

Numeric Modelling of the Heat Transfer in the Continuous Casting Mould

Sebastian Michelic

C. Bernhard, R. Pierer

Christian Doppler Laboratory for Metallurgical Fundamentals of Continuous Casting Processes (CDL-MCC)

University of Leoben, Austria

Content

Introduction

- The System Strand-Mould
- Objectives

Modelling Boundary Conditions

- Model View
- General Parameters
- Mechanical Analysis of the Strand Shell
- Mould Flux Consumption Model

Results

- Variation of Steel Grades
- Comparison with Plant Trials

Summary

Content

Introduction

- The System Strand-Mould
- Objectives

Modelling Boundary Conditions

- Model View
- General Parameters
- Mechanical Analysis of the Strand Shell
- Mould Flux Consumption Model

Results

- Variation of Steel Grades
- Comparison with Plant Trials

Summary

Numeric Modelling of the Heat Transfer in the CC Mould

Numeric Modelling of the Heat Transfer in the CC Mould

Introduction

Continuous Casting – The System Strand / Mould

Numeric Modelling of the Heat Transfer in the CC Mould

Numeric Modelling of the Heat Transfer in the CC Mould

Numeric Modelling of the Heat Transfer in the CC Mould

Sebastian Michelic | CDL-MCC

7

Introduction

Continuous Casting – The System Strand / Mould

Numeric Modelling of the Heat Transfer in the CC Mould

Sebastian Michelic | CDL-MCC

7

- Heat flux in the mould is highly variable:
 - changes over mould height,
 - changes with casting speed,
 - changes for different steel grades.

- Heat flux in the mould is highly variable:
 - changes over mould height,
 - changes with casting speed,
 - changes for different steel grades.
- Exact analysis achieved by:
 - extensive measurements,
 - complex thermo-mechanical models \rightarrow high CPU time.

- Heat flux in the mould is highly variable:
 - changes over mould height,
 - changes with casting speed,
 - changes for different steel grades.
- Exact analysis achieved by:
 - extensive measurements,
 - complex thermo-mechanical models \rightarrow high CPU time.
- Important for answering questions of
 - columnar to equiaxed transition,
 - solidification structure,

...

- Heat flux in the mould is highly variable:
 - changes over mould height,
 - changes with casting speed,
 - changes for different steel grades.
- Exact analysis achieved by:
 - extensive measurements,
 - complex thermo-mechanical models \rightarrow high CPU time.
- Important for answering questions of
 - columnar to equiaxed transition,
 - solidification structure,

\Rightarrow Boundary condition model

- Predict heat flux with limited measuring work,
- Analyse influence of varying casting parameters.

Introduction

- The System Strand-Mould
- Objectives

Modelling Boundary Conditions

- Model View
- General Parameters
- Mechanical Analysis of the Strand Shell
- Mould Flux Consumption Model

Results

- Variation of Steel Grades
- Comparison with Plant Trials

Summary

Modelling Boundary Conditions

Model View

Cross section of mould and strand for a round bloom caster

WWW.UNILEOBEN.AC.AT

Modelling Boundary Conditions

Model View

strand for a round bloom caster

Modelling Boundary Conditions

Model View

H. Han, J. Lee, T. Yeo, Y. Won, K. Kim, K. Oh, J. Yoon, ISIJ Intern. 39 (1999) 445–454.

Modelling Boundary Conditions Mechanical Analysis of the Strand Shell

Modelling Boundary Conditions Mechanical Analysis of the Strand Shell

NTAN

UNIVERSITAT WWW.UNILEOBEN.AC.AT

M

Modelling Boundary Conditions Mechanical Analysis of the Strand Shell

Force balance on each element i:

$$2 \cdot \sigma_i^{\varphi} \cdot b \cdot s_i \cdot \sin \frac{\mathsf{d}\varphi}{2} + \sigma_i^r \cdot \left(r_i + \frac{s_i}{2}\right) \cdot \mathsf{d}\varphi \cdot b + \sigma_{i+1}^r \cdot \left(r_i - \frac{s_i}{2}\right) \cdot \mathsf{d}\varphi \cdot b = 0$$

- Additionally consider thermal strains (thermal linear contraction),
- Metallostatic pressure at the inside of the strand,
- No friction at the outside,
- Elements accumulate strain with time \rightarrow accumulated strain.

Modelling Boundary Conditions Mechanical Analysis of the Strand Shell

• Force balance on each element i:

$$2 \cdot \sigma_i^{\varphi} \cdot b \cdot s_i \cdot \sin \frac{\mathsf{d}\varphi}{2} + \sigma_i^r \cdot \left(r_i + \frac{s_i}{2}\right) \cdot \mathsf{d}\varphi \cdot b + \sigma_{i+1}^r \cdot \left(r_i - \frac{s_i}{2}\right) \cdot \mathsf{d}\varphi \cdot b = 0$$

- Additionally consider thermal strains (thermal linear contraction),
- Metallostatic pressure at the inside of the strand,
- No friction at the outside,
- Elements accumulate strain with time \rightarrow accumulated strain.

- Mould flux consumption (MFC) depends on various process parameters:
 - Casting speed v_c
 - Oscillation parameters *t_N* (negative strip time)
 - Bath temperature *T*
 - Flux viscosity η
- Viscosity best calculated by Riboud's model

- Mould flux consumption (MFC) depends on various process parameters:
 - Casting speed v_c
 - Oscillation parameters t_N (negative strip time)
 - Bath temperature T
 - Flux viscosity η
- Viscosity best calculated by Riboud's model

• MFC model (modified approach of Tsutsumi et al.)

Tsusumi, K. et al., Tetsu-to-Hagane, Vol 84 (2998), 617.

$$Q_{S} = \frac{F_{A}}{\sqrt{\eta(T)}} \frac{1}{v_{c}} \cdot t_{N} + F_{B}$$

 $\begin{array}{cccc} Q_S & ... & MFC \\ F_A, F_B & ... & fitting parameters \end{array}$

- Mould flux consumption (MFC) depends on various process parameters:
 - Casting speed *v_c*
 - Oscillation parameters t_N (negative strip time)
 - Bath temperature T
 - Flux viscosity η
- Viscosity best calculated by Riboud's model
- MFC model (modified approach of Tsutsumi et al.)

Tsusumi, K. et al., Tetsu-to-Hagane, Vol 84 (2998), 617.

$$Q_{S} = \frac{F_{A}}{\sqrt{\eta(T)}} \frac{1}{v_{c}} \cdot t_{N} + F_{B}$$

 $\begin{array}{cccc} Q_S & ... & MFC \\ F_A, F_B & ... & fitting parameters \end{array}$

- Mould flux consumption (MFC) depends on various process parameters:
 - Casting speed *v_c*
 - Oscillation parameters t_N (negative strip time)
 - Bath temperature T
 - Flux viscosity η
- Viscosity best calculated by Riboud's model
- MFC model (modified approach of Tsutsumi et al.)

Tsusumi, K. et al., Tetsu-to-Hagane, Vol 84 (2998), 617.

$$Q_{S} = \frac{F_{A}}{\sqrt{\eta(T)}} \frac{1}{v_{c}} \cdot t_{N} + F_{B}$$

 $\ensuremath{\mathsf{Q}}_{\ensuremath{\mathsf{S}}} \quad \dots \ensuremath{\mathsf{MFC}} \\ \ensuremath{\mathsf{F}}_{\ensuremath{\mathsf{A}}}, \ensuremath{\,\mathsf{F}}_{\ensuremath{\mathsf{B}}} \ \dots \ \mbox{fitting parameters} \ \ensuremath{\mathsf{Parameters}} \ \ensuremath{$

 \Rightarrow First step: constant flux thickness and conductivity

Content

Introduction

- The System Strand-Mould
- Objectives

Modelling Boundary Conditions

- Model View
- General Parameters
- Mechanical Analysis of the Strand Shell
- Mould Flux Consumption Model

Results

- Variation of Steel Grades
- Comparison with Plant Trials

Summary

- Model evaluated for 4 different steel grades
- Constant casting speed and superheat

Steel	Cp
Α	0.09
В	0.11
С	0.37
D	0.82

 $C_p = %C - 0.04 %Mn - 0.1 \%Si + 0.1 \%Ni - 0.04 \%Cr$

Constant casting speed and superheat

Resulting total heat transfer coefficients

Constant casting speed and superheat

Resulting total heat transfer coefficients

Constant casting speed and superheat

Resulting total heat transfer coefficients

Transferability to practise:

Plant measurements at caster with the same dimensions.

Local heat flux determined by inverse modelling.

Comparisons for Steels C and D

Lechner, M., J. Reiter, C. Bernhard, M. Forsthuber and O. Zach, BHM, Vol. 149 (2004), 101-106.

Transferability to practise:

- Integral heat flux as an overall benchmark quantity
- Reference points at several equivalent carbon contents

Lechner, M., J. Reiter, C. Bernhard, M. Forsthuber and O. Zach, BHM, Vol. 149 (2004), 101-106.

Rauter W., Diploma Thesis, University of Leoben, Austria, 2001.

Numeric Modelling of the Heat Transfer in the CC Mould

Transferability to practise:

- Integral heat flux as an overall benchmark quantity
- Reference points at several equivalent carbon contents

Lechner, M., J. Reiter, C. Bernhard, M. Forsthuber and O. Zach, BHM, Vol. 149 (2004), 101-106.

Rauter W., Diploma Thesis, University of Leoben, Austria, 2001.

Numeric Modelling of the Heat Transfer in the CC Mould

Content

Introduction

- The System Strand-Mould
- Objectives

Modelling Boundary Conditions

- Model View
- General Parameters
- Mechanical Analysis of the Strand Shell
- Mould Flux Consumption Model

Results

- Variation of Steel Grades
- Comparison with Plant Trials

Summary

- Heat transfer resistance is made up of several components:
 - Resistances of mould and strand surfaces,
 - Resistance of air gap,
 - Resistance of mould flux.

- Heat transfer resistance is made up of several components:
 - Resistances of mould and strand surfaces,

⇒ Literature

- Resistance of air gap,
- Resistance of mould flux.

- Heat transfer resistance is made up of several components:
 - Resistances of mould and strand surfaces,

⇒ Literature

- Resistance of air gap,
- Resistance of mould flux.

- Heat transfer resistance is made up of several components:
 - Resistances of mould and strand surfaces,
 - Resistance of air gap,
 - Resistance of mould flux.

 \Rightarrow Mechanical model

 \Rightarrow Literature

⇒ Mould flux consumption model

 \Rightarrow Literature

 \rightarrow Mechanical model

- Heat transfer resistance is made up of several components:
 - Resistances of mould and strand surfaces,
 - Resistance of air gap,
 - Resistance of mould flux.

⇒ Mould flux consumption model

- Presented model has been evaluated for 4 steel grades
 - \Rightarrow Expected tendencies were confirmed;
 - \Rightarrow Great overall consistency with measured local heat flux;
 - ⇒ Integral heat flux as an overall benchmark correlates well.

 \Rightarrow Literature

- Heat transfer resistance is made up of several components:
 - Resistances of mould and strand surfaces,
 - Resistance of air gap,
 - Resistance of mould flux.

⇒ Mould flux consumption model

→ Mechanical model

- Presented model has been evaluated for 4 steel grades
 - \Rightarrow Expected tendencies were confirmed;
 - \Rightarrow Great overall consistency with measured local heat flux;
 - ⇒ Integral heat flux as an overall benchmark correlates well.
- Next steps: Detailed analysis of flux layer
 - Variable thickness,
 - Changing thermal conductivity.

Numeric Modelling of the Heat Transfer in the Continuous Casting Mould

Sebastian Michelic

C. Bernhard, R. Pierer

Christian Doppler Laboratory for Metallurgical Fundamentals of Continuous Casting Processes (CDL-MCC)

University of Leoben, Austria

