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Continuous Casting — The System Strand / Mould
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Objectives

“ Heat flux in the mould is highly variable:
- changes over mould height,
- changes with casting speed,
- changes for different steel grades.

“ Exact analysis achieved by:
- extensive measurements,
- complex thermo-mechanical models — high CPU time.

“ Important for answering questions of
- columnar to equiaxed transition,
- solidification structure,

—> Boundary condition model

m » Predict heat flux with limited measuring work,

MONTAN = Analyse influence of varying casting parameters.
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Thermal conductivities of media
assumed constant

temperature —

Modelling Boundary Conditions
Model View

¢melt

O )

mould

growing
solid shell

-

|
/
mould flux layer solid shell

air gap liquid steel

Cross section of mould and
strand for around bloom caster



m

MONTAN

UNIVERSITAT

WIWWW.UNILEOBEN.AC.AT

Modelling Boundary Conditions
Model View
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H. Han, J. Lee, T. Yeo, Y. Won, K. Kim, K. Oh, J. Yoon, ISIJ Intern. 39 (1999) 445-454.



General Parameters
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Mechanical Analysis of the Strand Shell
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Modelling Boundary Conditions
Mechanical Analysis of the Strand Shell

Transversal cut through the bloom:
Consider only elements below Tg
Elastic behaviour assumed (Schwerdtfeger)

Schwerdteger K. et al., Metall. Mater. Trans. B., Vol. 29B (1998), 1057-1068.

groWing
solid shell
/ \

melt

mould
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Modelling Boundary Conditions
Mechanical Analysis of the Strand Shell

0]
OCi Element i

Force balance on each element i: ‘ \Gi

. . dp S S
2.07-b-s;-sin 2’“ + ol - (r,-+§’) dp-b+ol, - (r,-—z’) do-b=0
Additionally consider thermal strains (thermal linear contraction),
Metallostatic pressure at the inside of the strand,
No friction at the outside,

Elements accumulate strain with time — accumulated strain.



Mechanical Analysis of the Strand Shell

¢
GCi Element i

Force balance on each element i:

I
o

2-a;f’-b-s,-.sind7""’+a{- (r;+%)-dcp-b+af+1-(r;—%) do-b

Additionally consider thermal strains (thermal linear contraction),

Metallostatic pressure at the inside of the strand,

No friction at the outside,

Elements accumulate strain with time — accumulated strain.

l I = AIR GAP
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Mould Flux Consumption Model
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HTR of strand surface:
Temperature-dependent coefficient
(according to Han et al.)

= 4 Mould powder consumption model

HTR of air gap:
=P Mechanical analysis of solid shell
Time/temperature dependent
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Modelling Boundary Conditions
Mould Flux Consumption Model

Mould flux consumption (MFC) depends on various process parameters:
Casting speed v,
Oscillation parameters ty (negative strip time)
Bath temperature T
Flux viscosity 7

Viscosity best calculated by Riboud’s model
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Modelling Boundary Conditions
Mould Flux Consumption Model

Mould flux consumption (MFC) depends on various process parameters:
Casting speed v,
Oscillation parameters ty (negative strip time)
Bath temperature T
Flux viscosity 7

Viscosity best calculated by Riboud’s model

MFC model (modified approach of Tsutsumi et al.)

Tsusumi, K. et al., Tetsu-to-Hagane, Vol 84 (2998), 617.

F 1
Qs =24 -ty + Fp

VilT) Ve

Qs ... MFC
F.. Fg ... fitting parameters



Modelling Boundary Conditions
Mould Flux Consumption Model

Mould flux consumption (MFC) depends on various process parameters:
Casting speed v,
Oscillation parameters ty (negative strip time)
Bath temperature T
Flux viscosity 7

Viscosity best calculated by Riboud’s model

__ '.I éﬂ;ﬂ]:' 1 - 1 v 1 i 1 " I N 1 " I " I " 1 v -_
MFC model (modified approach of Tsutsumi et al.) ‘?‘E [ A Slab ]
Tsusumi, K. et al., Tetsu-to-Hagane, Vol 84 (2998), 617. o - ¢ Literature —
x [ ]
O [ ]
Qs = & 1'fN+FB = | ss LA b
VT ve = R
oI AL, A A ]
)
© @ ]
Qs .. MFC ot ;
F,., Fg ... fitting parameters T [ - ]
"o O -mpat ¢ ]
m Measured MFC, kg m?
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Modelling Boundary Conditions
General Parameters

Rmould Rstrand

HTR of

Mechanical analysis of solid shell
Time/temperature dependent

solid
strand

HTR ... Heat Transfer Resistance

HTR of strand surface:
Temperature-dependent coefficient
(according to Han et al.)

HTR of flux layer:
Mould powder consumption model
Depends on casting parameters and steel grade
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Model evaluated for

Constant casting speed and superheat

Results
Variation of Steel Grades

Steel Co
A 0.09
B 0.11
C 0.37
D 0.82

Cp = %C—-0.04%Mn—0.1%Si+0.1%Ni—0.04%Cr
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Model evaluated for

Constant casting speed and superheat

Resulting total heat transfer coefficients
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Distance to Top

Results
Variation of Steel Grades
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Results
Variation of Steel Grades
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Results
Variation of Steel Grades
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Results
Variation of Steel Grades
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Results
Comparison of Heat Fluxes

Transferability to practise:
Plant measurements at caster with the same dimensions.

Local heat flux determined by inverse modelling.

Comparisons for Steels C and D

26 - —a— Calculated Values 1 26 | —a— Calculated Values .
ol Steel C I Plant Measurements (Mean) Steel D I Plant Measurements (Mean)

o 24¢ Scatter Band Boundaries ] Scatter Band Boundaries ]

é 22 \ - _
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x \ )
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i 18} - }

:‘i:'g 16} { 16} ]

g r . “"‘l-\._. 1af ]

- 12 I 4 12 I ' \

. ¢ | |

1,0 4 10} i

Distance to Top Distance to Top
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Transferability to practise:

Results

Comparison of Heat Fluxes

Integral heat flux as an overall benchmark quantity

Reference points at several equivalent carbon contents

Integral Heat Flux, MWm™2

18|
171
16|
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14]
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12|
1]

10 |-

Y 3

€ Calculated Values
Plant Measurements

0,0
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0,2 0,3 0,4 0,5 0,6
Equivalent Carbon Content, %

0,7
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Typical behaviour of
(hypo)peritectic steels

Integral Heat Flux, MWm ™

Results

Comparison of Heat Fluxes
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Summary

Heat transfer resistance is made up of several components:
Resistances of mould and strand surfaces,
Resistance of air gap,

Resistance of mould flux.
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Summary

Heat transfer resistance is made up of several components:

Resistances of mould and strand surfaces, Literature

Resistance of air gap,

Resistance of mould flux.

Mechanical model

Mould flux consumption model
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Summary

Heat transfer resistance is made up of several components:

Resistances of mould and strand surfaces, Literature
Resistance of air gap, Mechanical model
Resistance of mould flux. Mould flux consumption model

Presented model has been evaluated for 4 steel grades

Expected were ;
Great with measured local heat flux;
Integral heat flux as an correlates well.
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Summary

Heat transfer resistance is made up of several components:

Resistances of mould and strand surfaces, Literature
Resistance of air gap, Mechanical model
Resistance of mould flux. Mould flux consumption model

Presented model has been evaluated for 4 steel grades

Expected were ;
Great with measured local heat flux;
Integral heat flux as an correlates well.

Next steps: Detailed analysis of flux layer
Variable thickness,

Changing thermal conductivity.
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