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ABSTRACT 

Refractory linings are vital components of high temperature vessels. Successful lining concept 

design can avoid the premature wear of refractory linings, allow for more economically efficient 

configuration of refractories, and improve the efficiency of high-temperature processes and save 

energy [1]. The thermal and thermomechanical behavior of refractory linings has a significant 

influence on the lifetime of vessels and is affected by many factors, for instance, the geometry of 

vessels, the properties of refractory lining, and the process conditions. The direct measurement of 

stresses at high temperature conditions is nearly impossible. This hinders the proper applications 

of refractory linings for the specific conditions. The present thesis aims to optimize the lining 

concept of a steel ladle considering the influence of multiple factors and to predict the thermal 

and thermomechanical performance of the lining concept.  

A set of tools in the Taguchi method were used for the lining concept optimization. These tools 

are orthogonal arrays (OAs), analysis of variance (ANOVA), and signal-to-noise (S/N) ratio. 

Lining configurations were designed by OAs and finite element simulations were performed with 

the commercial software ABAQUS to survey the thermal and thermomechanical behavior of the 

designed lining concepts. The significance of factors was quantitatively ranked by ANOVA and 

the optimal levels of each factor were evaluated by S/N ratios. Backpropagation artificial neural 

network (BP-ANN) was applied to predict lining concept performance.  

The results show that the proposed two lining concepts optimized by the Taguchi method 

showed a substantial decrease in heat loss through the steel shell and thermomechanical load at 

the hot face of the working lining [1]. The performance of 128 lining concepts was predicted by 

BP-ANN models. High prediction accuracy can be achieved by applying suitable BP-ANN 

models. The coefficients of determination are 0.9970, 0.9950, 0.9364 for maximum compressive 

stress at the hot face of the working lining, end temperature and the maximum tensile stress at 

the cold end of the steel shell, respectively. In addition, the guidelines to define minimum 

training dataset size, node number in the hidden layer, and training algorithms were proposed to 

optimize BP-ANN architectures for a steel ladle system. 
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1. Problem definition and methodology applied 

Steel ladles act as transportation vessels and refining units, and subjected to a severe operating 

environment during service. The lifetime of steel ladles depends significantly on the thermal and 

thermomechanical behavior of refractory linings. The performance of refractory linings is 

affected by many factors, for instance, the geometry and the material properties of linings; and it 

is tough to directly measure the temperatures and stresses in the linings during service. Therefore, 

it’s necessary to evaluate the thermal and thermomechanical performance of various lining 

concepts numerically. 

As the performance of refractory linings is affected by many factors, application of advanced 

measures to efficiently facilitate the decision-making is of importance. The application of the 

finite element method combined with the Taguchi method is promising. To this end, suitable 

orthogonal array shall be defined to design the lining concepts. With the modelling results, 

significance of factors and their optimal levels shall be obtained with proposed optimal lining 

concepts. 

The instantaneous prediction of thermal and thermomechanical performance of optimized lining 

concepts is also desirable for efficient lining concepts design. Artificial neural network (ANN) is 

a powerful and commonly used predictive technique. The training dataset contains 160 lining 

configurations obtained by applying five orthogonal arrays. The thermal and thermomechanical 

responses were obtained from finite element simulations. The prediction accuracy of ANN is 

mainly affected by the complexity of the problem, the quality of the dataset and architectural 

parameters. Therefore, guidelines shall be investigated to define dataset size, node number in the 

hidden layer based on the variation/response complexity, minimum number of input variables, 

and training algorithms for the steel ladle system.  
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2. State of the art 

Refractory linings play a significant role in high temperature industrial vessels, such as, 

metallurgical vessels for iron and steel industry, rotary kilns for cement industry, and channel 

induction furnace for foundry industry. These vessels are subjected to a severe operating 

environment during service and their performances influence the operation processes. The 

campaign lives of refractory linings depend on their thermal and thermomechanical behavior. 

It is a tough task to directly measure stresses and temperatures especially at the working lining of 

vessels in service. With mathematical and numerical modellings, the qualitative and quantitative 

predictions of these quantities and analysis of refractory material damage and failure mechanics 

[2-8] are possible. To facilitate the optimization of refractory linings, many numerical 

simulations have been performed to reveal the thermal and thermomechanical performance of 

refractory linings in a variety of vessels considering the influence of refractory materials and 

their properties, lining thicknesses, lining structures, and process conditions. 

2.1. Refractory linings of industrial vessels 

2.1.1. Metallurgical vessels for iron and steel industry  

Blast furnace is a complex industrial reactor used to produce hot metal from iron ore [9]. The 

lifetime of a blast furnace significantly depends on the lining erosion. The dissection of blast 

furnace shows that lining erosion mainly centers on two parts: one is the hearth side wall and 

bottom, and another is the bosh, belly and lower shaft [10]. S. Kumar [11] found that the hot 

metal, cooling conditions and coke-bed states influence the temperature profile and the refractory 

wear in the blast furnace hearth. H. W. Gudenau [12] found that bricks having a high thermal 

conductivity show high resistance to crack and spall formation; wear in the heart zone can be 

reduced much more efficiently by adding aluminum oxide to the carbon bricks than by increased 

cooling measures. D. Gruber et al. [13] investigated the role of the ramming mix to avoid 

harmful thermomechanical stresses. The results showed that the thickness and the 

compressibility of the ramming mix are the major parameters to avoid too high compressive 

stresses within the ceramic cup. Compared with cast iron and aluminum, copper is found to be a 

better alternative for blast furnace cooling staves [14].  
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RH degassers are important secondary steelmaking equipment and are widely used in the 

production of high grade steels [15]. Processes of decarburization, denitrogenation, and 

dehydrogenation are carried out in RH degassers. The RH degasser is comprised of an upper 

vessel, a lower vessel, and two snorkels [3]. These components act as an integrated vacuum 

chamber after submergence of the snorkels into the liquid steel [3]. Snorkels undergo severe 

thermomechanical loads due to the normal cyclic operations including preheating, submerging, 

and idle time. S. Jin et al. [3] investigated the thermomechanical failure mechanism of the 

magnesia chromite bricks in the wear lining. The results showed that at the beginning of the 

submerging process, tensile failure occurs closest to the hot face of the lowest course of bricks 

prior to shear failure or creep. Furthermore, shear failure and creep contribute to the joint 

opening at the hot face. The concept of using less brittle material for the wear lining and a 

relative stiff monolith for the outer lining of the snorkel indicated that the tensile failure 

occurring from the hot thermal shock can be mitigated.  F. Damhof et al [16] found that a 

reduction in the idle time of the degassing installation reduces the damage and consequently 

increases the lifetime of the refractory concrete lining. The presence of joints in the RH snorkel 

can reduce the stresses in the lining by up to 50% [17].   

Converters are vessels used to convert carbon-rich liquid hot metal from blast furnace to low-

carbon steel [18]. The converter vessel consists of a spherical bottom, a cylindrical shell, and an 

upper cone [18]. The lining of oxygen converters consists of working lining and permanent 

lining. During the blowing of gas, the refractory lining of an oxygen converter is under arduous 

conditions of aggressive slag, oxidizing atmosphere and high temperature. The lining wear is 

most serious in the zone in contact with the slag. Expansion allowance and joint conditions affect 

the damage of refractory structures [17, 19-22]. A high conductivity and low thermal expansion 

of the working lining can reduce the thermal stress of a converter [19]. D. Gruber et al. [22] 

identified that bending stresses generated by the thermal expansion of the lining is a principal 

failure reason in the bottom/wall transition zone of an investigated case. K. Andreev et al. [17, 20] 

found that the stress needed to close the joint is proportional to the material stiffness; 

temperature influences the joint closure by changing the stiffness of material and by reducing the 

initial joint gap due to thermal expansion.  
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Torpedo cars are essential components of the supply system during transportation of hot metal 

from the blast furnace to the secondary refining area. There are several factors that concurrently 

influence the performance of torpedo car lining. For instance, mechanical stress caused by the 

weight of the hot metal, the erosive effect caused by the liquid metal when filling up, 

transporting, and emptying the torpedo car, the chemical stress caused by reactive interaction of 

the solid and liquid phase, and the thermal stress caused by the temperature drop [23]. These 

factors lead to the intense slag corrosion and structural spalling of the working linings. Jin et al. 

[24] modeled the thermomechanical behavior of refractory linings in a torpedo car considering 

the working lining spalling. The results revealed that the application of a proper insulating 

material can decrease the heat loss, thermal shock intensity, and joint opening at the hot face 

although the joint opening during refining stages worsens when severe spalling occurs in certain 

cycles. The application of compliant insulating materials gives rise to mild thermomechanical 

loads in the steel shell [24]. Liu et al. [25] established a mathematical model to evaluate the heat 

preservation performance of the torpedo ladle with and without an insulating lining. The results 

showed that the torpedo ladle with a nanoporous insulating layer can effectively increase the 

thermal resistance and improve thermal storage capacity. A two-dimensional finite element 

model was developed by L. F. V. Gonzalez et al. [2] to compute the temperature distribution in a 

torpedo car holding pig iron.  

Steel ladles, composed of refractories and steel construction components, act as transportation 

vessels and refining units for the steel melt. Refractory linings insulate the steel shell from the 

steel melt, and thus reduce the heat loss from the steel shell. A well-lined steel ladle offers 

efficient temperature control of the steel melt and is beneficial to the steel quality and 

productivity [26-29]. The performance of a steel ladle is influenced by many factors; for instance, 

material properties, lining design and thicknesses, and process conditions. The refractory failure 

analysis [30-32] and the thermomechanical behavior [33-35] of steel ladle linings have been 

extensively studied with numerical modelling. The ladles with the working lining material of low 

thermal conductivity, thermal expansion, and Young’s modulus showed a better performance in 

saving energy and reducing average shell temperatures and equivalent stress [36, 37]. Compared 

with high alumina bricks and alumina magnesia carbon bricks, magnesia carbon bricks perform 

better on the heating capacity and the lining temperature uniformity [38]. The thickness of the 

working lining has an impact on the temperature distribution, and the steel shell temperature 
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increases as the thickness decreases [37, 39-41]. The application of an insulating layer reduces 

heat loss and the shell temperature [36, 39, 42-45]. Thermal stresses caused by thermal 

expansion can be released by an expansion joint [46, 47]. Preheating reduces the compressive 

stress at the hot face of the working lining [34, 42, 48]. The preferable preheating time is 15-20h 

[49]. An increased preheating temperature can reduce the temperature drop of the steel melt and 

the temperature gradient of ladle linings [50]. 

2.1.2. Rotary kilns for cement industry 

Rotary kilns are widely used in the cement, metallurgical, chemical industries, etc [51]. Cement 

kilns are used for the pyro-processing stage of manufacturing of ordinary Portland cement 

clinker and clinkers of other types of hydraulic cements, in which calcium oxide reacts with 

silica, alumina and iron oxide-bearing minerals to form a mixture of calcium silicates, aluminates 

and a calcium aluminate ferrite [52]. As the kiln is heated and rotates during production, it is 

subjected to a complex stress/strain condition. The state of the refractory lining impacts critically 

on the availability of the kiln. If the lining is significantly deteriorated and can no longer protect 

the steel shell from the heat, the production will be shut down and lead to high maintenance costs 

and production delays [5].  

Production capacity and lifetime can be improved with increasing knowledge of lining failure 

mechanisms. D. Ramanenka et al. [5] studied the influence of ovality, brick’s Young’s modulus 

and friction coefficient on stress and brick displacement at two rotational speeds in cold state. It 

was found that the induced loads in the lining are harmless regardless of the tested conditions ‒ 

challenging the traditional beliefs [5]. Brick displacements were significantly affected by 

rotational speed and ovality. The influence of heating and cooling rates on the stress state of the 

brick lining in a rotary kiln was studied with finite element simulations [53]. The conducted 

simulations showed that considerable tensile stress may appear in a large area of the brick during 

the initial heating stage. The positive effect of lower heating rate on the tensile stress was 

considerable. Five hypothetical cooling rates were investigated: 2, 4, 8, 16 and 32h from steady 

state temperature (1250 °C) to the ambient temperature for the hot face of the brick lining. The 

hypothetical cooling rates showed that very high tensile stresses may occur on the surface of the 

bricks, potentially leading to surface spalling if too fast cooling rates were applied [53]. Axial 

compaction is highly important on the stress development in the lining [53]. It is recommended 
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to always to achieve a tight compaction of the brick lining and to take measures to lower the 

heating and cooling rates. Three commercial alumina silicate bricks were evaluated in 

compression until failure for a temperature range of 25-1300 C° and the data were used for 

modelling stress levels of a hot rotary behavior at steady state after the expansion of the system 

[4]. It was found that for all three brick types the compressive strength increased with rising 

temperature with a peak in the vicinity of 1000 °C. The maximum increase was between 50 and 

150% for the different brick types. After passing 1100 °C the compressive strength rapidly and 

considerably decreased. The numerical results indicated that severe boundary conditions 

(expansion of the lining is highly restricted) can potentially lead to a compressive stress up to 34 

MPa in the brick lining at steady state [4]. The created model has high potential for being used as 

a tool in investigations of the lining in hot state. A numerical model was developed by S. EI. 

Fakkoussi et al. [54] to evaluate the mechanical strength of steel shims and vital components in 

the drive system of a cement kiln. The results provide a guide to the accurate prediction of the 

optimal preventative maintenance interval for the rotary cement kilns drive element [54].  

2.1.3. Channel induction furnace for foundry industry 

Induction furnaces are used extensively for melting, holding and casting metals or alloys in the 

foundry industry [55]. There are two basic designs of induction furnaces, the core type or 

channel furnace and the coreless one. The channel induction furnace is preferred for continuous 

production, owing to its off-shift melting capacity, excellent metal homogeneity and high 

efficiency [56]. A channel induction furnace consists of a refractory-lined vessel and one or 

several inductors. An electromagnetic field is created when alternating current from an inductor 

passes through the inductor coil. Eddy current induced by the electromagnetic induction flows in 

the charge materials and generates the heat for melting and holding [57]. The efficiency of the 

furnace is the ratio of the energy used for melting the charge materials to the energy input to the 

system. The frequency has a critical influence on the energy loss and is one of the main issues 

when constructing an efficient channel furnace [58]. Thermal stresses in the refractory lining 

caused by high temperatures during the loading cycle can cause erosion of the lining and 

premature inductor failure [59, 60].  

N. T. T. Hang et al. [58] investigated the influence of three coil shapes (rectangular, extruded 

and 180 °extruded inductor) on the efficiency of a channel induction furnace through simulation 
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in two-dimensional space using ANSYS. The highest efficiency of 98.01% is achieved at the 

remarkable low frequency of 9 Hz because the energy loss at 9 Hz is the minimum in the 

frequency range of 0 Hz to 60 Hz. The 180° extruded inductor has a higher efficiency than the 

rectangular and extruded inductor at frequencies higher than 9 Hz. A three-dimensional 

mathematical model was developed to analyze the magnetic and temperature fields in a lined 

inductor of melting-holding furnace for copper melting [61]. Two stabilization pauses are 

necessary to maintain an even temperature of the inductor lining and reduce temperature 

gradients. Furthermore, the control of the temperature distribution and the gradient could serve 

as parameters for the diagnosis of the furnace condition.  A tool based on a thermal model and 

unidirectional axial channel flow estimation was developed to monitor the thermal regime of the 

inductor [59, 60]. The information provided by the tool can be used for the different operating 

conditions to monitor possible failure resulting from temperature related erosion of the refractory. 

For the possible energy savings and extension of the volume capacity, 16 lining concepts of a 

channel induction furnace were designed by an orthogonal array with considering different lining 

materials and thicknesses [57]. Finite element simulations were carried out to determine the 

temperatures and stresses during the preheating and holding. A thickness-thickness-temperature 

isothermal map was provided to show the acceptable thickness range of working and insulating 

linings. Thermal and thermomechanical evaluations were performed for two channel induction 

furnaces with different insulating materials [56]. Compared with the channel induction furnace 

with an insulation currently used in the factory, the other one with a lighter insulation reduces the 

heat loss from the steel shell and material consumption. Moreover, the thermomechanical loads 

in the refractory linings and steel shell remain within a reasonable range [56].  

2.2. Methods applied for optimization and prediction 

2.2.1. The Taguchi method  

2.2.1.1. Introduction 

The Taguchi method was developed by G. Taguchi in the late 1940s as a process optimization 

technique [62] and is generally implemented in both the design and manufacturing phase of a 

product. It is used to assess how product quality is affected by controllable and uncontrollable 

factors in order to determine optimal levels for control factors in relation to product specification 
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and usage requirements [63]. Successful applications of the Taguchi method have taken place in 

many areas, for example, manufacturing processes [64-68], material design and development 

[69-73], and geometry design [74, 75].  

The main techniques for design stage in the Taguchi method are orthogonal arrays (OAs), 

analysis of variance (ANOVA), and signal-to-noise (S/N) ratio. In general, the applications of 

the Taguchi method includes the following steps [76-80]: (1) definition of the investigated 

problem and the goals; (2) determination of factors that have influences on the responses and the 

levels of these factors; (3) experimental design using orthogonal arrays; (4) performance of 

experiments; (5) evaluation of the factor significance via ANOVA and determination of the 

optimal levels of the factors by S/N ratios; (6) validation of optimal cases.  

2.2.1.2. Orthogonal arrays (OAs)  

The experimental design of the Taguchi method is carried out by orthogonal arrays, which are 

highly fractional factorial designs, capable to consider the effects of multiple factors on the 

responses, and yield a minimum number of experiments [76]. An orthogonal array can be 

denoted by OA (N, k, s, t), where N is the number of rows, k is the number of columns, s is the 

number of symbols, and t is the strength. In orthogonal arrays the number of rows is equivalent 

to the number of experiments and each row presents a combination of factor-levels in a certain 

experiment; the number of columns equals to the number of factors and each column indicates 

one factor; the number of symbols equals to the number of levels [76]. In an orthogonal array 

with a strength of t, the occurrence of any level of every factor is equal in each column, and all 

combinations of levels in t factors occur with equal frequency. These properties are called the 

balancing and orthogonality properties of orthogonal arrays [81]. For example, OA (4, 3, 2, 2) is 

an array with the strength of two and can be represented by the following matrix:  

[

0 0 0
0 1 1
1 0 1
1 1 0

] 

There are two levels in the first column, 0 and 1, both occur twice in this column. This is the 

balancing of orthogonal arrays. As the strength of the orthogonal array is two, so the second and 

the last columns are taken to explain the orthogonality. There are four level combinations of 
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these two columns: [0,0], [1,1], [0,1], [1,0]. The total number of rows is four, hence each 

combination occurs once. In addition, according to the number of factors and their levels, 

different orthogonal arrays can be used in the Taguchi method. There are two types of orthogonal 

arrays: pure orthogonal arrays and mixed-level ones. In a pure orthogonal array, the number of 

levels is the same for all factors. If this is not the case, a mixed-level orthogonal array can be 

applied.  

2.2.1.3. Analysis of variance (ANOVA) 

ANOVA can be used to estimate the significance of each factor. It’s a multivariate statistical 

technique for inferring whether there are really differences between the averages of variables in a 

population, based on the experimental results [82]. In order to determine whether the differences 

are significant, the differences between the experiments, r variance, are calculated with ANOVA. 

The sum of squares, the degree of freedom, and the percentage of contribution are included in an 

ANOVA table. There are three types of the sum of squares, namely, the total sum of the squares, 

the factor sum of the squares, and the error sum of squares (also called experimental error) that is 

calculated by subtracting the sum of all factor sums of squares from the total sum of squares. The 

factor with the highest percentage of the contribution is ranked the highest in terms of the 

relative significance among all the factors, because it has a major contribution in the overall 

variance. There are several advantages of ANOVA [83]: (1) sum of squares of each factor is 

accounted; (2) high error contribution indicates that some necessary factors have not been 

included in the study; (3) the confidence interval for optimal conditions can be constructed; (4) 

the results can be statistically validated.  

2.2.1.4. Signal-to-noise (S/N) ratio 

The signal-to-noise (S/N) ratio is extensively used as a quality index, rather than being merely 

associated with the signal and noise [1]. S/N ratio follows a transformation of the trial results 

into a logarithmic scale, which changes the results of unknown nonlinear behavior into a linear 

relationship with the influencing factors [62]. Based on the quality characteristics to be 

optimized, different S/N ratios can be chosen [1,62]: smaller-the-better, nominal-the-best, and 

larger-the-better. The S/N ratios can be calculated by equations (1) - (3). The experimental 

conditions with the highest S/N ratios are selected as optimal conditions. 
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Smaller-the-better: 𝑆/𝑁 = −10log (
1

𝑛𝑖
∑ 𝑦𝑖𝑗

2𝑛𝑖
𝑗=1 )                                            (1) 

Nominal-the-best:𝑆/𝑁 =  −10log (
1

𝑛𝑖
∑ (𝑦𝑖𝑗 − 𝑦

𝑖
)2𝑛𝑖

𝑗=1 )                                  (2) 

Larger-the-better: 𝑆/𝑁 =  −10log (
1

𝑛𝑖
∑

1

𝑦𝑖𝑗
2

𝑛𝑖
𝑗=1 )                                                (3) 

Where 𝑛𝑖  is the number of experiments at the 𝑖𝑡ℎ level, 𝑦𝑖𝑗   is the value of the 𝑗𝑡ℎ observation at 

the 𝑖𝑡ℎ  level, and 𝑦
𝑖  is the mean value of the observations at the  𝑖𝑡ℎ level of a factor.  

2.2.2. Back-propagation artificial neural network (BP-ANN) 

2.2.2.1. Introduction 

Artificial neural network (ANN) is a popular machine learning technique started in 1940s [84] 

and also an abstract computational model based on the organizational structure of the human 

brain [85]. ANN is capable to represent any nonlinear mapping to the required accuracy [86] and 

has many advantageous characteristics, which include generalization, adaptation, universal 

function approximation, parallel data processing, robustness, etc. [84]. Therefore, it has been 

widely applied in various areas such as function approximation, process control, clustering, 

pattern recognition, and prediction [87]. Among these applications, predictive models based on 

ANN technique were extensively employed to solve real world nonlinear problems in civil 

engineering [88-94], material design and development [95-106], structure damage detection 

[107-109], geotechnical engineering [110-113], and steelmaking industry [114-121].  

An ANN is composed of a set of interconnected processing units, called nodes or neurons 

[84,122]. The nodes are arranged in layers: one input layer, one output layer, and one or more 

hidden layer(s) between the input and the output layers [87]. Each node in the input layer is 

connected to every node in the hidden layer, which is connected to the nodes in the output layer. 

The connection between two nodes is called synapse, and each synapse has an associated 

strength or weight, which affects the output of the node. Figure 1 is a schematic of a three-layer 

ANN model [122]. Input variables (𝑥) are introduced to the network as a vector corresponding to 

the nodes in the input layer. These input variables are multiplied by their respective weights (w) 

and a bias (b) is added, yielding a summation (S) for each node of the hidden layer, as shown in 
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equation (4) [122]. An activation function is used to limit the amplitude of the summation of 

each hidden layer node, which is the input for the next layer nodes, as depicted by equation (5) 

[122].  

𝑆𝑘 = ∑ 𝑤𝑗𝑘𝑥𝑗 + 𝑏                     
𝑁𝑣
𝑗=1                                                (4) 

𝑂𝑘 = 𝑓(𝑆𝑘)                                                                                 (5) 

Where Nv is the number of input variables, k is the node index in the hidden layer, Sk is the sum 

at the k
th

 node in the hidden layer, f is the activation (e.g. logistic function, hyperbolic tangent 

function, Gaussian function), wjk is the weight of the j
th

 input at the k
th

 node, xj is the j
th

 input, b is 

the bias and Ok is the output of the k
th

 node in the hidden layer. The information transfer between 

the hidden layer and output layer follows the same mathematical process. The obtained values 

from output layer (y) are a function of input values (x) and the weights (�⃑⃑� ) in the network. 

 

                    Figure 1. A schematic of a three-layer ANN model [122]. 

The main architecture of ANN can be divided into single-layer networks, multilayer perception 

networks, recurrent networks, and mesh networks according to the interconnection of nodes and 

the composition of layers [84]. The multilayer perception (MLP) network trained with error 

backpropagation (BP) algorithms is usually preferable to solve prediction problems [102]. 

Backpropagation algorithm is a supervised learning method and requires a dataset of input-
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output vector pairs [88]. It contains two main phases, referred to as the forward and backward 

phases, respectively [124]. In the forward phase, the inputs are processed layer-by-layer until the 

production of the corresponding outputs. The predicted values at the output layer are compared 

with the target values and errors are calculated. The performance of the network is represented 

by a so called error function 𝐸(�⃑⃑� ) (eq.6) which is defined as the half sum of squared differences 

between the outputs from the network y and the target values d, considering all training samples 

[84]. In the backward phase, weights among layers are adjusted to minimize the error 𝐸(�⃑⃑� ) [84]. 

There is a loop between the two phases to obtain an optimal �⃑⃑� * so that the error E( �⃑⃑� ∗) of the 

whole sample set is as low as possible.  

𝐸 (�⃑⃑� ) =  
1

2
∑ (𝑑𝑖 − 𝑦𝑖(�⃑⃑� ))

2𝑁𝑡
𝑖=1                                                          (6) 

Where Nt is the total number of training samples, di is the target value of the i
th

 training sample, 

and 𝑦𝑖(�⃑⃑� ) is the output value of the i
th

 training sample from the network.  

2.2.2.2. Establishment of ANN models 

The predictive quality of a BP-ANN model is influenced by the properties of the dataset [125-

128], training algorithms [129-132], and the architectural parameters [106], especially the 

number of hidden layers and node number of each layer.  

2.2.2.2.1. The dataset properties 

Three items need to be taken into account considerably for a representative dataset design. First 

is the input variable selection. The selected variables should be informative enough to survey the 

input-output relations [126]. Second is the quality of the dataset. The data should be collected in 

a way that ensures they are distributed evenly in the entire variable space [106]. The last one is 

the dataset size. The minimum training dataset size largely depends on the nature or the 

complexity of the problem and applied ANN architecture [106]. According to an empirical rule, 

the minimum dataset size is approximately 10 times the number of weights and biases in the 

network [133].   
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2.2.2.2.2. Training algorithms 

Training algorithms perform the minimization of the error 𝐸(�⃑⃑� ) (eq. 6) by adjusting the weight 

vector �⃑⃑�  [134]. Many training algorithms have been developed to minimize the error function 

with different strategies [135-138]. The commonly-used training algorithms are based on 

gradient descent, conjugate gradient, quasi-Newton, one-step-secant, and Bayesian regularization 

method.  

Gradient descent method 

The gradient descent with momentum and adaptive learning rate (GDX) algorithm is an 

advanced gradient descent approach adding a momentum item and adaptive learning rate in the 

weight adjustment formula. The GDX algorithm [135] adjusts the weights along the steepest 

gradient of the error function (eq.6) with considering both the current gradient descent and the 

recent changes of the weights. The amount of weight update of iteration r is determined by the so 

called delta rule and calculated according to equation (7): 

∆�⃑⃑� 𝑟 = −𝜂
𝜕𝐸(�⃑⃑� 𝑟)

𝜕�⃑⃑� 𝑟
+  𝛼∆�⃑⃑� 𝑟−1                                                       (7) 

where w is the weights, 𝐸(�⃑⃑� )  is the error function, η is called learning rate, and α is called 

momentum and may defined by the user in the range (0,1). The value of momentum determines 

the size of the contribution of the most recent weights update on the current weights adjustment 

[137]. A higher momentum value leads to a larger training step and hence a faster training [137]. 

Conversely, lower momentum value slows down the training speed [139]. Similarly, the larger 

the learning rate, the faster the training. But, if the learning rate is too large, the network reacts 

quickly to the input changes and may become unstable [139] whilst the training may be 

inefficient with a small learning rate.  

Conjugate gradient method [135-137]  

A series of line searches along conjugate directions were employed in conjugate gradient method 

to determine the optimal step size of the weight update. The conjugate gradient training includes 

three steps [135]. The first step [135] is the initialization of weights and the search direction 

indicated with d0 (eq.8). The second step [135] is to search a local minimum in error along a 
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certain search direction; the weights will be adjusted to the local minimum point (eq.9). The third 

step [135] is to calculate the conjugate of the pervious search direction as the new search 

direction (eq.10); the global minimum error is obtained through iterations.  

  𝑑 0 = −
𝜕𝐸(�⃑⃑� 0)

𝜕�⃑⃑� 0
= 𝑔 0                                                                 (8) 

�⃑⃑� 𝑟+1 = �⃑⃑� 𝑟 + 𝜂𝑟𝑑 𝑟                                                                      (9) 

𝑑 𝑟+1 = 𝑔 𝑟+1 + 𝛽𝑟𝑑 𝑟                                                                 (10) 

Where 𝑔 𝑟 is the negative gradient vectors ( −∇𝐸(𝑤𝑟 )) in iteration r; parameter 𝛽𝑟  can be 

calculated by using either the Fletcher-Reeves algorithm (eq. 11) or the Polak-Ribiere algorithm 

(eq. 12) [137]. The widely used algorithms based on conjugate gradient method are Fletcher-

Reeves (CGF), Polak-Ribiere (CGP), Powell-Beale (CGB), and scaled conjugate gradient (SCG).  

𝛽𝑟 = 
(�⃑� 𝑟+1)𝑇�⃑� 𝑟+1

(�⃑� 𝑟)𝑇�⃑� 𝑟
                                                                     (11) 

𝛽𝑟 = 
(�⃑� 𝑟+1)𝑇[�⃑� 𝑟+1−�⃑� 𝑟]

(�⃑� 𝑟)𝑇�⃑� 𝑟
                                                              (12) 

In CGF and CGP, the parameter 𝛽𝑟 is calculated by equation (8) and (9), respectively. The CGB 

uses the same learning model to compute the conjugate direction with CGF, but resets the search 

direction to the negative of the gradient using a method described by Powell when the error 

function is non-quadratic [140]. Therefore, CGB requires a slightly larger memory space than 

other conjugate gradient algorithms due to the computation of the restarting procedure. The SCG 

is a variation of the conjugate gradient method and uses second order information obtained from 

Levenberg-Marquardt algorithm [140]. The weights are still adjusted along the conjugate 

directions [140]. However, a parameter is used to adjust Hessian matrix and assures that it is 

positive-definite at each iteration, avoiding the need to perform a line search.  The SCG may 

require more iterations to converge than other conjugate gradient algorithms, but it usually 

involves less computation complexity and requires less computer memory for each iteration 

since no line search is needed [140].  

Quasi-Newton method [135, 137, 138] 
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A local quadratic approximation of the error function (eq.6) is used for weight update in the 

Newton’s method. The weight update of the iteration r of the Newton’s method [84] is based on 

the Hessian matrix (Hr, the matrix of second order derivatives) of error function 𝐸(�⃑⃑� ), as show 

in equation (13). The quasi-Newton method updates an approximate Hessian matrix (B) by a 

function of the gradient. The computational complexity is substantially reduced compared with 

the Newton’s method. Broyden–Fletcher–Goldfarb–Shanno (BFGS) update is considered to be 

one of the most successful procedures to iteratively approximate Hessian matrix. The equations 

(14) - (16) are applied in the BFGS for Hessian matrix approximation (Br+1) and weights for 

iteration r+1 [138]. When compared with conjugate gradient algorithms, the BFGS generally 

converges in fewer iterations and is more suitable for small networks with limited number of 

weights, but requires more complex computations and larger memory usage for each iteration. 

�⃑⃑� 𝑟+1 = �⃑⃑� 𝑟 − 𝐻𝑟
−1𝑔 𝑟                                                                 (13) 

𝐺 𝑟 = 𝑔 𝑟+1 − 𝑔 𝑟                                                                     (14) 

�⃑⃑⃑� 
𝑟 = �⃑⃑� 𝑟+1 − �⃑⃑� 𝑟                                                                    (15) 

𝐵𝑟+1 = 𝐵𝑟 + 
𝐺 𝑟𝐺 𝑟

𝑇

𝐺 𝑟
𝑇�⃑⃑⃑� 𝑟

− 
𝐵𝑟�⃑⃑⃑� 𝑟�⃑⃑⃑� 𝑟

𝑇𝐵𝑟

�⃑⃑⃑� 𝑟
𝑇𝐵𝑟�⃑⃑⃑� 𝑟

 ≈ (𝐻𝑟+1)
−1                                  (16) 

One-step-secant (OSS) method [139] 

The OSS represents an attempt to bridge the gap between the conjugate gradient and the quasi-

Newton algorithms to fulfill the need for a secant approximation with smaller storage and 

computation requirements. The OSS does not store the complete Hessian matrix and assumes 

that the previous Hessian was the identity matrix [140]. The additional advantage of the OSS is 

that the new search direction can be calculated without computing a matrix inverse. Therefore, 

the OSS requires less storage and computation per iteration than the BFGS, but slightly more 

than the conjugate gradient algorithms.  

Bayesian regularization method [141-145] 

The Bayesian regularization (BR) algorithm aims to minimize a linear combination of mean sum 

of squared network errors 𝐸(�⃑⃑� ) (eq.6) and the sum of squared network weights 𝑆(�⃑⃑� )[141]. The 
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added item 𝑆(�⃑⃑� ) can improve the generalization capability (the ability to handle new data with 

the acquired knowledge through the learning process). The regularization can be expressed as 

follows [141]: 

𝐹(�⃑⃑� ) =  𝛽𝐸(�⃑⃑� ) +  𝛼𝑆(�⃑⃑� )                                                        (17) 

𝑆(�⃑⃑� ) =  
1

2
 ∑ 𝑤𝑖

2𝑚
𝑖=1                                                                    (18) 

where 𝐹(�⃑⃑� ) is the objective function, 𝐸(�⃑⃑� ) is the sum of squared errors, m is the total number of 

network weights,  𝑆(�⃑⃑� ) is a weight decay regularizer, and α and β are the parameters determine 

how much the weight decay regularizer is involved in the error function 𝐹(�⃑⃑� ). The parameters α 

and β now become additional objectives of the network optimization process and need to be 

determined.      

In a Bayesian network, the network weights are assumed to be random variables. The density 

function [142-144] of the weights and parameter α and β are then determined using Bayesian’s 

theorem, which is described by the following equation: 

𝑃(𝑥|𝐷, 𝛼, 𝛽,𝑀) =  
𝑃(𝐷|𝑥,𝛽,𝑀)𝑃(𝑥|𝛼,𝑀)

𝑃 (𝐷|𝛼,𝛽,𝑀)
                                              (19) 

where x is the vector containing the weight and bias in the network; D represents the data vector; 

and M is the neural network model being used. Forsee and Hagan [145] assumed that the noise in 

the data was a Gaussian distribution. The optimization of the regularization parameters α and β 

requires computing the Hessian matrix of 𝐹(�⃑⃑� ) at the minimum point w
MP 

[142]. Forsee and 

Hagan [145] proposed a Gauss-Newton approximation to the Hessian matrix, which is possible if 

the Levenburg-Marquardt training algorithm is used to locate the minimum. This technique 

reduces the potential for arriving at local minima, and thus increases the generalizability of the 

network.  

2.2.2.2.3. Node number in the hidden layer 

The definition of proper architectural parameters, especially the hidden layers number and the 

node number in each layer, is challenging for ANN model establishment. Generally, an ANN 

model with one single hidden layer is sufficient to survey the input-output relations [133]. 
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Therefore, the determination of the suitable node number in the hidden layer is the key issue. The 

proper node number in the hidden layer depends on the problem nature or complexity and the 

node numbers in the input and output layers [146]. In general, an ANN model with a larger 

number of nodes in the hidden layer can achieve more accurate training results and is capable to 

model more complicated relations, but increases the risk of over-fitting. Contrarily, an ANN 

model with a smaller number of nodes in the hidden layer may be insufficient to depict the 

underlying relations [134]. To seek an optimal node number, many researchers employed the 

trial and error method with a diverse range of node numbers [147-151]. Some researchers merely 

followed the rules of thumb and the application of rules can significantly reduce the number of 

trials. The common used empirical rules [84, 152-159] are summarized as follows:  

𝑁ℎ = (𝑁𝑖 + 𝑁𝑜)
1/2 + 𝑎         a ϵ [0,10]                                                  (20)                                                  

𝑁ℎ = (𝑁𝑖 + 𝑁𝑜)
1/2 + 𝑎         a ϵ [1,10]                                                  (21) 

𝑁ℎ = (𝑁𝑖 × 𝑁𝑜)
1/2                                                                                 (22) 

𝑁ℎ = 𝑁𝑡𝑟𝑎𝑖𝑛/(𝑁𝑖 + 1)                                                                             (23) 

𝑁ℎ = 
1

2
 (𝑁𝑖 + 𝑁𝑜) + 𝑁𝑡𝑟𝑎𝑖𝑛

1/2
                                                                   (24) 

𝑁ℎ = 
2

 
 𝑁𝑖 + 𝑁𝑜                                                                                      (25) 

𝑁ℎ  ≤ 2𝑁𝑖                                                                                                  (26) 

2√𝑁𝑡𝑟𝑎𝑖𝑛 +  𝑁𝑜  ≤  𝑁ℎ  ≤ 2𝑁𝑡𝑟𝑎𝑖𝑛 + 1                                                    (27) 

where Ni, Nh, and No are the node numbers in the input, hidden, and output layers; Ntrain is 

number of training samples; and a is an empirical integer not larger than 10.  
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3. Investigations and results 

A steel ladle of Voestalpine was the object used for lining concept optimization. Figure 2 (a) 

depicts the simplified two-dimensional model representing a horizontal cut through the slag-line 

position in the upper part of the steel ladle [1]. The outer diameter of the steel ladle is 1.828m. 

The model is composed of a two-half brick working lining, a monolithic permanent lining, a 

fiber board, and a steel shell. Another model including an additional insulating lining was 

established for lining concept optimization, as shown in Figure 2 (b) [1]. The permanent lining 

was made of bricks in this model. The radial expansion allowance between two bricks in both 

two models was 0.4 mm. Factors were lining and steel shell thicknesses, thermal conductivity, 

and Young’s modulus of lining materials and listed in Table 1 [1]. The interested thermal and 

thermomechanical responses were the end temperature and the maximum tensile stress at the 

cold end of the steel shell, and the maximum compressive stress at the hot face of the working 

lining. 

 

(a) 

                      

(b) 

Figure 2. Two-dimensional model of (a) the reference steel ladle case; (b) the steel ladle for the 

lining concept optimization study [1].  
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                        Table 1. Geometrical and material property variations of the steel ladle [1].  

Impact factors Label of factors  

Thickness  

Working lining A 

Permanent lining B 

Insulation lining C 

Steel shell J 

Thermal conductivity  

Working lining D 

Permanent lining E 

Insulation lining F 

Young's modulus  

Working lining G 

Permanent lining H 

Insulation lining I 

FE-modeling of the steel ladle, taking into account elastic material behavior, was performed 

using the commercial software, ABAQUS. The simulation [1] included the preheating of the hot 

face of the working lining to 1100 °C over 20h, and a subsequent thermal shock caused by 

tapping the steel melt of 1600 °C into the ladle. After a refining period of 95 min, a 50 min idle 

period proceeded. Displacement of linings was allowed in the radial direction and constrained in 

the circumferential direction with a symmetry condition [1]. The heat transfer between the liquid 

melt and the hot face of the working lining, the cold end of the steel shell, and the atmosphere 

was defined as being temperature-dependent using a surface film condition function [1]. The 

interfaces between linings were crossed by heat flux, and a heat transfer coefficient allowing for 

radiation and convection was applied [1].  

3.1. Optimization of steel ladle lining via the Taguchi method 

Thirty-two lining configurations defined in terms of a mixed-level orthogonal array L32 (4
9
  2

1
) 

were used to optimize steel ladle lining with respect to their thermal and thermomechanical 

behavior. Ten factors were of interest, nine of which had four levels and the thickness of the steel 

shell had two levels. The results [1] of ANOVA and S/N ratios are summarized in Figures 3 and 

4. 
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3.1.1. Factor significance ranking 

 

Figure 3. Contribution and confidence levels (in parentheses) of factors for thermal and 

thermomechanical responses [1].  

Figure 3 shows the significance of factors to thermal and thermomechanical responses according 

to ANOVA. The top four significant impact factors to the temperature at the cold end of the steel 

shell were the thickness of the working lining (A), the thermal conductivity of the insulation 

material (F), the thickness of insulation material (C), and the thermal conductivity of the working 

lining material (D), in descending order [1]. Their individual confidence levels were all higher 

than 90% and they together contributed 89% to the variance of the temperature at the cold end of 

the steel shell.  The thermal conductivity of the insulation material (F), the Young’s modulus of 

the working lining material (G), the thickness of the steel shell (J), and the thermal conductivity 

of the working lining material (D) were the first top four impact factors to the maximum tensile 

stress at the cold end of the steel shell. Each of them had confidence levels higher than 95% and 

contributed 71% to the variance of the tensile stress [1]. The Young’s modulus of the working 

lining material (G) had an overwhelming influence on the maximum compressive stress at the 

hot face of the working lining, with a 93% contribution [1].  
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3.1.2. Optimal levels 

 

Figure 4. S/N ratios for the thermal and thermomechanical responses [1].  

Figure 4 shows the optimal S/N ratios of the individual factors for the temperature at the cold 

end of the steel shell, the maximum tensile stress at the cold end of the steel shell, the maximum 

compressive stress at the hot face of the working lining were A1B2C1D4E4F4G1H1I3J1, 

A4B4C4D4E2F1G4H4I4J1, and A4B2C2D3E1F3G4H1I4J2, respectively [1].  

3.1.3. Proposal and validation of optimal lining concepts 

With taking into account the results of ANOVA, S/N ratios, and the practical materials, two 

optimal lining concepts were proposed. The details of lining structure and material properties are 

shown in Table 2 [1]. The comparison of the dimensionless responses between the reference case 

and the two optimal lining concepts is given in Table 3 [1]. The temperature at the cold end of 

the steel shell and the maximum compressive stress at the hot face of the working lining were 

decreased by 19% and 26% for case 1, and 25% and 25% for case 2, with a slight increase of the 

maximum tensile stress at the steel shell [1]. 
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Table 2.  Two proposed optimized lining concepts with different insulation materials [1]. 

 

Thickness 

(mm) 

Thermal conductivity 

(W m
-1

K
-1

) 

Young's 

modulus (GPa) 

Thermal expansion 

coefficient (10
-6

K
-1

) 

Working lining 155.0 9.0 40 12.0 

Permanent lining 52.5 2.2 45 5.0 

Insulation (Case1) 37.5 0.5 3 6.0 

Insulation (Case2) 37.5 0.4 4 5.6 

Steel shell 30.0 50.0 210 12.0 

 

Table 3. Comparison of results for the reference case and optimal cases without changing the 

volumetric capacity of the steel ladle [1]. 

 

Dimensionless 

temperature at the cold 

end of the steel shell 

Dimensionless 

maximum tensile 

stress at the steel shell 

Dimensionless maximum 

compressive stress at the hot 

face of the working lining 

Reference case 1 1 1 

Optimal case 1 0.81 1.16 0.74 

Optimal case 2 0.75 1.19 0.75 

3.2. Prediction of thermal and thermomechanical responses with 

BP-ANN models 

The training dataset contained 160 samples constituted by ten factors and three responses 

obtained from FE simulations. Three-layer BP-ANN models developed using MATLAB were 

employed to predict the thermal and thermomechanical responses. The responses were predicted 

by the leave-one-out (LOO) cross validation method. The quantities used to quantitatively assess 

the performance of the BP-ANN models were maximum relative error of all testing results 

(RE_MAX), mean relative error (MRE), relative root mean squared error (RRMSE), and 

coefficient of determination (B), as shown in equations (28) - (31) [122]: 

    𝑅𝐸_𝑀𝐴𝑋 = 𝑀𝑎𝑥(
|𝑑𝑖− 𝑦𝑖|

𝑑𝑖
)                                                                 (28) 
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𝑀𝑅𝐸 =  
1

𝑛
∑

|𝑑𝑖−𝑦𝑖|

𝑑𝑖

𝑛
𝑖=1                                                                   (29) 

𝑅𝑅𝑀𝑆𝐸 = 
√

1

𝑛
∑ (𝑑𝑖−𝑦𝑖)

2𝑛
𝑖=1

�̅�
                                                                 (30) 

𝐵 = 1 − 
∑ (𝑑𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑑𝑖−�̅�)2𝑛
𝑖=1

                                                               (31) 

where n is the number of the testing samples, yi is the predicted value of the i
th

 testing sample by 

the BP-ANN models, di is the response value of the i
th

 sample from FE modeling, and �̅� is the 

mean response value of all testing samples received from the FE modeling. The influence of the 

dataset properties (variable completeness and dataset size), the node number in the hidden layer, 

and training algorithms on the BP-ANN prediction performance were investigated.  

3.2.1. Architectural parameters study of BP-ANN model 

3.2.1.1. Dataset properties 

The influence of variable completeness (the ratio of input variables to the total number of 

variables) on the BP-ANN prediction performance is shown in Figure 5 [146]. The definition of 

the symbols is show in Table 1 and combinations of input variables together with their 

contribution to the response are listed in Table 4 [146]. In general, for all three responses, lower 

RE_MAX, MRE and larger B can be achieved with increasing variable completeness [146]. The 

minimum numbers of variables for temperature, tensile stress, and compressive stress were 5, 6, 

and 3 to reach arbitrarily defined error tolerances, i.e. 15% for RE_MAX, 3% for MRE, and 0.90 

for B [146].  
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Table 4. Variable combinations and their contribution to the response for  

 BP-ANN models [146]. 

Response 
Number of input 

variables 
Variable labels 

Contribution to 

response (%) 

Compressive stress 

1 G 93 

2 G, J 96 

3 G, J, D 98 

10 A - J 100 

End temperature 

3 A, D, F 71 

4 A ,D, F, C 89 

5 A ,D, F, C, E 94 

10 A - J 100 

Tensile stress 

4 F, G, D, J 71 

5 F, G, D, J, C 78 

6 F, G, D, J, C, H 85 

7 F, G, D, J, C, H, I 91 

10 A - J 100 

 

 

(a) 

0

5

10

15

20

25

70 80 90 100

R
E

_
M

A
X

 (
%

)

The ratio of input variables to the total 

number of variables (%) 

Compressive stress

Tensile stress

End temperature



CHAPTER 3: INVESTIGATIONS AND RESULTS 

25 
 

 

(b) 

 

(c) 

Figure 5. Performance assessment (a) RE_MAX, (b) MRE, and (c) B of BP-ANN models 

with different variable completeness [146].  
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BP-ANN model training and testing. The dataset size of ABC, ABD, and ABE is 96; that of 

ABCD, ABCE, and ABDE is 128, and that of ABCDE is 160 [122]. Dimensionless performance 

was calculated for each quantity relative to its largest value, shown in Figure 6 [122]. Generally, 

better performance is achieved by increasing the dataset size. A conservative minimum sample 

size for the present study was 160, which is 16 times the number of input variables [122].  

              

Figure 6. Performance assessment of the BP-ANN for temperature prediction with different 

dataset sizes [122].  

3.2.1.2. Node number in the hidden layer 

The node number in the hidden layer was varied from 1 to 20 for each response. The assessment 

of the prediction performance (Figure 7) shows that the performance was significantly improved 

by increasing the node number in the hidden layer to 7. However, the performance was 

oscillatory with further increasing node number; the larger number of nodes may lead to over-

fitting and affect the generalization capability [146]. It also shows that each response had 

different optimal ranges. The range was 4 to 6 for the maximum compressive stress at the hot 

face of the working lining, 5 to 7 for the end temperature of the steel shell, and 10 to 12 for the 

maximum tensile stress at the cold end of the steel shell [146].  
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(a) 

 

(b) 

 

(c) 

Figure 7. Performance assessment (a) RE_MAX, (b) MRE, (c) B of the BP-ANN models 

with different node numbers in the hidden layer [146].  
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Guidelines were also proposed to define node number in the hidden layer for a steel ladle system 

as a function of the node number in the input layer weighted with a function A of the percent 

value of the significant variable contributing above 90% to the response (PF), as well as the node 

number in the output layer [146]. The guidelines are shown in equations 21–23 [146] and in 

Figure 8 [146]. 

Lower boundary: Nh = ANi + No                                                      (21) 

Upper boundary: Nh = (A + 0.2) Ni + No                                          (22) 

𝐴 = 𝑓(𝑃𝐹) = 0.2982 − 0.001242 (1 − 𝑒0.088 6∗𝑃𝐹)                              (23) 

where A is a function of PF, Ni, Nh, and No are the node numbers in the input, hidden, and output 

layers, respectively.  

 

Figure 8. The relation between PF and A [146].  
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algorithms CGF and BR were proposed to predict the thermomechanical responses. It is 

demonstrated that the BP-ANN model using BR performed better than the model with CGF for 

thermomechanical responses. Therefore, BP-ANN models with BR were proposed for the further 

steel ladle study.  

            Table 5. Training algorithms employed in this study [122].  

Training 

algorithm 
Brief description 

GDX 
Gradient descent with momentum and adaptive learning rate 

back-propagation 

CGB Conjugate gradient back-propagation with Powell-Beale restarts 

CGF Conjugate gradient back-propagation with Fletcher-Reeves 

updates 

CGP Conjugate gradient back-propagation with Polak-Ribiére updates 

SCG Scaled conjugate gradient back-propagation 

BFG BFGS quasi-Newton back-propagation 

OSS One-step secant back-propagation 

BR Bayesian regularization back-propagation 

 

 

(a) 

0.982

0.984

0.986

0.988

0.990

0.992

0.994

0.996

0.998

0

2

4

6

8

10

12

14

16

GDX CGB CGF CGP SCG BFG OSS BR

B

E
rr

o
r 

(%
)

RE_MAX

MRE

B



CHAPTER 3: INVESTIGATIONS AND RESULTS 

30 
 

 

(b) 

Figure 9. Performance assessment of the BP-ANN model for (a) temperature prediction 

based errors, and (b) computation time with different training algorithms [122].  
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models 

The dataset contained 160 lining configurations, 32 of which acted as boundaries and only used 

for training, the remaining 128 lining configurations were tested by leave-one-out cross 

validation. Three BP-ANN models with different node numbers in the hidden layer (4 to 6 for 

compressive stress, 5 to 7 for temperature, and 10 to 12 for tensile stress) were employed to 
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maximum tensile stress is lower than that for other two responses and it’s possible to be 

improved by applying BP-ANN models with more complex structures, e.g. more than one hidden 

layers.  
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(c) 

Figure 10. Comparison results (a) compressive stress, (b) temperature, and (c) tensile stress 

between predicted values with BP-ANN models and the simulated values with FEM.  
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4. Conclusion 

The lining concept parameter study of a steel ladle using the FE method revealed the 

complicated effects of the lining structure and material properties on the thermal and 

thermomechanical responses [1]. The significant factors and optimal levels can be efficiently 

identified by using the Taguchi approach [1]. The statistical study using the Taguchi method 

facilitates lining concept design and decision making. The thicknesses of the working lining and 

insulation, the Young’s modulus of the working lining, and the thermal conductivity of the 

insulation should be taken into account for lining concept design of a steel ladle. Thicker 

working lining and insulation are beneficial to reduce heat loss. The working lining material with 

lower Young’s modulus can reduce the maximum compressive stress at the hot face of the 

working lining and the maximum tensile stress at the cold end of the steel shell. The application 

of the insulation with lower thermal conductivity tends to reduce the end temperature at the cold 

end of the steel shell, but increases tensile stress at the cold end of the steel shell. The 

dependency of lining behavior on the parameters mentioned above helps to find a common 

optimal of technical and economic performance. 

BP-ANN model was successfully applied to predict the thermal and thermomechanical responses 

in a steel ladle system with the acceptable prediction accuracy. The prediction performance of a 

BP-ANN model is influenced by the properties of the dataset and the architectural parameters. A 

representative dataset can be obtained by applying multiple orthogonal arrays. The dataset size 

shall be larger than 16 times the number of the variables [122]. The minimum numbers of input 

variables of significance determined by the Taguchi method for the BP-ANN model were three, 

five, and six for the maximum compressive, the end temperature, and the maximum tensile stress 

[146]. The guidelines to define node numbers in the hidden layer were proposed according to the 

variation/response complexity and node numbers in the input and output layers [146]. The 

preferable node number ranges for maximum compressive stress, the end temperature, and the 

maximum tensile stress were four to six, five to seven, and ten to twelve, respectively [146].  The 

Bayesian regularization (BR) training algorithm was proposed to predict the responses in the 

steel ladle system [122].  
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5. Outlook 
 

The methodology presented here combines finite element simulations and the Taguchi method to 

facilitate decision-making in refractory lining optimization. The application of this methodology, 

while taking into account irreversible refractory material behavior, e.g., tensile failure, shear 

failure and creep, is of interest for future research [1].  

 

The application of multiple orthogonal arrays is an advanced tool to achieve a representative 

variation/response space. The BP-ANN method allows an efficient search for optimized lining 

concepts for vessels from both energy savings and better thermomechanical performance points 

of view [122]. The proposed multiple orthogonal arrays and BP-ANN methods are also 

promising for the optimization of ironmaking and steelmaking processes and material recipe 

development [122]. 

 

The study of the influence of variation/response space complexity and variable completeness on 

BP-ANN model establishment evidently and exemplarily shows that the variation/response 

complexity plays a determinant role in the architecture establishment of a BP-ANN model, 

which is often neglected in the application of ANN models [146]. The comparison study also 

demonstrates that the proposed guidelines to optimize BP-ANN architectural parameters for a 

steel ladle system are efficient and can be extended into other fields in defining an optimal node 

number of the hidden layer in a three-layer BP-ANN model [146].  
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A Method for Steel Ladle Lining Optimization Applying
Thermomechanical Modeling and Taguchi Approaches

AIDONG HOU,1 SHENGLI JIN ,1,2 HARALD HARMUTH,1 and
DIETMAR GRUBER1

1.—Montanuniversitaet, Leoben 8700, Austria. 2.—e-mail: shengli.jin@unileoben.ac.at

Successful lining concept design can avoid the premature wear of refractory
linings, allow for more economically efficient configuration of refractories, and
improve the efficiency of high-temperature processes and save energy. The
present paper introduces the Taguchi method combining finite element (FE)
modeling for the lining optimization of a steel ladle from thermal and ther-
momechanical viewpoints. An orthogonal array was applied to design lining
configurations for FE simulations. Analysis of variance and signal-to-noise
ratio were used to quantitatively assess the impact of factors on thermal and
thermomechanical responses. As a result, two optimal lining concepts using
commercially available materials were proposed, which showed a substantial
decrease in heat loss through the steel shell and thermomechanical load at
the hot face of the working lining. The combined application of FE thermo-
mechanical modeling and Taguchi approaches facilitates the selection of
proper commercial materials and thicknesses of linings for the given process
conditions.

List of symbols
m Total number of factors
l Total number of levels
N Total number of runs
k Index referring to factor
i Index referring to level
j Index referring to observation
ni Number of runs at the ith level of a

factor
t Strength of an orthogonal table
yij Value of jth observation at the ith level

of a factor
�yi Mean of observations at ith level of a

factor
�yt Mean of all observations
SST Total sum of squares
SSf Sum of squares for each factor
SSD Sum of squares of deviation
MSf Mean square for each factor
MSD Mean square of deviation
DoFf Degrees of freedom of each factor
DoFD Degrees of freedom of deviation
F-statistic Ratio of mean square for each factor to

that of the deviation

a Significance level, the probability of
rejecting the null hypothesis when it
is true

C Contribution in percentage

INTRODUCTION

Steel ladles, composed of refractories and steel
construction components, act as transportation ves-
sels and refining units for the steel melt. Refractory
linings insulate the steel shell from the steel melt,
and thus reduce the heat loss from the steel shell. A
well-lined steel ladle offers efficient temperature
control of the steel melt and is beneficial to the steel
quality and productivity.1–4

The thermomechanical behavior of steel ladle
linings has been extensively studied with regard to
relevant process conditions, material properties,
and lining configurations by means of finite
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element (FE) methods.5–12 These studies show that
ladles without preheating experience higher com-
pressive stresses at the hot face of the working
lining, which may lead to a compressive failure;5–7

by preheating for preferably 15–20 h, these stres-
ses can be reduced.8 In addition, an increased ladle
preheating temperature can reduce the tempera-
ture drop of the steel melt and the temperature
gradient of ladle linings, mitigate the thermal
shock damage of lining materials, and thus extend
the service life of the steel ladle.9 The effects of
insulation in a steel ladle were evaluated from the
thermal and thermomechanical points of view. A
compliant insulation layer led to a decrease in heat
loss and thermomechanical loads at the hot face of
the working lining.6 The possible application of an
insulating material with rather low thermal con-
ductivity was evaluated using FE simulations of a
steel ladle.12

In contrast to the post-mortem study of an
existing vessel lining concept, an a priori method
was proposed for the design of lining concepts before
putting them into practice with a case study of a
channel induction furnace lined with mono-
liths.13–15 An orthogonal array was utilized to
systematically design the lining concepts, and the
FE method was applied to calculate the tempera-
tures and stresses of the furnace linings. After-
wards, an analysis of the main effects was
performed to rank the impact of individual factors
and determine the optimal value of each factor. The
optimized lining concept was compared with the
reference case from the thermal and thermome-
chanical points of view, taking into account irre-
versible behavior of the working lining material.
The studies established a feasible and efficient
methodology for optimization of lining concepts
using a considerable number of variables of vessels
made of monolithic linings.

The present paper extends the above-mentioned
method for the lining concept optimization of vessels
with brick working linings. A case study of a steel
ladle considers the variations of material properties
and lining geometry. Moreover, advanced analysis
methods, i.e., analysis of variance (ANOVA) and
signal-to-noise (S/N) ratio according to the Taguchi
method, were applied to assess the contribution and
optimal level of significant factors.

TAGUCHI METHOD

As an improved method of design of experi-
ments, the Taguchi method, developed by G.
Taguchi in the late 1940s, is widely used in
manufacturing processes,16,17 material design
and development,18 and geometry design.19 A
routine set of tools in the Taguchi method
includes orthogonal arrays, ANOVA, and the
S/N ratio. Their performances are briefly intro-
duced in the following subsections.

Orthogonal Arrays

Orthogonal arrays are highly fractional factorial
designs and yield a minimum number of experi-
mental runs. An orthogonal array with the same
number of levels l for all m factors is designated
with the sign of LNðlmÞ, where N is the total number
of experiment runs, and L represents Latin squares.
When the level size of certain factors is different, for
instance, m1 factors have l1 levels and m2 factors
have l2 levels, then it is denoted LN lm1

1 � lm2

2

� �
. The

former is called a pure orthogonal array and the
latter one a mixed-level orthogonal array. In one
orthogonal array with a strength of t, the occurrence
of each level of one factor in each column is equal
and the combination of levels in t factors occurs
equally. Additional details are described in other
works.20,21

Analysis of Variance (ANOVA)22

ANOVA is a statistical method used to quantita-
tively assess the significance of factors to responses
and their confidence. Five values are used to assess
a factor’s significance: the sum of squares, the
degrees of freedom, the mean square, the F value,
and the percent contribution of the factor.

The total sum of squares (subscript T) measures
the overall variability of data and is calculated
using all of the observed values for different factors

SST ¼
Xl

i¼1

Xni

j¼1

yij � �yt
� �2

; ð1Þ

where l is the number of levels, ni is the number of
runs at the ith level, yij is the value of jth observa-
tion at ith level, and �yt is the mean of all
observations.

The sum of squares for each factor (subscript f) is
given by

SSf ¼ ni

Xl

i¼1

�yi � �ytð Þ2; ð2Þ

where �yi is the mean of observations at the ith level.
Subtracting the sum of SSf of all factors from SST

leads to

SSD ¼ SST �
Xm

k¼1

SSf kð Þ; ð3Þ

where m is the total number of factors and k is the
index referring to a factor. SSD is the sum of squares
of the deviation (subscript D).

The degrees of freedom of each factor, DoFf, is
equal to ðl� 1Þ when the number of its level is l.

The mean square for each factor (subscript f) is

MSf ¼ SSf=DoFf ; ð4Þ
and the mean square of deviation is
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MSD ¼ SSD=DoFD; ð5Þ
where DoFD is the degrees of freedom of deviation
(subscript D) given by

DoFD ¼ N � 1 �
Xm

k¼1

lk � 1ð Þ; ð6Þ

where N is the total number of runs.
The F-statistic value of each factor is calculated

using the equation below,

F ¼ MSf=MSD: ð7Þ

Afterwards, the obtained F value can be compared
with the corresponding critical value, Fa (DoFf,
DoFD) at the ð1 � aÞ confidence level in the F
distribution table.22 If the calculated F value is
larger than the critical value, the probability of
correctly accepting the null hypothesis is ð1 � aÞ.
The percent contribution of each factor is defined as

C ¼ SSf= SST � SSDð Þ � 100%: ð8Þ

Signal-to-Noise (S/N) Ratio20

The S/N ratio is extensively used as a quality
index, rather than being merely associated with the
signal and noise. Three S/N ratio representations
are shown in Eqs. 9–11: smaller-the-better, nomi-
nal-the-best, and larger-the-better. For all repre-
sentations, a higher S/N ratio is desirable. In the

present work, the smaller-the-better equation is
used to evaluate the thermal and thermomechanical
responses because the equation treats the smallest
value of responses as the best quality.

Smaller - the - better: S=N ¼ �10 log
1

ni

Xni

j¼1

y2
ij

 !

;

ð9Þ

Nominal - the - best : S=N ¼�10log
1

ni

Xni

j¼1

yij� �yi
� �2

 !

;

ð10Þ

Larger - the - better : S=N ¼ �10 log
1

ni

Xni

j¼1

1

y2
ij

 !

:

ð11Þ

Here ni is the number of runs at the ith level, yij is
the value of the jth observation at the ith level, and
�yi is the mean number of observations at the ith
level of a factor.

FINITE ELEMENT MODEL AND
PARAMETER DESIGN

A steel ladle of voestalpine was the object used for
lining concept optimization. Figure 1a depicts the
simplified two-dimensional model representing a

Fig. 1. (a) Two-dimensional model of the reference steel ladle case; (b) two-dimensional model of the steel ladle for the lining concept
optimization study.

Table I. Ladle component thickness and material properties of the reference case

Linings
Thickness

(mm)
Thermal conductivity

(W m21 K21)
Young’s modulus

(GPa)
Thermal expansion
coefficient (1026 K21)

Working lining 155 8.5 60 11.5
Permanent lining 90 2.2 45 6.0
Fiber 6 0.17 0.3 9.0
Steel shell 30 50 210 12.0

A Method for Steel Ladle Lining Optimization Applying Thermomechanical Modeling
and Taguchi Approaches

2451



horizontal cut through the slag-line position in the
upper part of the steel ladle. The model consists of a
two half-brick working lining, a monolithic perma-
nent lining, a fiber board, and a steel shell. The
radial expansion allowance between two bricks of
the working lining was 0.4 mm. The thicknesses
and material properties of different linings are
listed in Table I. The thermal conductivity and
Young’s modulus of materials were defined as being
temperature-independent.

Another two-dimensional model including an
additional insulating lining was established for
the lining concept optimization study, as shown in
Fig. 1b. In this model, the permanent lining was
made of bricks. The radial expansion allowance
between two bricks was 0.4 mm. The variations of
lining thickness, thermal conductivity, and
Young’s modulus of materials for the respective
linings are shown in Table II. It is worth noting
that the material property variations in Table II
are those of commercial products and ranked in a
descending order. The thermal conductivity and
Young’s modulus of the materials were also
defined as being temperature-independent. The
candidate refractory materials for each lining
were assumed to possess the same coefficient of
thermal expansion (1.2 9 10�6 K�1) in the present
linear elastic modeling and optimization proce-
dure. A consideration of different coefficients of
thermal expansion is necessary if the materials
for one lining show a significant deviation in the
coefficients of thermal expansion or if the irre-
versible behavior of refractories is taken into
account. Finally, in total, ten factors were of
interest in this research, nine of which had four
levels, together with the thickness of the steel
shell, which had two levels. A mixed-level orthog-
onal array L32 49 � 21

� �
according to the Taguchi

method was applied.

The finite element modeling of the steel ladle with
an elastic material behavior was performed using
the commercial software, ABAQUS. The process
included preheating of the hot face of the working
lining for 20 h to 1100�C and a subsequent thermal
shock caused by tapping the steel melt with a
temperature of 1600�C into the ladle. After the
refining period of 95 min, a 50-min idle period
followed. Displacement of linings was allowed in the
radial direction and constrained in the circumfer-
ential direction. The heat transfer between the
interfaces of linings, the liquid melt and hot face
of the working lining, and the cold end of the steel
shell and atmosphere was considered.

RESULTS

Contribution of Impact Factors to the
Thermal and Thermomechanical Responses

The present study aims to decrease the heat loss
from the steel shell and the thermomechanical loads
on the working lining and steel shell. Thus, the
chosen responses were the temperature at the cold
end of the steel shell, the maximum tensile stress at
the steel shell, and the maximum compressive
stress at the hot face of the working lining. ANOVA
was applied to quantitatively investigate the signif-
icance of impact factors, according to the equations
in ‘‘Analysis of Variance (ANOVA)[22]’’ section.

The results for the thermal response are exem-
plarily shown in Table III. The top four significant
impact factors to the temperature at the cold end of
the steel shell were the thickness of the working
lining (A), the thermal conductivity of the insulation
material (F), the thickness of insulation material
(C), and the thermal conductivity of the working
lining material (D), in descending order. Their
individual confidence levels were all higher than
90% and, when combined, they contributed 89% of

Table II. Variations in ladle component thicknesses and material properties

Impact factors

Levels

Label of factors1 2 3 4

Thickness (mm)
Working lining 250 200 155 50 A
Permanent lining 130 110 90 65 B
Insulation lining 37.5 25 15 6 C
Steel shell 30 20 J

Thermal conductivity
(W m�1 K�1)

Working lining 9 8.5 7 3 D
Permanent lining 9 5 3 2.2 E
Insulation lining 1.35 0.5 0.35 0.15 F

Young’s modulus (GPa)
Working lining 100 80 60 40 G
Permanent lining 90 45 30 10 H
Insulation lining 35 4 3 0.17 I

Hou, Jin, Harmuth, and Gruber2452



the thermal response. Therefore, further lining
concept design will focus primarily on these four
impact factors.

The same analysis procedure was carried out for
thermomechanical responses. The summarized
results with respect to the thermal and thermome-
chanical responses are shown in Fig. 2. In the case
of tensile stress at the steel shell, the thermal
conductivity of the insulation material (F) con-
tributed the largest portion among the impact
factors and is followed by the Young’s modulus of
the working lining material (G), the thickness of the
steel shell (J), and the thermal conductivity of the
working lining material (D). The first four signifi-
cant impact factors each had confidence levels
greater than 95% and contributed 71% of the tensile
stress at the steel shell. The Young’s modulus of the
working lining (G) had an overwhelming influence
on the compressive stress at the hot face of the
working lining, with a 93% contribution.

Optimization Study of Factor Level

The S/N ratios of the thermal and thermome-
chanical responses were calculated with respect to
the factor level and are shown in Fig. 3 and the
supplementary figures. For each factor, the level
showing the largest S/N ratio will be considered the
optimal one. Figure 3 shows that the optimal S/N

ratios for the temperature at the cold end of the
steel shell were A1B2C1D4E4F4G1H1I3J1. The
optimal S/N ratios for the maximum tensile stress
at the steel shell and for the maximum compressive
stress at the hot face of the working lining were
A4B4C4D4E2F1G4H4I4J1 and A4B2C2D3E1F3-
G4H1I1J2, respectively (see ‘‘supplementary fig-
ures S1 and S2’’).

Table IV summarizes the optimal levels for each
response with the contribution of each factor accord-
ing to the ANOVA and S/N ratio studies. In the case
of the compressive stress at the hot face of the
working lining, the Young’s modulus of the working
lining (G) dominated the contribution, whereas the
smallest Young’s modulus of the working lining is
preferable. For the tensile stress and temperature
responses at the cold end of the steel shell, the
factors can be classified into two groups: one with
the same optimal level for both responses, and the
other with a contradictory trend. The decision can
be easily made for the first group of factors (D, I, J).
For the second group (A, B, C, E, F, H), the
quantitative ANOVA results facilitate the further
choice of levels. That is to say, the optimal level of
one factor showing a higher contribution to one
response (temperature or tensile stress) is prefer-
able. For instance, the working lining and insula-
tion lining thickness (A and C) occupied 31% and
20% contribution to the steel shell temperature,
respectively, whilst only 5% and 7% to the tensile
stress of the steel shell. Therefore, the application of
a thicker lining is considered to take priority. The
thickness of the permanent lining (B), the thermal
conductivity (E), and the Young’s modulus (H) of the
permanent lining did not play a significant role in
either responses. Factor F had a rather equal
contribution to the two responses and thus a
compromise will be made, for example, a moderate
insulation effect.

The analysis results according to the Taguchi
method were further compared with those from the
standard analysis of the mean value method. The
mean value method indicates the optimal level and

Table III. ANOVA results of the temperature at the cold end of the steel shell

Factor DoFf SSf (�C2) MSf (�C2) F–V value Confidence (%) Contribution (%)

A 3 59,596 19,865.4 14.39 95 31.27
B 3 8473 2824.4 2.05 4.45
C 3 37,878 12,625.9 9.15 90 19.88
D 3 32,659 10,886.4 7.89 90 17.14
E 3 10,464 3488 2.53 5.49
F 3 38,746 12,915.3 9.36 95 20.33
G 3 1958 652.7 0.47 1.03
H 3 261 87 0.06 0.14
I 3 407 135.8 0.1 0.21
J 1 121 121.1 0.09 0.06

SST = 194,705, SSD = 4142, MSD = 1380.6, DoFD = 3.

Fig. 2. Contribution and confidence levels (in parentheses) of fac-
tors for thermal and thermomechanical responses.
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provides the significance ranks of impact factors by
comparing the maximum difference of the mean
values of response among levels of each factor. By
comparing the results in Table IV, one can observe
the different outcomes of the two methods. The
main effect method with mean calculation provides
qualitative results, whilst the Taguchi method
offers quantitative values. Certain differences in
optimal results between these two methods can also
be identified. For instance, when one looks at the
contributions to the temperature at the cold end of
the steel shell, the Taguchi method indicated that
the insulation thickness ranked second in impor-
tance, equal to the thermal conductivity of insula-
tion, and the thermal conductivity of the working
lining ranked fourth, while the main effect analysis
indicated that the insulation thickness and the

thermal conductivity of the working lining ranked
fourth and third, respectively. Generally speaking,
the Taguchi method is friendlier for decision-
making.

Proposal and validation of the optimal lining
concept

The final choice examined with the optimal lining
concept takes into account the practical materials
and the volume capacity of the steel ladle. The
thermal conductivity and Young’s modulus of mate-
rial candidates for respective linings can be seen in
‘‘supplementary table SII’’. A compromise between
the numerical results and practice has to be made.
For instance, the insulation material candidate I4 is
actually a fiber material and is unlikely to be widely

Fig. 3. S/N ratios for the temperature at the cold end of the steel shell, with highest S/N results for the case A1B2C1D4E4F4G1H1I3J1.

Table IV. Results based on analysis with the Taguchi method and standard main effect analysis

Factors

Thickness Thermal conductivity Young’s modulus

Work-
ing lin-
ing (A)

Perma-
nent
lining
(B)

Insula-
tion (C)

Steel
shell (J)

Work-
ing lin-
ing (D)

Perma-
nent
lining
(E)

Insula-
tion (F)

Work-
ing lin-
ing (G)

Perma-
nent
lining
(H)

Insula-
tion (I)

Targets OL
CO
(%) OL

CO
(%) OL

CO
(%) OL

CO
(%) OL

CO
(%) OL

CO
(%) OL

CO
(%) OL

CO
(%) OL

CO
(%) OL

CO
(%)

Taguchi method
T # 1 31 2 4 1 20 1 0.06 4 17 4 5 4 20 1 1 1 0.14 4 0.21
rTen # 4 5 4 3 4 7 1 15 4 15 2 1.09 1 24 4 17 4 6 4 7
rc # 4 93

Targets OL RK OL RK OL RK OL RK OL RK OL RK OL RK OL RK OL RK OL RK

Standard main
effect analysis
T # 1 1 2 6 1 4 1 10 4 3 4 5 4 2 1 7 1 9 4 8
rTen # 4 8 4 9 4 7 1 4 4 3 2 10 1 1 4 2 4 6 4 5
rc # 4 1

OL optimal level, CO contribution, RK ranking.
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used in the insulating lining, given its performance
at high temperatures. A volume capacity decrease of
the steel ladle is not desirable from an economical
point of view. In the present study, the optimization
of the lining concept was focused on the partial
substitution of the permanent lining with the
insulation lining. Thus, the thickness of the working
lining and the total thickness of the permanent and
insulation lining are the same as those of the
reference case. The material with the highest
thermal conductivity and lowest Young’s modulus
was proposed for the working lining. Since a
moderate insulation effect is favorable for decreas-
ing the steel shell temperature, while only slightly
increasing the tensile stress in the steel shell, two
insulation material candidates with lower thermal
conductivities were proposed for the insulating
lining. The details of lining structure and material
properties are shown in Table V.

The thermal and thermomechanical behavior of
the proposed lining concepts was studied with finite
element modeling. The dimensionless temperature,
tensile stress and compressive stress of the first
proposed lining concept were 0.81, 1.16, and 0.74,
respectively. For the second proposed lining con-
cept, the dimensionless values were 0.75, 1.19, and
0.75 (see ‘‘supplementary table SII’’). The dimen-
sionless values were calculated by dividing the
actual values by those of the reference case. The
comparison shows that the temperature at the cold
end of the steel shell and the maximum compressive
stress at the hot face of the working lining were
decreased by 19% and 26% for case 1 and 25% and
25% for case 2, respectively. For both cases, the
maximum tensile stress at the steel shell slightly
increased. In addition, case 2 showed a 6% lower
steel shell temperature than case 1, and a 0.3%
higher tensile stress at the cold end of the steel
shell.

CONCLUSION

The lining concept parameter study of a steel
ladle using the FE method revealed the complicated
effects of the lining structure and material proper-
ties on the thermal and thermomechanical
responses. Using the Taguchi method, the optimal
levels and significance of factors can be efficiently

investigated. The statistical study using the Tagu-
chi method facilitates decision making regarding
the optimal lining concept. The proposed lining
concepts show a significant decrease in temperature
at the cold end of the steel shell and compressive
stress at the hot face of the working lining, given
the elastic material behavior of the refractories. The
application of this methodology, while taking into
account irreversible refractory material behavior,
e.g., tensile failure, shear failure and creep, is of
interest for future research.
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Table V. Two proposed optimal lining concepts with different insulation materials

Thickness
(mm)

Thermal conductivity
(W m21K21)

Young’s modulus
(GPa)

Thermal expansion
coefficient (1026 K21)

Working lining (W1) 155 9 40 12.0
Permanent lining (P4) 52.5 2.2 45 5.0
Insulation (I2) (Case1) 37.5 0.5 3 6.0
Insulation (I3) (Case2) 37.5 0.38 4 5.6
Steel shell (S1) 30 50 210 12.0
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Thermal and Thermomechanical Responses Prediction of
a Steel Ladle Using a Back-Propagation Artificial Neural
Network Combining Multiple Orthogonal Arrays

Aidong Hou, Shengli Jin,* Harald Harmuth, and Dietmar Gruber

To facilitate industrial vessel lining design for various material properties and
lining configurations, a method, being composed of the back-propagation
artificial neural network (BP-ANN) with multiple orthogonal arrays, is
developed, and a steel ladle from secondary steel metallurgy is chosen for a
case study. Ten geometrical and material property variations of this steel
ladle lining are selected as inputs for the BP-ANN model. A total of 160
lining configurations nearly evenly distributed within the ten variations space
are designed for finite element (FE) simulations in terms of five orthogonal
arrays. Leave-One-Out cross validation within various combinations of
orthogonal arrays determines 7 nodes in the hidden layer, a minimum ratio
of 16 between dataset size and number of input nodes, and a Bayesian
regularization training algorithm as the optimal definitions for the BP-ANN
model. The thermal and thermomechanical responses of two optimal lining
concepts from a previous study using the Taguchi method are predicted with
acceptable accuracy.

1. Introduction

Steel ladles, which consist of refractories and steel construction
components, act as transportation vessels and refining units in
the steelmaking industry. Refractory linings protect steel shells
from steel melt, and reduce heat loss from the steel shells. Awell-
lined steel ladle offers efficient temperature control of the steel
melt, and is beneficial to the steel quality and productivity.[1–4]

The performance of a steel ladle is influenced bymany factors;
for instance, material properties, lining thicknesses, and process
conditions. Efforts have been made to evaluate the performance
of steel ladle linings from thermal and thermomechanical
viewpoints using finite element (FE) methods, especially taking

into account the application of insulation
and preheating time.[5–10] Integrated con-
sideration of lining concepts for a steel
ladle is also of importance to support steel
industry 4.0 in refractory application.[11,12]

Recently, the authors applied the Taguchi
method to optimize lining design config-
urations with FE simulations within a
defined variable span of lining thickness
and material properties.[5] The impact of
factors on the thermal and thermomechan-
ical responses was quantitatively assessed
using the analysis of variance and signal-to-
noise ratio. Finally, two optimal lining
concepts were proposed, which showed a
substantial decrease in heat loss through
the cylindrical steel shell and the thermo-
mechanical load at the hot face of the
working lining. This approach offers a
primary tool to assess the significance of

variables and select the optimal lining concept among the
defined values of variables. Nevertheless, the instantaneous
prediction of thermal and thermomechanical results of several
proposed lining concepts after assessment is also desirable for
efficient design of lining concepts, which are included in the
defined span, but were fully or partly excluded from the defined
values in the dataset used for training.

The artificial neural network (ANN) provides a promising
technique to fulfil this target, and is one of the most extensively
used methods in prediction based artificial intelligence and
machine learning.[13] It can be categorized as feed forward or
recurrent. In contrast to recurrent neural networks, a feed
forward neural network processes information from the input
nodes, through the hidden nodes to the output nodes, without
the information transfer process among the hidden nodes.[14]

Multilayer perception is usually preferable in feed forward
neural networks trained with different error-back propagation
(BP) algorithms.[15] This type of ANNs has advantageous
characteristics; for instance, generalization, adaptation, and
robustness.[16] It is successfully applied in materials engineering
to predict the mechanical properties of materials,[17–19] lifetime
limited by fatigue crack propagation, and chemical compositions
of alloys.[15,20]

The predictive quality of an ANN model depends on the
quality of the dataset, and on the architectural parameters,
including the number of hidden layers and nodes per layer, and
the training algorithms.[21] It is important to collect data in a way
that ensures they are representative in the entire variable space
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with low influence from noise; the minimum size of a training
dataset largely depends on the complexity of the problem and
applied ANN architectures.[21] The minimum dataset size is
approximately proportional to the total number of free
parameters divided by the fraction of errors permitted.[22] For
instance, with an error allowance of 10%, the training dataset
size shall be about 10 times the number of weights and biases in
the network. For complex models, the minimum size of a
training dataset may deviate from this rule.[23]

The numbers of hidden layers and nodes in each layer are
significant parameters affecting the performance of an ANN
model. With a larger number of hidden layers or nodes, an ANN
model canyieldmore accurate training results and is able tomodel
more complicated relationships, while it also increases the risk of
over-fitting. In contrast, with a smaller number of hidden layers or
nodes, anANNmodelmay be insufficient to depict the underlying
relationships.[24] Several empirical equations are proposed to
define the node number in a hidden layer.[25]

Nout < Nhid < Ninp ð1Þ

Nhid � 2=3 Ninp þ Nout ð2Þ

Nhid � 2 Ninp ð3Þ

whereNinp,Nhid, andNout are the node number of an input layer,
hidden layer, and output layer, respectively.

The training algorithm for the back-propagation procedure
also affects the performance of an ANNmodel. It is used to tune
the weights in the network so that the network performs a
suitable mapping process from inputs to outputs.[24] The error
function (E) represents a measure of network performance; E is
defined as the mean square error between the outputs from
network and the target values:

E ¼ 1
Nt

XNt

i¼1
di � yi
� �2 ð4Þ

where Nt is the total number of training samples, i is the sample
index, di is the actual value of the i

th training sample, and yi the
predicted value of the ith training sample.

Many training algorithms have been developed to minimize
the error function with different strategies.[26–28] For instance,
gradient descent algorithms offer the possibility to define
learning rate and momentum for the steepest descent during
back-propagation. In contrast with gradient descent algorithms,
conjugate gradient algorithms utilize the previous gradient
search direction to define the present one; quasi-Newton
algorithms use a Hessian matrix to define the descent direction;
the Bayesian regularization algorithm minimizes the linear
combination of squared errors and weights by applying the
Levenberg-Marquardt algorithm. To identify which training
algorithm is better is non-trivial; nevertheless, a good training
algorithm should show acceptable robustness, computational
efficiency, and generalization ability.

The present work aimed to develop a methodology for
applying a reliable back-propagation (BP) ANN model to predict
the thermal and thermomechanical responses of a steel ladle

within a defined variable space. Multiple orthogonal arrays were
employed to generate lining configurations for FE simulations
and BP-ANN model training. The sufficiency of the dataset,
feasible node number in the hidden layer for a case study with 10
variables, and the training algorithms were investigated. Later, a
BP-ANN model with optimized settings was applied to predict
the results of two lining concepts proposed in the Hou et al.[5]

2. Methodology

A flowchart of this methodology for predicting the thermal and
thermomechanical responses of a steel ladle is illustrated in
Figure 1, and includes lining configuration design, FEmodeling,
and BP-ANN model training and prediction.

2.1. Finite Element Model and Boundary Conditions

Figure 2 depicts a simplified two-dimensional model represent-
ing a horizontal cut through the slag-line position in the upper
part of the steel ladle. The outer diameter of the steel ladle was
1.828m for all of the establishedmodels. Themodel consists of a
two-half brick working and permanent lining, an insulation
lining, a fiberboard, and a steel shell. The circumferential
expansion allowance between bricks was 0.4mm. Variations
were lining and steel shell thicknesses, thermal conductivity, and
Young’s modulus of lining materials.

FE-modeling of the steel ladle, taking into account elastic
material behavior, was performed using the commercial code

Figure 1. Flowchart of a methodology to predict thermal and
thermomechanical responses of a steel ladle.

Figure 2. Finite element (FE) model geometry.
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Abaqus. The simulation included the preheating of the working
lining hot face to 1100 �C over 20 h, and a subsequent thermal
shock caused by tapping the steel melt of 1600 �C into the ladle.
After a refining period of 95min proceeded a 50min idle period.
Displacement of linings was allowed in the radial direction and
constrained in the circumferential direction with a symmetry
condition. The heat transfer between the liquid melt and hot face
of the working lining, the cold end of the steel shell, and the
atmosphere was defined as being temperature-dependent using
the surface film condition function (Table 1) in Abaqus. The
interfaces between linings were crossed by heat flux, and a heat
transfer coefficient allowing for radiation and convection was
applied.

2.2. Sample Screening Approach

Orthogonal arrays are highly fractional factorial designs that
yield a minimum number of experimental runs. With orthogo-
nal array design, the combination of each level of two or more
variables occurs with equal frequency.[29]

Multiple orthogonal arrays were applied to arrange the level
combination of the ten factors within various defined variable
spaces. The definition of values in the respective span of a
variable in each orthogonal array was arbitrary, and an even
distribution of the values in the maximum span was designed.
Detailed variations and the associated intervals are listed in
Table 2. Nine of the studied factors had four levels, and the
thickness of the steel shell had two levels. A total of 5 variable
spaces were defined; thus, 5 mixed-level orthogonal arrays L32
(49� 21) with 32 runs were implemented accordingly, which
yielded the total dataset size of lining configurations equal to
160. The lining configurations according to the orthogonal array
containing the maximum or minimum level value constituted
the boundary space, termed space A, and were used only for BP-
ANN model training. The lining configurations from the other
four orthogonal arrays were named as spaces B, C, D, and E. The
maximum level values of all 10 factors in spaces B, C, D, and E
were defined in a descending order, and their minimum level

values were in an ascending order accordingly. Spaces B-E were
used for BP-ANN model training and testing.

2.3. BP-ANN Model Establishment and Parameter Study
Design

The BP-ANNmodel wasmade of three layers with various nodes:
one input layer, one hidden layer, and one output layer. Nodes in
the former layer were connected to each node in the latter layer,
as shown in Figure 3. Input variables (X) were introduced to the
network as a vector corresponding to the nodes in the input layer.
These input variables weremultiplied by their respective weights
(W) and plused a bias (b) constant, yielding a summation (S) for
each node of the hidden layer, as shown in Equation (5). An
activation function was used to limit the amplitude of the
summation of each hidden layer node, which is the input for the
output layer nodes, as depicted by Equation (6). A hyperbolic
tangent sigmoid activation function (tansig) was applied as
shown in Equation (7).

Sk ¼
XNinp

j¼1
WjkXj þ b ð5Þ

Ok ¼ f Skð Þ ð6Þ

f tansig ¼
1� e�2Sk

1þ e�2Sk
ð7Þ

where j is the input factor index, k is the node index in the hidden
layer, Sk is the summation at the kth node in the hidden layer, f
is the activation function, Wjk is the weight of the j

th input at the
kth node, Xj is the j

th input, b is the bias, and Ok is the output of
the kth node in the hidden layer. The information transfer

Table 1. Film coefficient (W m�2 K�1) defined in the finite element
(FE) model.

Temperature
(�C)

Hot face of working
lining

Temperature
(�C)

Cold end of steel
shell

10 10 10 10

150 60.1 50 10

250 99 150 15

350 149.9 250 21

400 181.1 350 27

650 409.5 400 32

700 472.3 650 50

800 617.8 700 70

1000 998.5 1000 140

1200 1517 1600 400

1600 3052.3 2000 400

Table 2. Geometrical and material property variations for the selected ladle.

Ladle
linings

Range of variable
values

Label of
factors

Thickness (m) Working

lining

0.03–0.27 X1

Permanent

lining

0.05–0.14 X2

Insulation 0.003–0.042 X3

Steel shell 0.015–0.035 X4

Thermal conductivity

(Wm�1K�1)

Working

lining

1.5–10.5 X5

Permanent

lining

1.0–10.0 X6

Insulation 0.05–1.55 X7

Young’s modulus (GPa) Working

lining

25–115 X8

Permanent

lining

5–110 X9

Insulation 0.1–39.1 X10
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between the hidden layer and output layer followed the same
mathematical process, and in the present paper a linear
activation function (purelin) was applied:

f purelin ¼ Sm ð8Þ

where m is the node index in the output layer, and Sm is the
summation at the mth node in the output layer.

Before ANN training starts, the input variables of the network
must be defined. When the ranges and units of input variables
are different from each other, it is wise to normalize input data to
mitigate the influence of magnitudes. In the present study, input
variables were normalized (Xi) to a scale of 0.1–0.9 using the
following equation for a variable x:

Xi ¼
0:1xmax � 0:9xmin þ 0:8xi

xmax � xmin
ð9Þ

where xmax and xmin represent the maximum and minimum of
the variable x.

To determine the optimal BP-ANN architectural parameters
for thermal and thermomechanical responses, three tests were
carried out with temperature response and parameters opti-
mized sequentially. Afterwards, thermomechanical responses
were used to test the generality of the established BP-ANN
model. Training was terminated by reaching any defined
criterion; for instance, the minimum performance gradient
(10–5), the minimum target error (0), or a maximum number of
epochs (one epoch includes one forward pass and one backward
pass of all the training samples, 10 000 as default value if there is
no explicit definition).

First, a test was performed to explore the optimal node
number in the hidden layer. All 160 samples were used for BP-
ANN training, and the training algorithm was a gradient
descent with momentum and adaptive learning rate back-
propagation (GDX; Table 3). The number of nodes in the
hidden layer varied from 1 to 12. The objective of the second
test was to identify the minimum sample size for the lining
concept study. The dataset was divided into three groups, which

contained 96, 128, and 160 samples. All three groups included
32 samples in boundary space A. The residual samples in each
group were the combination of any two, three, and four variable
spaces except boundary space A. Eight training algorithms
(Table 3) in the Deep Learning Toolbox of Matlab[30] were
employed individually in the third test to detect the training
algorithm most favorable for the steel ladle. A summary of
these three tests is listed in Table 4.

Leave-one-out (LOO) cross validation and figures of merit
were employed in these three tests to quantitatively assess the
performance of the established BP-ANN model. LOO applies
one sample for prediction and the residual samples of the entire
dataset for training. Four quantities were used: maximum
relative error (RE_MAX), mean relative error (MRE), relative root
mean squared error (RRMSE), and coefficient of determination
(B), as shown in Equations (10)–(13):

Maximum relative error of all testing samples:

REMAX ¼ Max
di � yi
�� ��

di

� �
ð10Þ

Mean relative error : MRE ¼ 1
n

Xn

i¼1

di � yi
�� ��

di
ð11Þ

Relative root mean squared error:

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xi¼1

n
di � yi
� �2q
�d

ð12Þ

Figure 3. Topology of a three-layer artificial neural network.

Table 3. Training algorithms employed in this study. [30]

Training
algorithm

Brief
description

GDX Gradient descent with momentum and adaptive learning rate

back-propagation

CGB Conjugate gradient back-propagation with Powell-Beale restarts

CGF Conjugate gradient back-propagation with Fletcher-Reeves

updates

CGP Conjugate gradient back-propagation with Polak-Ribi�ere updates

SCG Scaled conjugate gradient back-propagation

BFG BFGS quasi-Newton back-propagation

OSS One-step secant back-propagation

BR Bayesian regularization back-propagation

Table 4. Tests for the design of BP-ANN model architectural
parameters.

Test Architectural factors of

BP-ANN model

Testing

parameters

1 The number of nodes in

hidden layer

12 (from 1 to 12)

2 Dataset size 3 groups (96, 128, and 160 samples)

3 Training algorithms 8 (GDX, CGB, CGF, CGP, SCG, BFG, OSS, BR;

available in Matlab)
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Coefficient of determination : B ¼ 1�

Xi¼1

n
di � yi
� �2

Xi¼1

n
di � �d
� �2 ð13Þ

where n is the number of testing samples, yi is the predicted
value of the ith testing sample by the BP-ANN model with LOO,
di is the response value of the ith testing sample from FE
modeling, and �d is the mean response value of all testing
samples received from the FE modeling.

3. Results and Discussion

3.1. Node Number in the Hidden Layer

The BP-ANN model predicts the temperatures at the steel
shell at the end of the idle period with various numbers of
nodes in the hidden layer with epochs of 1000. Low values of
RE_MAX, MRE, and RRMSE, and a larger value of B are
desirable. Dimensionless calculation was performed for each
quantity relative to its largest value. As shown in Figure 4, the
node number in the hidden layer affects BP-ANN perfor-
mance in a complex manner. Generally speaking, cases with
node numbers of 4-7 and 9 showed satisfying results.
Although the case with the node number 7 showed slightly
higher RE_MAX, its MRE and RRMSE were the minima
among the 12 cases.

Therefore, for an input layer with 10 nodes, node number 7 of
the hidden layer was proposed for the further study. This result
was consistent with a previously stated rule,[25] which defines
that the node number of the hidden layer shall be approximately
equal to two thirds of the node number in the input layer plus the
node number in the output layer, as stated in Equation (2). In the
present study, this rule yielded 7.67.

3.2. Dataset Size

Seven cases with different combinations of orthogonal arrays
were defined to test the appropriate dataset size for reliable BP-
ANN models to predict the temperature response. The dataset
size of ABC, ABD, and ABE is 96; that of ABCD, ABCE, and
ABDE is 128, and that of ABCDE is 160. The dimensionless
performance of BP-ANN models for the seven cases is
represented in Figure 5. In general, better performance was
achieved by increasing the dataset size. The BP-ANNmodel with

Figure 4. Performance assessment of the back-propagation artificial
neural network (BP-ANN)model for temperature prediction with different
node numbers in the hidden layer and by applying the GDX (gradient
descent with momentum and adaptive learning rate back-propagation)
training algorithm.

Figure 5. Performance assessment of the back-propagation artificial
neural network (BP-ANN)model for temperature prediction with different
dataset sizes and by applying the GDX (gradient descent with momentum
and adaptive learning rate back-propagation) training algorithm.

Figure 6. Performance assessment of the back-propagation artificial
neural network (BP-ANN) model for (a) temperature prediction based
errors, and (b) computation time with different training algorithms.
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96 samples from spaces of A, B, and E showed good prediction
performance; Given the worse performance was of ABC and
ABD, a conservative minimum sample size for the present study
was 160, which is 16 times the number of inputs.

3.3. Training Algorithms

Eight training algorithms to predict end temperature at the cold
end of the steel shell were employed individually in order to train
the BP-ANN model with the above determined architectural
parameters. Besides RE_MAX, MRE, and B, the mean elapsed
time for training 159 samples and prediction of one sample in
LOO tests was additionally applied to evaluate the efficiency of
the model. The performance results are presented in Figure 6.
Lower error values, larger B, and shorter computation time are
favorable. As shown in Figure 6a, the RE_MAX and MRE from
the cases with algorithms CGF, SCG, OSS, and BR were less
than those from GDX, CGB, CGP, and BFG, and showed
acceptable coefficients of determination. However, calculations
with algorithms SCG and OSS were time consuming
(Figure 6b). Therefore, the algorithms CGF and BR were
proposed for further study.

3.4. Extension to Thermomechanical Response Study

To finalize the model infrastructure, the above-determined BP-
ANNmodel with 7 nodes in the hidden layer and 160 samples in
the dataset was trained, using both CGF and BR, to predict
thermomechanical responses. Table 5 summaries the prediction
performance comparison of algorithms CGF and BR in thermal
and thermomechanical responses. The BP-ANN model trained
using BR performed better than the model with CGF for the
maximum tensile stress and compressive stress. Therefore, a
BP-ANN model with BR was proposed for the steel ladle study.

It isnoteworthy that thepredictionperformanceof thisBP-ANN
model with BR for maximum tensile stress is inferior to that for
end temperature and maximum compressive stress. A previous
study[5] showed that 7 of the 10 defined factors contribute 91% to
the maximum tensile stress, followed by 5 factors contributing
94% to the end temperature, and 1 factor contributing 93% to the
maximumcompressive stress. Thehigh dimensionality occurring
in the factor-response space increases the complexity of the
problem and results in under-fitting. Conversely, if themaximum
tensile stress prediction was used for parameter study, one could
expect over-fitting of the end temperature and maximum
compressive stress. An alternative could be establishing the BP-
ANNmodels with regard to the individual response, instead of the
three responses. Nevertheless, the RE_MAX for the maximum
tensile stress was 12.43%, which is less than the 15% empirical
error toleranceof prediction.[19,31,32]Moreover, theMSEwasas low
as 2.37%; therefore, the BP-ANN model was sufficient for the
research requirements.

3.5. Prediction with the Optimized BP-ANN Model

The optimal configuration of theBP-ANNmodel contains 7 nodes
in the hidden layer, and applies the Bayesian regularization
method,with 160 samples for training.The configurations and the
results of the comparison of predicted values for two proposed
lining concepts are given in Table 6 and Table 7, respectively. The
temperature difference between the BP-ANN model and the FE
results was 4K for lining concept 1, and the BP-ANN model
predicted the same temperature as the FE modeling of lining
concept 2. The maximum tensile stress differences between BP-
ANNprediction andFEmodeling for the two lining conceptswere
62 and 37MPa, representing 4.1% and 2.4%, respectively. The
differences in maximum compressive stress between BP-ANN
prediction andFEmodeling for the two lining conceptswere 5 and
2MPa, representing 0.97% and 0.39%, respectively.

Table 5. Thermomechanical responses prediction performance of BP-ANN models with CGF and BR.

End
temperature

Maximum tensile
stress

Maximum compressive
stress

Criteria CGF BR CGF BR CGF BR

RE_MAX (%) 7.15 7.15 16.62 12.43 3.12 4.09

MRE (%) 1.02 1.76 2.43 2.37 0.93 0.78

B 0.9967 0.9908 0.9279 0.9348 0.9963 0.9966

Mean elapsed time of one LOO test (s) 2.15 0.86 3.16 1.12 1.38 0.68

Table 6. Two proposed optimal lining concepts with different insulation materials. [5]

Thickness (mm) Thermal conductivity (W m�1K�1) Young’s modulus (GPa) Thermal expansion coefficient (10�6K�1)

Working lining 155 9 40 12.0

Permanent lining 52.5 2.2 45 5.0

Insulation (Lining concept 1) 37.5 0.5 3 6.0

Insulation (Lining concept 2) 37.5 0.38 4 5.6

Steel shell 30 50 210 12.0
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4. Conclusion and Outlook

A BP-ANN model was developed to predict the thermal and
thermomechanical responses of a steel ladle considering 10
geometrical and material property variations of ladle linings. The
optimized architectural parameters of the proposed BP-ANN
modelwere 7 nodes in the hidden layer, a dataset size not less than
16 times thenumber of inputnodes, andaBayesian regularization
trainingalgorithm.TheLOOtests for 128 samples showed that the
coefficientofdeterminationof theendtemperature, themaximum
tensile stress at the steel shell, and the maximum compressive
stress at thehot face of theworking liningwerehigh.Theproposed
BP-ANNmodelwas furtherutilized topredict the responsesof two
lining configurations proposed by previous work, and the high
prediction accuracy confirmed the reliable performance of the
BP-ANN model.

As an alternative to the conventional trial-and-error method,
the numerical investigation of lining concepts for a given
industrial vessel can be beneficial in saving time, materials, and
labor by avoiding unnecessary industrial trials. On the other
hand, the BP-ANN method allows an efficient search for
optimized lining concepts for vessels from both energy savings
and better thermomechanical performance points of view.

The proposedmultiple orthogonal arrays and BP-ANNmethods
developed in the present paper are also promising for the
optimization of ironmaking and steelmaking processes and
material recipe development. Especially, the application ofmultiple
orthogonal arrays is an advanced tool to achieve a representative
variations-response space, which defines the establishment of BP-
ANN model and affects the prediction performance.
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Abstract: Artificial neural network (ANN) is widely applied as a predictive tool to solve complex
problems. The performance of an ANN model is significantly affected by the applied architectural
parameters such as the node number in a hidden layer, which is largely determined by the complexity
of cases, the quality of the dataset, and the sufficiency of variables. In the present study, the impact
of variation/response space complexity and variable completeness on backpropagation (BP) ANN
model establishment was investigated, with a steel ladle lining from secondary steel metallurgy as
the case study. The variation dataset for analysis comprised 160 lining configurations of ten variables.
Thermal and thermomechanical responses were obtained via finite element (FE) modeling with elastic
material behavior. Guidelines were proposed to define node numbers in the hidden layer for each
response as a function of the node number in the input layer weighted with the percent value of
the significant variables contributing above 90% to the response, as well as the node number in the
output layer. The minimum numbers of input variables required to achieve acceptable prediction
performance were three, five, and six for the maximum compressive stress, the end temperature, and
the maximum tensile stress.

Keywords: backpropagation artificial neural network; space complexity; variable completeness;
lining concept; steel ladle; thermomechanical responses

1. Introduction

Artificial neural network (ANN), a technique for artificial intelligence and machine learning, is
often applied as a tool to deal with nonlinear problems and offer predictions in civil engineering [1–4],
material science [5,6], etc. The extension of its applications into the iron and steel industry is also
reported [7–11].

Architecture establishment of a suitable ANN model is still challenging in the definition of
the layer number and node number in the respective layer. Generally, a three-layer ANN model is
sufficient to build the relations among variables and responses [12]. Therefore, the determination of
the proper node number in the single hidden layer is the key issue. Table 1 lists the publications on the
optimization of the single hidden layer node number. To seek an optimal one, many applied the trial
and error method in a diverse range of the node numbers [13–17]; whilst others merely followed the
rules of thumb proposed in the literature [18–24], and the application of rules can significantly reduce
the number of trials. Six selected rules of thumb [18–25] used in the respective publication are given
below and indicated in Table 1 with an asterisk. The node number or number range for each study
was calculated according to the six rules of thumb and compared to the optimal hidden layer node
number determined in the respective study. It is evidently shown that the extended applications of six
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empirical equations into other fields are far less satisfying. Equations (1) and (2) show more robust
applications, yet they yield a rather larger number for trials.

Nh = (Ni + No)1/2 + a, a ε [1, 10] (1)

Nh = (Ni + No)1/2 + a, a ε [0, 10] (2)

Nh = (Ni × No)1/2 (3)

Nh = Ntrain/(Ni + 1) (4)

Nh = 1/2 (Ni + No) + N1/2
train (5)

Nh = 2/3 (Ni) + No (6)

where, Ni, Nh, and No are the node numbers in the input, hidden, and output layer, Ntrain is the dataset
size for training, and a is an empirical integer not larger than 10.

Several reasons contribute to the diverse results of the hidden layer node number optimization
with the six rules of thumb. One is the problem nature or complexity. As shown in Table 1, the optimal
values of erosion of beaches and energy conservations in old buildings are out of the range defined by
the empirical equations. One empirical equation may show consistent performance for the problems
within similar complexity. For instance, the prediction of Equation (3) for beach erosion [13] is rather
close to the optimal value that was used as the rule of thumb in the study of the mechanical behavior of
mortar [22]. The second reason is the quality of the dataset for training. The optimal training dataset
size was suggested to be ten times larger than the total number of weights and biases [12]. A steel ladle
lining study showed that the dataset size could be 16 times larger than the variable number in the input
layer, in the case of a well-distributed dataset in variation/response spaces [26]. Table 1 also shows
the size of the dataset for training and the ratio of the training dataset size to the number of variables
quoted in literature. Mostly, the information of dataset quality is missing and insufficient dataset size
relative to the variable number could be expected. Finally, the sufficiency of important variables or
factors, i.e., the variable completeness, in the problem definition shall also be taken into account.

The present paper investigates the influence of variation/response space complexity and variable
completeness on the required node numbers for a three-layer backpropagation (BP)-ANN model
using steel ladle lining as a case study. A representative dataset was obtained by a sample screening
approach applying multiple orthogonal arrays [26]. The dataset contains 160 samples constituted by
ten variables and three responses. The first part of the paper examines the prediction performance of
three-layer BP-ANN models with various node numbers in the hidden layer, to reveal the correlation
among the node numbers of input and output layers, the ratio of the number of variables contributing
above 90% to the response to the total number of variables, and the node number of the hidden layer
for each response. In the second part, several combinations of variables were tested as inputs for given
three-layer BP-ANN models to assess the influence of the ratio of input variables to the total number of
variables on the prediction performance.
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Table 1. Literature study of rules to define the node number in the hidden layer.

Research Field Ntrain Ni Ntrain/Ni No
Nh

Range
Number
of Trials

Optimal
Nh

Equation
(1)

Equation
(2)

Equation
(3)

Equation
(4)

Equation
(5)

Equation
(6)

Erosion of beaches [13] 105 3 35 15 1–20 20 3 [5, 15] [4, 15] 4, 5 26, 27 19, 20 17

Energy conservation in old buildings [14] 66 7 9.4 1 4–15 12 15 [3, 13] [2, 13] 2, 3 8, 9 12, 13 5, 6

Power output [15] – 5 – 1 1–11 11 7 [3, 13] ∆ [2, 13] ∆ 2, 3 – – 4, 5

Phytoremediation of palm oil secondary
effluent [16] 30 3 10 2 1–15 15 13 [3, 13] ∆ [2, 13] ∆ 2, 3 7, 8 7, 8 4

Adsorption of metal ions [17] 13 3 4.3 3 1–15 15 14 [4, 14] ∆ [3, 14] ∆ 2, 3 3, 4 6, 7 5

Extraction of sensing information [18] 500 100 5 1 11–20 10 19 [11, 20] * [10, 20] ∆ 10, 11 4, 5 72, 73 67, 68

Lithology identification for shale oil
reservoir [19] 220 11 20 4 7–11 5 10 [4, 14] * [3, 14] ∆ 3, 4 18, 19 22, 23 11, 12

Moisture content prediction in paddy
drying process [20] – 3 – 1 2–12 11 2 [3, 12] [2, 12] * 2 ∆ – – 3

Corn variety identification [21] – 10 – 3 3–14 12 8 [4, 14] ∆ [3, 14] * 3, 4 – – 9, 10

Mechanical behavior of mortar [22] 30 6 5 1 1–9 9 2 [3, 13] [2, 13] ∆ 2, 3 * 4, 5 8, 9 5

Extraction of phenolic compounds [23] 12 3 4 1 1–3 3 2 [3, 12] [2, 12] ∆ 2 ∆ 3 * 5, 6 3

Damage pattern of structural systems [24] 113 10 11.3 4 17, 18 2 17 [4, 14] [3, 14] 3, 4 10, 11 17, 18 * 10, 11

Ntrain is the dataset size for training.

Ni, Nh, No are the nodes numbers in the input, hidden, and output layer, respectively.

– Data are not available in the literature.

* The rule was used to define nodes number in the hidden layer by the authors in their publication.
∆ Rules that optimal Nh are coincident with.
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2. Methodology

2.1. Numerical Experiments

2.1.1. Lining Concept Design

Ten main variables prescribing steel ladle linings were selected for numerical experiments
design. These variables (Table 2) were the thicknesses of refractory linings and the steel shell,
thermal conductivity and Young’s modulus of lining materials. The dataset of lining configurations
was designed by a sample screening approach developed in the previous work [26], applying five
mixed-level orthogonal arrays L32 (49

× 21) with nine four-level variables, and a two-level variable for the
thickness of the steel shell. This gives a total amount of 160 experiments (See Supplementary Material).

Table 2. Geometrical and material property variables of steel ladle [26].

Variables Range of Variable Values Label of Variables

Thickness (m)

Working lining 0.03–0.27 A
Permanent lining 0.05–0.14 B

Insulation 0.003–0.042 C
Steel shell 0.015–0.035 J

Thermal conductivity
(Wm−1K−1)

Working lining 1.5–10.5 D
Permanent lining 1.0–10.0 E

Insulation 0.05–1.55 F

Young’s modulus (GPa)
Working lining 25–115 G

Permanent lining 5–110 H
Insulation 0.1–39.1 I

2.1.2. Finite Element Models

Finite element (FE) modeling was carried out with a commercial software ABAQUS to obtain
the thermal and thermomechanical responses of the steel ladle considering elastic material behavior.
The simplified two-dimensional numerical model representing a horizontal cut through the slag-line
position in the upper part of the steel ladle is depicted in Figure 1. The model was composed of five
layers, namely, a two-half brick working and permanent lining, an insulation lining, a fiberboard, and
a steel shell. There was 0.4 mm circumferential expansion allowance between bricks. The modeling
considered the first process cycle of the steel ladle, which included preheating the hot face of the
working lining to 1100 ◦C over 20 h, tapping the steel melt of 1600 ◦C into the ladle, transport and
refining for 95 min, and a 50 min idle period. The radial displacement of linings was free and the
circumferential one was constrained by a symmetry condition. The temperature-dependent surface
film condition function in ABAQUS was applied to define the heat transfer between both the melt and
the hot face of the working lining and the steel shell and the ambient atmosphere. A heat flux crossed
the interfaces between linings, and radiation and convection were allowed by applying a heat transfer
coefficient. From 160 numerical experiments, the end temperature and the maximum tensile stress
at the cold end of the steel shell and the maximum compressive stress at the hot face of the working
lining were obtained from FE modeling.
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2.2. BP-ANN Modeling

2.2.1. BP-ANN Architecture

A three-layer BP-ANN model, which includes one input, one hidden, and one output layer, is one
of the most popular ANN models. The input variables are introduced to the input layer by a vector
(X). A summation for each node in the hidden layer is conducted by multiplying input values with
their respective weights (W) plus a bias (b) constant. The summation is processed by an activation
function and transferred to the hidden layer. The same procedure is carried out between the hidden
and output layers. The predicted values at the output layer are compared with the target values and
errors are calculated. Weights and biases among layers are updated iteratively until a user-defined
performance goal is achieved. The schematic of a three-layer ANN model is demonstrated in Figure 2.
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In the present study, two groups of three-layer BP-ANN models were employed to investigate the
optimal range of the node numbers in the hidden layer for individual response and the influence of the
ratio of input variables to the ten variables (indicating the variable completeness) on the prediction
performance. In the first group, there were ten nodes in the input layer, one node in the output layer,
and the node number in the hidden layer varied from 1 to 20. The preferable node number range in the
hidden layer for each response was proposed afterward. In the second group, different combinations
of significant input variables for the individual response were selected according to the ANOVA results
of the previous work [27] and listed in Table 3 with their contribution summations to the response. For
each combination, several BP-ANN models were employed with the node number of the hidden layer
in the range proposed from the first group tests. For both groups, the activation function between
the input and hidden layers was a hyperbolic tangent sigmoid function [28], and a linear function
was applied between the hidden and output layers. The training algorithm was the gradient descent
with momentum and adaptive learning rate [28]. Training was terminated by reaching any defined
criterion, for instance, a maximum number of epochs (10,000), the minimum performance gradient
(10−5), or a minimum target error (0).

Before starting the network modeling, input variables were normalized to a scale of 0.1–0.9 to
mitigate the influence of magnitudes. The normalization of a variable (Xi) can be carried out according
to Equation (7).

Xi =
0.1xmax − 0.9xmin + 0.8xi

xmax − xmin
(7)

where xmax and xmin are the maximum and minimum values of the variable x.
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Table 3. Variable combinations of each response for backpropagation (BP)-ANN models.

Response Number of Input Variables Variable Labels Contribution to Response (%)

Compressive stress

1 G 93
2 G, J 96
3 G, J, D 98

10 A–J 100

End temperature

3 A, D, F 71
4 A, D, F, C 89
5 A, D, F, C, E 94

10 A–J 100

Tensile stress

4 F, G, D, J 71
5 F, G, D, J, C 78
6 F, G, D, J, C, H 85
7 F, G, D, J, C, H, I 91

10 A–J 100

2.2.2. Performance Assessment of BP-ANN Models

The responses were predicted by the leave-one-out (LOO) cross-validation method, i.e., one
simulation result was left for testing and the remaining results were used for training. Three quantities
were used to quantitatively assess the performance of the BP-ANN models. They were the maximum
relative error of all testing results (RE_MAX), mean relative error (MRE), and coefficient of determination
(B) calculated by the following equations:

RE_MAX = Max


∣∣∣di − yi

∣∣∣
di

 (8)

MRE =
1
n

n∑
i=1

∣∣∣di − yi
∣∣∣

di
(9)

B = 1−

∑n
i=1(di − yi)

2∑n
i=1

(
di − d

)2 (10)

where n is the total number of testing experiments, di is the FE-simulated value of the ith testing
experiment, d is the mean FE-simulated value of all the testing experiments, yi is the BP-ANN predicted
value of the ith testing experiment with the LOO method.

3. Results and Discussion

3.1. Influence of Variation/Response Space Complexity on BP-ANN Model Establishment

The relation between the complexity of variation/response space and the node number in the
hidden layer for each response was revealed. Except the 32 experiments acting as boundaries, the
remaining 128 experiments were tested by leave-one-out cross-validation. The node number in the
hidden layer was varied from 1 to 20 for each response. The assessment of the prediction performance
is shown in Figure 3. Lower RE_MAX and MRE and larger B are preferable.
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Figure 3. Performance assessment (a) RE_MAX—maximum relative error of all testing results,
(b) MRE—mean relative error, and (c) B—coefficient of determination of the BP-ANN models with
different node numbers in the hidden layer.

Figure 3 shows that the performance is significantly improved by increasing the node number
in the hidden layer to seven. However, the performance is oscillatory with further increasing node
number; the larger number of nodes may lead to over-fitting and affect the generalization capability.
For instance, when the node number is 20, the mean relative errors increase for all three responses; the
coefficients of determination decrease; the maximum relative error for end temperature is quite high.
Furthermore, it shows that each response has different optimal ranges.
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Considering the particular behavior of each response, error criteria were specifically defined for
each response and a preferable range of the node number in the hidden layer was proposed for each
response (Table 4). The range was 4–6 for the maximum compressive stress at the hot face of the
working lining, 5–7 for the end temperature of the steel shell, and 10–12 for the maximum tensile stress
at the cold end of the steel shell. These ranges can be correlated with the node numbers in the input
and output layers, as shown in Table 5. The number of variables that contribute more than 90% to
the response was used to calculate the PF value, which represents the variation/response complexity.
This number was divided by ten (the total number of variables) and multiplied by 100, which gave a
PF value in percent. Table 5 shows that the PF equaled 10, 50, and 70 for the maximum compressive
stress, end temperature, and maximum tensile stress, respectively. Therefore, the relation between the
complexity of the variation/response space and the node number in the hidden layer can be associated
with the PF and the node numbers in the input and output layers explicitly. Two equations were
deduced from Table 5.

Lower boundary: Nh = ANi + No (11)

Upper boundary: Nh = (A + 0.2) Ni + No (12)

where A is a function of the PF, Ni, Nh, and No are the node numbers in the input, hidden, and output
layers, respectively.

Table 4. Optimal node number range in the hidden layer for each response according to predefined
error criteria.

Response RE_MAX (%) MRE (%) Nh Range

Compressive stress 5 1.5 [4, 6]
End temperature 11 2 [5, 7]

Tensile stress 15 2.5 [10, 12]

Table 5. Correlation between PF and node numbers in the input and output layers.

Response PF
Nh

Lower Boundary Upper Boundary

Maximum compressive stress 10 3
10 Ni + No

5
10 Ni + No

End temperature 50 4
10 Ni + No

6
10 Ni + No

Maximum tensile stress 70 9
10 Ni + No

11
10 Ni + No

The relation between A and PF was fitted by an exponential equation (Equation (13)) as shown in
Figure 4. Equations (11)–(13) provide guidelines to define node number in the hidden layer for a steel
ladle system based on PF and node numbers in the input and output layers.

A = f (PF) = 0.2982− 0.001242 (1− e0.08836 ∗ PF) (13)

The above established guidelines were applied to validate the optimal node numbers in several
publications [15,19,20,22–24], which fall under the topics of temperature, mechanical behavior, and
material development. The calculations of the node number range of the hidden layer for these
publications were performed with PF values of 10 and 70, respectively. A wide range was created by
the lower boundary value with PF values of 10 and the upper boundary value with PF values of 70.
The optimal node numbers in the hidden layer obtained from literature and the calculated ranges from
proposed guidelines are given in Table 6. It shows that the optimal values in five publications are in the
range defined by Equations (11)–(13), except that the optimal node number in literature [24] is slightly
different to the calculated range. Four [19,20,22,23] of them are in the range with an assumption PF
equal to 10 and one [15] in the range with PF equal to 70. The possible total numbers of trials are also
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given in Table 4, and fewer trials are needed, compared with the trial and error method [15] and some
empirical equations [20,22].
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Table 6. Comparison of optimal node numbers in literature and the predicted ranges from the
proposed guidelines.

Literature Information Proposed Guidelines

Research Topics Optimal
Nh

Nh Range
(PF = 10)

Nh Range
(PF = 70)

Nh Range
(PF = 10–70)

Total Number
of Trials

Power output [15] 7 [2, 4] [5, 7] * [2, 7] 6
Lithology identification for shale oil

reservoir [19] 10 [7, 10] * [13, 17] [7, 17] 11

Moisture content prediction in paddy
drying process [20] 2 [1, 3] * [3, 5] [1, 5] 5

Mechanical behavior of mortar [22] 2 [2, 4] * [6, 8] [2, 8] 7
Extraction of phenolic compounds [23] 2 [1, 3] * [3, 5] [1, 5] 5

Damage pattern of structural systems [24] 17 [7, 9] [13, 15] [7, 15] 9

* The range includes the optimal node number in the literature.

3.2. Influence of the Variable Completeness on the BP-ANN Prediction Performance

The combinations of input variables for each response are listed in Table 3. Each combination was
fed as input to BP-ANN models with the node numbers in the hidden layer proposed in Table 4. For
instance, the optimal node number in the hidden layer was 4, 5, and 6 for the maximum compressive
stress. That is to say, three BP-ANN modeling were conducted for each input combination. The
prediction performance was evaluated by the mean values of RE_MAX, MRE, and B of three BP-ANN
models, shown in Figure 5. In general, for all three responses, lower RE_MAX and MRE and larger B
can be achieved with increasing variable completeness. The minimum number of variables for each
response was determined by an arbitrary chosen error tolerance, i.e., 15% of RE_MAX, 3% of MRE, and
0.90 of B and listed in Table 7 with contribution summations of these variables to the response. The
combinations consisted of the minimum number of variables that are capable of predicting the relation
between input variables and corresponding outputs. It also indicates that the minimum number of
variables changes with respect to the complexity of the problem. A larger number of variables shall be
considered if the problem shows significant complexity, which shall contribute a certain value to the
response. For instance, this value could be 90% for the tensile stress. This information further confirms
the top priority of the significant factors of lining concepts analyzed with the Taguchi method.
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Table 7. Selection of the minimum number of input variables satisfying the predefined criteria.

Response Minimum Number of Input Variables Contribution to Response (%)

Compressive stress 3 98
End temperature 5 94

Tensile stress 6 85
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4. Conclusions

The influence of variation/response space complexity and variable completeness on BP-ANN
model establishment was investigated. The guidelines to define node numbers in the hidden layer
were proposed for a steel ladle lining system according to the variation/response space complexity.
The preferable node number ranges for maximum compressive stress at the hot face of the working
lining, the end temperature, and the maximum tensile stress at the cold end of the steel shell were 4–6,
5–7, and 10–12, respectively. The minimum numbers of input variables of significance determined by
the Taguchi method for the BP-ANN model were three, five, and six for the maximum compressive
stress, the end temperature, and the maximum tensile stress.

The results evidently and exemplarily show that the variation/response complexity plays a
determinant role in the architecture establishment of a BP-ANN model, which is often neglected in the
applications of ANN models. The comparison study also demonstrates that the proposed guidelines
in the present paper are efficient and can be extended into other fields in defining an optimal node
number of the hidden layer in a three-layer BP-ANN model.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/14/2835/s1,
Table S1: Database.
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Abstract Refractory linings of industrial vessels are of decisive importance for high 

temperature industries. To facilitate the lining design for various material properties and 

lining configurations, quantitative prediction of thermomechanical responses is of 

importance prior to industrial application. 192 lining configurations including 10 

geometrical and material property variations of a steel ladle lining were defined by six 

orthogonal arrays for finite element (FE) simulations. The maximum compressive stress 

at the hot face of the working lining and the maximum tensile stress at the cold end of the 

steel shell were the selected responses of interest. The impact of geometrical and material 

property variations on thermomechanical performance of the selected ladle was assessed 

by analysis of variance (ANOVA) and signal-to-noise (S/N) ratio using 32 lining concept 

results from one out of six orthogonal arrays. Two optimized lining concepts were 

proposed accordingly. Their responses were well predicted by a three-layer back-

propagation artificial neural network (BP-ANN) model.  

1. INTRODUCTION 

Many factors could affect the performance of a steel ladle, for instance, lining configurations, 

slag compositions, and operation processes [1]. An optimal lining configuration under 

defined service conditions is crucial for steel ladle campaign life. With the development of 

computer techniques and algorithms, many advanced techniques, e.g. the finite element 

method and Taguchi method, can be easily utilized or integrated to facilitate the refractory 

lining design [2-4]. Especially, the artificial neural network (ANN) is promising in the 

instantaneous prediction of thermomechanical responses after sufficient training [5].  

In the present paper the Taguchi method is applied to design 192 lining configurations for FE 
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modelling of a steel ladle. Afterwards, the significant factors and their contributions to the 

thermomechanical responses were identified for 32 lining concepts from one orthogonal array. 

Taking into account available material data, optimal lining concepts were proposed. Later, an 

ANN model was trained by different algorithms with 160 lining concepts from the remaining 

orthogonal arrays and employed to predict the maximum tensile and compressive stresses of 

two proposed lining concepts. 

2. METHODOLOGY 

2.1. Taguchi method 

Ten geometrical and material property variations of a steel ladle were defined. They were 

the thicknesses of refractory linings and the steel shell, thermal conductivity and Young’s 

modulus of lining materials. Lining configurations were designed according to orthogonal 

arrays. Nine variations have four levels, and one variation, the thickness of the steel shell, 

has two levels; the mixed-level orthogonal array with 32 runs was used to arrange the 

level combination of these ten variations. 32 lining concepts from one orthogonal array 

were used to assess the significance of variations and select the optimal levels. The 

detailed variations and levels information for this orthogonal array is shown in Table 1. 

The other five orthogonal arrays (corresponding to 160 lining concepts) were employed to 

evenly distribute the levels of variations in the variation-response space and the results 

were used to train the ANN model. 

Impact factors 
Levels 

Label of factors  
1 2 3 4 

Thickness (mm) 

Working lining 250 200 155 50 A 

Permanent lining 130 110 90 65 B 

Insulation lining 37.5 25 15 6 C 

Steel shell 30 20 
  

J 

Thermal conductivity 

(Wm
-1

K
-1

) 

Working lining 9 8.5 7 3 D 

Permanent lining 9 5 3 2.2 E 

Insulation lining 1.35 0.5 0.35 0.15 F 

Young's modulus 

(GPa) 

Working lining 100 80 60 40 G 

Permanent lining 90 45 30 10 H 

Insulation lining 35 4 3 0.17 I 

Table 1. Geometrical and material property variations for the orthogonal array [3].  

Analysis of variance (ANOVA) was applied to quantitatively assess the contribution of 

factors to the overall sum of variances. The necessary quantities used to calculate a factor’s 

percentage contribution (C) were the total sum of squares (𝑆𝑆𝑇), the sum of squares of each 

factor (𝑆𝑆𝑓), and the sum of squares of the deviation (𝑆𝑆𝐷). The percentage contribution of 

one factor was calculated in terms of equations 1-4: 
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                                              𝐶 =  
𝑆𝑆𝑓

∑ 𝑆𝑆𝑓(𝑘)𝑚
𝑘=1

 ×  100%                                                                               (4) 

where, 𝑙 is the number of levels, 𝑛𝑖 is the number of runs at the 𝑖𝑡ℎ level, 𝑦𝑖𝑗 is the value of 

𝑗𝑡ℎ observation at 𝑖𝑡ℎ level, �̅�𝑡 is the mean of all observations, �̅�𝑖  is the mean of observations 

at the 𝑖𝑡ℎ level, and 𝑘 is the index referring to a factor.  

The S/N ratio represents the effect of the factor levels on the response value. The smaller-the-

better equation was used to evaluate the thermomechanical responses as it considers the 

smallest value as the best quality. The formula of the smaller-the-better S/N ratio is shown as 

below: 

                                                     
𝑆

𝑁
=  −10 𝑙𝑜𝑔 (

1

𝑛𝑖
∑ 𝑦𝑖𝑗

2

𝑛𝑖

𝑗=1

)                                                                         (5) 

where, 𝑛𝑖 is the number of runs at the 𝑖𝑡ℎ level, 𝑦𝑖𝑗 is the value of 𝑗𝑡ℎ observation at 𝑖𝑡ℎ level. 

The equation shows that the higher value of S/N ratio corresponds to a better performance. 

2.2 Finite element model and boundary conditions 

A simplified two-dimensional model representing a horizontal cut through the slag-line 

position in the upper part of the steel ladle is depicted in Fig. 1. The model is composed of a 

two half-brick working ling, a two half-brick permanent lining, an insulation lining, a 

fibreboard, and a steel shell. The circumferential expansion allowance between bricks was 

0.4 mm.  

Finite element modelling of the steel ladle was carried out by the commercial software 

ABAQUS with considering an elastic material behaviour. The simulated processes included 

the preheating of the hot face of working lining to 1100 ºC in 20 h, the tapping of the 1600 ºC 

steel melt into the ladle in a short time, a 95 min refining and 50 min idle time. The ambient 

temperature is 25 ºC. The thermal conductivity and Young’s modulus of materials were 

considered as temperature-independent. The heat transfer between the liquid melt and the hot 

face of the working lining, the cold end of the steel shell, and the atmosphere was defined as 

temperature-dependent using the surface film condition function in ABAQUS. The interfaces 
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between linings were crossed by heat flux, and a heat transfer coefficient allowing for 

radiation and convection was applied.  

 

Figure 1. Finite element (FE) geometry [3]. 

2.3 Back-propagation artificial neural network (BP-ANN) 

A three-layer BP-ANN model with one input layer, one hidden layer, and one output layer 

was applied with a hyperbolic tangent sigmoid transfer function (tansig) between input and 

hidden layers, and a linear (purelin) function between hidden and output layers [6]. There 

were seven nodes in the hidden layer. The BP-ANN model was trained by eight training 

algorithms [6]. The brief description of these algorithms is given in Table 2. The input 

variables are introduced to the network as a vector and processed by the nodes of the input 

layer. The summation of all input variables multiplied by their respective weights and plus a 

bias constant yields the input for each node in the hidden layer. These inputs are transferred 

by a transfer function as the output of each node in the hidden layer. The outputs from the 

hidden layer are processed in the same way to the output layer. The predicted outputs from 

the output layer are compared with the desired values, and the error (difference between the 

predicted and the desired values) is sent back to the hidden layer for updating weights.  

Training 

algorithm 
Brief description 

GDX Gradient descent with momentum and adaptive learning 

rate back-propagation 

CGB Conjugate gradient back-propagation with Powell-Beale 

restarts 

CGF Conjugate gradient back-propagation with Fletcher-

Reeves updates 

CGP Conjugate gradient back-propagation with Polak-Ribiére 

updates 

SCG Scaled conjugate gradient back-propagation 

BFG BFGS quasi-Newton back-propagation 

OSS One-step secant back-propagation 

BR Bayesian regularization back-propagation 

Table 2. Training algorithms employed in the present study [6]. 

3. RESULTS  

3.1 Contribution of variations to thermomechanical responses 
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The ANOVA was applied to quantitatively investigate the contribution of defined variations 

to the thermomechanical responses according to the Eqs. (1,2,3,4). The results for maximum 

tensile and compressive stresses are show in Table 3. The top five significant impact 

variations for the maximum tensile stress at the cold end of the steel shell were the thermal 

conductivity of the insulation material (F), the Young’s modulus of the working lining 

material (G), the thickness of the steel shell (J), the thermal conductivity of the working 

lining material (D), and the Young’s modulus of the insulation material (I). These five 

variations contributed 79% to the variance of results for the tensile stress at the steel shell. 

The variations of the Young’s modulus of the working lining (G) had an overwhelming 

impact on the results for the compressive stress at the working lining, with a 93% 

contribution to its variance.  

Factor SSf (MPa2) Contribution (%) Ranking 

 Tensile Compressive Tensile Compressive Tensile Compressive 

A 134270 5559 4.83 0.51 8 5 

B 80720 209 2.90 0.02 9 10 

C 188547 3192 6.78 0.29 6 6 

D 415173 19406 14.93 1.78 4 3 

E 30313 1336 1.09 0.12 10 8 

F 667526 334 24.01 0.03 1 9 

G 474788 1013329 17.07 93.00 2 1 

H 161662 2374 5.81 0.22 7 7 

I 208307 10153 7.49 0.93 5 4 

J 419299 33670 15.08 3.09 3 2 

𝑆𝑆𝑇 = 2 821 827, 𝑆𝑆𝐷 = 41 222 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 

𝑆𝑆𝑇 = 1 089 684, 𝑆𝑆𝐷 = 122 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 

  Table 3. ANOVA results of the maximum tensile and compressive stresses. 

3.2 Optimization study of variation levels 

The S/N ratios of the thermomechanical responses were calculated with respect to the 

variation levels according to Eq. (5) and the results are show in Fig. 2. For each variation, the 

level showing the largest S/N ratio will be considered as the optimal one, this means that 

lower stresses for both selected responses are preferred. The optimal S/N ratios for the 

maximum tensile stress at the cold end of steel shell were A4B4C4D4E2F1G4H4I4J1. The 

optimal levels for the maximum compressive stress at the hot face of the working lining were 

A4B2C2D3E1F3G4H1I4J2.  
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Figure 2. S/N ratio graph for the maximum tensile and compressive stresses and highest S/N results are 

A4B4C4D4E2F1G4H4I4J1 and A4B2C2D3E1F3G4H1I4J2, respectively [3]. 

The lining concept of the steel ladle can be optimized with the guidance of ANOVA and S/N 

ratio analyses. Two optimized lining concepts were proposed taking into account the practical 

materials and the volume capacity of the steel ladle. The configurations of the two proposed 

lining concepts are given in Table 4.  

 

Thickness 

(mm) 

Thermal conductivity 

(W m
-1

K
-1

) 

Young's modulus 

(GPa) 

Thermal expansion 

coefficient (10
-6

K
-1

) 

Working lining 155 9 40 12.0 

Permanent lining 52.5 2.2 45 5.0 

Insulation (Case1) 37.5 0.5 3 6.0 

Insulation (Case2) 37.5 0.38 4 5.6 

Steel shell 30 50 210 12.0 

Table 4. Two proposed optimized lining concepts with different insulation materials [3]. 

3.3 Prediction of the thermomechanical responses of the optimized lining concepts 

with BP-ANN model  

The BP-ANN model with seven nodes in the hidden layer was applied to predict 

thermomechanical responses. The BP-ANN model was trained with 160 lining configurations 

and the performance of eight algorithms were evaluated in terms of the relative error, which 

was the difference between the predicted and the simulated values divided by the simulated 

value. The prediction performance of the BP-ANN model with different training algorithms 

for maximum tensile and compressive stresses was given in Fig. 3 (a) and (b), respectively.  
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(a)                                                         (b) 

Figure 3. Relative errors of (a) maximum tensile stress and (b) maximum compressive stress predicted with the 

BP-ANN model applying different training algorithms for the two optimized cases. 

4. CONCLUSION 

The Taguchi method facilitates decision making for optimizing lining concept by calculating 

the percentage contribution of each factor variations to the overall sum of variances and 

assessing the optimal level of each variation. Stresses were calculated using transient finite 

element simulations. Two lining concepts were proposed based on the information received 

from ANOVA and S/N ratio and available material data.  

Furthermore, the BP-ANN model was successfully applied to predict the thermomechanical 

responses and an acceptable prediction accuracy was achieved. The combined application of 

the Taguchi method, finite element method and BP-ANN is promising in the prediction and 

optimization of lining concept performance prior to industrial application.  
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Abstract 

 Digitalization of high temperature industries, 

especially in iron and steel making industry, is a 

worldwide trend being supported by different 

initiatives, e.g. Industrial Internet of Things in USA, 

Industry 4.0 in Germany. As the foundation of high 

temperature industries, refractory linings of 

industrial vessels are one of importance integrated 

chains of digitalization. This necessitates the 

computerized design system of refractory linings 

offering the functions of experimental design, 

decision making, and prediction. A methodology is 

proposed for the refractory lining design utilizing 

analytical and numerical methods, which are the 

Taguchi method, thermomechanical finite element 

modelling and artificial neural network. The case 

studies of a channel induction furnace and steel 

ladle demonstrate the success of semi-quantitative 

analysis of lining concept variations and 

determination of the principal factors, with respect 

to the thermal and thermomechanical responses. 

Multiple orthogonal arrays were applied to achieve 

a representative factor-response dataset for training 

with a back propagation artificial neural network. 

With the optimized infrastructure of back 

propagation artificial neural network, the thermal 

and thermomechanical responses of two proposed 

lining concepts of a steel ladle in terms of existing 

commercial refractories were well predicted. 

 

1. Introduction 

The digitalization of iron and steel industries 

mainly consists of production management system 

(PMS), through-process optimization (TPO) and 

computerized maintenance management system 

(CMMS)
1)

. Presently, focus is given to the process 

optimization and digital transformation of 

knowledge in the iron and steel plants
2)

. As 

transportation units or/and refining sites, the 

continuous and controllable operation of industrial 

metallurgical vessels lined with refractories is 

preferable, which contributes to the cost-efficiency 

of metallurgical processes. In this sense, the 

industrial metallurgical vessel lining concept design 

could also be integrated into the digitalizing process 

of iron and steel industries and will play an active 

role in the computerized maintenance management 

system. To this end, advanced methods such as the 

Taguchi method, finite element method and 

artificial neural network can be applied. The present 

paper introduces the methods and their applications 

for a channel induction furnace and a steel ladle
3-6)

. 

The former one applies monolithic materials and the 

latter shaped materials as working linings. 

 

2. Approaches 

The methodology including the Taguchi 

method, finite element (FE) method and artificial 

neural network (ANN) were defined to study and 

optimize the industrial vessel lining design. Fig. 1 

shows the flowchart of this methodology. 

 

 
Fig. 1 Flowchart of a methodology for the lining 

optimization. 

For the Taguchi method mainly orthogonal 

arrays, analysis of variance (ANOVA), and the 

signal-to-noise (S/N) ratio are applied. It was used 

to design refractory lining configurations and 

quantitatively assess the significance of factors to 

responses. An orthogonal array is a highly fractional 

factorial design and thus yields a minimum number 

of experimental runs. With applying the orthogonal 

array, variations are evenly distributed in a variable 

space. Considering the possible complexity of 

variation/response spaces, multiple orthogonal 

arrays are feasible to achieve a representative 

dataset with even distribution of variations, as 

schematically shown in Fig. 2. It is also important 

to define largest spans of variables as the 

boundaries, because the extrapolation out of these 

boundaries is rather risky. Those lining concepts 

from the boundary space will only be used for 

training artificial neural network models. 

The finite element (FE) simulations act as 

“virtual trials” of various lining concepts. From 

those one can obtain the interested responses of 

lining concepts and perform further analysis. For 

the present study, the responses of interest are the 



temperature and thermomechanical stress. 

An artificial neural network (ANN) is a 

mathematical model extensively used for prediction 

without explicitly knowing the relations among 

inputs and outputs. The topology of a three-layer 

ANN (input, hidden and output layers) is depicted 

in Fig. 3. The connections among a hidden layer 

node and input layer nodes are given by a 

summation function composed of individual weight 

of each input layer and a bias. The summation result 

in a hidden layer node is transformed with a transfer 

function. The same procedure is applied for the 

hidden and output layers. 

 

Fig. 2 The distribution of variations in a 

two-dimensional space.  

      

Fig. 3 The topology of a three-layer artificial 

neural network
6)

.  

 

3. Case studies 

3.1 Channel induction furnace
3,4)

 

  The main objective of this study was to reduce 

the heat loss from the steel shell and extend the 

volume capacity of a channel induction furnace by 

applying materials with strong insulation effect, 

meanwhile being without significant adverse effects 

to the residual linings of this furnace. To this end, a 

simplified two dimensional representation of a 

channel induction furnace lining concept, made of 

monolithic refractories, the fiber and steel shell, was 

established (Fig. 4). More details are given in refs.3 

and 4. 

  

 Working lining 

Safety lining 

Insulating lining 

Fiber 

Steel shell 
       

 

Fig. 4 Two-dimensional representation of a 

channel induction furnace lining
3)

. 

Table 1 lists the variations of lining concepts 

for optimization study. Four monolithic materials 

mainly composed of light weight components were 

the candidates for the insulating lining and sorted by 

the descending sequence of thermal conductivities 

named as A1, A2, A3 and A4. In the case of the 

working lining and safety lining, E2 and D2 showed 

relative lower thermal conductivity than E1 and D1, 

respectively. A particular mixed level orthogonal 

array L16 (4
3
×2

2
) suited the present study. Finite 

element modelling taking into account elastic 

behavior of materials was performed. The simulated 

processes were 9-day preheating of the new working 

lining to 1200°C and 3-day casting at 1500°C and 2 

-day holding.  

Table 1 Materials and thicknesses for the 

monolithic lining of a channel induction 

furnace
3)

. 

    Factor  

Level  
A B C D E 

1 A1* 1.00 0.96 D1* E1* 

2 A2 1.05 0.85 D2 E2 

3 A3 1.11 0.70   

4 A4 1.16 0.65   

(A-insulating lining material; B-dimensionless 

insulating lining thickness; C-dimensionless 

working lining thickness; D-safety lining material; 

E-working lining material. Asterisk* indicates the 

reference material.) 

  The maximum tensile stresses at the working 

lining hot face caused by the shrinkage of monoliths 

and at the steel shell cold face, and the interface 

temperature between safety and insulating linings 

(S-I) and the steel shell temperature were the 

selected responses for the main effect analysis. To 

save the space, Fig. 5 only demonstrates the S-I 

interface temperature with respect to variations. The 

mean value was obtained by dividing the sum of the 

responses at each level of one factor to the 

occurrence number of this level in the orthogonal 

array; the contribution of the other factors was 

ignored intentionally. The differences between the 

maximum and minimum mean responses at each 

factor were used to assess the main effect. It showed 

that the working lining thickness and the insulating 

lining play a major role in the interface temperature. 

The analysis yielded an optimal lining concept 



A1B1C1D2E2 to achieve a low S-I interface 

temperature. 

Combined with the analysis of other three 

responses, A4B1C1D1E1 was proposed to be an 

alternative one. The thermomechanical modeling 

allowing creep of E1 showed that the application of 

the insulating material A4 with strong insulation 

effect is beneficial in energy savings without posing 

severe thermomechanical loads on the residual 

linings. For instance, the relative difference between 

ultimate equivalent creep strains of two lining 

concepts at a critical area was just 7.3% and can be 

technically neglected, as shown in Fig. 6. 
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Fig. 5 Main effect analysis of various factors on 

the temperature
3)

. 

 

 
Fig. 6 Equivalent creep strain evolution of the 

working lining with respect to the process time
4)

. 

3.2 Steel ladle
5,6)

 

Fig. 7 depicts a simplified two-dimensional 

model representing a horizontal cut through the 

slag-line position in the upper part of a steel ladle. 

The model consisted of a two-half brick working 

and permanent lining, an insulation lining, a 

fiberboard, and a steel shell. Ten variables were 

lining and steel shell thicknesses, thermal 

conductivity, and Young’s modulus of lining 

materials as listed in Table 2. Two datasets of lining 

concepts were designed by applying orthogonal 

arrays considering ten defined variables. The first 

dataset included 32 cases from one array and the 

second dataset included 160 cases from other 5 

orthogonal arrays. 

Finite element modelling of the steel ladle was 

performed taking into account elastic material 

behavior. The simulated process included the 

preheating of the hot face of working lining to 1100 

ºC in 20h, the tapping of the 1600 ºC steel melt into 

the ladle in a short time, a 95min refining and 

50min idle time. The thermal conductivity and 

Young’s modulus of materials were considered as 

being temperature independent. The interested 

responses were the end temperature, the maximum 

tensile stress at the cold face of the steel shell, and 

the maximum compressive stress at the hot face of 

the working lining.  

Table 2 Variables of a steel ladle lining
5)

. 

 Ladle linings 
Labels of 

variables 

Thickness 

Working lining A 

Permanent lining B 

Insulation C 

Steel shell J 

Thermal 

conductivity 

Working lining D 

Permanent lining E 

Insulation F 

Young’s 

modulus 

Working lining G 

Permanent lining H 

Insulation I 

 
Fig. 7 Two dimentional representation of a steel 

ladle
5)

. 

ANOVA and S/N ratio were performed with 32 

cases in the first dataset, as shown in Fig. 8. The top 

four significant impact variables on the temperature 

at the cold end of the steel shell were A, F, C, and D, 

in descending order. Their individual confidence 

levels were all higher than 90%, and when 

combined, they contributed 89% to the end 

temperature. In the case of tensile stress at the steel 

shell, the first four significant impact variables were 

F, G, J, and D. They contributed 71% to the tensile 

stress at the steel shell. The variable G had an 

overwhelming influence on the compressive stress 

at the hot face of the working lining, with a 93% 

contribution.  

Two optimized lining concepts were proposed 

with consideration of significant variables, optimal 

levels of variables according to S/N ratio analysis, 

and the available practical materials. For both lining 

concepts, lower temperatures and compressive 

stresses were achieved comparing with the 

reference ladle.  
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Fig. 8 Contribution and confidence levels (in 

parentheses) of variables for three responses
5)

. 

A three-layer back-propagation artificial neural 

network (BP-ANN) model was applied for training 

and prediction. The model consisted of 7 nodes in 

the hidden layer, a hyperbolic tangent sigmoid 

transfer function between input and hidden layers, a 

linear function between hidden and output layers, 

and a Bayesian regularization training algorithm. 

The dataset were the 160 lining concepts. 

Leave-one-out (LOO) cross validation was applied 

to predict three responses of 128 lining concepts. 

Three quantities were used to assess the prediction 

performance of the BP-ANN model: maximum 

relative error of all testing cases (RE_MAX), mean 

relative error (MRE), and coefficient of 

determination (B)
6)

.  

Table 3 summarizes the prediction 

performance. The three RE_MAXs were less than 

the 15% empirical error tolerance of prediction. The 

MSE values were lower than 2.5% and B values 

were higher than 0.93 for all three responses. 

The three responses of two optimal lining 

concepts proposed by the Taguchi method were 

predicted with the above ANN model
6)

. For these 

two concepts, the temperature differences between 

the BP-ANN model and the FE results were less 

than 4K; the maximum tensile stress differences 

between BP-ANN prediction and FE modeling were 

4.1% and 2.4%; the differences in the maximum 

compressive stress were 0.97% and 0.39%. 

Table 3 BP-ANN model prediction performance 

for three responses
6)

. 

Criterion 

Steel  

shell 

temperature 

Maximum 

tensile 

stress 

Maximum 

compressive 

stress 

RE_MAX 

(%) 
7.15 12.43 4.09 

MRE (%) 1.76 2.37 0.78 

B 0.9908 0.9348 0.9966 

 

5 Conclusion 

 An optimized refractory lining concept is 

beneficial for both refractory suppliers and users. To 

achieve it, an optimization process of vessel lining 

concepts was realized in a digital manner with a 

holistic consideration of material properties, lining 

geometry and operation conditions, as an alternative 

to the trial-and-error method. The methodology 

consists of the Taguchi method, finite element 

method and artificial neural network, covering 

efficient lining variation design to achieve a 

representative dataset, numerical experiments and 

new lining concept prediction. The case studies 

demonstrate their successful utilizations. The 

developed methodology is also promising in 

optimization of other different industrial vessel 

linings under different operation conditions. 
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