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Abstract. The phase transformation sequence during the solidification of carbon steels 
strongly influences their behavior in the casting process. Therefore, most exact knowledge of 
the dependence of the transformation characteristics on the steel composition is of highest 
relevance for process and quality optimization. The influence of alloying elements like C, Mn 
or Si on phase transformation is well understood as far as their content is rather low. New steel 
grades, like high-alloyed TRIP- or TWIP-steels contain almost up to 10 wt.-% of Si and Al and 
30 wt.-%Mn. The present work focuses on first results of the parallel investigation into phase 
transformation of Fe-Al-C alloys by means of Differential Scanning Calorimetry (DSC) and 
Thermo-Optical Analysis (TOA) with a High-Temperature Laser-Scanning-Confocal-
Microscope (HT-LSCM). DSC is a well established method for the accurate measurement of 
all phase transformation temperatures accompanied by significant enthalpy changes. Due to 
small enthalpy changes, DSC results are limited with respect to the γ/δ-transformation. Besides 
dilatometry and X-ray diffraction, the optical in-situ observation of phase transformation by 
HT-LSCM proved to be a comprehensive method. After a short description of the methods, 
results for the Fe-0.4%Al-0.22%C and Fe-1.5%Al-0.22%C systems will be discussed in detail 
and finally compared with results from computational thermodynamics. 

1.  Introduction 
Phase diagrams and the knowledge of phase transformations of materials represent very important 
information for scientists, materials engineers and process operators to understand material behavior 
during solidification, heat treatment and the whole further processing. Regarding steels, a special 
feature are the two different high-temperature phases: (fcc)- and (bcc)-iron. Figure 1 illustrates the 
equilibrium binary Fe-C (gray thin lines) and four ranges of different transformation sequences, which 
are additionally summarized with a table in this figure. Steels which solidify according to the 
transformation sequence of range II are of special interest, because in this case the transformation of -
Fe to -Fe (i.e. the peritectic phase transition →L+) starts in the solid-liquid two phase region and 
ends in the solid. It is believed that this specific transformation sequence during solidification and 
subsequent cooling is responsible for an increased defect appearance (such as hot tears, surface 
defects, depression formation and in the worst case breakouts) in the continuous casting process [1-4]. 
This critical range II is often characterized by a carbon content between CA and CB. However, since 
steel is always a multi-component material it is clear that pseudo binary phase diagrams must be used 
to understand the transformation sequence.  
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Figure 1 schematically shows how alloying elements significantly influence the Fe-C phase 
diagram (green thick lines) and the position and temperature of the characteristic points CA*, CB* and 
CC*. Pseudo binary Fe-C diagrams of multi-component alloys can be calculated with commercial 
Gibbs minimizers (CALPHAD's approach) such as ThermoCalc (TC), FactSage (FS), MTDat, 
PANDAT to mention just a few examples. Using such commercial software tools, the position and 
temperature of the characteristic points CA*, CB* and CC* can be easily determined. Low alloyed steels 
(typical construction and engineering steel grades) and simple Cr and Ni high alloyed steels (stainless 
and tool-steel grades) seem to be well described in commercial thermodynamic databases. 
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Figure 1.  Fe-C equilibrium diagram in the high temperature range. 
 
In contrast to the above mentioned steels, however, calculated pseudo binary phase diagrams of 

novel steels grades which exhibit for example higher content of Mn, Si and Al (typically TRIP and 
TWIP steels) show partly divergent results. This can mainly be explained by a lack of trustworthy 
thermodynamic data. Figure 2 shows, for example, the results of calculated pseudo binary Fe-1%Si-C 
(left) and Fe-1%Al-C (right) diagrams using ThermoCalc 5.0 (TC) and FactSage 6.2 (FS). 
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Figure 2. ThermoCalc and FactSage calculation of the pseudo binary Fe-C diagram 
of the system Fe-1%Si-C (left) and Fe-1%Al-C (right). 

 
The results of the ThermoCalc and FactSage calculations show very good agreement (i.e. the 

difference in the transformation temperatures ΔT is smaller than 10 °C) in the case of Fe-1%Si-C 
alloy, but very contradictory results in the case of Fe-1%Al-C.  In order to visualize these uncertainties 
with respect to Al in detail, Figure 3 shows the pseudo binary Fe-Al-0.22%C diagram, calculated with 
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ThermoCalc and FactSage. It can clearly be seen that already at rather low values of Al, both 
calculated phase diagrams are totally different. The above mentioned and illustrated disagreement, 
especially with respect to the results when Al is present, exemplarily shows the great need for 
experimental methods to evaluate thermodynamic calculations and to measure new systems on the one 
hand. On the other hand, however, sometimes only the knowledge of the transformation behavior and 
sequence is of interest (i.e. is a new steel grade between CA* and CB*). In doing so, different 
experimental methods can be used. The present study shows the possibilities, assets, drawbacks and 
limitations of two different experiments, the High-Temperature Laser-Scanning-Confocal-Microscopy 
(HT-LSCM) and the Differential Scanning Calorimetric (DSC) method using the example of three 
different alloys. These three alloys are Fe-1%Si-0.14%C, Fe-0.4%Al-0.22%C and Fe-1.5%Al-
0.22%C, which are additionally illustrated in Figure 2 (left) and Figure 3.  
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Figure 3. Test alloys and thermodynamic calculations of the pseudo binary Fe-Al system. 

2.  Experimental Methods 
In the following section, the two applied experimental methods are described. Prior to that it should be 
mentioned that the production of the necessary samples was the same in both cases: The alloys were 
melted in an alumina crucible from high purity raw materials with a High Frequency Remelting 
Furnace under argon atmosphere and were centrifugally cast in a copper mould and analyzed by 
emission-spectroscopy. 

The High-Temperature Laser-Scanning-Confocal-Microscopy is a special kind of Thermo-Optical 
Analysis (TOA) which enables in situ observations of surface phenomena in liquid and solid samples 
up to a maximum temperature of 1650°C. Since this well established method is described in detail in 
the relevant literature [5-8], the present study gives just a brief overview on the experimental set-up: 
The right hand side of Figure 4 shows an overview of the whole facility, the left hand side shows the 
experimental assembling together with detailed images of the sample holder in the high-temperature 
furnace. This infrared furnace consists of a gold-coated chamber and has the shape of a symmetric 
ellipse. The heating is carried out by means of a halogen lamp which is located in the bottom focal 
point, whereas the crucible is in the upper focal point.  

Similar to other thermal analysis methods, protective gas atmosphere (argon, quality 6.0), type-S 
thermocouples in the sample holders and alumina crucibles were used. In the present study, the 
following experimental adjustments and parameters were employed. The size of the samples was 
4x4x1mm (polished, but not etched). The heating rate was 500 K/min up to a temperature of 1300 °C, 
subsequently an isothermal holding for 5 minutes took place being followed by a slow heating up 
using a heating rate of 10 K/min until everything was liquid. During the whole period of the 
experiment, a video was produced, where a frame rate of 60 frames per second enables the observation 
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and recording of fast processes. This video was finally analyzed in detail and the results will be 
illustrated later in the paper. 
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Figure 4. HT-LSCM at the Chair of Metallurgy, Montanuniversitaet Leoben. 
 
The Differential Scanning Calorimetric measurements record all phase transitions which can be 

associated with an exo- or endothermic effect (=enthalpy change). The equipment used in the study 
was a NETZSCH DSC with a platinum DSC sensor and type-S thermocouples. The DSC consisted of 
a sample and reference crucibles, which are connected by a heat flow plate both exposed, ideally, to 
the same heating power input by convection and radiation from the cylindrical heating oven. The 
measurement signal is derived from the temperature difference between the sample and reference 
crucible expressed in terms of a heat flow. Detailed descriptions can be found for example in [9]. The 
experimental set-up used in the present study was calibrated by measuring the well known melting 
point and enthalpy of fusion of seven high purity elements (In, Sn, Al, Ag, Au, Ni and Co). All of 
these measurements were carried out under the same conditions in alumina crucibles with lids under 
protective gas atmosphere (argon, quality 6.0). In order to achieve best equilibrium conditions, 
grounded steel samples with a mass of 50 mg and a controlled heating rate of 10 K/min were used. In 
addition, the thermal resistance and the time constants of the measurement system were corrected. 
Finally it should be mentioned that accurate measurements of highly reactive steels with higher 
amounts of Al and Si requires special attention regarding the purity of the atmosphere in the DSC and 
their leak tightness. For this reason, different getters are used to clean the protective gas in the oven 
and most importantly, the samples were heated up only once in order to measure only the virginal 
material. 

 

3.  Results – Thermal Analysis  
First of all, the results of the DSC measurement of alloy 1 (Fe-1%Si-0.14%C) will be illustrated and 
discussed in detail. Thereafter, the findings of alloy 2 (Fe-0.4%Al-0.22%C) and alloy 3 (Fe-1.5%Al-
0.22%C) applying both experimental methods, DSC and HT-LSCM, will be analyzed in detail and 
finally the determined phase transformation sequence and temperatures will be compared. 

The left hand side of Figure 5 shows a typical result of a DSC measurement (alloy 1: Fe-1%Si-
0.14%C), whereas the illustrated curve (DSC-signalcorr), i.e. the measured heat flow, is adjusted by the 
influence of the heating rate, sample mass, crucible and the DSC-sensor configuration. In doing so, 
this signal correction procedure identifies the determined temperatures as equilibrium transformation 
temperatures. This was done by using a commercial software tool [10] and applies for all illustrated 
curves in the following section. Additionally, the transformation temperatures and subsequently the 
present phases are illustrated in the diagram. This correlation of the possibly appearing phases is not 
trivial and will be discussed below: 
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 Figure 5. DSC measurements of alloy 1 (Fe-1%Si-0.14%C).  
 
Since phase transformations are always associated with a change in enthalpy (i.e. heat will be 

released or consumed) and the DSC method allows the measurement of the heat flow, an occurring 
phase transformation causes a deviation of the horizontal baseline. The first deviation which can be 
seen in Figure 5 takes place at 1443 °C. However, only a very small deviation of the heat flow can be 
observed which points to a transformation of very small enthalpy changes. With respect to even 
possible phase transitions in the high temperature range (T > 1200 °C) of steels, this is typical when 
austenite starts to transform -ferrite (γ→+δ). Hence, the temperature of 1443 °C was identified as 
T→+δ. The larger the temperature range of the two phase region (+δ), the smaller is the heat flow per 
unit of time. Consequently the γ→δ transformation is hardly measurable. At 1472.7 °C a very sharp 
peak appears which is followed by a typical melting peak of an alloy. These peaks can be associated 
with the peritectic phase transformation (γ→L+δ) temperature, TPerit and the liquidus temperature 
TLiquid. The sharp increase is not only due to the enthalpy change caused by the peritectic transition but 
also due to fact that this peritectic peak coincides with the solidus temperature. Hence, this is a clear 
criterion of an alloy situated between CA and CB (= range II). Alloys which are situated between CB 
and CC show clearly different characteristics, because the solidus temperature is lower than the 
peritectic temperature. Thus, the deviation from the baseline due to the melting process is followed by 
a sharp increase due to the peritectic transition.  

Finally, the determined phase transformation temperatures are incorporated in the Fe-1%Si-C 
pseudo binary phase diagram, illustrated on the right hand side of Figure 5. It can be seen that the 
determined transformation temperatures of alloy 1 are in very good agreement (ΔT is smaller than 10 
°C) with the results of the TC and FS calculation. A large number of DSC measurements in the system 
Fe-Si-C and Fe-Si-Mn-C showed that the standard deviation of the measurement of solid-solid 
transitions is +/-5 °C and of solid-liquid transitions +/-2 °C. Therefore, DSC measurements, which are 
very well reproducible, can be used as a benchmark. 

As indicated in the introduction, the thermodynamic calculations of the ternary system Fe-Al-C are 
very contradictory. In order to shed light on the matter, first investigations were conducted using the 
HT-LSCM method. Figure 6 shows selected pictures of alloy 2 (Fe-0.4%Al-0.22%C). At 1440 °C 
(A2-I) shows a pure austenitic microstructure whereas a significant grain coarsening can be observed 
in the video. Subimage A2-II shows this grain growth in terms of a consumption of a smaller grain. 
Melting of the sample typically starts at the grain boundary at a temperature of 1480 °C (A2-III), 
which can be identified very clearly by a moving liquid phase on the surface of the sample. With 
further heating the melt spreads over the whole surface (A2-IV). As a result, it is not possible to 
determine the liquidus temperature as well as further transformations such as the peritectic. However, 
since the first detected phase transformation is γ→L+γ alloy 2 is situated either between CB and CC 
(range III) or even higher than CC (range IV). Both thermodynamic software tools predict the 
following transformation sequence for alloy 2:  γ→L+γ→L+δ→L (= range III, see also Figure 3).  
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The results of the HT-LSCM investigations of alloy 3 are illustrated in Figure 7, which show a 

transformation sequence of γ→γ+δ→L+δ→L (= range II). In the observed high temperature range 
(1300-1420 °C) the microstructure consists of 100% γ-grains (A3-I) which shows also a grain growth 
similar to alloy 2. At 1430°C the formation of -ferrite starts at the γ grain boundaries and tipple 
points (A3-II). With further heating the phase fraction of the δ phase increases, while the γ phase 
decreases (A3-III). Only 2°C higher, the peritectic phase transformation occurs immediately (A3-IV). 
The δ phase remains, while at first only the former γ phase is liquid. With further heating the residual 
δ phase melts and the liquid phase spreads over the whole surface as described also for alloy 2. The 
experimentally determined transformation sequence can be summarized by γ→γ+δ→L+δ→L (= range 
II). For alloy 3 the calculated transformation sequence according to TC is γ→γ+δ→L+δ→L (range II). 
According to FS it is γ→γ+δ→δ→L+δ→L (range I). Hence, TC describes the results of the HT-
LSCM measurements of alloy 3 better than FS. 

However, it can already be pointed out that the HT-LSCM method can not be used to determine 
transformation temperatures precisely. Therefore, DSC measurements of alloy 2 and 3 were performed 
additionally. Figure 8 shows the results from these measurements with the subsequently assigned 
phases carried out in a similar way as described by alloy 2. Furthermore, the positions of the HT-
LSCM pictures are marked in the diagrams (black arrows). The DSC trials demonstrate a 
transformation sequence of γ→L+γ→L+δ→L (= range III) of alloy 2 and γ→γ+δ→L+δ→L (= range 
II) of alloy 3. These results clearly support the findings of the HT-LSCM observations, viz. an 
accordance of the experimentally determined transformation sequence with the calculated one using 
TC. 
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Figure 8. DSC measurements of the aluminium alloys 2 and 3 with 0.22%C. 
 

Figure 9 represents a summarization of the thermodynamic calculations with the results from DSC 
measurements (red points) and the HT-LSCM method (black arrows). It is clearly noticeable that the 
HT-LSCM observations and the DSC measurements fit very well together and the DSC results 
confirm the HT-LSCM predictions on the transformation sequence. However, in order to determine 
transformation temperatures, the DSC method must be preferred. Comparing these values with the 
calculations, it can be stated that both software tools achieve a good accordance at alloy 2 (Fe-0.4%Al-
0.22%C). However, considering alloy 3 (Fe-1.5%Al-0.22%C), only TC predicts the measured 
transformation sequence. With the exception of TLiquid, the calculated transformation temperatures, 
using both software tools, significantly differ from the experimentally determined values. 
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Figure 9. Compilation of the thermodynamic calculations with the measurements results. 

 

4.  Summary and Outlook 
The present study has shown that there is a lack of inconsistent thermodynamic data, for example for 
newly developed steel grades with a higher amount of Al. As a result, experimental methods are 
necessary to advance these thermodynamic data in terms of phase diagrams. Therefore, the present 
study illustrates and discusses the high temperature phase transformations of three different alloys 
using two laboratory methods, the Differential Scanning Calorimetry (DSC) and the High-
Temperature Laser-Scanning-Confocal-Microscope (HT-LSCM). It could be shown that DSC 
measurements are a perfect method to measure the solidus, peritectic and liquidus temperatures with 
high accuracy. Furthermore, the transformation sequence can directly be deduced from the 
characteristics of the measured DSC signal. HT-LSCM investigations enable a direct observation 
(Thermo-Optical Analysis) of the microstructure and the transformation behavior up to the melting 
point. Both methods complement each other perfectly:  
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 Measuring the γ→δ transformation (generally solid-solid transformations with small enthalpy 
changes) by means of DSC is difficult, but works very well by applying the HT-LSCM 
method. 

 DSC is an excellent method to determine the hyperperitectic and/or the liquidus temperature. 
This can not easily be realized using HT-LSCM, at least during the heating stage. However, 
applying the concentric solidification method [7], the HT-LSCM represents a perfect 
laboratory to investigate the peritectic reaction and transformation. 

 Although the temperature measurements are calibrated in both cases, DSC measurements are 
the most suitable method to determine phase transformation temperatures with high accuracy. 
In contrast to determining phase transformation temperatures, the HT-LSCM is predominant 
when investigating grain growth, solidification, sub-cooling and time-temperature-
transformations (kinetic studies). 

The combination of both methods is a powerful tool and enables the determination of phase 
diagrams, especially in the high temperature range. This will be realized in ongoing and future 
research activities with a strong focus on steel in combination with alloying elements which are not 
well described at higher contents (e.g. Al > 0.1% and combinations of Al with Si, Mn in steels). 
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