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INTRODUCTION 

Surface cracks on semifinished continuously cast products remain a widespread problem in the steel industry. Without post-
processing steps, these defects can lead to massive quality problems in the finished sheets. The formation of transverse cracks 
is directly related to the ductility of the strand shell, and therefore on the material properties during the casting process and 
the mechanical and thermal stresses developed in secondary cooling and bending/unbending. In particularly, during 
unbending, embrittlement can become high when the temperature of the strand surface reaches the second ductility trough. 
The frequency of surface cracks is increased when pre-defects in the strand shell, such as oscillation marks and abnormally 
large austenite grains, are present [1-5]. Many studies have investigated the hot ductility of steels via tensile tests. Laboratory 
experiments determine the reduction of area (RA) of the ruptured tensile samples, which relates to the ductility, as functions 
of the testing temperature (T), under the influence of composition, strain rate, heating/cooling conditions, and other factors; 
these studies are summarized e.g. in Schwerdtfeger [6] and Mintz [3]. Tensile tests are useful instruments for determining 
material behaviors at higher temperatures and they supply valuable information regarding the temperatures that should be 
avoided during deformation of the strand surface, but there exist some limitations for directly relating laboratory RA–T 
curves to the prediction of surface cracks in the continuous-casting machine: 

- The stress/strain state differs between hot tensile testing and continuous casting: Cracking on the strand surface 
normally occurs when the material accumulates a critical strain (up to ~2%). The first difference is the constriction of 
the material in the tensile test before rupture. Next, compared to the continuous casting process, the longitudinal strain 
prior to rupture at cracking remains high for low RA – values [2, 7, 8]. These values, however, indicate cracking 
susceptibility of the surface in continuous casting, although they are much higher than those in the strand shell.  

- These differences in the stress/strain state accompany other material phenomena in the tensile tests: At higher 
temperatures, dynamic recrystallization, which recovers ductility by boundary migration, can occur. The incidence of 
dynamic recrystallization increases at increased strain rates and higher elongations (݁ ൐ ~10%ሻ [3, 9]. According to 
these values, it would be difficult for dynamic recrystallization to occur on the strand surface. 

- Particularly the second ductility trough, determined by hot tensile testing, consists of two embrittlement factors. At 
higher temperatures, precipitates along austenite grain boundaries cause the decrease in ductility. Microalloyed steels in 
particular show this effect. At lower temperatures, the austenite-to-ferrite transformation causes embrittlement. The 
underlying mechanism should be the concentration of strains at thin ferrite films along the austenite grain boundaries, 
which begin to form at the AR3 temperature during the γ-to-α transformation [2]. Inducing strain in the material can 
generally increase the AR3 temperature of steels. This phenomenon is called deformation-induced ferrite. The starting 
temperature for the formation of this ferrite is strongly influenced by the total strain, strain rate, and grain size. Higher 
strains and lower strain rates correlate to earlier ferrite formation. For coarser austenite grains, the critical strain 
triggering the formation is even higher. Studies show that deformation-induced ferrite can form at strains up to 2% [9-
11]. Because of the high strains in tensile test, the formation of deformation-induced ferrite can distort the second 
ductility trough used to predict surface crack formation during continuous casting. 

- Scale formation on the strand surface in the secondary cooling zone, which could influence the surface crack formation, 
does not occur in tensile testing. Tensile tests are performed in inert atmospheres with no formation of scale in the 
laboratory. 
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become visible, in addition to phase transformations during the subsequent cooling. The first transformations appeared 
between 724 and 728°C for the three steels. Note that HT-LSCM recognizes the early changes in the structures. According to 
these investigations, small amounts of ferrite were present in all three steels at the bending temperature of 700°C. Looking at 
Figure 6, only the steel with 0.04 wt.% Nb shows decreased ductility at this temperature. At 0.02 wt.% Nb, the ductility is 
improved; for the steel without Nb, no cracks form on the sample surface. This could be related to the first phases that 
appeared in HT-LSCM observation. Aside from a small amount of ferrite films at the grain boundaries, the majority phase 
was Widmanstaetten-ferrite. This phase is obviously less harmful for the surface ductility in the performed tests. 

CONCLUSION 

The new testing method for the determination of the susceptibility to surface cracking under continuous casting conditions 
fulfills the requirements for a realistic simulation of crack formation. The characteristics are as follows: 

- The adjustment of the steel composition in the induction furnace, casting of a sample with controlled casting 
temperature and solidification conditions, and control of the heat withdrawal (grain growth) by use of mold coatings 
creates a columnar grain structure with typical solidification phenomena, such as segregations and micropores. 

- Setting of the sample temperature to the simulated casting process and cooling strategy (control of microstructure 
formation and precipitation kinetics) and the free adjustment of the temporal sequence permits the simulation of the 
formation of all types of surface cracks. 

- The performance of an isothermal three-point bending test with a defined maximum strain and strain rate allows the 
adjustment of temperature, strain rate, and strain to mimic process conditions.  

- Strain is limited to a few percent. This prevents dynamic recrystallization and suppresses the formation of 
deformation-induced precipitates and deformation-induced ferrite. 

A test series with medium-carbon steel differing only in the Nb contents was performed. Cooling conditions were adjusted to 
mimic a slab caster with a casting speed of 1.2 m/min. The deformation in the experiment began when the strand reached the 
unbending stage. The investigated temperature range was 700 to 900°C with six steps. The maximum strain was 1.5%, 
according to the unbending step of the caster. Every experiment was done twice to demonstrate significance and 
reproducibility.  
The results showed a clear correspondence of the formation of surface cracks to the Nb content. Without Nb, cracks only 
appeared around 850°C. When 0.02 wt.% Nb was added, the ductility deteriorated. A trough, again around 850°C, was 
observed; the higher-temperature regions were safe. At lower temperatures (700 and 750°C), cracks formed, but the ductility 
improved again. An addition of 0.04 wt.% Nb caused cracks in every sample. The highest crack ratio appeared at 950°C. 
Defining more than two cracks on the sample as critical, the range for surface cracking depending on the Nb content is as 
follows: 

- The 0.17 wt.% C steel without Nb addition showed no critical behavior in the investigated temperature region. 
- Deformation temperatures of 800 and 850°C should be prevented during deformation when 0.02 wt.% Nb is added.  
- When 0.04 wt.% Nb is alloyed, the whole temperature range from 950 to 700°C is critical.  

The increased susceptibility to cracking was ascribed to the higher concentration of Nb(C,N) at the austenite grain boundaries 
and the prevention of dynamic recrystallization at higher temperatures. 

In summary, the proposed experimental method for the simulation of surface crack formation (IMC–B testing) is effective in 
investigating critical temperature ranges in the continuous casting process. The test series with Nb-microalloyed steel shows 
promising results and excellent reproducibility. It reveals the susceptibility to surface cracking during unbending in a slab 
caster depending on the Nb content and the prevalent surface temperature. 
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