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Abstract 

The morphology of nanocrystals has a substantial influence on their highly diverse physical 
properties ranging from luminescence to biocompatibility. One key to success for the various 
applications and research areas is understanding the effect the morphology has on these 
properties and controlling the morphology during synthesis. Transmission electron microscopy 
has been the leading tool for analysing the morphology for the last decades. As modern-day 
nanocrystals are no longer used for purely fundamental research, the fact that it is extremely 
time consuming to analyse a substantial number of nanocrystals using transmission electron 
microscopy, has led to the developed of different methods. The properties of real-life 
nanocrystal applications do not depend on the morphology of a few selected ones analysed with 
transmission electron microscopy, but rather on the overall morphology of all nanocrystals in 
the application. 
Small angle X-ray scattering is a leading technique to analyse the morphology of colloidal 
nanocrystals with a sub-nanometre resolution. Using modern ab initio bead modelling the size, 
but more importantly also the 3D mean shape of at least 106 nanocrystals, seen in all directions, 
can be retrieved from the scattering data. 
To study the capability of shape retrieval from small angle X-ray scattering data, four 
superparamagnetic iron oxide nanocrystals with different shapes, ranging from a simple cube-
like shape to a highly complex star-like shape are analysed. The results are then compared to 
transmission electron microscopy images to evaluate the success of the shape retrieval. X-ray 
diffraction is performed to complement and support the results. 
It is shown that without any a priori information about the shape, it is possible to extract the 
exact shape for simple structures and for complex structures the characteristic features are 
reproduced. Using either a priori information from e.g. transmission electron microscopy or 
the outcome of the first shape retrieval process, the results can be greatly enhanced by 
predefining the symmetry of the system, when applied with extreme caution. Then even the 
complex star-like shape can be retrieved, demonstrating that shape retrieval from small angle 
X-ray scattering data is a fiercely powerful tool and a definite alternative to transmission 
electron microscopy.  
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Kurzfassung 

Die Morphologie von Nanokristallen hat einen substantiellen Einfluss auf die diversen 
Eigenschaften der Nanokristalle und beeinfluss Eigenschaften von Magnetismus bis hin zu 
Biokompatibilität. Ein Schlüsselfaktor für den Erfolg der zahllosen Anwendungen und 
Forschungsprojekte ist es den Zusammenhang zwischen Morphologie und Eigenschaften zu 
verstehen und die Morphologie während der Synthese zu kontrollieren. Transmission 
Elektronen Mikroskopie war lange Zeit das vorherrschende Mittel zur Untersuchung der 
Morphologie von Nanokristallen. Doch da moderne Nanokristalle nicht mehr nur Teil der 
Grundlagenforschung sind und es extrem zeitaufwändig ist mit Transmission Elektronen 
Mikroskopie große Mengen von Nanokristallen zu untersuchen, wurden neue Methoden 
entwickelt. Die Eigenschaften von realen Anwendungen der Nanokristalle hängen nämlich 
nicht von der Morphologie einiger weniger ausgewählter, mit Transmission Elektronen 
Mikroskopie analysierter Nanokristalle ab, sondern von der Morphologie des Ensembles.  
Röntgen-Kleinwinkelstreuung ist eine der führenden Methoden zur Analyse der Morphologie 
von kolloidalen Nanokristallen mit Sub-Nanometer Auflösung. Durch ab initio Modelle kann 
sowohl die Größe als auch die gemittelte Gestalt von bis zu 1011 Nanokristallen aus den Daten 
der Röntgen-Kleinwinkelstreuung rekonstruiert werden.  
Um die Leistungsfähigkeit der Gestaltrekonstruktion aus Röntgen-Kleinwinkelstreuung Daten 
zu analysieren, werden vier superparamagnetische Eisenoxid Nanokristalle mit 
unterschiedlicher Gestalt untersucht. Die Gestalt dieser Nanokristalle geht von einer einfachen 
würfeligen bis hin zu einer äußerst komplexen sternförmigen Form. Die Ergebnisse werden mit 
Transmission Elektronen Mikroskopie Bildern verglichen, um den Erfolg der Rekonstruktion 
zu beurteilen. Röntgendiffraktion wird zur Ergänzung und Unterstützung der Ergebnisse 
durchgeführt.  
Es wird gezeigt, dass ohne a priori Information die genaue Gestalt der einfachen Nanokristalle 
und die charakteristischen Merkmale der komplexen Nanokristalle rekonstruiert werden 
können. Nutzt man a priori Information aus Transmission Elektronen Mikroskopie Bildern 
oder aus den Modellen, welche ohne Symmetrie angefertigt wurden, können die Ergebnisse 
deutlich verbessert werden, indem man die Symmetrie des Systems definiert. Zwingt man dem 
System eine Symmetrie auf, ist es jedoch notwendig extreme Vorsicht walten zu lassen. Mit 
vorgegebener Symmetrie ist es sogar mögliche die komplexe Gestalt der sternförmigen 
Nanokristalle zu rekonstruieren, was eindrucksvoll demonstriert, dass die Gestaltrekonstruktion 
aus Röntgen-Kleinwinkelstreuung ein mächtiges Tool ist und eine definitive Alternative zu 
Transmission Elektronen Mikroskopie darstellt. 
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Abbreviations and Symbols  

approx.  … approximately 

DA(s) … dummy atom(s) 

DNA … deoxyribonucleic acid 

e.g. … exempli gratia 

FCC … face centred cubic 

FWHM … full width at half maximum  

GIFT … generalised indirect Fourier-transformation 

h … hour 

HHD … half height dimension 

IFT … indirect Fourier-transformation 

NC(s) … nanocrystal(s) 

NSD … normalised spatial discrepancy 

OA … oleic acid 

PDDF … pair distance distribution function  

QD(s) … quantum dot(s) 

RT … room temperature 

SAS … small angle scattering 

SAXS … small angle X-ray scattering 

SPIONs … super paramagnetic iron oxide nanocrystals 

SDD … sample detector-distance 

TEM … transmission electron microscopy 

XRD … X-ray diffraction 
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1. Introduction 

Nanocrystals have been known since the 19th century, as proven by the mention of ruby 
coloured gold sols by Faraday in 1857 [1]. Nanoscience or Nanotechnology using colloidal 
nanocrystals (NCs) as known to us today, however, has only started about 40 years ago in the 
early 80s of the last century. In the beginning the main focus was on semiconductor NCs for 
use in solar energy harvesting devices. Whilst these colloidal semiconductor NCs, later 
renamed to quantum dots (QDs) due to the quantum size effect, have become the masterclass 
of modern NC science, research on colloidal NCs has lately been the focus of various scientific 
fields. What distinguishes NCs from other hot scientific topics, is the uttermost variation of 
scientific applications they acquire vogue in, such as electronics, information storage, catalysts, 
sensors, molecular biology and medicine. Despite different applications of the NCs, the 
scientific challenge is always similar, tuning the NCs’ properties by controlling chemistry, size 
and shape to best fit the application’s demands. One mannerism of NCs is that their chemical 
and physical properties are particularly sensitive on size and shape. At the same time, 
synthesising macroscopic quantities of colloidal NCs with controlled chemistry, size and shape 
is the main challenge for chemists working in this field. [2]–[6] 
NCs are by definition smaller than 1 µm, but for practical reasons often only crystals smaller 
than 500 nm are considered as NCs and in applications NCs are usually even smaller than 
that. [7] 
One type of NCs that have received a considerable amount of attention over the last couple of 
years, are super paramagnetic iron oxide nanocrystals (SPIONs). They exhibit exceptional 
magnetic properties and are considered to play a crucial role in many future key technologies. 
SPIONs are already used in medicine as MRI contrast agents, traces for magnetic particle 
imaging and only recently also in materials science for ceramic-organic nanocomposites with 
exceptional features. Possible future technological applications of SPIONs are targeted drug 
delivery, magnetic hyperthermia and biosensing. The advantages of SPIONs for these 
applications are numerous, for one they are inexpensive to synthesise, the precursors are readily 
available, they are chemically stable, environmentally safe and, the most important property for 
medical applications, biocompatible. The SPIONs’ morphology strongly influences the 
magnetic properties, but also biocompatibility. Understanding how the magnetic properties and 
the morphology of the SPIONs correlate, will play a crucial role in the success of SPIONs in 
future technologies. [8] [9] 
In the last decade enormous advancements have been made regarding the possibility of 
synthesising precedingly more and more complex shapes of NCs with incredible process 
control. [2] [8] [10] [11] With increasing complexity of the NCs’ shape, the focus has lately 
been on improving existing methods and developing new ones to resolve structural differences 
on a nanometre scale. Transmission electron microscopy (TEM) is the most common analysis 
method to study the morphology of NCs, as single atom resolution is achievable. But as always, 
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this comes with a series of drawbacks. The main one being, that quality TEM images can only 
be made of a few hundred NCs at once at absolute maximum. Most NC devices contain or 
consist of at least 106 NCs, most likely many more. TEM therefore, may be the preferred tool 
for fundamental research, but for a more applied context, the fact that it is time consuming to 
analyse a great enough number of NCs limits its application area. The method of choice for 
analysing the morphology of an ensemble of NCs is small angle scattering (SAS), more 
precisely small angle X-ray scattering (SAXS). [5] 
SAXS was developed in the 1930s to study metal alloys, but was quickly discovered by polymer 
physicists, colloidal chemists and molecular biologists, who all came to appreciate the 
possibility of exploring the nanostructure of a vast range of materials. The two milestones in 
the history of SAXS, that have led to its modern-day appreciation, were readily available access 
to intense synchrotron sources from the 70s onwards and advances in computational methods 
and the capacity of modern computers starting in the 90s. Today, SAXS is a well-established 
analysis technique to study the morphology (size and shape) of nanometre scaled systems in 
solution. SAXS’ main advantage is the possibility to study up to 1011 particles in a single 
experiment, a substantially larger number than in TEM. As the NCs are randomly oriented, the 
orientational average over a large number of NCs is analysed, giving the information statistical 
validity and indicating that the retrieved shape is a 3D representation of the averaged mean NC 
shape. [5] [6] [12]  
Ever since Watson & Crick [13] discovered the structure of the deoxyribonucleic acid (DNA) 
using X-Ray diffraction (XRD) in 1953, molecular biology was closely tied to structural 
analysis using X-rays. Therefore, structure analysis from SAXS data has long been used in 
biology. The advantage of studying proteins is that unlike inorganic NCs, they don’t exhibit 
any noticeable polydispersity and are not facetted, greatly simplifying the shape retrieval 
process. [5] [14]  
It is because of this long history, that many shape retrieval software packages are specialised 
on molecular biology. The most popular software ATSAS [15] was even developed by a 
molecular biology group, the European Molecular Biology Laboratory (EMBL) in Hamburg, 
Germany. Many modern tools are specifically tailored to study and retrieve shapes commonly 
found in molecular biology, such as helices. An example for this is the relatively new SasHel 
software developed by Max Burian [6]. 
In this work the morphology of four different SPIONs is analysed using SAXS. The shapes of 
the NCs all exhibit characteristic features of different complexity. Due to the strongly differing 
complexity of the NCs’ shape, it is possible to analyse the limits of the shape retrieval process 
for NCs based on SAXS data. The models are created using both ATSAS and SasHel, and 
further analysed using Matlab and Paraview. Additionally, XRD measurements of the NCs are 
performed to complement the SAXS results. 
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2. Theory 

The aim of this chapter is to provide a concise overview of small angle scattering theory and 
techniques, focusing mainly on SAXS, as the main focus of this work is on SAXS 
measurements and analysis. SAS of both X-rays and neutrons is a tool used in various fields, 
from condensed matter physics to molecular biology. The size and shape of NCs can be studied 
using a vast range of different techniques including, but not limited to, electron microscopy, 
neutron scattering, X-say scattering and X-ray diffraction. The main principle of all these 
techniques is the interaction of an incoming particle (photon, electron or neutron) with the 
matter that is being analysed. Figure 1 schematically illustrates the different types of interaction 
observed between X-rays and matter. Generally speaking, the interaction includes (a) 
reflection, (b) absorption, (c) transmission and (d) inelastic and (e) elastic scattering. This 
theory chapter will focus on scattering, as it is the main focus of this work. All techniques can 
be used to analyse materials on strongly differing scales. Using X-rays and electrons with sub 
nanometre wavelengths it is possible to resolve structures on an atomic level. [16] [17] [18] 
This chapter is partly based on the Theory chapter in [19]. 

 
Figure 1: Schematic representation of the different ways X-rays can interact with matter: (a) reflection, 
(b) absorption, (c) transmission, (d) inelastic and (e) elastic scattering. Figure redrawn form the original 
in [20] 

2.1. Scattering Theory 

X-rays can be treated as photons or as electromagnetic waves with a wavelength in the 
Ångstrom range, this allows the analysis of structures down to atomic distances. When treated 
as electromagnetic waves there is an electric E and magnetic field H oscillating perpendicular 
to the direction of propagation of the wave. To simplify, the magnetic field will be neglected in 
the following elaboration and only the electric field will be considered. The oscillating electric 
field can mathematically be described using a sine wave or the more compact complex form 

 𝑨(𝒓, 𝑡) =  𝐴𝑖𝑒𝑖(𝒌∙𝒓−𝜔𝑡) Equation 1 

where Ai denotes the initial amplitude of the electric field E, k is the wavevector (𝑘 = 2𝜋/𝜆) 
and ω is the angular frequency. [18] [21] 
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As mentioned before, there are numerous ways a photon can interact with matter, one of them 
being scattering. A scattering event involves the change of trajectory of the wave, as a result of 
the interaction with matter. This change of trajectory is closely related to the structure and 
composition of the material. Furthermore, elastic and inelastic scattering need to be 
distinguished. A scattering event is considered to be elastic if the energy is preserved during 
the scattering event, whereas there is a change in energy with inelastic scattering events, as 
illustrated in Figure 1. The energy E of a wave with a frequency ν can be calculated as [4] [5]  

 𝐸 = ℎ𝜈 = ℏ𝜔 Equation 2 

where h is the Planck constant and ℏ is the reduced Planck constant. [22] The direction of 
propagation is given by the beforementioned wave vector k. As the scattering event leads to a 
change in the direction of propagation by 2θ, the wave vector k also changes, according to 
Figure 2a. This change in direction is called scattering vector q [4] [5] [16] 

 𝒒 = 𝒌𝑠 − 𝒌𝑖 Equation 3 

where ki denotes the wavevector before the scattering event (initial) and ks is the wavevector 
after the scattering event (scattered), as shown in Figure 2a. In the case of inelastic scattering 
the scattering event changes the absolute values of the wavevectors (|𝒌𝒊| ≠ |𝒌𝑠|), whereas the 
absolute values are unchanged during an elastic scattering event (|𝒌𝒊| = |𝒌𝑠|). [4] [5]  

 
Figure 2: (a) Schematic representation of a scattering event illustrating the definition of the scattering 
vector q. The incident beam ki is scattered by the scattering angle 2θ, resulting in the scattered beam ks. (b) 
A wave with wavevector ki is scattered to the direction given by ks, resulting in a phase difference between 
a wave scattered at two different spots, the origin O and position O + r, in ρ(r). Figures redrawn from the 
original in [21] 

In the following only a purely classical model will be used to discuss the scattering theory, 
therefore the electron distribution can be described by a number density ρ(r), where r is the 
vector indicating the position of an individual charge. Furthermore, it can be assumed that the 
biggest part of the X-rays penetrates the sample without being scattered in the first place 
(transmission beam (c) in Figure 1) and we can therefore adopt the Born Approximation. The 
Born Approximation states that interaction of the scattered wave with charges can be neglected 
and with that also the possibility of the scattered wave being scattered again [23]. Then the total 
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scattering is the superposition of X-rays being scattered at all the different volume elements in 
this electron distribution ρ(r). Figure 2b shows two waves scattered at different positions in 
ρ(r), namely the origin O and position O + r, resulting in a phase difference [4] [5]  

 𝛥𝜙(𝒓) = (𝒌𝑖 − 𝒌𝑠) ∙ 𝒓 = 𝒒 ∙ 𝒓 Equation 4 

where q is the beforementioned scattering vector, sometimes also referred to as wavevector 
transfer. If the wavelength λ is known the scattering vector q can be related to the scattering 
angle 2θ [16] 

 𝑞 = |𝒒| =
4𝜋 sin(𝜃)

𝜆
 Equation 5 

This relationship is especially important, as SAXS data is usually shown as intensity plotted 
over the scattering vector q and powder XRD data as intensity over the scattering angle 2θ. The 
intensity I(q) is proportional to the squared amplitude of the wave A(q), which in reciprocal 
space (from now on referred to as q space) is defined as  

 𝐼(𝒒) = 𝐴(𝒒) ∙ 𝐴(𝒒)∗ Equation 6 

where A(q)* is the complex conjugate of A(q). The scattering amplitude A(q) can be calculated 
from the Fourier transformation of the electron density ρ(r) [16] 

 𝐴(𝒒) = ∫ 𝜌(𝑟) 𝑒𝑥𝑝(−𝑖𝒒 ∙ 𝒓) 𝑑𝑟 
𝑉

0

 Equation 7 

It is important to notice, that only if there is a difference in the electron distribution ρ(r) a signal 
will be detected. This is why, actually, the difference in the electron density Δρ(r), is of interest 
here. E.g. the electron density difference between the scattering object (for example the NCs) 
and the overall mean density. [17]  
The intensity of the scattered wave for two electrons as a function of the scattering vector q can 
be calculated using  

 𝐼(𝒒) = 2𝑟0(1 + cos(𝒒 ∙ 𝒓)) Equation 8 

If more than two electrons shall be described, it would be convenient to use the angle between 
q and r. Between the two there usually is a random orientation. Peter Debye suggested using a 
spherical average of all angles [24]. First the angle θ between the two directions needs to be 
defined (𝒒 ∙ 𝒓 = 𝑞 ∙ 𝑟 ∙ 𝑐𝑜𝑠(𝜃)). Then, using the non-integral form of Equation 8 for N electrons 
(𝐴(𝒒) = 𝑟0 ∑ exp (−𝑖𝒒𝒓𝑗)𝑁

0 ) [21] for N = 2 electrons having scattering amplitudes f1 and f2 and 
a distance r, the amplitude of the scattered wave is calculated as  

 𝐴(𝒒) = 𝑓1 + 𝑓2 ∙ exp (−𝑖𝒒𝒓) Equation 9 

Introducing Equation 9 into Equation 6 yields the intensity of the scattered wave as  

 𝐼(𝒒) = 𝑓1
2 + 𝑓2

2 + 𝑓1𝑓2 ∙ exp (𝑖𝒒𝒓) + 𝑓1𝑓2 ∙ exp (𝑖𝒒𝒓) Equation 10 
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Assuming r as a fixed, but randomly oriented distance the latter two terms of Equation 10 can 
be condensed, yielding  

 ⟨𝐼(𝒒)⟩ = 𝑓1
2 + 𝑓2

2 + 2𝑓1𝑓2 ∙ 〈exp (𝑖𝒒𝒓)〉 Equation 11 

The angle bracket in Equation 11 indicates the spherical or orientational average of the 
ensemble. Using the previously defined angle θ between the two directions q and r the term 
〈exp (𝑖𝒒𝒓)〉 can be rewritten as  

 
〈exp(𝑖𝒒𝒓)〉𝑜𝑟𝑖𝑒𝑛𝑡. . =

1
4𝜋

∫ ∫ exp(𝑖𝒒𝒓 ∙ cos(𝜃)) ∙ sin(𝜃) ∙ d𝜃 𝑑𝜑 = 

=
sin (𝒒𝒓)

𝒒𝒓
  

Equation 12 

The scattering intensity of any system with N scattering points, that all have an individual 
scattering amplitude described by fi and are separated by a distance rjk (𝑟𝑗𝑘 = |𝑟𝑗 − 𝑟𝑘|) can be 
calculated using  

 ⟨𝐼(𝒒)⟩ = ∑ ∑ 𝑓𝑗𝑓𝑘
sin(𝑞𝑟𝑗𝑘)

𝑞𝑟𝑗𝑘

𝑁

𝑘≠𝑗

𝑁

𝑗=0

 Equation 13 

also known as Debye Equation. [18] [21] [24] 

2.2. Small Angle X-Ray Scattering 

SAXS is a powerful tool to study particles on the sub-nanoscale, by recording the elastically 
scattered X-rays at very low angles (usually between 0.1° and 10°). It is this angular range that 
contains the information on the size and shape of the nanoparticles or nanocrystals. This has to 
do with the reciprocal nature of all scattering processes, resulting in an inverse relation between 
the NC size and the scattering angle. This is best illustrated by the Bragg Equation [25] 

 𝑛 𝜆 = 2 𝑑 𝑠𝑖𝑛(𝜃) Equation 14 

NCs, consisting of a vast number of atoms, are usually between some ten to a couple of 
thousand Å in size, so vastly larger than the wavelength of the most commonly used X-ray 
source (Cu Kα ~1.54 Å), resulting in a small angular range of the scattering signal. Information 
on the structure can be obtained for particles in the range from ~0.5 to ~100 nm, depending on 
the resolution of the system, which in itself depends on a number of factors, e.g. photon energy, 
sample detector-distance (SDD), detector pixel size and size of the beam stop to name only a 
few. A schematic representation of a SAXS setup is given in Figure 3, where most of those 
influencing factors are depicted. [16] [17] [26]  



 10 

 
Figure 3: Schematic representation of a basic SAXS setup, illustrating the pathway of the X-ray beam, the 
beam stop, the scattering angle 2θ, the scattering vector q and the sample detector-distance SDD. Figure 
redrawn from the original in [16] 

Combining Equation 5 and the Bragg Equation (Equation 14) yields one of the most convenient 
equation for SAXS users, as it allows for a “quick and dirty” estimate of the NC size directly 
from the position of extrema in the scattering curve [27] 

 𝑑 =
2𝜋
𝑞

 Equation 15 

If there is a priori knowledge of the NC size, the necessary q range can be estimated using 
Equation 15 and the SDD can be changed accordingly, as of cause the SDD has a great impact 
on the accessible q range. If a very wide q range is necessary, there also is the option of 
conducting the same measurement using different SDDs and subsequently merging the 
scattering curves.  
The scattering intensity for N identical (size and shape) particles with the Volume Vp in a diluted 
system can be calculated as  

 𝐼(𝒒) = 𝑁 ∙ 𝑉𝑝
2 ∙ |𝐹(𝒒)|2 ∙ 𝑆(𝒒) Equation 16 

with the formfactor F(q) and the structure factor S(q). The structure factor describes the 
interaction of the particles. For a diluted system, where all particles are far apart and there is 
basically no interaction to be accounted for, one can write 𝑆(𝒒) = 1. The formfactor depends 
solely on the morphology (size and shape) of the particles and for 𝑞 → 0 the formfactor yields 
𝐹(𝒒) = 1. It can be calculated using 

 𝐹(𝒒) =
1
𝑉𝑝

∫ 𝑒𝑥𝑝(𝑖𝒒 ∙ 𝒓) 𝑑𝑉𝑝 
𝑉𝑝

 Equation 17 

An analytical calculation of the formfactor is feasible, however only for the uttermost simple 
cases. When the analytical calculation is no longer possible, one has to fall back on the 
numerical evaluation of the integrals. [21] [27] 
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2.3. Small Angle X-Ray Scattering Data Analysis 

In order to perform proper data preparation of SAXS data, a solid understanding of the theory 
behind is imperative. The aim of the following pages is to give the reader a fundamental 
knowledge of the theory behind SAXS scattering curves and the information that can be 
extracted from the scattering curves. 

2.3.1. Guinier Analysis 

In the long wavelength limit qR → 0 it can be shown (for the exact derivation consult [21]) that 
the scattering intensity of a particle with the radius R can be calculated as 

 𝐼(𝒒) ≈ Δ𝜌2𝑉𝑝
2 exp (−

𝒒2𝑅2

5
 Equation 18 

Therefore, by plotting the intensity I(q) logarithmically over the scattering vector squared q2 a 
linear fit could be obtained with a slope equal to -R2/5. If the Guinier Analysis is to be applied 
to the scattering signal of a system of diluted, not perfectly spherical particles, the size can no 
longer be measured by the radius. Instead, a more general measure of the particle size needs to 
be introduced, the radius of gyration Rg. The radius of gyration is the square-root of the mass 
average of the particle. [28] It can mathematically be described as  

 𝑅 =
1
𝑉𝑝

∫ 𝑟2𝑑𝑉𝑝

𝑉𝑝

 Equation 19 

and usually the integrals can only be solved numerically, but for a sphere a very simple solution 

can be found: 𝑅2 = 3
5

𝑅2 This means that Equation 18 can be rewritten to yield 

 𝐼(𝒒) ≈ Δ𝜌2𝑉𝑝
2 exp (−

𝒒2𝑅2

3
 Equation 20 

This not only allows for a fast estimate of the approximate size and shape of the particles from 
visual analysis, but is also suited for automated analysis [29]. Because the analysis method is 
called Guinier Analysis the long wavelength limit is also referred to as Guinier regime. [21] 

2.3.2. Porod Analysis 

Whilst the Guinier Analysis operates in the long wavelength limit (qR → 0), the Porod Analysis 
operates on the exact opposite of the scale, the short wavelength limit qR >> 1. It is important 
to note that this is still a lot larger than the inner atomic spacing. Calculating the scattering 
intensity for a spherical particle with Volume Vp and surface area Sp one can use  

 𝐼(𝒒) =
2𝜋Δ𝜌2

𝑞4 𝑆𝑝 Equation 21 

From Equation 21 one can conclude that in the long wavelength limit of SAXS the signal is 
proportional to the surface of the particles. As before the short wavelength limit has another 
name referring to its analysis method, the Porod regime. [21] 
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Figure 4 gives an overview of the position of Guinier and Porod regime in the q range with a 
schematic representation of three different scattering curves for three different particle shapes. 
There is a third regime mentioned in Figure 4, the Fourier regime, containing information on 
the shape of the particles. This regime will be the focus of the following chapter.  

 
Figure 4: The Guinier, Fourier and Porod regime with an approximate location in the q range and the 
information that can be extracted from the corresponding regime. Additionally, there are three schematic 
scattering curves for different particle shapes, namely a disc (full red line), a cylinder (full green line) and a 
sphere (full blue line). Taken from [26] 

2.3.3. From SAXS Data to the Shape of a Particle 

From the name, and if that is not convincing enough then from Equation 17, it should be clear 
that the formfactor F(q) strongly depends on the particle shape. Calculating the formfactor for 
a three-dimensional shape involves integrating over the particle volume Vp. As mentioned 
before this is analytically really only possible for a few selected particle shapes, for all other 
shapes the formfactor is calculated numerically. The formfactor squared F(q)2, radius of 
gyration Rg and Porod exponent n for the three shapes shown in Figure 4 (disc, cylinder and 
sphere) are summarised in Table 1.  
For the infinite number of shapes for which a numerical calculation is necessary, it is best to 
use a slightly modified version of the Debye Equation (Equation 13), where the particle consist 
of N individual scatterers with individual formfactors Fi, located at ri.  
As any complex shape can be reconstructed as an assemblage of geometrically simpler shapes, 
this is the preferred way to compute the scattering signal for complex shapes and is therefore 
of great importance for this work. [5] [21]  
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Table 1: Summarisation of the squared formfactor F(q)2, the radius of gyration Rg and the Porod exponent n. 
The three parameters are shown for a sphere with radius R, an infinitely thin disc of radius R and an infinitely 
thin cylinder with length L, sometimes also referred to as rod. Due to lack of space two abbreviations are 

used: 𝑆𝑖(𝑥) is the sine integral ∫ 𝑠𝑖𝑛(𝑡) /𝑡 𝑑𝑡𝑥
0  and 𝐽1(𝑥) is a Bessel function (𝑠𝑖𝑛(𝑥) − 𝑥 ∙ 𝑐𝑜𝑠(𝑥))/𝑥2 . [21] 

 
Formfactor squared 

F(q)2 

Radius of gyration 

Rg 

Porod exponent 

n 

Sphere (d = 3) (
3𝐽1(𝑞𝑅)

𝑞𝑅
)

2

 √3
5

 𝑅 −4 

Disc (d = 2) 
2

𝑞2𝑅2 (1 −
3𝐽1(𝑞𝑅)

𝑞𝑅
) √1

2
 𝑅 −2 

Cylinder (d = 1) 
2𝑆𝑖(𝑞𝐿)

𝑞𝐿
−

4 sin2(𝑞𝐿 2⁄ )
𝑞2𝐿2  √ 1

12
 𝑅 −1 

 

Another approach for describing complex geometries is the Pair Distance Distribution Function 
(PDDF) or p(r) proposed by Glatter [30]. It is mainly used to analyse the oscillating part of the 
scattering curve, which is often referred to as Fourier regime as can be seen in Figure 4. It is 
basically a transformation from reciprocal space I(q) to real space p(r) by performing a Fourier-
transformation via 

 𝐼(𝑞) = 4𝜋 ∫ 𝑝(𝑟) 
sin(𝑞𝑟)

𝑞𝑟
0

 𝑑𝑟 Equation 22 

The PDDF shows all the distances that can be found inside the particle by plotting the frequency 
of a certain distance over said distance. This distribution holds a lot of information not only on 
the particle size, but also its shape. The PDDFs for some characteristic shapes are shown in 
Figure 5, illustrating the possibility of differentiating between a spherical, cylindrical and disc 
like shape just from the PDDF. In Figure 4 the corresponding scattering curves I(q) are 
depicted. The Fourier-transformation works bilateral, making it possible to calculate the PDDF 
directly from the scattering curve I(q) [26] [30] [31] 

 𝑝(𝑟) =
1

2𝜋2  ∫ 𝐼(𝑞)  𝑞𝑟 sin(𝑞𝑟) 𝑑𝑞 Equation 23 
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Figure 5: The PDDF or p(r) shown for three different shapes, indicating how easily the shape of a spherical, 
cylindrical or disc like sample can be estimated from the PDDF. The corresponding scattering curves were 
shown before. Taken from [26] 

2.4. Shape Retrieval 

In the chapters so far, the assumption was made that there is a priori knowledge of the electron 
density of the analysed system, which can then be used to calculate the scattering intensity using 
the derived equations. In reality however, it is the other way around. The scattering intensity is 
measured in form of the scattering curve and then from this the electron density is to be 
calculated. Furthermore, in a real-world system only the orientational averaged intensity is 
measured, leading to a massive loss of information. Retrieving the shape of a measured particle, 
therefore is a long and complex iterative process that requires a deep understanding of the 
scattering theory discussed in the preceding chapters.  
In a first step the scattering intensity of an initial model Icalc(q) is calculated and compared to 
the measured experimental intensity Iexp(q) via 

 𝜒2 =
1

𝑁𝑒𝑥𝑝
∑ (

𝐼𝑒𝑥𝑝(𝑞) − 𝐼𝑐 𝑐(𝑞)
𝜎𝑒𝑥𝑝(𝑞)

𝑁

=1

2

 Equation 24 

where Nexp denotes the number of experimental data points with the experimental error σexp(q). 
Minimising the chi squared functional χ2 (often referred to as objective function) is the main 
objective of any shape retrieval process. [6] 

2.4.1. Simulated Annealing 

Generally speaking, the fundamental idea behind this minimisation is to continuously alter an 
initial starting shape until the best agreement between Iexp(q) and Icalc(q) is found. In order to 
minimise the chi squared functional different metaheuristic approaches exist, e.g. Simulated 
Annealing proposed by Kirkpatrick et al. in [32] or Genetic Algorithms proposed by 
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Mitchell [33] [34]. This chapter will focus on simulated annealing, as it is similar to those used 
by both software packages appearing later in this work.  
Simulated annealing uses an iterative improvement approach. It stars with a predefined starting 
configuration (in the case of shape retrieval often a spherical or cubic starting model), then it 
applies a standard rearrangement operation to the configuration and calculates the objective 
function. It compares the objective function of the original and the new configuration and if the 
objective function of the new configuration is lower, the new configuration becomes the starting 
point of the next step. This step is repeated until no further improvement can be found. 
However, if only steps that lower the objective function are allowed, this is the simulation 
equivalent of rapidly quenching a material to low temperatures, usually resulting in metastable 
solutions. As temperature does not have an equivalent in the world of computational 
optimisation, an effective temperature was introduced by Kirkpatrick et al. acting as a control 
parameter of the annealing process. To counteract the quenching effect, Metropolis et al. [35] 
introduced a procedure, that also allows for uphill steps under certain conditions. As before, 
there is a small random rearrangement of the system performed every step, after which the 
change in the objective function ∆χ2 is calculated. In the case of a lower objective function 
∆χ2<0, the displacement is accepted and the new configuration is used as the starting point of 
the next step. If the objective function increases ∆χ2>0 the probability of it being accepted is 
calculated in the means of Boltzmann statistics 𝑃(Δ𝜒2) = exp (−Δ𝜒/𝑘𝑏𝑇). The simulated 
annealing starts with a high effective temperature T, the equivalent of melting the system, and 
slowly lowers the effective temperature step by step until no further changes are possible, the 
equivalent of a frozen system. [32] [35] 

2.4.2. The Loss of Information due to Random Orientation 

The resolution of SAS data regarding the structure is a lot worse than that of data from 
diffraction of single crystals. This loss of information is linked to the random orientation of 
particles in a solution and has nothing to do with the phase problem. Additionally, the loss of 
information due to random orientation is greater than the loss because of the phase problem. To 
account for the fact that a SAXS signal does not depend on the particle orientation, the 
introduction of a scattering multipole ρ(r) with rotational properties in the form of spherical 
harmonics Y is suggested by Stuhrmann [36]. This way the multipole can be described as  

 𝜌(𝒓) = ∑ ∑ 𝜌 (𝑟) 𝑌 (𝜃, 𝜑)
=−=0

 Equation 25 

in real space. The coefficient ρlm(r) are the multipole components of the field ρ(r) and are 
calculated as 

 𝜌 (𝑟) = ∫ 𝑌∗ (𝜔) 𝜌(𝒓) 𝑑𝜔 . 𝑑𝜔 = sin(𝜃) 𝑑𝜃𝑑𝜑 Equation 26 

using the spherical harmonic complex conjugate Y*
lm, which is only dependent on the angle ω. 
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Using this information, the scattering amplitude can be written as  

 𝐴 (𝑟) = √2
𝜋

 𝑖 ∫ 𝜌 (𝑟)𝑗 (𝑞𝑟)𝑟2 𝑑𝑟 Equation 27 

where jl(qr) denotes the spherical Bessel function of lth kind. All things combined, the scattering 
intensity I(q) can then be calculated using A*

lm and the complex conjugate A*
lm 

 𝐼(𝑞) =
1

4𝜋
 ∑ ∑ 𝐴 (𝑞)𝐴∗ (𝑞)

=−

𝐿

=0

 Equation 28 

This equation is similar to the beforementioned Debye Equation (Equation 13), with the 
difference that now the sum does not need to be calculated for all particles N, but all 
harmonics L. This takes significantly less effort in terms of calculating effort. If the calculation 
of the scattering intensity I(q) has to be calculated many times, like in the simulated annealing 
procedure above, this helps drastically speed up the process. [19] [36] [37] 
Despite the complexity of the abovementioned equations, the relevance of their statement for 
shape retrieval can also be described without using a single equation. First a structure can be 
split into angular regions. If in the process of e.g. simulated annealing the only change made to 
a model is in one of those regions, it is no longer necessary to again calculate the scattering 
intensity of the entire model, but rather it is sufficient to calculate the corresponding multipole. 
This additionally helps to reduce the computing time for a model. [19] 

2.4.3. Retrieving the Shape 

The most common method to study the size and shape of NCs is transmission electron 
microscopy, with which it is possible to reach single-atom resolution. However, TEM comes 
connected to numerous severe drawbacks. As a TEM image is only resolvable in the focusing 
plane of the microscope, all information on the shape perpendicular to the focusing plane is 
lost. Whilst this problem can be bypassed by using electron tomography, the problem that 
quality TEM images can only be made of a few hundred NCs at once at absolute maximum 
remains. [5] Using SAXS the probed sample usually contains at least 106 NCs, sometimes even 
up to 1011, all of them interacting with the X-ray photons and therefore contributing to the 
SAXS signal. Therefore, the number of NCs analysed is larger by an incredibly big margin. 
The idea of reconstructing a 3D model from SAXS scattering curves was first brought up in the 
1960s. At first the scattering curves of simple geometries were calculated in a trial-and-error 
approach and compared to experimental data. From this a general idea of the approximate shape 
was acquired. Advances like Stuhrmann’s idea to use spherical harmonics [36] (see above) 
allowed for a faster calculation of the scattering curve of a given structure. The final 
breakthrough came with the idea of an ab initio approach using automated bead modelling. This 
approach is also used by today’s most popular shape retrieval program DAMMIN and 
DAMMIF [15]. The shape is represented by a dense conglomeration of beads or dummy atoms 
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(DAs) (the two terms can be used synonymously) that is slowly modified using simulated 
annealing to find a configuration that minimised the objective function. As ab initio methods 
do not result in a unique solution, building multiple individual models, comparing and 
averaging them is advised (for example using DAMAVER [15]). [12] 
A different approach from Glatter suggests performing an indirect Fourier-transformation (IFT) 
of the scattering curve. For the scattering curves from diluted NCs this results in a desmeared 
and smoothened PDDF. [30] If there is a superimposed Structure Factor S(q), the next step 
could be to perform a generalised indirect Fourier-transformation (GIFT) and then the structure 
factor of the system can be calculated. [31] [38] 
The different shape retrieval software packages are most commonly used to study proteins, 
strictly monodisperse systems. This is where the biggest disadvantage of ab initio based shape 
retrieval methods stems from, its theoretical limitation to strictly monodisperse system. 
However, the applicability of ab initio shape retrieval methods for slightly polydisperse systems 
has been proven. [5]  
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3. Experimental 

The aim of this chapter is to give the reader a concise overview of the techniques used to 
generate the data analysed later in this work. Only little focus is placed on the synthesis of the 
samples, as this step was performed by collaborators at the University of Hamburg in Germany 
and would exceed the scope of this work.  

3.1. Sample preparation 

The samples were synthesised by Dr. Artur Feld and Dr. Agnes Weimer, members of the group 
of Prof. Dr. Horst Weller at the University of Hamburg. All TEM images in this work are taken 
from [8]. 
The NC synthesis was started by synthesising iron(II)oleate and iron(III)oleate. This was done 
by mixing purified FeCO3 salt and Fe2(CO3)3 salt respectively with oleic acid (OA) in a Fe:OA 
ratio of 1:7 at room temperature (RT). Subsequently, the mixture was heated to 60 °C and stirred 
at that temperature for 1 h and then cooled down to RT again. At RT the mixture was stirred 
for an additional 24 h until a milky grey emulsion had formed. By heating the sample to 60 °C 
under vacuum for 2 h, water and CO2 were removed. To fully remove the remaining water, the 
emulsion was heated to 120 °C under vacuum for 1 - 2 h. Finally, the NCs were synthesised by 
thermal decomposition of iron(II)oleate and iron(III)oleate. By varying temperature and 
reaction time the morphology of the NCs can be altered. For this work four different samples 
were created and labelled FeO 4, FeO 6, FeO 14 and FeO E. Whilst the shape of sample FeO 4 
is best described as star-like, the shape of sample FeO E is cubic. Sample FeO 6 and FeO 14 
are in between. The shapes of all four samples are shown in Figure 6. The final NCs from both 
the iron(II)oleate and iron(III)oleate iron source, result in a purely wustite (FeO) structure. [8] 
For more information on the synthesis of the samples please consult [8]. 

 
Figure 6: Comparison of a TEM image of a representative NC of all four prepared samples. FeO E represents 
the most cubic sample and will often be referred to as a cube. FeO 14 can best be described as a cube with 
more rounded edges. FeO 6 is a cube with concave faces. The shape of FeO 4 can best be describes as star-
like. Individual TEM images taken from [8].  
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The FeO NCs are so called superparamagnetic iron oxide nanocrystals and exhibit exceptional 
magnetic properties. These magnetic properties, however, strongly depend on the size and 
shape of the NCs. The size determines the saturation magnetisation and whether the NCs are 
superparamagnetic or ferromagnetic. The shape allows the alternation of additional magnetic 
properties, such as the blocking temperature and biocompatibility. [8] [9] 
The NCs were diluted in toluene and a small amount of oleic acid was added to prevent 
aggregation. Upon arrival at our lab the samples and the toluene solvent were transferred into 
quartz capillaries with a stated wall thickness of 0.1 mm using a sterile syringe and needle.  To 
prevent the samples from evaporating due to the vacuum in the sample chamber, the capillaries 
were sealed using a two-component epoxy adhesive and then left to harden. The dried epoxy 
adhesive was subsequently covered with an additional layer of wax. From the concentration of 
8 to 12 mg/ml, the 300 µm diameter of the X-ray beam and the 1.5 mm capillary diameter the 
average number of NCs illuminated by the X-ray beam in the capillary can be approximated to 
be 9∙1010, which corresponds to a volume fraction of approx. 0.18%.  

3.2. Measurements 

All measurements were performed at the Montanuniversität Leoben, adhering to the highest 
safety standards.  

3.2.1. Small Angle X-Ray Scattering Measurements 

The capillaries containing the four diluted NCs, a capillary containing pure toluene and a 
capillary containing the calibrant were placed inside the sample chamber of the SAXS device. 
For this work a Bruker Nanostar, using a Cu Kα source with a wavelength of 1.5418 Å and two 
300 µm SCATEX collimators, was used. Silver behenate is used as the calibrant due to its large 
number of sharp peaks in the range below 20° 2-theta. [39] The calibrant is used during analysis 
to determine the exact SDD (see Figure 3). After evacuating the sample chamber, a number of 
x- and y-scans were performed to locate the exact positions of all six capillaries. Once the exact 
positions were located the measurement was started. The samples and solvent were measured 
three times for 4 hours at two different SDDs to yield the largest possible q range to the setup. 
The calibrant was measured once for 1 hour, also at two SDDs. The two SDDs used were 
approx. 25 cm and approx. 107 cm.  

3.2.2. X-Ray Diffraction Measurements 

In order to measure the dissolved NCs with XRD, the NCs needed to be dried first. This was 
done by heating a sample holder to approx. 50 °C and adding a small amount of sample step by 
step, making sure the solvent can evaporate before adding a new layer. In total four layers were 
added to the sample holder before it was placed inside the X-ray diffractometer. For this work 
a Bruker D8 ADVANCE eco was used, with a Cu Kα source and a wavelength of 1.5418 Å. The 
samples were rotated continuously and measured for 11 hours between 5° and 130° 2θ, 
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corresponding to a scattering vector q of 3.56 nm-1 and 73.87 nm-1 respectively. Converting 
form 2θ to q is done using Equation 5.   
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4. Analysis 

Whilst SAXS measurements usually require only little time in the laboratory, processing the 
data to yield results is a considerably more elaborate process, that requires not only the 
appropriate software, but also a deep understanding of scattering theory.  

4.1. Data processing 

Before one can think about retrieving the shape of the NCs from the scattering data, there is a 
considerable amount of processing to do. This chapter will give a brief insight into the software 
used and the steps that are necessary to get the most out of the collected data. 

4.1.1. SAXS Data 

The 2D SAXS data was azimuthally integrated using PeakFit 2D to obtain the SAXS scattering 
curves. As every sample was measured three times, the three SAXS scattering curves were 
subsequently averaged using PCG Tools. Both PeakFit 2D and PCG Tools were developed by 
Gerhard Fritz Popovski, a member of our group. 
Because the measurements were performed using two different SDDs, the two averaged 
scattering curves from the two SDDs had to be merged before the data could be further 
analysed. As shown in Figure 7a, a long SDD (in this case approx. 107 cm) yields a narrow q 
range with good resolution at low q, whereas a short SDD (in this case approx. 25 cm) yields a 
broader q range with a worse resolution at low q values. The data from the long distance is 
therefore best used to describe the low q range, and vice versa. However, for further analysis 
one file containing information on both the low and high q range is needed. Therefore, the files 
need to be merged, e.g. using PCG Tools. Figure 7a, b and c show the three steps involved in 
the averaging process. In the first step (a) the two scattering curves are plotted and compared. 
It can be seen, that the signal from the ~25 cm SDD has a considerably higher intensity than 
the signal from the ~107 cm SDD. Furthermore, there is a distinct difference in the resolution 
of the details in the q range up to 1 nm-1, the minima are precisely defined in the ~107 cm signal 
and only loosely defined in the ~25 cm signal. In the second step (b) one of the two signals is 
shifted in its intensity (multiplied by a corresponding value), so that the curves overlap. Data 
points from the end of the ~107 cm signal and from the beginning of the ~25 cm signal are 
removed in step 3 (c), so that there is a smooth transition from one curve to the other. Finally, 
the files are merged, and a new file is created. All three steps can be performed using 
PCG Tools.  
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Figure 7: Visualisation of the three steps of the merging process of two SAXS curves recorded using two 
different sample-detector distances, in this case ~25 cm (full green line) and ~107 cm (full pink line). 
(a) Plotting the data with no adjustments made. (b) Adjusting the intensity values to create two overlapping 
curves. The difference in the resolution regarding the details in the q range below 1 nm-1 is clearly seen in 
this depiction. (c) Removing data points at the beginning (~107 cm data – pink line) and end (~25 cm data – 
green line) of the two curves. 

The created files are the scattering curves (intensity plotted logarithmically over q), with a q 
range from approx. 0.1 nm-1 to approx. 11 nm-1, of the NCs with the superimposed scattering 
of toluene and the capillary, the so-called background (noise). The background can be removed 
by subtracting the scattering curve of the toluene from the other scattering curves, leaving 
behind the pure scattering curve of the NCs. However, due to differences in transmission of the 
samples caused by small fluctuations in the concentration or varying diameters of the capillaries 
a transmission correction has to be performed before the subtraction can be performed. In the 
present case fluorescence from the iron in the NCs complicates the transmission correction. A 
simpler but equally effective way is to normalise the curves to the solvent peak at approx. 
11 nm-1, seen in Figure 8a. Figure 8b shows the low q range before the background removal. 
Figure 8c shows the scattering curves after the background was removed. The scattering 
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artefacts (e.g. maxima and minima) of the individual samples remain unchanged, however a 
change in the slope can be observed. The scattering curves shown in Figure 8c are the basis for 
all further analysis in this work from here on.  

 
Figure 8: (a) Scattering curves of the four NCs – solid green line FeO E, solid pink line FeO 14, solid purple 
line FeO 6, solid orange line FeO 4 – with superimposed scattering from the background: the capillary and 
toluene (solid grey line). (b) Scattering curves of the four NCs with background shown for a narrower q range. 
(c) Scattering curves of the four NCs with subtracted background. Curves shifted vertically to aid readability. 
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4.1.2. XRD Data 

The XRD patterns were Cu kα corrected and the peak positions were compared to the ones of 
standards of different oxidation states of iron. Additionally, the crystallite size can be extracted 
from the XRD pattern by analysing the full width at half maximum (FWHM) of the individual 
peaks. Moreover, the crystallite size can then be linked to a crystallographic direction. To 
determine the FWHM of the individual peaks, they are first fitted with a gaussian function, then 
the FWHM is extracted and finally the crystallite size is determined using Scherrer’s Equation 
 

𝐷 =
𝑏𝜆

𝛽(2𝜃) cos(𝜃) 
Equation 29 

where β(2θ) is the FWHM of the peak, given in the scattering angle two theta 2θ, λ is the 
wavelength (Cu Kα, approx.1.5418 Å) and b is a constant close to 1. [42] [43] As it is good 
practice to present SAXS data as intensity over the scattering vector q and in this work, also the 
XRD data is given in q space due to the work’s focus on SAXS, it would be preferable to also 
give the Scherrer equation in q space: 
 

𝐷 =
𝑏2𝜋
𝛽(𝑞) 

Equation 30 

where β(q) is the FWHM of the peak, given in the scattering vector q. [40] 

4.2. Shape Retrieval  

Shape retrieval was performed using two different software packages: (a) SasHel [6] and (b) 
ATSAS [15].  
(a) SasHel is a bead modelling software capable of reproducing the shape of helical or rod-

like systems by using the repetitive scheme of natural systems. Only a single building 

block is calculated and afterwards stacked. More important for this work, however, is 

the grid free approach of the SasHel algorithm. Contrary to other modern modelling 

programmes, the DAs do not have to move on an underlying grid during the simulation 

process. [6] 

(b) ATSAS is a software package delivering a vast number of different applications, from 

primary SAXS data processing to ab initio bead modelling. In this work the bead 

modelling software DAMMIF and DAMMIN were used. In contrast to SasHel they 

work with an underlying face centred cubic (FCC) grid, on which the DAs have to be 

placed. This difference is clearly visible and its consequences are addressed at a later 

point. Furthermore, DAMMIF and DAMMIN implement a support for the preselection 

of certain symmetries. [15] 



 25 

4.2.1. Creating the models 

The approach for both software packages is similar. The scattering curve is given as the input 
parameter. Subsequently further parameters are defined, such as the number of DAs used, 
looseness penalty, curve weighting options and the number of different simulations running 
simultaneously. 

ATSAS 
All input parameters for the ATSAS models, except the scattering curve obviously, were kept 
identical for the four samples. Two options are available in DAMMIF, “fully automated 
processing” or “manual selection of parameters”. The latter was used ins this work. After the 
user determines the Guinier range and the PDDF, he is presented with a number of options. 
There are two modes available, “fast” and “slow”. The differences between these two are 
manifold, the most important ones for this work are the difference in DA size, effecting the 
total number of DAs used (approx. 10 000 in “slow” mode and only approx. 2 000 in “fast” 
mode) and the amount of iteration steps. [42] As there is no a priori knowledge of the NCs’ 
shape or on the degree of filigree details of the NCs, the number of DAs needed to be high in 
order to be prepared for both the simple and complex cases. Therefore, the “slow” mode is used. 
Next up the user can choose how many individual models should be simulated, in this work 15 
models were created during every evaluation. DAMMIF further provides a selection of different 
symmetries. For this first evaluation, the symmetry was not predefined (option “p1”). 
Regarding the “Anisomery” and “Angular Scale” the option “unknow” was selected. Finally, 
the option of averaging the 15 individual models using DAMAVER was selected, the 
computation time for this step increases exponentially with the number of models being 
averaged. The averaging procedure is discussed in more detail in the next chapter.  
Additionally, the shape retrieval process was performed with a predefined symmetry based on 
the outcomes of the models with no predefined symmetry. This step was performed to study 
the effect of symmetry on the final model. DAMMIN was used for the model with a predefined 
symmetry. The shape retrieval was performed using different predefined symmetries (p432, p4 
and p8), eight models were created and subsequently averaged using DAMAVER. As the 
starting model for the p4 and p8 symmetry a parallelepiped with edge length 50 nm was chosen, 
for the p432 symmetry a sphere with diameter 50 nm was chosen. The parallelepiped was 
chosen based on the results from the foregoing analysis, whilst for p432 only the sphere could 
be selected. The size of the starting model was approximated based on the maximum size in the 
PDDF with a fair bit added, as this had proven to deliver the best results. The remaining 
parameters were left unchanged. 

SasHel 
Once a set of successful parameters was found for SasHel, they were kept identical for all 
samples too. First a new model needs to be created, choosing both initial size and initial shape 
(cube, sphere, cylinder) of the model. To study SasHel’s ability of finding the right shape 
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without any a priori information, a sphere with a diameter of 45 nm was chosen (the size of the 
starting sphere was approximated from the maximum dimension in the PDDF). The number of 
DAs was set to 8 000. As mentioned before, SasHel has the ability to create stacked models, a 
feature that is of no relevance here. Therefor the “Nr. of Building Blocks” is set to 1. The DA 
size was left at its default setting (0.2 nm), the same is true for the “Starting Temp.”, “Delta 
Temp.”, “Iterations”, “Curve Weighing Options” and the “Advanced Fitting Parameters”. The 
number of models created simultaneously is depending on the number of CPU cores nCPU. The 
recommended maximum number of models to fit simultaneously is nCPU – 1 [42], in the case 
of the computer used for these simulations there were eight cores, so seven simulations were 
run simultaneously. The seven models were subsequently averaged using DAMAVER.  
Many models were created using both ATSAS and SasHel to fully develop an understanding 
of the influence of the different parameters on the resulting models.  

4.2.2. Averaging the models 

For the averaging process the software DAMAVER from the ATSAS package was used for 
models created with both SasHel and ATSAS. DAMAVER consist of a three-step averaging 
process using DAMSEL, DAMSUP, DAMAVER [15], which will be further elaborated in the 
following. 
DAMSEL compares all input models and finds the most probable one and defines outliers by 
calculating and comparing the normalised spatial discrepancy (NSD), providing an quantitative 
estimate of the similarity of two or more models [43]. If the NSD value is above a certain 
threshold, the model will not be considered during the averaging process. DAMSUP aligns the 
models to a reference model, in this case the most probable one, again using the NSD. In the 
last step all aligned models are averaged using DAMAVER. This is done by remapping them 
onto a gird of closely packed DAs, which allows for the calculation of a frequency map, also 
referred to as occupancy. The occupancy hence gives the number of atoms on every lattice point 
placed over all the superimposed models. If, for example, 10 models are averaged with 
DAMAVER and the occupancy at a certain point on the grid is 10, this means that in every 
model a DA will be found on this lattice point. In the following always the normalised 
occupancy will be given.  
As discussed earlier, DAMMIF works with an underlying FCC grid structure for placing the 
atoms during the simulation, whereas SasHel does not work with a grid and allows for 
unrestricted DA positions. That is why during the DAMAVER procedure there are never two 
DAs located on the same grid position, yielding a uniform occupancy for every DA in the 
model. As a consequence, it is harder to evaluate the accuracy and statistical validity of a model 
generated using SasHel.  
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4.3. Diameter Distribution 

Apart from the shape, the dimension of NCs is of major importance. Of course, some 
information on the size can be extracted from the position of the minima in the scattering curve 
or by calculating the PDDF. In this chapter however, an alternative analysis of the NCs’ 
dimension will be discussed. When looking at the size of averaged models composed out of 
many DAs smearing effects can be observed. As the models are built by many DAs with a 
defined radius rDA, the resolution of this size analysis is limited by the size of those DAs. In 
addition to this the models are the result of an averaging process, resulting in an additional 
statistical smearing. 
First the dimension along one direction of the particle is analysed. To do so, a measuring 
cylinder, with a length much bigger than the biggest dimension of the model and radius bigger 
than the radius of the DAs rDA, is inserted though the model’s centre of gravity. All DAs outside 
the measuring cylinder are ignored during analysis, the NCs inside the measuring cylinder are 
circled red in Figure 9a. Figure 9b shows the result of the first step of this analysis, the mean 
occupancy along a given direction inside the model (full black line), representing the electron 
density. The inside of any homogeneous particle displays a constant electron density, 
consequently the inner region can be fitted by a horizontal line averaging the fluctuations in the 
occupancy map. The fluctuations are caused by the individual DAs placed on the grid.  

 
Figure 9: (a) 3D model representing a NC (full black dots), the DAs inside the measuring cylinder are circled 
red. The measuring cylinder has a radius of 5 nm. (b) Cross section showing the occupancy (full black line) 
along the measuring cylinder with, linearly fitted (full red line) to extract the half height dimension. 

The edge, however, is where it starts to get more interesting. Despite smearing effects, a clear 
decision needs to be made on where the edge of the model is located. This is done by manually 
fitting the slopes on both sides and calculating the intersection with the horizontal line. The 
half-height dimension (HHD) is then defined as the diameter where the occupancy is exactly 
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half that of the horizontal line. Figure 9b shows two values HHL and HHR, adding the absolutes 
of these two values yields the HHD, in this case 35.13 nm. The slope on the edges is 
proportional to the polydispersity of the system. [19] 
Evaluating the HHD along one single direction is a helpful tool for evaluating the size along 
characteristic dimensions of objects. In the case of cubes, e.g. the edge length can be 
determined. In the case of more complex or smeared shapes, the models cannot be described 
by a single characteristic dimension. It is therefore necessary to evaluate the dimension along 
a considerably larger number of directions. The procedure for evaluating the HHD along a 
single direction is automated and performed n times along randomly selected 
directions. [19] [31] For good statistics it is recommended to set n > 105. The outcome of this 
procedure is a kind of diameter distribution, that can be used to further study the models.  
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5. Results 

All four NCs were modelled using the two software packages SasHel and ATSAS. As 
mentioned before no occupancy could be calculated for the SasHel models, making all analysis 
going beyond simple evaluation of the 3D model impossible. Consequently, this section will 
focus on the models created using ATSAS, whilst the SasHel models will be used for 
comparison only. Furthermore, the diameter distribution will be discussed. XRD measurements 
were performed to complement the results from the SAXS data and are also discussed in the 
following.  

5.1. Shape Retrieval from SAXS Data 

First the results of the ATSAS models will be discussed in detail and afterwards they will be 
compared to the SasHel models. 

5.1.1. ATSAS models without predefined symmetry 

Figure 10 shows the fits of the four models FeO E (a), FeO 14 (b), FeO 6 (c) and FeO 4 (d) in 
comparison to the experimental data. The fits are in very good accordance with the experimental 
data. Only for FeO E there is a slight deviation in the range of the last two minima and the fit 
tends towards the top end of the error bars for FeO 4 in the q range above 1 nm-1. 

 
Figure 10: Fits of the models of the four samples FeO E (a), FeO 14 (b), FeO 6 (c) and FeO 4 (d) created in 
ATSAS with no predefined symmetry. The fits of all the models are in good accordance with the experimental 
data. Only FeO 4 shows some deviation in the region of the last two minima.  
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Figure 11a-d shows the 3D models of all four samples, created using ATSAS and displayed in 
Paraview. Every model is the average of 15 individual models. Two different illustrations are 
chosen to discuss the models in more detail. Firstly, the model is shown with all DAs on display 
(averaged model) Figure 11 (left) and secondly only DAs with a normalised occupancy greater 
than 0.5 are displayed (centre), allowing a look at a statistically more valid model. The second 
illustration is referred to as occupancy map. The colour scheme of the DAs represents the 
occupancy, red is the highest normalised occupancy (1) and blue is the lowest occupancy (0). 
Additionally, the fit of the computed scattering curve of the model is shown in comparison to 
the experimental data in Figure 11 (right). 

 

 
Figure 11: 3D models, created using ATSAS and no predefined symmetry, of the four samples FeO E (a), 
FeO 14 (b), FeO 6 (c) and FeO 4 (d) shown with all DAs on display (left), with DAs with an occupancy lower 
than 0.5 partly transparent (occupancy map) and a scale bar for the occupancy (centre). Furthermore, the 
corresponding fits are shown (right). 
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Generally speaking, the deviation from a cubic shape follows the trend FeO E < FeO 14 < FeO 6 
< FeO 4. This trend is even more distinct considering the occupancy maps. Another general 
trend is that in every case the averaged model looks more cubic than the occupancy map. This 
effect is connected to the averaging process. As described in chapter 4.2.2, the final model is 
the average of 15 individual models. This is done by aligning them and remapping all of them 
onto an underlying grid. Because of the varying shapes of the individual models the outer 
perimeter tends towards a cube like shape. Figure 12 shows all 15 individual models of sample 
FeO 4 (individually coloured) before the averaging process. The individual models all have 
many arms vectoring out in all directions, this leads to the impression of a more cube like 
structure, as they fill the entire space. However, the occupancy of all those DAs will only be 
1/15 once the averaging process is completed and is therefore not visible in the occupancy map. 
Thinking about this and looking at Figure 12 really demonstrates the power of ATSAS. The 
fact that first models representing the most distinct features are created and are then, in a second 
step, averaged in a way that those features are emphasised is astonishing.  

 
Figure 12: All 15 3D models (individually coloured) of FeO 4 before the averaging process. The little arms 
are the reason for the cube like overall shape of the averaged model.  

Another general trend that can be spotted concerning the number of DAs with an occupancy 
smaller than 0.5. The number of DAs with an occupancy lower than 0.5 is smallest for FeO E 
and largest for FeO 4, therefore following the same trend as before FeO E < FeO 14 < FeO 6 < 
FeO 4. This trend can again be explained when looking at Figure 12. Because of the individual 
arms all vectoring out in different directions the individual models of FeO 4 start to overlap 
further inside. Looking at e.g. FeO E all individual models are of cubic shape, so the overlap is 
bigger if randomly oriented. Only considering the overlapped parts, however, leads to more 
rounded edges and vertices when comparing the occupancy map and the averaged model. This 
is also true for the model of FeO 14. Whilst the model’s reliability and validity can be improved 
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by averaging the samples, a blurring effect of the details has to be taken into account. This must 
always be kept in mind when discussing and studying the models in the following. 
Figure 13 and Figure 14 show a three-plane projection (where (a) is the front view, (b) the 
side view and (c) the top view) and a cross section (d) of both, the averaged model and the 
occupancy map of FeO E respectively.  
 

 
Figure 13: Averaged model of the FeO E ATSAS 
model in the three-plane projection, where (a) is the 
front, (b) the side and (c) the top view. Additionally, 
a cross section though the centre of the model is 
displayed (d).  

 
Figure 14: Occupancy map of the FeO E ATSAS 
model in the three-plane projection, where (a) is the 
front, (b) the side and (c) the top view. Additionally, 
a cross section though the centre of the model is 
displayed (d). 

The trend of the features of the occupancy map being blurred is continuing to show. The front 
view (a) hast the squarest base area, but it turns into the least rectangular base area in the 
occupancy map. The side (b) and top view (c) are best described as rectangular, but not as 
square. Their shape, however, is better preserved when moving from the averaged model to the 
occupancy map. The edges and vertices are less rounded off then the front view’s ones. Looking 
at the cross section (d), one can see that there are only about one to two layers of DAs with an 
occupancy of less than 0.5 in the perimeter of the model. Especially the averaged model’s cross 
section exhibits a square base with four well defined, straight sides and edges. Those four 
straight edges are also visible in the occupancy map, albeit not all equally long and definitely 
less rectangular. The fit (Figure 11a right) of the computed scattering curve of the model is in 
good agreement with the experimental data, even though the fit marginally deviates from the 
experimental curve starting from 0.6 nm-1. 
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Figure 15 and Figure 16 show the averaged model and occupancy map of FeO 14 respectively. 
Looking at the three projections it is again the front view (a), that is closest to the square base 
area of a cube. However, in contrast to the FeO E model, both the side (b) and top (c) view are 
considerably squarer than before. Yet, the cross section (d) is less square than before, still 
showing four almost equally long sides and a more or less rectangular shape though. Looking 
at the occupancy map, this trend no longer holds true, but rather the opposite is true. As always, 
the vertices and edges of the occupancy map are more rounded than those of the averaged 
model. Comparing the models of FeO E and FeO 14 there is a tendency towards more rounded 
edges and vertices in the model of FeO 14. The number of DAs with an occupancy lower 0.5 
is similar in both models, accounted for by the rather cube like shape. The fit in Figure 11b 
right shows only very little deviation from the experimental data (some in the range of the first 
maximum), yet never exceeding the error bars.  
 

 
Figure 15: Averaged model of the FeO 14 ATSAS 
model in the three-plane projection, where (a) is the 
front, (b) the side and (c) the top view. Additionally, 
a cross section though the centre of the model is 
displayed (d).  

 
Figure 16: Occupancy map of the FeO 14 ATSAS 
model in the three-plane projection, where (a) is the 
front, (b) the side and (c) the top view. Additionally, 
a cross section though the centre of the model is 
displayed (d). 
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Figure 17 and Figure 18 display the averaged model and occupancy map of the model for 
FeO 6. Compared to the models of FeO E and FeO 14 there is a stronger divergence from the 
rectangular base area in all three projections (a, b, c) and the cross section (d). Whilst the front 
view (a) still shows a slightly rectangular base arae, in the side (b) and top view (c) the 
rectangular base area gives way to a more oval shape displaying concave edges and faces. This 
also holds true for the cross section, where the concave faces are even more pronounced. In 
contrast to the models before, these distinctive details are better defined in the occupancy map 
than in the averaged model. The number of (layers of) DAs with an occupancy lower than 0.5 
has risen to between four and five, so the overlapping core is reduced by the more arm like 
shape, similar to what can be seen in Figure 12. The fit (Figure 11c right) of the computed 
scattering curve of the model shows no deviation from the experimental data.  
 

 
Figure 17: Averaged model of the FeO 6 ATSAS 
model in the three-plane projection, where (a) is the 
front, (b) the side and (c) the top view. Additionally, 
a cross section though the centre of the model is 
displayed (d).  

 
Figure 18: Occupancy map of the FeO 6 ATSAS 
model in the three-plane projection, where (a) is the 
front, (b) the side and (c) the top view. Additionally, 
a cross section though the centre of the model is 
displayed (d). 
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Shown in Figure 19 and Figure 20 are the averaged model and occupancy map for FeO 4 
respectively. The divergence from a rectangular shape of the base area in all projections (a, b, 
c) and the cross section (d) is strongest here, compared to the other three models. Despite a star-
like structure already being clearly visible in the averaged model, there still is a slightly cubic 
shape, caused by the DAs with an occupancy lower than 0.5. This has already been explained 
earlier (Figure 12). Comparing the averaged model of FeO 4 with those of FeO E and FeO 14 
the difference regarding the rectangular base are is most notable. The number of DA layers 
removed because their occupancy is lower than 0.5 is between four and five. When comparing 
FeO 4 and FeO 6 the overall divergence from said base area is similar, however FeO 4 shows 
more small arms vectoring out in the averaged model. This difference is best seen when 
consulting the occupancy map, where the arms are clearly evident, whilst bosting an occupancy 
of 0.8 to 1. To quickly remind the reader, this means if ten individual models were averaged, 
in at least eight of the models, DAs were found in those positions. This fact gives the results of 
all the occupancy maps a lot of credibility and statistical validity. This is additionally 
emphasised by the good fit of the scattering curve of FeO 4 (Figure 11d right), only showing 
a slight trend towards the upper limit of the error bars in the range above 1 nm-1. 

 
Figure 19: Averaged model of the FeO 4 ATSAS 
model in the three-plane projection, where (a) is the 
front, (b) the side and (c) the top view. Additionally, 
a cross section though the centre of the model is 
displayed (d). 

 
Figure 20: Occupancy map of the FeO 4 ATSAS 
model in the three-plane projection, where (a) is 
the front, (b) the side and (c) the top view. 
Additionally, a cross section though the centre of 
the model is displayed (d). 

5.1.2. ATSAS models with predefined symmetry 

As mentioned before ATSAS supports the preselection of symmetries that will then be applied 
to the model. For one, this dramatically reduces the simulation time and it might improve the 
results as well. However, the prerequisite for this process is a priori information about the NCs’ 
shape. This a priori information can stem from either TEM images, or in the present case the 
symmetry was derived from the models created without a predefined symmetry, described in 
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the preceding chapter. A clear tendency towards a cubic form factor can be seen in the models 
presented in Figure 13 to Figure 20. The space group symmetry (used by ATSAS) for a cubic 
shape is p432 and is therefore used for the simulation. All the fits of the models created using 
the p4 and p8 symmetry bared only little resemblance to the experimental data and are therefore 
not included in this work. 
Figure 21 shows the fits of the four models created in ATSAS using the p432 symmetry. For 
FeO E (a) and FeO 14 (b) it can be seen that the positions of the minima and maxima of the fit 
deviate from the experimental data. The fit of FeO 6 (c) tends towards the lower end of the error 
bars in the q range larger than 1 nm-1. In the same range the fit of FeO 4 (d) tends towards the 
top end of the error bars, which is in good accordance with the fit of the model created without 
a predefined symmetry. 

 
Figure 21: Fits of the models of the four samples FeO E (a), FeO 14 (b), FeO 6 (c) and FeO 4 (d) created in 
ATSAS with the p432 symmetry. For FeO E and FeO 14 there is a deviation in the position of the minima 
and maxima, FeO 6 and FeO 4 both tend towards the boundaries of the error bars at q values above 1 nm-1. 

Figure 22 shows the 3D view of the averaged model (left) and occupancy map (centre) for all 
four NC samples created with a predefined symmetry FeO E (a), FeO 14 (b), FeO 6 (c) and 
FeO 4 (d), with the corresponding fits (right).  
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Figure 22: 3D models created using the p432 space group symmetry in ATSAS for FeO E (a), FeO 14 (b), 
FeO 6 (c) and FeO 4 (d) shown with all DAs on display (left), with only the DAs with an occupancy larger 
than 0.5 (occupancy map) on display (centre) and the fit of the scattering curve of the model in comparison 
to the experimental data (right).  

The occupancy map of FeO E (Figure 22a centre) has a cubic shape, with a light hint of the 
first rudiments of very little arms growing out of the vertices of the model. The fit (right) shows 
a slight deviation from the experimental data, as it cannot fully reproduce the minima and 
maxima in the correct positions.  
The occupancy map of FeO 14 (Figure 22b centre) looks very similar to the occupancy map 
of FeO E in that it also exhibits the rudiments of little arms growing out of the vertices. Apart 
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from the arms, the model has an almost perfectly cubic shape. However, the model of FeO 14 
exhibits slightly concave faces. In analogy to the fit of FeO E, the fit of the FeO 14 model 
(right) again is slightly shifted in the region of the minima and maxima. This might be caused 
by the fact that the symmetry forces the edges of the model to be equally long. Because in the 
real system this is not the case for the majority of NCs, this leads to a difference between fit 
and experimental data.  
Figure 22c shows the occupancy map (centre) for FeO 6, where a cubic shape with concave 
faces can clearly be seen. In contrast to the two foregoing fits, the fit for the FeO 6 model (right) 
is in extremely good accordance with the experimental data, with only a slight trend towards 
the lower end of the error bars in the q region above 0.9 nm-1. 
The FeO 4 occupancy map in Figure 22d (centre) has eight equally long arms, vectoring in all 
spatial directions. In the averaged model these arms are not yet visible, indicating that at least 
one of the individual models had the arms arranged differently. When studying the eight 
individual models, one can find exactly one model that has only six arms. The eight arms of the 
occupancy map are equally long, due to the symmetry constraints applied to the model. One 
can see that depending on the position a considerable amount of the DAs is lost due to the low 
occupancy, but this is not the case for the area surrounding the arms, where the arms exhibit an 
occupancy ranging from approx. 0.7 to 1, underlining the statistical significance of the model. 
The fit of the scattering curve of the model (right) is in excellent accordance with the 
experimental data. In analogy to the fit of the model created without symmetry (Figure 11d 
right) the fit tends towards the top end of the error bars in the q range larger than 1 nm-1, always 
remaining within the error bars though.  
Generally speaking, the number of DAs with an occupancy lower than 0.5 is higher than was 
the case for the model created without any predefined symmetry. This is clearly related to the 
arms present in all four models create with the p432 symmetry, be it with strongly differing 
lengths. The reasons for this effect were explained and visualised (Figure 12) in great detail in 
the preceding chapter.  

5.1.3. SasHel models 

As mentioned before, the SasHel models are used for comparison between a grid and a no-grid 
based ab initio shape retrieval process. As further analysis is hindered by the missing ability to 
calculate an occupancy, only the 3D models will be discussed.  
Figure 23 shows the averaged models (left) of the four samples FeO E (a), FeO 14 (b), 
FeO 6 (c) and FeO 4 (d) and the corresponding fits of the calculated scattering curve of the 
model to the experimental data (right). This time the shapes were retrieved using the SasHel 
software [6]. All models presented are the average of seven individual models. The averaging 
was again performed using DAMAVER. The first big difference to notice, is the absence of an 
occupancy scale bar and the occupancy map. This is because, as mentioned before, for the 
SasHel models no occupancy can be calculated, due to the random nature of the DA placement. 
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This main difference between SasHel and ATSAS can immediately be spotted comparing, for 
example, two front views (for ATSAS see e.g. Figure 13 and for SasHel e.g. Figure 24). Whilst 
in the ATSAS model a clear grid can be spotted, no such grid is visible in the SasHel model. 
Rather the opposite holds true and the random placement of DAs is noticeable. There are also 
more so called “satellite” DAs present in the SasHel model, that are not connected to the main 
body of the model.  
Generally speaking, a clear trend towards a cube like shape can be noticed for all four samples. 
However, there is a deviation from this cubic shape, which is biggest for FeO 4 (d) and smallest 
for FeO E (a). This trend is in good agreement with the results from the ATSAS models. 
Roughly estimating the size, similarly sized models are retrieved by SasHel and ATSAS.  

 
Figure 23: 3D models, created using SasHel, of the four samples FeO E (a), FeO 14 (b), FeO 6 (c) and 
FeO 4 (d) The averaged model (left) has the same occupancy all over, so no scale bar for the occupancy is 
needed. Additionally, the corresponding fits are shown (right).  
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Figure 24, Figure 25, Figure 26 and Figure 27 show the three-plane projection (a, b, and c) 
and a cross section (d) of samples FeO E, FeO 14, FeO 6 and FeO 4 respectively. This 
projection further supports the beforementioned trend, that the cubic shape is most pronounced 
for the FeO E model (Figure 24a) and least pronounced for the FeO 4 model (Figure 27a). The 
satellite DAs are again clearly visible in all four models. In the cross section, holes can be seen, 
where there basically should be a DA (fully dense cores are assumed), probably missing due to 
the grid free approach of the SasHel software.  
The front (a), side (b) and top view (c) of the FeO E averaged model in Figure 24 show a 
distinctly square base area, with almost perfectly equal side lengths. The edges and vertices are 
reproduced are extremely straight, rectangular and detailed. The same is true in the cross 
section (d). This is supported by the cube like 3D view of the model and the highly accurate fit 
(Figure 23a left and right). 
Figure 25 shows the front (a), side (b) and top view (c) of the averaged FeO 14 model. The 
base area is again best described as a square, this time however, the edges are more rounded 
than before, this effect is most clearly visible in the cross section (d) of the model. The edges 
are straight again, and the edges are almost perfectly perpendicular to one another. The fit of 
the computed scattering curve is in good agreement with the experimental data (Figure 23b 
right).  
The front (a), side (b) and top view (c) of the averaged model of FeO 6 are shown in Figure 26 
and a square base is still perceived. The edges are still very straight and perpendicular, the cross 
section (d) hints a lower density of DAs on the sides, which might be indicative of a concave 
face. The fit (Figure 23c right) is in good agreement with the experimental data.  
Figure 27 shows the front (a), side (b) and top view (c) of the averaged FeO 4 model. There 
are still four sides visible in the three projections, they are, however, not equally long, nor 
perpendicular anymore in the front (a) and side view (b). They taper towards one end creating 
almost the impression of a triangular base area. In the top view (c) the base area is still more or 
less square. In the cross section (d) a little arm-like detail can be recognised, creating a shape 
that is reminiscent of a jellyfish. This jellyfish-like shape can also be seen in the 3D model in 
Figure 23. The fit shows a strong deviation from the experimental data, the slope in the q range 
below 0.3 nm-1 is off and from 0.6 nm-1 the fit is too high and not inside the error bars anymore. 
This was however the best averaged model that could be created for sample FeO 4 using SasHel.  
Generally speaking, the details of FeO E and FeO 14 are well defined and the difference 
between the two models is more distinct than it is the case for the two ATSAS models of the 
same samples. Regarding FeO 6 and FeO 4 this high quality of the model is not kept upright. 
The model of FeO 6 looks very similar to that of FeO 14 and the fit of the FeO 4 model is not 
acceptable anymore, rendering the result less valid.  
The cube-like shape of the models retrieved using the grid free approach of SasHel additionally 
supports the claim made in the preceding chapter, that the p432 symmetry is appropriate for 
this system.  
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Figure 24: Averaged SasHel model of the FeO E in the 
three-plane projection, where (a) is the front, (b) the 
side and (c) the top view. Additionally, a cross section 
though the centre of the model is displayed (d). 

 
Figure 25: Averaged SasHel model of the FeO 14 in 
the three-plane projection, where (a) is the front, (b) the 
side and (c) the top view. Additionally, a cross section 
though the centre of the model is displayed (d). 

 
Figure 26: Averaged SasHel model of the FeO 6 in the 
three-plane projection, where (a) is the front, (b) the 
side and (c) the top view. Additionally, a cross section 
though the centre of the model is displayed (d). 

 
Figure 27: Averaged SasHel model of the FeO 4 in the 
three-plane projection, where (a) is the front, (b) the 
side and (c) the top view. Additionally, a cross section 
though the centre of the model is displayed (d). 
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5.2. Diameter Distribution 

The diameter distribution analysed here must not be confused with the particle size distribution 
used to describe the range of diameters of individual particles in a powder, which is more 
common for classical powders and described by Jillavenkastesa et al. [45]. In this chapter a 
diameter distribution will be discussed, that focuses on the analysis of all possible dimensions 
of one particle, measured through the centre of gravity of the particle. This distance is denoted 
as diameter in the following. The mean particle shape used are the ATSAS models (with and 
without symmetry) of all four NC ensembles, discussed in the preceding chapter.  

5.2.1. Diameter Distribution for the Models Without a Predefined Symmetry 

Figure 28 shows the diameter distribution for all four samples FeO E (a), FeO 14 (b), FeO 6 (c) 
and FeO 4 (d), computed using a measuring cylinder with a 4 nm diameter. The diameter 
distribution has been normalised to the maximum frequency value of every individual 
distribution. The analysis was performed using one million (106) randomised directions.  
There are two general trends observed when studying the diameter distributions. First, a 
broadening of the distribution is noticed. The width of the diameter distribution is defined as 
the FWHM and not as the difference between the minimum and maximum dimension. The 
width of the distribution follows the trend FeO E < FeO 14 < FeO 6 < FeO 4. Secondly, the 
maximum frequency value shifts towards a lower distance through the centre of gravity in the 
same manner. So basically, FeO E has the narrowest distribution with the peak at the highest 
distance through centre of gravity, and FeO 4 has the widest distribution and the peak at the 
lowest distance trough centre of gravity. 
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Figure 28: Diameter distribution showing all distances through the centre of gravity of one model. The 
diameter distribution is shown for all four samples created in ATSAS without a predefined symmetry 
FeO E (a), FeO 14 (b), FeO 6 (c) and FeO 4 (d). The distance trough the centre of gravity was analysed with 
a measuring cylinder diameter of 4 nm in one million randomised directions and normalised to the maximum 
frequency. 

The minimum, maximum dimension and the dimension with the highest frequency are listed in 
Table 2, again demonstrating that the dimension with the highest frequency is decreasing from 
FeO E to FeO 4. The minimum dimensions of all models must be treated with caution. Looking 
at the 3D models of all samples in Figure 11 and the projections in Figure 13 to Figure 20 is 
quickly becomes obvious that not many dimension measured through the centre of gravity will 
be as low as 20 nm, let alone 10 nm. The explanation is not as simple as measuring, e.g. the 
arms of the width of the arms of the star-like FeO 4 model and holding them accountable for 
small minimum dimensions. This is because in the diameter distribution only the distance 
trough the centre of gravity is considered, and the width of an arm is not measured through the 
centre of gravity. There are two factors contributing to the extremely low minimum dimension, 
a purely physical one and one that is related to the analysis method. First, the simple physical 
explanation is that, there are dimensions through the centre of gravity down to 15 nm in FeO 4. 
Secondly, there are some vacant lattice places in the model, as can be seen e.g. in Figure 20d. 
If the measuring cylinder is oriented in a way that the missing DA is within, this will lead to a 
reduced diameter. Paying close attention to Figure 28a and b, the frequency down to very low 
diameters is nonzero, due to a small number of beforementioned missing DAs inside the model.  
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Table 2: Comparison of the maximum, minimum and diameter with the highest frequency (equal to 1) given 
in nanometres. The trends derived from the diameter distribution hold true. The error is ± 0.75 nm. 

Dimension FeO E FeO 14 FeO 6 FeO 4 

Minimum Diameter [nm] 22 22 10 10 

Maximum Diameter [nm] 41 42 50 47 

Diameter with Highest Frequency [nm] 35 35 32 29 

For a more reliable interpretation a different approach at defining the minimum and maximum 
dimension can be taken by defining an edge where an abrupt decrease of the frequency can be 
detected and neglecting the values with a low frequency that follow. Doing so will of course 
lead to a bigger minimum and a smaller maximum dimension, at the same time limiting the 
possibilities of mistakes due to the evaluation method. The diameter distribution is thereby 
trimmed of unreliable and unphysical values, that are the result of inevitable mistakes in the 
analysis. To give an example based on FeO E (Figure 28a) the edge for the maximum 
dimension is located at approx. 35 nm and for the minimum dimension at approx. 25 nm. 
Similar values can be defined for the model of FeO 14. For the minimum and maximum 
dimension of FeO 6 this means a reduction to 17 nm and 41 nm respectively. The minimum 
and maximum dimension of FeO 4 change to 14 nm and 40 nm respectively. Whilst this does 
not make a big difference for the dimensions regarding FeO E and FeO 14, it definitely changes 
the dimensions of FeO 6 and FeO 4 to more realistic values. Table 3 outlines the results, 
together with the ratio of the maximum to minimum diameter. The ratio of maximum and 
minimum diameter can be used to compare the results to a perfect cube, for which it is known 

to be √3. The dimension with the highest frequency remains unchanged of course. To support 
the claim that those values can simply be neglected, and that they really stem from a mistake in 
the evaluation method, the diameter distribution was recalculated, this time using a measuring 
cylinder with a bigger radius of 6 nm. Whilst this might lead to a loss of resolution, it can help 
identify errors caused by the method itself. This diameter distribution is shown in Figure 29 
and the values are in almost perfect agreement with those in Table 3. Only the maximum value 
of FeO 6 deviates, the maximum value in the distribution is 45 nm and not 41 nm, as estimated 
before.  
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Table 3: Minimum and maximum diameter using the edges to trim the diameter distribution of unreliable 
and unphysical values. Additionally, the ratio between the maximum and minimum dimension is given. The 
results are in good comparison to the diameter distribution calculated using the larger measuring cylinder. 
The error is ± 0.75 nm. 

Dimension FeO E FeO 14 FeO 6 FeO 4 

Minimum Diameter [nm] 25 25 17 16 

Maximum Diameter [nm] 39 39 41 40 

Ratio of Maximum to Minimum Diameter 1.6 1.6 2.4 2.5 

Increasing the diameter of the measuring cylinder not only trims the distribution of any 

unphysical values, but also considerably smoothens the distribution. The spikes present in 

Figure 28 are almost completely eliminated, making the distribution easier to interpret.  

 
Figure 29: Diameter distribution showing all distances through the centre of gravity of one model. The 
diameter distribution is shown for all four samples created in ATSAS without a predefined symmetry 
FeO E (a), FeO 14 (b), FeO 6 (c) and FeO 4 (d). The distance trough the centre of gravity was analysed with 
a measuring cylinder radius of 6 nm in one hundred thousand randomised directions and the maximum 
frequency is normalised to 1 in the depiction. 

5.2.2. Diameter Distribution for the Models With a Predefined Symmetry 

The diameter distribution was also calculated for the models created using the predefined p432 
symmetry. Figure 30 shows the diameter distribution for the models of FeO E (a), FeO 14 (b), 
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FeO 6 (c) and FeO 4 (d). It was created using a measuring cylinder with a radius of 4nm and 
measured at one hundred thousand randomised directions.  
The diameter distributions of all four samples look very similar, but the diameter with the 
highest frequency is shifted towards lower dimensions when going from FeO E to FeO 4 and 
at the same time dimensions surrounding the diameter with the highest frequency become more 
frequent (this is most pronounced in the distribution for FeO 6).  

 
Figure 30: Diameter distribution showing all distances through the centre of gravity of one model. The 
diameter distribution is shown for all four samples created in ATSAS with a predefined p432 symmetry 
FeO E (a), FeO 14 (b), FeO 6 (c) and FeO 4 (d). The distance trough the centre of gravity was analysed with 
a measuring cylinder radius of 4 nm in one hundred thousand randomised directions and the maximum 
frequency is normalised to 1 in the depiction. 

The maximum and minimum diameter, the diameter with the highest frequency and the ratio of 
maximum and minimum diameter are listed in Table 4. As was done for the results in Table 3 
the diameter distribution was trimmed at abrupt edges at the beginning and end of the 
distribution. The values are very similar to those obtained from the diameter distribution of the 
models created without a predefined symmetry, however the distribution itself looks 
substantially different. As before the largest diameters can be found in the model of FeO 6. The 
value for the diameter with the highest frequency of the FeO 6 model has to be treated with 
caution though, as there is larger range where there are numerous, almost equally frequent 
maxima at lower values. All four distributions in Figure 30 show another increase in frequency 
towards the end of the distribution, something that was not observed before.  
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Table 4: Comparison of the maximum, minimum and diameter with the highest frequency for all four NCs, 
given in nanometres. As before, the diameter distribution is trimmed at the sharp edges. Additionally, the 
ratio between the maximum and minimum dimension is given. The error is ± 0.75 nm. 

Dimension FeO E FeO 14 FeO 6 FeO 4 

Minimum Diameter [nm] 26 26 18 16 

Maximum Diameter [nm] 42 43 46 42 

Diameter with Highest Frequency [nm] 29 30 28 18 

Ratio of Maximum to Minimum Diameter 1.6 1.7 2.6 2.6 

 

5.3. X-Ray Diffraction 

XRD measurements were performed to support the findings from SAXS measurements and the 
subsequent shape retrieval. As this work’s main focus is dedicated on the shape retrieval from 
SAXS data, only the two “extreme” cases FeO E and FeO 4 were investigated using XRD. The 
idea being, that because of the big difference between the cube- and star-like shape it is most 
likely to see a difference here. At least more so than if the much more similar FeO E and FeO 14 
NCs were compared. Furthermore, they represent the beginning and end of the synthesis. The 
XRD pattern can deliver information on the chemical composition, crystallite size and possible 
preferential directions. If analysed carefully, this information could potentially help support the 
findings from SAXS.  
Figure 31 shows the recorded XRD patterns for both FeO E (full green line) and FeO 4 (full 
orange line). The first distinction that must be mentioned, is the difference in the drying of the 
two NCs. Despite the approach being the same for both samples, there is an obvious difference 
in the way this worked out. For the FeO 4 sample, a dominant solvent peak is seen from approx. 
6 nm-1 to 18 nm-1, indicating that despite heating and a considerable amount of time exposed to 
air, the solvent didn’t fully evaporate. The XRD pattern of the FeO E NCs paints a different 
picture, in the q range from 6 nm-1 to 18 nm-1 there are three extremely sharp peaks located at 
7.3, 14.1 and 20.8 nm-1 respectively. Because of their sharpness, a connection to the NCs can 
be ruled out and the peaks can rather be ascribed to toluene and oleic acid (OA) forming a 
crystallite structure.  
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Figure 31: X-ray diffraction pattern of the samples FeO E (full green line) and FeO 14 (full orange line). 
Normalised intensity plotted over the scattering vector q. In the q range from 6 to 18 nm-1 the solvent peak 
of toluene in the FeO 4 XRD pattern and the crystallised solvent for the FeO E XRD pattern can be seen. 

Generally speaking, both XRD patterns exhibit the same peaks, albeit with very different 
intensities and FWHMs, indicating that both NCs have the same chemical composition and 
only differ in crystallite size and preferential orientation. To obtain more information on the 
exact chemical composition the experimental peak position is compared to that of different 
standards. This process can be sped up considerably if a priori knowledge of the chemical 
composition of the sample is available. As mentioned before the NCs are synthesised from 
iron(II)oleate and iron(III)oleate and the finished NCs consist of FeO. It is therefore perfectly 
obvious to start the chemical analysis by comparing the experimental peak positions to those 
of standards for different oxidation states of iron. More precisely, wustite (FeO), maghemite 
(Fe2O3) and magnetite (Fe3O4). The result of this comparison is shown in Figure 32. It can be 
seen that because the NCs were exposed to air, the FeO is gone and the iron has further oxidised 
increasing the oxidation state of iron. After their exposure to air the NCs have therefore turned 
mainly into Fe3O4 and some Fe2O3, as can be seen by the good agreement of standards and 
experimental data shown in Figure 32. It was shown before, that there is no difference 
regarding size and shape between the different oxidation states of the NCs [8].  
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Figure 32: X-ray diffraction pattern of the samples FeO E (full green line) and FeO 14 (full orange line). 
Additionally, the peak positions of Fe2O3 (dashed light grey line) and Fe3O4 (dashed dark grey line) are 
represented with the corresponding crystallographic direction (labelled at the top of the inherent peak 
position). Normalised intensity plotted over the scattering vector q. 

Using Scherrer’s Equation (Equation 29) the crystallite size was analysed for all peaks of 
FeO E and FeO 4. The crystallite sizes with corresponding crystallographic directions are listen 
in Table 5. All peaks can be ascribed to either Fe3O4 or Fe2O3 and the crystallite size is 
somewhere between 6 nm and 25 nm and therefore smaller than the NCs overall size, 
demonstrating the feasibility of the 3D models’ sizes. Furthermore, this reveals that the NCs 
are apparently not single crystalline. The crystallite’s size span is considerably smaller for the 
FeO E NCs (approx. 6 to 13 nm) than it is for the FeO 4 NCs (approx. 8 to 26 nm). Furthermore, 
FeO 4 shows the larger crystallites with up to approx. 26 nm. Interestingly there are only three 
peaks ((222), (400) and (440)) that show this increase in crystallite size. this could indicate a 
connection between the crystallographic direction and the increase in crystallite size.  

Table 5: Outline of the different peaks in the XRD patterns of FeO E and FeO 4 with their corresponding 
crystallographic direction, oxidation state of the iron and size of the crystallite.  

Peak Position [nm-1] 21.7 25.2 26.4 30.3 39.3 42.8 

Crystallographic plane (220) (331) (222) (400) (312) (440) 

Oxidation state  Fe3O4 Fe3O4 Fe3O4 Fe3O4 Fe2O3 Fe3O4 

Size FeO E [nm] 9.0 6.5 12.6 7.3 - 9.2 

Size FeO 4 [nm] 15.3 8.0 25.6 23.6 10.0 21.4 
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The peak intensities of FeO E and FeO 4 in Figure 32 are varying strongly. Whilst there is a 
noticeable difference in the intensities of the FeO 4 peaks, it is nowhere near as pronounced as 
in the FeO E XRD pattern. For FeO E the intensity of the (400) peak, located at ~30 nm-1, is 
approx. 25 times higher than for the next peak ((331) located at ~25 nm-1). This big difference 
in the intensity of the peak clearly indicates a preferential direction in the <100> direction, as 
the normalised standard intensity for the (400) peak is only 0.2. This is no surprise, as it can be 
assumed that a majority of the cube like NCs is oriented on their faces.  
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6. Discussion 

The aim of this chapter is combining all the results to a greater picture. As TEM images of the 
FeO E, FeO 14, FeO 6 and FeO 4 NCs exist (Figure 6), this real space information will be used 
as a comparison. As the main objective of this work is reconstructing the shape of the four NCs 
from the SAXS data, the main focus will be on the evaluation of the success of this undertaking. 
Furthermore, the shape retrieval capability of SAXS regarding differently complex shapes is 
assessed for both the ATSAS and SasHel results. The diameter distribution is interpreted and 
the characteristic dimensions are compared to the 3D model. Finally, the XRD data is 
incorporated in order to (a) deepen the understanding of the NC shape and (b) complement and 
reinforce the SAXS results.  

6.1. Evaluation of the SAXS models 

Evaluating the feasibility of the results of the SAXS shape retrieval is done by comparing the 
resulting models to TEM images (all taken from [8]), always keeping the big differences in the 
analysis method in mind. As understanding this difference is vital for the subsequent chapter, a 
quick reminder of those differences follows, despite having been discussed in great detail 
before: 

(a) Using TEM a maximum of approx. 100 – 500 NCs can be analysed. Using SAXS this 
number is considerably higher, in the present case between 1010 and 1011. Therefore, the 
results from SAXS shape retrieval have a higher statistical validity.  

(b) Due to the random orientation of the NCs in the sample and the large amount of NCs 
contributing to the result, the shape extracted from SAXS measurements is a 3D 
representation of the averaged mean shape of the NCs.  

(c) TEM images are a representation of the focus plane only and contain no information on 
the shape perpendicular to the focus plane. Unless an electron tomography is performed, 
as was done by Feld et al. [8], it’s a 2D representation of a 3D shape.  

6.1.1. SAXS models without a predefined symmetry 

Figure 33 shows the TEM image (centre), ATSAS occupancy map (left) and SasHel model 
(right) (both in front view) of FeO E. The size conformity of the three models is good, although 
the NC appear slightly larger in the TEM image than in the SAXS models. The base area of the 
TEM image is almost perfectly square, with slightly rounded vertices. The base area of the 
SasHel model is almost perfectly square too, again with similarly rounded edges, but there are 
some DAs not connected to the main body. Those satelite DAs are most probably the result of 
the grid free approach of SasHel and could indicate that the averaging process using 
DAMAVER is not working properly either, as loose, disconnected DAs should be removed in 
the averaging process. Nevertheless, the retrieved shape is in exceptionally good agreement 
with the TEM shape, if the disconnected DAs are neglected. Taking a closer look at the ATSAS 
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model, again a square-like base area can be established, this time however the divergence from 
a perfect square is apparent. The edges are not really rounded but rather truncated by factettes, 
leading to the impression of more than four edges. In the 3D model, a tapering of the cube 
towards one end can be observed. This could be a way of the model coping with the slight 
polydispersity of the ensemble, that can be seen from the TEM images in Figure 37. 
Keeping the three differences between SAXS and TEM in mind, the result is still impressive in 
the way it represents the averaged shape of at least 1010 NCs.  

 
Figure 33: Comparison of the TEM image (centre), the ATSAS occupancy map (left) and SasHel model 
(right) of FeO E. Whilst the NCs appear lager in the TEM, the shape is astonishingly well reproduced by 
both models.  

The TEM image (centre), ATSAS occupancy map (left) and SasHel model (right) for FeO 14 
are shown in Figure 34. Again, a difference between the size in the TEM image and the model 
size is observed, where the NCs appear larger in TEM. Regarding the shape, both models have 
a square-like base area. Looking at the SasHel model, one can see that apart from the size the 
model and TEM image are almost congruent, even the inceased roundness of the vertices is 
almost identical. In the FeO 14 SasHel model satellite DAs are present, but there are only few 
and close to the main body. In the ATSAS model the vertices are again truncated and not 
rounded, but this time the truncation is stronger than it was before, coinciding with the TEM 
image.  
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Figure 34: Comparison of the TEM image (centre), the ATSAS (left) occupancy map and SasHel (right) 
model of FeO 14. Whilst the NCs appear lager in the TEM, the shape is astonishingly well reproduced by 
both models. 

The results of the ATSAS (left) and SasHel (right) shape retrieval for FeO 6 are shown in 
comparison to the corresponding TEM image (centre) in Figure 35. The trend of the NCs in 
the models being smaller than in the TEM image continues. Furthermore, there are two 
phenomena to be observed, (1) the SasHel model still has more or less the same square base 
area as before, albeit with a hint of a concave face on the lower right hand side and (2) the 
ATSAS occupancy map now has a non-rectangular base area with  clear concave faces. The 
conformity of either model and the TEM image is considerably worse than for FeO E and 
FeO 14.  

 
Figure 35: Comparison of the TEM image (centre), the ATSAS (left) occupancy map and SasHel (right) 
model of FeO 6. The NCs appear larger in TEM and the models only represent the characteristic feature, as 
the exact shape cannot be resolved for this more complex shape.  

Figure 36 displays the FeO 4 ATSAS occupancy map (left) and SasHel model (right) and 
compares both of them to the TEM image (centre). As before, the NCs in the two retrieved 
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shapes appear smaller than in the TEM image. The ATSAS occupancy map features four more 
or less well-defined arms, in good accordance to the TEM image. Due to the averaging process 
the occupancy in large parts of these arms is rather low, but given a good understanding of the 
averaging process is present, this lower occupancy can be accepted. The shape resembles the 
TEM image reasonably well, but given the fact that this is the average of 15 individual models, 
each created as the mean average shape of up to 1011 NCs, this result is still rather impressive. 
The SasHel model has a triangular base area, hardly reminiscent of the star-like shape of the 
TEM image.  

 
Figure 36: Comparison of the TEM image (centre), the ATSAS (left) occupancy map and SasHel (right) 
model of FeO 4. Whilst the ATSAS occupancy map is a reasonable representation of the TEM image, the 
SasHel model bares only little resemblance with the TEM image.  

Generally speaking, there are three lessons to be learned from these results, regarding (a) the 
models’ size, (b) general quality of shape retrieval and (c) comparison of ATSAS and SasHel.  

(a) Looking at Figure 33 to Figure 36 the models from either ATSAS or SasHel are always 
smaller than the NCs in the TEM image. This is most probably a result of the averaging 
process, as it removes DAs that are not in line with the most likely model. Furthermore, 
for the ATSAS the occupancy map is shown, where already all DAs with an occupancy 
lower than 0.5 have been removed. This of cause leads to an additional decrease in 
model size. This effect is largest for FeO 6 and FeO 4, as here there are four to five DA 
layers lost on the outside of the model, this adds up to about 4 to 5 nm that the occupancy 
map loses in size. Additionally, if we consult a TEM image showing more NCs (e.g. of 
FeO E as shown in Figure 37), the polydispersity of the ensemble is observed. So 
maybe, the TEM images in the comparative Figures above, coincidentally were all on 
the larger spectrum of this distribution. This is one of the main advantages of the shape 
retrieval form SAXS data, a definite result that represents a statistically significant 
number of NCs is retrieved.  
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(b) Here one should start by differentiating between the two noncomplex shapes of FeO E 
and FeO 14 and the two (highly) complex shapes of FeO 6 and especially FeO 4, as the 
results of the two groups strongly differ. The shape retrieval process for the two former 
NCs produced models that are in very good accordance with the TEM data. Of course, 
there is some deviation as the 3D model is less cubic than suggested by the TEM images, 
as the ATSAS model tapers towards one end. The roundness of the vertices is not 
reproduced perfectly, especially ATSAS truncated the vertices rather than rounding 
them. All things considered, there is still a clear indication that the two models stem 
from different NCs and that the main difference is the shape of the vertices. The latter 
two models paint a slightly different picture, which will be discussed based on the 
ATSAS models. The shape retrieval process is not capable of reconstructing a model 
with a fair congruence as for the simpler shapes, but rather one that contains the most 
characteristic features of the shape. For FeO 6 these are the concave faces, represented 
to a sufficient extent by the model. The characteristic features of FeO 4 are the arms, 
adequately represented by the model.  
One must not forget that neither the FeO E, nor the FeO 4 NCs are perfectly 
monodisperse or congruent in the TEM images, as seen in Figure 37a and b. Because 
SAXS extracts the mean shape of more than 1010 NCs, it becomes obvious that this lack 
of congruence is the main reason for the fact that the shape is not retrieved in perfect 
accordance to the TEM images. The size distribution leads to a smearing of the SAXS 
scattering curve, which is not considered as a size distribution by the software, as they 
are designed for strictly monodisperse systems [5]. Given these obstacles, the results 
are most impressive. So far, the models have only been compared to the TEM images. 
However, Feld et al. also performed an electron tomography on a FeO 4 NC, revealing 
the 3D shape the NC seen in Figure 37c. The result is an octopod, a star with eight 
arms. The ATSAS model only has four arms, and they are more or less located in one 
plane and not vectored in all spatial directions. This can be ascribed to the fact that the 
NCs are completely randomly oriented in the sample, and a mean shape of this is 
extracted, resulting in four and not eight arms. The electron tomography results have 
only little statistical validity, as only one tomography is presented and the TEM image 
only shows four arms for every NC. Summarising, for simple shapes the models present 
a congruent solution to the TEM images, for more complex shapes only the 
characteristic features are reproduced by the shape retrieval process. 

(c) Comparing the results from ATSAS and SasHel one should look at two aspects, the 
resemblance of the model and the NC shape from the TEM image and the occupancy 
for further analysis. Starting with the latter, due to the fact that no occupancy can be 
calculated, further analysis of the SasHel models is hampered as no information on the 
statistical validity of the individual DAs is given. It is therefore imperative, that a 
method for averaging the SasHel models to yield the occupancy is developed. Regarding 
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the shape one again has to differentiate between the complex (FeO 6 and FeO 4) and 
non-complex (FeO E and FeO 14) structures. The SasHel models have better 
congruence to the simple NCs than the ATSAS models, as the ATSAS cubes slightly 
tapers towards one side. For the complex structures of FeO 6 and FeO 4, SasHel cannot 
reproduce the characteristic features to the same degree that ATSAS is able to. 
Summarizing, due to its capability of reproducing the characteristic features of the 
complex shapes even and the presence of an occupancy after averaging ATSAS is still 
the tool of choice when looking at retrieving the shape from SAXS data.  

 
Figure 37: TEM images showing an ensemble of NCs of FeO E (a) and FeO 4 (b), revealing that the NCs 
exhibit a polydispersity and are not perfectly congruent. An electron tomography of a FeO 4 NC (c), showing 
the octopod-like shape with eight arms. TEM images and electron tomography taken from [8] 

6.1.2. SAXS models with a predefined symmetry 

It was stated before, that predefining the symmetry could lead to better results in the simulation 
of the NCs. In the following this statement will be proven to be true, but restrictions apply. 
Figure 38 compares the cross section of the model in a 2D projection (displayed as the 
occupancy map) (left) and TEM image (right) of FeO E. In accordance to the model created not 
using a predefined symmetry the model is again smaller than the NC in the TEM image. 
Possible reasons for this have been discussed before. Furthermore, the model exhibits the first 
rudiments of small arms growing out of the vertices. It has to be pointed out that the angle 
between the four faces of the cube is not perfectly orthogonal and therefore the base area is nor 
perfectly cubic, but rather rhombohedral. Nevertheless, the model is extremely congruent with 
the TEM image, definitely more so than the model created without a predefined symmetry.  
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Figure 38: Comparison of a cross section of the FeO E model created using the p432 symmetry (left) and 
the TEM image of a FeO E NC (right). The occupancy map again is smaller than the NC in the TEM image 
and exhibits the hint of small arms in the vertices, nevertheless, it is extremely congruent with the TEM 
image.  

Figure 39 shows the 2D occupancy map of the FeO 14 cross section (left) in comparison to the 
TEM image (right). The overall shape again appears rhombohedral, the vertices appear more 
strongly truncated than is the case for the FeO E model. This is the representation of the more 
rounded vertices in the TEM image. Again, rudiments of little arms growing out of the vertices 
can be spotted and again the model is smaller than the NC in the TEM image. Additionally, the 
model exhibits the first indication of concave vertices. This is not visible in the TEM image. 
Just as was the case before, once more the model created with the p432 symmetry is more 
congruent with the TEM image than the model created without any predefined symmetry.  

 
Figure 39: Comparison of a cross section of the FeO 14 model created using the p432 symmetry (left) and 
the TEM image of a FeO 14 NC (right). The occupancy map again is smaller than the NC in the TEM image 
and exhibits the hint of small arms in the vertices, nevertheless, it is very congruent with the TEM image. 

Figure 40 shows the occupancy map of a cross section of FeO 6 (left) in a 2D view compared 
to the TEM image (right). The most characteristic feature of the FeO 6 NCs are the concave 
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faces and are congruently reproduced by the model. The model again is slightly smaller than 
the NC in the TEM image.  

 
Figure 40: Comparison of a cross section of the FeO 6 model created using the p432 symmetry (left) and the 
TEM image of a FeO 6 NC (right). The occupancy map again is smaller than the NC in the TEM image. The 
characteristic concave faces of the NC in the TEM image are perfectly represented in the model.  

Figure 41 displays the 3D occupancy map and the electron tomography image of FeO 4 side 
by side. The eight arms of the NCs are clearly visible in both of them and they are even almost 
equally long, as is the case for the body of the octopod. The entire 3D occupancy map again is 
a bit smaller than the real space image, this can again be ascribed to the loss of DAs due to the 
averaging process.  

 
Figure 41: Comparison of the FeO 4 occupancy map created using the p432 symmetry (left) and the electron 
tomography image (right). The eight arms of the octopod seen in the tomography are also well represented 
by the model, additionally even displaying a similar arm length. Electron tomography taken from [8] 

The results from this chapter impressively indicate that without a symmetry the shape retrieval 
from SAXS data is already capable of representing the characteristic features of complex NCs, 
but if the symmetry can be acquired either from TEM images or, as in this case, from the 
information of said models without any symmetry constraints, it is possible to retrieve a model 
that is in striking congruence to the electron tomography. Furthermore, additional information 
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can be extracted from the models, that is not present in the TEM images, like the first rudiments 
of little arms growing out of the vertices or the fact that already the FeO 14 NCs show slightly 
concave faces. However, extreme caution must be exercised as the predefined symmetry forces 
its attributes on all models and leads to a worsening of the fits of the two models of FeO E and 
FeO 14, as it forces all edges of the model to be equally long. This leads to corruption of the 
final results, as indicated by the deviation of fit and experimental data. 
Table 6 conclusively summarises and compares the characteristic dimensions of the four NC 
samples taken from the 3D model and the TEM images. The dimension of the model was 
evaluated on two different ways, for one the single line diameter evaluation explained in chapter 
4.3 was used and additionally Paraview’s measuring tool was used. The two are labelled as 
“Model” in the table. The results from the two different evaluation methods were within 1 nm. 
The error can be approximated with the DA radius, in this case is ± 0.75 nm. The results show 
an exceptional congruence for the minimum dimension, where the results from TEM are always 
slightly larger. This is in perfect accordance to the more qualitative size comparison above. In 
the case of the cube like NCs FeO E and FeO 14 the minimum dimension corresponds to the 
side length of the cube, for the NCs with arms FeO 6 and FeO 4 this corresponds to the central 
body. When looking at the results for the maximum dimension, it can be seen that the results 
are in good accordance for FeO 6 and FeO 4, but this is not the case for FeO E and FeO 14. The 
maximum dimension correlates to the arm span for FeO 6 and FeO 4 and to the body diagonal 
for FeO E and FeO. In the TEM images the cubes are all shown in a top view, where only the 
shorter face diagonal can be measured. This theory is supported by the fact that the ratio 

between the minimum and maximum diameter is approx. √2. When multiplying the smallest 

dimension with √3 the resulting dimension is again slightly larger than the largest dimension 
taken from the 3D model in Paraview, indicating the feasibility of the results. For FeO 6 and 
FeO 4 the results are considerably more congruent, as maybe sometimes the NCs are oriented 
in a way that the entire arm span is visible. Generally speaking, due to the polydispersity of the 
NCs, measuring their size from TEM images is not trivial. Nevertheless, the results again 
clearly demonstrate the congruence of TEM images and models, this time in a qualitative 
manner. 

Table 6: Comparison of the characteristic dimensions of all four NCs taken from the model and the TEM 
images. All values given in nanometres. The error for the model is ± 0.75 nm and for the TEM results the 
error is ± 0.63. 

Dimension FeO E FeO 14 FeO 6 FeO 4 

Dimension taken from Model TEM Model TEM Model TEM Model TEM 

Maximum Diameter [nm] 42 38 42 36 43 42 40 42 

Minimum Diameter [nm] 28 30 28 29 20 21 19 20 
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6.2. Interpreting the diameter distribution  

This interpretation is best started by sorting out two potential misconceptions regarding the 
diameter distribution. For one, this is not the particle diameter distribution of a single NC, but 
rather it is representative of the entire NC ensemble. Secondly, it is not the diameter distribution 
of the NCs seen in the TEM images, but one of the 3D ATSAS models.  

6.2.1. Interpreting the Diameter Distribution of the Models Without a Predefined Symmetry 

Two trends were mentioned, for one the distribution gets wider when going from FeO E to 
FeO 4, whilst at the same time the most frequent dimension is decreasing in size. To fully 
understand this trend, one must first understand what the dimension with the highest frequency 
is. This diameter essentially corresponds to an inscribed sphere in the centre of the model. 
Looking at the TEM images in the preceding chapter, one could say that FeO E is a cube, as is 
FeO 14 and then gradually matter is removed to yield the cube with concave faces for FeO 6 
and the star for FeO 4. The same can be applied to the ATSAS occupancy map, with the 
difference that the shapes are less well pronounced. Coming back to the inscribed sphere, it 
should be smaller for the NC where the faces are concave or the star-like shape. The inspheres 
are illustrated in Figure 42. The insphere gets smaller when going from FeO E (a) (insphere 
diameter of 35 nm) to FeO 4 (d) (insphere diameter of 26 nm). The insphere of FeO 14 has the 
same diameter as FeO E and the insphere of FeO 6 is somewhere in between with 32 nm. These 
values correspond perfectly to the diameters with the highest frequency from the diameter 
distribution in Figure 29.  

 
Figure 42: ATSAS occupancy maps with an inscribed sphere (green) representing the diameter with the 
highest frequency form the diameter distribution. These diameters are 35 nm, 35 nm, 32 nm and 26 nm for 
FeO E (a), FeO 14 (b), FeO 6 (c) and FeO 4 (d) respectively. 

The entire diameter distributing will be explained by representatively analysing the diameter 
distribution of FeO 4 in more detail. Figure 43 again shows the diameter distribution of FeO 4, 
but this time additionally the model is shown with cylinders (a, b, d, e) and a sphere (c) 
representing the corresponding diameter size. In case of FeO 4 the smallest diameter can be 
related to the smallest dimension in the core of the model (a). If the measuring cylinder slowly 
rotates by about 90°, longer distances (indicated by the longer cylinder) that at the same time 
are more frequent (indicated by the wider diameter of the cylinder) can be measured (b). As 
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mentioned before the diameter with the highest frequency can be ascribed to an insphere with 
said diameter (c). If the insphere is transformed back to a cylinder and located to reach the arm 
on the left side of the model (d), differently long, but equally frequent diameters are measured, 
explaining the plateau in the diameter distribution. The steep decline of the frequency can be 
explained by the fact that diameters with corresponding sizes are only possible by measuring 
from arm to arm. As the arms are rather thin and get even thinner towards the outermost points, 
the frequency drops drastically. The longest diameter is the maximum arm span of the NC (e).  

 
Figure 43: Diameter Distribution of FeO 4 with added models (seen from different perspectives) of FeO 4 
indicating the corresponding diameter with a green cylinder or sphere. The cylinders’ length and the spheres’ 
diameter correlates to the size indicated on the distribution, from left to right the diameters are approx. (a) 15 
nm, (b) 20 nm, (c) 26 nm, (d) 33 nm and (e) 40 nm. The width correlates to the frequency (not to scale). 

The diameters in a cube can go from the edge length (minimum dimension) to the body diagonal 
(maximum dimension) and in a perfect cube the ratio would be √3. This holds true for the cube 
like models of FeO E and FeO 14 (as denoted in Table 3), where the minimum dimensions are 
25 nm ± 0.75 nm and the maximum dimension are 40 nm ± 0.75 nm and therefore the ratio in 

both cases is approx. √3. This is further evidence for the cube-like shape of the two models. In 
the case of the star like FeO 4 NCs the difference between the maximum arm span (Figure 43e) 
and the core of the star (Figure 43a) is objectively larger, as represented by the diameter 
distribution and therefor the ratio increases to approx. 2.5. Furthermore, the difference between 
the most frequent diameter and the biggest diameter increases when going from the cube like 
FeO E NCs to the star like FeO 4 NCs, which is in line with this comment. This explains the 
trend of the broadening diameter distribution. 
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6.2.2. Interpreting the Diameter Distribution of the Models With a Predefined Symmetry 

The diameter distributions of the models with a predefined symmetry (shown in Figure 44) 
follow the same trends as the distributions obtained for the models created without a symmetry 
and can be ascribed to the same effects. This is because the models created without a symmetry 
show the same characteristic features that are responsible for the characteristics of the diameter 
distribution. However, there are some differences that will be discussed in the following. 
First, the four distributions of the four different samples look very much alike, something that 
cannot be said for the distributions of the models without symmetry. All distributions have a 
more or less congruent form, with a main peak at lower diameters and then another peak right 
at the end of the distribution at larger diameters. This can be explained by the fact that all four 
models exhibit arms, be in in very different lengths. Due to the presence of the larger 
dimensions in the model, that clearly correlate with those arms, the frequency increases again. 
It is important to note that this second peak is located at more or less the same diameter for all 
four samples, somewhere between 40 nm and 45 nm, indicating that the overall size of all 
samples remains unchanged during the synthesis. The fact that the diameter with the highest 
frequency decreases when going from FeO E to FeO 4, can again be explained when looking 
at the insphere. For the more cube like samples FeO E and FeO 14 this insphere is considerably 
larger than for FeO 6 and FeO 4 with their arm like shape, where the insphere can only be 
inscribed into the main body of the model. The dimension with the highest frequency is larger 
for FeO 6 than for FeO 4 because the model of FeO 6 only features concave faces and therefore 
the body of the model is larger than for the model of FeO 4, that has strongly pronounced arms.  

 
Figure 44: Diameter distribution showing all distances through the centre of gravity of one model. The 
diameter distribution is shown for all four samples created in ATSAS with a predefined p432 symmetry 
FeO E (a), FeO 14 (b), FeO 6 (c) and FeO 4 (d).  
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The FWHM of the main peak of FeO E is considerably narrower than the FWHM of the main 
peak in the distribution of FeO 14. A schematic explanation for this is depicted in Figure 45. 
The idealised shapes of the two NCs are represented by the grey area (FeO E) and the yellow 
area (FeO 14). In reality the corners of the two areas would overlap, as the diameters of the two 
NCs are almost equal according to the diameter distribution and can also be seen by plotting 
the 3D models around the same centre of gravity, but in Figure 45 they are depicted in a way 
that the two inspheres would be equally large to aid the explanation. The insphere in both cases 
has a diameter equal to the dimension indicated by the violet section of measurement (a) and 
correlates to the diameter with the highest frequency in the diameter distribution. If the section 
of measurement is tilted by a degree φ, then there is a considerable difference ∆ in the distances 
measured for FeO 14 (b) and FeO E (c). Whilst for FeO E the distance measured increases only 
by one over the cosine of the angle φ, for FeO 14 there is an additional distance that is caused 
by the curvature of the face. Therefore, a little deviation from the diameter of the insphere 
causes a bigger difference in the diameter and with that a broader distribution. As the 
distribution is plotted as a histogram, a certain range of diameters is represented by one bar and 
because a slight deviation from the insphere causes only a small deviation a considerably larger 
number of diameters is represented by the most frequent bar in the distribution of FeO E leading 
to a very sharp and narrow peak.  

 
Figure 45: Schematic explanation for the narrower FWHM of the main peak in the diameter distribution of 
FeO 14 compared with the main peak in the distribution of FeO E (both for the models created using the 
p432 symmetry). The shape of FeO E is represented by the grey area and the shape of FeO 14 by the yellow 
area behind it. 

6.3. XRD Data and crystal growth during synthesis 

To quickly recap, the chemical composition, preferential orientation and crystallite size with 
corresponding crystallographic directions can be extracted from the XRD data of FeO 4 and 
FeO E.  
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The NCs’ oxidation state clearly changes when exposed to air. When in solution the NCs 
composition is mainly wustite (FeO). The XRD data clearly indicates that after their exposure 
to air during the drying process and the measurement, the oxidation state of the iron changes to 
mostly magnetite (Fe3O4). It was shown before that this has no effect on the size of shape of 
the NCs [8].  
The preferential orientation, mainly observed in the XRD data of FeO E, indicates that the dried 
NCs are no longer oriented randomly, but rather rearrange. From Table 5 one can see that this 
preferential orientation is (400) or more generally speaking <100>. If we consider a cubic 
crystal structure, this corresponds to the top plane of the cube, indicating that the cube like 
FeO E NCs reorient to come to rest on the cubes’ base area when dried. This makes perfect 
sense, as it is extremely unlikely that a dried cube comes to lie on one if its edges or vertices. 
The crystallites in FeO 4 are almost equally long in the crystallographic directions of <100>, 
<110> and <111>, albeit the crystallites are slightly larger in <111>, indicating that in the 
beginning stages of the synthesis the crystals grow at almost the same growth rate in all main 
crystallographic directions. But in the later stages of the synthesis, the growth of the NCs is 
mainly in <111> to fill the space between the arms and form the cubic shape. From the results 
of the diameter distribution and the models it is clear to see that the maximum dimension 
remains unchanged during the synthesis when going from FeO 4 to FeO E. This is further proof 
for the theory than once the arms of FeO 4 are formed, the only change regards the faces where 
slowly the empty space is filled until a cube is formed. In contrast to the TEM images, the 
results from the shape retrieval indicate that also the FeO E NCs exhibit little arms and that the 
concave faces are still visible in the NCs of FeO 14. Generally speaking, the crystallite sizes of 
FeO E are smaller than those of FeO 4, despite having the longer reaction time. This could 
indicate, that the reformation from the star like shape of FeO 4 to the cubic shape of FeO E 
leads to the integration of stacking faults into the system. However, this difference in crystallite 
size could also be caused by the oxidation process and only by performing the XRD 
measurement to the exclusion of oxygen could this theory be reinforced further.  
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7. Conclusion 

In this work the shapes of four different superparamagnetic iron oxide nanocrystals were 
retrieved from SAXS scattering curves using the ab initio bead modelling software DAMMIN, 
DAMMIF (both referred to as ATSAS) and SasHel. The shapes of the four NCs differ strongly 
and exhibit details of outmost varying complexity. The shapes of the NCs range from a simple 
cubic to a complex star like shape with eight arms vectoring in all spatial directions. Due to its 
ab initio approach no a priori knowledge of the shape is needed for the shape retrieval process, 
as any shape can be reconstructed from an assembly of beads.  
The main objective of this work is the reconstruction of the NCs’ shape whilst at the same time 
highlighting the limits of this analysis method. Furthermore, two different approaches of bead 
modelling were compared, the grid free approach of SasHel and the approach of ATSAS, with 
an underlying FCC grid.  
It was shown that without any a priori information on the shape, it is possible to reconstruct the 
simple shapes of FeO E and FeO 14 in good congruence with real space information on the 
shape (from TEM images), while for the complex shapes (FeO 6 and FeO 4) it is only possible 
to reconstruct models exhibiting the NCs’ characteristic features. By calculating and 
interpreting the distribution of all distances though the centre of gravity of the model (denoted 
as diameter distribution in this work) further information on the NCs shape can be extracted. 
In a next step one can either use a priori information from TEM images to find the symmetry 
of the system or take this information for the models created without a predefined symmetry. 
Due to the cubic shape of the models and the NCs in the TEM images, the cubic p432 symmetry 
was chosen and predefined for the next simulation of the models (only possible in ATSAS). 
Using a predefined symmetry improved the results of the cubic FeO E and FeO 14 models, as 
now they were even more congruent with the TEM images. The more remarkable difference 
concerns the two complex shapes of FeO 6 and FeO 4. By predefining the symmetry, it was 
possible to not only produce models exhibiting the characteristic features, but rather it was 
possible to create models with astonishing congruence to the TEM images. However, using a 
predefined gives rise to risks, as it forces the symmetry on the system and extreme caution must 
be exercised.  
Regarding the comparison of SasHel and ATSAS it was found that despite the very good results 
retrieved from SasHel for the more cubic shapes of FeO E and FeO 14, the characteristic 
features of FeO 6 were only poorly reproduced and for FeO 4 it was not possible to extract 
information on the shape as no solution with a good fit could be found. Furthermore, the grid 
free approach of SasHel prevents the calculation of an occupancy. The occupancy is an 
important information on the statistical validity of a model and without it no further analysis 
was possible. To improve the usability of SasHel it is imperative that a way is found to average 
the models to yield the occupancy of the averaged model. 
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Figure 46 gives a conclusive summary of all the models created for the four NCs FeO E (a), 
FeO 14 (b), FeO 6 (c) and FeO 4 (d), where from left to right the SasHel model, ATSAS model 
with no predefined symmetry, ATSAS model with predefined p432 symmetry and TEM image 
are depicted. The excellent congruence of the model created using the p432 symmetry with the 
TEM image can be seen and generally speaking, the congruence improves when going from 
left to right.  

 
Figure 46: Summary of the different models (shown in a 2D projection) created for all four NCs FeO E (a), 
FeO 14 (b), FeO 6 (c) and FeO 4 (d) in comparison to the corresponding TEM image. From left to right there 
is the SasHel mode, ATSAS model without symmetry, ATSAS model with p432 symmetry and the TEM 
image. Generally speaking, the congruence of the models improves when going from left to right. This 
conclusive summary shows that shape retrieval from SAXS data is a powerful tool, not only for monodisperse 
molecular systems, but also for inorganic NCs exhibiting a limited polydispersity.  
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The results are even more astonishing when considering that the mean 3D shape of at least 1010 
not perfectly monodisperse and congruent NCs was reproduced. Comparing the results of the 
SAXS shape retrieval with the results of a TEM analysis, especially the added statistical validity 
of the data has to be stressed. 
Additionally, it was shown using XRD, that in the beginning of the synthesis the crystallite 
growth is similar in the three main crystallographic directions <100>, <110> and <111>. In 
later stages of the synthesis the main growth direction is <111> to fill space and subsequently 
yield the cubic NCs, whilst incorporating a considerable amount of stacking faults. These 
findings are further supported by the diameter distribution.  
To summarise, the applicability of shape retrieval from SAXS data for inorganic NCs systems 
has been proven formidably. Despite the fact that the software used is not designed for systems 
of polydisperse, slightly incongruent NCs the shape retrieval has been demonstrated to be a 
powerful tool and a definite alternative to TEM when studying the morphology of colloidal 
nanocrystals. 
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