
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Investigation of metallurgical phenomena related
to process and product development by means of
High Temperature Confocal Scanning Laser
Microscopy
To cite this article: U Diéguez-Salgado et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 119 012003

 

View the article online for updates and enhancements.

Related content
Confocal Microscopy: Scanning
technology
J Liu and J Tan

-

Confocal Microscopy: Confocal
microscopy and its application in China
J Liu and J Tan

-

Confocal Microscopy: Confocal axial peak
extraction algorithm
J Liu and J Tan

-

This content was downloaded from IP address 193.171.193.94 on 20/09/2018 at 07:52

https://doi.org/10.1088/1757-899X/119/1/012003
http://iopscience.iop.org/book/978-1-6817-4337-0/chapter/bk978-1-6817-4337-0ch9
http://iopscience.iop.org/book/978-1-6817-4337-0/chapter/bk978-1-6817-4337-0ch9
http://iopscience.iop.org/book/978-1-6817-4337-0/chapter/bk978-1-6817-4337-0ch1
http://iopscience.iop.org/book/978-1-6817-4337-0/chapter/bk978-1-6817-4337-0ch1
http://iopscience.iop.org/book/978-1-6817-4337-0/chapter/bk978-1-6817-4337-0ch6
http://iopscience.iop.org/book/978-1-6817-4337-0/chapter/bk978-1-6817-4337-0ch6
http://oas.iop.org/5c/iopscience.iop.org/229675633/Middle/IOPP/IOPs-Mid-MSE-pdf/IOPs-Mid-MSE-pdf.jpg/1?


 
 
 
 
 
 

Investigation of metallurgical phenomena related to process 
and product development by means of High Temperature 
Confocal Scanning Laser Microscopy  

U Diéguez-Salgado1, S Michelic1 and C Bernhard1 
1Chair of Ferrous Metallurgy, Montanuniversitaet Leoben, Franz Josef Straße 18, 
8700 Leoben, Austria 

E-Mail: Uxia.Dieguez-Salgado@unileoben.ac.at  

Abstract. An increased interest for high temperature metallurgical processes appeared during 
the last decades, in order to achieve the high quality requirements in steel products. A defined 
steel cleanness and microstructure essentially influence the final product quality. The high 
temperatures involved in metallurgical processes and the lack of in situ observations do not 
only complicate the verification of simulation model predictions but also make significant 
conclusions regarding the industrial processes difficult. For that reason, new tools and 
techniques are necessary to develop. By combining the advances of a laser, confocal optics and 
an infrared image furnace, the High Temperature Confocal Scanning Laser Microscopy 
(HTCSLM) is a strong tool which enables high temperature in situ observations of different 
metallurgical phenomena. Next to solidification processes and phase transformations also the 
behavior of inclusions at different interfaces in the system steel-slag-refractory can be 
observed. The present study focuses on the aspects of inclusion agglomeration in the liquid 
steel and the inclusion behavior at the steel/refractory interface in two different steel grades. 
Out of the obtained experimental data, attraction forces are calculated and compared. This 
information provides an important basis for a better understanding of inclusion behavior in 
industrial processes and the therewith related process optimization, like for example the 
clogging phenomenon during continuous casting.     
 
 

1.  Introduction 
 
The final quality of a steel product is always closely connected to its metallurgical production process.  
Different possibilities and procedures during secondary metallurgy as well as during continuous 
casting exist in order to ensure the demands of customers regarding mechanical properties, corrosion 
resistance and surface quality. A parameter which significantly influences steel quality is the so called 
steel cleanness. The latter is defined through the number, size, chemical composition, distribution and 
morphology of non-metallic inclusions in the steel matrix. Due to the necessity of deoxidation, the 
formation of inclusions cannot be avoided completely. In order to ensure a possibly low content of 
inclusions in the steel and to enable a specific inclusion modification, their behavior in the system 
steel-slag-refractory needs to be well understood.  
 
Figure 1 gives an overview on possible reactions and interactions of inclusions at different interfaces. 
Non-metallic inclusions collide and agglomerate in the liquid steel in order to form larger particles; if 
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the particles are large enough, they are transported by flotation to the liquid steel/slag interface due to 
the density difference between the liquid steel and inclusion, by bubble attachment or by fluid 
transport in the metallurgical vessel and removed from the steel to the slag by dissolution. Some small 
inclusions could be transported to the liquid steel/refractory interface and adhering to the wall 
refractory and others could stay suspended in the liquid steel and pass onto the next stage of the 
steelmaking process. [1,2]  

 
Figure 1. Overview on possible reaction sites in the system steel-slag–refractory. 

 
The present study gives an insight in the possibilities of in-situ observation concerning the behavior of 
non-metallic inclusions at different interfaces between steel, slag and refractory material and indicates 
the practical relevance for process and therefore product improvements in steelmaking.  

2.  Theoretical background 
 
In the continuous casting process, the submerged entry nozzle (SEN), plays a vital role in order to 
ensure stable casting conditions. The clogging phenomenon – characterized by a substantial reduction 
of the inner section of the nozzle caused by material build up – can lead to a disruption of normal 
casting operations and also produces an uneven flow of molten steel in the mold, finally leading to the 
formation of inclusion clusters which deteriorate the product quality. The agglomerates found in the 
nozzle often primarily consist of Al2O3 particles. [3–8] Next to the principal source of particles [9] 
causing clogging, the adhesion between particles and the refractory material as well as the attraction 
between two particles are points of interest.  
 
2.1 Adhesion between non-metallic inclusions and liquid steel 

 
Several research groups dealt with this phenomenon in the past. Singh [7,10–12] divided the 
deposition process into three stages: (i) The particles are transported from the bulk melt to the 
refractory surface and come in contact with the nozzle refractory (ii) The inclusions adhere to the 
refractory surface and (iii) inclusions adhere to each other and sinter together to form a network. The 
characteristics of the system liquid steel/refractory, such as wettability, composition and surface 
tension will significantly influence the attachment step.  
 
Sasai et al. [13,14] conclude in their investigation that the agglomeration force between alumina 
particles in Al deoxidized molten steel is not caused by the van der Waals force but the cavity bridge 
force created due to the fact that alumina particles are unlikely to be wetted by molten steel. In non-
wetting conditions, when two spherical non-metallic inclusions/particles of radii r1 and r2 approach, 
the steel in contact area may be expelled, leaving an empty neck (filled with gases and vapours) of 
concave lens shape. The adhesion force is bigger than the buoyancy force and also the flow resistance 
that acts on the particles, so that the particles will remain at the interface. [10,11,13–15] 
 

International Conference on Materials, Processing and Product Engineering 2015 (MPPE 2015) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 119 (2016) 012003 doi:10.1088/1757-899X/119/1/012003

2



 
 
 
 
 
 

This attractive force is the sum of the surface tension force and the force that results from the pressure 
drop across the liquid-gas interface. [13,15] The balance of forces can be written as follows (The force 
balance is calculated in the thinnest point of the neck):   

Fadh = 2πR2σ+ πR2
2∆P ( 1) 

where σ=  surface tension of molten steel, ΔP= difference pressure and R2 = Curvature radius 
(geometrical parameter) [10,11,13–16]  
 
Applying Equation 1, Figure 2 is calculated. The attraction force is estimated assuming the case that 
non-metallic inclusions (radii 2,5µm) attach to different refractory walls at the melt depth of 1 m and 
with 1,8N/m surface tension of molten steel. Three different situations are plotted in Figure 2: 
 

1) The adhesion force between alumina particles and an alumina refractory wall. 
2) The adhesion force between alumina particles and a zirconia refractory wall. 
3) The adhesion force between liquid calcium aluminate inclusions, from Ca-treated steel, and an 

alumina refractory wall.  

 
Figure 2. Relation between the contact angles and adhesion force. (θ1 is the contact angle of the non-metallic 

inclusions with the molten steel and θ2 is the contact angle of the refractory material with molten steel, the value 
of the contact angles used are found in [17]). 

The adhesion force between alumina non-metallic inclusions and an alumina refractory wall amounts 
to 25µN (1).  
 

a) The decrease of the contact angle between the molten steel and the refractory leads to a lower 
adhesion force (2). However, according to a work by Eustatopoulos [5,18], it appears to be 
impossible to find a refractory-nozzle material with a low contact angle (below 60°-40°) and 
coincident low reactivity. 

b) Assuming a particle from liquid calcium-aluminate instead of solid alumina results in a 
decrease of the contact angle between the molten steel and the non-metallic inclusions and 
consequently a significant decrease of the adhesion force (3). 

 
As described in Equation 1, the attraction force is influenced by surface tension of the molten steel, the 
difference pressure between the molten steel and the gas cavity and the ‘shape’ of the cavity which 
depends on the non-metallic inclusions size, morphology and the wetting behaviour. 
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2.2. Attraction between non-metallic inclusions 
 
The non-wettability behavior of the majority of non-metallic inclusions for liquid iron generates a 
deformation of the liquid surface, which is called meniscus. If two particles approach one-another, the 
meniscus in between them is further depressed or drawn downward. [19] This change, which is called 
capillary attraction, can lead to a difference of capillary pressure between the inside and the outside 
area of the pair, which will push the two bodies towards each other. [20] The capillary attraction is 
believed to be the source of the attraction between alumina inclusions at free surfaces and at the 
surface of gas bubbles inside the liquid steel melt. [19]  
 
The strength of the capillary attraction force for inclusion particle pairs in molten steel, which was 
found to be much different for particles with different morphology, can be listed as follows in 
ascending order [21]: liquid/liquid pair < liquid/semi-liquid pair < semi-liquid/semi-liquid pair < 
liquid/solid pair < semi-liquid/solid pair and finally solid/solid pair as the strongest. The latter 
sequence is only valid if only the effect of the particle morphology is considered. But the attraction 
between particles is also strongly affected by other parameters like for example by the particle size, 
the contact angle of a particle with steel melt, the particle density, the shape and the interfacial tension 
[22]. 

3.  High Temperature Confocal Scanning Laser Microscopy (HT-CSLM) 

By combining the advances of a laser, confocal optics and an infrared image furnace, the high 
temperature Confocal Scanning Laser Microscopy (HT-CSLM) is a strong tool which enables high 
temperature in situ observation of metallurgical phenomena as phase transformations in the steel 
[23,24] (e.g. the peritectic reaction or the nucleation of acicular ferrite), austenite grain growth [25], 
inclusion agglomeration in the liquid steel [26] or inclusion dissolution in a slag phase [27,28], as well 
as reactions at the steel/refractory interface. The obtained experimental data can be used for a 
quantitative evaluation of dissolution rates, attraction forces or diffusion coefficients.  

The present work focusses on the in situ observation of non-metallic inclusions behavior at high 
temperature at liquid steel and liquid steel/refractory interfaces by means of High Temperature 
Confocal Scanning Laser Microscopy. 

3.1.  Set up.  

A Confocal Scanning Laser Microscope (VL2000DX from Lasertec) and a high temperature furnace 
(SVF17-SP from Yonekura) are used for all investigations. The decisive advantage of HT-CSLM in 
contrast to conventional microscopes or experimental facilities is the possibility of in-situ observations 
at temperatures up to 1700 °C in combination with a very good image quality. This is primarily 
possible due to the fact, that a laser is used as a light source. A schematic view of the experimental set-
up in the high temperature furnace which shows an elliptic, gold coated inner contour as well as 
detailed configuration data of the set-up can be found elsewhere [29]. The halogen lamp is situated in 
the bottom focal point of the furnace. The sample holder with the crucible and sample inside is located 
in the top focal point of the ellipse. The temperature is measured with a thermocouple fixed at the 
bottom side of the sample holder. High-purity argon with a flow rate of 150 cm3/min ensures a neutral 
atmosphere in the furnace. Additionally, the oxygen content in the furnace is measured for every 
experiment. 
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3.2.  Experimental procedure.  
 
Two different experiments are performed: 

• Inclusion agglomeration in the liquid steel: a steel disc with approximately 600μm thickness is 
placed in an Al2O3 crucible and subsequently set up on the sample holder in the ellipsoidal 
furnace (see Figure 3(a)). The specimen is heated up following the heating cycle given in 
Figure 4. An alumina disc is placed under the steel disc in order to avoid the attachment of the 
steel disc onto the crucible. When the liquidus temperature of the steel is reached, inclusions 
are starting to emerge from the bulk to the steel surface and their agglomeration behavior can 
be studied. In the present study a Ca-treated steel and a ULC steel are used (composition given 
in Table 1) in order to investigate the effect of particle morphology into the agglomeration 
behavior. 

• Inclusion behavior at the steel/refractory interface: An exogenous alumina particle (400µm 
ECD) is placed on the top of a steel disc with approximately 600µm thickness, which is placed 
in an Al2O3 crucible (see Figure 3(b)).  An alumina disc is placed below the steel disc to avoid 
the steel sticking onto the crucible. The specimen is heated up following also the heating cycle 
given in Figure 4. When the liquidus temperature is reached, inclusions are starting to emerge 
from the bulk to the steel surface and their behavior at the steel/refractory interface is 
investigated. In the present study the behavior of nonmetallic inclusions at the interface 
between alumina and a Ca-treated steel (see composition in Table 1) is observed.  

Tabla 1. Investigated steels [wt.-%]. 
Steel C Si Mn Al S Ca 
Ca-treated 0.15 0.02 1.07 0.04 0.004 0.0012 

ULC 0,002 0,001 0.074 0,020 0,008 0,000 

 

(a)   

 (b)   
Figure 3. Experimental set up. (a) Inclusions 
agglomeration experiments. (b) Inclusion 
behavior at the steel/refractory interface. 

Figure 4. Time-temperature profile of the 
experiments. 

A posteriori examination of the sample at room temperature is carried out using a Scanning Electron 
Microscope with Energy Dispersive XRays (SEM/EDS). In order to characterize (composition, shape, 
size) the inclusions observed during the experiment, a fast cooling of the sample is important [26]. 
 
For the quantitative evaluation of the experimental results, an approach of Yin et al. [20,21] is used. 
They described and compared the magnitude of the attraction force from measured acceleration of 
particles with a certain mass based on in-situ observations in the confocal microscope. The latter 
approach was also used of many other research groups. [12,19,30–32] Details about the evaluation 
procedure can be found in [20,26]. 
4. Results 
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4.1. Inclusion agglomeration on the molten steel. 
 
Inclusion behavior in the liquid steel was studied in different steel grades (composition given in Table 
1) also involving different inclusion types.  Regarding the Ca-treated steel, results of inclusion 
agglomeration experiments and in-situ images displaying the inclusion movement and the 
subsequently calculated attraction forces have already been published previously [26]. It was found, 
that as soon as a large part of the sample surface melted, many inclusion particles emerged from the 
interior of molten steel bath and floated on the melt surface. The shape of the observed inclusions was 
mostly observed to be semi-liquid with irregular shape or liquid with globular shape.  
 
Representative examples of detected inclusions analyzed in the SEM after the experiment and the 
corresponding chemical composition can also be found in a previous publication [26]. Generally, 
semi-liquid and liquid inclusions do not attract each other.  
 
The contact angle of solid non-metallic inclusions and steel melt usually amounts to more than 90°. 
The capillary force decreases with decreasing contact angle and smaller density of the particle. The 
reduction of the contact angle and the density for liquid as well as semi-liquid particles results in 
smaller capillary forces compared with solid particles in agreement with [21]. Nevertheless, some 
interaction between the inclusions is observed close to the solidification front. The investigation of the 
trajectory path and the subsequent calculation of the attraction force for two semi-liquid inclusions 
showed that the tendency of agglomeration for liquid as well as for semi-liquid inclusions is smaller 
than for solid inclusions. According to literature [21] the attraction force between two of semi-liquid 
CA60 particles is approximately 10-16 -10-15 N, which agrees well with results published previously 
[26].  
 
In contrast, regarding the ULC steel, intense agglomeration, cluster formation and a large number of 
interactions between particles were observed during the whole experiment. A SEM-analysis of the 
inclusions after the in-situ experiments proved that solid, irregular shaped Al2O3 is the predominant 
inclusion type in this steel.  
 
The experiments showed that alumina inclusions strongly attract to each other; the inclusions grow 
quickly by agglomeration which is again in good agreement Yin et al. [20,21]. 
 
From Figure 5, the calculated attraction force for two solid, irregular shaped alumina inclusion is in 
the range 10-14 -10-15 N; for a pair of semi-irregular and semi-liquid inclusion the attraction force 
amounts to between 10-15 -10-16 N. Therefore, the tendency of agglomeration for solid inclusions is 
higher than for the semi-liquid inclusions. This is again in good agreement with published by Yin et al. 
[21]. 
 
Possible explanations for these observed differences regarding the agglomeration tendency could be:  
 

a) The wettability behavior: Solid inclusions are less wetted than liquid inclusions, this leads to a 
meniscus formation around the inclusions and therefore the capillary force appears.  

b) The velocity of the inclusions: Liquid particles seem to move slower than solid ones and 
hence the calculated attraction force is lower.  

c) The density of the particles. 
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Figure 5. Comparison of attraction force between two same 
inclusion type for different composition/morphology and shapes.  

 
4.2. Inclusion behavior at the steel/refractory interface. 
 

   
(a) (b) (c) 

   
(d) (e) (f) 
Figure 6. (a)-(e) Show the trajectory of three non-metallic inclusions B, C and D in relation to particle A. (f) 
SEM image. 

In a first step, applying Equation 1, the attraction force is calculated modifying the size of one of the 
particles. The results show that for a 5µm ECD particle the attraction force is constant as soon as the 
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second particle is up to 100µm ECD. For this reason, a 400µm ECD alumina particle is placed on the 
top of a steel disc in order to observe the inclusions behavior at a flat refractory/steel surface.  
 
From the agglomeration experiments with Ca-treated steel (see section 4.1) is observed that the 
tendency of agglomeration between semi-irregular semi-liquid inclusions is low. In this section, the 
behavior of the inclusions from Ca-treated steel at a liquid steel/alumina interface is investigated.  
 
When the Ca-treated steel was melted around the alumina particle, some non-metallic inclusions float 
up. Different behavior of the particles in relation with the big alumina particle was observed. In Figure 
6 (a) a particle B rapidly attaches to the large alumina particle (Particle A), after 2 seconds a globular 
particle C appears. The trajectory of particle C is observed (see Figure 6 (b)-(e)), it moves towards 
particle A, but instead of attaching, particle C keeps moving close to A and after some time, it moves 
away. In Figure 6 (b) a particle D is observed; after 0.8 seconds particle D attaches to A (see Figure 6 
(c) and (d)). SEM-analysis of the inclusions after the in-situ experiments proved that inclusions B and 
D are attached to the alumina surface (See Figure 6 (f)).   
 
The non-metallic inclusions B, C and D have different shapes. Globular particles like C are expected 
to be liquid and to show a low interaction at the steel/alumina interface as it is observed during the 
experiment, whereas B and D are semi-irregular semiliquid inclusions which show higher interaction 
at the steel/alumina interface.  
 
The alumina sphere added to the experiment is non-wetted by the molten steel. The contact angle of B, 
C and D with the molten steel depends on the inclusions morphology and leads to different 
deformations of the liquid steel surface. During the experiments, it is observed that non wetting 
inclusions, like B and D, tend to attach to the alumina surface. However, the better wetted inclusions, 
like C, approach to the non-wetted surface but they don’t attach.  
 
The different morphology and wetting behavior of these non-metallic inclusions may be the cause of 
for the different behavior observed at the steel/alumina interface. 

5. Conclusions 
 
Based on the in-situ studies using Laser Scanning Confocal Microscopy the following conclusions 
regarding the behavior of non-metallic inclusions in the liquid steel and at the steel/refractory interface 
can be drawn:  
 

• In general, the observation results confirm the common understanding that the wetting angle 
of liquid iron on non-metallic inclusions or on refractory materials is the dominating 
influencing factor for adhesion and agglomeration phenomena.  

• For this reason, the tendency of agglomeration between solid inclusions (usually with a poor 
wettability for liquid iron) is higher than for semi-liquid inclusions (usually with a good 
wettability for liquid iron). Besides this, shape and density of particles are minor influencing 
parameters. 

• The calculated attraction forces between the particles are in good agreement with literature. 
• The same conditions apply to the behaviour of particles at refractory/steel interface.  
• Future work will comprise the investigation of a wide number of different steel grades with 

their associated inclusion population in contact with commercial refractory materials for 
submerged entry nozzles and slide plates. The results will further on be validated in up-scaled, 
close-to-process experiments and finally help to specify criteria for the development of 
clogging inert refractory materials. 
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