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Abstract 
 
Continuous casting of peritectic steels is often difficult and critical; bad surface quality, cracks 
and even breakouts may occur. Particularly, the initial solidification of peritectic steels within the 
mold leads to formation of surface depressions and uneven shell growth. As commercial steels 
are always multi-component alloys, it is necessary to take into account also the influence of 
alloying elements besides carbon on the peritectic phase transition. Especially for new steel 
grades with high Mn, Si and Al contents, there is a lack of information regarding the 
solidification sequence and the phase diagrams for initial solidification. Based on a 
comprehensive method development, the present study shows that high precious Differental 
Scanning Calorimetry (DSC) measurements allow a clear prediction whether an alloy is 
peritectic (i.e. critical to cast) or not.  
 

Introduction  
 
It is well known that producing some specific steel grades by means of the continuous casting 
(CC) process is often difficult and critical; bad surface quality cracks and even breakouts may 
occur. Particularly, the formation of surface depressions during the initial solidification within 
the mold can be obtained at a certain range of carbon. This situation is illustrated in Figure 1a in 
terms of an unevenness index. It can clearly be seen that a maximum exists at approximately 
0.12 wt.-%C.  Depression formation further results in an uneven shell growth, coarse grains and 
other negative events such as the formation of hot tears. 
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Figure 1. a) Unevenness index over the carbon content [1, 2] and  
b) different types of hot tears as a result of a depression [3]. 
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Figure 1b shows hot tears at different positions below a depression and represents a critical 
material defect which results in a significant loss of quality. The formation of hot tears in the 
ground of depressions is related to the air gap formation, the resulting reduced heat transfer from 
the mold, a thinner strand shell and the increase of stresses and strains in the solid/liquid (S/L) 
two phase region. These correlations are explained in detail in literature [3, 4]. The formation of 
depressions during the CC process is described by means of examples in [5, 6, 7, 8] and is 
mainly determined by the chemical composition of the melt. It is evident that steels with an 
equivalent carbon content between 0.09 and 0.16 clearly show a maximum of these negative 
phenomena. Besides the depressions, continuous casters also observe higher mold level and 
temperature variations within this critical carbon range.  
Considering the high temperature range of the iron-carbon (Fe-C) equilibrium phase diagram, 
illustrated in Figure 2a, it is obvious that the above mentioned critical/specific steel grades are 
between the characteristic points CA and CB. Classifying four different carbon ranges (range I 
left of CA, range II: between CA and CB, range III: between CB and CC and range IV: right of 
CC

 

) a clearly different solidification and transformation sequence will be passed through. Table I 
summarizes these different transformation behaviors in the equilibrium binary Fe-C system. The 
specialty of the critical range II in comparison with the other three ranges is that in this case the 
transformation of δ-Fe to γ-Fe (i.e. the peritectic phase transition) starts in the S/L two phase 
region and ends in the solid (see also Figure 2a). 
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Figure 2. a) Fe-C equilibrium diagram with the critical carbon range between 
0.09 and 0.16 wt.-%C and b) influence of alloying elements on the Fe-C system. 

 
Table 1. Different transformation characteristics in the Fe-C system 

Range Position Phase sequence Characteristics 
I left of C L → L+δ → δ → δ+γ → γ A primary δ-Fe solidification 
II between CA and C L → L+δ → δ+γ → γ   B peritectic transformation starts during the 

solidification and finish in the solid 
III between CB and C L → L+δ → L+γ → γ   C peritectic transformation starts during the 

solidification finish in the L/S region 
IV right of C L → L+γ → γ C primary γ-Fe solidification 
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Furthermore, alloying elements significantly influence the phase diagrams and the position and 
temperature of the characteristic points CA, CB and CC

In order to summarize the above illustrated facts it can be stated that - if the phase 
transformations during the solidification and the characteristic points C

. This situation is demonstrated in Figure 
2b in terms of a pseudo binary Fe-C diagram. The effect of the alloying elements can be 
distinguished between austenite formers (like Mn, Ni, Cu, …) and ferrite formers (like Cr, Mo, 
Al,…). It can also be seen that the presence of higher concentrations of alloying elements prefer 
the formation of a peritectic ternary region (L+δ+γ). Based on the above illustrated explanations 
it is clear that great efforts were made in the past to describe the essential influence of alloying 
elements on the transformation sequence in order to identify whether a specific steel grade is 
within the critical range II or not.  

A and CB are well known- 
critical steel grades can be produced safely by target selection of special casting powders, 
cooling programs and casting speed. As commercial steels are always multi-component alloys, it 
is necessary to take into account also the influence of alloying elements besides carbon on the 
peritectic phase transition and the position of CA and CB. Hence, great efforts were made in the 
past to describe the influence of alloying elements on this critical range. However, for new steel 
grades (e.g. high alloyed Fe-C-Mn-Al-Si steels, like TRIP- and TWIP-steels) there is a lack of 
information about the position of the alloy within the Fe-C phase diagram (i.e. the sequence of 
transformation characteristics). Therefore, new investigations are essential to find out in a first 
approach (user-oriented for the process management of the CC process) whether a new steel 
grade is within the critical range (i.e. between CA and CB

In the following sections, first different calculation methods to characterize peritectic steel 
grades are summarized. Secondly, the potential of DSC measurements to characterize the 
different transformation characteristics will be illustrated. And lastly, the application of the 
above described approaches to identify a new steel grade will be done using the example of a 
new Fe – 0.22wt.-%C – 2wt.-%Al alloy. It will be demonstrated why one DSC measurement is 
sufficient to determine the transformation characteristics and in this regard whether an unknown 
steel grade is in range I, II (critical), III or IV. This will be carried out by illustrating and 
discussing the measured DSC signal.  

) and in a second approach 
(fundamental) to characterize the transformation behavior in detail and systematically. This 
question goes hand in hand with the search for a reliable and simple laboratory method. In the 
present study a DSC method is used.  

 
Calculation methods to characterize peritectic steel grades 

 
In the following, four different methods to calculate the influence of alloying elements on 
transformation characteristics are summarized. All these methods are more or less simple tools to 
characterize peritectic steel grades only on the basis of the alloy composition.  
 
a)  Carbon equivalent calculations 
The simplest method are various formulas to calculate an equivalent carbon content (CP) by the 
addition of different alloying elements (Ci) with weighted coefficients (Xi), whereas austenit 
formers are always positively weighted and ferrite formers negatively. If the calculated value of 
CP is between 0.09 and 0.16 (= CA and CB in the binary Fe-C system) the steel is considered as 
critical. CP

∑
=

=

+=
ni

i
iiCP C*XCC

1

-formulas were published by several authors [8, 9, 10] and can be written as: 

         for example: CP= [%C] + XMn*[%Mn] -  XSi

Such additive C

*[%Si] + .... 

P-formulas often originated from operational observations and describe well 
simple low alloyed steels. However, such simple approaches cannot consider the interaction 
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between the different elements and are only valid for a very limited concentration range. For 
complex steels grades such formulas are not useful or even calculate unrealistic (negative) or 
wrong values, moreover the distance between CA and CB

 

 is fixed with 0.06 wt.-%C and cannot 
diverge. 

b) Calculation model from Kagawa and Okamoto 
The approach by Kagawa and Okamoto [11] is the first study, where the direct influence of 
alloying elements on the critical points CA, CB, CC is considered. The model is based on 
coefficients reflecting the shift in the temperatures (ΔTCA, ΔTCB, ΔTCC) and concentration 
(ΔCCA, ΔCCB, ΔCCC) of the critical points for each element. With this information even full 
pseudo-binary Fe-C equilibriums with all high temperature phase transformations can be 
calculated, as well as the concentrations and temperatures of CA*, CB* and CC

This more comprehensive model can consider the different effects of third elements on the 
critical points, particularly the distance between C

*, like in Figure 
2b.  

A and CB

 

 (= range II) can expand. However, it 
only considers the effect of individual alloying elements without the interaction between the 
different elements. In addition the published coefficients are also only responsible for a very 
limited concentration range and no coefficients for aluminum are available. 

c) Peritectic Predictor Equations from Blazek et  al. 
The peritectic predictor equations are two formulas respectively for CA and CB

 

 and were 
published by Blazek et al. [12]: 

 CA

  

 = 0.0896 + 0.0458*Al – 0.0205*Mn – 0.0077*Si + 0.0223*Al² -0.0239*Ni + 0.0106*Mo 
+0.0134*V -0.0032*Cr + 0.00059*Cr² + 0.0197*W 

 CB

 

 = 0.1967 + 0.0036*Al - 0.0316*Mn - 0.0103*Si + 0.1411*Al² + 0.05*Al*Si - 0.0401*Ni +  
0.03255*Mo + 0.0603*V + 0.0024*Cr + 0.00142*Cr² - 0.00059*Cr*Ni + 0.0266*W 

These formulas are based on a comprehensive regression study of the influence of alloying 
elements on the critical points CA and CB, using the commercial thermodynamic software 
ThermoCalc within a certain concentration range (e.g. Mn, Si, Al up to maximum 2 wt.-%). The 
formulas are similar to CP-formulas, whereas austenite formers and ferrite formers (with 
exception of silicon) are each rated negatively and positively. A great advantage in comparison 
to previous CP-formulas is that CA and CB are given separately and also the partial interaction of 
selected elements such as Al*Si and Ni*Cr is considered. The point CC

 

 is not considered and the 
determination of transformation temperatures is not possible.  

d) Calphad method – Gibbs Minimizer 
The most comprehensive method is the numerical calculation of multi-component phase 
diagrams using the CALPHAD's approach which considers all (known) interactions. There are 
different commercial Gibbs minimizers on the market such as ThermCalc, FactSage, MTDat, 
PANDAT and so on. All these programs allow calculating “everything” - all phase 
transformations for all compositions, but even this can be dangerous, since all these calculations 
are only as good as the underlying databases, which are based exclusively on existing - 
previously investigated - systems.  
 
For typical low alloyed Fe-C-Si-Mn steels (e.g. with 0.3 wt.-Si and 1.5 wt.-%Mn) all four 
different methods agree very well. Even simple CP calculations excellently describe these typical 
structural steels. For more alloying elements, method c) and d) are recommended. Higher alloyed 
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complex steel grades (e.g. TRIP- and TWIP-steels) can only be handled by the Calphad method, 
however the scope and quality of the used thermodynamic databases need to be proved. 

Experimental method - the Differential Scanning Calorimetric (DSC) 
 
DSC measurements are an excellent method which record all transitions associated with an exo- 
or endothermic effect (= enthalpy change). With a very high accuracy almost all important phase 
transformations in steels can be measured. The equipment used in the study was a NETZSCH  
STA409PG Luxx (simultaneous thermal analyzer, Selb, Germany) with a platinum DSC sensor 
and type S thermocouples as shown in Figure 3. The Pt/Pt10%Rh thermocouples of the DSC 
sensor were calibrated at the melting points of 7 high purity elements (In, Sn, Al, Ag, Au, Ni, 
Co). All measurements were carried out under the same conditions in alumina crucibles with lids 
under protective gas atmosphere (argon, quality 6.0) during controlled heating up to 1550°C. In 
order to achieve best equilibrium conditions, special polished samples with a maximum mass of 
50mg and a heating rate of 10K/min were used, in addition the plant influence on the DSC signal 
was corrected by an extra calculation with the Netzsch Programm Correct2 [13]. 
Precisely the investigation of highly reactive steels with larger amounts of Al and Si requires 
special attention regarding the purity of the atmosphere in the DSC. In order to achieve the best 
results four different getters are used to clean the protective gas in the oven, moreover the 
samples are heated only one time, to measure only the virginal material.  
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Figure 3. Layout of a NETZSCH STA409PG with a high temperature DSC sensor. 
 
In Figure 4, three different DSC measurements with different carbon contents from the well 
known Fe-C-Si system are compiled. All the process relevant transformation characteristics from 
Table 1 show a unique DSC signal during melting. The DSC signal from alloys left of CA (rang I 
- primary δ-Fe solidification) and alloys right of CC

Only alloys between C

 (range IV - primary γ-Fe solidification) 
show similar characteristics, except the width of the two-phase S/L-region which is much wider 
at higher carbon contents.  

A and CB (range II) exhibit - due to the peritectic phase transformation - a 
separate characteristic sharp peak, which coincides with the solidus temperature, visualized in 
Figure 4, alloy II. Referring to Figure 1a, steels with 0.12 wt.-%C (= between CA and CA) are 
most critical. Only these peritectic steel grades exhibit this unique sharp peak, which can be 
clearly determined by means of DSC measurement. Beside these clear YES/NO criterion for 
peritectic steels, also all relevant transition temperatures (Tγ→δ, TSolid, TPerit., TLiquid) can be 
measured and used to validate or to asses full phase diagrams. The Fe-C-Si system was chosen 
consciously, because it is well described in literature [14, 15]. The quality of the ThermoCalc 
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[16] calculation of the pseudo binary phase Fe – 1wt.-%Si – C diagram can be confirmed by the 
DSC measurements. 
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Figure 4. Characteristic DSC-signals from the well known Fe-C-Si system 
 

Results 
 
In order to demonstrate the potential of the DSC method for characterizing new alloying 
systems, a model alloy with the composition of Fe – 0.22wt.-%C – 2wt.-%Al, as shown in Figure 
5, will be explained in detail. This steel with 2wt.-%Al was chosen purposely, because the two 
commercial thermodynamic programs ThermoCalc [16] and FactSage [17] show very different 
results. The alloy for the DSC measurement was melted in an alumina crucible with a High 
Frequency Remelting Furnace (HRF) under argon atmosphere from high purity raw materials 
and was centrifugally cast in a copper mold and analyzed by emission-spectroscopy.  
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Figure 5. Thermodynamic calculations of a pseudo binary 
Fe – 0.22 wt.-%C –  wt.-%Al system [16, 17] 

 
The mathematical approaches, presented in the introduction, provide very different results for the 
mentioned Fe – 0.22wt.-%C – 2wt.-%Al alloy, summarized in Table 2. A single DSC 
measurement, shown in Figure 6a, demonstrates very clearly the transformation characteristics of 
this new alloy. The investigated alloy is definitely peritectic, identified by the unique sharp peak, 
which only occurs at alloys between CA and CA, see also the comparison with Figure 6b where 
the alloy is also peritectic. This new alloy is therefore also in the critical range II, and has to be 
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handled with special care during CC. Besides this important information, the DSC measurement 
shows that the transformation temperature calculated with ThermoCalc (range II – correct) is too 
high and that the FactSage calculations (range I) and the Peritectic Predictor Equations from 
Blazek (range I) show different transformation characteristics. Further DSC measurements in the 
system Fe-C-Al are necessary to perform a serious assessment and to determine the exact 
position of the critical points n CA and CB
 

. 

Table 2. Results of the different prediction models. 
a)  Carbon equivalent calculations 
Cannot handle alloys with aluminum. 
If only the carbon content of 0.22 wt.-%C is considered, the alloy would be in range III. 
b) Calculation model from Kagawa and Okamoto 
Cannot handle alloys with aluminum, the pure Fe-C alloy would be in range III. 
c) Peritectic Predictor Equations from Blazek et. al. 
Calculates for the mentioned alloy for CA= 0.27 and CB
That means that the model alloy with 0.22 wt.-%C is left of C

= 0.77.  
A

d) Calphad method – Gibbs Minimizer 
, in range I and not peritectic. 

regarding the ThermoCalc [16] calculation, range II with a peritectic temperature of 1486,6°C 
regarding the FactSage [17] calculation,      range  I with a solidus temperature of 1440,5°C  
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Figure 6. a) Measured DSC signal of the ternary alloy iron with 0.22wt.-%C and 2wt.-%Al, 
b) DSC signal from Figure 4, alloy II in detail. 

 
Summary and Outlook 

 
Thermodynamic considerations are essential to categorize steels (range I – IV) for the CC-
process. In addition to all mathematical approaches (simple formulas or elaborate computer 
programs) real measurements are essential to categorize new steel grades (especially high Fe-C-
Mn-Al-Si steels). DSC measurements are an excellent method which record all transitions 
associated with an exo or endothermic effect (= enthalpy change) and allow to investigate: 

• peritectic alloys (between CA and CB
• transformation characteristics (= position regarding C

, range II), which are critical to cast 
A, CB and CC

• DSC measurements can be used to evaluate thermodynamic programs. With systematic 
investigations new phase diagrams and even the exact position of C

) and almost all 
transformation temperatures can be determined with very high accuracy. 

A, CB and CC can be 
assessed. 

305



With one DSC trial, it can be analyzed whether new unknown alloys are peritectic or not. This 
essential information (YES/NO) helps to improve the process management of the continuous 
casting process and to ensure a high product quality. 
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