 136.  | Panama           | 136. | Panama           | 136.     | Panama                  |
| 137.  | Papua New        | 137. | Papua New        | 137.     | Papua New               |
| Guir  | nea              | Gui  | nea              | Guin     | iea                     |
| 138.  | Paraguay         | 138. | Paraguay         | 138.     | Paraguay                |
| 139.  | Peru             | 139. | Peru             | 139.     | Peru                    |
| 140.  | Philippines      | 140. | Philippines      | 140.     | Philippines             |
| 141.  | Poland           | 141. | Poland           | 141.     | Poland                  |

|       | WMD             |      | BGS             |      | USGS            |
|-------|-----------------|------|-----------------|------|-----------------|
| 142.  | Portugal        | 142. | Portugal        | 142. | Portugal        |
| 143.  | Qatar           | 143. | Qatar           | 143. | Qatar           |
| 144.  | Romania         | 144. | Romania         | 144. | Romania         |
| 145.  | Russia          | 145. | Russia          | 145. | Russia          |
|       | a. Russia. Asia |      |                 |      |                 |
|       | b. Russia.      |      |                 |      |                 |
|       | Europe          |      |                 |      |                 |
|       | c. USSR (Asia)  |      |                 |      |                 |
|       | d. USSR         |      |                 |      |                 |
|       | (Europe)        |      |                 |      |                 |
| 146.  | Rwanda          | 146. | Rwanda          | 146. | Rwanda          |
| 147.  | Saint Kitts and | 147. | Saint Kitts and | 147. | Saint Kitts and |
| Nev   | ris             | Nev  | ris             | Nev  | vis             |
| 148.  | Saint Lucia     | 148. | Saint Lucia     | 148. | Saint Lucia     |
| 149.  | Saint Vincent   | 149. | Saint Vincent   | 149. | Saint Vincent   |
| and   | the Grenadines  | and  | the Grenadines  | and  | the Grenadines  |
| 150.  | Samoa           | 150. | Samoa           | 150. | Samoa           |
| 151.  | San Marino      | 151. | San Marino      | 151. | San Marino      |
| 152.  | Sao Tome        | 152. | Sao Tome        | 152. | Sao Tome        |
| and   | and Principe    |      | and Principe    |      | Principe        |
| 153.  | Saudi Arabia    | 153. | Saudi Arabia    | 153. | Saudi Arabia    |
| 154.  | Senegal         | 154. | Senegal         | 154. | Senegal         |
| 155.  | Serbia, Rep.    | 155. | Serbia          | 155. | Serbia          |
| Of    | -               |      |                 |      |                 |
|       | a. Serbia and   |      |                 |      |                 |
|       | Montenegro      |      |                 |      |                 |
|       | b. Yugoslavia   |      |                 |      |                 |
| 156.  | Seychelles      | 156. | Seychelles      | 156. | Seychelles      |
| 157.  | Sierra Leone    | 157. | Sierra Leone    | 157. | Sierra Leone    |
| 158.  | Singapore       | 158. | Singapore       | 158. | Singapore       |
| 159.  | Slovakia        | 159. | Slovakia        | 159. | Slovakia        |
| 160.  | Slovenia        | 160. | Slovenia        | 160. | Slovenia        |
| 161.  | Solomon         | 161. | Solomon         | 161. | Solomon         |
| Islar | Islands         |      | nds             | Isla | nds             |
| 162.  | Somalia         | 162. | Somalia         | 162. | Somalia         |
| 163.  | South Africa    | 163. | South Africa    | 163. | South Africa    |
| 164.  | South Sudan     | 164. | South Sudan     | 164. | South Sudan     |
| 165.  | Spain           | 165. | Spain           | 165. | Spain           |
| 166.  | Sri Lanka       | 166. | Sri Lanka       | 166. | Sri Lanka       |
| 167.  | Sudan           | 167. | Sudan           | 167. | Sudan           |
| 168.  | Suriname        | 168. | Suriname        | 168. | Suriname        |
| 169.  | Sweden          | 169. | Sweden          | 169. | Sweden          |
| 170.  | Switzerland     | 170. | Switzerland     | 170. | Switzerland     |
| 171.  | Syria           | 171. | Syria           | 171. | Syria           |

|         | WMD                         |         | BGS           |          | USGS                       |
|---------|-----------------------------|---------|---------------|----------|----------------------------|
| 172.    | Tajikistan                  | 172.    | Tajikistan    | 172.     | Tajikistan                 |
| 173.    | Tanzania                    | 173.    | Tanzania      | 173.     | Tanzania                   |
| 174.    | Thailand                    | 174.    | Thailand      | 174.     | Thailand                   |
| 175.    | Timor-Leste                 | 175.    | East Timor    | 175.     | Timor-Leste                |
| 176.    | Togo                        | 176.    | Togo          | 176.     | Togo                       |
| 177.    | Tonga                       | 177.    | Tonga         | 177.     | Tonga                      |
| 178.    | Trinidad and                | 178.    | Trinidad and  | 178.     | Trinidad and               |
| Tob     | ago                         | Tobago  |               | Tob      | ago                        |
| 179.    | Tunisia                     | 179.    | Tunesia       | 179.     | Tunisia                    |
| 180.    | Turkey                      | 180.    | Turkey        | 180.     | Turkey                     |
| 181.    | Turkmenistan                | 181.    | Turkmenistan  | 181.     | Turkmenistan               |
| 182.    | Tuvalu                      | 182.    | Tuvalu        | 182.     | Tuvalu                     |
| 183.    | Uganda                      | 183.    | Uganda        | 183.     | Uganda                     |
| 184.    | Ukraine                     | 184.    | Ukraine       | 184.     | Ukraine                    |
| 185.    | United Arab                 | 185.    | United Arab   | 185.     | United Arab                |
| Emi     | Emirates                    |         | Emirates      |          | rates                      |
| 186.    | United                      | 186.    | United        | 186.     | United                     |
| Kingdom |                             | Kingdom |               | King     | Jdom                       |
|         |                             |         |               |          | <mark>a. Bermuda</mark>    |
|         |                             |         |               | l        | <mark>b. Montserrat</mark> |
| 187.    | United States               | 187.    | United States | 187.     | United States              |
| of A    | merica                      | of A    | merica        | of A     | merica                     |
| ä       | <mark>a. Puerto Rico</mark> |         |               |          |                            |
| 188.    | Uruguay                     | 188.    | Uruguay       | 188.     | Uruguay                    |
| 189.    | Uzbekistan                  | 189.    | Uzbekistan    | 189.     | Uzbekistan                 |
| 190.    | Vanuatu                     | 190.    | Vanuatu       | 190.     | Vanuatu                    |
| 191.    | Venezuela                   | 191.    | Venezuela     | 191.     | Venezuela                  |
| 192.    | Vietnam                     | 192.    | Vietnam       | 192.     | Vietnam                    |
| 193.    | Yemen, Rep.                 | 193.    | Yemen         | 193.     | Yemen                      |
| Of      |                             |         |               |          |                            |
| i i     | a. Yemen Arab               |         |               |          |                            |
|         | Republic                    |         |               |          |                            |
|         | D. Yemen, PDR               |         |               |          |                            |
| 194.    | Zambia                      | 194.    | Zambia        | 194.     | Zambia                     |
| 195.    | Zimbabwe                    | 195.    | Zimbabwe      | 195.     | Zimbabwe                   |
|         |                             |         |               | Antarcti | ca                         |

According to the website for the WMD the report covers 168 countries. In the report of 2019, figures for 165 countries could be found. This number includes seven nonindependent countries, e.g. Greenland or Puerto Rico. However, WMD includes all of the red-marked countries (apart from the Holy See and San Marino) in the regional and development status groups section.

BGS covers 167 countries, these include five additional (non-independent) countries.

USGS covers the most countries of all reports especially considering the additional countries covered separately from their sovereignty state. It covers 174 countries including nine non-independent countries plus Antarctica.

There are thirteen countries not covered by any of the three data providers. These are Andorra, Holy See, Kiribati, Maldives, Marshall Islands, Micronesia, Monaco, Palau, Samoa, San Marino, Tonga, Tuvalu, and Vanuatu. However, it is likely that these states don't have any mineral production whatsoever and are fully dependent on imports.

## **3** Applications

This chapter aims at explaining the importance of production data reported by the organisations analysed in chapter 2 Collections of Raw Material's Production Data by showing some applications where they are invaluable. Production data is not only an important tool for strategic planning by companies but also for policy makers enabling them to make forecasts and adapt commodity planning. For instance, the data is used by the European Union to develop their list of critical raw materials where economic importance and the supply risk of different commodities are evaluated.

## 3.1 European Commission List of Critical Raw Materials

In 2008 the European Commission launched the raw materials initiative with the goal of ensuring access and affordability of mineral raw materials; thereby securing a functioning economy. Sectors such as construction, chemicals, and automotive, etc. are all highly dependent on raw materials, and provide 30 million jobs in Europe. This means supporting these industries by changing towards a more efficient use of materials, especially those where the EU depends on import, and a sustainable development is necessary.

The raw materials initiative acts on three different pillars:

- 1. Ensure access to raw materials on the world market
- 2. Foster supply of raw materials from European sources
- 3. Boost resource efficiency and recycling

One priority action is the development of a list of materials critical for the EU. This is an important decision as the number and amount of raw materials required for industry and end-use purposes increases steadily. Between 2010 and 2030 an increase of global resource use of 100% can be expected and technological progress and quality of life rely on an undisturbed access to raw materials. (Gislev *et al.*, 2018; European Commission, 2008)

Since 2011 the European Commission publishes a list of critical raw materials in a three-year interval. The last list was published in 2017 evaluating 61 materials on economic importance and supply risk for the EU. For this assessment the collections investigated in chapter 2 are the main source of data.

The purpose of the criticality assessment is to enhance the European minerals sector and support policy making on EU level.

The main targets are:

- Implementation of the industrial strategy by strengthening the competitiveness of European industry.
- Enhancing the European mining and recycling industry and stimulating production of critical raw materials.
- Enforce the EU circular economy action plan by promoting efficient use and recycling of critical raw materials.
- Identify and inform about potential supply risks and related opportunities of critical raw materials.
- Negotiate trade agreements, dispute existing trade distortion measures, enhance research and innovation, as well as implementation of Sustainable Development Goals.

(DG Grow, Unit C2 Resource Efficiency and Raw Materials, 2019)

Many of the critical raw materials are used for high tech products and emerging innovations, for example solar panels, wind turbines, and electric vehicles. Due to their importance for fighting climate change the demand for certain materials might rise by a factor of 20 until 2030. However, the EU faces an imbalance between upstream industries (extraction of raw materials) and downstream industries (manufacturing and use) with European industry dominated by manufacturing rather than mining. Also recycling of critical raw materials must be improved – the supply from secondary sources is very limited. This is why enhancing those two industries has to be a main target and requires careful attention. (Gislev *et al.*, 2018)

#### 3.1.1 Evaluation of criticality

The indicators used to assess the criticality of a raw material for the EU economy are "Economic Importance" and "Supply Risk" based on historical data rather than forecasts. Economic Importance defines the severity of the consequences for the economy if the supply of a raw material is not sufficient. The methodology for the assessment of critical raw materials was changed between 2014 and 2017 in order to improve allocation of the raw material to the associated industry sectors. Moreover, substitution has been included in both economic importance and supply risk as a mitigating factor. (Blengini *et al.*, 2017; Gislev *et al.*, 2018)

Economic Importance is calculated as follows (Blengini et al., 2017):

$$EI = \sum_{s} (As \times Qs) \times SI_{EI}$$

#### **Equation 1: Economic Importance**

- El...Economic Importance
- As...Share of end use of a raw material in a NACE Rev. 2 2-digit level sector

Qs... NACE Rev. 2 2-digit level sector's value added

SIEL...substitution index of a raw material

s...sector

Supply Risk describes the vulnerability of the supply chain to disruptions leading to an insufficient supply of a raw material for EU industry. It is calculated using the following equation (Blengini *et al.*, 2017):

$$SR = \left[ \left( HHI_{WGI,t} \right)_{GS} \times \frac{IR}{2} + \left( HHI_{WGI,t} \right)_{EUsourcing} \left( 1 - \frac{IR}{2} \right) \right] \times (1 - EoL_{RIR}) \times SI_{SR}$$
  
Equation 2:Supply Risk

| SR…Supply Risk                | GSglobal supply                     |
|-------------------------------|-------------------------------------|
| HHIHerfindahl-Hirschman Index | EUsourcingEU suppliers              |
| WGIWorld Governance Index     | EoLRIREnd-of-Life Recycling Input   |
| ttrade adjustment of WGI      | Rate                                |
| IR…Import Reliance            | SI <sub>SR</sub> Substitution Index |

If possible WMD is used for production data because they are most coherent in terms of what is reported (metal content or concentrate), and in terms of sources and accuracy of data which are all clearly stated. However, in some cases BGS data is used, for example, in the case of Strontium (evaluated for the first time in the study to be published in 2020) because it is not reported in WMD. For helium and silicon metal BGS is the source of data. Hafnium, which is on the criticality list of 2017, is not reported in WMD. However, neither BGS nor USGS, who both include it in their data, report any production of Hafnium in recent years. For import and export figures Eurostat COMEXT database is used (also basis for MFA trade data evaluated in chapter 2) and USGS is an important source for information on the raw material itself, incl. uses, deposits, international market structure, etc.

Figure 6 shows the main producer in the year 2017 of each critical raw material of the 2017 list including production figures and share of global production. The data is taken from WMD, apart from helium and silicon metal where BGS data is used. (Hafnium is not included.)

The CRM list differentiates between light and heavy rare earth metals. The rare earth element scandium is also evaluated separately. However, WMD, BGS, and USGS report them aggregated as rare earths minerals. The same issue arises for phosphate rock and phosphorus, both are analysed individually, but the three global data providers cover phosphate rock (BGS, USGS) or phosphates (P<sub>2</sub>O<sub>5</sub> content, WMD). Differences can also be seen for borate (BGS) or boron (WMD), USGS reports boron minerals, and magnesium (BGS) or magnesite (WMD), USGS documents magnesium compounds as MgO equivalent. On the other hand, the criticality study includes platinum group metals in an aggregated form, whereas, WMD, BGS, and USGS all report platinum, palladium, and rhodium separately.



Figure 6: Main global suppliers of CRM in metr. tonnes and percent, Source: (Reichl *et al.*, 2019; Brown *et al.*, 2019) (Brown *et al.*, 2019 (helium, silicon metal)), adapted from (Gislev *et al.*, 2018)

This figure shows clearly the dominance of China in critical raw material production. China is number one producer of 16 of the critical raw materials with market shares between 31% (nickel) and 94% (gallium). Further major producers are South Africa, Congo D.R., USA, Brazil, Turkey, and Russia.

The main issue the criticality study has to face is the lack of data specifically for Europe. WMD and BGS focus on production data only. BGS publishes some mineral profiles, however, only for a very limited number of minerals. A further provider of information on minerals is the German Minerals Resources Agency (DERA), but the number of assessed minerals is again rather small. The project Minerals4EU provides an overview of resources and reserves in European countries on their website, but the number of commodities is very limited and there are no current updates as this project finished in 2014. Therefore, most information is from global or US sources and it is questionable whether this is valid for the EU as well.

Arsenic, for example, is a popular chemical for wood treatment in form of the compound chromated copper arsenate (CCA). In the US this is the main use of Arsenic making up for almost 90% of total consumption. (George, 2019)

However, this application is highly restricted and subject to prior authorisation in the EU due to its toxicity, meaning US consumption patterns cannot be used for the EU and a source providing a distribution of European arsenic consumption is not available.

This is an issue addressed by the Strategic Implementation Plan for European Innovation Partnership on Raw Materials which emphasises the need for a Geological Knowledge Base and Minerals Intelligence Information. For this purpose DG JRC in cooperation with DG GROWTH has established RMIS – Raw Materials Information System, a platform providing information on non-fuel, non-agricultural raw materials from primary and secondary sources. However, especially the raw materials' profiles are incomplete for the time being. (EuroGeoSurveys, 2016; Joint Research Centre, 2019)

Furthermore, as noted by the European Commission (2014) in a communication on the list of critical raw materials and the implementation of the Raw Materials Initiative, this initiative has not yet had a quantifiable effect on European production. It is also not known how EU member states implement the suggestions of the raw materials initiative. However, the Horizon 2020 programme supports a number of projects aiming at creating guidelines for EU policies in order to develop a harmonised framework for EU members to implement, supporting the raw materials industry in Europe. One example of such a project is MinLand where Montanuniversitaet Leoben is a consortium partner.

The main objective of MinLand is to enable extraction of mineral raw materials by securing access to land for exploration and extraction. This is not an easy task due to different interests regarding land-use. However, in order to decrease EU's dependencies from imports (especially of the critical raw materials) it is necessary to strengthen domestic production. (MinLand, 2019)

Another project within the Horizon 2020 framework supporting the extractive industry is MIREU (Mining and Metallurgy Regions of EU) also supported by Montanuniversitaet Leoben. On the one hand MIREU aims at improving conditions for the development and supply of raw materials in the EU. On the other hand, it also works at the creation of a social guidance to operate on EU level to develop standards for responsible and sustainable mining including the incorporation of affected stakeholders. MIREU also wants to raise awareness about mining and the need for mineral raw materials. (MIREU, 2017)

## 3.2 Circular Economy

One of the reasons for launching the Raw Materials Initiative is to enforce the Circular Economy Action Plan. Circular economy is a concept of reducing the input of primary raw materials, keeping their value in the economy for as long as possible, and minimising the output of waste by recycling, repairing, and reusing products and materials. At the moment this seems to be the best way forward in order to maintain and promote high standards of living without completely depleting Earth's resources.

When talking about circular economy, two forms of "loop closing" have to be differentiated:

- Socioeconomic loop closing (recycling materials as secondary material inputs)
- Ecological loop closing (use of renewable biomass)

(Mayer *et al.*, 2018; Gislev *et al.*, 2018; European Commission, 2015; Haas *et al.*, 2015)

Considering the critical raw materials, the recycling input rate is fairly low to nonexistent. In 2011 Braedel *et al.* (UNEP) published a status report on the recycling rates of metals showing that many metals included in the EU list of critical raw materials are virtually not recycled at all, for example boron and scandium, all evaluated indicators – old scrap ratio (OSR), collection rate (CR), and end-of-life recycling rate (EOL-RR) – are not ascertainable or below 1%. This is an issue the EU wants to address not only to secure the supply for the European industry, but also because energy and water use is usually significantly lower for secondary materials than for primary raw materials.

Circular economy is believed to help industries in the EU by boosting competitiveness, protecting it against volatile raw material prices and insufficient supply, and by creating new business opportunities. An example is "eco-design" of products. The goal is to improve the reparability and disassembly of products which helps the recycling process. Both design, allowing dismantling and recycling of the contained raw materials, and a better communication between manufacturers and recyclers need to be addressed. A model case for these improvement requirements is the electronics sector, especially considering smart phones, often containing critical raw materials. (Gislev *et al.*, 2018; European Commission, 2015; Haas *et al.*, 2015; Mayer *et al.*, 2018; Braedel *et al.*, 2011)

Apart from the Action Plan for the Circular Economy also the Extractive Waste Directive takes important steps towards a sustainable use of resources. Mining companies are required to provide a waste management plan for the minimisation, treatment, recovery, and disposal of extractive waste. This is to make sure that adverse effects on the environment and human health are minimised, and raw materials from extractive waste are recovered as completely as possible. (Gislev *et al.*, 2018)

The concept of a circular economy (with a focus on mineral raw materials) is shown in the following figure:



Figure 7: Diagram illustrating the concept of a circular economy, focusing on mineral raw materials (EIT RawMaterials, 2019)

Haas *et al.* present material flows in 2005 for the EU-27 in their report "How Circular is the Global Economy". Their study shows that EU-27 account for 7.5% of global population. However, the material use is 12.4% of globally extracted materials (this includes fossil fuels, biomass, metals, waste rock, industrial minerals, and construction minerals). With an average material use of 15.8 gigatonnes (Gt) per capita per year the EU has a 64% higher consumption than global average. In 2005 the EU imported 1.2 Gt and extracted 5.5 Gt of materials, in total 7.7 Gt of materials were processed (incl. recycled material). Energetic uses account for 3.5 Gt (approx. 45%), 4.2 Gt or 54% went into material use, including 3.5 Gt additions to stocks. Recycling rates in the EU are fairly high at 12.6% of total processed material which is twice the global average. Nevertheless, the domestic processed output of the EU at 10.4 tonnes (t) per capita per year (5.0 Gt total) is still significantly high recycling rates the flow of renewable biomass is lower than the global average, 28% and 32% respectively.

This study shows that both EU and global economy are still far away from a truly circular economy and there is still a lot that needs to be done. The authors underline that focusing on recycling only will not solve the issue, as a large fraction of the material input contributes to stocks and is not available for recycling. Another factor that needs to be considered is the consumption of fossil fuels that simply cannot be recycled.

More recently Mayer *et al.* (2018) expanded this study in order to measure and monitor the effects of EU policies on the circularity of the economy. As most research is done on recycling of specific products or circularity of industry sectors, assessments on macro-scale (in this case EU-26-wide) are rare. The authors propose (new) indicators to measure the circularity of an economy:

- Three pairs of indicators to measure the scale of material and waste flows
  - Input: Domestic Material Consumption (DMC) measures all materials directly used in national production
     Output: Domestic Processed Output (DPO), for monitoring the amount of waste and emission outflows of an economy
  - Raw Material Consumption (RMC) measures material use associated with domestic final consumption
  - Input: Processed Materials (PM) = DMC + input of secondary materials

Output: Interim Outputs (IntOut) for waste and emissions before materials for recycling and downcycling are diverted

 Input Socioeconomic Cycling rate (ISCr) measuring the input of secondary materials to PM

Output Socioeconomic Cycling rate (OSCr) for the share of IntOut that is reused as secondary material

 Input Ecological Cycling rate potential (IECrp) = share of biomass in PM Output Ecological Cycling rate potential (OECrp) = share of DPO from biomass in IntOut With this framework Mayer *et al.* modelled the material flows of the European Union for the year 2014.



Figure 8: EU-28 material flow for 2014 (Mayer et al., 2018)

A total of 7.4 Gt of materials were processed in 2014, of this only 0.7 Gt came from secondary sources. Non-metallic minerals and metal ores make up for 56% of domestic extraction, the largest share of imports are fossil fuels (69%). DPO (emissions + waste) was at 4.1 Gt. This results in an input socioeconomic cycling rate of 9.6% and an output SCr of 14.8% both are fairly low values.

The ecological cycling rate potentials were already at a higher level with 24.6% input and 35.3% output.

Recommendations of the authors include improved collaboration between outputand input-related (environmental and economic) policies, and between policy makers and industry. However, above all they stress the need for improved data collection and quality in order to allow monitoring of circular economy initiatives. (Mayer *et al.*, 2018)

### 3.3 Global Material Flow

Economy-wide Material Flow Accounting (EW-MFA) measures the flow of (raw) materials between environment and economy – either between natural and socioeconomic system or between national economies. Inputs come from domestically extracted materials or other economies, and outputs are emissions, waste, losses, and exports to other economies. Within the considered economic system there are stocks. Stocks are human population, animal livestock, and so-called artefacts (= manufactured capital and in-use stocks of material) including buildings, infrastructure, machines, devices, etc. MFA differentiates between extracted materials that do not enter the economy, so called "unused extraction", for example removed overburden or bed rock from mining, and material entering the economic system, "used extraction". (Lutter, 2018; Krausmann *et al.*, 2018)

A schematic graph of MFA can be seen in Figure 9.



Figure 9: Schematics of material flow into, inside, and out of an economy (Schaffartzik *et al.*, 2015)

In chapter one material flow accounts by Eurostat were introduced. Apart from the assessed raw materials production data this database also provides import and export data, direct material inputs, physical trade balance, and domestic material consumption. This is an ideal basis for evaluating material flows for the European economy. Unfortunately, this database is incomplete, as Table 3 has already shown production data is only available for some years making a long-term analysis impossible. Therefore, import and export data provided by Eurostat material flow accounts has to be combined with production data of one of the other data providers discussed in chapter 2 (WMD, BGS, or USGS) to examine material flows of EU's economy. However, in order to do so production data has to be converted from metal content to ores (see chapter 2.4 for conversion factors).

Moreover, Eurostat data is rather aggregated, and it is not always clear what materials are included, e.g. "Other non-ferrous metals". Comext database for trade figures by Eurostat is a lot more comprehensive, including data for all materials classified via the combined nomenclature (CN) and it is easier to find a suitable match for production data, but again sometimes conversions are necessary. For example, Potash production figures are usually reported as potassium oxide, K<sub>2</sub>O, equivalent, whereas trade data reports sylvite (KCI).

A better suited source for material flows is found in the Global Material Flows Database by the International Resource Panel (IRP). From this database it is possible to extract figures for the same indicators as Eurostat MFA database for 13 different material flow categories (International Resource Panel, 2019):

coal, crop residues, crops, ferrous ores, grazed biomass and fodder crops, natural gas, no ferrous ores, non-metallic minerals – construction dominant, non-metallic minerals – industrial or agricultural dominant, oil shale and tar sands, petroleum, wild catch and harvest, wood

These categories might be sufficient for material flow accounts of economic systems, but considering a more detailed analysis of a specific raw material, this data cannot be used due to the aggregation of materials.

Considering the need for a reduction of primary raw materials use (as discussed in chapter 3.2) it is interesting to look at the development of domestic consumption over the previous years. The Domestic Material Consumption is calculated as domestic extraction + weight of imports – weight of exports. Therefore, they only provide an apparent and not a real consumption of a country. Using data by the IRP, following developments can be observed for the EU-28.



Fossil Fuels Non-metallic minerals Metal Ores Biomass

Figure 10: EU-28 Domestic Material Consumption 1990-2017 (left), Global Domestic Material Consumption 1990-2017 (right), data source: International Resource Panel (2019)

According to IRP data biomass consumption remained almost at the same level for the years 1990-2017 at approx. 1.4 to 1.6 Gt, this is also valid for metal ores with an EU consumption of about 0.3 Gt. Fossil fuels and non-metallic minerals show larger volatility during that period. Since mid-1990 there was a steady increase of consumption until 2007. Then a significant drop was registered, likely due to the economic crisis. After that consumption recovered slightly, but did not increase to previous levels again. Overall fossil fuel consumption in 2017 was approx. 0.5 Gt lower than in 1990. Considering the more recent years overall domestic consumption decreased by 8% between 2000 and 2017.

World-wide consumption shows a very different picture (assuming world consumption equals world production of raw materials). All material groups show a steady increase of consumption since 1990. Especially for non-metallic minerals a strong boost can be observed. The reduction between 2007 and 2010 is not as distinct as for the EU-28. In the considered period total consumption increased by 113%.

It is important to note the limitations of the indicator Domestic Material Consumption (DMC). First of all, as already mentioned it does not state the actual consumption of a country. Furthermore, it does not include materials consumed along the supply chains, so-called raw material equivalents. An alternative indicator making up for these shortcomings of DMC is the Raw Material Consumption (RMC), also known as Material Footprint. To calculate the RMC imports and exports are considered in raw material equivalents. Considering the highly international trade of mineral raw materials, this indicator might be better suited for evaluating the actual raw material consumption of countries, especially considering differences between service-oriented and heavy-industry-oriented economies. The differences of the results of the two indicators can be seen in Figure 11 for the year 2013.



Figure 11: Comparison of DMC per capita and RMC per capita for selected countries in 2013, (Lutter *et al.*, 2018)

Noteworthy are the large differences of DMC and RMC for western countries with a high share of the service sector, such as Austria, Germany, Italy, and Sweden.

Steinberger and Krausmann et al. (2010; 2018a) are two of the few studies assessing global material flows using not only material flow accounting, but also dynamic stock-flow modelling to take the development of in-use stocks into account that enables tracing materials from extraction to end-use. These studies are conducted on a long-term basis, starting in 1900 and evaluate four material groups, biomass, fossil energy carriers, ores, and non-metallic minerals, covering in total 150 different materials. A result of this analysis is global material extraction between 1900 and 2015. This can be seen in Figure 12, in order to have a comparison to global material consumption using IRP data. For mineral raw materials (metal ores and non-metallic minerals) they rely mainly on data by USGS as they range back to 1900 and offer additional information in their factsheets.



Figure 12: Development of domestic extraction between 1900 and 2015 (Krausmann *et al.*, 2018a)

This graph shows a similar development as Figure 10 (right, IRP data), the different timelines must not be disregarded! IRP also has the four main material categories, which they divide into 62 subcategories. A comparison of materials included in both the study of Krausmann *et al.* and IRP data is therefore not possible.

Differences can occur for the ore's category and some minerals of the non-metallic mineral's category due to different factors for converting metal (mineral) contents from data providers mentioned in chapter 2 to gross ores which are usually used for material flow analysis. How this is conducted is explained in the technical annexes of both studies. Krausmann et al. extrapolate the amount of gross ore using metal content (mainly provided by USGS) and average global ore grades. This might cause deviations as grades vary significantly between countries and deposits. IRP on the other hand states it uses at least country-specific average ore grades that may lead to more accurate estimations. The most difficult part is the estimation of construction raw materials such as sand, gravel, clay, limestone, gypsum, etc. The extraction of these minerals is (almost) not reported by the international data providers (exceptions mentioned in chapter 2). Krausmann et al. describe a "bottom-up" approach – they use kilometres of roads, buildings, railways, etc. built to deduct the extracted amount of raw materials used for these kinds of construction. A similar approach is described in the technical annex of IRP database. (Krausmann et al., 2018a, 2018b; International Resource Panel, 2018)

For material flow analysis a collection of extraction of raw materials for construction purposes would be a great help. BGS is already attempting it on a European level and USGS on US level, however, there is no international data provider due to fragmentary or not existing data collections on national level. Another point for improvement for MFA-studies would be the cooperation with the data providers in order to obtain the exact metal contents used by BGS, USGS, and WMD to avoid deviations due to different conversion factors. Furthermore, according to Prof. Krausmann they do not consider by-products in their MFA studies. That means the difference between metal content and gross ore is considered tailings (waste).

This suggests tailings are overestimated, considering that many metals are won as by-products only during the production of other metals.

(Additional information kindly provided by Prof. Fridolin Krausmann, Institute of Social Ecology, University of Natural Resources and Life Sciences.)

#### 3.3.1 Demand Drivers

This section aims at evaluating drivers of raw material consumption. Resource consumption can be calculated using the IPAT theory, stating that environmental impact or resource consumption (I) depend on population (P) times affluence (A, e.g. GDP per capita) times technology (e.g. energy per GDP). This takes resource decoupling from economic growth, increasing resource- and eco-efficiency due to new technologies or changing lifestyles into account. In general, we can differentiate five different factors influencing the amount of resource consumption of an economy. (Boumphrey, 2016; Kalmykova *et al.*, 2016)

Those drivers are:

- 1. Economic growth
- 2. Income growth
- 3. Demographic growth
- 4. Prices
- 5. Environmental Concerns
- 6. Technology

#### Ad 1. Economic Growth

Especially developing countries are considered drivers of resource consumption, above all energy consumption. Considering the amount of energy used in China – in 2010 China used more energy than the United States and became the World's largest consumer of energy. However, in terms of use per capita, China still has a long way to go to catch up to the global leaders. This is even more apparent looking at India. India was the fastest growing economy in 2016, but energy consumption per capita levels are approx. 70% less than China's.

Fossil fuel consumption of industrialised countries, such as Sweden, do not necessarily show an increase of fossil fuel consumption due to economic or income growth. Here increases are more related to the economic structure.

This is in contrast to construction minerals, which show a connection to the development of the economy even in industrialised countries. (Boumphrey, 2016; Kalmykova *et al.*, 2016)

A comparison of energy consumption in industrialised and developing countries can be seen in Figure 13.



Figure 13: Development of energy consumption 2010-2015, 2010 = 100% (Boumphrey, 2016)

This graph clearly shows the gap between developing and fully developed countries. The latter show a fairly constant energy use, whereas, developing countries show a growth of almost 20% within 5 years.

#### Ad 2. Income Growth

With the growth of income, the consumer expenditure increases as well. Between 2010 and 2015 the number of households earning more than 10.000 USD increased by 37%. This development is expected to continue. Consumer expense is forecast to increase by 89% until 2030. Growing expenditures means that the demand for consumer goods is boosted – in turn pushing the demand for raw materials. Interestingly, material consumption is by far the most equally distributed form of wealth. Considering land area owned, 54% are controlled by only 10% of global population. From the total material consumption on the other hand only 27% are consumed by 10% of the population.

Material categories show large differences, biomass is considered the most equally distributed material, whereas ores and industrial minerals, or fossil fuels are again rather concentrated to the top 10% of the population with 44% and 42% respectively. (Steinberger *et al.*, 2010; Boumphrey, 2016)

Steinberger et al. (2009) present this comparison in form of Lorenz curves as shown in Figure 14.



Figure 14: Lorenz curve - Comparison of wealth distribution to percent of population (Steinberger *et al.*, 2010)

The Lorenz curve plots wealth distribution by ranking population according to per capita wealth. The y-coordinate gives the cumulated fraction of wealth and the x-coordinate the cumulative lower income fraction of population. The curves for different categories of wealth (DMC, energy supply, GDP, land area) are compared to equal distribution.

#### Ad 3. Demographic Growth

World population is expected to reach 8.5 billion by 2030 (compared to 7.7 billion in 2019). This increases the need for infrastructure, including housing, transport, etc. therefore boosting raw material demand as well. Especially since the urban population is growing steadily at twice the rate than total global population.

Globally urban population is larger than rural population making up for more than 50% since 2007. This also means that the largest share of resource consumption can be attributed to cities with approx. 75% of total consumption, and even more so they are responsible for economic growth with about 80%.

However, this could also be a possible starting point for reducing resource consumption and decoupling it from demographic growth in the future. Living in cities usually means living in apartments rather than detached houses increasing resource efficiency due to smaller living space and more people living in the same structure.

Another aspect of demographic growth is the growth of car registrations. A study for Sweden shows that even with a more efficient fuel consumption of new cars it has not been possible to reduce overall fuel consumption due to a higher population requiring more cars. (Boumphrey, 2016; Kalmykova *et al.*, 2016)

#### Ad 4. Environmental Concerns

Due to growing environmental concerns the demand for renewable energy increases. This demand-shift also influences the type of raw materials required. Coal use, for example, is declining while solar, wind, and other renewable energy sources are on an upturn. The production facilities for these energy sources require different materials than thermal power plants, including some critical raw materials, leading to a demand shift. Moreover, sustainability considerations push the demand towards responsibly produced and recycled materials.

An example for such a change is the use of plastic bags in supermarkets. Since the introduction of a small charge for bags, supermarkets in the UK report a decrease of 80% of used plastic bags. (Boumphrey, 2016)

#### Ad 5. Price

An obvious factor influencing material consumption is the price. With the renewable energy sources getting increasingly cheaper, their demand experiences a major boost at the same time leading to a decreased demand of other materials for nonrenewable energy production. (Boumphrey, 2016)

#### Ad 6. Technology

Technology goes hand in hand with prices to a certain extent. New technologies for renewable energy, for example, that are easier and therefore cheaper to produce influence their turnover in a positive manner.

This effect is enhanced, if these technologies support the sustainability aspect, such as electric vehicles. (Boumphrey, 2016)

## 3.4 Sustainable Development Goals

The Sustainable Development Goals (SDGs) are part of Agenda 2030 a concept for sustainable development by the United Nations adopted by all 193 members in 2015. This agenda includes "17 goals to transform our world" whose main purpose is to tackle social inequality issues (poverty, health, education, etc.) while protecting the planet and taking action on climate change. (United Nations, 2019a)



Figure 15: The 17 Sustainable Development Goals by the United Nations (United Nations, 2019b)

From a raw materials point of view Goal 12 "Ensuring sustainable consumption and production patterns" is the most relevant. This goal is supporting actions on the issues of the strongly increasing material consumption and material footprint mentioned in chapter 3.3 Global Material Flow. Since the adoption of the SDGs the material consumption and footprint continued to grow and there is a serious risk that this goal will not be met.

Without determined actions by all involved stakeholders global resource extraction (assumption: global resource extraction is equal to global material consumption) is projected to increase to 190 billion tons by 2060 compared to 92.1 billion tons in 2017. (United Nations, 2019c)

What is sustainable production and consumption? This term was defined by the Oslo Symposium on Sustainable Consumption in 1994 as

"[...] the use of services and related products, which respond to basic needs and bring a better quality of life while minimizing the use of natural resources and toxic materials as well as the emissions of waste and pollutants over the life cycle of the service or product so as not to jeopardize the needs of further generations." (United Nations, 2019d)

One of the actions taken by the European Union is the Circular Economy Package discussed in chapter 3.2 Circular Economy covering raw materials in environment and economy from extraction to recycling or waste. Another key initiative is the 7<sup>th</sup> Environment Action Programme. However, the EU is not only focussing on developments within its borders, but it also invests in responsible supply chains promoting fair trade, human rights and good governance in producer countries outside the EU. (European Commission, 2019)

The International Institute for Applied Sciences established an initiative called "TWI2050 - The World in 2050 initiative" in order to provide scientific foundations for the Agenda 2030. This initiative involves dozens of researchers and experts from different institutions and organisations including academia, business, government, etc. attempting to develop roadmaps towards the SDGs. In 2018 this initiative published a report on the necessary transformations of society and economy to achieve the SDGs.

A main focus of this report is SDG 12 making suggestions for more efficient use of resources and reduction of raw materials consumption. The authors of this study highlight the need for a mind-set shift of our society, away from thinking wellbeing and status are linked to the consumption of resources, but rather to the services that are provided by these resources.

They mention the example of a smartphone providing services such as phone, camera, email, radio, and many more with one single device. In earlier days we would have needed one device for each service.

Therefore, the smartphone is actually using resources much more efficiently. However, to keep this efficiency over the whole lifecycle of a product and to move towards a circular economy (another necessary change according to the report) these products need to be designed for recycling or reusing. (TWI2050 - The World in 2050 initiative, 2018)

Another interesting aspect mentioned in the report by TWI2050 is the need for inclusion of material stocks in material flow analysis. During the 20<sup>th</sup> century raw materials used for building up and maintaining global material stocks increased by the factor 23. This means, while in 1900 20% of material input where put in stocks, by 2010 this input rose to 50%. When trying to transform the economy to a more sustainable and resource efficient system this needs to be taken into consideration as these stocks have a very long lifetime and determine long-term pathways. For example, transport or heating infrastructure - once in place they are difficult to change. This also means that materials tied up in stocks are not available for recycling. Due to rising economies of developing countries that still need to expand infrastructure and buildings global material stocks are likely to continue growing and until 2010 only 12% of material inflow were generated from secondary materials. TWI2050 stresses the importance of stocks for our society and economy, because "stocks transform resources into services". This means that for example the raw material crude oil would not be useful without the necessary infrastructure, such as refineries, roads or cars. However, in order to move towards sustainable production and consumption patterns a decoupling of resource use and economic development have to be achieved. Moreover, stocks have to be used more intensely and for a longer time. Future additions to stocks should be designed in a more efficient way and provide high-quality services relying on a smaller inflow of materials.

Decoupling of resources also includes a more critical look at indicators such as the GDP, because trying to continuously increase the GDP might not be consistent with sustainable development. As an example, for unsustainable or inefficient use steel can be considered. Globally only 47% of primary iron and steel scrap end up in purchased products. The recycling rate is at 13%. Considering the transformation of primary energy to useful energy the efficiency is even worse at approx. 40%. (Krausmann *et al.*, 2017; TWI2050 - The World in 2050 initiative, 2018)



These two cascades are depicted in Figure 16 and Figure 17.

Figure 16: Transformation of primary energy into useful energy (TWI2050 - The World in 2050 initiative, 2018)



Figure 17: Cascadic use of iron ore to recovered scrap (TWI2050 - The World in 2050 initiative, 2018)

#### How is progress towards achieving SDG12 measured?

SDG12 is subdivided into eleven targets and each target has its own set of indicators to measure progress. Targets and indicators defined by the United Nations for SDG12 are given in Table 5.

| Target |                                                                                                                                                                                                                                | Indicator                                                                                                                                                                                                                                                                 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12.1   | Implementation of ten-year<br>framework of programmes on<br>sustainable consumption and<br>production                                                                                                                          | Number of countries with national<br>action plans or policies targeting<br>sustainable consumption and<br>production patterns                                                                                                                                             |
| 12.2   | Achievement of sustainable<br>management and efficient<br>resource use by 2030                                                                                                                                                 | Material footprint, material footprint<br>per capita, material footprint per<br>GDP                                                                                                                                                                                       |
|        |                                                                                                                                                                                                                                | Domestic Material Consumption,<br>DMC per capita, DMC per GDP                                                                                                                                                                                                             |
| 12.3   | Reduction of global food waste per<br>capita at retail and consumer levels<br>by 50%, reduction of food losses<br>along supply chains (incl. post-<br>harvest losses)                                                          | Global food loss index                                                                                                                                                                                                                                                    |
| 12.4   | Environmentally sound<br>management of chemicals and<br>wastes throughout their life cycle<br>(incl. reduction of emissions to air,<br>water, and soil) minimising<br>negative influences on humans<br>and environment by 2020 | Number of countries agreeing on<br>international and multilateral<br>environmental management plans<br>for hazardous waste and meeting<br>their commitments<br>Hazardous waste generated per<br>capita and proportion of hazardous<br>waste treated, by type of treatment |

 Table 5: Sub-targets SDG12 and relevant indicators of progress (United Nations, 2019c)

| 12.5 | Reduction of waste generation       | National recycling rate, tons of       |
|------|-------------------------------------|----------------------------------------|
|      | through prevention, reduction,      | material recycled                      |
|      | recycling, and reuse by 2030        |                                        |
| 12.6 | Companies are asked to              | Number of companies publishing         |
|      | incorporate sustainable practices   | sustainability reports                 |
|      | and sustainability information into |                                        |
|      | their reporting                     |                                        |
| 12.7 | Promoting sustainable public        | Number of countries implementing       |
|      | procurement practices according to  | sustainable public procurement         |
|      | national policies and priorities    | policies and action plans              |
| 12.8 | Informing people and raising        | Extent to which (i) global             |
|      | awareness for sustainable           | citizenship education and (ii)         |
|      | development and lifestyles in       | education for sustainable              |
|      | harmony with nature worldwide by    | development (including climate         |
|      | 2030                                | change education) are                  |
|      |                                     | mainstreamed in (a) national           |
|      |                                     | education policies; (b) curricula; (c) |
|      |                                     | teacher education; and (d) student     |
|      |                                     | assessment                             |
| 12.A | Support of developing countries to  | Amount of support for developing       |
|      | introduce sustainable consumption   | countries                              |
|      | and production patterns by          |                                        |
|      | strengthening their scientific and  |                                        |
|      | technological capacity              |                                        |
| 12.B | Enhance sustainable tourism         | Number of implemented                  |
|      | creating jobs, promoting local      | sustainable tourism strategies,        |
|      | culture, and products; evaluate     | policies, and action plans incl.       |
|      | impacts of its sustainable          | stipulated tools for monitoring and    |
|      | development by introducing          | evaluating                             |
|      | monitoring tools                    |                                        |
|      |                                     |                                        |

| 12.C | Removal of market distortions        | Amount of fossil-fuel subsidies per   |
|------|--------------------------------------|---------------------------------------|
|      | through subsidies to prevent         | unit of GDP, and as a proportion of   |
|      | inefficient and wasteful fossil-fuel | total national expenditure on fossil- |
|      | consumption (special needs of        | fuels.                                |
|      | developing countries must be         |                                       |
|      | taken into account as not to hinder  |                                       |
|      | their development and protect poor   |                                       |
|      | and affected communities)            |                                       |
|      |                                      |                                       |

Every year Sachs *et al.* publish a report - the SDG Index and Dashboards, on the performance of countries committed to the SDGs. This report includes the SDG Index assessing the achievements of countries towards reaching the SDGs. In 2019's evaluation Denmark is in the lead with a sore of 85.2 meaning it has achieved the SDGs with an average of 85%. The country with the lowest score is the Central African Republic with 39.1. Considering the EU, 27 of the 28 members are among the 50 highest scoring countries, only Cyprus is behind on place 61. Furthermore, this report publishes the SDG dashboards evaluating each SDG per country to determine strength, weaknesses, and goals where immediate actions are necessary.


This table shows that all EU members are struggling with SDG12. Even the Scandinavian countries Denmark, Sweden, and Finland, who are leading in the SDG index representing overall achievement of all SDGs, have major issues in reaching this goal and rank among the bottom 40 countries. For this reason, the Nordic Council of Ministers representing Denmark, Finland, Iceland, Norway, Sweden, Greenland, Faroe Islands, and Åland analysed the progress of these countries towards SDG12, making recommendations for necessary actions to achieve the sub-goals. (Sachs *et al.*, 2019; Bauer *et al.*, 2018)

The most critical topics are sustainable management of natural resources and rationalising fossil-fuel subsidies:

Sustainable Management of Natural Resources
 Bauer *et al.* use the indicators proposed by the UN for target 12.2 (see
 Table 5), additionally they included the percentage of anthropogenic
 wastewater treated, and environmental taxes as a share of total taxes and social contributions.

The Nordic region's material footprint is at the top of the European countries, mainly due to high levels of wealth and comparatively low resource productivity. However, a main issue the authors address is the lack of material footprint indicators based on Raw Material Consumption on a global level, rather than Domestic Material Consumption. This falsifies the actual material consumption of a country as it does not take "outsourcing" of heavy industries into account. A good performance in DMC might simply entail a higher level of outsourcing and stronger focus on service industries. Nordic countries still have a large extractive industry. Considering Sweden metal ore and biomass extraction alone make up 50% of its material footprint.

Many European countries showed a decline of DMC due to the economic crisis until 2013 caused by a reduction of construction projects. This decline is likely to be overturned as the construction industry recovers. Construction materials are responsible for 50% of DMC, however, of all material resources they have only a 1% impact on the climate.

Nordic countries make an effort to develop and adopt green national accounts (Green GDP or Beyond GDP indicators) to adjust for quality losses of raw materials currently not being considered in the evaluation. (Bauer *et al.*, 2018, p. 18)

• Rationalise Fossil-Fuel Subsidies

For this evaluation the UN indicator for target 12.C was used (see Table 5). According to research subsidies on fossil-fuels amounted to 425 billion USD in 2015 and their phasing out could decrease carbon emissions by 6.4-8.2%. By supporting the use of fossil fuels a change to other energy sources is prevented. This impacts not only the achievement of SDG12, but also other SDGs covering education, skills, and physical infrastructure. It increases the use of fossil-fuels increasing pollution and therefore impacting human health. Denmark is closest to the abolishment of subsidies having already phased out support for bituminous coal and petroleum, and significantly decreasing subsidies for diesel fuels. Finland allocates the largest subsidies to fossil-fuels per GDP of all OECD countries. Especially peat harvesting is strongly supported. Also, Norway supports the petroleum industry by aiding research and development of new resources. Moreover, coal mining company Store Norske is supported. Norway is far away from reaching an abolishment of subsidies. On the contrary, between 2011 and 2016 subsidies were increased by 400%. (Bauer *et al.*, 2018, p. 37)

Endl *et al.* investigate the opportunities of the mining sector to contribute to the achievement of the SDGs focusing on contributions through innovations. Innovations are divided into two groups – innovations driven by economic considerations, and innovations driven by societal considerations. Each SDG is considered in respect of aspects that can be influenced by the mining sector.

For example, SDG1 "End poverty in all its forms everywhere" includes the aspects 'inclusive employment', and 'local procurement'. New technologies require a more skilled workforce which is usually not available in highly remote areas where mining is usually conducted. Innovations focusing on shared infrastructure or new business models and customer relations can facilitate local procurement and employment opportunities in a positive way.

Another example is SDG6 "Ensure availability and sustainable management of water and sanitation for all". This includes the aspects 'conserve and recycle water' and 'manage water holistically'. Mining innovations can improve the recycling of wastewater due to better process control.

Considering SDG12 innovations found focus on minimising waste by developing more efficient processes. However, this might also have negative effects, for example bioleaching could require a higher use of water if waste material is reduced, or areas are developed for mining that have not been affected before.

The following table shows innovation concepts found by the study authors and their anticipated input towards achieving the SDGs.

| 2                                            | SDG 1 | SDG 2 | SDG 3 | SDG 4 | SDG 5 | SDG 6 | SDG 7 | SDG 8 | SDG 9 | SDG 10 | SDG 11 | SDG 12 | SDG 13 | SDG 14 | SDG 15 | SDG 16 | SDG 17 |
|----------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| Autonomous equipment and operations          |       |       | +     | +     |       |       | +     | +     |       | 12     | +      | +      | +      |        |        | 20     | +      |
| IT platforms and process control systems     | 122   |       | +     | +     |       | +     | +     | +     |       | 1.2    | +      | +      | +      |        |        | 1      | +      |
| Continuous mining processes                  |       |       | +     | +     |       |       | +     | +     |       | 1-1    | +      | +      | +      |        | +      | -      | +      |
| Better resource characterisation             |       |       | +     | +     |       |       | +     | +     |       |        | +      | +      | +      |        | +      |        | +      |
| Better mine design                           |       |       | +     | +     |       | +     | +     | +     |       |        | +      | +      | +      |        | +      |        | +      |
| Equipment Scale Up                           | -     |       | +     |       |       |       | +     |       |       |        |        | +      | +      |        |        |        |        |
| Digitally enabled worker                     |       |       | +     | +     |       |       |       | +     |       |        |        |        |        |        |        |        | +      |
| Disruptive new or alternative mining methods | -     | +/-   | +/-   | +     |       | -     | +     | +     |       |        | +      | +      | +      |        | +      | +/-    | +      |
| Deep sea mining                              | -     |       | -     | +     |       |       | +     | +     |       |        | +      | _      |        | -      |        | _      | +      |
| New financing models                         |       |       |       |       |       |       |       | +     |       |        |        |        |        |        |        |        |        |
| New business models and customer relations   | +     |       |       | +     |       | +     | +     | +     | +     |        |        | +      | +      |        | +      | +      |        |
| Enhanced transparency and traceability       |       |       | +     |       |       |       |       | +     |       | +      |        | +      |        |        |        | +      | +      |
| Better land use planning                     | +     | +     |       |       |       | +     |       | +     | +     |        | +      |        |        |        | +      | +      |        |
| Shared infrastructure                        | +     | +     |       |       |       |       |       |       | +     |        | +/-    | +/-    |        |        |        | +      | +      |
| Low environmental footprint mining           |       |       | +     |       |       | +     | +     |       |       |        |        | +      | +      |        | +      | +      | +      |
| Renewable energy solutions                   |       |       | +     |       |       |       | +     |       |       |        |        | +      | +      |        |        | +      | +      |
| Towards zero accidents                       |       |       | +     | +     |       |       |       |       |       |        |        |        |        |        |        |        |        |
| Better skills base                           | +     |       |       | +     |       |       |       |       | +     |        |        |        |        |        |        | +      | +      |

Figure 19: Innovations and the SDGs they affect (Endl et al. 2019)

# 4 Raw Material's Consumption in Light of New Technologies

In this chapter, two technologies for electricity production are compared on the basis of materials used for the construction of the production units. On the one hand, a thermal power plant is considered as "old-technology", and on the other hand, wind turbines represent the "new technologies. The goal is to gain an overview, what changes in materials used are caused by this technology-shift and whether this can be seen in the production numbers of these materials. This shall be done using data collections evaluated in chapter 2. Moreover, the use of critical raw materials, lifetime, and recycling shall be considered in terms of sustainability and efficiency of electricity production.

#### 4.1 Thermal Power Plant

A thermal power plant generates electricity by converting heat (thermal energy) from burning some sort of fuel, typically coal, oil or gas, newer models also use e.g. biomass, into electric energy which can then supply the grid with current. Different types of thermal power plants have to be differentiated according to the units used for electricity production (Verbund AG, 2019; TEPCO Fuel & Power Inc., 2019):

- 1. Steam power generation
- 2. Combined-cycle power generation
- 3. ACC power generation
- 4. MACC power generation
- 5. Combined heat and power generation

#### Ad 1. Steam power generation

This type of power plant generates steam with high-temperature and -pressure by burning fuel in the boiler. The steam leaves the boiler and is driven through guide and rotor vanes of a turbine causing it to rotate. The turbine in turn is connected to a generator via a shaft and powers it to generate electricity.

The steam precipitates and the water can be reused by feeding it back into the boiler. A flow chart of this process can be seen in Figure 20. A comparatively low temperature is sufficient for this kind of power generation (approx. 600°C), however, also the thermal efficiency is not very high with 41.6-45.2%. (TEPCO Fuel & Power Inc., 2019; Verbund AG, 2019)



Figure 20: Schematic graphic of a thermal power plant using a combined-cycle (TEPCO Fuel & Power Inc., 2019)

#### Ad 2. Combined-cycle power generation

A combined-cycle power plant uses steam power exactly like in the steam power generation, additionally it generates combustion gas by burning a mixture of fuel and air that has been compressed in a gas turbine beforehand. The gas flows through the power turbine of the gas turbine that is also connected to the generator, which is driven by the expansion of the gas. The remaining gas is then used to heat the water to generate steam.

This power plant operates at a higher temperature (1100 °C gas temperature after burning process, 560°C steam temperature) and has a higher thermal efficiency of 47.2% than a steam power plant. (TEPCO Fuel & Power Inc., 2019)

#### Ad 3., Ad 4. (More) Advanced Combined Cycle ((M)ACC) generation

Power plants of this type work based on the same principles as the combined-cycle power generation, the only difference is the higher temperature of the combustion gas (ACC: approx. 1300°C, MACC: approx. 1500°C) and therefore the higher thermal efficiency of 54.1-57.2% and 58.6% respectively. (TEPCO Fuel & Power Inc., 2019)

#### Ad 5. Combined heat and power generation

Combined heat and power generation can use any of the above-mentioned types of electricity generation. The difference is that not all of the produced steam is used for driving the turbine, but some is redirected to heat exchangers transferring heat to the hot water network for district heating. (Verbund AG, 2019) The efficiency of this type of power plant is a combination of the efficiency of the power production and the heat production. The total efficiency ranges up to 85%.

For further evaluations a combined heat and power plant using biomass is chosen due to the lack of data on materials and their amounts used for the construction of the other power plant types. So, in fact, two types of renewable energy production are compared. This power plant usually consists of a main building and a storage building. The main building houses the facilities for the actual heat and power production, including a block-type power station, gas buffer, scrubber, cooler, biochar mixer, biomass feeding, pyrolysis, reduction reactor, hot gas filter, balance tank district heating, and control units. (Käppler, 2015)

Käppler conducts a life cycle assessment of a combined heat and power plant. The power plant evaluated has a nominal power of 250 kWel and 260 kWtherm. In 2016 1,517 MWh of electricity and 2,189 MWh of thermal energy were produced in 7,986 operating hours resulting in an average power output of 190 kWel. However, this plant also has a power demand of 161 MWh per year.

Unfortunately, this was the first year of production of this power plant, meaning there were numerous unplanned downtimes and the production was not as efficient as planned. More current numbers could not be obtained.

The material flow diagram for energy in and output, as well as a layout for the main building can be found in the Annex.

According to this study the materials and their amounts required for building such a plant are as follows. (Käppler, 2015)

#### Main building

- Foundation:
  - 700 kg sand and gravel
  - 312 m<sup>3</sup> reinforced concrete
  - $\circ$  480 m<sup>2</sup> moulding, i.e. 18 m<sup>3</sup> wood
- 17 m<sup>2</sup> glass windows, i.e. 850
   kg glass
- 150 m<sup>2</sup> tar paper, i.e. 1,500 kg bitumen seal
- 1,050 kg roof insulation, i.e. polystyrene foam stab

#### Storage building

- Foundation:
  - o 798 t gravel
  - 108 m<sup>3</sup> concreate (sole plate and foundation)
- Walls:
  - 56 m<sup>3</sup> reinforced concrete
  - 76 m<sup>3</sup> moulding from wood

- 24 steel pillars, i.e. 16,800 kg steel
- Roof: 1,100 m<sup>2</sup> troughed sheet, i.e. 14.68 kg steel
- 300 kg steel fan

#### Carburettor

- 7.2 t chromium alloy steel
- 9.6 t galvanised steel (stairs and other plant components)
- 350 kg aluminium
- 350 kg copper (electric components)
- 3 t rock wool (insulation)
- 24 ceramic filter cartridges
   3,50 kg each

#### Block-type power station

- 240 kW gas engine
- Control unit: 275 kg steel, 0.15 kg aluminium, 10.8 kg copper, 78.5 kg polyethylene
- Noise protection: 1,919 kg steel, 480 kg rock wool
- Converter: 488 kg steel

Main building, storage building, and carburettor have an expected useful life of 30 years, whereas the block-type power station itself has a service life of approx. 8 years. The carburettor needs to be refurbished after 15 years – half the components have to be exchanged enabling a further 15 years of operating time. Steel used for construction of the storage building can be recycled. The same is valid for aluminium, copper, and steel from the carburettor, and copper and steel from the power station. However, recyclable components make up less than 2% of total material input for construction. Not recyclable wastes are concrete, wood, insulation, bitumen seal, glass, rock wool, and filter cartridges. (Käppler, 2015) Wood is also counted as unrecyclable, nevertheless, it is a renewable material and easy to dispose of.

In order to be able to compare the material input of the two different electricity production plants the input is summarised per material group and calculated in kg per kWh in the next step.

| Material                              | [kg]      | [kg/kWh] |
|---------------------------------------|-----------|----------|
| Aggregates                            | 798,700   | 0.2      |
| Concrete <sup>1</sup>                 | 1,190,000 | 0.3      |
| Steel (low alloyed)                   | 29,396.7  | 0.008    |
| Chromium alloy steel                  | 7,200     | 0.002    |
| Aluminium                             | 350.2     | 0.0001   |
| Copper                                | 360.8     | 0.0001   |
| Glass                                 | 934       | 0.0002   |
| Insulation (Polyethylene/Polystyrene) | 1,128.5   | 0.0003   |
| Rock Wool                             | 3,480     | 0.0009   |
| Wood <sup>2</sup>                     | 38,540    | 0.01     |
| Bitumen Seal                          | 1,500     | 0.0004   |
| Total                                 | 207,159.1 | 0.6      |

Table 6: Materials for combined heat and power plant in [kg] and [kg/kWh]

| <sup>1</sup> assumption: reinforced concrete density | 2,500     | kg/m3        |
|------------------------------------------------------|-----------|--------------|
| <sup>2</sup> assumption: fir density                 | 410       | kg/m3        |
| electricity                                          | 1,517,000 | kWh per year |
| heating                                              | 2,189,000 | kWh per year |

Highlighted in green are renewable materials – here wood. Which means 1.86 % of total material input comes from renewable materials.

#### 4.2 Wind Turbine

According to Komusanac *et al.* (WindEurope) 362 TWh of electricity were generated by wind turbines in 2018 covering 14% of the electricity demand of the EU. Wind energy is also the renewable energy technology accounting for most investments (63%) in 2018. Germany is the EU country accounting for the highest number of new installations as well as the highest installed wind power capacity. However, in terms of wind energy covering the electricity demand of a country, Denmark is in the lead with a share of 41%. Considering global electricity production, the total share of renewable energy in 2016 was 13.7%. Wind energy only takes up a share of 0.6%. This is significantly lower than EU average. The highest share of renewables is accounted for by biofuels and waste with 9.5% followed by hydropower with a share of 2.5% of global electricity production. Overall, oil is still the most important electricity source (31.9%), followed by coal (27.1%), and natural gas (22.1). However, renewable energy sources are catching up and have overtaken nuclear and other forms of power production (5.2%). (Komusanac *et al.*, 2019; International Energy Agency, 2018)

Wind turbines utilise the same principle for energy production as the turbines in thermal power plants. Wind (or air movement) is a form of kinetic energy, driving the turbine's blades creating rotational energy. Rotational energy is then converted into electricity via electromagnetic induction. The amount of wind power generated depends on the size of the rotor and the speed of the wind.

wind power  $\infty$  rotor dimensions  $\infty$  (wind speed)^3

A typical wind turbine consists of three main components independent of its size: nacelle, rotor, and tower.

The materials used, the size, and the configuration of the wind turbine can vary. The largest wind turbines currently on the market have a power rating of 8.8 MW with a rotor diameter of 164 m. Offshore turbines are usually larger with a higher capacity than onshore turbines.

A turbine has an expected service life of 20 to 30 years, which is comparable to the combined heat and power plant discussed in the previous chapter (chapter 4.1). Additionally, a plus of 15 years can be achieved by refurbishing the turbine. (IRENA and IEA-ETSAP, 2016; Wilburn, 2011)

The nacelle houses the main components for electricity production, gearbox, rotor shaft and brake, generator, and yaw system. It is directly connected to the blades that capture the kinetic energy of the wind. The yaw system is responsible for aligning the nacelle with the wind direction. (IRENA and IEA-ETSAP, 2016)

Commonly, there are three blades due to better balance of gyroscopic forces. The profile of the blades is similar to that of airplane wings. Materials used are balsa wood or polymer foam for the core, and a fiberglass-reinforced plastic and epoxy adhesive mixture. Another possible material is carbon fibre-reinforced plastic that offers higher strengths for sites where the blades have to endure high stresses, however, costs are significantly higher. For smaller blades laminated wood is also an option. The blades are supported by the blade extender made of steel, mounted on the hub (the base) which is made of cast iron. Responsible for the blade angle in order to achieve the best possible energy recovery, or other adjustments according to wind and weather conditions, is the pitch drive, which consists of stainless and alloy steels.

The nacelle usually is responsible for 25-40% of the total weight the turbine, the rotor (incl. blades, blade extender, hub, and pitch drive system) for 10-14%.

The tower itself consists of a concrete foundation and steel sections accounting for approx. 30-65% of the weight. The tower is designed for each site individually in order to optimise the capture of wind energy. A graphical illustration of the main components is shown in Figure 21.

(IRENA and IEA-ETSAP, 2016; Wilburn, 2011)



Figure 21: Dimensions (A) and main components (B) of a typical wind turbine (Wilburn, 2011)

There are different generator systems that can be used for electricity production in a wind turbine:

- double-fed, asynchronous wound-rotor generators
- asynchronous generators with a cage rotor
- direct drive, synchronous
- permanent magnet generators

The most frequently used generator type is currently the double-fed, asynchronous wound-rotor generator. The permanent magnet generators are used in approx. 23% of all wind turbines. Further development however, is somewhat unclear. Some forecasts predict a significant increase to 72% by 2030, other forecasts show a more conservative increase. Depending on the type of generator the raw materials required vary greatly. Permanent magnets rely on rare earths (neodymium and dysprosium) and no substitutes have yet been found. Wind turbines are responsible for 10% of total consumption of rare earths neodymium and dysprosium. (Wilburn, 2011; Dickson, 2018; Schüler *et al.*, 2011)

There are numerous authors conducting life cycle assessment (LCA) for wind turbines, e.g. (Haapala and Prempreeda, 2014) (InTech, 2012) (Asdrubali *et al.*, 2015) to mention just a few. Among other things, they provide a good overview of materials required for the production.

The LCA conducted by Venås (2015) compares two turbines for offshore electricity production - a conventional turbine with double-fed induction generator and a direct drive permanent magnet generator.

The materials used for the nacelle and respective amounts are stated in the following:

#### **Conventional Generator**

- Generator: 10,426 kg copper 23,406 kg low-alloyed and electrical steel
- Gearbox: 41,703 kg cast iron 41,703 kg (high alloy) chromium steel 18/8
- Housing: 10,426 kg glass-fibre reinforced plastic, polyamide, injection moulding
- Main frame: 35,259 kg cast iron 19,476 kg low alloyed and electrical steel
- Main shaft: 27,029 kg (high alloy) chromium steel 18/8 4,770 kg low-alloyed and electrical steel
- Transformer:
   7,819 kg copper
   17,984 kg low-alloyed and electrical steel

(Venås, 2015)

#### Permanent Magnet Generator

- Generator:
   6,029 kg copper
   74,290 kg low-alloyed and electrical steel
   3,014 kg neodymium-ironboron (NdFeB) material
- Housing: 9,200 kg glass-fibre reinforced plastic, polyamide, injection moulding
- Main frame: 31,115 kg cast iron 17,187 kg low alloyed and electrical steel
- Main shaft:
   23,852 kg (high alloy)
   chromium steel 18/8
   4,208 kg low-alloyed and
   electrical steel
- Transformer:
   6,900 kg copper
   15,870 kg low-alloyed and electrical steel

Permanent magnets using NdFeB-materials consist of 70% iron, 29% neodymium, and 1% boron. Usually, it is not pure neodymium but rather an alloy of neodymium with another rare earth element. Preferably, praseodymium as it has very similar properties to neodymium and does not change the magnetic field. The ratio of the mixture depends on the ore used, as separation is very difficult and expensive (commonly 4 parts neodymium to 1 part praseodymium). Adding dysprosium can have positive effects on the strength of the magnetic field especially at higher temperatures. It also improves the corrosion resistance of the magnet. Alternatively, terbium can be used with similar effects. Dysprosium is added with 3-5% of the total weight of the magnet, terbium with < 1%. (Venås, 2015)

Breaking down the amount of NdFeB-material used for the turbine (3,014 kg), 2,109.8 kg iron, 874.1 kg rare earths, and 30.1 kg boron are required.

The comparison of material input for a conventional generator to a permanent magnet generator shows that the permanent magnet generator does not require a gearbox. Therefore, it is saving more than 80 t of cast iron and high alloy chromium steel (approx. 41 t each). Also, for the other parts the permanent magnet turbine has a lower material input than the conventional turbine. However, it requires 50 t more low alloyed steel for the generator and additionally 3 t of NdFeB-material. In total the material input for the permanent magnet turbine is 41 t lower than for the conventional turbine. (Venås, 2015)

While permanent magnets seemed to be the way forward for some time, it is currently not clear how their application will develop in the future. One of the largest wind turbine producers, Vestas, pursues the production of conventional drive turbines which require approx. 1/10 of rare earth elements, as opposed to direct-drive (without gearbox) turbines. In conventional drive turbines rare earth elements are still used in generator magnets and magnets used in the tower, however, they do not contain permanent magnets and contribute < 0.1% to life cycle impacts. (Vestas, 2019)

On the other hand, the company ENERCON, the wind turbine producer with the largest market share in Germany, switched its production completely to gearless systems. Also, Siemens and GE Renewable Energy offer direct drive turbines. Permanent magnets are very useful for offshore wind farms. (Schüler *et al.*, 2011; GE Renewable Energy, 2019; Siemens, 2017)

As they operate without a gearbox, they are very robust in harsh weather conditions, achieve higher efficiencies, and are lighter. However, the high costs for the magnets are a major drawback. (Schüler *et al.*, 2011; GE Renewable Energy, 2019; Siemens, 2017)

For further evaluations a current model Vestas V116 – 2.0 MW (induction generator) onshore wind farm will be considered. This turbine is 80 m high and has a rotor diameter of 116 m. The farm contains 25 turbines and has a capacity of 50 MW. The proposed lifetime is 20 years. The electricity production depends on the wind speed, assuming medium wind speed at 8.5 m/s the farm produces 243.85 GWh per year (9,755 MWh per turbine per year). These numbers assume an availability of 98.5% and include total plant electrical losses up to the grid of 2.5% and average plant wake losses of 6%. (Razdan and Garrett, 2018)

The materials for this farm are again summarised and stated in kg and kg per kWh (see Table 7).

| Material                           | [kg]       | [kg/kWh] |
|------------------------------------|------------|----------|
| Concrete                           | 18,328,000 | 0.08     |
| Steel (low alloyed/cast iron)      | 5,419,000  | 0.02     |
| High alloyed steel                 | 727,000    | 0.003    |
| Aluminium/ -alloys                 | 221,000    | 0.001    |
| Copper                             | 102,000    | 0.0004   |
| Ceramic/glass                      | 365,000    | 0.001    |
| Modified organic natural materials | 94,000     | 0.0004   |
| Other materials and compounds      | 48,000     | 0.0002   |
| Magnets                            | 1,000      | 0.000004 |
| SF <sub>6</sub> gas                | 243        | 0.000001 |
| Electronics                        | 77,000     | 0.0003   |
| Lubricants and liquids             | 41,000     | 0.0002   |
| Not specified                      | 11,000     | 0.00004  |
| Total                              | 25,434,243 | 0.1      |

Table 7: Materials for wind farm in [kg] and [kg/kWh]

electricity

243,850,000 kWh per year

Considering the materials used for the construction of the wind farm it cannot be identified whether any renewable materials are used, as "modified organic natural materials" is not specified in more detail. Many first-generation wind farms are about to reach their end-of-life, so considering recyclability is of utmost importance. According to Vestas many parts of the turbine can be recycled almost entirely. For example, tower sections consisting mainly of mono-material (steel, cast iron, etc.) can be recycled up to 98%. Gearbox, generator, cables, and yaw system reach 95% recyclability. In general, steel, aluminium, and copper used are 92% recyclable, 8% go to landfills. Not recyclable materials are polymers, fluids, and other materials. These make up 74% of total material input of the wind farms considered in Table 7 (incl. concrete, ceramic/glass, modified organic natural materials, other materials and compounds, lubricants and liquids, and not specified).

#### 4.3 Comparison

To evaluate differences between thermal power plants and wind turbines in terms of raw material input for construction, Table 8 shows a comparison of both.

|                                       | Combined heat and |              |
|---------------------------------------|-------------------|--------------|
|                                       | power plant       | Wind turbine |
| Material                              | [g/kWh]           | [g/kWh]      |
| Aggregates                            | 215.5             |              |
| Concrete                              | 321.1             | 75.2         |
| Steel                                 | 7.9               | 22.2         |
| Chromium alloy steel                  | 1.9               | 3.0          |
| Aluminium                             | 0.1               | 0.9          |
| Copper                                | 0.1               | 0.4          |
| Ceramic/glass                         | 0.3               | 1.5          |
| Insulation (Polyethylene/Polystyrene) | 0.3               |              |
| Rock Wool                             | 0.9               |              |
| Wood                                  | 10.4              |              |
| Bitumen Seal                          | 0.4               |              |
| Modified organic natural materials    |                   | 0.4          |
| Polymer materials                     |                   | 2.2          |
| Other materials and compounds         |                   | 0.2          |
| Magnets                               |                   | 0.004        |
| SF <sub>6</sub> gas                   |                   | 0.001        |
| Electronics                           |                   | 0.3          |
| Lubricants and liquids                |                   | 0.2          |
| Not specified                         |                   | 0.04         |
| Total                                 | 558.9             | 106.5        |

Table 8: Comparison of material input for combined heat and power plantand wind farm in g per kWh

Table 8 shows that the material input in grams per kilowatt hour for the biomass combined heat and power plant (558.98 g/kWh) is approx. five times larger than for the wind farm (106.54 kg/kWh). As already mentioned in chapter 4.1, the produced energy amount of the combined heat and power plant used for this calculation is marked by higher downtimes than usual. This means that the material input per kilowatt hour is likely lower for 'normal' production years. However, it is doubtful whether a similarly low amount as for the wind farm can be achieved.

Materials used for both power plants are similar. The largest share of material input is concrete for the foundations, followed by low alloyed steel or cast iron. The relative amounts of recyclable materials used in the construction of the wind farm are significantly higher than for the combined heat and power plant – 26% to 2%. However, the combined heat and power plant also uses renewable materials (wood) for its construction, approx. 1.86% of total raw material input.

Another important aspect to consider is the operating time of the power plants. While the combined heat and power plant has a service life of approx. 30 years (apart from the carburettor, and the block-type power station), the wind turbine only has an operating time of approx. 20 years. For that reason, the material input in gram per kilowatt hour and year is used.

|                                       | Combined heat and |              |
|---------------------------------------|-------------------|--------------|
|                                       | power plant       | Wind turbine |
| Material                              | [g/(kWh*a)]       | [g/(kWh*a)]  |
| Aggregates                            | 7.2               |              |
| Concrete                              | 10.7              | 3.8          |
| Steel                                 | 0.4               | 1.1          |
| Chromium alloy steel                  | 0.1               | 0.1          |
| Aluminium                             | 0.004             | 0.04         |
| Copper                                | 0.004             | 0.02         |
| Ceramic/glass                         | 0.01              | 0.07         |
| Insulation (Polyethylene/Polystyrene) | 0.01              |              |
| Rock Wool                             | 0.06              |              |
| Wood                                  | 0.3               |              |
| Bitumen Seal                          | 0.01              |              |
| Modified organic natural materials    |                   | 0.02         |
| Polymer materials                     |                   | 0.1          |
| Other materials and compounds         |                   | 0.01         |
| Magnets                               |                   | 0.0002       |
| SF <sub>6</sub> gas                   |                   | 0.0000       |
| Electronics                           |                   | 0.02         |
| Lubricants and liquids                |                   | 0.01         |
| Not specified                         |                   | 0.002        |
| Total                                 | 18.8              | 5.3          |

Table 9: Comparison of material input for combined heat and power plantand wind farm in g per kWh and year

For this comparison the materials required for the carburettor are multiplied with 1.5, and for the block-type power station times 3.75. Table 9 shows that including the service life of the two power plants into the considerations the difference of the material input decreases. Now the material input for the combined heat and power plant is only 3.5 times higher than for the wind farm.

The metals used in both power plants show a high recyclability. According to Braedel *et al.* (2011) the End-of-life Recycling Rate for chromium is 90% (average value), for iron 72% (average), for aluminium 58% (average), and for copper 68%. Moreover, none of these metals are considered as critical for the EU. The largest producers of iron in 2017 were Australia, China, and Brazil. There is also iron production in the EU – for example, in Sweden and Austria. EU producers of aluminium are among others Germany and France. The largest producers worldwide are China and Russia. Chromium is produced in Finland and Greece, Copper in Spain and Bulgaria. More detailed information on countries producing the metals discussed can be found in the Annex. The tables are organised by the largest producer in 2017.

Wind turbines also contain sulphur hexafluoride gas (SF<sub>6</sub>). It is used in switchgears that are used in every turbine and to connect turbines and transformer stations. SF<sub>6</sub> is a very powerful greenhouse gas and its disposal has to be done very carefully as to not release it into the atmosphere. Therefore, the switchgears have to be collected and SF<sub>6</sub> gas is reclaimed for reuse. (Vestas, 2019)

For the sake of completeness, materials used for permanent magnets in wind turbines shall be considered as well. Schüler *et al.* find that the recycling of permanent magnet materials is far from ideal. Especially during the production process a lot of material is lost, which is not yet recovered. Studies show that approx. 20-30% of rare earth magnets are lost during production. There are various approaches on lab-scale on the reclamation of rare earth scrap from these processes; however, none are in use on large scale yet. Also, in terms of substitution (apart from the conventional drive for wind turbines) there are no commercially available alternatives offering the same performance, incl. coercivity, corrosion resistance, etc.

Rare earths are considered critical for the EU. The largest producer in 2017 was China producing 82% of global amounts. Between the years 2000 to 2010 the Chinese market share even increased to more than 95% (largest share in 2009 with 98%)! There is no rare earth production in Europe.

Wind wheels exist since the early days, they were already used in the 1<sup>st</sup> century AD to power machines. However, the first large scale wind farm was built in 1975 in the United States of America. The first off-shore wind farm was built in Denmark in 1991, that is also the time of the first direct drive turbines using permanent magnets with neodymium. (Schüler *et al.*, 2011; Shahan, 2014)

Beginning in the 1990 wind energy experienced an upswing. For example, in the United States the government established incentives for the use of renewable energy. They also funded research into more efficient and cheaper technologies. (U.S. Energy Information Administration, 2019)

Therefore, the development of production figures for the metals iron, aluminium, copper, chromium will be considered from 1990-2017 (most current figures) using WMD, rare earth elements from 1984-2017.



Figure 22: Development of production amounts of Iron content, Chromium content data source: Reichl *et al.*, 2019





Figure 23: Development of production amounts of Aluminium content, Copper content, Rare Earth concentrates, data source: Reichl *et al.*, 2019

All five metals show an increase of production during the considered time span. However, iron, copper, aluminium, and chromium developments cannot be connected to either of the power plants directly. All of them are important construction materials and an increase of produced amounts is mainly due to economic developments, as discussed in chapters 3.3. and 3.3.1

Nevertheless, wind turbines are responsible for at least 10% of rare earth consumption. Their production shows a significant increase during the second half of the 1990s and especially between the years 2000 and 2010. In 2010 rare earth prices spiked, and China imposed export restrictions. (Schüler *et al.*, 2011)

In combination with economic recession rare earth production decreased. The recovery started in 2013. These developments correlate with the expansion of wind energy.

Another important difference is the energy and material input for electricity production. Firstly, the combined heat and power plant requires energy (electricity and heat) for the drying process of the wood chippings. For the assessed power plant this amounts to approx. 560 MWh. Secondly, in order to produce electricity and heat, it requires a constant input of biomass for the burning process. In 2016 that meant an input of 1,179 t wood chippings with a total energy content of 5,171.17 MWh. (Käppler, 2015)

The electricity required for operating wind turbines is neglectable. There are only minor amounts used for system controls.

This thesis does not consider material input for maintenance. Moreover, the transport, construction processes, grids, etc. are not evaluated. It can be assumed that distances between combined heat and power plant and its consumers are generally smaller than for wind farms. Wind farms, especially offshore farms, are usually long distances from the consumer, or existing electricity grids. That means, construction of new infrastructure is likely very resource intensive. Logistics and transport probably involve greater effort than for combined heat and power plants as well.

Another point not considered in this evaluation is the use of land which would be significantly higher for the wind farm by a factor of at least 10. The combined heat and power plant assessed here requires a space of 33,510 m<sup>2</sup>. The wind farm consists of 25 turbines each with a rotor diameter of 116 m. That equals an area of 336.400 m<sup>2</sup> without considering the distance that needs to be included in between the turbines. (Käppler, 2015; Razdan and Garrett, 2018)

### 5 Conclusion

In chapter 2 Collections of Raw Material's Production Data, four different data collections for raw material production data are introduced. The data collections were chosen according to their public availability and the amount of countries and raw materials covered. These are three providers reporting global production, the Austrian Federal Ministry for Sustainability and Tourism and their World Mining Data (WMD), the British Geological Survey (BGS) and their World Mineral Production, and the United States Geological Survey (USGS) with their Minerals Yearbook. Moreover, one data provider for European production data is considered – Eurostat Material Flow Database in order to include a different form of reporting and see its advantages and disadvantages.

The goal is to assess the collections in terms of data reported (countries and raw materials included, physical form of raw material reported), methods of data collection, etc. These are then compared to find strengths and weaknesses.

It is also attempted to provide a guideline on which collection to use for what kind of information.

The conclusion is that the three international data reports provide very similar data, both in terms of commodities reported, and countries covered. Moreover, the methods of data collection also show a lot of commonalities. Mainly desktop research and information by contacts in governments and companies are employed, but also questionnaires are sent out to embassies or responsible government agencies.

The main differences can be seen in the setup of the reports and the additional data provided. BGS only reports production numbers sorted by commodity and subdivided by continent and country respectively. WMD has additional sections sorting production by development status of the countries, political stability, economic blocks, etc. It also provides graphics illustrating, for example, the distribution of raw material production among continents or major developments in global mining production. (Reichl *et al.*, 2019)

USGS has a different approach for the Minerals Yearbook as the other two international collections. Each commodity is published in a separate report, which also includes background information on the industry, uses, reserves, and resources. However, the main focus is on developments in the United States. This shows the manpower employed by the USGS. Each commodity report is edited by a commodity-specialist supported by data analysts. The same is the case for the country reports in Volume III of the Minerals Yearbook.

No clear recommendation as to what report to use can be given. All three providers have their strengths and the ideal collection depends on the application it is used for. The quality of data appears to be very similar; no major differences could be found. It seems the WMD are most coherent in terms of what form of raw material is reported, always focusing on metal content or concentrate/product available on the market. Moreover, it is very favourable that sources and reliability of data are clearly stated. BGS is preferred if long-term evaluations are conducted. They offer coherent data since 1913 and do not change the form a raw material is reported in order to allow maximum comparability. USGS is most useful if additional data is required. One example for its application is the Critical Raw Materials list by the European Commission where information on the application, industry, etc. are an important input. However, a lot of the information provided is focused on the US.

Eurostat provides different data for European countries than the international collections. First of all, they report ores rather than metal contents. Secondly, many commodities are aggregated in groups and not reported separately, for example, precious metals, instead of gold, silver, etc. One advantage of this collection is the additional data provided, such as import and export figures, or physical trade balance. Moreover, very recent data is published usually with only a one-year delay. However, unfortunately the database is very incomplete, and a lot of data is not published due to privacy issues. Which makes a comparison of the actual figures with the international collections difficult and its use for long-term evaluations is not possible.

A comparison of actual production figures of the three international providers showed that there are differences, but they are usually minor. However, a comparison with Eurostat figures proved difficult, as many raw materials are aggregated in groups. Moreover, there are large gaps where figures are not published due to the mentioned privacy issues and in order to be able to compare the figures ores had to be converted to metal content (see chapter 2.5).

Chapter 3 Applications assesses different uses of raw material production data. There are many studies relying on the data providers discussed before.

The production figures are relevant for companies, both upstream and downstream for their strategic planning. Furthermore, they are a very important tool for policy makers, not only for ensuring raw material supply for the economies, but also for reaching targets in line with sustainability and circular economy considerations.

Two applications discussed in this chapter are the criticality assessment of the European Union, and the Sustainable Development Goals. The criticality assessment is a study conducted by the European Commission in a three-year interval. This study has the purpose of showing which minerals are of fundamental importance for the European economy, but are connected to supply risks. Without the production data and additional information by above mentioned reports, this evaluation would not be possible. However, this assessment also shows the need for improved data collection for Europe. For example, for many raw materials there is no information on their uses in the EU, but the criticality study has to rely on information by USGS for the US.

Production data is also highly relevant for assessing the progress towards achieving the Sustainable Development Goals, especially Goal 12 Responsible Production and Consumption. Production data, as well as import and export figures are used for modelling material flows of economic systems which show the material intensity of an economy. This is useful information for evaluating where policies have to act in order to achieve a more sustainable and efficient use of raw materials. Goal 12 needs special consideration in the European Union. Even though most EU members show great progress towards achieving the SDGs in general, all of them struggle with Goal 12. The most critical issues are the sustainable management of natural resources and the abolishment of fossil fuel subsidies. (Sachs *et al.*, 2019; Bauer *et al.*, 2018)

Another interesting application of raw material production data is material flow accounting (MFA). MFA analyses the material flows into, inside, and out of an economic system.

With this analysis consumption patterns can be identified which makes it a very useful tool in the efforts for achieving SDG 12 and circular economy. For this purpose, long-term data is necessary. Therefore, Krausmann *et al.* mainly use USGS as a source of production data as they range back to 1900. However, MFA utilises the "run-of-mine"-concept which means metal contents reported by USGS (or the other international collections) need to be converted to gross ores. The conversion requires the knowledge of the percentage of metal inside the ore which varies greatly between different deposits. Usually an average value is chosen. This can lead to deviations between gross ore calculated and actual produced amount. Another issue for MFA is the missing recording of aggregates, such as sand and gravel, or limestone. In order to conduct a complete MFA for an economy these materials are very important as they are a major input in infrastructure and building stock. To evaluate these amounts a bottom-up approach is used for estimations – number of kilometres of roads built requires so much material, etc.

The last part of this thesis, chapter 4 Raw Material's Consumption in Light of New Technologies, compares the raw material input of two electricity producers. It evaluates a combined heat and power plant, producing electricity and heat for district heating by burning biomass, and an onshore wind farm of 25 wind turbines. The material input for building both types of power plants is put in relation to the amount of energy produced per year and the lifetime of the power plant. This comparison shows that the material input in gram per kilowatt hour and operating year for a wind farm (5.33 g/(kWh\*a)) is lower than for a combined heat and power plant (18.80 g/(kWh\*a)). The wind farm also uses a higher percentage of recyclable materials. On the other hand, the combined heat and power plant utilises renewable materials for the construction.

The combined heat and power plant also relies on constant energy and material input (electricity and biomass) for electricity and heat production.

However, certain kinds of wind turbines use rare earths for permanent magnet generators and are responsible for approx. 10% of total global consumption of neodymium and dysprosium. Not only are rare earths considered critical for the European Union as China is the main producer with a market share of over 82% in 2017. (Reichl *et al.*, 2019) But also, the processing is a very inefficient process causing a lot of material loss and the recycling rates of rare earth magnets are still very low. (Schüler *et al.*, 2011; Dickson, G., 2018)

Considering the materials used for the construction, it was not possible to show a relation between the production figures of the metals and the type of power plant being constructed, as both types of plants use the same common materials that are used in all forms of construction worldwide. Only rare earth production likely shows a connection to increasing wind turbine production.

Not assessed are the construction of new infrastructure, logistics, and transport. Which are probably higher for the wind farm due to longer distances from the existing grid and its consumers. Also, the area required for both types of power plants was not evaluated. Again, this would mean a much higher consumption of resources from the wind farm than the combined heat and power plant. The considered combined heat and power plant utilises a space of 33,510 m<sup>2</sup>, whereas the wind farm requires more than 336,400 m<sup>2</sup> (25 turbines with 116 m rotor diameter each, not considering the distance between the turbines). (Käppler, 2015; Razdan and Garrett, 2018)

## 6 Bibliography

- Asdrubali, F., Baldinelli, G., D'Alessandro, F. and Scrucca, F. (2015), "Life cycle assessment of electricity production from renewable energies: Review and results harmonization", *Renewable and Sustainabl Energy Reviews*, No. 42, pp. 1113–1122.
- Bauer, B., Watson, D. and Gylling, A.C. (2018), Sustainable Consumption and Production: An Analysis of Nordic Progress towards SDG12, and the way ahead.
- Blengini, G.A., Blagoeva, D., Dewulf, J., Torres de Matos, C. and Nita, V. (2017), Assessment of the Methodology for Establishing the EU List of Critical Raw Materials: Background Report, Luxembourg.
- Boumphrey, S. (2016), Sustainability and the New Normal for Natural Resources.
- Braedel, T.E., Allwood, J., Birat, J.-P., Reck, B.K. and Sibley, S.F. (2011), *Recycling Rates of Metals: A Status Report*, A Report of the Working Group on the Global Metal Flows to the International Resource Panel.
- Brown, T.J., Idoine, N.E., Raycraft, E.R., Hobbs, S.F., Shaw, R.A., Everett, P., Kresse, C., Deady, E.A. and Bide, T. (2019), *World Mineral Production 2013-2017*, Keyworth, Nottingham.
- Bureau of Intelligence and Research (2019), "Independent States in the World", available at: https://www.state.gov/independent-states-in-the-world/ (accessed 25 December 2019).
- DG Grow, Unit C2 Resource Efficiency and Raw Materials (2019), "Critical raw materials Internal Market, Industry, Entrepreneurship and SMEs - European Commission", available at: https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical\_en (accessed 10 October 2019).
- Dickson, G. (2018), Raw Materials and the wind industry, Raw Materials Week.
- EIT RawMaterials (2019), "Innovation Themes", available at: https://eitrawmaterials.eu/innovation-themes/ (accessed 18 October 2019).
- Endl, A., Tost, M., Hitch, M., Moser, P. and Feiel, S. (2019), "Europe's mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points", *Resources Policy*.
- EuroGeoSurveys (2016), "Mineral Resources", available at: https://www.eurogeosurveys.org/expertgroups/mineral-resources/ (accessed 21 October 2019).

- European Commission (2008), Communication from the Commission to the European Parliament and the Council: The raw materials initiative - meeting our critical needs for growth and jobs in Europe, {SEC(2008) 2741}, Brussels, available at: https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX:52008DC0699 (accessed 10 June 2019).
- European Commission (2014), Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: On the review of the list of critical raw materials for the EU and the implementation of the Raw Materials Initiative, {SWD'(2014) 171 final}, Brussels (accessed 10 June 2019).
- European Commission (2015), Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Closing the loop - An EU action plan for the Circular Economy, COM(2015) 614 final, Brussels (accessed 10 June 2019).
- European Commission (2019), "Goal 12. Ensure sustainable consumption and production patterns", available at: https://ec.europa.eu/sustainable-development/goal12\_en (accessed 24 November 2019).
- Eurostat (2019b), Economy-wide material flow accounts (EW-MFA): 2019 EW-MFA questionnaire.
- Eurostat (2019a), "Material flow accounts", available at: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env\_ac\_mfa&lang=en.
- Eurostat (2018), *Economy-wide material flow accounts: Handbook, 2018 edition*, available at: https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/KS-GQ-18-006.
- GE Renewable Energy (2019), "Increasing Wind Energy with the Power of Massive Magnets", available at: https://www.ge.com/renewableenergy/stories/block-island-ge-store (accessed 30 December 2019).
- George, M.W. (2019), Mineral Commodity Summaries: Arsenic (accessed 10 September 2019).
- Gislev, M., Grohol, M., Mathieux, F. and Ardente, F. (2018), *Report on Critical Raw Materials and the Circular Economy*, Luxembourg (accessed 4 June 2019).
- Haapala, K.R. and Prempreeda, P. (2014), "Comparative life cycle assessment of 2.0 MW wind turbines", *Int. J. Sustainable Manufacturing*, No. Vol. 3, No. 2, pp. 170–185.
- Haas, W., Krausmann, F., Wiedenhofer, D. and Heinz, M. (2015), "How Circular is the Global Economy? An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005", *Journal of Industrial Ecology*, Vol. 19 No. 5, pp. 765–777.
- InTech (Ed.) (2012), Sustainable Development Energy, Engineering and Technologies -Manufacturing and Environment: Life Cycle Analysis of Wind Turbine.

International Energy Agency (iea) (2018), Renewables information: Overview.

International Resource Panel (IRP) (2018), Technical Annex for Global Material Flows Database.

International Resource Panel (IRP) (2019), "Global Material Flows Database", available at: https://www.resourcepanel.org/global-material-flows-database (accessed 23 October 2019).

IRENA and IEA-ETSAP (2016), Wind Power: Technology Brief (accessed 24 November 2019).

- Joint Research Centre (2019), "Raw Materials Information System", available at: https://rmis.jrc.ec.europa.eu/ (accessed 10 October 2019).
- Kalmykova, Y., Rosado, L. and Patrício, J. (2016), "Resource consumption drivers and pathways to reduction: economy, policy and lifestyle impact on material flows at the national and urban scale", *Journal of Cleaner Production*, No. 132, pp. 70–80.
- Käppler, E. (2015), "Lebenszyklusanalyse der Strom- und Wärmeerzeugung einer
   Holzvergasungsanlage inklusive Nahwärmenetz. Am Beispiel des Schwebefestbettvergasers
   des Energiewerk Ilg, Dornbirn", Master Thesis, Fachhochschule Vorarlberg, Dornbirn, 2015.
- Komusanac, I., Fraile, D. and Brindley, G. (2019), *Wind energy in Europe in 2018: Trends and statistics*, Brussels (accessed 30 November 2019).
- Krausmann, F., Lauk, C., Haas, W. and Wiedenhofer, D. (2018b), From material extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900-2015: Supporting Information (accessed 10 January 2019).
- Krausmann, F., Lauk, C., Haas, W. and Wiedenhofer, D. (2018a), "From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900–2015", *Global Environmental Change*, Vol. 52, pp. 131–140.
- Krausmann, F., Weisz, H., Eisenmenger, N., Schütz, H., Haas, W. and Schaffartzik, A. (2018), Economy-wide Material Flow Accounting: Introduction and Guide, Version 1.2, Vienna.
- Krausmann, F., Wiedenhofer, D., Lauk, C., Haas, W., Tanikawa, H., Fishman, T., Miatto, A., Schandl, H. and Haberl, H. (2017), "Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use", *Proceedings of the National Academy of Sciences of the United States of America*, Vol. 114 No. 8, pp. 1880–1885.
- LKAB (2017), "Mineral reserves and mineral resources", available at: https://www.lkab.com/en/about-lkab/from-mine-to-port/exploration/mineral-reserves-andmineral-resources/ (accessed 19 February 2019).
- Lutter, S. (2018), Introduction to Material Flow Accounting (MFA).
- Lutter, S., Giljum, S. and Gözet, B. (2018), "The concept of material consumption materialflows.net", available at: http://www.materialflows.net/the-concept-of-material-consumption/ (accessed 3 October 2019).
- Mayer, A., Haas, W., Wiedenhofer, D., Krausmann, F., Nuss, P. and Blengini, G.A. (2018),
  "Measuring Progress towards a Circular Economy. A Monitoring Framework for Economywide Material Loop Closing in the EU28", *Journal of Industrial Ecology*, Vol. 23 No. 1, pp. 62– 76.

- MinLand (2019), "About the project Minland", available at: https://minland.eu/project/ (accessed 16 October 2019).
- MIREU (2017), "About Us | MIREU", available at: https://www.mireu.eu/about-us (accessed 16 October 2019).
- Pesonen, T. (2019), Raw Materials Week, Brussels.
- Razdan, P. and Garrett, P. (2018), *Life Cycle Assessment of electricity production from an Onshore* V112-3.3 MW Wind Plant, Aarhus N, Denmark.
- Reichl, C., Schatz, M., Masopust, A. and Resel, W. (2019), *World Mining Data 2019*, Vienna, available at: https://www.bmnt.gv.at/english/Energy---Mining/Mining/World-Mining-Data.html (accessed 14 February 2019).
- Sachs, J., Schmidt-Traub, G., Kroll, C., Lafortune, G. and Fuller, G. (2019), *Sustainable Development Report 2019*, New York.
- Schaffartzik, A., Eisenmenger, N. and Krausmann, F. (2015), *Resource Use in Austria: Report 2015*, Vienna.
- Schüler, D., Buchert, M., Liu, R., Dittrich, S. and Merz, C. (2011), *Study on Rare Earths and Their Recycling: Final Report for the Greens/EFA Group in the European Parliament*, Darmstadt.
- Shahan, Z. (2014), "Renewable Energy World. History of Wind Turbines", available at: https://www.renewableenergyworld.com/2014/11/21/history-of-wind-turbines/#gref (accessed 20 November 2019).
- Siemens (2017), "Windgeneratoren von Siemens", available at: https://new.siemens.com/global/de/branchen/windenergie/equipment/energieerzeugung/wi ndgeneratoren.html (accessed 30 December 2019).
- Steinberger, J.K., Krausmann, F. and Eisenmenger, N. (2010), "Global patterns of materials use: A socioeconomic and geophysical analysis", *Ecological Economics*, Vol. 69 No. 5, pp. 1148–1158.
- TEPCO Fuel & Power Inc. (2019), "Types of Thermal Power Generation", available at: https://www7.tepco.co.jp/fp/thermal-power/types-e.html (accessed 7 December 2019).
- TWI2050 The World in 2050 initiative (2018), *Transformations to Achieve the Sustainable Development Goals: Report prepared by The World in 2050 initiative*, Laxenburg, Austria, available at: http://pure.iiasa.ac.at/15347.
- U.S. Energy Information Administration (EIA) (2019), "History of wind power", available at: https://www.eia.gov/energyexplained/wind/history-of-wind-power.php (accessed 26 December 2019).
- U.S. Geological Survey (2019d), "Mineral Commodity Summaries 2019", available at: https://doi.org/10.3133/70202434.

- U.S. Geological Survey (2019b), "Minerals Yearbook. Area Reports: Domestic", available at: https://www.usgs.gov/centers/nmic/state-minerals-statistics-and-information.
- U.S. Geological Survey (2019c), "Minerals Yearbook. Area Reports: International", available at: https://www.usgs.gov/centers/nmic/international-minerals-statistics-and-information.
- U.S. Geological Survey (2019a), "Minerals Yearbook. Metals and Minerals", available at: https://www.usgs.gov/centers/nmic/minerals-yearbook-metals-and-minerals.
- U.S. Geological Survey (2019e), "National Minerals Information Center. Specialty Items", available at: https://www.usgs.gov/centers/nmic/specialty-items.
- United Nations (UN) (2019a), "Sustainable Development Goals. 17 Goals to Transform Our World", available at: https://www.un.org/sustainabledevelopment/ (accessed 24 November 2019).
- United Nations (UN) (2019b), "Sustainable Development Goals. Communications materials", available at: https://www.un.org/sustainabledevelopment/news/communications-material/ (accessed 25 November 2019).
- United Nations (UN) (2019c), "Sustainable Development Goals Knowledge Platform. Sustainable Development Goal 12", available at: https://sustainabledevelopment.un.org/sdg12 (accessed 24 November 2019).

United Nations (UN) (2019d), "Sustainable Development Goals Knowledge Platform. Sustainable consumption and production", available at: https://sustainabledevelopment.un.org/topics/sustainableconsumptionandproduction (accessed 28 November 2019).

- Vale (2017), "Iron Ore and Pellets", available at: http://www.vale.com/brasil/EN/business/mining/iron-ore-pellets/Pages/default.aspx (accessed 18 February 2019).
- Venås, C. (2015), "Life cycle assessment of electric power generation by wind turbines containing rare earth magnets", Master Thesis, Norwegian University of Science and Technology, Trondheim, 2015.
- Verbund AG (2019), "Electricity Generation from Thermal Power Plant", available at: https://www.verbund.com/en-at/about-verbund/power-plants/power-plant-types/thermal (accessed 7 December 2019).
- Vestas (2019), "Sustainability. Material use", available at: https://www.vestas.com/en/about/sustainability#!material-use (accessed 30 December 2019).
- Wilburn, D.R. (2011), Wind Energy in the United States and Materials Required for the Land-Based Wind Turbine Industry From 2010 Through 2030, Reston, Virginia.

# 7 List of Figures

| Figure 1: Distribution of mineral production per continent (Reichl et al., 2019) 4      |
|-----------------------------------------------------------------------------------------|
| Figure 2: Mine production of antimony in tonnes (metal content) (Brown et al.,          |
| 2019)                                                                                   |
| Figure 3: Main material flows of an economy (Eurostat, 2018) 12                         |
| Figure 4: Exemple questionnaire used by Eurostat (Eurostat, 2018) 15                    |
| Figure 5: Table A - Domestic Extraction (Eurostat, 2019b) 16                            |
| Figure 6: Main global suppliers of CRM in metr. tonnes and percent, Source:             |
| (Reichl et al., 2019; Brown et al., 2019) (Brown et al., 2019 (helium, silicon metal)), |
| adapted from (Gislev <i>et al.</i> , 2018)                                              |
| Figure 7: Diagram illustrating the concept of a circular economy, focusing on           |
| mineral raw materials (EIT RawMaterials, 2019) 46                                       |
| Figure 8: EU-28 material flow for 2014 (Mayer <i>et al.</i> , 2018)                     |
| Figure 9: Schematics of material flow into, inside, and out of an economy               |
| (Schaffartzik <i>et al.</i> , 2015)                                                     |
| Figure 10: EU-28 Domestic Material Consumption 1990-2017 (left), Global                 |
| Domestic Material Consumption 1990-2017 (right), data source: International             |
| Resource Panel (2019)                                                                   |
| Figure 11: Comparison of DMC per capita and RMC per capita for selected                 |
| countries in 2013,                                                                      |
| Figure 12: Development of domestic extraction between 1900 and 2015                     |
| (Krausmann <i>et al.</i> , 2018a)53                                                     |
| Figure 13: Development of energy consumption 2010-2015, 2010 = 100%                     |
| (Boumphrey, 2016)                                                                       |
| Figure 14: Lorenz curve - Comparison of wealth distribution to percent of               |
| population (Steinberger <i>et al.</i> , 2010) 57                                        |
| Figure 15: The 17 Sustainable Development Goals by the United Nations (United           |
| Nations, 2019b) 60                                                                      |
| Figure 16: Transformation of primary energy into useful energy (TWI2050 - The           |
| World in 2050 initiative, 2018) 63                                                      |
| Figure 17: Cascadic use of iron ore to recovered scrap (TWI2050 - The World in          |
| 2050 initiative, 2018)                                                                  |

| Figure 18: Progress of EU-28 members towards achieving the SDGs, data source:  |
|--------------------------------------------------------------------------------|
| Sachs <i>et al</i> ., 2019                                                     |
| Figure 19: Innovations and the SDGs they affect (Endl et al. 2019)             |
| Figure 20: Schematic graphic of a thermal power plant using a combined-cycle   |
| (TEPCO Fuel & Power Inc., 2019)                                                |
| Figure 21: Dimensions (A) and main components (B) of a typical wind turbine    |
| (Wilburn, 2011)                                                                |
| Figure 22: Development of production amounts of Iron content, Chromium content |
| data source: Reichl <i>et al.</i> , 2019                                       |
| Figure 23: Development of production amounts of Aluminium content, Copper      |
| content, Rare Earth concentrates, data source: Reichl <i>et al.</i> , 2019     |
| Figure 24: Energy flows of biomass heat and power plant, adapted from Käppler  |
| (2015)VII                                                                      |
| Figure 25: Layout main building biomass heat and power plant, adapted from     |
| KäpplerVIII                                                                    |

## 8 List of Tables

| Table 1: Comparison advantages & disadvantages of WMD, BGS, USGS 17               |
|-----------------------------------------------------------------------------------|
| Table 2: Comparison of reported commodities for WMD, BGS, USGS, Eurostat. 21      |
| Table 3: Comparison of production figures for EU-28 between WMD, BGS, USGS,       |
| Eurostat                                                                          |
| Table 4: Comparison of countries covered by WMD, BGS, USGS redcountry not         |
| covered, yellowadditional (non-independent) country, greenalternative/former      |
| name of country                                                                   |
| Table 5: Sub-targets SDG12 and relevant indicators of progress (United Nations,   |
| 2019c)                                                                            |
| Table 6: Materials for combined heat and power plant in [kg] and [kg/kWh] 75      |
| Table 7: Materials for wind farm in [kg] and [kg/kWh]                             |
| Table 8: Comparison of material input for combined heat and power plant and       |
| wind farm in g per kWh                                                            |
| Table 9: Comparison of material input for combined heat and power plant and       |
| wind farm in g per kWh and year85                                                 |
| Table 10: Iron producers [metr. t iron content], organised by largest producer in |
| 2017 (Reichl, <i>et al.</i> 2019)IX                                               |
| Table 11: Chromium producers [metr. t chromium content], organised by largest     |
| producer in 2017 (Reichl, et al. 2019)XXI                                         |
| Table 12: : Aluminium producers [metr. t aluminium content], organised by largest |
| producer in 2017 (Reichl, et al. 2019)XXVI                                        |
| Table 13: Copper producers [metr. t Copper content], organised by largest         |
| producer in 2017 (Reichl, et al. 2019)XXXII                                       |
| Table 14: Rare Earth producers [metr. t rare earth conc.], organised by largest   |
| producer in 2017 (Reichl, et al. 2019)XLIV                                        |
# 9 List of Equations

| Equation 1: Economic Importance | 40 |
|---------------------------------|----|
| Equation 2:Supply Risk          | 40 |

## **10 List of Abbreviations**

| Approx. | approximately                           |
|---------|-----------------------------------------|
| BGS     | British Geological Survey               |
| BRICS   | Brazil, Russia, India, China, South     |
|         | Africa                                  |
| conc.   | concentrate                             |
| CR      | Old Scrap Collection Rate               |
| DE      | Domestic Extraction                     |
| DG      | Directorate General                     |
| DMC     | Domestic Material Consumption           |
| DPO     | Domestic Processed Outputs              |
| D.R.    | Democratic Republic                     |
| EC      | European Commission                     |
| e.g.    | for example                             |
| EoL-RR  | End-of-Life Recycling Rate              |
| EU      | European Union                          |
| et al.  | Lat. et alia, and others                |
| etc.    | Lat. et cetera, and so forth            |
| GE      | General Electric                        |
| Gt      | Gigatonne                               |
| GWh     | Gigawatt hour                           |
| HHI     | Herfindahl-Hirschmann Index             |
| IECrp   | Input ecological cycling rate potential |
| IIASA   | International Institute for Applied     |
|         | System Analysis                         |
| i.e.    | Lat. id est, that means                 |
| IntOut  | Interim outputs                         |
| IRP     | International Resource Panel            |
| ISCr    | Input socioeconomic cycling rate        |
| JRC     | Joint Research Centre                   |
| kg      | kilogram                                |
| kWel    | Kilowatt electric                       |

| kWh            | Kilowatt hour                            |
|----------------|------------------------------------------|
| kWtherm        | Kilowatt thermal                         |
| LCA            | Life cycle assessment                    |
| LKAB           | Luossavaara-Kiirunavaara Aktiebolag      |
| m <sup>2</sup> | Square meter                             |
| m <sup>3</sup> | Cubic meter                              |
| metr.          | metric                                   |
| MFA            | Material Flow Analysis                   |
| Mt             | Megatonne                                |
| MW             | Megawatt                                 |
| MWh            | Megawatt hour                            |
| OECD           | Organisation for Economic Co-            |
|                | operation and development                |
| OECrp          | Output ecological cycling rate potential |
| OSCr           | Output socioeconomic cycling rate        |
| OSR            | Old Scrap Ratio                          |
| PM             | Processed materials                      |
| RMC            | Raw Material Consumption                 |
| RMIS           | Raw Material Information System          |
| SDG(s)         | Sustainable Development Goal(s)          |
| t              | metric ton                               |
| UN             | United Nations                           |
| TWI            | The World in 2050 initiative             |
| UNEP           | United Nations Environment               |
|                | Programme                                |
| USA (U.S.)     | United States of America (United         |
|                | States)                                  |
| USGS           | United States Geological Survey          |
| VS             | versus                                   |
| WMD            | World Mining Data                        |

### Annex

## **Annex Table of Contents**

| Annex Table of Contents                         | VI    |
|-------------------------------------------------|-------|
| Annex                                           | VI    |
| 1. Combined Heat and Power Plant                | VII   |
| 2. Raw Material Production Data for Chapter 4.3 | IX    |
| Iron                                            | IX    |
| Chromium                                        | XXI   |
| Aluminium                                       | XXVI  |
| Copper                                          | XXXII |
| Rare Earth Concentrates                         | XLIV  |

## 1. Combined Heat and Power Plant

• Energy Flows of Biomass Heat and Power Plant used for comparison in chapters 4.1 and 4.3



Figure 24: Energy flows of biomass heat and power plant, adapted from Käppler (2015)

#### • Layout of main building



Figure 25: Layout main building biomass heat and power plant, adapted from Käppler

## 2. Raw Material Production Data for Chapter 4.3

#### Iron

| Table 10: Iron producers [metr. t iron content], organised by largest producer in 2017 (Reichl, <i>et al.</i> 2019) |             |             |             |             |             |             |             |             |  |  |
|---------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--|
| Country                                                                                                             | 1990        | 1991        | 1992        | 1993        | 1994        | 1995        | 1996        | 1997        |  |  |
| Total                                                                                                               | 661,058,221 | 663,870,013 | 499,118,560 | 508,864,219 | 528,153,135 | 555,323,949 | 543,420,383 | 568,832,928 |  |  |
| Australia                                                                                                           | 66,402,630  | 74,133,990  | 72,075,000  | 75,334,406  | 80,950,590  | 90,049,680  | 92,698,830  | 100,583,910 |  |  |
| China                                                                                                               | 48,424,500  | 51,450,600  | 56,635,200  | 61,114,500  | 63,180,000  | 66,150,000  | 68,116,400  | 67,230,000  |  |  |
| Brazil                                                                                                              | 98,808,800  | 98,234,500  | 95,037,200  | 101,925,600 | 112,812,800 | 119,951,300 | 113,230,000 | 120,230,500 |  |  |
| India                                                                                                               | 34,384,700  | 36,202,950  | 34,421,310  | 36,208,620  | 38,110,270  | 37,788,000  | 38,856,000  | 46,900,000  |  |  |
| Russia                                                                                                              | 132,000,000 | 132,000,000 | 43,361,784  | 41,250,000  | 40,319,400  | 43,065,000  | 39,655,000  | 38,940,000  |  |  |
| South Africa                                                                                                        | 19,725,500  | 17,574,050  | 16,361,150  | 17,659,850  | 19,817,200  | 20,763,600  | 20,038,200  | 21,595,600  |  |  |
| Ukraine                                                                                                             |             |             | 47,936,904  | 41,600,000  | 30,878,400  | 30,240,000  | 28,560,000  | 31,800,000  |  |  |
| United States                                                                                                       | 35,695,000  | 35,333,000  | 35,251,000  | 35,116,000  | 36,788,000  | 39,577,000  | 39,186,000  | 38,000,000  |  |  |
| Canada                                                                                                              | 21,760,000  | 21,936,200  | 19,265,020  | 19,349,200  | 22,329,660  | 22,343,080  | 21,965,400  | 22,744,000  |  |  |
| Iran                                                                                                                | 1,100,000   | 1,800,000   | 2,382,600   | 5,625,900   | 5,214,000   | 5,448,000   | 4,455,964   | 4,828,300   |  |  |
| Sweden                                                                                                              | 12,727,700  | 9,260,590   | 12,337,280  | 11,900,790  | 12,584,384  | 10,678,841  | 9,416,960   | 9,809,205   |  |  |
| Kazakhstan                                                                                                          |             |             | 13,836,478  | 13,130,000  | 13,458,000  | 18,525,000  | 16,250,000  | 13,700,000  |  |  |
| Chile                                                                                                               | 5,035,031   | 5,163,894   | 4,406,640   | 4,350,405   | 5,272,758   | 5,142,300   | 5,539,471   | 5,330,180   |  |  |
| Mauritania                                                                                                          | 7,304,000   | 6,200,000   | 5,090,200   | 6,279,000   | 6,722,300   | 7,484,100   | 7,252,700   | 7,663,500   |  |  |
| Mexico                                                                                                              | 5,327,900   | 4,976,100   | 5,154,000   | 5,597,000   | 5,516,200   | 5,625,100   | 6,109,500   | 6,279,800   |  |  |
| Turkey                                                                                                              | 2,708,680   | 2,728,895   | 3,254,440   | 3,563,760   | 3,175,175   | 2,712,147   | 3,453,973   | 3,292,795   |  |  |
| Peru                                                                                                                | 2,181,321   | 2,460,338   | 1,976,663   | 3,474,378   | 4,636,628   | 3,948,200   | 2,915,691   | 2,965,889   |  |  |
| Venezuela                                                                                                           | 13,224,830  | 13,793,900  | 12,576,625  | 10,628,775  | 11,535,922  | 12,274,920  | 13,130,460  | 15,775,200  |  |  |
| Mongolia                                                                                                            |             |             |             |             |             |             |             |             |  |  |
| Sierra Leone                                                                                                        |             |             |             |             |             |             |             |             |  |  |
| Vietnam                                                                                                             |             |             |             |             |             |             |             |             |  |  |
| Malaysia                                                                                                            | 216,840     | 236,800     | 201,549     | 140,394     | 202,682     | 181,972     | 285,294     | 269,087     |  |  |
| New Zealand                                                                                                         | 1,285,846   | 1,324,940   | 1,716,455   | 1,521,000   | 1,200,600   | 1,370,074   | 1,353,578   | 1,450,000   |  |  |

| Country            | 1990      | 1991      | 1992      | 1993      | 1994      | 1995      | 1996      | 1997      |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Liberia            | 2,750,000 | 550,000   | 923,400   |           | -         | -         | -         | -         |
| Norway             | 1,498,324 | 1,593,304 | 1,521,604 | 1,531,552 | 1,650,000 | 1,458,300 | 1,117,651 | 478,000   |
| Austria            | 652,969   | 480,867   | 510,033   | 448,080   | 519,137   | 664,455   | 634,226   | 574,121   |
| Bosnia-Herzegovina |           |           |           | 250,000   | 200,000   | 150,000   | 100,000   | 100,000   |
| Indonesia          | 79,970    | 95,280    | 158,300   | 200,662   | 192,899   | 191,604   | 233,800   | 284,000   |
| Korea, North       | 3,600,000 | 4,200,000 | 4,200,000 | 4,500,000 | 4,500,000 | 4,000,000 | 3,800,000 | 3,700,000 |
| Colombia           | 282,716   | 308,471   | 320,951   | 245,149   | 274,462   | 330,300   | 272,572   | 339,647   |
| Algeria            | 1,588,140 | 1,266,000 | 1,362,400 | 1,228,500 | 1,105,380 | 1,188,000 | 1,212,300 | 883,980   |
| Saudi Arabia       |           |           |           |           |           | 155,000   | 139,160   | 110,000   |
| Egypt              | 1,350,000 | 957,900   | 1,076,200 | 985,423   | 1,741,050 | 1,094,944 | 1,000,000 | 1,233,000 |
| Pakistan           | 1,700     | 125       | 222       | 1,164     | 2,504     | -         | -         | 2,015     |
| Korea, South       | 178,980   | 132,920   | 132,900   | 131,200   | 114,790   | 110,670   | 132,700   | 177,580   |
| Tunisia            | 196,000   | 204,700   | 179,300   | 191,000   | 155,500   | 122,100   | 129,000   | 142,800   |
| Laos               |           |           |           |           |           |           |           |           |
| Germany            | 11,686    | 16,841    | 15,326    | 20,400    | 20,400    | 9,600     | 14,600    | 32,046    |
| Morocco            | 88,480    | 62,166    | 50,850    | 39,800    | 38,110    | 27,383    | 7,105     | 7,207     |
| Argentina          | 444,115   | 88,932    | 2,502     | 1,372     | 28,181    | 310       | -         | -         |
| Bolivia            | 125,264   | 101,642   | 34,945    | 32,118    | 35,400    | -         | -         | -         |
| Bhutan             |           |           |           |           |           |           |           |           |
| Malawi             |           |           |           |           |           |           |           |           |
| Guatemala          |           |           |           | 2,486     | 2,400     | 1,680     | 2,053     | 2,100     |
| Namibia            |           |           |           |           |           |           |           |           |
| Uganda             |           |           |           |           |           |           |           |           |
| Uruguay            | 151       | 1,400     | 1,640     | -         | -         | 735       | 845       | 2,210     |
| Thailand           | 79,750    | 148,850   | 264,890   | 129,500   | 88,533    | 34,480    | 85,880    | 44,000    |
| Azerbaijan         |           |           | 18,500    | 18,900    | 19,000    | 19,800    | 20,000    | 21,900    |
| Kenya              |           |           |           |           |           |           |           |           |
| Nigeria            | 80,000    | 149,701   | 130,000   | 100,000   | 100,000   | 107,520   | 20,423    | 48,988    |
| Philippines        |           |           |           |           |           |           |           |           |
| Sudan              |           |           |           |           |           |           |           |           |

| Country        | 1990        | 1991        | 1992      | 1993      | 1994    | 1995    | 1996    | 1997    |
|----------------|-------------|-------------|-----------|-----------|---------|---------|---------|---------|
| Swaziland      |             |             |           |           |         |         |         |         |
| Albania        | 425,697     | 203,830     | 10,000    | 8,000     | 7,000   | 7,000   | 6,500   | 6,000   |
| Bulgaria       | 289,528     | 196,344     | 239,000   | 185,965   | 197,456 | 215,945 | 222,424 | 260,550 |
| Czech Republic |             |             |           | -         |         |         |         |         |
| Czechoslovakia | 467,500     | 416,900     | 269,580   |           |         |         |         |         |
| Ecuador        |             |             | -         |           |         |         |         |         |
| Finland        |             | -           |           | -         |         |         |         |         |
| France         | 2,790,000   | 2,256,000   | 1,692,000 | 1,020,000 | 706,000 | 432,000 | 422,000 | 145,300 |
| Japan          | 21,000      | 31,444      | 39,791    | 10,621    | 3,058   | 1,301   | 3,563   | 1,537   |
| Portugal       | 4,810       | 6,080       | 5,382     | 6,114     | 5,409   | 5,417   | 7,876   | 7,933   |
| Romania        | 273,730     | 199,576     | 182,100   | 169,000   | 165,050 | 159,000 | 159,250 | 110,373 |
| Slovakia       |             |             |           | 162,740   | 289,400 | 261,027 | 256,000 | 264,174 |
| Spain          | 1,327,873   | 1,747,523   | 1,334,476 | 1,139,946 | 991,848 | 973,823 | 606,393 | 27,806  |
| Sri Lanka      | -           |             |           |           |         |         |         |         |
| United Kingdom | 12,740      | 13,570      | 7,130     | 253       | 299     | 230     | 276     | 276     |
| USSR (Asia)    | 22,902,000  | 22,902,000  |           |           |         |         |         |         |
| USSR (Europe)  | 109,098,000 | 109,098,000 |           |           |         |         |         |         |
| Yugoslavia     | 1,367,690   | 947,100     | 450,000   | 110,000   | 84,900  | 96,200  | 150,000 | 150,000 |
| Zimbabwe       | 756,130     | 681,800     | 707,640   | 224,696   | 210,000 | 186,811 | 194,365 | 287,419 |

| Country            | 1998        | 1999        | 2000        | 2001        | 2002        | 2003        | 2004        | 2005        |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Total              | 572,243,077 | 562,252,632 | 601,478,218 | 571,259,047 | 613,184,841 | 643,160,500 | 752,391,134 | 823,854,202 |
| Australia          | 96,997,320  | 100,641,870 | 107,728,740 | 113,000,000 | 114,000,000 | 116,000,000 | 145,501,650 | 164,710,350 |
| China              | 66,663,000  | 64,052,100  | 60,102,000  | 58,594,000  | 62,486,100  | 70,575,300  | 93,511,800  | 113,532,300 |
| Brazil             | 128,375,000 | 126,428,300 | 138,174,400 | 132,228,200 | 140,579,700 | 147,052,900 | 173,766,200 | 185,849,400 |
| India              | 45,223,000  | 47,946,000  | 53,993,290  | 57,771,420  | 66,378,240  | 82,301,460  | 97,781,140  | 110,704,100 |
| Russia             | 39,765,000  | 45,210,000  | 47,905,000  | 45,100,000  | 46,310,000  | 47,000,000  | 52,800,000  | 52,250,000  |
| South Africa       | 21,426,600  | 19,179,346  | 21,909,787  | 22,592,050  | 23,714,610  | 24,755,900  | 25,559,300  | 25,702,347  |
| Ukraine            | 30,420,000  | 28,661,400  | 33,390,000  | 32,796,000  | 35,580,000  | 30,464,000  | 32,320,000  | 34,048,000  |
| United States      | 37,926,000  | 36,381,870  | 39,690,000  | 20,962,557  | 32,489,100  | 28,053,270  | 34,083,000  | 34,650,000  |
| Canada             | 23,774,000  | 20,734,000  | 21,781,000  | 16,458,410  | 18,891,090  | 20,103,770  | 17,159,910  | 17,289,230  |
| Iran               | 7,380,000   | 7,419,764   | 7,422,000   | 6,500,000   | 8,960,199   | 7,478,646   | 7,959,000   | 9,162,000   |
| Sweden             | 13,461,760  | 12,096,000  | 13,156,480  | 12,471,040  | 12,979,840  | 13,758,720  | 14,254,080  | 14,883,200  |
| Kazakhstan         | 8,693,000   | 9,607,000   | 10,553,000  | 10,335,000  | 9,898,000   | 12,532,585  | 13,196,625  | 12,656,215  |
| Chile              | 5,681,224   | 5,090,450   | 5,324,629   | 5,388,862   | 4,433,968   | 4,864,718   | 4,849,878   | 4,707,000   |
| Mauritania         | 6,726,200   | 6,604,000   | 7,527,000   | 7,004,000   | 6,125,600   | 6,890,000   | 6,828,315   | 7,236,450   |
| Mexico             | 6,334,300   | 6,885,200   | 6,795,400   | 5,269,800   | 5,965,400   | 6,759,200   | 6,889,500   | 7,012,300   |
| Turkey             | 3,281,268   | 2,712,717   | 2,233,309   | 2,439,042   | 1,888,027   | 2,819,500   | 2,760,100   | 3,080,800   |
| Peru               | 3,282,118   | 2,672,630   | 1,882,573   | 2,066,113   | 2,078,117   | 2,369,732   | 2,888,078   | 3,104,193   |
| Venezuela          | 16,214,192  | 9,328,344   | 11,092,014  | 11,250,262  | 11,259,209  | 11,935,819  | 12,477,550  | 13,766,000  |
| Mongolia           |             |             |             |             |             |             | 21,000      | 109,000     |
| Sierra Leone       |             |             |             |             |             |             |             |             |
| Vietnam            |             |             |             |             |             |             |             | 463,380     |
| Malaysia           | 376,090     | 337,462     | 258,553     | 376,476     | 404,350     | 596,612     | 663,732     | 598,251     |
| New Zealand        | 1,276,000   | 1,333,208   | 1,558,002   | 947,293     | 1,007,244   | 1,127,021   | 1,348,453   | 1,277,729   |
| Liberia            | -           |             |             |             |             |             |             |             |
| Norway             | 409,200     | 338,000     | 458,000     | 381,000     | 476,000     | 398,868     | 573,000     | 448,000     |
| Austria            | 573,440     | 559,040     | 595,024     | 589,848     | 621,363     | 679,932     | 604,614     | 665,344     |
| Bosnia-Herzegovina | 100,000     | 100,000     | 363,351     | 264,540     | 212,114     | 126,929     | 130,000     | 1,390,000   |

| Country      | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      |
|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Indonesia    | 280,500   | 276,200   | 231,200   | 242,400   | 105,000   | 135,300   | 43,800    | 48,400    |
| Korea, North | 3,500,000 | 3,300,000 | 3,200,000 | 3,000,000 | 2,900,000 | 1,260,000 | 1,300,000 | 1,400,000 |
| Colombia     | 236,621   | 259,386   | 297,049   | 286,577   | 309,648   | 281,251   | 264,250   | 273,402   |
| Algeria      | 972,000   | 721,440   | 720,000   | 719,000   | 718,000   | 744,120   | 763,560   | 828,900   |
| Saudi Arabia | 100,000   | 132,810   | 141,000   | 235,000   | 224,700   | 220,000   | 268,200   | 280,000   |
| Egypt        | 1,350,639 | 1,500,000 | 1,451,545 | 829,362   | 800,000   | 780,000   | 760,000   | 800,000   |
| Pakistan     | 6,291     | 17,320    | 18,000    | 20,000    | 22,000    | 23,000    | 25,000    | 33,000    |
| Korea, South | 142,950   | 112,790   | 97,920    | 13,620    | 94,060    | 104,410   | 135,770   | 127,780   |
| Tunisia      | 119,800   | 120,000   | 99,000    | 110,000   | 109,100   | 86,600    | 138,200   | 111,500   |
| Laos         |           |           |           |           |           |           |           |           |
| Germany      | 84,680    | 114,000   | 73,844    | 65,120    | 58,711    | 60,300    | 57,700    | 37,796    |
| Morocco      | 5,685     | 6,625     | 5,615     | 5,006     | 5,736     | 1,450     | 4,390     | 5,870     |
| Argentina    | -         | -         | -         | -         | -         | -         |           |           |
| Bolivia      | -         | -         | -         | -         | -         |           |           |           |
| Bhutan       |           |           |           |           |           |           |           |           |
| Malawi       |           |           |           |           |           |           |           |           |
| Guatemala    | 3,265     | 6,742     | 10,402    | 9,600     | 22,544    | 1,456     | 1,807     | 7,211     |
| Namibia      |           |           |           |           |           |           |           |           |
| Uganda       |           |           |           |           |           |           | -         | 125       |
| Uruguay      | 2,500     | 3,837     | 6,000     | 9,743     | 7,768     | 5,941     | 9,319     | 12,435    |
| Thailand     | 90,700    | 122,633   | 150,000   | 32,000    | 285,000   | 4,800     | 68,000    | 143,186   |
| Azerbaijan   | 22,000    | 7,100     | 8,200     | 4,700     | 9,000     | 12,000    | 19,100    | 3,066     |
| Kenya        |           |           |           |           |           |           |           |           |
| Nigeria      | 12,029    | 14,000    | 15,909    | 16,306    | 10,000    | 36,855    | 59,440    | 54,270    |
| Philippines  |           |           |           |           |           |           |           |           |
| Sudan        |           |           |           |           |           |           |           |           |
| Swaziland    |           |           |           |           |           |           |           |           |
| Albania      | 5,500     | 5,300     | 5,000     | 4,800     | 4,600     | 4,500     | 4,400     | 4,300     |
| Bulgaria     | 185,039   | 361,200   | 304,100   | 240,000   | 217,553   | 205,000   | 36,400    | 16,940    |

| Country        | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    |
|----------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Czech Republic |         |         |         |         |         |         |         |         |
| Czechoslovakia |         |         |         |         |         |         |         |         |
| Ecuador        |         |         |         |         |         |         |         |         |
| Finland        |         |         |         |         |         |         |         |         |
| France         | -       | -       | -       | -       | -       |         |         |         |
| Japan          | 1,720   | 1,800   | 1,454   | 1,449   | 1,440   | 1,300   | 1,200   | 1,100   |
| Portugal       | 8,159   | 4,739   | 4,766   | 4,700   | 4,500   | 4,300   | 4,200   | 4,100   |
| Romania        | 113,605 | 82,478  | 81,768  | 62,626  | 80,000  | 108,286 | 99,776  | 48,500  |
| Slovakia       | 262,416 | 255,200 | 255,356 | 238,075 | 207,000 | 214,000 | 222,000 | 182,000 |
| Spain          | 25,037  | 28,911  | 36,026  | 26,229  | 11,755  | 274     | 5,222   | -       |
| Sri Lanka      |         |         |         |         |         |         |         |         |
| United Kingdom | 276     | 230     | 130     | 281     | 255     | 275     | 275     | 195     |
| USSR (Asia)    |         |         |         |         |         |         |         |         |
| USSR (Europe)  |         |         |         |         |         |         |         |         |
| Yugoslavia     | 130,000 | 120,000 | 100,000 | 80,000  | 75,000  |         |         |         |
| Zimbabwe       | 222,953 | 359,190 | 270,382 | 216,540 | 163,200 | 220,200 | 172,200 | 134,537 |

| Country            | 2006        | 2007          | 2008          | 2009          | 2010          | 2011          | 2012          |
|--------------------|-------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Total              | 926,980,601 | 1,025,848,994 | 1,080,173,963 | 1,049,002,200 | 1,238,640,983 | 1,321,534,877 | 1,361,404,901 |
| Australia          | 173,276,460 | 188,408,430   | 214,889,850   | 228,000,000   | 272,790,000   | 277,000,250   | 321,952,505   |
| China              | 158,806,300 | 190,909,700   | 222,483,000   | 237,646,300   | 290,980,400   | 358,778,300   | 353,602,000   |
| Brazil             | 207,682,400 | 233,978,700   | 227,503,300   | 194,878,900   | 242,920,000   | 257,550,800   | 258,129,700   |
| India              | 125,756,320 | 142,874,820   | 142,683,200   | 146,430,510   | 138,795,190   | 112,949,940   | 91,534,060    |
| Russia             | 57,000,000  | 57,707,500    | 54,945,000    | 47,740,000    | 52,745,000    | 57,200,000    | 57,200,000    |
| South Africa       | 26,891,732  | 27,354,003    | 31,838,649    | 35,953,484    | 38,161,065    | 37,736,983    | 43,615,310    |
| Ukraine            | 36,544,000  | 39,990,100    | 36,423,700    | 35,083,500    | 41,141,800    | 42,551,000    | 42,975,400    |
| United States      | 33,201,000  | 32,760,000    | 33,769,000    | 16,821,000    | 31,437,000    | 34,461,000    | 34,461,000    |
| Canada             | 20,797,340  | 20,226,380    | 20,640,180    | 19,354,100    | 22,068,600    | 21,780,100    | 23,724,100    |
| Iran               | 10,154,015  | 11,130,000    | 13,250,000    | 14,637,000    | 16,445,200    | 18,996,900    | 21,085,200    |
| Sweden             | 14,913,280  | 15,816,960    | 15,288,320    | 11,313,280    | 16,186,880    | 16,712,320    | 16,985,600    |
| Kazakhstan         | 14,470,690  | 15,492,165    | 13,966,095    | 14,482,845    | 15,610,530    | 16,078,465    | 16,827,530    |
| Chile              | 5,235,000   | 5,379,000     | 5,670,000     | 5,006,000     | 5,852,000     | 7,747,000     | 9,429,000     |
| Mauritania         | 7,249,450   | 7,741,500     | 7,342,400     | 6,840,600     | 7,497,100     | 7,264,400     | 7,272,900     |
| Mexico             | 5,768,774   | 6,549,682     | 7,012,864     | 7,006,496     | 8,398,964     | 7,683,467     | 8,949,565     |
| Turkey             | 2,536,000   | 3,249,100     | 3,147,000     | 2,582,800     | 3,895,400     | 4,321,800     | 3,329,800     |
| Peru               | 3,253,529   | 3,470,446     | 3,509,281     | 3,004,762     | 4,108,998     | 4,767,438     | 4,545,490     |
| Venezuela          | 13,554,500  | 12,760,800    | 12,565,800    | 9,234,300     | 9,315,000     | 10,625,600    | 10,012,000    |
| Mongolia           | 108,000     | 159,060       | 832,440       | 827,400       | 1,921,920     | 3,406,980     | 4,536,840     |
| Sierra Leone       |             |               |               |               |               | 196,811       | 3,018,024     |
| Vietnam            | 510,000     | 530,000       | 822,960       | 1,142,700     | 1,183,260     | 1,422,780     | 903,720       |
| Malaysia           | 420,262     | 505,279       | 618,617       | 926,217       | 2,241,420     | 5,044,960     | 6,858,190     |
| New Zealand        | 1,242,564   | 997,831       | 1,171,732     | 1,213,731     | 1,414,620     | 1,367,315     | 1,389,000     |
| Liberia            |             |               |               |               |               | 193,500       | 1,184,900     |
| Norway             | 396,800     | 403,200       | 477,440       | 567,426       | 1,987,200     | 1,620,500     | 2,189,200     |
| Austria            | 669,438     | 688,904       | 650,455       | 640,682       | 662,033       | 706,211       | 685,522       |
| Bosnia-Herzegovina | 1,513,000   | 1,295,000     | 749,460       | 678,000       | 987,615       | 1,367,490     | 1,058,620     |

| Country      | 2006      | 2007      | 2008      | 2009      | 2010      | 2011      | 2012      |
|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Indonesia    | 46,700    | 46,400    | 2,450,400 | 2,508,600 | 4,936,500 | 6,498,000 | 6,350,200 |
| Korea, North | 1,400,000 | 1,400,000 | 1,200,000 | 1,500,000 | 1,500,000 | 1,500,000 | 1,450,000 |
| Colombia     | 289,868   | 280,769   | 212,973   | 126,348   | 34,672    | 78,507    | 364,150   |
| Algeria      | 1,263,600 | 1,070,335 | 1,121,580 | 705,780   | 658,800   | 712,800   | 842,400   |
| Saudi Arabia | 290,000   | 219,000   | 209,160   | 216,000   | 198,000   | 234,720   | 355,300   |
| Egypt        | 820,000   | 720,000   | 814,773   | 801,100   | 1,041,500 | 1,494,400 | 1,768,500 |
| Pakistan     | 49,878    | 47,834    | 108,777   | 121,680   | 166,060   | 125,060   | 146,260   |
| Korea, South | 136,460   | 174,480   | 219,530   | 273,240   | 307,590   | 324,920   | 355,650   |
| Tunisia      | 115,700   | 97,400    | 113,700   | 81,200    | 92,600    | 90,900    | 116,300   |
| Laos         |           |           |           |           | 31,560    | 26,470    | 121,630   |
| Germany      | 43,680    | 44,300    | 47,785    | 38,200    | 40,987    | 51,350    | 46,990    |
| Morocco      | 12,780    | 17,280    | 8,244     | 10,980    | 16,092    | 28,404    | 93,850    |
| Argentina    |           | 55,705    | 141,855   | 128,440   | 190,000   | 205,650   | 332,470   |
| Bolivia      |           |           |           |           |           |           |           |
| Bhutan       |           |           |           |           |           | -         | 2,400     |
| Malawi       |           |           |           |           |           |           |           |
| Guatemala    | 3,083     | 13,023    | 190       | 2,294     | 674       | 487       | 4,540     |
| Namibia      |           |           |           |           |           |           |           |
| Uganda       | 125       | 220       | 1,044     | 583       | 2,277     | 1,280     | 2,659     |
| Uruguay      | 15,525    | 19,275    | 21,740    | 20,230    | 16,800    | 8,360     | 9,500     |
| Thailand     | 168,859   | 964,013   | 1,060,045 | 382,170   | 605,700   | 303,403   | 188,000   |
| Azerbaijan   | 4,746     | 7,392     | 11,802    | 28,500    | 24,276    | 90,006    | 87,066    |
| Kenya        |           |           |           |           |           | 71,200    | 43,700    |
| Nigeria      | 56,435    | 37,056    | 39,680    | 41,800    | 26,500    | 29,400    | 29,400    |
| Philippines  |           |           |           |           |           | 75,700    | 688,900   |
| Sudan        |           |           |           |           |           | 8,580     | 33,740    |
| Swaziland    |           |           |           |           |           | 39,770    | 516,120   |
| Albania      | 3,600     | 3,600     | 4,766     | 3,022     | 3,200     | 3,200     | -         |
| Bulgaria     | -         |           |           |           |           |           |           |

| Country        | 2006    | 2007    | 2008    | 2009 | 2010 | 2011 | 2012 |
|----------------|---------|---------|---------|------|------|------|------|
| Czech Republic |         |         |         |      |      |      |      |
| Czechoslovakia |         |         |         |      |      |      |      |
| Ecuador        |         |         |         |      |      |      |      |
| Finland        |         |         |         |      |      |      |      |
| France         |         |         |         |      |      |      |      |
| Japan          | 1,000   | -       |         |      |      |      |      |
| Portugal       | -       | -       |         |      |      |      |      |
| Romania        | 46,700  | 10,922  | -       |      |      |      |      |
| Slovakia       | 198,220 | 193,800 | 133,280 |      |      |      |      |
| Spain          |         |         |         |      |      |      |      |
| Sri Lanka      |         |         |         |      |      |      |      |
| United Kingdom | 188     | 165     | 145     |      |      |      |      |
| USSR (Asia)    |         |         |         |      |      |      |      |
| USSR (Europe)  |         |         |         |      |      |      |      |
| Yugoslavia     |         |         |         |      |      |      |      |
| Zimbabwe       | 62,600  | 47,465  | 1,751   |      |      |      |      |

| Country            | 2013          | 2014          | 2015          | 2016          | 2017          | Total          |
|--------------------|---------------|---------------|---------------|---------------|---------------|----------------|
| Total              | 1,479,167,477 | 1,552,111,741 | 1,547,789,579 | 1,571,998,463 | 1,596,189,050 | 25,419,307,888 |
| Australia          | 377,760,029   | 457,409,154   | 500,993,637   | 531,075,350   | 548,297,062   | 5,702,661,693  |
| China              | 391,773,000   | 404,379,000   | 371,250,000   | 345,841,000   | 331,931,000   | 4,730,197,800  |
| Brazil             | 245,667,800   | 244,754,400   | 253,660,900   | 268,183,617   | 273,695,000   | 4,941,290,317  |
| India              | 101,962,610   | 80,404,800    | 98,687,200    | 119,761,900   | 124,592,100   | 2,291,403,150  |
| Russia             | 60,885,000    | 58,465,000    | 58,465,000    | 58,630,000    | 59,400,000    | 1,567,313,684  |
| South Africa       | 46,569,090    | 52,493,570    | 47,323,600    | 43,196,310    | 48,657,340    | 818,166,226    |
| Ukraine            | 45,056,000    | 43,712,000    | 42,817,200    | 40,240,600    | 38,767,600    | 953,997,604    |
| United States      | 33,264,000    | 35,343,000    | 29,043,000    | 26,334,000    | 29,988,000    | 930,063,797    |
| Canada             | 25,658,400    | 26,335,400    | 28,194,100    | 28,505,600    | 26,709,500    | 611,877,770    |
| Iran               | 25,329,500    | 25,709,416    | 25,797,898    | 21,623,000    | 21,884,000    | 319,178,502    |
| Sweden             | 17,462,400    | 18,035,840    | 15,886,720    | 17,216,000    | 17,408,000    | 389,002,470    |
| Kazakhstan         | 16,398,330    | 15,965,110    | 11,122,150    | 10,632,570    | 11,705,660    | 349,123,043    |
| Chile              | 9,088,000     | 9,427,640     | 9,147,839     | 9,008,873     | 9,549,327     | 171,121,087    |
| Mauritania         | 8,491,300     | 8,648,800     | 7,544,600     | 8,624,200     | 7,678,500     | 201,133,115    |
| Mexico             | 11,303,740    | 9,976,750     | 8,077,160     | 7,253,810     | 7,027,520     | 191,505,492    |
| Turkey             | 5,239,500     | 7,251,200     | 4,734,200     | 4,353,700     | 6,095,400     | 96,840,528     |
| Peru               | 4,542,850     | 4,890,960     | 4,978,150     | 5,210,920     | 5,988,390     | 97,173,876     |
| Venezuela          | 7,278,800     | 7,318,100     | 7,615,100     | 5,070,000     | 4,615,000     | 310,229,022    |
| Mongolia           | 3,366,270     | 5,745,880     | 3,704,040     | 3,407,480     | 4,309,030     | 32,455,340     |
| Sierra Leone       | 6,172,710     | 10,259,610    | 1,521,830     | 3,814,410     | 3,194,930     | 28,178,325     |
| Vietnam            | 1,497,180     | 1,631,400     | 1,614,600     | 1,833,600     | 3,044,400     | 16,599,980     |
| Malaysia           | 7,644,580     | 6,057,650     | 1,015,450     | 1,206,130     | 2,439,130     | 40,324,029     |
| New Zealand        | 1,830,850     | 1,882,310     | 1,852,360     | 2,027,560     | 2,020,000     | 39,507,316     |
| Liberia            | 2,474,000     | 2,952,800     | 2,717,700     | 843,100       | 1,160,500     | 15,749,900     |
| Norway             | 2,181,300     | 2,466,600     | 2,252,200     | 1,425,000     | 992,700       | 31,290,369     |
| Austria            | 743,463       | 779,736       | 890,665       | 888,723       | 954,156       | 18,332,481     |
| Bosnia-Herzegovina | 1,492,840     | 1,499,950     | 1,082,630     | 893,420       | 827,170       | 16,932,129     |

| Country      | 2013       | 2014      | 2015      | 2016      | 2017    | Total      |
|--------------|------------|-----------|-----------|-----------|---------|------------|
| Indonesia    | 12,294,300 | 3,273,300 | 2,111,200 | 2,300,000 | 700,000 | 46,314,915 |
| Korea, North | 865,000    | 963,600   | 579,300   | 600,000   | 630,000 | 65,947,900 |
| Colombia     | 319,520    | 304,280   | 405,780   | 322,060   | 320,630 | 7,642,009  |
| Algeria      | 594,000    | 492,010   | 509,800   | 328,300   | 268,400 | 24,589,525 |
| Saudi Arabia | 231,800    | 243,400   | 241,900   | 254,200   | 266,800 | 4,966,150  |
| Egypt        | 192,000    | 639,900   | 763,700   | 186,300   | 200,000 | 27,152,236 |
| Pakistan     | 156,600    | 74,890    | 124,990   | 164,220   | 190,630 | 1,649,220  |
| Korea, South | 397,830    | 415,960   | 267,190   | 266,810   | 186,330 | 5,267,030  |
| Tunisia      | 132,100    | 179,200   | 153,700   | 159,500   | 152,100 | 3,699,000  |
| Laos         | 560,950    | 680,840   | 140,850   | 69,040    | 150,000 | 1,781,340  |
| Germany      | 59,900     | 66,900    | 71,900    | 74,500    | 75,100  | 1,354,642  |
| Morocco      | 108,400    | 8,250     | 6,430     | 5,510     | 36,120  | 713,818    |
| Argentina    | 298,190    | 224,840   | 206,060   | 107,280   | 28,400  | 2,484,302  |
| Bolivia      | 1,550      | 10,690    | 14,180    | 1,710     | 22,230  | 379,729    |
| Bhutan       | 13,100     | 12,200    | 27,650    | 17,960    | 21,100  | 94,410     |
| Malawi       |            |           | -         | 2,280     | 3,000   | 5,280      |
| Guatemala    | 330        | 850       | 7,310     | 8,210     | 2,670   | 117,407    |
| Namibia      |            | -         | 2,680     | 5,680     | 1,640   | 10,000     |
| Uganda       | 1,369      | 25,175    | 5,400     | 1,280     | 1,390   | 42,927     |
| Uruguay      | 9,978      | 15,050    | 11,520    | 1,040     | 1,010   | 214,552    |
| Thailand     | 241,560    | 215,710   | 10,220    | -         | 85      | 5,911,967  |
| Azerbaijan   | 59,388     | 38,390    | 53,590    | 10,710    | -       | 619,132    |
| Kenya        | 93,000     | -         | -         | -         | -       | 207,900    |
| Nigeria      | 21,000     | 20,000    | 20,000    | 700       | -       | 1,277,412  |
| Philippines  | 634,000    | 92,300    | 64,300    | 10,300    | -       | 1,565,500  |
| Sudan        | 118,790    | 16,300    | -         | -         | -       | 177,410    |
| Swaziland    | 629,280    | 301,630   | -         | -         | -       | 1,486,800  |
| Albania      | -          | -         | -         | -         |         | 733,815    |
| Bulgaria     |            |           |           |           |         | 3,373,444  |

| Country        | 2013 | 2014 | 2015 | 2016 | 2017 | Total       |
|----------------|------|------|------|------|------|-------------|
| Czech Republic |      |      |      |      |      | 0           |
| Czechoslovakia |      |      |      |      |      | 1,153,980   |
| Ecuador        |      |      |      |      |      | 0           |
| Finland        |      |      |      |      |      | 0           |
| France         |      |      |      |      |      | 9,463,300   |
| Japan          |      |      |      |      |      | 124,778     |
| Portugal       |      |      |      |      |      | 88,485      |
| Romania        |      |      |      |      |      | 2,152,740   |
| Slovakia       |      |      |      |      |      | 3,594,688   |
| Spain          |      |      |      |      |      | 8,283,142   |
| Sri Lanka      |      |      |      |      |      | 0           |
| United Kingdom |      |      |      |      |      | 37,189      |
| USSR (Asia)    |      |      |      |      |      | 45,804,000  |
| USSR (Europe)  |      |      |      |      |      | 218,196,000 |
| Yugoslavia     |      |      |      |      |      | 3,860,890   |
| Zimbabwe       |      |      |      |      |      | 5,119,879   |

### Chromium

| Table 11: Chromium producers [metr. t chromium content], organised by largest producer in 2017 (Reichl, et al. 2019) |           |           |           |           |           |           |           |           |  |  |
|----------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|
| Country                                                                                                              | 1990      | 1991      | 1992      | 1993      | 1994      | 1995      | 1996      | 1997      |  |  |
| Total                                                                                                                | 7,306,565 | 7,574,055 | 4,848,904 | 4,042,981 | 4,436,776 | 5,637,753 | 4,858,471 | 5,987,551 |  |  |
| South Africa                                                                                                         | 1,899,920 | 2,244,000 | 1,479,720 | 1,248,720 | 1,602,480 | 2,237,840 | 2,234,320 | 2,711,280 |  |  |
| Kazakhstan                                                                                                           |           |           | 1,535,040 | 1,290,000 | 946,000   | 1,039,310 | 408,500   | 774,000   |  |  |
| Turkey                                                                                                               | 505,970   | 576,058   | 448,061   | 322,271   | 533,581   | 873,618   | 537,193   | 691,493   |  |  |
| India                                                                                                                | 422,000   | 478,280   | 478,720   | 468,518   | 461,701   | 460,000   | 538,182   | 644,000   |  |  |
| Finland                                                                                                              | 195,720   | 183,207   | 199,722   | 204,367   | 229,099   | 239,070   | 232,870   | 296,000   |  |  |
| Albania                                                                                                              | 222,369   | 168,430   | 49,039    | 32,911    | 11,381    | 30,892    | 30,402    | 22,000    |  |  |
| Zimbabwe                                                                                                             | 257,896   | 253,635   | 234,906   | 113,415   | 232,560   | 284,122   | 313,795   | 341,979   |  |  |
| Russia                                                                                                               | 1,710,000 | 1,620,000 | 64,960    | 54,000    | 54,000    | 67,500    | 43,515    | 65,250    |  |  |
| Brazil                                                                                                               | 101,300   | 133,100   | 85,588    | 86,759    | 85,879    | 100,969   | 174,150   | 112,274   |  |  |
| Oman                                                                                                                 | 0         | 0         | 600       | 4,094     | 2,480     | 2,120     | 6,100     | 7,160     |  |  |
| Madagascar                                                                                                           | 53,800    | 64,060    | 53,200    | 29,890    | 44,198    | 49,000    | 67,130    | 58,800    |  |  |
| Iran                                                                                                                 | 77,189    | 90,119    | 130,265   | 114,780   | 152,290   | 156,352   | 138,618   | 104,509   |  |  |
| Pakistan                                                                                                             | 6,912     | 8,540     | 8,683     | 6,190     | 2,496     | 6,800     | 11,195    | 7,478     |  |  |
| Papua New Guinea                                                                                                     |           |           |           |           |           |           |           |           |  |  |
| Cuba                                                                                                                 | 13,000    | 19,500    | 19,500    | 19,500    | 7,800     | 11,970    | 14,547    | 17,160    |  |  |
| China                                                                                                                | 9,500     | 9,750     | 9,750     | 21,060    | 24,100    | 36,660    | 50,700    | 75,000    |  |  |
| Philippines                                                                                                          | 73,596    | 70,260    | 25,833    | 7,574     | 10,881    | 13,316    | 18,524    | 16,673    |  |  |
| Sudan                                                                                                                | 8,000     | 8,500     | 10,000    | 6,500     | 10,300    | 9,900     | 10,560    | 13,300    |  |  |
| Afghanistan                                                                                                          |           |           |           |           |           | 1,764     | 1,500     | 1,365     |  |  |
| Australia                                                                                                            |           |           |           |           |           |           |           |           |  |  |
| Kosovo                                                                                                               |           |           |           |           |           |           |           |           |  |  |
| Vietnam                                                                                                              | 1,800     | 1,800     | 1,800     | 1,500     | 1,500     | 1,400     | 1,300     | 1,300     |  |  |
| Argentina                                                                                                            |           |           |           | 2         | 0         | 0         | 0         | 0         |  |  |
| Greece                                                                                                               | 16,990    | 9,652     | 1,920     | 1,440     | 1,960     | 2,000     | 5,620     | 5,050     |  |  |
| Indonesia                                                                                                            | 3,500     | 3,870     | 3,500     | 0         | 0         | 0         | 0         | 0         |  |  |
| Japan                                                                                                                | 3,636     | 3,600     | 3,600     | 0         | 0         | 0         | 0         | 0         |  |  |
| Morocco                                                                                                              | 560       | 254       | 147       | 140       | 140       | 0         | 0         | 0         |  |  |
| Myanmar                                                                                                              | 1,060     | 440       | 400       | 200       | 200       | 200       | 150       | 130       |  |  |
| New Caledonia                                                                                                        | 2,147     |           |           | 0         |           | 0         | 0         | 0         |  |  |

| Country              | 1990      | 1991      | 1992      | 1993      | 1994      | 1995      | 1996      | 1997      |
|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Thailand             | 0         | 0         | 0         | 0         |           |           |           |           |
| United Arab Emirates | 0         | 0         | 350       | 6,650     | 19,250    | 12,950    | 19,600    | 21,350    |
| USSR (Europe)        | 1,710,000 | 1,620,000 |           |           |           |           |           |           |
| Yugoslavia           | 9,700     | 7,000     | 3,600     | 2,500     | 2,500     | 0         |           |           |
|                      |           |           |           |           |           |           |           |           |
| Country              | 1998      | 1999      | 2000      | 2001      | 2002      | 2003      | 2004      | 2005      |
| Total                | 5,875,687 | 6,087,375 | 6,375,108 | 5,345,608 | 6,257,887 | 6,879,190 | 7,929,152 | 8,377,751 |
| South Africa         | 2,851,200 | 2,999,480 | 2,931,280 | 2,420,880 | 2,831,840 | 3,258,200 | 3,377,880 | 3,322,984 |
| Kazakhstan           | 688,000   | 946,000   | 1,126,600 | 884,359   | 1,010,345 | 1,299,600 | 1,507,900 | 1,670,300 |
| Turkey               | 567,014   | 323,548   | 236,184   | 154,565   | 131,728   | 96,303    | 212,697   | 253,183   |
| India                | 603,203   | 677,472   | 895,579   | 771,845   | 1,241,345 | 1,016,600 | 1,356,514 | 1,497,375 |
| Finland              | 199,230   | 238,975   | 260,600   | 236,000   | 248,000   | 250,000   | 264,000   | 235,000   |
| Albania              | 66,622    | 35,700    | 26,460    | 54,474    | 30,492    | 41,160    | 66,525    | 81,060    |
| Zimbabwe             | 279,053   | 288,330   | 294,066   | 351,068   | 337,203   | 286,695   | 300,776   | 301,513   |
| Russia               | 67,500    | 51,795    | 41,400    | 31,467    | 33,435    | 52,405    | 144,090   | 347,400   |
| Brazil               | 171,776   | 169,676   | 229,647   | 163,185   | 112,153   | 209,873   | 231,455   | 240,448   |
| Oman                 | 10,039    | 10,402    | 6,086     | 12,060    | 10,978    | 5,200     | 10,640    | 20,160    |
| Madagascar           | 51,107    | 28,175    | 57,820    | 36,015    | 30,037    | 21,609    | 31,262    | 41,965    |
| Iran                 | 90,969    | 109,515   | 65,790    | 58,480    | 34,400    | 51,600    | 78,764    | 96,132    |
| Pakistan             | 5,180     | 6,512     | 10,740    | 8,673     | 9,674     | 12,263    | 11,412    | 18,544    |
| Papua New Guinea     |           |           |           |           |           |           |           |           |
| Cuba                 | 19,127    | 13,943    | 12,636    | 10,140    | 8,249     | 10,764    | 16,570    | 5,744     |
| China                | 92,515    | 80,208    | 85,655    | 71,955    | 64,038    | 77,142    | 89,700    | 85,800    |
| Philippines          | 21,548    | 7,826     | 10,544    | 10,773    | 9,481     | 5,187     | 16,800    | 15,232    |
| Sudan                | 14,640    | 23,040    | 13,680    | 9,840     | 6,720     | 17,760    | 12,480    | 10,394    |
| Afghanistan          | 1,500     | 1,900     | 2,352     | 2,500     | 2,700     | 2,800     | 2,900     | 3,000     |
| Australia            | 31,200    | 27,300    | 35,100    | 4,602     | 51,739    | 97,098    | 103,735   | 94,327    |
| Kosovo               |           |           |           |           |           |           |           |           |
| Vietnam              | 13,404    | 22,936    | 21,489    | 48,312    | 52,420    | 66,018    | 89,658    | 36,301    |
| Argentina            | 0         | 0         | 0         | 0         | 0         | 0         |           |           |
| Greece               | 1,950     | 1,000     | 800       | 780       | 770       | 763       | 753       | 709       |
| Indonesia            | 1,880     | 2,542     |           |           |           |           |           |           |
| Japan                |           |           |           |           |           |           |           |           |

| Country              | 1998   | 1999   | 2000   | 2001  | 2002 | 2003 | 2004  | 2005 |
|----------------------|--------|--------|--------|-------|------|------|-------|------|
| Morocco              | 0      | 0      | 0      | 0     |      |      |       |      |
| Myanmar              | 120    | 100    | 100    | 135   | 140  | 150  | 160   | 180  |
| New Caledonia        |        |        |        |       |      |      |       |      |
| Thailand             |        |        |        |       |      |      |       |      |
| United Arab Emirates | 26,910 | 21,000 | 10,500 | 3,500 | 0    | 0    | 2,481 | 0    |
| USSR (Europe)        |        |        |        |       |      |      |       |      |
| Yugoslavia           |        |        |        |       |      |      |       |      |

| Country          | 2006      | 2007       | 2008       | 2009      | 2010       | 2011       | 2012       |
|------------------|-----------|------------|------------|-----------|------------|------------|------------|
| Total            | 9,586,093 | 10,542,846 | 10,709,472 | 8,635,293 | 11,511,845 | 11,229,183 | 11,997,236 |
| South Africa     | 3,267,378 | 4,252,449  | 4,260,362  | 3,326,813 | 4,783,282  | 5,220,770  | 4,979,650  |
| Kazakhstan       | 1,662,900 | 1,790,100  | 1,640,600  | 1,675,200 | 1,737,000  | 1,780,000  | 1,909,900  |
| Turkey           | 426,545   | 524,154    | 926,625    | 657,220   | 1,033,752  | 1,000,000  | 2,083,900  |
| India            | 2,435,953 | 2,241,435  | 1,873,580  | 1,575,800 | 1,989,800  | 1,344,800  | 1,303,600  |
| Finland          | 243,000   | 242,000    | 234,000    | 123,000   | 238,000    | 231,000    | 229,000    |
| Albania          | 96,538    | 97,138     | 108,179    | 136,108   | 142,700    | 152,300    | 156,600    |
| Zimbabwe         | 315,000   | 276,552    | 199,163    | 87,153    | 232,549    | 269,586    | 183,814    |
| Russia           | 434,743   | 349,506    | 410,850    | 240,300   | 236,700    | 263,300    | 206,600    |
| Brazil           | 219,468   | 243,995    | 259,095    | 142,432   | 202,850    | 211,580    | 184,275    |
| Oman             | 28,200    | 135,188    | 343,900    | 254,600   | 346,160    | 253,680    | 221,920    |
| Madagascar       | 56,982    | 26,802     | 55,180     | 65,170    | 65,905     | 32,683     | 45,100     |
| Iran             | 115,670   | 59,770     | 115,670    | 118,250   | 169,420    | 189,200    | 192,210    |
| Pakistan         | 25,829    | 41,656     | 45,954     | 35,896    | 102,859    | 59,210     | 71,680     |
| Papua New Guinea |           |            |            |           |            |            | 3,630      |
| Cuba             | 1,968     | 0          |            |           |            |            |            |
| China            | 85,100    | 85,100     | 85,800     | 109,200   | 85,500     | 85,800     | 59,000     |
| Philippines      | 18,691    | 12,637     | 6,107      | 5,729     | 5,923      | 10,193     | 14,651     |
| Sudan            | 13,811    | 7,428      | 15,307     | 6,762     | 27,275     | 30,781     | 8,780      |
| Afghanistan      | 3,200     | 2,856      | 2,856      | 2,940     | 2,520      | 2,730      | 2,520      |
| Australia        | 100,654   | 98,826     | 87,676     | 46,532    | 50,400     | 66,100     | 138,500    |
| Kosovo           |           |            |            |           |            |            | 500        |
| Vietnam          | 33,597    | 47,762     | 25,705     | 17,068    | 58,600     | 24,900     | 830        |

| Country              | 2006 | 2007  | 2008   | 2009  | 2010 | 2011 | 2012 |
|----------------------|------|-------|--------|-------|------|------|------|
| Argentina            |      |       |        |       |      |      |      |
| Greece               | 696  | 672   | 670    | 650   | 650  | 570  | 576  |
| Indonesia            |      |       |        |       |      |      |      |
| Japan                |      |       |        |       |      |      |      |
| Morocco              |      |       |        |       |      |      |      |
| Myanmar              | 170  | 170   | 170    | 150   | 0    |      |      |
| New Caledonia        |      |       |        |       |      |      |      |
| Thailand             |      |       |        |       |      |      |      |
| United Arab Emirates | 0    | 6,650 | 12,023 | 8,320 | 0    |      |      |
| USSR (Europe)        |      |       |        |       |      |      |      |
| Yugoslavia           |      |       |        |       |      |      |      |

| Country          | 2013       | 2014       | 2015       | 2016       | 2017       | Total       |
|------------------|------------|------------|------------|------------|------------|-------------|
| Total            | 13,228,415 | 12,997,974 | 13,221,120 | 12,903,760 | 14,586,575 | 238,970,626 |
| South Africa     | 6,023,450  | 5,977,600  | 6,660,500  | 6,254,600  | 7,039,300  | 101,698,178 |
| Kazakhstan       | 2,008,400  | 2,143,900  | 1,992,400  | 1,989,500  | 2,193,500  | 37,649,354  |
| Turkey           | 1,865,900  | 1,806,600  | 1,464,330  | 1,070,030  | 1,779,900  | 21,102,423  |
| India            | 1,324,000  | 995,500    | 1,335,560  | 1,728,270  | 1,601,200  | 31,760,832  |
| Finland          | 434,000    | 441,300    | 457,100    | 469,140    | 416,285    | 7,469,685   |
| Albania          | 228,900    | 309,900    | 284,100    | 317,500    | 317,600    | 3,317,480   |
| Zimbabwe         | 159,814    | 183,790    | 93,750     | 128,220    | 309,980    | 6,910,383   |
| Russia           | 147,200    | 214,200    | 226,400    | 209,300    | 234,000    | 7,621,816   |
| Brazil           | 189,521    | 244,622    | 179,100    | 200,000    | 200,000    | 4,885,170   |
| Oman             | 317,000    | 300,480    | 179,680    | 232,820    | 181,090    | 2,902,837   |
| Madagascar       | 57,420     | 60,750     | 72,620     | 52,800     | 102,000    | 1,411,480   |
| Iran             | 191,100    | 157,953    | 142,810    | 162,100    | 92,850     | 3,256,775   |
| Pakistan         | 54,580     | 34,230     | 40,700     | 27,730     | 42,100     | 723,716     |
| Papua New Guinea | 40,500     | 42,570     | 45,000     | 23,400     | 34,470     | 189,570     |
| Cuba             | 9,000      | 6,600      | 13,500     | 12,000     | 14,400     | 277,618     |
| China            | 50,400     | 14,400     | 17,600     | 12,200     | 12,000     | 1,585,633   |
| Philippines      | 14,110     | 18,820     | 6,200      | 10,300     | 8,340      | 465,749     |
| Sudan            | 14,820     | 29,440     | 7,270      | 1,850      | 5,560      | 354,698     |

| Country              | 2013   | 2014   | 2015  | 2016  | 2017  | Total     |
|----------------------|--------|--------|-------|-------|-------|-----------|
| Afghanistan          | 2,500  | 2,200  | 2,500 | 2,000 | 2,000 | 55,103    |
| Australia            | 94,200 | 10,519 | 0     | 0     | 0     | 1,138,508 |
| Kosovo               | 800    | 1,000  | 0     | 0     | 0     | 2,300     |
| Vietnam              | 800    | 1,600  | 0     | 0     | 0     | 573,800   |
| Argentina            |        |        |       |       |       | 2         |
| Greece               |        |        |       |       |       | 56,641    |
| Indonesia            |        |        |       |       |       | 15,292    |
| Japan                |        |        |       |       |       | 10,836    |
| Morocco              |        |        |       |       |       | 1,241     |
| Myanmar              |        |        |       |       |       | 4,525     |
| New Caledonia        |        |        |       |       |       | 2,147     |
| Thailand             |        |        |       |       |       | 0         |
| United Arab Emirates |        |        |       |       |       | 171,534   |
| USSR (Europe)        |        |        |       |       |       | 3,330,000 |
| Yugoslavia           |        |        |       |       |       | 25,300    |

### Aluminium

| Table 12: :          | Table 12: : Aluminium producers [metr. t aluminium content], organised by largest producer in 2017 (Reichl, et al. 2019) |            |            |            |            |            |            |            |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|--|--|--|
| Country              | 1990                                                                                                                     | 1991       | 1992       | 1993       | 1994       | 1995       | 1996       | 1997       |  |  |  |
| Total                | 22,873,272                                                                                                               | 22,305,234 | 19,466,057 | 19,621,920 | 19,179,436 | 19,986,007 | 20,856,205 | 21,927,032 |  |  |  |
| China                | 854,300                                                                                                                  | 963,000    | 1,096,400  | 1,220,400  | 1,446,000  | 1,870,000  | 1,780,000  | 2,035,000  |  |  |  |
| Russia               | 3,513,000                                                                                                                | 2,960,760  | 2,725,000  | 2,800,800  | 2,670,500  | 2,789,800  | 2,871,600  | 2,906,000  |  |  |  |
| India                | 433,200                                                                                                                  | 511,800    | 496,300    | 465,400    | 476,521    | 536,500    | 530,600    | 547,400    |  |  |  |
| Canada               | 1,567,395                                                                                                                | 1,821,600  | 1,971,843  | 2,308,900  | 2,254,683  | 2,171,992  | 2,283,000  | 2,327,200  |  |  |  |
| United Arab Emirates | 174,300                                                                                                                  | 240,000    | 244,600    | 231,801    | 246,900    | 247,000    | 258,500    | 379,200    |  |  |  |
| Australia            | 1,245,000                                                                                                                | 1,228,600  | 1,235,500  | 1,375,600  | 1,318,000  | 1,297,000  | 1,371,000  | 1,589,000  |  |  |  |
| Norway               | 871,100                                                                                                                  | 885,900    | 866,500    | 867,000    | 858,200    | 847,000    | 863,000    | 918,600    |  |  |  |
| Bahrain              | 208,572                                                                                                                  | 210,290    | 291,309    | 448,260    | 449,419    | 453,900    | 464,500    | 489,900    |  |  |  |
| Brazil               | 930,600                                                                                                                  | 1,141,220  | 1,193,300  | 1,174,500  | 1,185,000  | 1,188,100  | 1,197,400  | 1,189,100  |  |  |  |
| Iceland              | 86,800                                                                                                                   | 89,100     | 89,500     | 94,500     | 99,000     | 100,200    | 103,900    | 123,356    |  |  |  |
| Saudi Arabia         |                                                                                                                          |            |            |            |            |            |            |            |  |  |  |
| Malaysia             |                                                                                                                          |            |            |            |            |            |            |            |  |  |  |
| United States        | 4,048,290                                                                                                                | 4,121,187  | 4,042,000  | 3,695,000  | 3,299,000  | 3,375,000  | 3,577,000  | 3,603,400  |  |  |  |
| South Africa         | 157,500                                                                                                                  | 169,400    | 173,000    | 175,667    | 172,111    | 233,000    | 617,000    | 682,900    |  |  |  |
| Qatar                |                                                                                                                          |            |            |            |            |            |            |            |  |  |  |
| Mozambique           |                                                                                                                          |            |            |            |            |            |            |            |  |  |  |
| Germany              | 720,300                                                                                                                  | 690,322    | 602,800    | 551,931    | 505,000    | 575,000    | 576,492    | 571,940    |  |  |  |
| Argentina            | 165,600                                                                                                                  | 168,300    | 155,600    | 172,900    | 175,000    | 185,500    | 183,900    | 187,200    |  |  |  |
| France               | 324,876                                                                                                                  | 254,627    | 422,912    | 431,913    | 438,000    | 372,200    | 386,000    | 399,300    |  |  |  |
| Spain                | 355,300                                                                                                                  | 355,150    | 359,000    | 364,256    | 338,000    | 361,900    | 361,826    | 359,900    |  |  |  |
| Iran                 | 59,400                                                                                                                   | 67,400     | 79,300     | 91,500     | 116,000    | 117,000    | 80,100     | 107,000    |  |  |  |
| New Zealand          | 259,700                                                                                                                  | 260,400    | 242,900    | 266,900    | 268,000    | 273,300    | 260,000    | 310,200    |  |  |  |
| Romania              | 177,785                                                                                                                  | 167,451    | 112,000    | 112,400    | 119,600    | 140,500    | 140,900    | 161,900    |  |  |  |
| Egypt                | 179,600                                                                                                                  | 178,000    | 180,000    | 180,000    | 188,464    | 180,300    | 179,200    | 178,200    |  |  |  |
| Kazakhstan           |                                                                                                                          |            |            |            |            |            |            |            |  |  |  |
| Oman                 |                                                                                                                          |            |            |            |            |            |            |            |  |  |  |
| Indonesia            | 192,100                                                                                                                  | 173,098    | 186,975    | 202,197    | 221,900    | 228,100    | 223,100    | 217,400    |  |  |  |
| Greece               | 152,362                                                                                                                  | 150,878    | 150,850    | 146,800    | 144,300    | 131,000    | 141,295    | 141,500    |  |  |  |
| Slovakia             |                                                                                                                          |            |            | 40,000     | 32,800     | 60,561     | 111,500    | 110,100    |  |  |  |

| Country            | 1990      | 1991      | 1992    | 1993    | 1994    | 1995    | 1996    | 1997    |
|--------------------|-----------|-----------|---------|---------|---------|---------|---------|---------|
| Venezuela          | 594,000   | 610,000   | 567,400 | 567,600 | 585,400 | 627,900 | 634,900 | 640,800 |
| Bosnia-Herzegovina |           |           |         |         |         |         |         | 8,000   |
| Sweden             | 96,000    | 96,900    | 96,800  | 82,400  | 83,900  | 95,170  | 98,300  | 98,400  |
| Tajikistan         |           |           | 345,000 | 252,000 | 236,500 | 237,000 | 198,000 | 188,900 |
| Slovenia           |           |           | 74,304  | 75,000  | 74,282  | 70,200  | 65,800  | 74,400  |
| Turkey             | 60,900    | 55,802    | 58,600  | 58,501  | 59,700  | 61,500  | 62,100  | 62,000  |
| Cameroon           | 87,500    | 85,600    | 82,500  | 86,500  | 81,100  | 79,300  | 82,300  | 90,900  |
| United Kingdom     | 289,796   | 293,512   | 244,163 | 239,099 | 231,200 | 238,000 | 240,000 | 247,700 |
| Ghana              | 174,200   | 175,400   | 179,900 | 174,100 | 140,700 | 135,400 | 137,000 | 151,600 |
| Montenegro         |           |           |         |         |         |         |         |         |
| Netherlands        | 277,100   | 263,910   | 235,100 | 231,800 | 219,400 | 215,600 | 227,000 | 231,800 |
| Azerbaijan         |           |           | 24,000  | 7,000   | 10,000  | 11,000  | 0       | 4,757   |
| Japan              | 34,200    | 32,400    | 18,884  | 18,263  | 16,956  | 18,034  | 16,959  | 16,694  |
| Nigeria            |           |           |         |         |         |         |         | 2,500   |
| Austria            | 89,434    | 80,384    | 32,866  |         |         | 0       | 0       |         |
| Czechoslovakia     | 69,815    | 66,274    | 63,000  |         |         |         |         |         |
| German Dem, Rep    | 19,731    |           |         |         |         |         |         |         |
| Hungary            | 74,000    | 63,000    | 22,500  | 27,900  | 29,400  | 32,000  | 32,000  | 33,671  |
| Italy              | 228,643   | 205,636   | 202,871 | 129,732 | 175,600 | 197,750 | 192,833 | 187,700 |
| Korea, North       | 0         | 0         | 0       | 0       | 0       |         |         |         |
| Korea, South       | 2,000     |           |         |         | 0       | 0       | 0       | 0       |
| Mexico             | 70,873    | 50,796    | 0       | 0       | 0       | 10,400  | 61,500  | 66,400  |
| Poland             | 46,000    | 45,800    | 43,600  | 46,900  | 49,400  | 52,000  | 52,100  | 53,614  |
| Serbia and         |           |           |         |         |         |         |         |         |
| Montenegro         |           |           |         |         |         |         |         |         |
| Suriname           | 31,300    | 30,700    | 32,400  | 30,100  | 26,700  | 28,100  | 26,000  | 23,100  |
| Switzerland        | 71,700    | 65,877    | 52,400  | 36,400  | 24,200  | 20,700  | 26,600  | 27,300  |
| Ukraine            |           |           | 105,280 | 104,000 | 102,000 | 95,100  | 89,900  | 100,500 |
| USSR (Asia)        | 3,161,700 | 2,664,360 |         |         |         |         |         |         |
| USSR (Europe)      | 351,300   | 296,400   |         |         |         |         |         |         |
| Yugoslavia         | 366,000   | 314,000   | 66,900  | 36,000  | 10,600  | 26,000  | 51,100  | 80,600  |

| Country              | 1998       | 1999       | 2000       | 2001       | 2002       | 2003       | 2004       | 2005       |
|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Total                | 22,828,580 | 23,942,136 | 24,601,897 | 24,641,067 | 26,356,101 | 28,384,530 | 29,843,041 | 32,007,041 |
| China                | 2,435,300  | 2,808,900  | 2,989,200  | 3,575,800  | 4,511,100  | 5,865,800  | 6,690,400  | 7,786,800  |
| Russia               | 3,010,000  | 3,149,000  | 3,247,000  | 3,302,000  | 3,500,000  | 3,470,000  | 3,600,000  | 3,650,000  |
| India                | 543,451    | 594,000    | 646,300    | 625,000    | 671,200    | 798,300    | 860,900    | 942,400    |
| Canada               | 2,374,100  | 2,389,000  | 2,373,000  | 2,583,000  | 2,709,000  | 2,791,900  | 2,592,200  | 2,984,200  |
| United Arab Emirates | 386,600    | 440,700    | 536,000    | 536,000    | 538,000    | 560,000    | 683,000    | 724,600    |
| Australia            | 1,686,000  | 1,742,000  | 1,769,000  | 1,790,000  | 1,810,000  | 1,877,000  | 1,895,000  | 1,903,000  |
| Norway               | 995,500    | 1,009,000  | 1,031,100  | 1,034,200  | 1,044,000  | 1,192,000  | 1,321,700  | 1,391,000  |
| Bahrain              | 501,300    | 502,700    | 509,000    | 522,100    | 517,000    | 525,800    | 528,700    | 744,100    |
| Brazil               | 1,208,000  | 1,249,600  | 1,271,400  | 1,140,000  | 1,318,400  | 1,380,600  | 1,457,400  | 1,499,600  |
| Iceland              | 183,360    | 221,433    | 225,721    | 242,526    | 283,285    | 280,194    | 282,127    | 274,696    |
| Saudi Arabia         |            |            |            |            |            |            |            |            |
| Malaysia             |            |            |            |            |            |            |            |            |
| United States        | 3,712,690  | 3,779,000  | 3,668,000  | 2,637,000  | 2,706,600  | 2,703,300  | 2,516,400  | 2,481,000  |
| South Africa         | 692,500    | 689,230    | 674,167    | 663,000    | 706,900    | 738,000    | 863,600    | 846,213    |
| Qatar                |            |            |            |            |            |            |            |            |
| Mozambique           |            |            | 53,800     | 266,000    | 273,200    | 407,400    | 547,100    | 553,700    |
| Germany              | 612,380    | 633,803    | 643,545    | 651,600    | 652,800    | 660,800    | 667,800    | 647,934    |
| Argentina            | 186,700    | 206,400    | 261,895    | 247,657    | 268,806    | 272,369    | 272,048    | 270,714    |
| France               | 423,600    | 455,100    | 441,200    | 460,900    | 463,200    | 444,100    | 446,900    | 437,900    |
| Spain                | 360,400    | 363,900    | 365,700    | 376,400    | 380,100    | 389,100    | 397,500    | 394,200    |
| Iran                 | 117,000    | 137,313    | 145,200    | 160,000    | 168,715    | 181,000    | 203,200    | 232,000    |
| New Zealand          | 317,500    | 326,700    | 328,400    | 322,300    | 333,900    | 334,400    | 350,400    | 351,400    |
| Romania              | 174,000    | 174,100    | 179,000    | 181,800    | 187,100    | 196,800    | 222,300    | 243,600    |
| Egypt                | 187,200    | 186,700    | 162,617    | 186,479    | 195,000    | 194,600    | 216,000    | 243,800    |
| Kazakhstan           |            |            |            |            |            |            |            |            |
| Oman                 |            |            |            |            |            |            |            |            |
| Indonesia            | 134,300    | 112,300    | 192,300    | 208,800    | 162,800    | 197,300    | 240,800    | 252,300    |
| Greece               | 156,902    | 170,301    | 167,507    | 163,581    | 165,262    | 167,797    | 166,634    | 165,300    |
| Slovakia             | 108,006    | 109,200    | 109,800    | 110,100    | 111,600    | 131,400    | 156,900    | 158,400    |

| Country            | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Venezuela          | 584,300 | 570,300 | 570,900 | 570,600 | 594,638 | 591,614 | 631,100 | 624,000 |
| Bosnia-Herzegovina | 28,000  | 70,000  | 94,751  | 95,064  | 102,271 | 112,503 | 121,294 | 131,200 |
| Sweden             | 95,700  | 98,500  | 100,800 | 101,400 | 101,100 | 100,700 | 100,600 | 102,107 |
| Tajikistan         | 195,600 | 229,100 | 269,200 | 289,100 | 307,589 | 319,400 | 258,100 | 379,600 |
| Slovenia           | 73,803  | 77,200  | 75,600  | 76,632  | 87,600  | 118,305 | 120,700 | 138,500 |
| Turkey             | 61,800  | 61,700  | 61,500  | 61,700  | 62,500  | 62,900  | 62,400  | 59,000  |
| Cameroon           | 81,600  | 91,900  | 94,900  | 80,900  | 67,000  | 77,200  | 85,900  | 86,400  |
| United Kingdom     | 258,400 | 272,211 | 305,099 | 340,778 | 344,318 | 342,748 | 359,600 | 368,477 |
| Ghana              | 56,100  | 114,200 | 155,500 | 162,300 | 132,400 | 15,900  | 0       | 13,400  |
| Montenegro         |         |         |         |         |         |         |         |         |
| Netherlands        | 263,700 | 287,400 | 301,700 | 293,200 | 284,400 | 282,800 | 327,000 | 333,800 |
| Azerbaijan         | 3,386   | 1,278   | 295     | 57      | 58      | 18,600  | 29,500  | 31,800  |
| Japan              | 16,302  | 10,900  | 6,500   | 6,600   | 6,400   | 6,500   | 6,400   | 6,400   |
| Nigeria            | 25,500  | 15,900  |         |         | 0       | 0       | 0       |         |
| Austria            |         |         |         |         |         |         |         |         |
| Czechoslovakia     |         |         |         |         |         |         |         |         |
| German Dem, Rep    |         |         |         |         |         |         |         |         |
| Hungary            | 33,700  | 34,000  | 33,900  | 34,600  | 35,300  | 35,000  | 34,300  | 31,000  |
| Italy              | 187,000 | 205,567 | 189,200 | 187,400 | 190,400 | 191,400 | 195,400 | 192,900 |
| Korea, North       |         |         |         |         |         |         |         |         |
| Korea, South       |         |         |         |         |         |         |         |         |
| Mexico             | 61,800  | 62,700  | 61,200  | 51,500  | 39,000  | 17,600  | 0       | 0       |
| Poland             | 52,500  | 51,600  | 55,500  | 52,600  | 58,800  | 57,200  | 58,900  | 53,600  |
| Serbia and         |         |         |         |         |         |         |         |         |
| Montenegro         |         |         |         |         |         | 116,700 | 115,100 | 117,000 |
| Suriname           | 27,100  | 6,600   | 0       | 0       | 0       | 0       | 0       | 0       |
| Switzerland        | 32,100  | 34,400  | 35,500  | 36,200  | 40,000  | 43,900  | 44,538  | 44,800  |
| Ukraine            | 106,700 | 115,400 | 103,500 | 106,093 | 112,459 | 113,600 | 113,200 | 114,200 |
| USSR (Asia)        |         |         |         |         |         |         |         |         |
| USSR (Europe)      |         |         |         |         |         |         |         |         |
| Yugoslavia         | 76,700  | 80,900  | 95,500  | 108,100 | 111,900 |         |         |         |

| Country              | 2006       | 2007       | 2008       | 2009       | 2010       | 2011       | 2012       |
|----------------------|------------|------------|------------|------------|------------|------------|------------|
| Total                | 33,979,925 | 37,876,437 | 39,594,446 | 36,984,535 | 41,297,617 | 44,384,916 | 49,403,677 |
| China                | 9,265,700  | 12,339,700 | 13,176,300 | 12,886,100 | 16,131,000 | 17,786,000 | 23,534,000 |
| Russia               | 3,720,000  | 3,960,000  | 4,180,000  | 3,820,000  | 3,947,000  | 3,992,000  | 4,024,000  |
| India                | 1,113,849  | 1,239,581  | 1,347,127  | 1,480,568  | 1,621,033  | 1,654,156  | 1,720,000  |
| Canada               | 3,051,100  | 3,082,600  | 3,120,148  | 3,030,300  | 2,963,210  | 2,987,964  | 2,780,556  |
| United Arab Emirates | 789,300    | 889,500    | 891,700    | 1,009,800  | 1,400,000  | 1,800,000  | 1,814,000  |
| Australia            | 1,932,000  | 1,960,000  | 1,974,000  | 1,943,000  | 1,928,000  | 1,945,000  | 1,859,726  |
| Norway               | 1,383,000  | 1,362,000  | 1,358,800  | 1,098,200  | 1,090,000  | 1,201,000  | 1,110,900  |
| Bahrain              | 872,000    | 865,900    | 871,700    | 847,700    | 851,000    | 881,300    | 890,217    |
| Brazil               | 1,765,821  | 1,654,800  | 1,661,100  | 1,535,900  | 1,536,200  | 1,440,000  | 1,436,400  |
| Iceland              | 326,090    | 419,149    | 741,386    | 817,964    | 813,338    | 814,039    | 801,166    |
| Saudi Arabia         |            |            |            |            |            |            |            |
| Malaysia             |            |            |            | 15,000     | 60,000     | 188,100    | 121,900    |
| United States        | 2,283,100  | 2,554,000  | 2,658,300  | 1,727,000  | 1,726,000  | 1,986,000  | 2,070,300  |
| South Africa         | 895,000    | 899,000    | 811,000    | 809,000    | 811,500    | 811,483    | 665,000    |
| Qatar                |            |            |            | 10,000     | 126,000    | 450,000    | 604,000    |
| Mozambique           | 564,000    | 564,000    | 534,181    | 541,765    | 557,000    | 562,000    | 562,000    |
| Germany              | 515,539    | 551,030    | 605,876    | 291,800    | 402,500    | 432,500    | 410,500    |
| Argentina            | 272,942    | 286,386    | 393,900    | 412,594    | 417,088    | 416,177    | 413,395    |
| France               | 442,100    | 427,800    | 389,000    | 345,000    | 356,000    | 334,000    | 349,000    |
| Spain                | 367,400    | 405,100    | 405,800    | 329,500    | 456,500    | 408,400    | 386,400    |
| Iran                 | 205,467    | 203,600    | 241,300    | 281,300    | 303,000    | 321,900    | 336,500    |
| New Zealand          | 335,300    | 351,100    | 315,500    | 271,000    | 344,000    | 357,000    | 326,963    |
| Romania              | 258,300    | 286,300    | 289,700    | 229,000    | 241,000    | 261,000    | 248,587    |
| Egypt                | 252,300    | 258,300    | 259,200    | 245,400    | 281,100    | 353,900    | 393,700    |
| Kazakhstan           |            | 12,000     | 106,000    | 128,000    | 227,000    | 248,800    | 250,269    |
| Oman                 |            |            | 49,000     | 351,000    | 367,000    | 375,000    | 360,000    |
| Indonesia            | 250,300    | 242,100    | 242,500    | 257,600    | 253,300    | 246,300    | 253,000    |
| Greece               | 164,528    | 167,937    | 162,339    | 134,737    | 136,765    | 165,147    | 165,579    |
| Slovakia             | 158,289    | 160,461    | 162,995    | 149,604    | 162,997    | 162,840    | 160,662    |

| Country            | 2006    | 2007    | 2008    | 2009    | 2010    | 2011    | 2012    |
|--------------------|---------|---------|---------|---------|---------|---------|---------|
| Venezuela          | 617,100 | 615,700 | 607,800 | 561,100 | 353,700 | 330,000 | 203,000 |
| Bosnia-Herzegovina | 136,200 | 147,000 | 155,909 | 130,042 | 150,488 | 163,654 | 159,660 |
| Sweden             | 101,700 | 99,800  | 81,900  | 69,700  | 93,000  | 111,000 | 129,000 |
| Tajikistan         | 413,800 | 419,100 | 399,500 | 359,486 | 348,900 | 278,364 | 272,506 |
| Slovenia           | 118,100 | 111,000 | 83,328  | 35,148  | 40,177  | 75,301  | 83,278  |
| Turkey             | 60,000  | 63,400  | 61,100  | 30,000  | 60,000  | 65,000  | 43,700  |
| Cameroon           | 91,000  | 87,000  | 89,700  | 79,400  | 76,000  | 69,000  | 52,000  |
| United Kingdom     | 360,300 | 364,595 | 326,900 | 252,000 | 186,000 | 213,000 | 60,000  |
| Ghana              | 75,800  | 12,900  | 9,300   | 0       | 0       | 35,213  | 38,000  |
| Montenegro         |         | 124,060 | 107,457 | 63,960  | 82,043  | 92,838  | 74,813  |
| Netherlands        | 285,300 | 296,900 | 321,200 | 165,000 | 217,000 | 200,000 | 86,300  |
| Azerbaijan         | 31,900  | 39,238  | 61,600  | 10,167  | 378     | 740     | 54,200  |
| Japan              | 6,400   | 6,000   | 6,600   | 5,100   | 4,700   | 4,700   | 4,500   |
| Nigeria            | 0       | 0       | 10,600  | 12,900  | 21,200  | 15,000  | 22,000  |
| Austria            |         |         |         |         |         |         |         |
| Czechoslovakia     |         |         |         |         |         |         |         |
| German Dem, Rep    |         |         |         |         |         |         |         |
| Hungary            | 300     | 0       |         |         |         |         |         |
| Italy              | 194,200 | 179,500 | 186,400 | 165,800 | 129,500 | 141,900 | 72,000  |
| Korea, North       |         |         |         |         |         |         |         |
| Korea, South       |         |         |         |         |         |         |         |
| Mexico             | 0       | 0       |         |         |         |         |         |
| Poland             | 57,600  | 54,500  | 47,500  |         |         |         |         |
| Serbia and         |         |         |         |         |         |         |         |
| Montenegro         | 121,800 |         |         |         |         |         |         |
| Suriname           |         |         |         |         |         |         |         |
| Switzerland        | 12,000  | 0       |         |         |         |         |         |
| Ukraine            | 113,000 | 113,400 | 88,800  | 45,900  | 25,000  | 7,200   | 0       |
| USSR (Asia)        |         |         |         |         |         |         |         |
| USSR (Europe)      |         |         |         |         |         |         |         |
| Yugoslavia         |         |         |         |         |         |         |         |

## Copper

| Table 13: Copper producers [metr. t Copper content], organised by largest producer in 2017 (Reichl, et al. 2019) |           |           |           |           |           |            |            |            |  |  |
|------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|--|--|
| Country                                                                                                          | 1990      | 1991      | 1992      | 1993      | 1994      | 1995       | 1996       | 1997       |  |  |
| Total                                                                                                            | 9,924,267 | 9,883,604 | 9,479,076 | 9,552,707 | 9,547,792 | 10,086,190 | 10,877,349 | 11,253,727 |  |  |
| Chile                                                                                                            | 1,588,400 | 1,814,300 | 1,932,700 | 2,055,400 | 2,219,900 | 2,490,000  | 3,115,800  | 3,392,000  |  |  |
| Peru                                                                                                             | 323,412   | 382,277   | 379,128   | 381,250   | 365,513   | 409,693    | 485,595    | 502,970    |  |  |
| China                                                                                                            | 360,000   | 304,000   | 334,300   | 345,700   | 395,600   | 445,200    | 439,200    | 495,500    |  |  |
| United States                                                                                                    | 1,587,763 | 1,631,000 | 1,764,800 | 1,801,400 | 1,847,600 | 1,849,100  | 1,919,200  | 1,939,600  |  |  |
| Congo, D.R.                                                                                                      |           |           |           |           |           |            |            |            |  |  |
| Australia                                                                                                        | 305,000   | 320,000   | 378,000   | 430,000   | 418,400   | 397,800    | 547,300    | 558,000    |  |  |
| Zambia                                                                                                           | 496,000   | 423,000   | 432,600   | 431,500   | 384,400   | 341,900    | 339,700    | 331,200    |  |  |
| Mexico                                                                                                           | 298,695   | 284,174   | 279,042   | 303,989   | 305,487   | 339,347    | 327,978    | 338,900    |  |  |
| Russia                                                                                                           | 900,000   | 808,200   | 624,200   | 583,600   | 573,300   | 525,900    | 523,000    | 522,500    |  |  |
| Indonesia                                                                                                        | 169,500   | 219,803   | 290,900   | 309,744   | 333,800   | 459,700    | 386,390    | 399,934    |  |  |
| Canada                                                                                                           | 793,700   | 811,100   | 768,600   | 732,600   | 616,800   | 726,300    | 688,400    | 659,500    |  |  |
| Kazakhstan                                                                                                       |           |           | 303,700   | 263,500   | 215,400   | 228,500    | 250,200    | 316,000    |  |  |
| Poland                                                                                                           | 329,400   | 340,800   | 332,000   | 382,800   | 378,200   | 384,200    | 425,000    | 414,800    |  |  |
| Brazil                                                                                                           | 34,441    | 37,947    | 39,845    | 43,568    | 39,674    | 47,900     | 46,200     | 39,952     |  |  |
| Mongolia                                                                                                         | 123,893   | 90,090    | 105,000   | 114,000   | 119,200   | 120,200    | 121,000    | 130,000    |  |  |
| Iran                                                                                                             | 75,300    | 97,000    | 108,000   | 86,600    | 117,900   | 105,710    | 107,600    | 110,000    |  |  |
| Spain                                                                                                            | 14,725    | 11,931    | 10,863    | 6,691     | 5,944     | 22,923     | 38,392     | 38,883     |  |  |
| Laos                                                                                                             |           |           |           |           |           |            |            |            |  |  |
| Bulgaria                                                                                                         | 32,900    | 47,200    | 47,400    | 60,400    | 75,500    | 77,400     | 84,800     | 75,500     |  |  |
| Papua New Guinea                                                                                                 | 170,211   | 204,459   | 193,359   | 203,945   | 206,329   | 212,737    | 186,715    | 111,515    |  |  |
| Sweden                                                                                                           | 74,283    | 81,650    | 89,018    | 88,909    | 79,384    | 83,603     | 71,554     | 86,610     |  |  |
| Uzbekistan                                                                                                       |           |           | 74,300    | 78,000    | 49,500    | 40,000     | 64,000     | 74,400     |  |  |
| Armenia                                                                                                          |           |           | 2,000     | 500       | 500       | 8,100      | 9,100      | 6,758      |  |  |
| Turkey                                                                                                           | 39,825    | 41,800    | 36,426    | 39,200    | 43,400    | 44,500     | 53,607     | 64,600     |  |  |
| Philippines                                                                                                      | 180,478   | 148,000   | 127,166   | 136,349   | 112,075   | 102,637    | 61,615     | 48,638     |  |  |
| Myanmar                                                                                                          | 4,400     | 5,700     | 5,000     | 7,000     | 6,700     | 6,000      | 6,000      | 6,000      |  |  |
| South Africa                                                                                                     | 188,400   | 193,642   | 176,100   | 166,300   | 160,100   | 161,600    | 152,100    | 153,100    |  |  |

| Country            | 1990    | 1991    | 1992    | 1993    | 1994    | 1995    | 1996    | 1997    |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Portugal           | 159,839 | 157,572 | 150,483 | 150,431 | 130,225 | 130,041 | 107,773 | 106,580 |
| Saudi Arabia       | 895     | 880     | 865     | 925     | 919     | 814     | 786     | 703     |
| Finland            | 12,600  | 11,700  | 10,200  | 11,100  | 9,500   | 9,500   | 9,300   | 8,259   |
| Serbia             |         |         |         |         |         |         |         |         |
| Morocco            | 15,300  | 13,651  | 13,800  | 14,300  | 13,400  | 10,066  | 10,434  | 10,456  |
| India              | 63,520  | 50,430  | 49,985  | 49,400  | 52,920  | 46,600  | 47,800  | 37,200  |
| Argentina          | 357     | 409     | 297     | 0       | 0       | 0       | 0       | 30,400  |
| Mauritania         |         |         |         |         |         |         |         |         |
| Vietnam            |         |         |         |         |         |         |         |         |
| Tanzania           |         |         |         |         |         |         |         |         |
| Namibia            | 31,327  | 31,285  | 29,308  | 27,373  | 22,530  | 29,203  | 14,904  | 17,900  |
| Korea, North       | 12,000  | 14,000  | 12,000  | 12,000  | 12,000  | 10,000  | 10,000  | 10,000  |
| Georgia            |         |         | 5,000   | 3,000   | 2,000   | 1,000   | 4,500   | 5,000   |
| Pakistan           |         |         |         |         |         | 4,400   | 3,000   |         |
| Dominican Republic |         |         |         |         |         |         |         |         |
| Colombia           | 230     | 2,760   | 2,980   | 0       | 2,380   | 2,280   | 2,100   | 1,680   |
| Macedonia          |         | 9,200   | 7,224   | 10,000  | 10,000  | 10,000  | 13,500  | 13,000  |
| Zimbabwe           | 14,698  | 13,811  | 12,600  | 8,187   | 9,400   | 8,045   | 9,028   | 6,832   |
| Ecuador            |         |         |         |         |         |         |         | 0       |
| Romania            | 31,725  | 21,389  | 25,725  | 26,653  | 26,000  | 24,500  | 24,400  | 22,600  |
| Kyrgyzstan         |         |         |         |         |         |         |         |         |
| Eritrea            |         |         |         |         |         |         |         |         |
| Bolivia            | 157     | 30      | 101     | 94      | 79      | 127     | 92      | 182     |
| Tajikistan         |         |         |         |         |         |         |         |         |
| Azerbaijan         |         |         |         |         |         |         |         |         |
| Cyprus             | 478     | 226     | 173     | 121     | 0       | 0       | 1,688   | 3,950   |
| Botswana           | 19,561  | 19,345  | 19,079  | 20,197  | 21,563  | 19,140  | 20,979  | 18,350  |
| Slovakia           |         |         |         | 1,121   | 570     | 400     | 913     | 691     |
| Korea, South       | 53      | 5       | 0       | 0       | 0       | 33      | 1       | 0       |
| Albania            | 13,565  | 8,100   | 1,900   | 3,400   | 2,500   | 3,700   | 2,600   | 300     |
| Oman               | 13,700  | 13,500  | 13,400  | 8,800   | 4,300   | 1,067   | 1,000   | 1,209   |
| Afghanistan        |         |         |         |         |         | 1,260   | 1,800   | 1,065   |

| Country                  | 1990    | 1991    | 1992    | 1993   | 1994   | 1995   | 1996   | 1997   |
|--------------------------|---------|---------|---------|--------|--------|--------|--------|--------|
| Cuba                     | 2,000   | 2,000   | 1,500   | 2,000  | 2,000  | 1,852  | 2,227  | 2,212  |
| Czech Republic           |         |         |         | 200    | 0      | 0      | 0      | 0      |
| Czechoslovakia           | 3,549   | 2,672   | 680     |        |        |        |        |        |
| El Salvador              |         |         |         |        |        |        |        |        |
| France                   | 480     | 166     | 160     | 70     | 174    | 172    | 170    | 196    |
| German Dem, Rep          | 3,564   |         |         |        |        |        |        |        |
| Germany                  | 3       |         |         | 0      |        | 0      | 0      | 0      |
| Honduras                 | 1,388   | 1,500   | 1,600   | 900    | 1,000  | 1,000  | 300    | 300    |
| Jamaica                  |         |         |         |        |        |        |        |        |
| Japan                    | 12,927  | 12,414  | 12,074  | 10,277 | 6,043  | 2,376  | 1,145  | 932    |
| Malaysia                 | 24,326  | 25,581  | 28,556  | 25,182 | 25,267 | 20,751 | 20,671 | 18,900 |
| Mozambique               | 140     | 0       | 0       | 259    | 0      | 0      | 0      | 0      |
| Nepal                    | 4       | 5       | 5       | 4      | 4      | 4      | 3      | 0      |
| Norway                   | 19,700  | 17,400  | 12,734  | 8,868  | 7,412  | 6,797  | 7,389  | 6,670  |
| Serbia and<br>Montenegro |         |         |         |        |        |        |        |        |
| United Kingdom           | 955     | 300     | 0       |        | 0      | 0      | 0      | 0      |
| USSR (Asia)              | 630,000 | 565,740 |         |        |        |        |        |        |
| USSR (Europe)            | 270,000 | 242,460 |         |        |        |        |        |        |
| Yugoslavia               | 119,000 | 112,000 | 84,900  | 57,400 | 74,400 | 74,600 | 69,500 | 73,600 |
| Zaire                    | 355,500 | 235,000 | 147,300 | 47,500 | 40,600 | 35,512 | 38,900 | 37,700 |

| Country          | 1998       | 1999       | 2000       | 2001       | 2002       | 2003       | 2004       | 2005       |
|------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Total            | 11,991,960 | 12,452,727 | 12,876,125 | 13,125,582 | 13,025,473 | 13,314,352 | 14,263,275 | 14,558,764 |
| Chile            | 3,686,900  | 4,319,200  | 4,602,000  | 4,739,000  | 4,580,600  | 4,904,200  | 5,412,500  | 5,320,500  |
| Peru             | 483,338    | 536,000    | 553,924    | 722,355    | 844,553    | 842,605    | 1,035,574  | 1,009,899  |
| China            | 486,800    | 520,000    | 592,600    | 587,400    | 578,100    | 614,400    | 754,200    | 761,600    |
| United States    | 1,859,400  | 1,602,247  | 1,444,100  | 1,338,000  | 1,142,400  | 1,116,000  | 1,160,000  | 1,140,000  |
| Congo, D.R.      | 35,000     | 33,000     | 33,000     | 33,000     | 32,300     | 9,370      | 21,000     | 28,462     |
| Australia        | 619,000    | 741,000    | 832,000    | 896,000    | 876,000    | 830,000    | 854,000    | 921,000    |
| Zambia           | 378,800    | 271,000    | 249,300    | 306,900    | 307,800    | 346,900    | 411,000    | 465,000    |
| Mexico           | 344,800    | 340,100    | 339,000    | 349,400    | 314,800    | 303,800    | 352,300    | 373,252    |
| Russia           | 530,000    | 535,000    | 530,000    | 540,000    | 661,770    | 650,000    | 630,000    | 640,000    |
| Indonesia        | 580,809    | 581,940    | 719,474    | 531,984    | 627,262    | 712,427    | 618,786    | 781,838    |
| Canada           | 705,800    | 620,100    | 633,900    | 633,500    | 603,500    | 557,100    | 562,800    | 595,400    |
| Kazakhstan       | 338,600    | 373,500    | 430,200    | 470,100    | 473,800    | 485,400    | 462,000    | 401,700    |
| Poland           | 435,800    | 463,200    | 454,100    | 474,000    | 502,800    | 503,200    | 530,500    | 511,500    |
| Brazil           | 33,500     | 31,200     | 31,800     | 34,448     | 32,700     | 26,275     | 103,153    | 133,325    |
| Mongolia         | 127,800    | 128,200    | 126,500    | 133,503    | 133,900    | 130,270    | 130,000    | 129,000    |
| Iran             | 111,000    | 131,763    | 155,850    | 143,500    | 134,632    | 127,800    | 145,668    | 164,200    |
| Spain            | 37,217     | 15,229     | 24,360     | 12,159     | 1,248      | 635        | 1,306      | 7,175      |
| Laos             |            |            |            |            |            |            | 1,700      | 30,500     |
| Bulgaria         | 82,500     | 87,500     | 93,200     | 97,100     | 84,400     | 91,600     | 79,600     | 111,600    |
| Papua New Guinea | 152,200    | 188,000    | 203,100    | 203,800    | 211,315    | 202,300    | 173,400    | 193,000    |
| Sweden           | 73,685     | 71,160     | 77,765     | 74,269     | 71,991     | 83,100     | 82,400     | 87,068     |
| Uzbekistan       | 65,000     | 64,000     | 69,400     | 77,500     | 79,900     | 80,000     | 80,000     | 80,000     |
| Armenia          | 9,158      | 9,611      | 12,200     | 16,800     | 16,600     | 18,100     | 17,700     | 16,400     |
| Turkey           | 73,900     | 74,000     | 70,400     | 64,400     | 60,000     | 59,000     | 49,300     | 54,100     |
| Philippines      | 45,381     | 37,631     | 30,644     | 20,300     | 18,364     | 20,925     | 16,000     | 16,300     |
| Myanmar          | 3,200      | 26,700     | 26,700     | 25,800     | 27,500     | 27,900     | 31,800     | 34,500     |
| South Africa     | 164,400    | 144,300    | 137,092    | 141,865    | 129,452    | 120,920    | 102,570    | 103,856    |
| Portugal         | 114,515    | 99,472     | 76,300     | 83,000     | 77,227     | 77,581     | 95,743     | 89,541     |
| Saudi Arabia     | 782        | 821        | 837        | 839        | 600        | 800        | 652        | 668        |
| Finland          | 9,217      | 10,517     | 10,810     | 11,555     | 14,400     | 14,900     | 15,100     | 14,900     |
| Serbia           |            |            |            |            |            |            |            |            |

| Country            | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Morocco            | 8,881   | 7,256   | 6,519   | 5,357   | 4,994   | 4,371   | 4,400   | 3,200   |
| India              | 39,900  | 34,100  | 31,900  | 32,400  | 31,500  | 28,500  | 29,500  | 26,700  |
| Argentina          | 170,273 | 210,126 | 145,197 | 191,566 | 218,100 | 199,020 | 177,100 | 187,317 |
| Mauritania         |         |         |         |         |         |         |         |         |
| Vietnam            |         | 700     | 2,400   | 1,600   | 1,100   | 1,200   | 2,000   | 3,100   |
| Tanzania           |         |         |         | 2,651   | 4,200   | 3,723   | 4,249   | 3,669   |
| Namibia            | 7,500   | 0       | 5,100   | 15,000  | 17,850  | 16,200  | 11,200  | 10,157  |
| Korea, North       | 12,000  | 12,000  | 12,000  | 12,000  | 12,000  | 12,000  | 12,000  | 12,000  |
| Georgia            | 5,000   | 8,000   | 8,000   | 11,800  | 13,100  | 12,000  | 11,800  | 9,500   |
| Pakistan           |         |         |         |         |         | 5,400   | 14,700  | 17,700  |
| Dominican Republic |         |         |         |         |         |         |         |         |
| Colombia           | 1,800   | 2,020   | 1,900   | 1,850   | 1,710   | 1,450   | 1,570   | 1,750   |
| Macedonia          | 9,500   | 10,200  | 10,000  | 6,800   | 5,600   | 700     | 0       | 4,800   |
| Zimbabwe           | 6,000   | 4,977   | 600     | 2,100   | 2,500   | 2,800   | 2,300   | 2,570   |
| Ecuador            | 100     | 100     | 100     | 100     | 0       | 0       | 200     | 0       |
| Romania            | 19,100  | 16,800  | 16,100  | 19,200  | 19,300  | 23,400  | 20,400  | 16,300  |
| Kyrgyzstan         |         |         |         |         |         |         |         |         |
| Eritrea            |         |         |         |         |         |         |         |         |
| Bolivia            | 48      | 252     | 110     | 18      | 120     | 344     | 576     | 35      |
| Tajikistan         |         |         |         |         |         |         |         |         |
| Azerbaijan         |         |         |         |         |         |         |         |         |
| Cyprus             | 5,000   | 5,004   | 5,200   | 5,500   | 3,695   | 2,552   | 1,334   | 0       |
| Botswana           | 19,432  | 18,239  | 18,722  | 19,209  | 21,590  | 24,289  | 21,195  | 26,706  |
| Slovakia           | 670     | 124     | 110     | 110     | 100     | 95      | 93      | 65      |
| Korea, South       | 11      | 0       | 0       | 0       | 0       | 0       | 6       | 11      |
| Albania            | 2,300   | 900     |         |         |         |         | 600     | 1,600   |
| Oman               | 993     |         |         |         |         |         |         |         |
| Afghanistan        | 680     | 1,200   | 1,800   | 2,000   | 2,100   | 2,300   | 2,500   | 2,700   |
| Cuba               | 1,400   | 1,100   | 1,300   | 1,000   | 0       | 0       | 0       | 0       |
| Czech Republic     | 0       |         |         |         |         |         |         |         |
| Czechoslovakia     |         |         |         |         |         |         |         |         |
| El Salvador        |         |         |         |         |         |         |         |         |

| Country         | 1998   | 1999   | 2000   | 2001   | 2002   | 2003   | 2004   | 2005   |
|-----------------|--------|--------|--------|--------|--------|--------|--------|--------|
| France          | 0      | 0      | 0      | 0      | 0      |        |        |        |
| German Dem, Rep |        |        |        |        |        |        |        |        |
| Germany         | 0      |        |        |        |        |        |        |        |
| Honduras        | 300    | 300    | 300    | 300    | 300    | 0      | 0      | 0      |
| Jamaica         |        |        | 1,000  | 800    | 1,200  |        |        |        |
| Japan           | 1,070  | 1,038  | 1,211  | 744    | 1,500  | 1,000  | 1,000  | 1,000  |
| Malaysia        | 17,900 | 10,200 | 0      | 0      | 0      | 0      | 0      | 0      |
| Mozambique      | 0      |        |        |        |        |        |        |        |
| Nepal           | 0      | 0      | 0      | 0      |        |        |        |        |
| Norway          | 2,700  | 0      | 0      | 0      | 0      | 0      |        |        |
| Serbia and      |        |        |        |        |        |        |        |        |
| Montenegro      |        |        |        |        |        | 15,500 | 13,800 | 11,600 |
| United Kingdom  |        |        |        |        |        |        |        |        |
| USSR (Asia)     |        |        |        |        |        |        |        |        |
| USSR (Europe)   |        |        |        |        |        |        |        |        |
| Yugoslavia      | 70,900 | 51,700 | 46,000 | 31,000 | 23,000 |        |        |        |
| Zaire           |        |        |        |        |        |        |        |        |

| Country          | 2006       | 2007       | 2008       | 2009       | 2010       | 2011       | 2012       |
|------------------|------------|------------|------------|------------|------------|------------|------------|
| Total            | 14,992,892 | 15,520,238 | 15,698,791 | 15,817,889 | 16,112,835 | 16,071,490 | 16,764,481 |
| Chile            | 5,360,800  | 5,557,000  | 5,327,600  | 5,394,400  | 5,418,900  | 5,262,800  | 5,433,900  |
| Peru             | 1,049,472  | 1,190,274  | 1,267,867  | 1,276,249  | 1,247,184  | 1,235,345  | 1,298,761  |
| China            | 872,900    | 946,200    | 1,092,700  | 1,062,000  | 1,179,500  | 1,294,700  | 1,576,800  |
| United States    | 1,220,000  | 1,170,000  | 1,310,000  | 1,190,000  | 1,110,000  | 1,112,900  | 1,166,800  |
| Congo, D.R.      | 65,000     | 185,147    | 337,430    | 309,610    | 437,755    | 499,198    | 619,942    |
| Australia        | 879,000    | 869,000    | 886,000    | 859,000    | 870,000    | 960,000    | 921,390    |
| Zambia           | 515,618    | 550,292    | 567,700    | 601,200    | 731,700    | 739,800    | 699,020    |
| Mexico           | 312,075    | 337,527    | 246,593    | 240,648    | 270,136    | 443,621    | 500,275    |
| Russia           | 675,000    | 690,000    | 705,000    | 675,700    | 702,700    | 587,900    | 638,000    |
| Indonesia        | 817,796    | 796,899    | 655,046    | 998,530    | 879,697    | 545,263    | 398,000    |
| Canada           | 603,295    | 596,248    | 607,957    | 484,600    | 522,172    | 568,779    | 580,082    |
| Kazakhstan       | 434,100    | 406,091    | 421,700    | 406,100    | 381,000    | 405,300    | 426,200    |
| Poland           | 497,200    | 408,000    | 474,000    | 439,000    | 425,400    | 426,665    | 427,064    |
| Brazil           | 147,800    | 205,700    | 218,295    | 211,692    | 213,548    | 213,760    | 223,141    |
| Mongolia         | 129,675    | 130,165    | 126,805    | 129,815    | 124,985    | 126,250    | 126,550    |
| Iran             | 216,200    | 244,200    | 248,100    | 262,599    | 256,700    | 258,900    | 238,000    |
| Spain            | 8,130      | 6,508      | 7,067      | 23,058     | 50,830     | 75,057     | 99,884     |
| Laos             | 60,800     | 62,500     | 89,000     | 121,580    | 132,047    | 138,757    | 149,580    |
| Bulgaria         | 124,200    | 116,200    | 107,195    | 110,652    | 112,900    | 114,600    | 107,328    |
| Papua New Guinea | 194,400    | 169,184    | 159,700    | 166,700    | 159,800    | 130,500    | 125,348    |
| Sweden           | 86,746     | 62,905     | 57,700     | 55,414     | 76,514     | 82,967     | 82,422     |
| Uzbekistan       | 80,000     | 80,000     | 80,000     | 80,000     | 80,000     | 80,000     | 95,600     |
| Armenia          | 17,726     | 18,018     | 18,175     | 23,188     | 30,672     | 32,128     | 38,968     |
| Turkey           | 46,400     | 78,690     | 86,440     | 73,390     | 70,930     | 93,690     | 101,700    |
| Philippines      | 17,700     | 22,862     | 21,200     | 49,060     | 58,400     | 63,835     | 65,444     |
| Myanmar          | 19,500     | 15,100     | 6,900      | 9,800      | 12,000     | 12,000     | 12,000     |
| South Africa     | 109,590    | 117,066    | 97,185     | 92,884     | 83,640     | 89,298     | 69,859     |
| Portugal         | 78,660     | 97,635     | 91,440     | 86,495     | 74,426     | 79,686     | 74,941     |
| Saudi Arabia     | 700        | 737        | 1,465      | 1,700      | 1,603      | 1,954      | 17,639     |
| Finland          | 13,000     | 13,400     | 13,400     | 14,800     | 14,700     | 14,000     | 25,445     |
| Serbia           |            | 15,400     | 19,500     | 22,500     | 21,200     | 25,250     | 32,200     |
| Country            | 2006    | 2007    | 2008    | 2009    | 2010    | 2011    | 2012    |
|--------------------|---------|---------|---------|---------|---------|---------|---------|
| Morocco            | 5,705   | 5,590   | 5,930   | 11,830  | 14,980  | 12,080  | 16,580  |
| India              | 27,400  | 33,102  | 30,060  | 28,440  | 31,480  | 30,000  | 28,440  |
| Argentina          | 180,144 | 180,223 | 156,893 | 143,100 | 140,300 | 116,700 | 135,700 |
| Mauritania         | 5,000   | 28,911  | 32,900  | 36,600  | 37,000  | 39,900  | 37,670  |
| Vietnam            | 11,400  | 12,500  | 11,520  | 12,935  | 12,260  | 11,890  | 12,720  |
| Tanzania           | 3,292   | 3,283   | 2,859   | 2,024   | 5,337   | 5,082   | 5,836   |
| Namibia            | 6,307   | 7,616   | 8,775   | 0       | 0       | 3,400   | 5,304   |
| Korea, North       | 12,000  | 12,000  | 2,400   | 2,100   | 4,600   | 7,000   | 6,700   |
| Georgia            | 9,300   | 11,000  | 18,700  | 16,600  | 10,660  | 10,210  | 6,820   |
| Pakistan           | 18,700  | 18,800  | 18,700  | 17,605  | 19,400  | 15,672  | 19,229  |
| Dominican Republic |         |         | 2,109   | 12,937  | 10,015  | 11,777  | 11,737  |
| Colombia           | 580     | 840     | 1,050   | 1,140   | 780     | 810     | 750     |
| Macedonia          | 7,050   | 7,030   | 8,050   | 7,440   | 7,910   | 7,550   | 8,901   |
| Zimbabwe           | 2,600   | 2,700   | 2,800   | 3,572   | 4,629   | 6,555   | 6,665   |
| Ecuador            |         |         |         |         |         |         | 2,500   |
| Romania            | 12,100  | 2,213   | 900     | 3,100   | 5,100   | 6,360   | 9,482   |
| Kyrgyzstan         |         |         |         |         |         |         |         |
| Eritrea            |         |         |         |         |         |         | 0       |
| Bolivia            | 218     | 606     | 600     | 882     | 2,063   | 4,176   | 8,653   |
| Tajikistan         |         |         |         |         |         | 440     | 440     |
| Azerbaijan         |         |         |         |         | 183     | 611     | 502     |
| Cyprus             | 900     | 3,012   | 2,986   | 2,380   | 2,595   | 3,660   | 4,328   |
| Botswana           | 24,255  | 19,996  | 23,146  | 24,382  | 31,200  | 31,926  | 35,770  |
| Slovakia           | 4       | 6       | 2       | 14      | 22      | 28      | 31      |
| Korea, South       | 4       | 2       | 1       | 4       | 2       |         |         |
| Albania            | 1,050   | 2,760   | 2,860   | 2,670   | 3,010   | 4,860   | 5,680   |
| Oman               |         | 9,100   | 16,390  | 15,770  | 18,270  | 23,400  | 21,760  |
| Afghanistan        | 0       |         |         |         |         |         |         |
| Cuba               | 0       |         |         |         |         |         |         |
| Czech Republic     |         |         |         |         |         |         |         |
| Czechoslovakia     |         |         |         |         |         |         |         |
| El Salvador        |         |         |         |         |         | 2,500   |         |

| Country         | 2006   | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
|-----------------|--------|------|------|------|------|------|------|
| France          |        |      |      |      |      |      |      |
| German Dem, Rep |        |      |      |      |      |      |      |
| Germany         |        |      |      |      |      |      |      |
| Honduras        | 0      | 0    | 0    |      |      |      |      |
| Jamaica         |        |      |      |      |      |      |      |
| Japan           | 300    | 0    |      |      |      |      |      |
| Malaysia        | 0      |      |      |      |      |      |      |
| Mozambique      |        |      |      |      |      |      |      |
| Nepal           |        |      |      |      |      |      |      |
| Norway          |        |      |      |      |      |      |      |
| Serbia and      |        |      |      |      |      |      |      |
| Montenegro      | 11,100 |      |      |      |      |      |      |
| United Kingdom  |        |      |      |      |      |      |      |
| USSR (Asia)     |        |      |      |      |      |      |      |
| USSR (Europe)   |        |      |      |      |      |      |      |
| Yugoslavia      |        |      |      |      |      |      |      |
| Zaire           |        |      |      |      |      |      |      |

| Country          | 2013       | 2014       | 2015       | 2016       | 2017       | Total       |
|------------------|------------|------------|------------|------------|------------|-------------|
| Total            | 18,271,418 | 18,560,557 | 19,363,032 | 20,464,363 | 19,939,825 | 393,790,781 |
| Chile            | 5,776,000  | 5,761,100  | 5,772,100  | 5,552,600  | 5,503,500  | 122,294,100 |
| Peru             | 1,375,639  | 1,377,642  | 1,700,817  | 2,353,859  | 2,445,585  | 27,076,780  |
| China            | 1,715,200  | 1,781,000  | 1,706,400  | 1,851,000  | 1,656,400  | 24,749,400  |
| United States    | 1,278,200  | 1,360,000  | 1,380,000  | 1,430,000  | 1,260,000  | 40,130,510  |
| Congo, D.R.      | 914,631    | 1,030,129  | 1,039,007  | 1,023,687  | 1,094,638  | 7,781,306   |
| Australia        | 1,000,999  | 978,534    | 995,881    | 947,555    | 859,811    | 20,950,670  |
| Zambia           | 763,805    | 708,259    | 711,515    | 774,290    | 797,266    | 14,077,465  |
| Mexico           | 480,124    | 515,025    | 594,451    | 766,760    | 742,246    | 10,644,545  |
| Russia           | 655,000    | 691,500    | 711,400    | 702,300    | 705,400    | 17,917,370  |
| Indonesia        | 512,033    | 379,787    | 586,914    | 727,959    | 622,216    | 15,644,431  |
| Canada           | 652,595    | 672,729    | 714,647    | 695,508    | 605,731    | 18,013,443  |
| Kazakhstan       | 452,500    | 471,700    | 467,500    | 471,500    | 540,700    | 10,296,991  |
| Poland           | 428,879    | 421,285    | 425,870    | 424,276    | 419,300    | 12,079,239  |
| Brazil           | 270,979    | 301,197    | 359,463    | 337,628    | 384,400    | 3,843,531   |
| Mongolia         | 203,800    | 274,600    | 335,850    | 374,260    | 314,920    | 4,360,231   |
| Iran             | 222,900    | 216,800    | 254,709    | 282,500    | 295,653    | 4,919,784   |
| Spain            | 102,977    | 104,476    | 129,788    | 172,522    | 204,606    | 1,234,584   |
| Laos             | 154,915    | 159,696    | 167,702    | 167,679    | 153,304    | 1,589,760   |
| Bulgaria         | 115,450    | 115,540    | 112,600    | 111,870    | 110,290    | 2,587,425   |
| Papua New Guinea | 105,523    | 75,901     | 45,185     | 80,022     | 105,448    | 4,534,096   |
| Sweden           | 82,904     | 79,681     | 75,113     | 79,247     | 104,594    | 2,202,656   |
| Uzbekistan       | 98,000     | 99,500     | 100,000    | 100,000    | 100,000    | 2,049,100   |
| Armenia          | 44,797     | 46,849     | 51,765     | 95,080     | 95,793     | 656,686     |
| Turkey           | 120,500    | 96,300     | 108,000    | 107,300    | 85,200     | 1,936,998   |
| Philippines      | 90,861     | 91,922     | 83,835     | 83,649     | 68,156     | 1,839,427   |
| Myanmar          | 20,000     | 33,200     | 69,850     | 71,190     | 66,960     | 599,400     |
| South Africa     | 80,821     | 78,697     | 77,360     | 65,257     | 65,503     | 3,422,957   |
| Portugal         | 77,236     | 75,433     | 83,081     | 74,352     | 63,812     | 2,763,520   |
| Saudi Arabia     | 5,440      | 11,570     | 12,340     | 27,840     | 59,870     | 155,644     |
| Finland          | 38,763     | 42,810     | 41,805     | 47,488     | 53,144     | 516,313     |
| Serbia           | 32,609     | 31,584     | 31,601     | 34,625     | 45,115     | 311,584     |

| Country            | 2013    | 2014   | 2015   | 2016   | 2017   | Total     |
|--------------------|---------|--------|--------|--------|--------|-----------|
| Morocco            | 13,020  | 22,360 | 26,850 | 31,810 | 35,420 | 348,540   |
| India              | 32,276  | 24,750 | 34,920 | 32,000 | 33,680 | 1,018,903 |
| Argentina          | 109,631 | 97,556 | 61,765 | 81,902 | 33,303 | 2,967,379 |
| Mauritania         | 37,970  | 33,079 | 45,001 | 32,818 | 28,791 | 395,640   |
| Vietnam            | 14,188  | 21,762 | 24,420 | 22,300 | 21,100 | 201,095   |
| Tanzania           | 15,400  | 16,400 | 16,800 | 17,400 | 15,800 | 128,005   |
| Namibia            | 5,182   | 5,086  | 13,913 | 16,391 | 15,466 | 374,277   |
| Korea, North       | 6,200   | 14,400 | 15,000 | 20,000 | 15,000 | 305,400   |
| Georgia            | 7,800   | 13,100 | 11,700 | 12,200 | 14,700 | 242,490   |
| Pakistan           | 13,500  | 13,122 | 13,056 | 14,136 | 10,052 | 237,172   |
| Dominican Republic | 10,379  | 9,262  | 7,324  | 9,725  | 9,618  | 94,883    |
| Colombia           | 640     | 4,118  | 5,463  | 8,493  | 9,356  | 62,480    |
| Macedonia          | 10,641  | 10,241 | 11,102 | 10,429 | 8,966  | 225,834   |
| Zimbabwe           | 8,285   | 8,261  | 8,218  | 9,101  | 8,839  | 178,673   |
| Ecuador            | 2,600   | 3,200  | 1,400  | 40,200 | 8,200  | 58,700    |
| Romania            | 6,700   | 7,680  | 7,710  | 8,390  | 8,160  | 431,487   |
| Kyrgyzstan         | 0       | 700    | 3,100  | 8,200  | 8,000  | 20,000    |
| Eritrea            | 21,779  | 88,900 | 61,600 | 25,300 | 7,900  | 205,479   |
| Bolivia            | 7,549   | 10,746 | 9,479  | 8,718  | 7,219  | 63,274    |
| Tajikistan         | 600     | 940    | 1,390  | 2,050  | 6,060  | 11,920    |
| Azerbaijan         | 327     | 784    | 969    | 1,947  | 2,063  | 7,386     |
| Cyprus             | 3,361   | 3,088  | 2,121  | 1,754  | 1,293  | 66,399    |
| Botswana           | 51,300  | 47,700 | 22,284 | 13,120 | 1,239  | 653,914   |
| Slovakia           | 40      | 46     | 58     | 39     | 32     | 5,384     |
| Korea, South       |         |        | 0      | 117    | 7      | 257       |
| Albania            | 5,920   | 3,690  | 2,190  | 2,020  | 0      | 78,175    |
| Oman               | 12,050  | 15,140 | 8,650  | 0      | 0      | 198,499   |
| Afghanistan        |         |        |        |        |        | 19,405    |
| Cuba               |         |        |        |        |        | 20,591    |
| Czech Republic     |         |        |        |        |        | 200       |
| Czechoslovakia     |         |        |        |        |        | 6,901     |
| El Salvador        |         |        |        |        |        | 2,500     |

| Country         | 2013 | 2014 | 2015 | 2016 | 2017 | Total     |
|-----------------|------|------|------|------|------|-----------|
| France          |      |      |      |      |      | 1,588     |
| German Dem, Rep |      |      |      |      |      | 3,564     |
| Germany         |      |      |      |      |      | 3         |
| Honduras        |      |      |      |      |      | 9,488     |
| Jamaica         |      |      |      |      |      | 3,000     |
| Japan           |      |      |      |      |      | 67,051    |
| Malaysia        |      |      |      |      |      | 217,334   |
| Mozambique      |      |      |      |      |      | 399       |
| Nepal           |      |      |      |      |      | 29        |
| Norway          |      |      |      |      |      | 89,670    |
| Serbia and      |      |      |      |      |      |           |
| Montenegro      |      |      |      |      |      | 52,000    |
| United Kingdom  |      |      |      |      |      | 1,255     |
| USSR (Asia)     |      |      |      |      |      | 1,195,740 |
| USSR (Europe)   |      |      |      |      |      | 512,460   |
| Yugoslavia      |      |      |      |      |      | 888,000   |
| Zaire           |      |      |      |      |      | 938,012   |

## **Rare Earth Concentrates**

| Table 14: Rare Earth producers [metr. t rare earth conc.], organised by largest producer in 2017 (Reichl, et al. 2019) |        |        |        |        |        |        |        |         |  |  |
|------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|---------|--|--|
| Country                                                                                                                | 1990   | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997    |  |  |
| Total                                                                                                                  | 74,569 | 68,436 | 65,134 | 63,934 | 58,524 | 60,457 | 81,951 | 68,925  |  |  |
| China                                                                                                                  | 27,500 | 26,900 | 28,300 | 29,200 | 29,000 | 30,000 | 55,000 | 53,300  |  |  |
| Australia                                                                                                              | 11,000 | 8,250  | 5,813  | 6,000  | 3,300  | 3,000  | 2,000  | 1,000   |  |  |
| Russia                                                                                                                 |        |        |        |        |        |        |        |         |  |  |
| Brazil                                                                                                                 | 3,500  | 1,308  | 116    | 770    | 800    | 400    | 200    | 400     |  |  |
| Malaysia                                                                                                               | 3,488  | 1,986  | 791    | 429    | 426    | 814    | 618    | 600     |  |  |
| Burundi                                                                                                                |        |        |        |        |        |        |        |         |  |  |
| United States                                                                                                          | 22,700 | 23,000 | 23,000 | 20,000 | 20,000 | 22,239 | 20,400 | 10,000  |  |  |
| Congo, D.R.                                                                                                            |        |        |        |        |        |        |        |         |  |  |
| India                                                                                                                  | 4,000  | 4,000  | 4,000  | 4,300  | 2,500  | 2,500  | 2,700  | 2,700   |  |  |
| Korea, North                                                                                                           | 700    | 1,500  | 1,500  | 1,500  | 1,500  | 1,000  | 900    | 800     |  |  |
| Madagascar                                                                                                             | 5      | 5      | 5      | 5      | 5      | 4      | 3      | 0       |  |  |
| South Africa                                                                                                           | 900    | 1,000  | 1,200  | 1,250  | 700    | 300    | 0      | 0       |  |  |
| Sri Lanka                                                                                                              | 200    | 200    | 200    | 200    | 200    | 120    | 120    | 120     |  |  |
| Thailand                                                                                                               | 391    | 137    | 89     | 220    | 65     | 50     | 0      | 0       |  |  |
| Zaire                                                                                                                  | 185    | 150    | 120    | 60     | 28     | 30     | 10     | 5       |  |  |
|                                                                                                                        |        |        |        |        |        |        |        |         |  |  |
| Country                                                                                                                | 1998   | 1999   | 2000   | 2001   | 2002   | 2003   | 2004   | 2005    |  |  |
| Total                                                                                                                  | 60,000 | 79,392 | 81,561 | 83,635 | 86,101 | 86,896 | 99,475 | 103,737 |  |  |
| China                                                                                                                  | 50,000 | 70,000 | 73,000 | 75,000 | 75,000 | 77,000 | 95,000 | 100,000 |  |  |
| Australia                                                                                                              | 800    | 600    | 300    | 0      | 0      | 0      | 0      | 0       |  |  |
| Russia                                                                                                                 |        |        |        |        | 2,631  | 1,680  | 1,592  | 2,027   |  |  |
| Brazil                                                                                                                 | 400    | 350    | 340    | 335    | 0      | 0      | 731    | 958     |  |  |
| Malaysia                                                                                                               | 500    | 450    | 420    | 400    | 390    | 795    | 1,683  | 320     |  |  |
| Burundi                                                                                                                |        |        |        |        |        |        |        |         |  |  |
| United States                                                                                                          | 5,000  | 5,000  | 5,000  | 5,000  | 5,000  | 4,180  | 0      | 0       |  |  |
| Congo, D.R.                                                                                                            |        | 2      | 1      | 0      |        |        |        |         |  |  |
| India                                                                                                                  | 2,500  | 2,300  | 2,000  | 2,500  | 2,700  | 2,891  | 149    | 122     |  |  |
| Korea, North                                                                                                           | 700    | 600    | 500    | 400    | 380    | 350    | 320    | 310     |  |  |
| Madagascar                                                                                                             | 0      | 0      | 0      | 0      |        |        |        |         |  |  |

| Country      | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
|--------------|------|------|------|------|------|------|------|------|
| South Africa | 0    | 0    | 0    | 0    |      |      |      |      |
| Sri Lanka    | 100  | 90   | 0    |      |      |      |      |      |
| Thailand     | 0    | 0    | 0    | 0    |      |      |      |      |
| Zaire        |      |      |      |      |      |      |      |      |

| Country       | 2006    | 2007    | 2008    | 2009    | 2010    | 2011    | 2012    |
|---------------|---------|---------|---------|---------|---------|---------|---------|
| Total         | 125,132 | 125,401 | 128,059 | 131,642 | 121,267 | 101,393 | 103,008 |
| China         | 120,000 | 120,800 | 124,500 | 129,400 | 118,900 | 96,900  | 95,000  |
| Australia     | 0       | 0       |         |         |         | 2,188   | 3,222   |
| Russia        | 2,935   | 2,711   | 2,470   | 1,898   | 1,496   | 1,444   | 2,131   |
| Brazil        | 958     | 1,173   | 834     | 303     | 249     | 290     | 206     |
| Malaysia      | 894     | 682     | 233     | 25      | 622     | 571     | 113     |
| Burundi       |         |         |         |         |         |         |         |
| United States | 0       | 0       |         |         |         |         | 2,336   |
| Congo, D.R.   |         |         |         |         |         |         |         |
| India         | 45      | 35      | 22      | 16      | 0       | 0       | 0       |
| Korea, North  | 300     | 0       |         |         |         |         |         |
| Madagascar    |         |         |         |         |         |         |         |
| South Africa  |         |         |         |         |         |         |         |
| Sri Lanka     |         |         |         |         |         |         |         |
| Thailand      |         |         |         |         |         |         |         |
| Zaire         |         |         |         |         |         |         |         |

| Country       | 2013    | 2014    | 2015    | 2016    | 2017    | Total     |
|---------------|---------|---------|---------|---------|---------|-----------|
| Total         | 100,845 | 109,549 | 124,096 | 126,015 | 127,097 | 2,646,231 |
| China         | 93,800  | 95,000  | 105,000 | 105,000 | 105,000 | 2,203,500 |
| Australia     | 1,268   | 7,191   | 10,916  | 13,872  | 17,264  | 97,984    |
| Russia        | 1,443   | 2,134   | 2,312   | 3,063   | 2,500   | 34,467    |
| Brazil        | 600     | 0       | 1,625   | 2,200   | 2,000   | 21,046    |
| Malaysia      | 261     | 455     | 565     | 1,880   | 302     | 20,713    |
| Burundi       |         |         |         | 0       | 31      | 31        |
| United States | 3,473   | 4,769   | 3,678   | 0       | 0       | 204,775   |
| Congo, D.R.   |         |         |         |         |         | 3         |
| India         |         |         |         |         |         | 41,980    |
| Korea, North  |         |         |         |         |         | 13,260    |
| Madagascar    |         |         |         |         |         | 32        |
| South Africa  |         |         |         |         |         | 5,350     |
| Sri Lanka     |         |         |         |         |         | 1,550     |
| Thailand      |         |         |         |         |         | 952       |
| Zaire         |         |         |         |         |         | 588       |