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Abstract

The mechanics of highly anisotropic materials, such as composites, has raised many ques-
tions in solid mechanics which in turn have led to an improved understanding of the
subject. For the effective use of such materials, it is important to have suitable and re-
liable mathematical models that describe their behaviour. In this context, the overall
objective of this work is to develop physically motivated and sufficiently general constitu-
tive equations that describe the non-linear material response of fibre-reinforced composites
from the continuum perspective.

Macroscopically, a composite may be regarded as an anisotropic material which exhibits
a highly direction-dependent mechanical response. These materials can be characterised
by different symmetry groups based on their inherent micro-structure. If the material
is reinforced by fibres in one direction, then the composite has only a single preferred
direction and is characterised by the transversely isotropic system. Typical example is a
unidirectional fibre-reinforced composite. It is also conceivable for a composite material
to be reinforced by fibres in more than one direction. For example, a woven fabric has
fibres aligned in two perpendicular directions. Such materials belong to the orthorhombic
system and are characterised by the existence of two preferred directions.

While composite materials show a variety of mechanical responses, this thesis presents
a framework for the description of elastic and plastic response. For the two selected
symmetry groups, relatively general models of elastoplasticity are developed within the
geometrically linear framework, and aspects of the finite element implementation are
outlined. A key aspect is the formulation of anisotropic elastic and plastic constitu-
tive response functions with the aid of general representation theorems, where additional
(symmetric second-order) tensorial arguments which reflect the microstructural informa-
tion on the macroscopic level are incorporated. A further core ingredient is the set-up
of a canonical and non-conventional constitutive structure, with respect to associated
and non-associated flow response, where the use of latter is motivated by the physical
inconsistencies induced by the former under shear dominated loads. A rate-dependent
approximation of the rate-independent setting is also outlined. The performance of the
proposed models is evaluated qualitatively and quantitatively by means of representative
numerical simulations.



Zusammenfassung

Die Mechanik stark anisotroper Materialien, wie z.B. Verbundwerkstoffe, hat in
der Festkörpermechanik viele Fragen aufgeworfen, die wiederum zu einem besseren
Verständnis des Themas geführt haben. Für den effektiven Einsatz solcher Materialien
ist es wichtig, über geeignete und zuverlässige mathematische Modelle zu verfügen, die
ihr Verhalten beschreiben. In diesem Zusammenhang ist das übergeordnete Ziel dieser
Arbeit, physikalisch motivierte und ausreichend allgemeine Konstitutivgleichungen zu en-
twickeln, die das nichtlineare Materialverhalten von faserverstärkten Verbundwerkstoffen
aus der Kontinuumsperspektive beschreiben.

Auf der makroskopischen Ebene kann ein Verbundwerkstoff als anisotropes Material be-
trachtet werden, das ein richtungsabhängiges mechanisches Verhalten aufweist. Darüber
hinaus können Verbundwerkstoffe aufgrund ihrer Mikrostruktur durch verschiedene Sym-
metriegruppen charakterisiert werden. Wenn das Material durch Fasern in einer Richtung
verstärkt ist, hat der Verbundwerkstoff nur eine einzige Vorzugsrichtung und ist durch
die Eigenschaften einer tranversal isotropen Symmetriegruppe gekennzeichnet. Typis-
ches Beispiel dafür ist ein unidirektional faserverstärkter Verbundwerkstoff. Es ist auch
denkbar, dass ein Verbundwerkstoff durch Fasern in mehr als einer Richtung verstärkt
wird. So weist beispielsweise ein Gewebe Fasern auf, die in zwei aufeinander senkrechten
Richtungen ausgerichtet sind. Solche Materialien gehören zum orthorhombischen System
und zeichnen sich durch die Existenz von zwei Vorzugsrichtungen aus.

Obwohl Verbundwerkstoffe eine Vielzahl von mechanischen Reaktionen zeigen, stellt
diese Arbeit einen Rahmen für die Beschreibung des anisotropen elastischen und plas-
tischen Verhaltens dar. Für die beiden ausgewählten Symmetriegruppen werden rel-
ativ allgemeine Modelle der Elastoplastizität im Rahmen geometrisch lineare Theorie
entwickelt und die Aspekte der Finite-Elemente-Implementierung skizziert. Wichtige
Bestandteile sind die Formulierungen von anisotropen Konstitutivgleichungen mit Hilfe
von Repräsentationstheoremen, bei denen zusätzliche tensorielle Argumente (sym-
metrisch, zweiter Stufe) einbezogen werden, die die mikrostrukturellen Informationen auf
makroskopischer Ebene widerspiegeln. Ein weiterer Kernbestandteil ist der Aufbau einer
kanonischen und nicht-konventionellen konstitutiven Struktur, d.h. assoziertes und nicht-
assoziertes Fließverhalten, deren Verwendung physikalischen Inkonsistenzen motiviert ist,
die bei schub-dominierter Belastung durch die kanonische Struktur verursacht werden.
Eine ratenabhängigen Approximation der ratenunabhängigen Einstellung wird ebenfalls
skizziert. Die Performance der vorgeschlagenen Modelle wird qualitativ und quantitativ
mittels repräsentativer numerische Simulationen bewertet.
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1. Introduction

The behaviour of fibre-reinforced composites with their excellent properties such as high
strength and stiffness to weight ratios, lightweight, impact resistance and thermal stability
which are different and superior compared to other conventional engineering materials, is
governed by their micro-structure. The prediction of micro-structure and understanding
its effect on the macroscopic behaviour is the key to reliable and physically motivated
constitutive formulations which in turn provide a strong basis for an optimised design of
such materials. In the present work, emphasis is placed on studying the overall material
behaviour of composites, specifically the energetic and dissipative responses, and devel-
opment of suitable thermodynamics-based material models that accurately predict the
trends of experimentally observed behaviour.

1.1. Motivation and state of the art

The use of fibre-reinforced composites as a primary structural component in the auto-
mobile, civil, aerospace and other industries is increasingly popular due to interesting
properties. In these structural applications, a failure analysis is required to study their
material response for various loads. Owing to its heterogeneous nature with different
constituents, the load response of composite materials is influenced by a number of phys-
ical mechanisms [3]. However, non-linearity prior to damage may lead to a redistribution
of the stress state in a laminate, which eventually affects the failure onset. Therefore,
the predictive modelling of the non-linear behaviour of composites has been a topic of
intensive research over the last years.

The choice of a modelling scale to simulate the behaviour of composite materials is ex-
tremely important. Typically, three scales are available as shown in Fig. 2, namely (i)
microscopic, (ii) mesoscopic and (iii) macroscopic, see also [2,4]. The microscopic scale is

Civil engineering [1] Aerospace [2] Automobile [2]

Figure 1: Composite materials. Applications where composite materials are used.

Scale Microscopic Mesoscopic Macroscopic

Constituents Fibre, matrix Ply/layer Laminate

Figure 2: Modelling scales. Different scales for modelling the material response [4].
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not desired for large structures because of its complexities such as the need for multi-scale
methods, a higher number of material constants and so on. On the other hand, there is
loss of information on the macroscopic scale where individual layer positions cannot be
taken into account due to the homogenisation of the laminate [4]. The choice of a meso-
scopic scale that accounts for layer orientations and positions is thus a good compromise,
and enables for an in-depth understanding of the energetic and dissipative effects.

From an experimental perspective, investigations pertaining to the non-linear behaviour of
composites are documented in [5–8], among others. It has been observed that the material
response of the composite to loading in the fibre direction remains essentially elastic up to
failure, whereas that to shear and transverse directions is non-linear and inelastic. Due to
the brittleness of matrix material, the non-linear inelastic behaviour is usually attributed
to the brittle cracking inside the matrix material. Consequently, previous modelling efforts
have focused on continuum damage mechanics [9, 10]. Recent research however implies
that under shear dominated loads, considerable irreversible strains develop that cannot
be explained by brittle mechanisms alone. It has been experimentally observed [11, 12]
and computationally verified [13] that the non-linearity is due to plasticity in the matrix
constituent. Therefore, precise constitutive relations that account for the elastic-plastic
response of these materials are required to accurately predict the onset of damage and
failure of composite materials [14].

Generally, the elastic-plastic behaviour of composite materials can be described using
either a micro-mechanical or a continuum approach, see Fig. 3. Along the lines of a
micro-mechanical approach, fibres and the matrix are modelled as individual phases. Fi-
bres are assumed to be linear elastic anisotropic solids (as necessary for some fibres),
whereas the matrix is modelled as an isotropic elastic-plastic solid. The overall compos-
ite behaviour is then deduced from a homogenisation procedure. Details regarding the
constitutive framework and algorithmic implementation of micro-mechanics based models
can be found in [17–20]. Most of the micro-mechanical models are based on the mean
field theory, where the main aim is to determine stress and strain concentration tensors
for fibres and the matrix. Within the elastic regime, these concentration tensors can be
computed using for example Mori-Tanaka scheme [21]. However, the determination of con-
centration tensors in the plastic regime is much more complicated and requires the use of
numerical evaluation techniques [22]. Though the micro-mechanics approach gives better
comprehension of reasons behind the experimentally observed behaviour, this approach
comes at a cost where higher number of material coefficients are required for the descrip-

+ =

Fibres Matrix

(a)

RVE Lamina

(b)

Figure 3: Modelling approaches. Representation of (a) micro-mechanical [15] and (b) con-
tinuum [16] based approaches.



1.1 Motivation and state of the art 3

tion of the material response. Although differing in detail with the micro-mechanical
approach, a small number of anisotropic plasticity models based on the concept of space
transformation have been proposed for fibre-reinforced composites, see [23,24]. This the-
ory assumes the existence of a fictitious isotropic space to which quantities from the real
anisotropic space can be mapped, and a mapped problem can be solved. The real and
fictitious spaces are related by means of linear fourth-order transformation tensors that
are formulated based on the available information of strength in the respective spaces.
The real anisotropic space is regarded as a homogenised composite material, while the
fictitious isotropic space characterises the matrix material to which plasticity is usually
restricted. As an advantage, standard isotropic response functions can be used and the
numerical treatment is computationally inexpensive owing to the reduced setting.

A majority of relevant research has focused on the development and experimental vali-
dation of anisotropic yield criteria for continuum models. Hill [25] proposed one of the
first yield functions for the description of orthotropy, which is a generalisation of the
von Mises [26] isotropic yield criterion. The main limitation of this criterion is the im-
possibility of modelling materials that exhibit pressure sensitive behaviour, for example
polymeric composite materials. Accordingly, there have been attempts to modify Hill’s
orthotropic yield criterion for use with composite materials [27–29], where the dissipative
response is forced to be independent of fibre stress by imposing the direction of plastic
flow in the fibre direction to be zero. For composites with metallic-type matrix con-
stituents, there exist a considerable number of thermodynamically consistent models for
the description of anisotropic elastic-plastic effects, see e.g. [30–35]. The review article of
Chaboche [36] thoroughly treats the formulation and implementation aspects of elasto-
plasticity for metallic-type materials. However, the treatment of anisotropic plasticity for
composites with polymeric matrix constituents is in most cases limited to a purely phe-
nomenological approach [37–39], and modelling using the thermodynamics of irreversible
processes has received less attention [40–43]. Additionally, none of the aforementioned
works for polymer-matrix composites use functional forms of hardening (isotropic and
kinematic) state variables or account for rate-dependency within a thermodynamically
consistent formulation.

Motivated by these aspects, a relatively general, thermodynamically consistent formula-
tion of anisotropic elastoplasticity is proposed for fibre-reinforced composites. The con-
stitutive developments are based on the following main ideas [44]:

• Restriction to geometrically linear framework: The underlying objective of the pro-
posed models is their application to modelling the mesoscopic response of com-
posites, i.e. unidirectional plies in multi-directional laminates. In such materials,
plasticity formulations are needed to accurately predict the constitutive response
up to the initiation of damage, which typically occurs at rather small deforma-
tions (below 1%). In view of this objective, focus is restricted to the geometrically
linear framework. Though numerical simulations are performed up to 5% strain,
deviations are considered to be acceptable for the purposes of comparing various
modelling techniques [18].

• Representation in terms of isotropic tensor functions: The methodology adopted
here is to generate the constitutive functions representing the material response
with the aid of representation theorems. This approach allows for the formulation
of anisotropic constitutive functions in terms of isotropic counterparts by including
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structural tensors as additional arguments [45–47]. In this context, new integrity
bases are derived that yield a unique representation of the scalar energetic potential,
stress and the elastic modulus tensor associated with the potential.

• Non-evolving anisotropy: A simplifying assumption made at the outset due to the
restriction to geometrical linear framework is that the anisotropy does not evolve
during the plastic deformation. Thus, focus is restricted to initial anisotropy only
where the anisotropic variables are a priori given, and not plasticity-induced evo-
lution of anisotropy where the variables develop during the course of plastic de-
formation and are governed by additional constitutive evolution equations. Details
related to the modelling of an evolving anisotropy can be found in [48].

• Exclusion of micro-mechanics: Focusing on the continuum approach, micro-
mechanics of the composite such as the interaction between individual fibre and
the matrix is excluded. It is assumed that there is a perfect bonding between fibres
and the matrix, as the effects associated with the failure of interface are usually
observed at large deformations [49, 50].

1.2. Scope and outline of the thesis

The scope of the present work is to develop relatively general and thermodynamically
consistent material models that describe the anisotropic response of fibre-reinforced com-
posites at infinitesimal elastic and plastic deformations. A key aspect of these models is
that the physical effects are reflected in the proposed mathematical structure. To this
end, the significant contributions of this thesis are (i) formulation of constitutive/governing
equations and derivation of algorithmic treatment for anisotropic dissipative solids, (ii)
construction of physically motivated and convex dissipative response functions, and (iii)
derivation of canonical and non-conventional constitutive structure. This thesis is organ-
ised as follows:

In Chapter 2, fundamental concepts of continuum mechanics, elasticity and plasticity
are studied. The employed notations serve as the basis for subsequent developments.
Starting with derivation of physical balance principles; the concept of stress, dissipation
inequality and temperature evolution equation is introduced. Next, the notion of Bravais
lattice and their classification is discussed, i.e. classification of solids based on the inherent
symmetry of their micro-structure. In the following section, approaches to describe the
anisotropic material response are outlined, and the constitutive equations representing the
13 mechanics symmetry groups, in addition to the isotropic group, are derived. This is
followed by a discussion on a general theoretical framework of phenomenological elasticity,
plasticity and viscoplasticity, their formulation and numerical implementation.

Chapter 3 presents theory and numerics of anisotropic elasticity applicable to fibre-
reinforced composites. The initial boundary value problem of elasticity, governed by the
balance of linear momentum is presented. Specifically, focus is on the formulation of a
scalar-valued energetic potential that yields a unique and decoupled representation of the
stress and elastic modulus tensor for the selected symmetry groups.

In Chapter 4, two models that use isotropic yield/plastic flow potential functions are
chosen from the literature, modified for use with unidirectional composites and presented
to simulate the non-linearities exhibited by the composite. The underlying objective is to
investigate in detail the effect of using isotropic plastic response functions in modelling
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the anisotropic elastic-plastic response of fibre-reinforced composites, and draw special
attention to the shortcomings and deficiencies of these models.

Based on the foregoing observations, Chapter 5 presents a constitutive framework of
anisotropic plasticity and viscoplasticity for fibre-reinforced composites. Starting with
constitutive state variables and scalar-valued energetic potential, a mathematical struc-
ture of a combined non-linear hardening, applicable to the two selected symmetry groups
is proposed. Plastic response functions for the selected symmetry groups are formulated
in the following section. The formulation of plastic response functions is based on a
physically motivated decomposition of the stress tensor, which ensures a linear elastic
fibre response. Non-quadratic yield functions with a combined non-linear isotropic and
kinematic hardening are proposed, with a simple representation in terms of the invari-
ants of the stress tensor. Non-quadratic yield functions are chosen in order to maintain
the same order of the stress invariants. It should be remarked here that though higher
order yield functions are accurate, they require higher number of coefficients which must
be obtained experimentally. The main advantage of the proposed yield functions is that
they are governed by only a few coefficients, and they accurately predict the trends of
the experimentally observed behaviour. Moreover, the conditions for the convexity of the
proposed yield surfaces are simple to derive and impose, as seen subsequently. Next, a
set of canonical and non-conventional evolution equations are derived for the associative
and non-associative flow response, respectively. These evolution equations generally char-
acterise non-linear kinematic hardening, but also recover linearity for a special choice of
the associated parameters. To the knowledge of the author, this is derived here for the
first time. Furthermore, a notably attractive feature of the framework is that it facilitates
a straightforward extension of the rate-independent formulation to the rate-dependent
setting, by a suitable penalisation procedure. The algorithmic treatment of the proposed
models is prescribed in the following section, where the governing equations are solved
using an elastic predictor-plastic corrector algorithm that imposes the constraint posed
by the yield condition. Note that the models proposed for the transversely isotropic
symmetric group in this work reduce to those in [44] for a special choice of the material
parameters.

A detailed discussion on the methodology designed to calibrate plastic material parameters
associated with the proposed models is provided in Chapter 6. The identification of
material parameters associated with the constitutive equations is crucial for material
models when trying to capture the experimentally observed behaviour accurately. To this
end, a non-linear optimisation problem with least-squares-type functional is defined and
the minimum is evaluated using a numerical method. Most of the plastic parameters
associated with the proposed models are obtained using the said procedure.

In Chapter 7, the performance of models proposed in Chapters 3–5 are analysed by
means of selected numerical examples. At first, the implementation is verified using ho-
mogeneous boundary value problems. This is followed by a comprehensive evaluation
(qualitative and quantitative) of the models by comparison to micro-mechanics simula-
tions as well as to experimental data. Finally, inhomogeneous boundary value problems
are analysed.

Concluding remarks appear in Chapter 8.
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2. Fundamental concepts of anisotropy, elasticity and plasticity

The aim of this chapter is to give a brief introduction to the concepts of anisotropy
and the general modelling framework of elasticity and plasticity. This chapter is in no
means comprehensive but intended to build the necessary background for subsequent
developments.

In a first step, fundamentals of continuum mechanics are explained in detail. Essential
aspects such as the kinematics, physical balance principles, and the concept of stress are
discussed. For an in depth discussion of the pertinent topic, see [51–56].

This is followed by a discussion on the classification of solids based on the symmetry of
their micro-structure. Materials are distinguished between solids having an amorphous
and those having a crystalline micro-structure, where focus is restricted to the latter ones
in the present work. The main objective of this section is to provide a sufficient theoretical
background to the notion of Bravais lattices and their classification. An introduction to
the theoretical treatment of the material symmetry has been suggested in [57]. For details
of major developments in this field, the reader is referred to [58–60].

General constitutive developments related to the description of anisotropic material re-
sponse are discussed in the following section. In this context, the classical approach and
the coordinate free approach are studied, where focus is placed on the coordinate free
approach. The methodology adopted here is to systematically generate anisotropic con-
stitutive functions with the aid of representation theorems [46,51,61–64]. Several aspects
of the invariants based theory are discussed which are indispensable for the description
of anisotropic material behaviour. To this end, anisotropic equations characterising the
13 so-called mechanics symmetry groups, in addition to the isotropic group, are derived
in this section.

Next, some basic aspects in modelling the elastic material response are discussed. Elastic-
ity is an important partial ingredient for the description of dissipative material responses.
It is also the most general case of material response characterised by a fully reversible and
path-independent behaviour, where the material response depends solely on the current
state of deformation [65].

Finally, a theoretical framework of phenomenological plasticity and viscoplasticity, its
formulation and numerical implementation is discussed. To motivate the formulation of
anisotropic plasticity that can be applied to composites, phenomenological plasticity is
first considered here. In this context, the discussions in this section follows closely the
monograph of Simo and Hughes [66]. A detailed discussion of the topic and relevant
literature can also be found in [67–69].

2.1. Geometrically linear continuum mechanics

In this section, a short introduction to continuum mechanics is given. The basic kinematic
quantities used to describe the deformation of a solid at infinitesimal strains are studied.

2.1.1. Basic kinematics of infinitesimal deformations

A starting point for the description of kinematics is the introduction of material body
and the associated primary fields as explained below.

2.1.1.1. Thermo-mechanical initial boundary value problem. Let B ⊆ R

3 be the
body of interest, assumed to be open and bound by a smooth boundary ∂B. Then the
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motion of the body is described by the primary fields

u :

{
B × T → R

3

(x, t) 7→ u(x, t)
and Θ :

{
B × T → R+

(x, t) 7→ Θ(x, t)
, (1)

where u ∈ R

3 and Θ ∈ R+ denote the displacement and absolute temperature of the
material point x ∈ B at time t ∈ T , respectively. The mechanical boundary ∂B of the
body B under consideration is decomposed according to the primary fields such that

∂B = ∂Bu ∪ ∂Bt and ∂B = ∂BΘ ∪ ∂Bh , (2)

where, for a mechanical problem, the body is subjected to Dirichlet and Neumann (trac-
tion) boundary conditions as

u = ū on ∂Bu and t = t̄ on ∂Bt , (3)

with t denoting the traction vector. Likewise, for a thermal problem, it follows that

Θ = Θ̄ on ∂BΘ and h = h̄ on ∂Bh , (4)

where h is the heat flux, see Fig. 4 for a geometrical interpretation. In a coupled thermo-
mechanical setting, the two quantities t and h are assumed to be governed by Cauchy-type
theorems, namely that

t := σn and h := q · n , (5)

where σ(x, t) is the Cauchy stress tensor, q(x, t) is the Cauchy heat flux vector and n is
the outward normal vector. The heat flux q is governed by Fourier’s law, given by

q := −k∇Θ , (6)

where ∇Θ is the temperature gradient and k is the thermal conductivity which must be
positive (k > 0) to satisfy the thermodynamic restriction.

In a geometrically linear framework, the gradient of the displacement defines the sym-
metric second-order strain tensor as

ε := ∇symu =
1

2
(∇u+∇Tu) , (7)

which is the central quantity to describe the deformation in the small deformation theory.

∂Bu

∂Bt

∂BΘ

∂Bh

x ∈ Bx ∈ B

u Θ

t = t̄ h = h̄

Figure 4: Primary field variables. The mechanical deformation process is governed by the
displacement field u and the thermal deformation process is governed by the temperature field

Θ. The boundary of the body B under consideration is split into ∂B = ∂Bu ∪ ∂Bt and/or
∂B = ∂BΘ ∪ ∂Bh where Dirichlet- and Neumann-type boundary conditions are prescribed.
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2.1.2. Physical balance principles

The displacement u(x, t) and temperature Θ(x, t) are determined by governing balance
equations (fundamental balance principles) which are discussed below. These principles
are valid for all continuous bodies independent of their material response. To provide a
starting point for the derivation of balance laws, consider a sub domain Bp ⊆ B cut from
the domain B (Fig. 5) and apply Euler’s cut principle [70] to the sub domain Bp. It
follows that the mechanical and thermal action of the remaining body on the part Bp is
given by the traction vector t and the heat flux h, defined in Eqn. (5) respectively.

2.1.2.1. Balance of mass. For a sub domain Bp ⊆ B under consideration, the mass
mBp

is defined in terms of the time-dependent density ρ = ρ(x, t) as

mBp
=

∫

Bp

ρ dV . (8)

The local balance of mass states that the mass of any part of the body remains constant
in time during the deformation process, i.e.

d

dt
mBp

= 0 , (9)

which can be equivalently written by taking into account Eqn. (8) as

d

dt

∫

Bp

ρ dV =

∫

Bp

ρ̇ dV = 0 . (10)

Application of the localisation theorem1 yields

ρ̇ = 0 ⇒ ρ = constant . (11)

2.1.2.2. Balance of linear momentum. The linear momentum III Bp
and the resultant

mechanical force FFF Bp
associated with the part Bp are defined as

III Bp
=

∫

Bp

ρü dV and

FFF Bp
=

∫

Bp

ρΥ dV +

∫

∂Bp

t dA

, (12)

B Bp

x x

q
n

t

h

Figure 5: Euler’s cut principle. The traction vector t(x, t), and the heat flux h representing
the action of cut portion Bp ⊆ B of the body.

1since Eqn. (10) has to hold for an arbitrary Bp, and hence for Bp → dV , it can be localised to
Eqn. (11).
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in terms of the body force Υ = Υ(x, t) per unit mass. The balance of linear momentum
states that the rate of change of linear momentum is equal to the resultant mechanical
force that acts on the body, i.e.

d

dt
III Bp

:= FFF Bp
. (13)

Appealing to the definition of III Bp
and FFF Bp

from Eqn. (12), Eqn. (13) reformulates to

d

dt

∫

Bp

ρu̇ dV =

∫

Bp

ρΥ dV +

∫

∂Bp

t dA . (14)

Applying first the Cauchy-type theorem (Eqn. (5)) for traction, and next the Gauss
theorem (

∫
B
div[(•)] dV =

∫
∂B

(•) · n dA) to the above equation gives

∫

Bp

ρü dV =

∫

Bp

div[σ] dV +

∫

Bp

ρΥ dV . (15)

Application of the localisation theorem results in the local form

ρü = div[σ] + ρΥ . (16)

2.1.2.3. Balance of angular momentum. The angular momentum WWW
o
Bp

and the

resultant moment F̃FF
o

Bp
associated with the part Bp are defined with respect to the origin

“o” as

WWW
o
Bp

=

∫

Bp

x× ρü dV and

F̃FF
o

Bp
=

∫

Bp

x× ρΥ dV +

∫

∂Bp

x× t dA

, (17)

The balance of angular momentum states that the rate of change of angular momentum
is equal to the applied moment such that

d

dt
WWW

o
B := F̃FF

o

Bp
. (18)

Appealing to the respective definitions in Eqn. (17), Eqn. (18) reformulates to

d

dt

∫

Bp

x× ρu̇ dV =

∫

Bp

x× ρΥ dV +

∫

∂Bp

x× t dA . (19)

After some straightforward transformations analogous to the balance of linear momen-
tum, assuming a quasistatic loading case and taking into account the local mass balance
equation (11), the local form of the balance of angular momentum reads

σ = σT , (20)

which postulates the symmetry of the stress tensor.
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2.1.2.4. Balance of energy. For the energy balance, the internal energy UBp
and the

kinetic energy KBp
in the region Bp are given by

UBp
=

∫

Bp

ρe dV

KBp
=

∫

Bp

1

2
ρu̇ · u̇ dV

, (21)

in terms of the internal energy e = e(x, t) per unit mass. The external powers PBp
and

QBp
associated with the mechanical and thermal problem respectively read

PBp
=

∫

Bp

ρΥ · u̇ dV +

∫

∂Bp

t · u̇ dA and

QBp
=

∫

Bp

ρR dV −
∫

∂Bp

h dA

, (22)

where R = R(x, t) is the external heat source per unit mass. The balance of energy states
that the rate of change in total energy is equal to the sum of mechanical and thermal
power, i.e.

d

dt
[KBp

+ UBp
] := PBp

+ QBp
, (23)

which may be equivalently expressed as
∫

Bp

ρu̇ · ü dV +

∫

Bp

ρė dV =

∫

Bp

ρΥ · u̇ dV +

∫

Bp

t · u̇ dA+

∫

Bp

ρR dV −
∫

∂Bp

h dA . (24)

Applying the divergence theorem, and carrying out some straightforward, although
lengthy transformations, Eqn. (24) reformulates to
∫

Bp

ρu̇ · ü dV +

∫

Bp

ρė dV =

∫

Bp

ρΥ · u̇ dV +

∫

Bp

ρR dV +

∫

Bp

div[u̇ · σ − q] dV . (25)

Taking into account the identity

div[σ · u̇] = ε̇ : σ + u̇ · divσ , (26)

and applying the localisation theorem, Eqn. (26) leads to the definition of the local form
of the energy balance as

ρė = σ : ε̇− div[q] + ρR , (27)

which is also known as the first law of thermodynamics.

2.1.2.5. Balance of entropy. The entropy HBp
, its production GBp

and its power Q̃Bp

within the sub domain Bp ⊆ B are defined by

HBp
=

∫

Bp

ρ̺ dV ,

GBp
=

∫

Bp

ρ̺p dV ,

Q̃Bp
=

∫

Bp

ρ
R

Θ
dV −

∫

∂Bp

h

Θ
dA ,

(28)
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where ̺ = ̺(x, t) and ̺p = ̺p(x, t) denote the entropy and entropy production per unit
mass. The balance of entropy postulates that the rate of entropy given by the sum of
entropy production and entropy power, is always positive such that

d

dt
HBp

:= GBp
+ Q̃Bp

≥ 0 . (29)

Inserting corresponding definitions and taking into account the balance of mass, Eqn. (29)
leads to ∫

Bp

ρ ˙̺ dV =

∫

Bp

ρ̺p dV +

∫

Bp

ρ
R

Θ
dV −

∫

∂B

h

Θ
dA ≥ 0 . (30)

Substituting h from Eqn. (5) and applying Gauss theorem to the above equation gives
∫

Bp

ρ ˙̺ dV =

∫

Bp

ρ̺p dV +

∫

Bp

ρ
R

Θ
dV −

∫

Bp

div
[ q
Θ

]
dV ≥ 0 , (31)

where it can be trivially verified that

div
[ q
Θ

]
=

1

Θ
div[q]− 1

Θ2
∇Θ · q ≥ 0 . (32)

Insertion of Eqn. (32) into (31) and application of the localisation theorem gives

ρ ˙̺ Θ =
[
− div[q] + ρR

]
+ ρ̺pΘ+

1

Θ
∇Θ · q ≥ 0 . (33)

Using the energy balance to replace terms in the bracket with [ρė−σ : ε̇], and introducing
the dissipation as D = ρΘ̺p into the above equation yields the Clausius-Duhem inequality

D = ρ ˙̺Θ− [ρė− σ : ε̇]− 1

Θ
∇Θ · q ≥ 0 . (34)

Finally, introducing the Helmholtz free energy density e = ψ +Θ̺, with the rate

ė = ψ̇ + ˙̺Θ + ̺Θ̇ , (35)

into Eqn. (34) gives the local balance of entropy

D = σ : ε̇− ψ̇ − ̺Θ̇− 1

Θ
∇Θ · q ≥ 0 , (36)

where the double contraction of the stress and strain rate tensor defines the stress power.
Equation (36) is also referred to as the second law of thermodynamics which demands
that the dissipation at all times be non-negative, thereby ensuring the thermodynamic
consistency of the material. A summary of the balance equations is given in Box 1.

2.1.3. Dissipation postulate

As a further requirement of the formulation, the total dissipation (36) can be additively
decomposed into a local and a convective part as

D := Dloc + Dcon ≥ 0 . (37)

Separately demanding non-negativity of Eqn. (37) yields the Clausius-Planck inequality
Dloc and the Fourier inequality Dcon as

Dloc := σ : ε̇− ψ̇ − ̺Θ̇ ≥ 0 ,

Dcon := − 1

Θ
q · ∇Θ ≥ 0 .

(38)
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Box 1: Summary of the physical balance principles.

1. Balance of mass ρ̇ = 0

2. Balance of linear momentum ρü = div[σ] + ρΥ

3. Balance of angular momentum σ = σT

4. Balance of energy ρė = σ : ε̇− div[q] + ρR

.

2.1.4. Requirement of the constitutive functions

The initial boundary value problem defined in Section 2.1.1.1 can be solved by the use
of kinematics and balance equations. To this end, all the equations and unknowns are
counted, where it follows from Box 1 that there are 8 equations, namely

ρ̇ = 0 → 1 equation

ρü = div[σ] + ρΥ → 3 equations

σ = σT → 3 equations

ρė = σ : ε̇− div[q] + ρR → 1 equation





→ 8 equations . (39)

On the other hand, Eqn. (39) introduces 19 unknowns as listed below

density ρ → 1 unknown

displacement u → 3 unknowns

stress σ → 9 unknowns

energy e → 1 unknown

entropy ̺ → 1 unknown

temperature Θ → 1 unknown

heat flux q → 3 unknowns





→ 19 unknowns , (40)

which are also known as the state variables since they represent the state of the material at
every point. The missing 19–8 = 11 equations, required for the solution of the boundary
value problem are provided by the constitutive relations for the quantities

σ(x, t) := σ(· · ·) → 6 equations

ψ(x, t) := ψ(· · ·) → 1 equation

̺(x, t) := ̺(· · ·) → 1 equation

q(x, t) := q(· · ·) → 3 equations





→ 11 additional equations . (41)

In order to guarantee a thermodynamically consistent formulation, the dissipation in-
equality (38) also needs to be evaluated. The introduction of this inequality requires the
specification of an additional constitutive relation for the free energy function ψ, which
accounts for different material behaviour ranging from isotropic to anisotropic, elastic to
inelastic, rate-independent to rate-dependent, etc. Additionally, the choice of constitutive
relations (41) is not arbitrary but depends on the restrictions imposed by the balance laws
and material symmetry, as discussed subsequently.
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2.1.5. Restrictions on the constitutive functions

2.1.5.1. Principle of determinism. It states that the value of all quantities in
Eqn. (41) at a point x ∈ B is fully determined by the history of displacement u and
temperature Θ at all points x ∈ B at time t, such that

σ(x, t) = σ
[
u(x, t), Θ(x, t), · ·

]

ψ(x, t) = ψ
[
u(x, t), Θ(x, t), · ·

]

̺(x, t) = ̺
[
u(x, t), Θ(x, t), · ·

]

q(x, t) = q
[
u(x, t), Θ(x, t), · ·

]

. (42)

This rules out stochastic effects, but allows path dependent behaviour.

2.1.5.2. Concept of internal variables. Since it is difficult to calculate a quantity at
every point based on full history of displacement u and temperature Θ, a set of so-called
internal variables e are introduced such that Eqn. (42) becomes

σ(x, t) = σ
[
u(x, t), Θ(x, t), e(x, t), ·

]

ψ(x, t) = ψ
[
u(x, t), Θ(x, t), e(x, t), ·

]

̺(x, t) = ̺
[
u(x, t), Θ(x, t), e(x, t), ·

]

q(x, t) = q
[
u(x, t), Θ(x, t), e(x, t), ·

]

. (43)

The introduction of new unknowns e ∈ Rd requires to specify d initial conditions e(x, t =
0) = e0(x) and additional evolution equations such that

ė(x, t) = ė
[
u(x, t), Θ(x, t), e(x, t), ·

]
, (44)

which are additional constitutive equations.

2.1.5.3. Principle of local action. In a small neighbourhood y ∈ Nx ⊆ B, the
displacement, temperature and internal variables can be approximated as

u(y ∈ Nx) ≈ u(x) +∇u(x) · (y − x)

Θ(y ∈ Nx) ≈ Θ(x) +∇Θ(x) · (y − x)

e(y ∈ Nx) ≈ e(x) +∇e(x) · (y − x)

. (45)

2.1.5.4. Principle of material objectivity. The principle of material objectivity can
be traced back to the work of Truesdell and Noll [51]. It demands that the constitutive
equations be invariant to an infinitesimal rigid body motion superimposed to displace-
ment. Consequently, if u(x, t) is a given displacement, it follows that

ψ(u+,∇u+,Θ,∇Θ, e,∇e) := ψ(u,∇u,Θ,∇Θ, e,∇e)

with u+(x, t) := u(x, t) + d(t) +Q(t) · x ∀ d, QQT = 1

, (46)
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where d(t) is a time-dependent translation and Q(t) defines a small orthogonal time-
dependent rotation. These two together define an infinitesimal rigid body motion. Equa-
tion (46) can only be generally fulfilled if ψ is not a function of u directly and ψ only
depends on ∇symu. This yields

σ = σ(ε,Θ,∇Θ, e,∇e)

ψ = ψ(ε,Θ,∇Θ, e,∇e)

̺ = ̺(ε,Θ,∇Θ, e,∇e)

q = q(ε,Θ,∇Θ, e,∇e)

ė = ė(ε,Θ,∇Θ, e,∇e)

. (47)

2.1.5.5. Principle of material symmetry. Consider a free energy function having
a functional dependence on the strain tensor. Then, the amount of stored energy will
not only depend on the applied deformation but also on the orientation of the material.
As an example, consider two materials with different micro-structural orientations a and
ã, and assume that these orientations are linked with an orthogonal transformation,
i.e. ã = QTa. Additionally, assume that in both these cases, the material is subjected to
the same deformation state. Then, the stored free energies are given by

ψ = ψ(ε) and ψ̃ = ψ(QεQT ) . (48)

In general, both these function values will differ such that ψ 6= ψ̃. The set of all transfor-
mations Q, yielding ψ = ψ̃, is known as the material symmetry group, and the principle
of material symmetry strongly restricts the constitutive functions to be invariant to the
material symmetry group.

With Eqn. (47)2, the rate of the energetic potential can be evaluated as

ψ̇ = ψ,ε : ε̇+ ψ,Θ Θ̇ + ψ,∇Θ ·∇Θ̇ + ψ,e ·ė+ ψ,∇e ·∇ė . (49)

Substituting Eqns. (49) and (47) into Eqn. (37) and taking into account Eqn. (38), gives
the expression

D = [σ − ψ,ε ] : ε̇− [̺+ ψ,Θ ]Θ̇− ψ,∇Θ ·∇Θ̇− ψ,e ·ė− ψ,∇e ·∇ė− 1

Θ
∇Θ · q ≥ 0 . (50)

The requirement for Eqn. (50) to be true for any rates ε̇, Θ̇ and ∇Θ̇, usually known as
the Coleman-Noll argument [67, 71] leads to the definition of two constitutive relations

σ := ψ,ε and ̺ := −ψ,Θ , (51)

together with the condition

ψ,∇Θ = 0 , (52)

where 0 is the second-order zero tensor, and the reduced dissipation inequality

D
red = −ψ,e ·ė− ψ,∇e ·∇ė− 1

Θ
∇Θ · q ≥ 0 , (53)
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which can be additively decomposed as

D
red = D

red
loc + D

red
con ≥ 0

with D
red
loc = −ψ,e ·ė− ψ,∇e ·∇ė ≥ 0 and D

red
con = − 1

Θ
∇Θ · q ≥ 0

. (54)

These conditions allow for the reformulation of the constitutive relations as

ψ = ψ(ε,Θ, e,∇e)

q = q(ε,Θ,∇Θ, e,∇e)

ė = ė(ε,Θ,∇Θ, e,∇e)

, (55)

for which functional forms need to be prescribed. With Eqn. (55), all the constitutive
functions necessary for the closure of the boundary value problem are specified. Before
proceeding further, the governing balance equation of temperature field Θ(x, t) is refor-
mulated as explained subsequently. Recall here the energy balance

ρė = σ : ε̇− div[q] + ρR , (56)

which can be equivalently expressed using Eqn. (35) as

ψ̇ + ˙̺Θ + ̺Θ̇ = σ : ε̇− div[q] + R , (57)

where the density ρ has been dropped for brevity. Taking into account the expression

˙̺ = − d

dt
ψ,Θ= −ψ,εΘ : ε̇− ψ,ΘΘ Θ̇− ψ,eΘ ·ė− ψ,∇eΘ ·∇ė , (58)

and appealing to Eqn. (49), Eqn. (57) reformulates to

σ : ε̇− ̺Θ̇ + ψ,e ·ė+ ψ,∇e ·∇ė+ ̺Θ̇

−ψ,εΘ : ε̇− ψ,ΘΘ Θ̇− ψ,eΘ ·ė− ψ,∇eΘ ·∇ė = σ : ε̇− div[q] + R
. (59)

Furthermore, setting c = −Θψ,ΘΘ and taking into account Eqn. (54), it follows that the
governing balance equation of temperature can be expressed as

cΘ̇ = D
red
loc +H− div[q] + R , (60)

where

H = Θ{ψ,εΘ : ε̇− ψ,eΘ ·ė− ψ,∇eΘ ·∇ė} = Θψ,Θ {σ : ε̇+ D
red
loc } , (61)

denotes the latent heat which is the thermoelastic counterpart of the thermoplastic dis-
sipation, see also [72, 73]. Note that c = ψ,ΘΘ is generally a material parameter denoting
specific heat capacity, and follows from the choice of the functional form of the thermal
contribution of scalar energetic potential.
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2.2. Classification of solids

In this section, basics of the crystal structure are discussed. Crystal structure is defined by
the spatial arrangement of atoms or molecules inside the material. Based on the arrange-
ment of atoms, solids can be classified into two groups namely crystalline solids where
atoms are periodically arranged with a definite repetitive pattern inside the material and
amorphous solids where atoms are randomly arranged [74]. The periodicity of atoms in
crystalline solids can be described by a network of points in the space called crystal lattice.
The most simple form of a crystal lattice can be constructed following the principles of a
three-dimensional mathematical point grid as

R

3 :
{
x = x0 + ia+ jb+ kc | i, j, k ∈ R

}
, (62)

a

b

c

α

β

γ

(a)

a aa

bbb

ccc

ααα

βββ

γγγ

(b)

C-centred B-centred F-centred

Figure 6: Construction of a grid. The grids are spanned by the grid vectors a, b and c and
the corresponding grid angles α, β and γ. Angles and lengths of the unit-cell form the metric

of the grid. (a) Primitive unit-cell containing one grid point inside. (b) Non-primitive unit-cells
namely C-centred, B-centred and F-centred unit-cell having more than one grid point inside.
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where x0 is an arbitrary basis position and {a, b, c} ∈ R3 are the lattice vectors or grid
vectors, see also [75]. Any lattice that can be described by Eqn. (62) is called a Bravais
lattice. Further, for any two points x0 and xi from which the atomic arrangement looks
the same, the vectors a, b and c are said to be primitive and hence define a primitive
unit-cell2 [76], if they satisfy Eqn. (62). Alternatively, a primitive unit-cell can also be
described by the grid constants or lattice parameters

a = ‖a‖ , b = ‖b‖ and c = ‖c‖ , (63)

where ‖•‖ denotes the Euclidean norm, and their corresponding angles

α = ∠(ab), β = ∠(bc) and γ = ∠(ac) . (64)

Angles and lengths of the unit-cell constitute the metric of the grid. The unit-cell as seen
in Fig. 6 a), contains one (one-eighth times eight) grid point and is therefore primitive.
Non-primitive unit-cells are characterised by having more than one grid point inside,
e.g. C-centred, B-centred or F-centred unit-cell, see Fig. 6 b). An infinite number of
primitive and non-primitive unit-cells can be chosen for defining the grid. Overall there
exists 14 space lattices named after the physicist Auguste Bravais.

2.2.1. Symmetry transformations

The symmetry transformation of a lattice, consisting of rotations and rotation-inversions,
is an operation which maps the lattice onto itself3. Rotations and rotation-inversions can
be described with orthogonal tensors. To this end, let α be an arbitrary rotation angle
around an axis a, with ‖a‖ = 1. Then the rotation tensor can be defined by the standard
Euler-Rodrigues formula

Q := cosα1 + (1− cosα)a⊗ a+ sinαǫa , (65)

where 1 denotes the second-order identity tensor and ǫ is the RICCI permutation (third-
order) tensor. Rotation-inversions can be described using the central inversion with the
rotation tensor as −Q = (−1 )Q, see [75, 77]. The set of allowed rotations C ⊆ O(3) for
which the constitutive response remains unchanged is called the symmetry group of the
material, and O(3) is the orthogonal group with the properties

O(3) := {Q|QTQ = 1 and det[Q] = +1} . (66)

Remark 1. Some properties of the symmetric group

• if Q1 ∈ C and Q2 ∈ C , then Q1Q2 ∈ C

• multiplicative associativity holds true, i.e. (Q1Q2)Q3 = Q1(Q2Q3)

• the symmetry group C contains the identity 1 , such that 1Q = Q1 = Q

• if there exists Q ∈ C , then there also exists Q−1 ∈ C , such that QQ−1 = 1

2A unit-cell is the basic building block of the crystal structure, which defines the crystal structure
with positions of the atom.

3Only such symmetry transformations are considered in the present work.
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2.2.2. Classification of Bravais lattices

Based on their inherent symmetry (shape of the unit-cell), Bravais lattices can be distin-
guished into 14 different types belonging to the seven different crystal systems. Starting
with the lowest symmetry (fully anisotropic case) where all the grid constants and angles
are different, symmetry operations transforming the grid onto itself are studied.

2.2.2.1. Triclinic symmetry. The most general form of a Bravais lattice is that of the
triclinic symmetry. The only possible symmetry operations are the identity and inversion.
The three grid constants a, b and c, and their corresponding angles α, β and γ satisfy

a 6= b 6= c and α 6= β 6= γ , (67)

which indicates crystals that belong to the triclinic system have three unequal axes and
all of them intersect at oblique angles, see also Fig. 7. Triclinic crystals have no symmetry
and no mirrored planes.

2.2.2.2. Monoclinic symmetry. A monoclinic system is characterised by the existence
of a single plane of mirror symmetry. If the plane of symmetry is parallel to a, then the
metric of the grid are given by

a 6= b 6= c and α = γ = 90◦ 6= β . (68)

The restrictions change accordingly if the plane of symmetry is parallel to b or c. The
name “monoclinic” indicates that only one angle is inclined, as seen from Eqn. (68).
Additionally, it also follows from Eqn. (68) that the crystals in the monoclinic system
have three unequal axes. The a and c axes are inclined toward each other at an oblique
angle, see Fig. 8 a) and the b axis is perpendicular to a and c. Alternatively, instead of
the primitive unit-cell, a C-centred non-primitive unit-cell can also be used to characterise
this symmetry group because of its standard monoclinic metric, see Fig. 8 b).

2.2.2.3. Orthorhombic symmetry. An orthorhombic system is characterised by the
existence of three mutually perpendicular planes of mirror symmetry. Its grid parameters
and their corresponding angles constitutes a standard orthotropic shape such that

a 6= b 6= c and α = β = γ = 90◦ , (69)

see Fig. 9. Orthorhombic crystals have three unequal axes mutually perpendicular to each
other. The primitive orthorhombic unit-cell can be obtained by introducing two additional
planes of mirror symmetry into the monoclinic unit-cell. Instead of the primitive unit-
cell, the orthorhombic symmetry can also be identified by non-primitive unit-cells such as
C-centred, B-centred or F-centred unit-cell as explained in [60].

a

b

c
α

β
γ

Figure 7: Triclinic unit-cell. The grid constants a, b and c, and their corresponding angles
α, β and γ are arbitrary.
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2.2.2.4. Tetragonal symmetry. A tetragonal system is characterised by a unit-cell
with two equal edges, where the crystal has same dimensions for the bottom and top face.
However, edges representing the front, back and side faces are comparatively taller. The
introduced symmetry operations so far only affected the angles of the unit-cells and not
the ratio of the edges. This changes for a primitive tetragonal unit-cell, with restrictions

a = b 6= c and α = β = γ = 90◦ , (70)

see Fig. 10. In addition to a primitive unit-cell, a non-primitive B-centred unit-cell can
also describe a tetragonal crystal.

2.2.2.5. Trigonal symmetry. A trigonal system is characterised by the following re-
strictions on the metric

a = b = c and α = β = γ 6= 90◦ , (71)

for the primitive unit-cell as depicted in Fig. 11. A trigonal crystal is similar to a cube,
except that its faces are rhombii. It resembles a cube that has been compressed to one
side.

aa

bb

cc

ββ

(a) (b)

Figure 8: Monoclinic unit-cell. The grid constants a, b and c are arbitrary with a 6= b 6= c,
whereas the corresponding angles are satisfy the symmetry α = γ = 90◦ 6= β. (a) Primitive
unit-cell and (b) C-centred unit-cell.
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Figure 9: Orthorhombic unit-cell. The grid constants a, b and c are arbitrary with a 6= b 6=
c, whereas the corresponding angles are orthogonal with α = β = γ = 90◦. Its metric constitutes
a standard orthotropic shape. (a) Primitive-unit cell and (b) Non-primitive unit-cells namely
C-centred, B-centred and F-centred unit-cell.



20 Fundamental concepts of anisotropy, elasticity and plasticity

2.2.2.6. Hexagonal symmetry. A primitive hexagonal unit-cell is obtained from a
primitive monoclinic unit-cell by setting the grid parameters and their corresponding
angles to satisfy

a = b 6= c and α = β = 90◦, γ = 120◦ . (72)

The hexagonal symmetry can only be observed in stacks of unit-cells as as visualised in
Fig. 12.
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(a) (b)

B-centred

Figure 10: Tetragonal unit-cell. The grid constants are now restricted according to a = b 6=
c and the corresponding angles are orthogonal with α = β = γ = 90◦. (a) Primitive tetragonal
unit-cell which can be thought of as a modified orthorhombic unit-cell, and (b) Non-primitive
B-centred unit-cell.
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Figure 11: Trigonal unit-cell. The grid constants are now restricted according to a = b = c,
whereas the corresponding angles are equal but not orthogonal, i.e. α = β = γ 6= 90◦.
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Figure 12: Hexagonal unit-cell. The grid constants are now restricted according to a = b 6= c

and the corresponding angles satisfy α = β = 90◦, γ = 120◦.
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Table 1: Classification of the crystal systems.

No. Crystal system Lattice parameters Corresponding angles
1. triclinic a 6= b 6= c α 6= β 6= γ

2. monoclinic a 6= b 6= c α = γ = 90◦ 6= β

3. orthorhombic a 6= b 6= c α = β = γ = 90◦

4. tetragonal a = b 6= c α = β = γ = 90◦

5. trigonal a = b = c α = β = γ 6= 90◦

6. hexagonal a = b 6= c α = β = 90◦, γ = 120◦

7. cubic a = b = c α = β = γ = 90◦

2.2.2.7. Cubic symmetry. To derive the Bravais cells for the cubic symmetry, one
can introduce four three-fold axes along the body diagonals into an orthorhombic system.
Consequently, all the faces will be squares and the edges will have the same length. Hence,
the restrictions are given by

a = b = c and α = β = γ = 90◦ . (73)

The cubic crystal system, also known as the isometric system, is characterised by its total
symmetry. It has three equal crystallographic axes which are mutually perpendicular
to each other, see Fig. 13. Unit-cells having higher symmetry than that of the cubic
system do not exist. The seven crystal systems along with their corresponding metric are
summarised in Table 1.

2.2.3. Classification into 13 types of anisotropy

So far, the restrictions on the unit-cell to describe a space lattice were outlined. The
symmetry groups of 14 Bravais lattices can be subdivided into proper subgroups which
results in the formation of 32 crystal classes. Taking into account materials with fibrous
micro-structure like composites or biological materials such as soft tissues, further sym-
metry operations have to be considered. For these materials, rotations around an axis or
multiple axes along with the corresponding rotation-inversions are possible, resulting in
five additional transversely isotropic symmetric groups. To this end, let {a, b, c} denote

a aa

a aa

a aa

(a) (b)

B-centred F-centred

Figure 13: Cubic unit-cell. All the edges have the same length a = b = c, and the corre-
sponding angles satisfy α = β = γ = 90◦. (a) Primitive-unit cell and (b) Non-primitive unit-cells
namely B-centred and F-centred unit-cells.
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Table 2: Classification of material symmetry groups.

No. Symbol Symmetry group Generators
1. C1 triclinic 1

2. C2 monoclinic Qπ
c

3. C3 orthorhombic Qπ
a,Q

π
b

4. C4 tetragonal Q
π
2
c

5. C5 tetragonal Q
π
2
c ,Q

π
a

6. C6 trigonal Q
2π
3
c

7. C7 trigonal Q
2π
3
c ,Qπ

a

8. C8 hexagonal Q
π
3
a

9. C9 hexagonal Q
π
3
c ,Q

π
a

10. C10 cubic Qπ
a,Q

π
b ,Q

π
d

x

11. C11 cubic Q
π
2
a ,Q

π
2

b ,Q
π
2
c

12. C12 transversely isotropic Qα
a

13. C13 transversely isotropic Qα
c ,Q

π
a

14. C14 isotropic O(3)

xd =
√

1

3
(a + b+ c)

a positively oriented orthonormal vector triad attached to a material point, such that
rotations and reflections relative to these vectors fully describe the material symmetry
group. The 32 crystal symmetry groups and the five transversely isotropic symmetric
groups contain the central inversion as a common factor, namely that −1 ∈ C . With
this restriction, all the constitutive relations are centrosymmetric, which reduces the 32
crystal symmetry groups and the five transversely isotropic symmetric groups to a com-
bined total of 13 so-called mechanics symmetry groups, in addition to the isotropic group.
These groups are classified in [64, 78] as summarised in Table 2.

2.3. Description of anisotropic material behaviour

Anisotropic material response (elastic or inelastic) considers the response of materials
with micro-structures at lower scales, e.g. crystals or composite materials. For materials
as such, the micro-structure induces a direction dependent macroscopic material response.
A micro-structure is defined on the macroscopic level by a symmetry group C , which
represents all the rotations Q that map the material structure onto itself. Then, it is
clear that these rotations belong to the symmetry group, i.e. Q ∈ C . Fundamentally, the
anisotropic material response can be described by a classical approach or a coordinate-free
approach. After a brief introduction to the classical approach, emphasis is placed on the
coordinate-free approach where anisotropic functions are generated with the aid of general
representation theorems [45].

2.3.1. Classical approach to anisotropy

To mathematically motivate the classical approach to anisotropy, consider a domain A

consisting of a scalar u, vector v, symmetric second-order tensor U and skew-symmetric
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second-order tensor V 4 such that

A := R× R3 × R6 × R6 , (74)

where R,R3 and R6 denote the scalar, Euclidean vector and tensor spaces, respectively.
For brevity, let F represent a scalar-valued constitutive function which depends explicitly
on u, v,U and V such that

F = F(u, v,U ,V ) . (75)

The function F is classified according to its transformation properties under the action
of the orthogonal group O(3) or the symmetry groups C ⊆ O(3). Then, an anisotropic
response is defined by the constitutive function F that is invariant to the rotations of the
considered symmetry group such that

F(Q ⋆ u,Q ⋆ v,Q ⋆U ,Q ⋆ V ) = Q ⋆ F(u, v,U ,V ) ∀ Q ∈ C ⊆ O(3) , (76)

which is known as the invariance condition. Here, a Rayleigh product has been used in
line with [75] as

⋆ : O(3) :





Q ⋆ u := u ,

Q ⋆ v := Qijvj ,

Q ⋆U := UijQiaQjb and

Q ⋆ V := VijQiaQjb .

(77)

where Q ∈ O(3). From Eqn. (76), it can be immediately deduced that if C ≡ O(3),
then the function F(u, v,U ,V ) is an isotropic function, else, with respect to particular
symmetry group C , it is a C -invariant function.

2.3.2. Coordinate-free approach to anisotropy

The underlying idea of a coordinate-free approach is to generate anisotropic tensor func-
tions in terms of equivalent isotropic tensor functions with the help of representation
theorems. The key aspect is to systematically generate the tensor functions that are in-
variant for a given material symmetry group C . This can be achieved by extending the
set of arguments to include structural tensors as additional arguments. A second-order
tensor M is a structural tensor for an anisotropic material characterised by a symmetry
group C , if

Q ⋆M = M ∀ Q ∈ C . (78)

From Eqn. (78) it follows that any C -invariant function F(x) with x as a set of arguments,
can be expressed equivalently as an isotropic function with structural tensors as additional
arguments. Therefore, the invariance condition (76) reformulates to the isotropic form

F(Q ⋆ u,Q ⋆ v,Q ⋆U ,Q ⋆ V ,Q ⋆M) = F(u, v,U ,V ,M) ∀ Q ∈ O(3) . (79)

Substituting Eqn. (78) into Eqn. (79), the desired anisotropic behaviour is observed

F(Q ⋆ u,Q ⋆ v,Q ⋆U ,Q ⋆ V ,M) = F(u, v,U ,V ,M) ∀ Q ∈ C ⊆ O(3) . (80)

The key observation from the equation above is that the material symmetry group of the
structural tensor solely characterises the type of anisotropy. This extension method with

4in the sense that V = −V T .
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frozen structural tensors5 is referred to as the isotropicization theorem [45,46]. The con-
struction of structural tensors for the mechanics symmetry groups has been thoroughly
treated in [47, 79]. Furthermore, the reviewarticle of Zheng [64] accounts for a detailed
discussion of the representation theorems for anisotropic scalar- and tensor-valued func-
tions. The representation theorem of general isotropic tensor functions is based on the
concept of integrity bases which define a minimum number of invariants for a particular
set of argument tensors. An integrity basis consists of the traces of the argument ten-
sors (their products and the powers of their products). They can be divided in two main
groups namely the principal invariants which contain the invariants of the arguments ten-
sor alone or the structural tensor alone, and the mixed invariants which contain invariants
comprising both the arguments and the structural tensor.

To this end, let F(A) ∈ R be a scalar-valued function of a set A ∈ R

6 of a symmetric
second-order tensor. Then, the isotropy condition (79) reads

F(Q ⋆A) = F(A) ∀ Q ∈ O(3) . (81)

The principal invariants of A are defined as the coefficients of the characteristic poly-
nomial, also known as the Cayley-Hamilton polynomial. For a symmetric second-order
tensor A, the polynomial is the equation corresponding to the eigenvalue problem, i.e.

det
[
λ
Z

1 −A
]
= 0 , (82)

where λ
Z

are the eigenvalues. Equation (82) gives the well-known characteristic equation

λ3
Z

− I1λ
2
Z

+ I2λZ − I3 = 0 , (83)

in terms of the principal invariants

I1 = tr[A], I2 =
1
2

[
tr 2[A]− tr[A2]

]
and I3 =

1
6

[
tr 3[A] + 2 tr[A3]− 3 tr[A2] tr[A]

]
,

(84)
which can be equivalently expressed in terms of the basic invariants

G1 = I1 = tr[A], G2 = I21 − 2I2 = tr[A2] and G3 = I31 − 3I1I2 + 3I3 = tr[A3] , (85)

as functions of the traces of the powers of A. For a given symmetry group C , it is possible
to express the scalar-valued function F as

F = F(A) = F(I1(A), . . . , In(A)) , (86)

in terms of quantities I1(A), . . . , In(A), which are invariant under the action of C . The
set of invariants I1(A), . . . , In(A) is called the functional basis. If the potential
F(I1(A), . . . , In(A)) is chosen to be a polynomial in terms of A, then it is noted that the
functional basis I1(A), . . . , In(A) turns out to be a set of polynomial scalar functions, and
is therefore called the polynomial basis or the integrity basis. Besides, an integrity basis
is said to be irreducible or minimal if none of its elements can be expressed in terms of
the remaining ones [80, 81].

Remark 2. The orthogonal group O(3) has an infinite number of subgroups associated
with non-crystalline solids, some of which are discussed in Section 2.2. With applica-
tion to fibre-reinforced composites, focus is restricted only to the orthorhombic C3 and
transversely isotropic C13 symmetry groups in the ensuing developments. Corresponding
expressions for the groups C1−14 from Table 2 are recorded in Appendix A for the sake of
completeness.

5in the sense Eqn. (78).
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2.4. Phenomenological elasticity

This section addresses general developments in modelling the linear elastic response of
materials based on concepts discussed in the previous section. Generally, elasticity is
the ability of a material to store the work done by an applied external force during the
loading process, and gain the stored work without loss while unloading. Additionally, an
elastic material response is non-dissipative (D = 0), i.e. the stress power is identical to
the evolution of the energetic potential thereby ruling out hysteretic effects.

2.4.1. Underlying assumptions

• Restriction to the theory of grade one, where the constitutive functions are assumed
to depend on primary variables and their first gradient only.

• Quasi static loading is considered, where the forces related to inertial effects are
neglected.

• Isothermal conditions are considered such that Θ = constant, Θ̇ = 0 and ∇Θ = 0 ,
within the body B under consideration.

2.4.2. General developments

With reference to the theory of elasticity, it can be immediately deduced that the set
of internal variables in Eqn. (43) is essentially empty, i.e. e = ∅, as the elastic material
response is fully reversible and depends only on the current deformation state.

2.4.3. Formulation of governing equations

With the assumption of isothermal and quasi static conditions, the governing balance
equations of elasticity are the balance of mass, linear momentum and angular momentum
in their local form, namely that

ρ̇ = 0

0 = div[σ] +Υ

σ = σT

, (87)

where 0 denotes the second-order zero tensor. From Eqns. (51) and (55), it can be
inferred that the only constitutive relation needed for the closure of Eqn. (87) is the
scalar-valued energetic potential ψ. The general developments stated above leads to the
reduced definition of the scalar-valued energetic potential (55) as

ψ = ψ(ε) . (88)

It follows from Eqn. (51) that the stress tensor is obtained from the scalar-valued energetic
potential in Eqn. (88) as

σ = ψ(ε),ε . (89)

A further derivative of Eqn. (88) with respect to the strain tensor ε yields the fourth-order
elasticity tensor (equivalent to the Hessian) as

E = ψ(ε),εε . (90)

From a numerical implementation perspective, the second-order stress tensor σ and the
fourth-order elasticity tensor E are the only quantities to be specified in the material
subroutine, owing to the fact that the stress power is equal to the rate of the scalar
energetic potential.
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2.5. Phenomenological plasticity and viscoplasticity

In this section, a modelling framework for phenomenological plasticity and viscoplasticity
at small strains is provided along with a finite element oriented algorithmic treatment.

2.5.1. Underlying assumptions

• Restriction to the theory of grade one, where the constitutive functions are assumed
to depend on primary variables and their first gradient only.

• Quasi static loading is considered, where the forces related to inertial effects are
neglected.

• Isothermal conditions are considered such that Θ = constant, Θ̇ = 0 and ∇Θ = 0 ,
within the body B under consideration.

• A purely local dependence of the constitutive equations on the internal variables is
assumed.

2.5.2. General developments

The infinitesimal plasticity theory allows for an additive decomposition of the total strain
ε into a reversible elastic part εe and an irreversible plastic part εp, such that

ε := εe + εp =⇒ εe := ε− εp , (91)

where εp is the symmetric second-order plastic strain tensor. Recall here that in the
infinitesimal theory, plastic strain can be experimentally deduced by unloading the spec-
imen to a stress-free state. Further, as ε is already an argument of constitutive relations,
it is sufficient to introduce εp as an internal variable.

Plasticity is an extremely non-linear process which on initial loading leads to a purely
elastic behaviour until a threshold value, termed as the yield stress, is reached. From this
point on, any further loading leads to an irreversible plastic deformation. To incorporate
these two features into modelling, an elastic domain S is introduced in the stress space.
For all the stress states σ ∈ S , an elastic behaviour is observed. Plastic behaviour can
only be observed on the boundary ∂S , of the domain S , i.e. σ ∈ ∂S . Experimentally,
it is observed that most materials are not perfectly plastic (no increase in stress during
the plastic deformation), but they exhibit some kind of hardening. In the present work,
two kinds of hardening phenomena are distinguished.

Isotropic hardening is characterised by an increase of the yield stress in tension connected
to an increase of the yield stress in compression. To describe the isotropic hardening phe-
nomenon, an internal variable ξ is introduced which is a scalar measure of the cumulative
amount of the plastic strain and is therefore known as the equivalent plastic strain.

Kinematic hardening is characterised by an increase of the yield stress in tension connected
to the decrease of the yield stress in compression. Analogous to the previous case, to
describe the kinematic hardening phenomenon, an internal variable α is introduced. In
contrast to the isotropic hardening variable, this symmetric tensor shifts the centre of
the elastic domain from the origin. For the sake of completeness, mixed isotropic and
kinematic hardening is considered in the present work.



2.5 Phenomenological plasticity and viscoplasticity 27

2.5.3. Formulation of governing equations

2.5.3.1. Energetic potential. It follows from the discussion in the previous subsection
that a suitable set of internal variables are given by

e = {εp, ξ,α} ∈ R6 × R× R6 . (92)

To ensure the non-negativity of the work done by any external load in a closed strain cycle,
the existence of a scalar energetic potential is necessary. The scalar energetic potential
which has an explicit functional dependence on Eqn. (92), can generally be specified as

ψ = ψ(ε, e) = ψ(ε, εp, ξ,α) = ψ(ε− εp, εp, ξ,α) = ψ(ε− εp, ξ,α) . (93)

A simplifying assumption made at the outset is that the energetic potential can be addi-
tively decomposed into elastic and plastic parts as

ψ(ε− εp, ξ,α) = ψe(ε− εp) + ψp(ξ,α) = ψe(ε− εp) + ψp
iso(ξ) + ψp

kin(α) . (94)

It should be remarked here that the stored elastic energy ψe depends only the reversible
part of the strain (ε−εp). While a quadratic form is suitable to describe the stored elastic
energy ψe, the plastic (hardening) parts ψp

iso(ξ) and ψp
kin(α) should be formulated such

that they reflect experimental observations. Commonly used functional forms include the
linear, exponential and power hardening law.

2.5.3.2. Thermodynamic restriction. Taking into account the representation (94),
the dissipation postulate (53) can be evaluated for isothermal conditions as

D
red = −ψ,e ·ė = −ψ,εp : ε̇p − ψ,ξ ξ̇ − ψ,α : α̇ ≥ 0 , (95)

which leads to the definition of the stress tensor and driving forces associated with the
potential (94) as

σ = +ψe(ε− εp),(ε−εp)= −ψe(ε− εp),εp = σp ,

κ = −ψp
iso(ξ),ξ ,

β = −ψp
kin(α),α .

(96)

Equation (96)1 is a consequence of the definition of elastic strain measure within the
framework of geometrically linear theory. For brevity, let f = −ψ,e = {σ, κ,β} ∈ R

6 ×
R× R6, denote the set of conjugate thermodynamic driving forces which are dual to the
introduced set of internal variables in Eqn. (92). Then, Eqn. (95) can be expressed in a
compact form taking into account Eqn. (96) as

D
red = f · ė = σ : ε̇p + κξ̇ + β : α̇ ≥ 0 , (97)

where the reduced dissipation is expressed as an inner product of the conjugate thermo-
dynamic driving forces and internal variables in the space R6 × R× R6.

2.5.3.3. Evolution of the internal variables. Besides the free energy function ψ,
the evolution of internal variables e = {εp, ξ,α} should also be constitutively prescribed
in line with the restriction (95). This is accomplished using two ingredients, namely
(i) a yield function that specifies the elastic domain S , and its boundary ∂S , to decide
when the plastic flow takes place, and (ii) a description of how the plastic flow takes place,
i.e. how exactly the internal variables e = {εp, ξ,α} evolve during the plastic deformation.
This is achieved by the flow rule.
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2.5.3.3.1. Yield function. To mathematically specify the elastic domain S , the fol-
lowing form is utilised

S = {(σ, κ,β) ∈ R6 × R× R

6|χ(σ, κ,β) ≤ 0} . (98)

The boundary ∂S of the elastic domain is called the yield surface and it takes the form

∂S = {(σ, κ,β) ∈ R6 × R× R

6|χ(σ, κ,β) = 0} , (99)

where χ = χ(f) = χ(σ, κ,β) is the yield function in the space of admissible thermody-
namic forces. The functional form of χ defines the size and shape of the elastic domain
S and thus the yield surface. Additionally, for the inequality (95) to hold true, the yield
function should satisfy the following constraints:

• convexity

χ(ℑf1 + (1− ℑ)f2) ≤ ℑχ(f1) + (1− ℑ)χ(f2) ∀ {f1, f2} ∈ S , ℑ ∈ [0, 1] , (100)

• degree-one homogeneity

χ(ℑf) = ℑχ(f) for ℑ > 0 . (101)

Convexity of the yield function is a necessary requirement for minimisation problems in
order to have a unique solution [82]. It ensures the dissipation to remain positive for all
admissible thermodynamic processes, which is the central idea of the second axiom of
thermodynamics. Mathematically, the convexity of the yield surface χ is demonstrated if
it can be shown that the Hessian matrix F of this function is positive semi-definite, i.e. its
eigenvalues are all positive or zero, see [33].

2.5.3.3.2. Principle of maximum dissipation. From Eqn. (95), it can be seen that
the evolution of internal variables e = {εp, ξ,α} depends on the conjugate thermodynamic
driving forces f = {σ, κ,β}. To completely define the evolution of the internal variables,
the principle of maximum dissipation is used. This principle, often credited to von Mises
[25, pp. 60] and subsequently considered by several authors [69, 83], is central in the
mathematical formulation of plasticity theory and plays a crucial role in the variational
formulation of such dissipative processes [73, 84].

The principle of maximum dissipation states that, for a given flux e among all admissible
thermodynamic forces f∗ ∈ S satisfying the yield criterion, plastic dissipation is given by

D
red∗(f∗, e) = f∗ · ė = σ∗ : ε̇p + κ∗ξ̇ + β∗ : α̇ . (102)

Then, the actual thermodynamic forces f ∈ S are the arguments of the principle

D
red(f, e) = sup

f∗∈S

[
D

red∗

(f∗, e)
]
. (103)

This principle is used here in a more general context by application to all the thermody-
namic forces [48].

Proposition 2.5.1. The principle of maximum dissipation implies the following

(i) associative flow rule in the stress space, often called the normality rules,
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(ii) Karush-Kuhn-Tucker-type loading/unloading conditions, and

(iii) convexity of the elastic domain S .

Proof. The propositions (i) and (ii) can be proved by using the method of Lagrange
multipliers. At first, the maximisation principle (102) is transformed into a minimisation
principle merely by changing the sign. Next, the constrained minimisation problem is
transformed into an unconstrained saddle point problem with the introduction of Lagrange
multiplier λ and considering the Lagrange functional L : R6+1+6 × R× R6+1+6 as

L (f∗, λ, ė) = −f∗ · ė+ λχ(f∗) = −σ∗ : ε̇p − κ∗ξ̇ − β∗ : α̇+ λχ(f∗) . (104)

The solution to the problem (103) is then given by the point (f, λ), satisfying the classical
Karush-Kuhn-Tucker conditions,

L ,f ≡ ±ė + λχ,f= 0

λ ≥ 0, χ ≤ 0 and λχ ≡ 0
, (105)

see Simo and Hughes [66, Chapter 2, Section 2.6, Subsection 2.6.2, pp. 99]. These equa-
tions represent precisely the statement of normality rules and the loading/unloading con-
ditions, respectively. To prove that the convexity condition on the elastic domain also
follows from the principle of maximum dissipation, it suffices to show that the yield func-
tion χ(f) is convex, in the sense of Eqn. (100).

Based on Eqn. (105)1, evolution equations for the internal variables are given by

ε̇p = ε̇p(λ,σ, κ,β) = λχ,σ

ξ̇ = ξ̇(λ,σ, κ,β) = λχ,κ

α̇ = α̇(λ,σ, κ,β) = λχ,β

. (106)

The Lagrange multiplier λ ≥ 0 can be characterised as the “plastic multiplier” that acts
as a switch for the plastic behaviour, i.e. λ = 0 ⇒ elastic and λ > 0 ⇒ plastic. It is
determined from the consistency condition χ(σ, κ,β) = 0 and χ̇(σ, κ,β) = 0 during the
plastic flow. With χ = χ(σ, κ,β), the rate of the yield function can be evaluated as

χ̇ = χ,σ : σ̇ + χ,κ κ̇+ χ,β : β̇ , (107)

along with the definitions

σ̇ =
d

dt
[−ψe(ε− εp),(ε−εp) ] = ψe(ε− εp),(ε−εp)(ε−εp) : (ε̇− ε̇p)

κ̇ =
d

dt
[−ψp

iso(ξ),ξ ] = −ψp
iso(ξ),ξξ ξ̇

β̇ =
d

dt
[−ψp

kin(α),α ] = −ψp
kin(α),αα : α̇

. (108)

Setting

E = ψe(ε− εp),(ε−εp)(ε−εp) , H = ψp
iso(ξ),ξξ and H = ψp

kin(α),αα , (109)
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and taking into account Eqn. (106), Eqn. (108) reformulates to

σ̇ = E : [ε̇− λχ,σ ]

κ̇ = −λHχ,κ
β̇ = −λH : χ,β

. (110)

With Eqn. (110) at hand, the yield rate (107) takes the form

χ̇ = χ,σ : E : [ε̇− λχ,σ ] + χ,κ [−λHχ,κ ] + χ,β : [−λH : χ,β ] , (111)

where it can be seen that during elastic behaviour (λ = 0), the yield rate simplifies to

χ̇(λ = 0, ε̇,σ, κ,β) = χ,σ : E : ε̇ , (112)

which can be thought of as an elastic trial value for χ̇. With χ(σ, κ,β) and χ̇(λ, ε̇,σ, κ,β)
at hand, the value of the plastic multiplier λ can be computed with the so-called “loading
cases”, which are identified, illustrated in Fig. 14, as follows:

χ < 0 ⇐⇒ elastic loading

χ = 0 and χ̇ < 0 ⇐⇒ elastic unloading

χ = 0 and χ̇ = 0 ⇐⇒ neutral loading

χ = 0 and χ̇ > 0 ⇐⇒ plastic loading6





. (113)

If χ < 0, it is known that σ ∈ S (κ,β) \ ∂S and thus an elastic loading is identified
with Eqn. (113)1. If χ̇ > 0, the stress state is outside of the elastic domain σ 6∈ S (κ,β),
which is not permitted. Therefore, a plastic flow is needed, as seen from Eqn. (113)4.
Furthermore, if the case is plastic, the amount (λ > 0) of the plastic flow is obtained from
the consistency condition which follows from Eqn. (111) as

χ,σ : E : ε̇ = λχ,σ : E : χ,σ +λχ,κHχ,κ +λχ,β : H : χ,β , (114)

Elastic loading Elastic unloading Neutral loading Plastic loading

χ < 0

χ = 0χ = 0 χ = 0

χ,fχ,f χ,f

χ̇ > 0

χ̇ = 0χ̇ < 0

Figure 14: Loading cases in the space of admissible thermodynamic forces. If χ < 0,
an elastic loading is identified where σ ∈ S (κ,β) \ ∂S , whereas if χ = 0, it is understood that
σ ∈ ∂S (κ,β) and a plastic flow is possible. To evaluate this possibility, the rate of the yield
function χ̇ needs to be considered. It follows that if χ̇ < 0, an elastic unloading step is observed.
For χ < 0 and χ̇ = 0, a neutral loading step is identified. Finally, for χ = 0 and χ̇ > 0, a plastic
flow is observed where further loading leads to values outside the elastic domain as a result of
which plastic flow sets in. The final loading step is however observed only in a rate-dependent
setting.

6only possible in a rate-dependent setting.
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resulting in the standard form

λ =
χ,σ : E : ε̇

χ,σ : E : χ,σ +χ,κHχ,κ +χ,β : H : χ,β
. (115)

The plastic multiplier λ ensures the fulfilment of the consistency condition during the
plastic flow. Evolution laws of type (106) are termed as associated flow rules and are
characterised by the fact that the rates of the internal variables are normal to the yield
surface (χ = 0).

For some materials where the canonical normal directions of the evolution equations (106)
do not characterise the real material response, e.g. polymers, soils, concrete among others,
the constitutive response is modified by introducing an additional constitutive function
φ, henceforth known as the plastic flow potential. It is assumed to depend on the same
variables as the yield function such that

φ = φ(σ, κ,β) , (116)

based on which the evolution equations for the internal variables take the form

ε̇p = ε̇p(λ,σ, κ,β) = λφ,σ

ξ̇ = ξ̇(λ,σ, κ,β) = λφ,κ

α̇ = α̇(λ,σ, κ,β) = λφ,β

. (117)

Evolution laws of type (117) are termed as non-associative flow rules, which replace the
normality rules in Eqn. (106) though the plastic loading conditions remain unchanged.
The plastic multiplier λ is determined from the consistency condition similar to the case
of associative flow rule. In particular, with Eqn. (117) at hand, Eqns. (107)–(111) can
be evaluated for the non-associative flow response, and the resulting form of consistency
condition reads

χ,σ : E : ε̇ = λφ,σ : E : φ,σ +λφ,κHφ,κ +λφ,β : H : φ,β , (118)

yielding the plastic multiplier in the standard form

λ =
χ,σ : E : ε̇

χ,σ : E : φ,σ +χ,κHφ,κ+χ,β : H : φ,β
. (119)

A geometrical interpretation of the associative and non-associative flow response is shown
in Fig. 15, and a summary of the modelling framework for associative and non-associative
flow response is outlined in Box 2.

Remark 3. Owing to experimental investigations, it is sometimes necessary to relax
the principle of maximum dissipation for certain materials (e.g. polymeric composites)
with the assumption of a plastic flow potential that is different from the yield function,
thereby framing the model within non-associative plasticity [85]. However, relaxing the
principle of maximum dissipation should not violate the second law of thermodynamics
and therefore the choice of the plastic flow potential is generally similar to the functional
form of the yield function, but with a different choice of governing parameters.
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2.5.3.4. Continuum elastic-plastic tangent modulus. The goal of this subsection is
to compute the fourth-order elastic-plastic tangent modulus also known as the generalised
Prandtl-Reuss tensors. They connect the rate of stress tensor with the rate of total strain.
Starting with the case of an associative flow response, consider the rate equation for the
stress tensor which is given by

σ̇ = E : [ε̇− ε̇p] = E : [ε̇− λχ,σ ] . (120)

Substituting λ from Eqn. (115), it follows that the rate equation can be reformulated as

σ̇ = E

ep : ε̇ with E

ep =

[
E− E : χ,σ ⊗χ,σ : E

χ,σ : E : χ,σ +χ,κ Hχ,κ +χ,β : H : χ,β

]
, (121)

where Eep is the fourth-order elastic-plastic tangent modulus tensor. Likewise, for the
case of non-associative flow response, the rate equation is given by

σ̇ = E : [ε̇− ε̇p] = E : [ε̇− λφ,σ ] . (122)

Substituting λ from Eqn. (119) it follows that the rate equation can be expressed as

σ̇ = E

ep : ε̇ with E

ep =

[
E− E : χ,σ ⊗φ,σ : E

χ,σ : E : φ,σ +χ,κ Hφ,κ+χ,β : H : φ,β

]
. (123)

S = {f ∈ Rn|χ(f, •) ≤ 0}

∂S = {f ∈ Rn|χ(f, •) = 0}

Z = {f ∈ Rn|φ(f, •) ≤ 0}

∂Z = {f ∈ Rn|φ(f, •) = 0}

e

e

f
f f∗

f∗

f · e
f · e

(a) (b)

Figure 15: Associative and Non-associative flow response. Let S be a convex elastic
domain in the space of admissible thermodynamic forces f, characterised by a flow hyper surface
χ(f; •) = 0. (a) Associative flow. The principle of maximum dissipation forces the thermody-
namic flux vector e to be normal to the hyper surface χ(f; •) = 0. For smooth and differentiable
functions χ, the flux e is proportional to the gradient χ,f. (b) Non-associative flow. Often, the
evolution of thermodynamic fluxes e can be expressed in terms of a plastic flow potential φ(f; •)
that differs from the flow hyper surface χ(f; •) = 0, i.e. φ 6= χ. In such cases, the principle of
maximum dissipation can be often relaxed, while the second law of thermodynamics should still
be satisfied with an appropriate choice of φ(f; •). Then, for smooth and differentiable functions
φ, the flux e is now proportional to the gradient φ,f.
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Box 2: Rate-independent setting–summary of the modelling framework.

1. Kinematics : ε = εe + εp

2. Internal variables : e = {εp, ξ,α}
3. Energetic potential : ψ = ψe(ε− εp) + ψp

iso(ξ) + ψp
kin(α)

4. Stress tensor : σ = ψe(ε− εp),ε

5. Driving forces : κ = −ψp
iso(ξ),ξ

β = −ψp
kin(α),α

6. Yield function : χ = χ(σ, κ,β)

7. Plastic flow potential : φ = φ(σ, κ,β)

8. Evolution equations :

Associative
ε̇p = λχ(σ, κ,β),σ

ξ̇ = λχ(σ, κ,β),κ

α̇ = λχ(σ, κ,β),β

Non-associative
ε̇p = λφ(σ, κ,β),σ

ξ̇ = λφ(σ, κ,β),κ

α̇ = λφ(σ, κ,β),β

9. Karush-Kuhn-Tucker conditions : λ ≥ 0, χ ≤ 0 and λχ ≡ 0

It can be seen from Eqns. (121) and (123) that the elastic-plastic tangent modulus is a
symmetric and non-symmetric fourth-order tensor for the associative and non-associative
flow response, respectively.

2.5.4. Extension to viscoplasticity

The general framework of phenomenological plasticity outlined so far, assumes a rate-
independent setting, such that the material behaviour will not qualitatively change for
varying load rates ε̇. In what follows, the classical rate-independent formulation is ex-
tended to a classical rate-dependent formulation of Perzyna-type [86, 87].

Analogous to the rate-independent setting, the maximisation principle (102) is trans-
formed into an minimisation principle by reversing the sign. Next, the constrained min-
imisation problem is transformed into an unconstrained problem by appending a penali-
sation function. In other words, the Lagrange functional (104) is replaced by a penalty
functional P : R6+1+6 × R6+1+6 of the type

P(f∗, ė) = −f∗ · ė+ 1

η(m+ 1)
[χ(f∗)+](m+1)

= −σ∗ : ε̇p − κ∗ξ̇ − β∗ : α̇+
1

η(m+ 1)
[χ(f∗)+](m+1)

, (124)
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see [48,88,89]. Here, η ∈ (0,∞) is called the penalty parameter which characterises time-
dependent viscous plastic flow and the function [χ(f∗)+] is a monotonically increasing
ramp function such that

[χ(f∗)+] :=
1

2

[
χ(f∗) + |χ(f∗)|

]
(125)

see also [84]. The material parameter m > 0 in Eqn. (124) should be chosen such that
[χ(f∗)+] is a C1 function7. Based on Eqn. (124), the evolution equations for internal
variables take the generalised form analogous to Eqn. (106) as

ε̇p = ε̇p(σ, κ,β) =
1

η
[χ(f)+]mχ,σ

ξ̇ = ξ̇(σ, κ,β) =
1

η
[χ(f)+]mχ,κ

α̇ = α̇(σ, κ,β) =
1

η
[χ(f)+]mχ,β

. (126)

Comparing Eqn. (126) with Eqn. (106), it can be seen that the only difference to the case
of rate-independent plasticity is that the plastic multiplier λ is now determined by the
constitutive expression

λ =
1

η
[χ(f)+]m . (127)

Equation (127) is known as the pseudo-consistency condition which yields the rate-
dependent λ in terms of viscosity η and the ramp function (χ+)m. In contrast to the
rate-independent setting, the thermodynamic driving forces are not bound and can take
values outside the elastic domain S . The amount λ depends on the viscous over-stress
function (χ+)m, thereby implying that the higher the over-stress, the faster the develop-
ment of plastic strain. The framework of associative rate-dependent plasticity described
by Eqns. (124)–(127), can be extended in a straightforward manner to describe non-
associative rate-dependent plasticity, see Box 3. With the preceding definitions, the gen-
eralised Prandtl-Reuss tensors for a rate-dependent setting can be computed analogous
to those of the rate-independent setting.

For general finite element computations, the continuum elastic-plastic tangent modulus
obtained with the rate equations will not lead to quadratic convergence when a Newton-
Raphson iterative procedure is used on a global level [90,91]. In the following subsection,
algorithmic elastic-plastic tangent modulus consistent with the Newton-Raphson method
is derived using an integration algorithm based on the general return method [76, 92].

2.5.5. Algorithmic treatment

The algorithmic treatment is a crucial aspect of computational plasticity, as it is concerned
with determining new updated values of state variables by integrating the corresponding
governing equations for given initial conditions. In the present work, the algorithmic
treatment is derived in three steps as follows

• At first, a time discretisation of the balance and evolution equations is carried out.

• Next, the time discrete governing balance equations are recast into their weak form.

• Finally, a space discretisation is carried out by the use of the finite element method.
7in the sense that Eqn. (125) is satisfied.



2.5 Phenomenological plasticity and viscoplasticity 35

Box 3: Rate-dependent setting–summary of the modelling framework.

1. Kinematics : ε = εe + εp

2. Internal variables : e = {εp, ξ,α}
3. Energetic potential : ψ = ψe(ε− εp) + ψp

iso(ξ) + ψp
kin(α)

4. Stress tensor : σ = ψe(ε− εp),ε

5. Driving forces : κ = −ψp
iso(ξ),ξ

β = −ψp
kin(α),α

6. Yield function : χ = χ(σ, κ,β)

7. Plastic flow potential : φ = φ(σ, κ,β)

8. Evolution equations :

Associative
ε̇p = λχ(σ, κ,β),σ

ξ̇ = λχ(σ, κ,β),κ

α̇ = λχ(σ, κ,β),β

with λ =
1

η
[χ+]m and [χ+] =

1

2

[
χ+ |χ|

]

Non-associative
ε̇p = λφ(σ, κ,β),σ

ξ̇ = λφ(σ, κ,β),κ

α̇ = λφ(σ, κ,β),β

with λ =
1

η
[φ+]m and [φ+] =

1

2

[
φ+ |φ|

]

2.5.5.1. Time discretisation. In order to predict the material behaviour in a time
interval [0, T ] ⊆ R+, the time interval is discretised by a discrete set of points. Hence, one
can write [0, T ] ⊆ R+ → [0, T ]∆t = {·, ·, tn, tn+1, ·, ·} ⊆ [0, T ], where the space between
discrete points is the same. Consider a finite time step [tn+1, tn] and set ∆tn+1 = tn+1−tn.
All the quantities at the time tn are assumed to be known and the goal is to determine
them at time tn+1.

2.5.5.1.1. Elastic domain and trial yield state. As for the time continuous set-
ting, it has to be ensured that any stress state stays inside the elastic domain σn+1 ∈
S (κn+1,βn+1), which can be expressed in terms of the yield function χ as

χ(σn+1, κn+1,βn+1) ≤ 0 , (128)

which has to be valid at all times.

2.5.5.1.2. Algorithmic flow rule. With the time discretisation at hand, the associative
flow rule given by Eqn. (106) can be numerically integrated using a backwards Cauchy-
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Euler scheme as

ε̇p =
1

∆t
(εpn+1 − εpn) = λn+1χ,σn+1

ξ̇ =
1

∆t
(ξn+1 − ξn) = λn+1χ,κn+1

α̇ =
1

∆t
(αn+1 −αn) = λn+1χ,βn+1





. (129)

Likewise, for the non-associative flow rule it follows that

ε̇p =
1

∆t
(εpn+1 − εpn) = λn+1φ,σn+1

ξ̇ =
1

∆t
(ξn+1 − ξn) = λn+1φ,κn+1

α̇ =
1

∆t
(αn+1 −αn) = λn+1φ,βn+1





. (130)

Setting ∆λn+1 = ∆tλn+1, which is henceforth known as the plastic increment, Eqns. (129)
and (130) can be rewritten as

ε
p
n+1 = εpn +∆λn+1χ,σn+1

ξn+1 = ξn +∆λn+1χ,κn+1

αn+1 = αn +∆λn+1χ,βn+1

, (131)

and likewise, for the non-associative flow rule it follows

ε
p
n+1 = εpn +∆λn+1φ,σn+1

ξn+1 = ξn +∆λn+1φ,κn+1

αn+1 = αn +∆λn+1φ,βn+1

, (132)

where ∆λn+1 ≥ 0. Recalling Eqn. (96), it can be seen that Eqn. (131) allows the statement
of relations for the driving forces fn+1 = {σn+1, κn+1,βn+1} as

σn+1 = +ψe(εn+1 − ε
p
n+1),(ε−εp) = +ψe

(
εn+1 − εpn −∆λn+1χ,σ

)
,(ε−εp)

κn+1 = −ψp
iso(ξn+1),ξ = −ψp

iso

(
ξn +∆λn+1χ,κ

)
,ξ

βn+1 = −ψp
kin(αn+1),α = −ψp

kin

(
αn +∆λn+1χ,β

)
,α

, (133)

for the associative flow response, and

σn+1 = +ψe(εn+1 − ε
p
n+1),(ε−εp) = +ψe

(
εn+1 − εpn −∆λn+1φ,σ

)
,(ε−εp)

κn+1 = −ψp
iso(ξn+1),ξ = −ψp

iso

(
ξn +∆λn+1φ,κ

)
,ξ

βn+1 = −ψp
kin(αn+1),α = −ψp

kin

(
αn +∆λn+1φ,β

)
,α

, (134)

for the non-associative flow response. The idea is now to compute elastic trial values
ftrialn+1 = {σtrial

n+1, κ
trial
n+1,β

trial
n+1} of the driving forces by assuming an elastic step between tn

and tn+1 and further setting ∆λn+1 = 0 in Eqns. (133) and (134), i.e.

σtrial
n+1 = ψe(εn+1 − εpn),(ε−εp) , κtrialn+1 = −ψp

iso(ξn),ξ and βtrial
n+1 = −ψp

kin(αn),α , (135)



2.5 Phenomenological plasticity and viscoplasticity 37

which allow for the expression of the yield function in a trial state as

χtrial = χtrial(ftrialn+1) = χ(σtrial
n+1, κ

trial
n+1,β

trial
n+1) . (136)

The computation of {en+1,σn+1,E
ep
n+1} now depends on the trial state of yield function

(136), based on which the load cases can again be distinguished as

χtrial < 0 and ∆λn+1 = 0 ⇐⇒ elastic step
χtrial > 0 and ∆λn+1 > 0 ⇐⇒ plastic step

}
. (137)

For an elastic step given by Eqn. (137)1, the evolution of plastic variables are given by

ε
p
n+1 = εpn, ξn+1 = ξn and αn+1 = αn . (138)

The updated stress and the algorithmically consistent elastic-plastic tangent modulus are
the same as the trial values, i.e.

σn+1 = σtrial
n+1 and E

ep
n+1 = ψe(ε− εpn),(ε−εp)(ε−εp) , (139)

whereas if χtrial > 0, the assumption of an elastic step is wrong and a plastic step has to
be carried out to ensure consistency with Eqn. (128). From Eqns. (129) and (130), it is
clear that in order to carry out a plastic step, the values of σn+1, κn+1, βn+1 and ∆λn+1

need to be determined. Taking into account Eqns. (133) and (134), and recalling the
consistency condition χ̇(σn+1, κn+1,βn+1) = 0 during plastic flow, the related non-linear
system of equations can be identified as

R =




Rσ

Rκ

Rβ

Rχ



=




σn+1 − ψe
(
εn+1 − εpn −∆λn+1χ,σ

)
,(ε−εp)

κn+1 + ψp
iso

(
ξn +∆λn+1χ,κ

)
,ξ

βn+1 + ψp
kin

(
αn +∆λn+1χ,β

)
,α

χ(σn+1, κn+1,βn+1)



= 0 , (140)

for the associative flow response, and

R =




Rσ

Rκ

Rβ

Rχ



=




σn+1 − ψe
(
εn+1 − εpn −∆λn+1φ,σ

)
,(ε−εp)

κn+1 + ψp
iso

(
ξn +∆λn+1φ,κ

)
,ξ

βn+1 + ψp
kin

(
αn +∆λn+1φ,β

)
,α

χ(σn+1, κn+1,βn+1)



= 0 , (141)

for the non-associative flow response. For a general non linear case, Eqns. (140) and (141)
should be solved by a Newton-Raphson scheme based on the linearisation of R around a
point Pi

n+1 = {σi
n+1, κ

i
n+1,β

i
n+1,∆λ

i
n+1}, as

Lin
[
R
]
Pi

n+1

= R(Pi
n+1) +R(Pi

n+1),P ·∆Pi
n+1 = 0 , (142)

which yields the update algorithm

Pi+1
n+1 = Pi

n+1 +∆Pi
n+1, ∆Pi

n+1 = −
[
R(Pi

n+1),P

]−1

R(Pi
n+1) , (143)
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where i denotes the iteration index. The linearisation is carried out until
∥∥R(Pi

n+1)
∥∥ <

TOL, and the explicit form of R(Pi
n+1),P can be determined based on Eqn. (140) as

R(Pi
n+1),P=




(1 ⊕ 1 ) + ∆λE : χ,σσ ∆λE : χ,σκ ∆λE : χ,σβ E : χ,σ

∆λHχ,κσ 1 + ∆λHχ,κκ ∆λHχ,κβ Hχ,κ

∆λH : χ,βσ ∆λH : χ,βκ (1 ⊕ 1 ) + ∆λH : χ,ββ H : χ,β

χ,σ χ,κ χ,β χ,∆λ




,

(144)
for the associative flow response, and

R(Pi
n+1),P=




(1 ⊕ 1 ) + ∆λE : φ,σσ ∆λE : φ,σκ ∆λE : φ,σβ E : φ,σ

∆λHφ,κσ 1 + ∆λHφ,κκ ∆λHφ,κβ Hφ,κ

∆λH : φ,βσ ∆λH : φ,βκ (1 ⊕ 1 ) + ∆λH : φ,ββ H : φ,β

χ,σ χ,κ χ,β χ,∆λ




,

(145)
for the non-associative flow response. The converged solution of Eqn. (142) contains
the consistent values of the driving forces fn+1 = {σn+1, κn+1,βn+1}. Insertion of
Pn+1 into Eqn. (129) and (130) yields the consistent update of the internal variables
en+1 = {εpn+1, ξn+1,αn+1} for the associative and non-associative flow response, respec-
tively. The only quantity to be determined is the algorithmic elastic-plastic tangent
modulus consistent with Newton’s method. This can be obtained by taking the variation
of the residual equations with respect to the strain. A direct calculation from Eqn. (143)
shows that 



σi+1 − σi

κi+1 − κi

βi+1 − βi

∆λi+1 −∆λi


 = −




Cσσ Cσκ Cσβ Cσχ

Cβσ Cβκ Cββ Cβχ

Cκσ Cκκ Cκβ Cκχ

Cχσ Cχκ Cχβ Cχχ







Rσ

Rκ

Rβ

Rχ


 , (146)

where Cσσ,Cσβ,Cσκ,Cσχ, · · ·, are the sub-matrices of C =
[
R(Pi

n+1),P
]−1

. The desired
consistent tangent operator is obtained by a straightforward derivation of the first row of
Eqn. (146) with respect to ε, taking into account Eqns. (140) and (141) as

E

ep := σ,ε = (σi+1 − σi),ε = Cσσ : E . (147)

Note that the algorithmic treatment of general fully non linear phenomenological plasticity
summarised so far, often drastically simplifies for specific modelling choices of hardening
energies ψp

iso and ψp
kin, the yield function χ, and the flow potential φ. In many cases, the

system of equations is linear and can be solved without an iterative procedure.

Remark 4. For the rate-dependent setting, recall the pseudo-consistency condition (127)

λ =
1

η
[χ(f)+]m , (148)

which can be treated for a plastic step χ > 0, by employing a backwards Cauchy-Euler
time integration scheme as

λn+1 − λn+1

∆t
=

∆λn+1

∆t
=

1

η
[χ(fn+1)

+]m , (149)
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which may be equivalently written as

[χ(fn+1)
+]m − η

∆t
∆λn+1 = 0 , (150)

where ∆λn+1 = λn+1−λn. In contrast to the rate-independent setting, the yield function is
not zero for the plastic flow but restricted by Eqn. (150), which replaces the consistency
condition in Eqn. (140)4 and Eqn. (141)4. A key aspect is that the rate-independent
setting is recovered for η = 0. Note that a time regularisation of the rate-independent
model always stabilises the algorithmic setting [65].

2.5.5.2. Weak form of the balance equations. In this step, the time discrete strong
form of the balance equations are recast as a time discrete weak form using the test
functions. This reformulation provides a starting point for the space discretisation of
phenomenological plasticity using the finite element method. With the updated stress
σn+1 at hand, the governing balance equation for the motion of the body, i.e. the balance
of linear momentum (16) can be reformulated to a time discrete strong form as

div[σn+1] +Υn+1 = 0 , (151)

If Eqn. (151) is to hold everywhere in B, then at any point x ∈ B, it is possible to write

δu ·
{
− div[σn+1]−Υn+1

}
= 0 , ∀ δu ∈ R3 , (152)

where δu = δu(x) is a test function that guarantees certain differentiability as well as
boundary conditions. These aspects are not relevant for further considerations. Since
Eqn. (152) has to be fulfilled everywhere in the body B, one can write

∫

B

δu ·
{
− div[σn+1]−Υn+1

}
dV = 0 . (153)

Recalling here the identity

div[δu · σ] = ∇δu : σ + δu · div[σ] , (154)

and inserting the above into Eqn. (153), it follows that

−
∫

B

div[δu · σn+1] dV +

∫

B

∇δu : σn+1 dV −
∫

B

δu ·Υn+1 dV = 0 . (155)

Due to the restriction to geometrically linear theory, the following expression holds true

∇δu : σn+1 = ∇symu : σn+1 = δε : σn+1 . (156)

Substitution of Eqn. (156) into (155) and application of the Gauss theorem leads to the
reformulation of Eqn. (155) as

−
∫

∂B

δu · tn+1 dA−
∫

B

δu ·Υn+1 dV +

∫

B

δε : σn+1 dV = 0 . (157)

Equation (157) is the time discrete weak form of Eqn. (151), which now allows for the
space discretisation using finite elements.
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2.5.5.3. Space discretisation using finite elements. The displacement un+1(x) in
Eqn. (157) is still an infinite dimensional unknown. The idea of space discretisation is to
reduce the dimension of the unknowns to a finite number [93]. To do so, first introduce
an approximation of the domain B by an union of N e so-called finite element domains
Be, that are defined by

B ≈ B
h =

Ne⋃

e=1

B
e , (158)

see Fig. 16. Next, introduce NI = NI(x) shape functions associated with the NI nodes
xI such that

NI(x
j) := δij , (159)

where δij is the Kronecker delta. Starting with the standard Q1 formulation8, the unknown
displacement field un+1(x) can be approximated using a set of nodal values such that

un+1 ≈ uh
n+1 =

NI∑

I=1

NI · uI
n+1 . (160)

Likewise, the test function δu associated with the weak form (157) can also be approxi-
mated as

δun+1 ≈ δuh
n+1 =

NI∑

I=1

NI · δuI
n+1 . (161)

For a standard three-dimensional brick-like Q1 element with eight nodes, trilinear shape
functions of the following form are used

NI(x) =
1

8
(1 + x1x

I
1)(1 + x2x

I
2)(1 + x3x

I
3) , (162)

where x = {x| − 1 ≤ xI ≤ +1} denotes the isoparametric coordinate system [94]. To this
end, combining all the nodal displacements into a single vector as

Dn+1 =
[
u1xn+1

, u1yn+1
, u1zn+1

, · · · , uNI

xn+1
, uN

I

yn+1
, uN

I

zn+1

]T
, (163)

∂Bh
u∂Bh

u

∂Bh
t∂Bh

t

displacement

B Bh
e

t̄ = σnt̄ = σn

Figure 16: Finite element discretisation. The domain B is approximated by the union of
finite elements Bh

e . This allows for the approximation of the infinite dimensional unknown u by
a finite number of piecewise polynomial functions.

8all the primary variables are discretised using C0 continuous interpolations.
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Eqn. (160) can be reformulated as

uh
n+1 = Nu ·Dn+1 , (164)

where Nu is the global interpolation matrix for u, defined as

[
Nu

]
=




N1 0 0 · · · NI 0 0 · · · NNI 0 0
0 N1 0 · · · 0 NI 0 · · · 0 NNI 0
0 0 N1 · · · 0 0 NI · · · 0 0 NNI


 . (165)

It follows from Eqns. (164) and (165) that the displacement field un+1 depends solely on
the shape functions. It can be seen from the weak form (157) that the spatial gradient ε
of the primary field u, also needs to be discretised. This is done using spatial derivatives
of the shape functions as they are space dependent. Taking into account Eqn. (163), these
gradients can be approximated as

εn+1 ≈ εhn+1 = ∇uh
n+1 = ∇Nu ·Dn+1 = Bε ·Dn+1 , (166)

where Bε denotes the strain interpolation matrix, defined as

[
Bε

]
=




N1,1 N1,2 N1,3 0 0 0 0 0 0 0 0 0 0
0 0 0 N1,1 N1,2 N1,3 0 0 0 0 0 0 0
0 0 0 0 0 0 N1,1 N1,2 N1,3 0 0 0 0
0 0 0 0 0 0 0 0 0 N1 N1,1 N1,2 N1,3

...
NI,1 NI,2 NI,3 0 0 0 0 0 0 0 0 0 0
0 0 0 NI,1 NI,2 NI,3 0 0 0 0 0 0 0
0 0 0 0 0 0 NI,1 NI,2 NI,3 0 0 0 0
0 0 0 0 0 0 0 0 0 NI NI,1 NI,2 NI,3

...
NNI ,1 NNI ,2 NNI ,3 0 0 0 0 0 0 0 0 0 0
0 0 0 NNI ,1 NNI ,2 NNI ,3 0 0 0 0 0 0 0
0 0 0 0 0 0 NNI ,1 NNI ,2 NNI ,3 0 0 0 0
0 0 0 0 0 0 0 0 0 NNI NNI ,1 NNI ,2 NNI ,3




T

.

(167)
Finally, setting

δDn+1 =
[
δu1xn+1

, δu1yn+1
, δu1zn+1

, · · · , δuNI

xn+1
, δuN

I

yn+1
, δuN

I

zn+1

]T
, (168)

analogous to Eqn. (163), and

δεhn+1 = Bε · δDn+1 , (169)

analogous to Eqn. (161), the weak form (157) can be approximated as

−
∫

∂B

(Nu ·δD) ·tn+1 dA−
∫

B

(Nu ·δD) ·Υn+1 dV +

∫

B

(Bε ·δD) : σn+1 dV = 0 . (170)

Using the Voigt notation δε : σ = δεT · σ, Eqn. (170) can be equivalently expressed as

−
∫

∂B

δDTNT
u · tn+1 dA−

∫

B

δDTNT
u ·Υn+1 dV +

∫

B

δDTBT
ε · σn+1 dV = 0 . (171)
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Box 4: Summary of the algorithmic treatment.

1. Given are the history variables en = {εpn, ξn,αn} and the current strain εn+1

2. Compute the trial values

σtrial
n+1 = ψe(εn+1 − εpn),(ε−εp) , κtrialn+1 = −ψp

iso(ξn),ξ and βtrial
n+1 = −ψp

kin(αn),α

3. Compute the trial yield criterion χtrial = χ(σtrial
n+1, κ

trial
n+1,β

trial
n+1)

4. IF χtrial ≤ 0 THEN

• Elastic step:

set
ε
p
n+1 = εpn, ξn+1 = ξn, αn+1 = αn ,

σn+1 = σtrial
n+1 and E

ep
n+1 = ψe(ε− εpn),(ε−εp)(ε−ε

p
n)

5. ELSE

• Plastic step:

determine Pi
n+1 = {σi

n+1, κ
i
n+1,β

i
n+1,∆λ

i
n+1} iteratively

Pi+1
n+1 = Pi

n+1 +∆Pi
n+1, ∆Pi

n+1 = −
[
R(Pi

n+1),P

]−1

R(Pi
n+1)

update the internal variables using Eqns. (131), (132)

compute the algorithmically consistent tangent modulus using Eqn. (147)

6. ENDIF

7. Reformulate time discrete governing balance equations to time discrete weak form,
Eqns. (151)–(157)

8. Solve for the infinite dimensional unknown un+1(x), using the finite element
method, Eqns. (158)–(180)

The term δD can be removed from the integral such that

δDT ·
{∫

B

BT
ε · σn+1 dV −

∫

∂B

NT
u · tn+1 dA−

∫

B

NT
u ·Υn+1 dV

}
= 0 , (172)

where it follows that if Eqn. (172) has to hold for all δD, then
∫

B

BT
ε · σn+1 dV −

∫

∂B

NT
u · tn+1 dA−

∫

B

NT
u ·Υn+1 dV = 0 . (173)

To this end, define

Rint(Dn+1) =

∫

B

BT
ε · σn+1 dV and Rext =

∫

∂B

NT
u · tn+1 dA+

∫

B

NT
u ·Υn+1 dV ,

(174)
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to be the vector of internal and external forces, respectively. Then, the non-linear equation
(173) can be solved using Newton-Raphson iteration scheme based on the linearisation

Lin
[
Rint(D

k
n+1)−Rext

]
= Rint(D

k
n+1)−Rext+[Rint(D

k
n+1),D ]

Dk
n+1

·[Dk+1
n+1−Dk

n+1] = 0 ,

(175)
which yields the update algorithm

Dk+1
n+1 = Dk

n+1 −
[
Rint(D

k
n+1),D

]−1
Rint(D

k
n+1) , (176)

where k denotes the iteration index, see also [95]. The linearisation is carried out until∥∥Rint(D
k+1
n+1)

∥∥ < TOL. The two material dependent terms in Eqn. (176) are Rint(Dn+1)
and Rint(Dn+1),D. Recall from Eqn. (172), the definition Rint(Dn+1)

Rint(Dn+1) =

∫

B

BT
ε · σn+1 dV = 0 , (177)

where σn+1 is the stress tensor derived in Eqn. (142). Likewise, the necessary iteration
tangent Rint(Dn+1),D can be expressed as

Rint(Dn+1),D =

∫

B

BT
ε · σn+1,ε · ε,D dV =

∫

B

BT
ε · Eep

n+1 ·Bε dV , (178)

where Eep is the algorithmic elastic-plastic tangent modulus tensor derived in Eqn. (147).
From a computational perspective, σn+1 and E

ep
n+1 are the two quantities that need to be

specified in the material routine, in addition to the update of internal variables.

Generally, Rint and Rint,D are computed element-wise by integration over the element
domain. The overall N e element force vectors and tangent matrices are then suitably
assembled to Rint and Rint,D such that

Rint(D
k
n+1) =

Ne∏

e=1

∫

B

Be
ε
T ·σn+1 dV and Rint(D

k
n+1),D =

Ne∏

e=1

∫

B

Be
ε
T ·Eep

n+1 ·Be
ε dV ,

(179)

where
Ne∏
e=1

is the assembly operator that suitably assembles the element quantities to

the global quantities based on the mapping between the elements and the global nodes.
Equation (179) is numerically integrated using Gauss integration where the integrands
are evaluated at specific Gauss points xe

l ∈ Be and a weighted sum with weights we
l as

Re
int =

ngauss∑

l=1

we
lB

e
ε
T · σn+1 dV and Re

int,D
=

ngauss∑

l=1

we
lB

e
ε
T · Eep

n+1 ·Be
ε dV . (180)

It should be remarked here that since σn+1 has a functional dependence on the set of
internal variables en+1, the values of en+1 and en are exclusively needed at the Gauss
points. As a consequence, the variables [ekn+1]

e

l and [ekn]
e

l are stored as local history variables
at each time step at N e × ngauss Gauss points. A summary of the algorithmic treatment
discussed so far is outlined in Box 4.
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3. Anisotropic elasticity

In this chapter, theory and numerics of anisotropic elasticity applicable to fibre-reinforced
composites are studied. In particular, an explicit form of the scalar-valued energetic po-
tential is proposed for the orthorhombic group C3 and the transversely isotropic group
C13, based on the concepts discussed in Chapter 2, Sections 2.3 and 2.4. For brevity,
attention is restricted only to the coordinate-free approach. A simplifying assumption
made at the outset is that fibres are systematically arranged inside the matrix, so that
mesoscopically the composite can be regarded as an anisotropic material. Additionally
fibres are assumed to be continuously distributed in the material, which enables the ap-
plication of continuum theories. A thorough discussion of the constitutive formulation
and numerical implementation of elasticity with a strong focus on fibre-reinforced com-
posites can be found in [96–100]. Different approaches for the constitutive description of
anisotropic elasticity at geometrically non-linear deformations are outlined in [101–103].
A detailed discussion of the pertinent topic and the relevant literature can also be found
in the monograph of Spencer [104]. Before proceeding to the subsequent developments,
the identities {

(•)⊗ (•)
}
ijkl

= (•)ij(•)kl ,{
(•)⊕ (•)

}
ijkl

= (•)ik(•)jl ,{
(•)⊖ (•)

}
ijkl

= (•)il(•)jk ,
(181)

are introduced to better comprehend the constitutive equations.

3.1. Orthorhombic symmetry group

As outlined in Section 2.3, the orthotropic symmetry group C3 is characterised by

C3 = {Qπ
a,Q

π
b} , (182)

in terms of two orthogonal rotation tensors Qπ
a andQπ

b which correspond to 180◦ rotations
around the axes a and b, respectively. In view of a coordinate-free formulation, it has
been proven in Section 2.3.2 that an anisotropic constitutive function can be expressed
equivalently as an isotropic function with an extended set of arguments denoted as struc-
tural tensors. Recall here that the orthotropic symmetry group is fully characterised by
a single second-order structural tensor M [64], written as

M = a⊗ a− b⊗ b with Q ⋆M = M ∀ Q ∈ C3 , (183)

which, together with the argument tensor ε, allows for the definition of a possible complete
and irreducible integrity basis. The representation theorem of general isotropic tensor
functions of several arguments is based on the concept of integrity basis, which defines
a minimum number of invariants for a particular set of arguments of the energy storage
function. In the present case, for two symmetric second-order tensors ε and M , an
irreducible integrity basis is given by

IC3
= {tr[ε], tr[ε2], tr[ε3], tr[Mε], tr[M 2ε], tr[Mε2], tr[M 2ε2]} , (184)

see [45]. Equation (184) can be transformed to the well known alternative integrity basis
for the orthotropic symmetry group, in terms of two structural tensors m1 and m2 as

ÎC3
= {tr[ε], tr[ε2], tr[ε3], tr[m1ε], tr[m2ε], tr[m1ε

2], tr[m2ε
2]} , (185)
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where m1−2 are obtained by the dyadic product of direction vectors with themselves such
that

m1 = a⊗ a with Q ⋆m1 = m1

m2 = b⊗ b with Q ⋆m1 = m2

}
∀ Q ∈ C3 . (186)

As it is well known that the direction vectors form an orthonormal basis, it follows that
the third directional vector can be linearly expressed in terms of the other two such that
a3 = a1×a2. Consequently, the third second-order structural tensor m3 can be expressed
in terms of the other two as m3 = 1 −m1 −m2, where

m3 = a3 ⊗ a3 with Q ⋆m3 = m3 ∀ Q ∈ C3 . (187)

Equations (186) and (187) facilitate for the definition of an isotropic scalar energetic
function as

ψ(Q ⋆ ε,Q ⋆m1,Q ⋆m2,Q ⋆m3) = ψ(ε,m1,m2,m3) ∀ Q ∈ O(3) . (188)

Using Eqns. (185) and (187), a new integrity basis is developed following [84], which yields
a unique and transparent representation of the scalar-valued energetic potential (188), the
associated stress and elasticity tensor. This basis is obtained by first reformulating the
basic invariants of the strain tensor as

tr[ε] = tr[m1ε] + tr[m2ε] + tr[m3ε] and

tr[ε2] = tr[m1ε
2] + tr[m2ε

2] + tr[m3ε
2]

. (189)

Secondly, the cubic invariant tr[ε3] is replaced by det[ε] using the Cayley-Hamilton’s
theorem [75]. Finally, setting

m12 = (a⊗ b+ b⊗ a), m13 = (a⊗ c+ c⊗ a) and m23 = (b⊗ c+ c⊗ b) , (190)

and following the argument in [84] where the identity

tr[miε
2]− tr 2[miε] = tr 2[mijε] + tr 2[mikε] , (191)

is valid for every even and odd permutation of (i, j, k), the new integrity basis is obtained
by insertion of Eqns. (189) and (190) into Eqn. (185), while taking into account (191) as

ĨC3
= {tr[m1ε], tr[m2ε], tr[m3ε], tr

2[m12ε], tr
2[m13ε], tr

2[m23ε], det[ε]} . (192)

Scalar-valued functions can be constructed by taking combinations of the invariants de-
fined above. In particular, a quadratic form of the energetic function can be readily
written with the aid of Eqn. (192) as

ψ =
µ1

2
I21 +

µ2

2
I22 +

µ3

2
I23 + µ4I1I2 + µ5I1I3 + µ6I2I3 +

µ7

2
I4 +

µ8

2
I5 +

µ9

2
I6 , (193)

where I1−6 are the elements of the integrity basis ĨC3
. Given the potential (193), the

second-order stress tensor σ associated with the potential is given by the chain rule as

σ = ψ,ε =
6∑

i=1

ψ,Ii Ii,ε , (194)
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where the derivatives ψ,Ii read

ψ,I1 = µ1I1 + µ4I2 + µ5I3 , ψ,I2 = µ2I2 + µ4I1 + µ6I3 , ψ,I3 = µ3I3 + µ5I1 + µ6I2 ,

ψ,I4 =
µ7

2
, ψ,I5 =

µ8

2
and ψ,I6 =

µ9

2
,

(195)
and the tensor generators I(1−6),ε are given by

I1,ε = m1 , I2,ε = m2 , I3,ε = m3 ,

I4,ε = 2 tr[m12ε]m12 , I5,ε = 2 tr[m13ε]m13 and I6,ε = 2 tr[m23ε]m23 .
(196)

Insertion of Eqns. (195) and (196) into Eqn. (194) yields the stress tensor as

σ=µ1I1m1 + µ2I2m2 + µ3I3m3

+(µ4I2 + µ5I3)m1 + (µ4I1 + µ6I3)m2 + (µ5I1 + µ6I2)m3

+µ7 tr[m12ε]m12 + µ8 tr[m13ε]m13 + µ9 tr[m23ε]m23

. (197)

The fourth-order elasticity tensor can be expressed with the aid of Eqn. (90) as

E = ψ,εε =

6∑

i=1

6∑

j=1

ψ,Ii Ii,εε +ψ,IiIj Ii,ε ⊗Ij ,ε , (198)

where the first derivatives in the above equation namely ψ,Ii and Ii,ε are already defined
in Eqns. (195) and (196). The non-zero second derivatives of the energetic potential read

ψ,I1I1=µ1 , ψ,I1I2 = µ4 , ψ,I1I3 = µ5 ,

ψ,I2I1=µ4 , ψ,I2I2 = µ2 , ψ,I2I3 = µ6 ,

ψ,I3I1=µ5 , ψ,I3I2 = µ6 , ψ,I3I3 = µ3 .

(199)

Likewise, the non-zero second derivatives of the tensor generators read

I4,εε = 2m12 ⊗m12 , I5,εε = 2m13 ⊗m13 , I6,εε = 2m23 ⊗m23 . (200)

Substitution of Eqns. (199), (200) and (195) into Eqn. (198) yields the closed form ex-
pression of the elasticity tensor as

E=µ1m1 ⊗m1 + µ2m2 ⊗m2 + µ3m3 ⊗m3 + µ4(m1 ⊗m2 +m2 ⊗m1)

+µ5(m1 ⊗m3 +m3 ⊗m1) + µ6(m2 ⊗m3 +m3 ⊗m2)

+µ7m12 ⊗m12 + µ8m13 ⊗m13 + µ9m23 ⊗m23

, (201)

where, if a coordinate system is chosen such that it is aligned to the principal axes of
orthotropy {a, b, c}, namely that a = [1, 0, 0]T , b = [0, 1, 0]T and c = [0, 0, 1]T , the
fourth-order tensor E appears in a simple coordinate form

[E] =




µ1 µ4 µ5 0 0 0

µ2 µ6 0 0 0

µ3 0 0 0

µ7 0 0

sym . µ8 0

µ9




, (202)
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in terms of nine material parameters µ1−9. Alternatively, the elasticity tensor of an
orthotropic material can also be defined as the inverse of the compliance tensor, in terms
of so-called the engineering constants. Following [105–107], the fourth-order elasticity
tensor of an orthotropic material reads

E = C

−1 with [C] =




1

E1
−ν12
E1

−ν13
E1

0 0 0

1

E2
−ν23
E2

0 0 0

1

E3

0 0 0

1

G12
0 0

sym .
1

G13

0

1

G23




, (203)

where Ei denotes the Young’s modulus along the axis i, Gij denotes the shear modulus
in the direction j whose normal is in the direction i, and νij is the Poisson’s ratio that
corresponds to a contraction in the direction j for an applied extension in the direction
i. To this end, inversion of the compliance matrix in Eqn. (203) and comparison of the
resulting C−1 with the elasticity tensor in Eqn. (202) yields the nine material parameters
µ1−9 in terms of the engineering constants as

µ1 =
E2

1(E3ν
2
23 −E2)

E1E3ν
2
23 + E2E3(2ν12ν13ν23 + ν213) + ν212E

2
2 − E1E2

,

µ2 =
E2

2(E3ν
2
13 −E1)

E1E3ν223 + E2E3(2ν12ν13ν23 + ν213) + ν212E
2
2 − E1E2

,

µ3 =
E2E3(E2ν

2
12 −E1)

E1E3ν
2
23 + E2E3(2ν12ν13ν23 + ν213) + ν212E

2
2 − E1E2

,

µ4 = − E1E2(E2ν12 + E3ν13ν23)

E1E3ν223 + E2E3(2ν12ν13ν23 + ν213) + ν212E
2
2 −E1E2

,

µ5 = − E1E2E3(ν13 + ν12ν23)

E1E3ν
2
23 + E2E3(2ν12ν13ν23 + ν213) + ν212E

2
2 −E1E2

,

µ6 = − E2E3(E1ν23 + E2ν12ν13)

E1E3ν223 + E2E3(2ν12ν13ν23 + ν213) + ν212E
2
2 −E1E2

,

µ7 = G12 , µ8 = G13 and µ9 = G23 .

(204)

The framework of coordinate free approach to orthotropic elasticity outlined so far is
summarised in Box 5.

3.2. Transversely isotropic symmetry group

This subsection is devoted to the coordinate-free representation of transversely isotropic
elasticity. Common examples of transversely isotropic materials are biological tissues,
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Box 5: Orthotropic elasticity–coordinate free approach.

1. Given is the strain tensor ε, and the structural tensors m1 = a⊗ a, m2 = b⊗ b

2. Determine m3 = c⊗ c with c = a× b

3. Compute

m12 = (a⊗ b+ b⊗ a), m13 = (a⊗ c+ c⊗ a) and m23 = (b⊗ c + c⊗ b)

4. Compute the invariants

I1 = tr[m1ε] , I2 = tr[m2ε] , I3 = tr[m3ε] ,

I4 = tr 2[m12ε] , I5 = tr 2[m13ε] , I6 = tr 2[m23ε] and I7 = det[ε]

5. Compute the stress tensor

σ =
6∑

i=1

ψ,Ii Ii,ε

6. Compute the elasticity tensor

E =
6∑

i=1

6∑

j=1

ψ,Ii Ii,εε +ψ,IiIj Ii,ε ⊗Ij ,ε

carbon nano tubes and unidirectional fibre-reinforced composites, to name a few. A uni-
directional fibre-reinforced composite is characterised by a material reinforced by fibres
in only one direction, e.g. polymer matrix reinforced with carbon/glass fibres, metal ma-
trix reinforced with boron fibres. The micro-structure of a transversely isotropic material
possesses a single well-defined preferred direction denoted by the unit vector a, such that
‖a‖ = 1. This is the key information that helps to construct the symmetry group of
a transversely isotropic material. As outlined in Section 2.3, the symmetry group of a
transversely isotropic material is given by

C13 = {Qα
c ,Q

π
a} with 0 ≤ α ≤ 2π , (205)

which can be equivalently expressed following [48] as

C13 = {Q‖a,Q
π
⊥a} , (206)

where Q‖a are arbitrary rotations relative to the vector a and Qπ
⊥a are rotations about

a vector perpendicular to a by an angle π. As mentioned in the previous subsection, the
key idea of coordinate-free representation of anisotropic materials is to introduce isotropic
tensor functions with an extended set of arguments (structural tensors), such that they
remain invariant under arbitrary rotations Q ∈ O(3). For the case of transverse isotropy,
there exists a single second-order structural tensor

m = a⊗ a with Q ⋆m = m ∀ Q ∈ C13 , (207)
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which allows to express any transversely isotropic scalar potential equivalently as an
isotropic function as

ψ(Q ⋆ ε,Q ⋆m) = ψ(ε,m) ∀ Q ∈ O(3) . (208)

Analogous to the previous case, for two symmetric second-order tensors ε and m, an
irreducible integrity basis is given by

IC13
= {tr[ε], tr[ε2], tr[ε3], tr[m], tr[m2], tr[m3], tr[mε], tr[mε2], tr[m2ε], tr[m2ε2]} ,

(209)
see [62,63]. Considering the fact that the first-order structural vector a is of unit length,
it follows that every power of the structural tensor is itself (m3 = m2 = m), yielding

tr[m3] = tr[m2] = tr[m] . (210)

Further, the following equalities hold true since m is a constant

tr[m2ε] = tr[mε] and tr[m2ε2] = tr[mε2] . (211)

Thus, from the ten invariants in Eqn. (209), only five are needed for the representation
of transverse isotropy as a result of Eqns. (210)–(211). Consequently, the irreducible
integrity basis (209) reformulates to

ÎC13
= {tr[ε], tr[ε2], tr[ε3], tr[mε], tr[mε2]} . (212)

Similar to Eqn. (189), the basic invariants of the strain tensor ε are reformulated as

tr[ε] = tr[mε] + tr[(1 −m)ε] and
1

2
tr[ε2] = tr[mε2] + tr[(

1

2
1 −m)ε2] . (213)

Substituting Eqn. (213) in (212) and replacing tr[ε3] by det[ε] using the Cayley-Hamilton’s
theorem, the new integrity basis reads

ĨC13
= {tr[mε], tr[(1 −m)ε], tr[mε2], tr[(

1

2
1 −m)ε2], det[ε]} . (214)

The scalar energetic potential can now be constructed using combinations of the invariants
defined above. In particular, one may write

ψ =
µ1

2
I21 +

µ2

2
I22 + µ3I1I2 + 2µ4I3 + 2µ5I4 , (215)

where µ1−5 are five independent Lamé parameters required to describe the transversely
isotropic response and I1−4 denote the elements of the integrity basis ĨC13

. The stress
associated with the potential ψ is defined analogous to Eqn. (194) as

σ = ψ,ε =
4∑

i=1

ψ,Ii Ii,ε . (216)

The derivatives of ψ with respect to I1−4 read

ψ,I1 = µ1I1 + µ3I2 , ψ,I2 = µ2I2 + µ3I1 , ψ,I3 = 2µ4 and ψ,I4 = 2µ5 . (217)



50 Anisotropic elasticity

Likewise, the tensor generators I(1−4),ε are given by

I1,ε = m , I2,ε = 1 −m , I3,ε = mε+ εm and I4,ε = ε− (mε+ εm) . (218)

Insertion of Eqns. (217) and (218) into Eqn. (216) yields the stress tensor as

σ = (µ1I1+µ3I2)m+(µ2I2+µ3I1)(1−m)+2µ4{mε+εm}+2µ5{ε−[mε+εm]} . (219)
The fourth-order elasticity tensor can be expressed as

E = ψ,εε =
4∑

i=1

4∑

j=1

ψ,Ii Ii,εε +ψ,IiIj Ii,ε ⊗Ij ,ε . (220)

The non-zero second derivatives of the energetic potential in Eqn. (220) read

ψ,I1I1 = µ1 , ψ,I1I2 = µ3 , ψ,I2I1 = µ3 and ψ,I2I2 = µ2 , (221)

and the non-zero second derivatives of the tensor generators take the form

I3,εε =
{
(1 ⊕m) + (1 ⊖m) + (m⊕ 1 ) + (m⊖ 1 )

}
,

I4,εε =
{
(1 ⊕ 1 ) + (1 ⊖ 1 )− (1 ⊕m)− (1 ⊖m)− (m⊕ 1 )− (m⊖ 1 )

}
.

(222)

Substitution of Eqns. (221), (222) and (217) into Eqn. (220) yields the closed form ex-
pression of the elasticity tensor as

E=µ1m⊗m+ µ2(1 −m)⊗ (1 −m)

+µ3

{
m⊗ (1 −m) + (1 −m)⊗m

}

+µ4

{
(1 ⊕m) + (1 ⊖m) + (m⊕ 1 ) + (m⊖ 1 )

}

+µ5

{
(1 ⊕ 1 ) + (1 ⊖ 1 )− (1 ⊕m)− (1 ⊖m)− (m⊕ 1 )− (m⊖ 1 )

}
, (223)

where, if the preferred direction a is chosen such that a = [1, 0, 0]T , the fourth-order
tensor E appears in a simple coordinate form

[E] =




µ1 + 4µ4 − 2µ5 µ3 µ3 0 0 0

µ2 + 2µ5 µ2 0 0 0

µ2 + 2µ5 0 0 0

µ4 0 0

sym . µ4 0

µ5




, (224)

in terms of five material parameters µ1−5. Analogous to the case of orthotropic elasticity,
the Lamé parameters can be expressed in terms of engineering constants as

µ1 = − E2
1(4G23 −E2)

E1E2 + 4G23(ν212E2 − E1)
− 4G12 + 2G23 ,

µ2 = −2E1E2G23 + 4G2
23(ν

2
12E2 − E1)

E1E2 + 4G23(ν212E2 − E1)
,

µ3 = − 2ν12E1E2G23

E1E2 + 4G23(ν
2
12E2 − E1)

,

µ4 = G12 , µ5 = G23 .

(225)
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Box 6: Transversely isotropic elasticity–coordinate free approach.

1. Given is the strain tensor ε, and the structural tensor m = a⊗ a

2. Compute the invariants

I1 = tr[mε] , I2 = tr[(1 −m)ε] , I3 = tr[mε2] ,

I4 = tr[(
1

2
1 −m)ε2] and I5 = det[ε]

3. Compute the stress tensor

σ =

4∑

i=1

ψ,Ii Ii,ε

4. Compute the elasticity tensor

E =

4∑

i=1

4∑

j=1

ψ,Ii Ii,εε +ψ,IiIj Ii,ε ⊗Ij ,ε

where the equalities
E3 = E2

G13 = G12

ν13 = ν12

ν23 =
E2

2G23
− 1

, (226)

which hold true for a transversely isotropic material are taken into account in Eqn. (203).
A summary of the modelling framework for transversely isotropic elasticity is given in
Box 6.
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4. Anisotropic plasticity. Isotropic dissipative response functions

The objective of this chapter is to investigate in detail the effect of using isotropic plastic
response functions in modelling the non-linear behaviour of fibre-reinforced composites
on the meso level. Based on the elements of infinitesimal plasticity theory introduced in
Chapter 2, two models chosen from the literature are presented to simulate the non-
linearities exhibited by the composite. The first model is a modified Drucker-Prager
(MDPR) model, formulated following [27], in which the classical Drucker-Prager-type
pressure-dependent isotropic yield criterion is modified for use with fibre-reinforced com-
posites. This is followed by a second model, which is a modified version of the model
proposed by Car, Oller and Oñate [23, 24] (MCOO). It assumes the existence of a ficti-
tious isotropic space where a mapped problem is solved. The numerical implementation
of both the models is briefly discussed next. A key aspect is the qualitative and quan-
titative investigation of the aforementioned models by comparison to experimental data,
which provides valuable insight towards the constitutive formulation of anisotropic plas-
ticity that appears in the following chapter. The shortcomings of these models are also
discussed in detail by representative numerical simulations in Chapter 7.

Remark 5. Discussions in this chapter are restricted only to the transversely isotropic
symmetry group.

Starting from Eqns. (93) and (94), an explicit form of the decoupled scalar energetic
potential reads

ψ(ε− εp, ξ,α) =
1

2
‖ε− εp‖2

E

+
h

n+ 1
(ξ̄ + ξ)n+1 +

1

2
‖α‖2

H

, (227)

where ‖ε− εp‖2
E

= (ε − εp) : E : (ε − εp) is the norm of the elastic strain (ε − εp) with
respect to a symmetric and anisotropic fourth-order elasticity tensor E of the form (224).
The parameter h denotes the hardening modulus, n > 0 is the hardening exponent and
ξ̄ is a parameter describing prestrain, which is necessary for numerical reasons and is
set to a very low value such that it has negligible effect on the results. The expression
‖α‖2

H

= α : H : α, denotes the norm of the kinematic hardening variable α with respect
to a symmetric and anisotropic fourth-order kinematic hardening tensor H of the form
similar to (224). The stress tensor and driving forces associated with the potential ψ read

σ = +ψ,(ε−εp) = E : (ε− εp) ,

κ = −ψp
iso(ξ),ξ = −h(ξ̄ + ξ)n ,

β = −ψp
kin(α),α = −H : α .

(228)

As a main characteristic of elastoplastic material response, an elastic domain S is assumed
which is defined by

S = {(σ, κ,β) ∈ R6 × R× R6|χ(σ, κ,β) ≤ 0} , (229)

where χ = χ(σ, κ,β) is a yield function of the generalised Drucker-Prager-type given by

χ = κp+ ‖Σ‖
X

−
√

2

3
[y0 − κ] +

ζ

2
‖β‖2

X

with Σ = σ + β , (230)

where κ is the coefficient of the hydrostatic pressure, p = 1
3
tr[Σ] is the hydrostatic

pressure, ‖Σ‖
X

=
√
Σ : X : Σ is the norm of the relative stress tensor Σ with respect to a

symmetric, anisotropic and deviatoric fourth-order Hill-type tensor X, and y0 is the initial
threshold yield stress. The parameter ζ controls the non-linearity of kinematic hardening.
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4.1. Modified Drucker-Prager model

In this section, the plastic response functions for the associative and non-associative
MDPR model are outlined. The yield function and the plastic flow potential formulated
subsequently, are based on the definition of a plasticity inducing stress which is obtained
in an additive format from the overall stress, hydrostatic pressure and the deviatoric fibre
stress for a given fibre direction m, see [31,32,108]. This is specified to the present model
by setting the fourth-order Hill-type tensor X in Eqn. (230) as

X̃ = (1 ⊕ 1 ) + (1 ⊖ 1 )− 1

3
(1 ⊗ 1 )− 3

2
(m′ ⊗m′) with m′ = m− 1

3
1 , (231)

with the following characteristics

X̃ : 1 = 0 and X̃ : m = 0 , (232)

see [84] for details. Additionally, let p̃ denote the hydrostatic pressure such that

p̃ =
1

3
tr[(1 −m)Σ] . (233)

Appealing to Eqns. (231) and (233), the yield function (230) reformulates to

χ = κp̃+ ‖Σ‖
X̃

−
√

2

3
[y0 − κ] +

ζ

2
‖β‖2

X̃

. (234)

Taking into account Eqns. (106) and (234), the flow rule takes the form

ε̇p = λ

{
κ

3
(1 −m) +

X̃ : Σ

‖Σ‖
X̃

}
= λ

{
κ

3
(1 −m) + ñ

}
, (235)

where ñ is the direction of the plastic flow. It follows that the rate equations for ξ and α

are given by

ξ̇ = λ

√
2

3
and α̇ = λ

{
κ

3
(1 −m) + ñ+ ζX̃ : β

}
. (236)

For the case of non-associative plasticity, the corresponding flow rule and rate equations
for the hardening variables can be obtained in a similar manner. In particular, a deviatoric
flow potential can be defined following [109] as

φ = ‖Σ‖
X̃

−
√

2

3
[y0 − κ] +

ζ

2
‖β‖2

X̃

, (237)

based on which the evolution equations take the form

ε̇p = λ
X̃ : Σ

‖Σ‖
X̃

= λñ , (238)

and

ξ̇ = λ

√
2

3
and α̇ = λ{ñ+ ζX̃ : β} . (239)

The next computational aspect is the integration of rate equations (235)–(236) and (238)–
(239), subject to the constraint posed by the yield condition. The general return method
outlined in Chapter 2 is used here.
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4.2. Modified Car, Oller and Oñate model

This is a material model for fibre-reinforced composites based on the work of Car, Oller
and Oñate [23,24]. It assumes the existence of a fictitious isotropic space where a mapped
problem is solved. The real and fictitious spaces are related by means of fourth-order trans-
formation tensors which are formulated based on the available information of strengths in
the respective spaces. The real anisotropic space is regarded as a homogenised composite
material, while the fictitious isotropic space characterises the matrix material to which
plasticity is usually restricted.

4.2.1. Space transformation: real anisotropic to fictitious isotropic

Let Y and Y each represent a second-order yield strength tensor for the real anisotropic
space and so-called the fictitious isotropic space, respectively. To this end, a fourth-order
space transformation tensor for the stress is proposed as

A =
1

2

{
(Y ⊕Y−1) + (Y−1 ⊕Y)

}
, (240)

which satisfies the major and minor symmetries

Aijkl = Ajikl = Aijlk = Aklij . (241)

The fourth-order tensor A relates the stress tensor and the back-stress tensor in the real
and fictitious spaces as

σ = A : σ and β = A : β , (242)

with σ denoting the stress tensor in the real anisotropic space, defined in Eqn. (219).
It should be noted here that Car, Oller and Oñate [23, 24] defined the transformation
tensor as A = Y ⊗Y−1, but it is slightly modified in the present work to get a compact
representation of the transformation tensor. In what follows, the quantities (·) and (·)
relate to the real anisotropic and the fictitious isotropic space, respectively. Analogous to
Eqn. (242), the relationship between the elastic strain in both spaces is defined by

(ε− εp) = B : (ε− εp) , (243)

which implies the non-uniqueness of elastic strain during space transformation. The
fourth-order strain transformation tensor B is obtained with the aid of Eqn. (242) as

B = E

−1
: A : E , (244)

where E and E are the elastic modulus tensors in the real anisotropic and fictitious
isotropic spaces, respectively. The fourth-order tensor E includes the actual properties of
the material (i.e. Eqn. (224)), whereas the choice of E can be arbitrary [23, 24].

In the following subsection, the governing constitutive equations of the plastic deformation
process are specified in the fictitious isotropic space. Note that it is equivalent to formulate
the model in either of the two spaces because of the invariance of the dissipation postulate
[23]. Due to the advantages of the existing algorithms for isotropy, modelling in the
fictitious isotropic space is considered.
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4.2.2. Dissipative response functions

Starting from Eqn. (230), the yield function in the fictitious isotropic space is given by

χ = κp +
∥∥Σ
∥∥
X

−
√

2

3
[y0 − κ] +

ζ

2
‖β‖2

X

with Σ = σ + β , (245)

where p = 1
3
tr[Σ] is the hydrostatic pressure, and X is the symmetric and isotropic

fourth-order deviatoric projection tensor given by

X = (1 ⊕ 1 ) + (1 ⊖ 1 )− 1

3
(1 ⊗ 1 ) . (246)

The flow rule and rate equations of the hardening variables within the isotropic space are
specified analogous to Eqn. (235) as

ε̇
p
= λ

{
κ

3
1 +

X : Σ∥∥Σ
∥∥
X

}
= λ

{
κ

3
1 + n

}
, (247)

and

ξ̇ = λ

√
2

3
and α̇ = λ

{
κ

3
1 + n+ ζX : β

}
. (248)

Furthermore, a separate deviatoric flow potential that governs the evolution of plastic
variables within the framework of non-associative plasticity is defined as

φ =
∥∥Σ
∥∥
X

−
√

2

3
[y0 − κ] +

ζ

2

∥∥β
∥∥2
X

, (249)

based on which the evolution equations (247) and (248) reformulate respectively to

ε̇
p
= λn , (250)

and

ξ̇ = λ

√
2

3
and α̇ = λ{n+ ζX : β} , (251)

for the non-associative flow response. The set of equations (245)–(251) are solved by a gen-
eral elastic predictor-plastic corrector algorithm described in [66,92], also in Chapter 2,
which gives the consistent update of the stress tensor, plastic strain tensor, hardening
variables and the algorithmically consistent elastic-plastic tangent modulus.

4.2.3. Space transformation: fictitious isotropic to real anisotropic

With the elastic-plastic stress tensor and tangent modulus in the fictitious isotropic space
at hand, the corresponding real anisotropic counterparts are obtained by a straightforward
transformation as follows

σep = A

−1 : σep and E

ep = A

−1 : E
ep

: B . (252)

To describe the elastic-plastic deformation of unidirectional fibre-reinforced composite
materials, the model proposed in [23,24] requires the following material properties in the
respective spaces:
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Table 3: Material parameters for the MDPR models.

No. Name Par. Value Unit

1. Longitudinal Young’s modulus E1 130000 [MPa]
2. Transverse Young’s modulus E2 11000 [MPa]
3. Longitudinal shear modulus G12 5800 [MPa]
4. Transverse shear modulus G23 3720 [MPa]
5. Poisson’s ratio ν12 0.306 [−]

6. Coefficient of hydrostatic pressure κ

{
0.9497a

1.105b
[−]

7. Initial yield stress y0 10.6 [MPa]
8. Hardening modulus h 237.9 [MPa]
10. Pre-strain ξ̄ 1×10−12 [−]
11. Hardening exponent n 0.249 [−]

aAssociative flow
bNon-associative flow

Table 4: Material parameters for the MCOO models.

No. Name Par. Value Unit

1. Longitudinal Young’s modulus E1 130000 [MPa]
2. Transverse Young’s modulus E2 11000 [MPa]
3. Longitudinal shear modulus G12 5800 [MPa]
4. Transverse shear modulus G23 3720 [MPa]
5. Poisson’s ratio ν12 0.306 [−]

6. Anisotropic space yield strengths

{
y11

y22

{
≈ ∞
158.6

[MPa]

7. Isotropic space yield strength yiso 158.6 [MPa]

8. Coefficient of hydrostatic pressure κ

{
1.931a

1.917b
[−]

9. Initial yield stress y0 20.5 [MPa]
10. Hardening modulus h 415.7 [MPa]
11. Pre-strain ξ̄ 1×10−12 [−]
12. Hardening exponent n 0.241 [−]

aAssociative flow
bNon-associative flow

• Real anisotropic space:

– elastic parameters µ1−5,

– yield strength tensor Y.

• Fictitious isotropic space:

– plastic parameters κ, y0, h, α and n,

– yield strength tensor Y.



4.3 Discussion 57

Following [109], three different constitutive laws for the MDPR and MCOO models are
implemented, namely

1. MDPR-a/MCOO-a: pressure-independent model, represented by Eqns. (227) and[
(234)/(245)

]∣∣
κ=0

,

2. MDPR-b/MCOO-b: associative pressure-dependent model, obtained by Eqns. (227)
and (234)/(245) ,

3. MDPR-c/MCOO-c: non-associative pressure-dependent model, given by
Eqns. (227), (234)/(245) and (237)/(249) .

4.3. Discussion

To illustrate the predictive capability of these models, the inelastic behaviour of a certain
composite which has carbon fibres reinforced in a polymer matrix (AS4/PEEK) is con-
sidered. The pertinent experimental investigations are documented in [7]. The material
parameters used in the numerical simulations are listed in Tables 3–4, and the elastic
material parameters of the fictitious isotropic space are chosen to be E = 4100 MPa and
ν12 = 0.356. At first, predictions of the two aforementioned meso models are compared
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Figure 17: Predictions for standard load cases. Comparison of the experimental [7], and
the two meso models responses for (a) in-plane shear and (b) transverse compression load.
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Figure 18: Predictions for combined loads. Comparison of the experimental [7], and the
two meso models for combined shear-compression loads with (a) associative flow response and
(b) non-associative flow response.
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with that of the experiment [7] for the two standard test cases, namely the in-plane and
transverse compression test case, as shown in Fig. 17. Though both the models reproduce
the shear response accurately, as seen in Fig. 17 (a), the pressure-independent versions of
these models underestimate the transverse compressive stress. It is clear that to overcome
this deficiency, the constitutive formulation should be pressure-dependent, evident by the
pressure-dependent models predictions in Fig. 17 (b).

Figures 18 (a) and (b) show a comparison of the associative and non-associative model
predictions with that of the experimental results [7] respectively, for proportional loading
where compression and shear stress are applied in proportion with each other. Three
different proportionality factors are considered for the analyses such that −σ22/τ12 =
{0, 0.98, 1, 96}. It can be seen that there is an observable deviation between models
predictions and the biaxial experimental response. Additionally, the experimental results
show that the overall material response first stiffens and then subsequently softens for
increasing proportionality factors. This trend is also not reproduced by the two models.

The experimental investigations are affirmative to the fact that to realistically predict the
non-linear behaviour of composite materials for different load combinations, the constitu-
tive response must be pressure sensitive. Additionally, plastic response functions that are
pressure-dependent but isotropic, need to be either mathematically manipulated [110,111]
or extended to anisotropic forms to reproduce the experimentally observed biaxial re-
sponse. Clearly, the stress tensor should be decomposed not just into volumetric and
deviatoric components, but also into the respective normal and shear modes associated
with the symmetry group. Only then can the experimental biaxial response be captured
accurately on the meso scale. Furthermore, an argument in [112] suggests that a non-
associative flow rule must be considered in order to eliminate the physical inconsistency
caused by the associative flow rule under shear dominated loads. This aspect is examined
in detail with the aid of representative numerical simulations appearing in Chapter 7.
Recent studies have also shown that polymeric composites are rate sensitive [7], and
exhibit kinematic hardening [113] for cyclic loads.

Based on these observations, a constitutive formulation of anisotropic plasticity is de-
veloped in the next chapter that overcomes the observed deficiencies of using isotropic
dissipative response functions.
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tions

This chapter is concerned with the formulation and numerical implementation of plasticity
and viscoplasticity for fibre-reinforced composites from a continuum perspective. In this
context, physically motivated, explicit forms of the energetic and dissipative response
functions are proposed for the orthorhombic C3 and transversely isotropic C13 symmetry
groups, based on the concepts discussed in Chapters 2–3. The proposed formulations
account for anisotropic behaviour in the stress response, yield condition, flow rules and
the hardening laws.

This chapter is organised as follows: energetic response functions for the C3 and C13

symmetry groups are formulated in Section 5.1. The mathematical structure of a com-
bined non-linear hardening applicable to these symmetry groups is discussed. These
material symmetry groups impose certain restrictions on the material response, which are
taken into account by choosing a simple tensor basis to generate the constitutive equa-
tions. Although developments are restricted to C3 and C13 symmetry groups, they can
be applied to other selected symmetry groups in a straightforward manner. Dissipative
response functions for the aforementioned symmetry groups are formulated in the fol-
lowing section. A decoupled representation of the stress tensor in terms of hydrostatic
pressure, fibre stress and the shear stress, originally introduced by Spencer [32], facilitates
physically motivated modelling in this work. Additionally, non-quadratic yield functions
are chosen so that the invariants are of the same order. A rate-independent setting is
first considered and the models are constitutively framed within the associative and non-
associative plasticity. The framework is eventually extended for a rate-dependent setting
following conceptually [48,84]. Finally in Section 5.4, a finite element oriented algorithmic
treatment of the models is provided where the resulting differential/algebraic equations
are solved using an integration scheme. Specifically, the governing equations are solved
using a predictor-corrector algorithm which imposes the constraint posed by the yield
condition [66, 76].

At the outset, it is assumed that the anisotropy does not evolve during the course of
plastic deformation. This assumption greatly simplifies the constitutive developments
and is reasonably adequate for the geometrically linear framework as there is no change
in the orientation of the individual grains (fibres) at small deformations. Furthermore,
material properties in the two principal directions are assumed to be identical for the C3

symmetry group.

5.1. Energetic response functions

Recall here from Eqn. (91) the additive decomposition of the overall strain tensor

ε = εe + εp , (253)

into elastic and plastic parts respectively, where the latter one remains post stress relax-
ation [114]. With reference to Eqns. (92)–(94), define

ψ = ψ(ε− εp, ξ,α) , (254)

to be a general form of the scalar energetic potential which has functional dependence
on a suitable set e = {εp, ξ,α} of internal variables. One of the underlying objectives of
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this chapter is to formulate an explicit form of Eqn. (254) as an isotropic scalar-valued
function by extending the set of arguments such that

ψ(Q ⋆ (ε− εp),Q ⋆ ξ,Q ⋆α,Q ⋆M) = ψ(ε− εp, ξ,α,M) ∀ Q ∈ O(3) , (255)

where the invariance of the structural tensor for a given symmetry group is already as-
sumed, i.e. Q ⋆M = M ∀ Q ∈ C . Thus, a particular class of anisotropy is solely
determined by the material symmetry group of the structural tensors.

5.1.1. Orthorhombic symmetry group

Appealing toChapter 3, the integrity basis to describe the elastic stored energy is defined
analogous to Eqn. (192) as

ĨC3
= {tr[m1(ε− εp)], tr[m2(ε− εp)], tr[m3(ε− εp)], tr 2[m12(ε− εp)],

tr 2[m13(ε− εp)], tr 2[m23(ε− εp)], det[(ε− εp)]} .
(256)

Due to the assumption of a decoupled energetic potential, the integrity basis to describe
the plastic part of the stored energy can be defined analogous to Eqn. (256) as

K̃C3
= {tr[m1α], tr[m2α], tr[m3α], tr 2[m12α], tr 2[m13α], tr 2[m23α], det[α]} . (257)

With Eqns. (256)–(257) at hand, a decoupled form of the scalar energetic potential (94)
is given by

ψ(ε− εp, ξ,α,m1,m2,m3)=ψ
e(ε− εp,m1,m2,m3) + ψp

iso(ξ) + ψp
kin(α,m1,m2,m3)

=ψe(I1, · · · , I6) + ψp
iso(ξ) + ψp

kin(K1, · · · , K6)
,

(258)
where I1−6 and K1−6 are the first six elements of the integrity bases ĨC3

and K̃C3
, respec-

tively. The individual energetic contributions take the explicit form

ψe(I1, · · · , I6)=
µ1

2
I21 +

µ2

2
I22 +

µ3

2
I23 + µ4I1I2 + µ5I1I3 + µ6I2I3

+
µ7

2
I4 +

µ8

2
I5 +

µ9

2
I6

ψp
iso(ξ)=

h

n+ 1
(ξ̄ + ξ)n+1

ψp
kin(K1, · · · , K6)=

ϑ1
2
K2

1 +
ϑ2
2
K2

2 +
ϑ3
2
K2

3 + ϑ4K1K2 + ϑ5K1K3 + ϑ6K2K3

+
ϑ7
2
K4 +

ϑ8
2
K5 +

ϑ9
2
K6

, (259)

where a quadratic and linear relation is used to describe the elastic and kinematic hard-
ening parts of the energetic potentials. Power law based hardening represents the non-
linearity in the isotropic hardening part of the energetic potential. Note that the non-
linearity in kinematic hardening is taken into account by plastic response functions, as
seen subsequently. The material parameters ϑ1−9 are associated with kinematic harden-
ing. Taking into account the representation (259), the reduced dissipation inequality can
be evaluated in line with Eqn. (95) as

D
red = −ψ,e ·ė = −ψ,εp : ε̇p − ψ,ξ ξ̇ − ψ,α : α̇ ≥ 0 , (260)
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which leads to the definition of the stress tensor and driving forces associated with the
potential (259) as

σ = +ψe(I1, · · · , I6),(ε−εp)=
6∑

i=1

ψe(I1, · · · , I6),Ii Ii,(ε−εp)

κ = −ψp
iso(ξ),ξ

β = −ψp
kin(K1, · · · , K6),α= −

6∑

i=1

ψp
kin(K1, · · · , K6),Ki

Ki,α

, (261)

where the individual terms can be explicitly expressed based on Eqns. (195)–(196) as

σ=µ1I1m1 + µ2I2m2 + µ3I3m3

+(µ4I2 + µ5I3)m1 + (µ4I1 + µ6I3)m2 + (µ5I1 + µ6I2)m3

+µ7 tr[m12(ε− εp)]m12 + µ8 tr[m13(ε− εp)]m13 + µ9 tr[m23(ε− εp)]m23

κ=−h(ξ̄ + ξ)n

β=−{ϑ1K1m1 + ϑ2K2m2 + ϑ3K3m3

+(ϑ4K2 + ϑ5K3)m1 + (ϑ4K1 + ϑ6K3)m2 + (ϑ5K1 + ϑ6K2)m3

+ϑ7 tr[m12α]m12 + ϑ8 tr[m13α]m13 + ϑ9 tr[m23α]m23}

. (262)

Letting f = −ψ,e = {σ, κ,β} be the set of conjugate thermodynamic driving forces which
are dual to the set of internal variables, Eqn. (260) can be expressed in a compact form
analogous to Eqn. (97).

The fourth-order elasticity tensor, isotropic hardening modulus and the fourth-order kine-
matic hardening tensor, which are necessary for further developments can be expressed
with the aid of Eqn. (198) as

E = ψe,(ε−εp)(ε−εp)=
6∑

i=1

6∑

j=1

ψe,Ii Ii,(ε−εp)(ε−εp)+ψ
e,IiIj Ii,(ε−εp) ⊗Ij ,(ε−εp)

H = −ψp
iso,ξξ

H = −ψp
kin,αα= −

6∑

i=1

6∑

j=1

ψp
kin,Ki

Ki,αα +ψp
kin,KiKj

Ki,α⊗Kj ,α

. (263)

The first and second derivatives in the above equation are similar to those in Eqns. (195)–
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(200), based on which the individual terms in Eqn. (263) take the explicit form

E=µ1m1 ⊗m1 + µ2m2 ⊗m2 + µ3m3 ⊗m3 + µ4(m1 ⊗m2 +m2 ⊗m1)

+µ5(m1 ⊗m3 +m3 ⊗m1) + µ6(m2 ⊗m3 +m3 ⊗m2)

+µ7m12 ⊗m12 + µ8m13 ⊗m13 + µ9m23 ⊗m23

H=−nh(ξ̄ + ξ)n−1

H=−{ϑ1m1 ⊗m1 + ϑ2m2 ⊗m2 + ϑ3m3 ⊗m3 + ϑ4(m1 ⊗m2 +m2 ⊗m1)

+ϑ5(m1 ⊗m3 +m3 ⊗m1) + ϑ6(m2 ⊗m3 +m3 ⊗m2)

+ϑ7m12 ⊗m12 + ϑ8m13 ⊗m13 + ϑ9m23 ⊗m23}

. (264)

5.1.2. Transversely isotropic symmetry group

For the transversely isotropic symmetry group, the integrity basis to describe the elastic
stored energy is defined analogous to Eqn. (214) as

ĨC13
= {tr[m(ε− εp)], tr[(1 −m)(ε− εp)], tr[m(ε− εp)2],

tr[(
1

2
1 −m)(ε− εp)2], det[(ε− εp)]} .

(265)

Likewise, the integrity basis to describe the plastic stored energy can be defined as

K̃C13
= {tr[mα], tr[(1 −m)α], tr[mα2], tr[(

1

2
1 −m)α2], det[α]} . (266)

With Eqns. (265)–(266) at hand, a decoupled scalar energetic potential (94) is given by

ψ(ε− εp, ξ,α,m)=ψe(ε− εp,m) + ψp
iso(ξ) + ψp

kin(α,m)

=ψe(I1, · · · , I4) + ψp
iso(ξ) + ψp

kin(K1, · · · , K4)
, (267)

where I1−4 and K1−4 are the first four elements of the integrity bases ĨC13
and K̃C13

,
respectively. The individual energetic contributions are assumed to be

ψe(I1, · · · , I4)=
µ1

2
I21 +

µ2

2
I22 + µ3I1I2 + 2µ4I3 + 2µ5I4

ψp
iso(ξ)=

h

n+ 1
(ξ̄ + ξ)n+1

ψp
kin(K1, · · · , K4)=

ϑ1
2
K2

1 +
ϑ2
2
K2

2 + ϑ3K1K2 + 2ϑ4K3 + 2ϑ5K4

. (268)

With these definitions, the rate of the scalar energetic potential can be evaluated as

ψ̇ =
d

dt
ψ = ψ,(ε−εp) : (ε̇− ε̇p) + ψ,ξ ξ̇ + ψ,α : α̇ , (269)
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which contains the stress tensor and driving forces, namely

σ = +ψ,(ε−εp)= +ψe(I1, · · · , I4),(ε−εp)=

4∑

i=1

ψe(I1, · · · , I4),Ii Ii,(ε−εp)

κ = −ψ,ξ = −ψp
iso(ξ),ξ

β = −ψ,α = −ψp
kin(K1, · · · , K4),α = −

4∑

i=1

ψp
kin(K1, · · · , K4),Ki

Ki,α

. (270)

The closed form expressions of the individual terms in the above equation are given by

σ=(µ1I1 + µ3I2)m+ (µ2I2 + µ3I1)(1 −m)

+2µ4{m(ε− εp) + (ε− εp)m}+ 2µ5{(ε− εp)− [m(ε− εp) + (ε− εp)m]}

κ=−h(ξ̄ + ξ)n

β=−
{
(ϑ1K1 + ϑ3K2)m+ (ϑ2K2 + ϑ3K1)(1 −m)

+2ϑ4{mα+αm}+ 2ϑ5{α− [mα+αm]}
}

.

(271)
The fourth-order elasticicty tensor, isotropic hardening modulus and the fourth-order
kinematic hardening tensor can be expressed similar to the previous case as

E=µ1m⊗m+ µ2(1 −m)⊗ (1 −m)

+µ3

{
m⊗ (1 −m) + (1 −m)⊗m

}

+µ4

{
(1 ⊕m) + (1 ⊖m) + (m⊕ 1 ) + (m⊖ 1 )

}

+µ5

{
(1 ⊕ 1 ) + (1 ⊖ 1 )− (1 ⊕m)− (1 ⊖m)− (m⊕ 1 )− (m⊖ 1 )

}

H=−nh(ξ̄ + ξ)n−1

H=−
{
ϑ1m⊗m+ ϑ2(1 −m)⊗ (1 −m)

+ϑ3
{
m⊗ (1 −m) + (1 −m)⊗m

}

+ϑ4
{
(1 ⊕m) + (1 ⊖m) + (m⊕ 1 ) + (m⊖ 1 )

}

+ϑ5
{
(1 ⊕ 1 ) + (1 ⊖ 1 )− (1 ⊕m)− (1 ⊖m)− (m⊕ 1 )− (m⊖ 1 )

}}

.

(272)

5.2. Dissipative response functions

As discussed inChapter 2, the evolution of internal variables should also be constitutively
prescribed in line with Eqn. (260), besides the scalar energetic function. This can be
achieved with the help of plastic response functions, which in the present work are based
on a physically motivated decomposition of the stress tensor [32]. This additive split
ensures a precise formulation of the plastic response functions for composite materials
based on the following essential features:
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1. For fibre-reinforced composite materials, the plastic response is independent of stress
in the fibre directions [32, 43, 115].

2. The yield behaviour of some composites is significantly affected by the hydrostatic
pressure [116]. Therefore, pressure-dependent plastic response functions are formu-
lated which can also reproduce the pressure-independent behaviour for a particular
choice of the governing coefficients.

3. Plastic yielding should be governed by limited number of coefficients.

In what follows, explicit forms of the dissipative response functions, namely the non-
quadratic yield function, flow and hardening rules are derived for the two selected sym-
metry groups. Although higher order yield functions are accurate, they require higher
number of coefficients that must be obtained experimentally [117].

5.2.1. Orthorhombic symmetry group

The dissipative response functions for the C3 symmetry group are formulated based on
the definition of a plasticity inducing stress tensor s, which is deviatoric and stress free
in the preferred directions such that

tr[s] = 0, tr[m1s] = 0 and tr[m2s] = 0 =⇒ tr[m3s] = 0 . (273)

These conditions lead to the definition of s in terms of the relative stress tensor Σ = σ+β,
for given m1−3 as

s = Σ− tr[m3Σ]1 + tr[(m3 −m1)Σ]m1 + tr[(m3 −m2)Σ]m2 , (274)

see also [32]. In line with Eqn. (188), an isotropic yield function can be defined as

χ(Q ⋆Σ,Q ⋆m1,Q ⋆m2,Q ⋆m3, κ) = χ(Σ,m1,m2,m3, κ) ∀ Q ∈ O(3) . (275)

To specify the yield function, an integrity basis similar to Eqn. (256) or (257) is necessary.
Taking into account Eqn. (273), the integrity basis can be specified as

ĴC3
= {tr[m1Σ], tr[m2Σ], tr[m3Σ], tr 2[m12s], tr

2[m13s], tr
2[m23s], det[s]} , (276)

where m12,m13 and m23 are introduced in Eqn. (190). The linear invariants in the
above set characterise the normal modes, while the quadratic invariants represent the
shear modes. To incorporate the aforementioned features, the integrity basis (276) is
reformulated as

J̃C3
= {tr[m3Σ],

9

4
tr 2[m′

3Σ], tr 2[m12s], tr
2[m13s], tr

2[m23s], det[s]} , (277)

with m′
3 = m3 − 1

3
1 . The first two invariants in the equation above represent the

volumetric and deviatoric components of the relative stress tensor respectively, in the third
principal direction. Recall here that the invariant representing a deviatoric component of
the relative stress tensor Σ in the direction m3 is given by

J̃2 =
3

2
tr[m3 dev[Σ]] =

3

2
tr[m′

3Σ] with dev[Σ] = Σ− 1

3
tr[Σ]1 . (278)

The square of this invariant, given by the second element in (277), is usually considered
in the formulation of scalar potentials with a decoupled volumetric-deviatoric split [109].
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5.2.1.1. Yield function. With the preceding definitions at hand, a pressure-dependent
yield function for the C3 symmetry group is proposed in the stress space as

χ =

[
κ1J̃1 +

{
κ2J̃2 +

κ3

2
J̃3 +

κ4

2
J̃4 +

κ5

2
J̃5

}1/2

−
(
1− κ

y12

)

+ ζ1J̃2|σ=0
+
ζ2
2
J̃3|σ=0

+
ζ3
2
J̃4|σ=0

+
ζ4
2
J̃5|σ=0

]
≤ 0

, (279)

where κ1−5, ζ1−5 and y12 are material parameters, and J̃1−5 are the elements of the
integrity basis (276), respectively. It can be seen that the orthotropic pressure-dependent
plastic yielding is governed by five material parameters κ1−5. These parameters are
related to initial threshold yield stress yij, associated with the principal directions of the
orthotropy. Further, they are determined by two normal and three shear tests at fixed
orientations a1 = [1, 0, 0]T and a2 = [0, 1, 0]T , with κ = 0 and β = 0 as follows:
uniaxial tension test in 3-direction

σ =




0 0 0

0 0

sym . y33


 =⇒

J̃1 = y33

J̃2 = y233

J̃3 = 0

J̃4 = 0

J̃5 = 0





, (280)

uniaxial compression test in 3-direction

σ =




0 0 0

0 0

sym . −y33


 =⇒

J̃1 = −y33
J̃2 = y233

J̃3 = 0

J̃4 = 0

J̃5 = 0





, (281)

shear test in 12-plane

σ =




0 y12 0

0 0

sym . 0


 =⇒

J̃1 = 0

J̃2 = 0

J̃3 = 4y212

J̃4 = 0

J̃5 = 0





, (282)

shear test in 13-plane

σ =




0 0 y13

0 0

sym . 0


 =⇒

J̃1 = 0

J̃2 = 0

J̃3 = 0

J̃4 = 4y213

J̃5 = 0





, (283)
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shear test in 23-plane

σ =




0 0 0

0 0

sym . y23


 =⇒

J̃1 = 0

J̃2 = 0

J̃3 = 0

J̃4 = 0

J̃5 = 4y223





. (284)

Evaluation of the yield criterion (279) for the choice a1 = [1, 0, 0]T , a2 = [0, 1, 0]T , κ = 0
and β = 0 leads to the following definitions of the parameters

κ1 =
−1

y33
, κ2 =

1

4y233
,

κ3 =
1

2y212
, κ4 =

1

2y213
and κ5 =

1

2y223
.

(285)

Note that the chosen tests serve only as examples of a possible set of tests. Indeed, they
can be replaced by other tests based on the available data. A comparison of the yield
function in Eqn. (279) to Hill’s orthotropic yield function [25] is provided in Appendix B.

5.2.1.2. Convexity of the yield surface. In what follows, convexity of the yield sur-
face (279) is demonstrated in line with the ideas outlined in Chapter 2. Mathematically
it is proved that the Hessian matrix F of this function is positive semi-definite, i.e. its
eigenvalues are all positive or zero, thereby implying the non-negativity of plastic dissi-
pation [118]. To this end, rewrite the yield function (279) in component form with κ = 0
and β = 0 as

χ = κ1σ33 +

[
κ2

(2σ33 − σ22 − σ11)
2

4
+ 2κ3σ

2
12 + 2κ4σ

2
13 + 2κ5σ

2
23

]1/2
− 1 ≤ 0 . (286)

To determine if the equation above is convex, recall here that if n-functions f1, . . . , fn
are convex, then any weighted combination

∑n
i=1wifi is also convex for wi > 0. Starting

with the first term in Eqn. (286), namely κ1σ33, it can be immediately deduced that the
Hessian of this term is positive semi-definite which implies that this term is a convex
function. To prove that the bracketed term is convex, it is first equivalently expressed as

[
κ2

(2σ33 − σ22 − σ11)
2

4
+ 2κ3σ

2
12 + 2κ4σ

2
13 + 2κ5σ

2
23

]1/2

=

∥∥∥∥∥∥

[
√
κ2

(2σ33 − σ22 − σ11)

2
,

√
κ3

2
(2σ12),

√
κ4

2
(2σ13),

√
κ5

2
(2σ23)

]T∥∥∥∥∥∥
2

, (287)

where
∥∥[·, ·, ·, ·]T

∥∥
2
is a composition of 2-norm with an affine transformation9. Taking into

account the fact that (a) norm is convex and (b) composition of a norm with an affine

9An affine transformation is a map f : Rn 7→ R

n such that

f(X) = A : X+Q ∀ X ∈ Rn

where A denotes a linear transformation
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transformation is convex [119], the requirement for convexity of the bracketed term is
given by κ2−5 > 0 which ensures that the norm is non-negative. Thus, it can be safely
stated that the composition is convex.

5.2.1.3. Evolution equations.

5.2.1.3.1. Model-X-RI: Rate-independent setting. For a rate-independent set-
ting, the evolution equations of plastic variables e = {εp, ξ,α} can be formally derived in
terms of the energetic driving forces f = {σ, κ,β} using the principle of maximum dissi-
pation. With Eqn. (279) at hand, a constrained minimisation problem can be formulated
analogous to Eqn. (104) as

L (σ, κ,β, λ, ε̇p, ξ̇, α̇) = −σ : ε̇p − κξ̇ − β : α̇+ λχ =⇒ STATIONARY . (288)

The necessary conditions of the above constrained problem gives the evolution equations
in line with Eqns. (105) and (106) as

1. L ,σ ≡ −ε̇p + λχ,σ = ε̇p − λχ,σ = 0 ,

2. L ,κ ≡ −ξ̇ + λχ,κ = ξ̇ − λχ,κ = 0 ,

3. L ,β ≡ −α̇ + λχ,β = α̇ − λχ,β = 0 ,

(289)

along with the plastic loading/unloading conditions

λ ≥ 0, χ ≤ 0 and λχ ≡ 0 , (290)

where λ denotes the amount of the plastic flow. The terms χ,σ , χ,κ and χ,β are the
normals to the yield function (279), and are derived to have the following forms

χ,σ =

5∑

i=1

χ,J̃i J̃i, σ =

2∑

i=1

χ,J̃i J̃i, σ +

5∑

i=3

χ,J̃i J̃i, s : sσ

= κ1m3 +

9κ2

2
tr[m′

3Σ]m′
3 +

{
κ3 tr[m12s]m12 + κ4 tr[m13s]m13 + κ5 tr[m23s]m23

}
: P

2

[
κ2J̃2 +

κ3

2
J̃3 +

κ4

2
J̃4 +

κ5

2
J̃5

]1/2

χ,κ = {1/y12}

χ,β = χ,σ +
9ζ1
2

tr[m′
3β]m

′
3 + ζ2 tr[m12β]m12 + ζ3 tr[m13β]m13 + ζ4 tr[m23β]m23

,

(291)
where the fourth-order projection tensor P can be expressed with Eqn. (274) as

P = s,σ = (1 ⊕ 1 )− (m3 ⊗ 1 ) +
[
(m3 −m1)⊗m1)

]
+
[
(m3 −m2)⊗m2)

]
. (292)

Setting

n̄ =

9κ2

2
tr[m′

3Σ]m′
3 +

{
κ3 tr[m12s]m12 + κ4 tr[m13s]m13 + κ5 tr[m23s]m23

}
: P

2

[
κ2J̃2 +

κ3

2
J̃3 +

κ4

2
J̃4 +

κ5

2
J̃5

]1/2 and

n̂ = n̄+
9ζ1
2

tr[m′
3β]m

′
3 + ζ2 tr[m12β]m12 + ζ3 tr[m13β]m13 + ζ4 tr[m23β]m23

,

(293)
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which satisfy

tr[n̄] = 0, n̄ : P = n̄, n̂ : P = n̂ and tr[n̂] = 0 , (294)

Eqn. (291) reformulates to
χ,σ = {κ1m3 + n̄}

χ,κ = {1/y12}

χ,β = {κ1m3 + n̂}

. (295)

Substituting Eqn. (295) into Eqn. (289) yields the closed form expressions of the evolution
equations as

1. L ,σ ≡ −ε̇p + λχ,σ = ε̇p − λ{κ1m3 + n̄} = 0 ,

2. L ,κ ≡ −ξ̇ + λχ,κ= ξ̇ − λ{1/y12} = 0 ,

3. L ,β ≡ −α̇ + λχ,β = α̇ − λ{κ1m3 + n̂} = 0 .

(296)

Furthermore, substituting Eqns. (291) into Eqn. (296), the evolution equations can be
reformulated as

ε̇p = λ

{
κ1m3 +

9κ2

2
tr[m′

3Σ]m′
3 +

{
κ3 tr[m12s]m12 + κ4 tr[m13s]m13 + κ5 tr[m23s]m23

}
: P

2

[
κ2J̃2 +

κ3

2
J̃3 +

κ4

2
J̃4 +

κ5

2
J̃5

]1/2

}

ξ̇ = λ{1/y12}

α̇ = λ

{
κ1m3 +

9κ2

2
tr[m′

3Σ]m′
3 +

{
κ3 tr[m12s]m12 + κ4 tr[m13s]m13 + κ5 tr[m23s]m23

}
: P

2

[
κ2J̃2 +

κ3

2
J̃3 +

κ4

2
J̃4 +

κ5

2
J̃5

]1/2

+
9ζ1
2

tr[m′
3β]m

′
3 + ζ2 tr[m12β]m12 + ζ3 tr[m13β]m13 + ζ4 tr[m23β]m23

}

.

(297)
These evolution equations characterise Armstrong-Fredrick-type non-linear kinematic
hardening [120], generalised to the present case. For the choice ζ1 = ζ2 = ζ3 = ζ4 = 0, the
model reduces to the well known Melan-Prager-type kinematic hardening [121], where α

is linear and homogeneous in ε̇p [78, 84].

With the normals to the yield function, namely χ,σ, χ,κ and χ,β at hand, the plastic
multiplier λ can be computed using Eqns. (107)-(115) as

λ =
(κ1m3 + n̄) : E : ε̇

(κ1m3 + n̄) : E : (κ1m3 + n̄) + H{1/y212}+ (κ1m3 + n̂) : H : (κ1m3 + n̂)
, (298)

which leads to the definition of the fourth-order continuum elastic-plastic tangent stiffness
tensor analogous to Eqn. (121) as

E

ep =

[
E− E : (κ1m3 + n̄)⊗ (κ1m3 + n̄) : E

(κ1m3 + n̄) : E : (κ1m3 + n̄) + H{1/y212}+ (κ1m3 + n̂) : H : (κ1m3 + n̂)

]
.

(299)
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Clearly, Eep in Eqn. (299) is symmetric, owing to the constitutive assumptions. Evolution
equations of type (296) and (297) are known as associated flow rules where the rates of
the internal variables are normal to the yield surface (χ = 0).

For a non-associated flow response where the canonical normals to the yield function
(291) do not characterise the real material response, a separate plastic flow potential φ is
introduced such that it has a functional dependence on the same variables as that of the
yield function, i.e.

φ = φ(Σ, κ) , (300)

which can be also be expressed as an isotropic function similar to Eqn. (275) as

φ(Q ⋆Σ,Q ⋆m1,Q ⋆m2,Q ⋆m3, κ) = φ(Σ,m1,m2,m3, κ) ∀ Q ∈ O(3) . (301)

Following conceptually [18,44,109], the plastic flow potential is assumed to be of the form

φ = χ|
κ
1
=0

=

[{
κ2J̃2 +

κ3

2
J̃3 +

κ4

2
J̃4 +

κ5

2
J̃5

}1/2

−
(
1− κ

y12

)

+ ζ1J̃2|σ=0
+
ζ2
2
J̃3|σ=0

+
ζ3
2
J̃4|σ=0

+
ζ4
2
J̃5|σ=0

] , (302)

based on which the evolution equations for the internal variables take the form

1. ε̇p − λφ,σ = ε̇p − λn̄ = 0 ,

2. ξ̇ − λφ,κ= ξ̇ − λ{1/y12} = 0 ,

3. α̇ − λφ,β = α̇ − λn̂ = 0 .

(303)

It can be inferred from the equation above that the evolution equations are deviatoric
and independent of the stress in the preferred directions. Note that n̄ and n̂ are the same
as those in Eqn. (291), and satisfy the properties in Eqn. (294). Additionally, the fourth-
order projection tensor P also remains the same as in Eqn. (292). The set of equations
(303) replaces the normality rules in Eqn. (296) though the plastic loading/unloading
conditions in Eqn. (290) remain unchanged. The scalar plastic multiplier λ and the fourth-
order elastic-plastic tangent stiffness tensor Eep can be derived similar to Eqns. (298) and
(299) respectively, with the aid of Eqns. (118)-(123) as

λ =
(κ1m3 + n̄) : E : ε̇

(κ1m3 + n̄) : E : n̄+H{1/y212}+ (κ1m3 + n̂) : H : n̂
, (304)

and

E

ep =

[
E− E : (κ1m3 + n̄)⊗ n̄ : E

(κ1m3 + n̄) : E : n̄+H{1/y212}+ (κ1m3 + n̂) : H : n̂

]
, (305)

where it can be seen that Eep is a non-symmetric fourth-order tensor for the non-
associative flow response. A summary of the modelling framework for a rate-independent
setting is given in Box 7.
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Box 7: Rate-independent setting–summary of the modelling framework for the or-
thorhombic symmetry group.

1. Kinematics : ε = εe + εp

2. Internal variables : e = {εp, ξ,α}
3. Energetic potential : ψ = ψe(ε− εp,m1,m2,m3)

+ψp
iso(ξ) + ψp

kin(α,m1,m2,m3)

4. Stress tensor : σ = ψe(ε− εp,m1,m2,m3),ε

5. Driving forces : κ = −ψp
iso(ξ),ξ

β = −ψp
kin(α,m1,m2,m3),α

5. Relative stress tensor : Σ = σ + β

6. Plasticity inducing stress tensor : s = s(Σ)

7. Yield function : χ = χ(Σ,m1,m2,m3, κ)

8. Plastic flow potential : φ = φ(s,m1,m2,m3, κ)

9. Evolution equations :

Associative
ε̇p = λχ,σ = λ{κ1m3 + n̄}
ξ̇ = λχ,κ

α̇ = λχ,β = λ{κ1m3 + n̂}
Non-associative

ε̇p = λφ,σ = λn̄

ξ̇ = λφ,κ

α̇ = λφ,β = λn̂

10. Karush-Kuhn-Tucker conditions : λ ≥ 0, χ ≤ 0 and λχ ≡ 0

5.2.1.3.2. Model-X-RD: Rate-dependent setting. For a rate-dependent setting
where the material behaviour changes for varying strain rates, the constrained minimi-
sation problem is transformed into an unconstrained optimisation problem using a pe-
nalisation function as explained in Chapter 2. Thus, the Lagrange functional (288)
reformulates to a penalty functional P of the form

P(σ, κ,β, ε̇p, ξ̇, α̇) = −σ : ε̇p − κξ̇ − β : α̇+
1

η(m+ 1)
[χ+](m+1) =⇒ STATIONARY ,

(306)
in terms of the penalty parameter η ∈ (0,∞), and a monotonically increasing ramp
function [χ+] with the properties

[χ+] :=
1

2

[
χ+ |χ|

]
(307)
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where χ is the yield function defined in Eqn. (279). Based on Eqn. (306), explicit forms
of the evolution equations for the internal variables are given analogous to Eqn. (296) as

1. P,σ ≡ −ε̇p +
1

η
[χ+]m χ,σ = ε̇p − 1

η
[χ+]m {κ1m3 + n̄} = 0 ,

2. P,κ ≡ −ξ̇ +
1

η
[χ+]m χ,κ = ξ̇ − 1

η
[χ+]m {1/y12} = 0 ,

3. P,β ≡ −α̇ +
1

η
[χ+]m χ,β = α̇ − 1

η
[χ+]m {κ1m3 + n̂} = 0 .

(308)

In contrast to the rate-independent setting, the amount of the plastic flow λ is given by
the pseudo-consistency condition

λ =
1

η
[χ+]m , (309)

which gives the rate-dependent λ in terms of viscosity η and the ramp function (χ+)m.
Likewise, for a non-associative flow response, it follows that the evolution equations (308)
reformulate, respectively, to

1. ε̇p − 1

η
[φ+]m φ,σ = ε̇p − 1

η
[φ+]m n̄ = 0 ,

2. ξ̇ − 1

η
[φ+]m φ,κ= ξ̇ − 1

η
[φ+]m {1/y12} = 0 ,

3. α̇ − 1

η
[φ+]m φ,β = α̇ − 1

η
[φ+]m n̂ = 0 ,

(310)

in terms of the monotonically increasing ramp function [φ+] with the properties

[φ+] :=
1

2

[
φ+ |φ|

]
(311)

where φ is the plastic flow potential defined in Eqn. (302). With the preceding definitions,
the fourth-order continuum elastic-plastic tangent modulus tensor for the associative and
non-associative plasticity within a rate-dependent setting can be computed analogous to
Eqns. (299) and (305), respectively. The rate-dependent plasticity model for the C3 group
is summarised in Box 8.

5.2.2. Transversely isotropic symmetry group

For the C13 symmetry group, the properties of the plasticity inducing stress tensor s in
Eqn. (273) read

tr[s] = 0 and tr[ms] = 0 , (312)

owing to the fact that the C13 group is characterised by the existence of a single symmetric
second-order structural tensor m. Therefore, for a given m, Eqn. (274) reformulates to

s = Σ− 1

3
tr[Σ]1 − 3

2
tr[m′Σ]m′ with m′ = m− 1

3
1 , (313)

see also [108]. The yield function can also be expressed as an isotropic scalar function
such that

χ(Q ⋆Σ,Q ⋆m, κ) = χ(Σ,m, κ) ∀ Q ∈ O(3) . (314)
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Box 8: Rate-dependent setting–summary of the modelling framework for the orthorhom-
bic symmetry group.

1. Kinematics : ε = εe + εp

2. Internal variables : e = {εp, ξ,α}
3. Energetic potential : ψ = ψe(ε− εp,m1,m2,m3)

+ψp
iso(ξ) + ψp

kin(α,m1,m2,m3)

4. Stress tensor : σ = ψe(ε− εp,m1,m2,m3),ε

5. Driving forces : κ = −ψp
iso(ξ),ξ

β = −ψp
kin(α,m1,m2,m3),α

5. Relative stress tensor : Σ = σ + β

6. Plasticity inducing stress tensor : s = s(Σ)

7. Yield function : χ = χ(Σ,m1,m2,m3, κ)

8. Plastic flow potential : φ = φ(s,m1,m2,m3, κ)

9. Evolution equations :

Associative
ε̇p = λχ,σ = λ{κ1m3 + n̄}
ξ̇ = λχ,κ

α̇ = λχ,β = λ{κ1m3 + n̂}

with λ =
1

η
[χ+]m and [χ+] =

1

2

[
χ+ |χ|

]

Non-associative
ε̇p = λφ,σ = λn̄

ξ̇ = λφ,κ

α̇ = λφ,β = λn̂

with λ =
1

η
[φ+]m and [φ+] =

1

2

[
φ+ |φ|

]

With Eqn. (313) at hand, two threshold-type pressure-dependent yield functions are pro-
posed that are suitable for fibre-reinforced composites. The underlying difference is the
condition for their convexity which is elaborated subsequently.

Taking into account Eqn. (312), an integrity basis for the scalar yield function is given
analogous to Eqn. (212) as

ĴC13
= {tr[Σ], tr[s2], tr[s3], tr[mΣ], tr[ms2]} . (315)

Following [44], the linear and quadratic isotropic invariants in Eqn. (315) can be refor-
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mulated as
tr[Σ] = tr[mΣ] + tr[(1 −m)Σ] and

tr[s2] = tr[ms2 + s2m] + tr[s2 − (ms2 + s2m)]
. (316)

Substituting Eqn. (316) into Eqn. (315) and replacing tr[s3] by det[s] using the Cayley-
Hamilton’s theorem, the new integrity basis for the yield function reads

J̃C13
= {tr[(1 −m)Σ], tr[ms2 + s2m], tr[s2 − (ms2 + s2m)], tr[mΣ], det[s]} . (317)

Note that the reformulation of quadratic invariants in Eqn. (316)2 is different from that
in Eqn. (213)2. It has been suggested and verified in [44] that a plastic response function
formulated using this particular form of quadratic invariants is found to capture the
experimental behaviour quite well, as seen in Chapter 7.

5.2.2.1. Yield function: Model-I. With the basis (317) at hand, a pressure-dependent
yield function for the C13 group is proposed in the stress space as

χ = κ1J̃1 +

[
κ2J̃2 + κ3J̃3

]1/2
−
(
1− κ

y12

)
+
ζ1
2
J̃2|σ=0

+
ζ2
2
J̃3|σ=0

≤ 0 , (318)

where κ1−3 are material parameters governing the transversely isotropic plastic yielding.
These parameters are related to initial threshold yield stress yij, associated with one
compression mode and two shear modes which are characterised by the C13 group. They
are determined analogous to those of the C3 group as follows
shear test in 12-plane

σ =




0 y12 0

0 0

sym . 0


 =⇒

J̃1 = 0

J̃2 = 2y212

J̃3 = 0





, (319)

shear test in 23-plane

σ =




0 0 0

0 0

sym . y23


 =⇒

J̃1 = 0

J̃2 = 0

J̃3 = 2y223





, (320)

uniaxial compression in 2-direction

σ =




0 0 0

−y22c 0

sym . 0


 =⇒

J̃1 = −y22c
J̃2 = 0

J̃3 = y222c/2





. (321)

Evaluation of the yield criterion (318) for the the three aforementioned tests with the
choice a = [1, 0, 0]T , κ = 0 and β = 0 leads to the following definitions of the parameters

κ1 =
1

2y23
− 1

y22c
, κ2 =

1

2y212
and κ3 =

1

2y223
. (322)

The material parameters ζ1 and ζ2 in Eqn. (318) govern the non-linearity of kinematic
hardening.
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5.2.2.2. Convexity of the yield surface: Model-I. In this subsection, a proof of
convexity of the yield surface (318) is shown. For the particular model at hand, recall the
yield function

χ = κ1J̃1 +

[
κ2J̃2 + κ3J̃3

]1/2
−
(
1− κ

y12

)
+
ζ1
2
J̃2|σ=0

+
ζ2
2
J̃3|σ=0

≤ 0 . (323)

The Hessian Z for the function (323) is given by

Z = χ,σσ =
κ3P+ (κ2 − κ3)Pa[
κ2J̃2 + κ3J̃3

]1/2 − κ
2
3J+ κ3(κ2 − κ3){K+ L}+ (κ2 − κ3)

2
M

[
κ2J̃2 + κ3J̃3

]3/2 , (324)

together with the corresponding definitions

P = (1 ⊕ 1 )− 1

3
(1 ⊗ 1 )− 3

2
(m′ ⊗m′)

Pa = mP+ Pm

J = s⊗ s

K = s⊗ {ms + sm}
L = {ms+ sm} ⊗ s

M = {ms+ sm} ⊗ {ms+ sm}

. (325)

The six eigenvalues of Eqn. (324) are given in terms of stress components by

λZ =




0

0

0

κ2√
2
√

4κ2(σ
2
12 + σ2

13) + 4κ3σ
2
23 + κ3(σ22 − σ33)2

4κ2κ3(3σ
2
12 + 3σ2

13 + σ2
23) + κ3(κ2 + κ3)(σ22 − σ33)

2 + 8κ2
3σ

2
23 − ℵ

2
√
2
(√

4κ2(σ2
12 + σ2

13) + 4κ3σ2
23 + κ3(σ22 − σ33)2

)3

4κ2κ3(3σ
2
12 + 3σ2

13 + σ2
23) + κ3(κ2 + κ3)(σ22 − σ33)

2 + 8κ2
3σ

2
23 + ℵ

2
√
2
(√

4κ2(σ2
12 + σ2

13) + 4κ3σ2
23 + κ3(σ22 − σ33)2

)3




, (326)

with

ℵ =
{[

4κ2κ3(σ
2
12 + σ2

13 − σ2
23) + κ3(κ2 − κ3)(σ22 − σ33)

2 + 8κ2
3σ

2
23

]2

+16κ2
3σ

2
23(σ22 − σ33)

2
[
2κ2

3 − 3κ2κ3 + κ
2
2

]}1/2 . (327)

Mathematically, the only condition that is imposed on the parameters κ2 and κ3 is that
they both must be greater than zero, as they represent the magnitudes of yield strengths.
This condition is also satisfied in their computation, as seen in Eqn. (322). Hence, without
any loss of generality, it can be safely stated that κ2,3 > 0. Furthermore, it is directly
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seen from Eqn. (326) that the first four eigenvalues λZ(1), λZ(2), λZ(3) and λZ(4) are all ≥
0. For λZ(5) to be ≥ 0, the following condition should be true

4κ2κ3(3σ
2
12 + 3σ2

13 + σ2
23) + κ3(κ2 + κ3)(σ22 − σ33)

2 + 8κ2
3σ

2
23

2
√
2
(√

4κ2(σ
2
12 + σ2

13) + 4κ3σ
2
23 + κ3(σ22 − σ33)2

)3 ≥

ℵ
2
√
2
(√

4κ2(σ2
12 + σ2

13) + 4κ3σ2
23 + κ3(σ22 − σ33)2

)3
. (328)

Squaring both sides and rearranging the expression gives

[
4κ2κ3(3σ

2
12 + 3σ2

13 + σ2
23) + κ3(κ2 + κ3)(σ22 − σ33)

2 + 8κ2
3σ

2
23

]2 ≥
[
4κ2κ3(σ

2
12 + σ2

13 − σ2
23) + κ3(κ2 − κ3)(σ22 − σ33)

2 + 8κ2
3σ

2
23

]2
+16κ2

3σ
2
23(σ22 − σ33)

2
[
2κ2

3 − 3κ2κ3 + κ
2
2

]
. (329)

After some straightforward, howbeit lengthy algebraic simplifications, it is observed that
the expression on the LHS is positive whereas that on the RHS is negative, implying λZ(5)
is ≥ 0. For λZ(6) to be ≥ 0, it needs to be shown that

ℵ
2
√
2
(√

4κ2(σ
2
12 + σ2

13) + 4κ3σ
2
23 + κ3(σ22 − σ33)2

)3 ≥ 0 , (330)

which is a priori true for

16κ2
3σ

2
23(σ22 − σ33)

2
[
2κ2

3 − 3κ2κ3 + κ
2
2

]
≥ 0 =⇒ κ3 ≥ κ2 =⇒ y12 ≥ y23 . (331)

The above inequality is the necessary condition for the yield surface to be convex in the
stress space, cf. [44].

5.2.2.3. Yield function: Model-II. To circumvent the restriction imposed by the
convexity condition of Model-I, use can be made of the Euclidean norm in context of
defining the second yield function. To do so, consider a further decomposition of s in
Eqn. (313) as

s2 = ms+ sm and s3 = s− (ms+ sm) . (332)

The decomposition above is an extension of the additive stress split into two distinct shear
modes associated with the C13 group, namely the in-plane and transverse shear. Further,
let p denote the hydrostatic pressure such that

p = tr[(1 −m)Σ] . (333)

Appealing to Eqns. (332) and (333), a Drucker Prager-type pressure-dependent yield
function is proposed in the stress space as

χ = κ1p+

[
κ2 ‖s2‖2+κ3 ‖s3‖2

]1/2
−
(
1− κ

y12

)
+
ζ1
2
‖s2|σ=0

‖2+ ζ2
2
‖s3|σ=0

‖2 ≤ 0 , (334)

see also [78, 122]. In line with Eqns. (319)–(322), the governing coefficients of the yield
surface are evaluated to be

κ1 =
1√
2y23

− 1

y22c
, κ2 =

1

y212
and κ3 =

1

y223
. (335)
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5.2.2.4. Convexity of the yield surface: Model-II. Considering the fact that the
Hessian of the squared Euclidean norm is the identity matrix which is axiomatically
positive definite, the requirement for convexity of the yield surface (334) is given by κ2,3 ≥
0, see also Naghdi-Trapp inequality [123–125], which is generally fulfilled by Eqn. (335).

5.2.2.5. Evolution equations.

5.2.2.5.1. Model-I-RI: Rate-independent setting. The evolution equations of the
plastic variables can be specified analogous to Eqns. (288) and (296), with the aid of
Eqn. (318), as

1. L ,σ ≡ −ε̇p + λχ,σ = ε̇p − λ{κ1(1 −m) + n̄} = 0 ,

2. L ,κ ≡ −ξ̇ + λχ,κ= ξ̇ − λ{1/y12} = 0 ,

3. L ,β ≡ −α̇ + λχ,β = α̇ − λ{κ1(1 −m) + n̂} = 0 ,

(336)

along with the plastic loading/unloading conditions

λ ≥ 0, χ ≤ 0 and λχ ≡ 0 . (337)

For the particular choice of Model-II, the terms n̄ and n̂ are derived to have the following
explicit forms

n̄ =

3∑

i=2

χ,J̃i J̃i, s =
κ3s+ (κ2 − κ3)(ms+ sm)

[
κ2J̃2 + κ3J̃3

]1/2

n̂ = n̄+ ζ2s + (ζ2 − ζ3)(ms+ sm)

. (338)

It follows from Eqn. (313) that the fourth-order projection tensor can be expressed as

P = s,σ = (1 ⊕ 1 )− 1

3
(1 ⊗ 1 )− 3

2
(m′ ⊗m′) . (339)

The canonical form of the evolution equations given by Eqn. (336) is a straightforward
consequence of invoking the principle of maximum dissipation, which frames the model
within associative plasticity.

For non-associative plasticity, a plastic flow potential φ is chosen such that it has similar
functional form as that of the yield function; and the only difference is that φ is deviatoric,
that is

φ = χ|
κ
1
=0

=

[
κ2J̃2 + κ3J̃3

]1/2
−
(
1− κ

y12

)
+
ζ1
2
J̃2|σ=0

+
ζ2
2
J̃3|σ=0

, (340)

which allows for the definition of deviatoric evolution equations as

1. ε̇p − λχ,σ = ε̇p − λn̄ = 0 ,

2. ξ̇ − λχ,κ = ξ̇ − λ{1/y12} = 0 ,

3. α̇ − λχ,β = α̇ − λn̂ = 0 .

(341)

The set of equations (341)1−3 is a consequence of relaxing the principle of maximum
dissipation, which frames the model within non-associative plasticity. This is sometimes
referred to as non-conventional constitutive structure.
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Box 9: Rate-independent setting–summary of the modelling framework for the trans-
versely isotropic symmetry group.

1. Kinematics : ε = εe + εp

2. Internal variables : e = {εp, ξ,α}
3. Energetic potential : ψ = ψe(ε− εp,m) + ψp

iso(ξ) + ψp
kin(α,m)

4. Stress tensor : σ = ψe(ε− εp,m),ε

5. Driving forces : κ = −ψp
iso(ξ),ξ

β = −ψp
kin(α,m),α

5. Relative stress tensor : Σ = σ + β

6. Plasticity inducing stress tensor : s = s(Σ)

7. Yield function : χ = χ(Σ,m, κ)

8. Plastic flow potential : φ = φ(s,m, κ)

9. Evolution equations :

Associative
ε̇p = λχ,σ = λ{κ1(1 −m) + n̄}
ξ̇ = λχ,κ

α̇ = λχ,β = λ{κ1(1 −m) + n̂}
Non-associative

ε̇p = λφ,σ = λn̄

ξ̇ = λφ,κ

α̇ = λφ,β = λn̂

10. Karush-Kuhn-Tucker conditions : λ ≥ 0, χ ≤ 0 and λχ ≡ 0

5.2.2.5.2. Model-II-RI: Rate-independent setting. For the particular choice of
Model-II, the evolution of plastic variables can be prescribed based on Eqn. (334) as

1. L ,σ ≡ −ε̇p + λχ,σ = ε̇p − λ{κ1(1 −m) + n̄} = 0 ,

2. L ,κ ≡ −ξ̇ + λχ,κ= ξ̇ − λ{1/y12} = 0 ,

3. L ,β ≡ −α̇ + λχ,β = α̇ − λ{κ1(1 −m) + n̂} = 0 ,

(342)

along with the plastic loading/unloading conditions

λ ≥ 0, χ ≤ 0 and λχ ≡ 0 . (343)
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The terms n̄ and n̂ are derived to have the following explicit forms with respect to the
choice of Model-II,

n̄ =
κ3s+ (κ2 − κ3)(ms + sm)
[
κ2 ‖s2‖2 + κ3 ‖s3‖2

]1/2

n̂ = n̄ + ζ2s+ (ζ2 − ζ3)(ms + sm)

. (344)

Evolution equations of type (342) are referred to as the associative flow rules. To formally
prescribe the non-associative flow rules, the plastic flow potential is chosen to be of the
form

φ = χ|
κ1=0

=

[
κ2 ‖s2‖2+κ3 ‖s3‖2

]1/2
−
(
1− κ

y12

)
+
ζ1
2
‖s2|σ=0

‖2+ ζ2
2
‖s3|σ=0

‖2 , (345)

based on which Eqn. (342) reformulates to

1. ε̇p − λχ,σ = ε̇p − λn̄ = 0 ,

2. ξ̇ − λχ,κ = ξ̇ − λ{1/y12} = 0 ,

3. α̇ − λχ,β = α̇ − λn̂ = 0 .

(346)

The rate-independent framework of transversely isotropic plasticity outlined so far, and
completely defined by Model-I-RI and Model-II-RI, is summarised in Box 9.

5.2.2.5.3. Model-I-RD: Rate-dependent setting. Within a rate-dependent setting,
the canonical evolution equations (associative flow rules) of Model-I-RI which are given
by Eqn. (336) reformulate to

1. P,σ ≡ −ε̇p +
1

η
[χ+]m χ,σ = ε̇p − 1

η
[χ+]m {κ1(1 −m) + n̄} = 0 ,

2. P,κ ≡ −ξ̇ +
1

η
[χ+]m χ,κ = ξ̇ − 1

η
[χ+]m {1/y12} = 0 ,

3. P,β ≡ −α̇ +
1

η
[χ+]m χ,β = α̇ − 1

η
[χ+]m {κ1(1 −m) + n̂} = 0 ,

(347)

where P is the penalty functional of the type (306) with χ defined in Eqn. (318), and
the quantities n̄ and n̂ defined in Eqn. (338).

For a non-associative flow response, the evolution equations (347) reformulate, respec-
tively, to

1. ε̇p − 1

η
[φ+]m φ,σ = ε̇p − 1

η
[φ+]m n̄ = 0 ,

2. ξ̇ − 1

η
[φ+]m φ,κ= ξ̇ − 1

η
[φ+]m {1/y12} = 0 ,

3. α̇ − 1

η
[φ+]m φ,β = α̇ − 1

η
[φ+]m n̂ = 0 ,

(348)

where [φ+] is of the form defined in (311) with respect to the plastic flow potential φ given
by Eqn. (340). The quantities n̄ and n̂ defined in Eqn. (338).
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5.2.2.5.4. Model-II-RD: Rate-dependent setting. In complete analogy to Model-

I-RD, the associative and non-associative flow rules for a rate-dependent setting for the
choice of Eqns. (334) and (345) are given, respectively, by

1. P,σ ≡ −ε̇p +
1

η
[χ+]m χ,σ = ε̇p − 1

η
[χ+]m {κ1(1 −m) + n̄} = 0 ,

2. P,κ ≡ −ξ̇ +
1

η
[χ+]m χ,κ = ξ̇ − 1

η
[χ+]m {1/y12} = 0 ,

3. P,β ≡ −α̇ +
1

η
[χ+]m χ,β = α̇ − 1

η
[χ+]m {κ1(1 −m) + n̂} = 0 ,

(349)

and

1. ε̇p − 1

η
[φ+]m φ,σ = ε̇p − 1

η
[φ+]m n̄ = 0 ,

2. ξ̇ − 1

η
[φ+]m φ,κ= ξ̇ − 1

η
[φ+]m {1/y12} = 0 ,

3. α̇ − 1

η
[φ+]m φ,β = α̇ − 1

η
[φ+]m n̂ = 0 ,

(350)

where the threshold-type yield function and the plastic flow potential are defined in
Eqns. (334) and (345) respectively, while n̄ and n̂ are defined in Eqn. (344). To this
end, a summary of the rate-dependent framework of transversely isotropic plasticity, de-
fined by Eqns. (347)–(350), is given in Box 10.

Remark 6. With reference to the rate-dependent theory of Perzyna-type viscoplasticity
[86,87], it is well known that the plastic multiplier λ is governed by the pseudo-consistency
condition, i.e.

λ =
1

η
[χ(f)+]m ≥ 0 . (351)

To this end, consider a generalised yield function

χ(f) = ‖f‖ − y0 ≤ 0 , (352)

based on which a set of canonical evolution equations read

ė = λχ,f . (353)

Recall here the generalised reduced plastic dissipation such that

D
red(f, e) = f · ė ≥ 0 . (354)

Substituting Eqns. (353) and (351) into Eqn. (354), and noting that f ·χ(f),f= ‖f‖ yields
the representation

D
red = λ(χ+ y0) =

[χ(f)+]m(χ + y0)

η
≥ 0 , (355)

for the rate-dependent case, and similarly

D
red = λy0 ≥ 0 , (356)

for the rate-independent setting. With these observations (non-negative dissipation), the
constitutive framework of plasticity is said to be thermodynamically consistent [66, 84].
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Box 10: Rate-dependent setting–summary of the modelling framework for the transversely
isotropic symmetry group.

1. Kinematics : ε = εe + εp

2. Internal variables : e = {εp, ξ,α}
3. Energetic potential : ψ = ψe(ε− εp,m) + ψp

iso(ξ) + ψp
kin(α,m)

4. Stress tensor : σ = ψe(ε− εp,m),ε

5. Driving forces : κ = −ψp
iso(ξ),ξ

β = −ψp
kin(α,m),α

5. Relative stress tensor : Σ = σ + β

6. Plasticity inducing stress tensor : s = s(Σ)

7. Yield function : χ = χ(Σ,m, κ)

8. Plastic flow potential : φ = φ(s,m, κ)

9. Evolution equations :

Associative
ε̇p = λχ,σ = λ{κ1(1 −m) + n̄}
ξ̇ = λχ,κ

α̇ = λχ,β = λ{κ1(1 −m) + n̂}

with λ =
1

η
[χ+]m and [χ+] =

1

2

[
χ+ |χ|

]

Non-associative
ε̇p = λφ,σ = λn̄

ξ̇ = λφ,κ

α̇ = λφ,β = λn̂

with λ =
1

η
[φ+]m and [φ+] =

1

2

[
φ+ |φ|

]

5.3. Alternative formulations of non-associative plasticity

The proposed framework of non-associative plasticity for the C3 and C13 symmetry groups,
governed mainly by the plastic flow potentials (302) and (340)/(345) respectively, do not
account for dilatation which affects the plastic volume change of the material. This can be
attributed to the corresponding definitions of the plasticity inducing stress tensor, which
ensure a volume-preserving plastic material response. To incorporate the volume changes,
the plastic flow potentials for the two selected symmetry groups are modified according
to the arguments in [85] as explained below.

Remark 7. The alternative formulations are suggested but not yet implemented.
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Starting with the C3 symmetry group, the plastic flow potential given by Eqn. (302) is
modified to have the following form

φ =

[
κ̄1J̃1 +

{
κ̄2J̃2 +

κ̄3

2
J̃3 +

κ̄4

2
J̃4 +

κ̄5

2
J̃5

}1/2

−
(
1− κ

ȳ12

)

+ ζ̄1J̃2|σ=0
+
ζ̄2
2
J̃3|σ=0

+
ζ̄3
2
J̃4|σ=0

+
ζ̄4
2
J̃5|σ=0

]
≤ 0

, (357)

where κ̄1−5 6= κ1−5 are the material parameters governing the pressure-dependent plastic
flow potential which are determined analogous to Eqns. (280)–(285). Additionally, the
inequality κ̄i > 0, i = 2−5, should be satisfied for the plastic flow potential to be convex.
Taking into account Eqns. (357) and (303), the evolution of plastic variables is given by

1. ε̇p − λφ,σ = ε̇p − λ{κ̄1m3 + N̄} = 0 ,

2. ξ̇ − λφ,κ= ξ̇ − λ{1/ȳ12} = 0 ,

3. α̇ − λφ,β = α̇ − λ{κ̄1m3 + N̂} = 0 ,

(358)

with

N̄ =

5∑

i=2

φ,J̃i J̃i, σ = φ,J̃2 J̃2, σ +

5∑

i=3

φ,J̃i J̃i, s : s,σ

=

9κ̄2

2
tr[m′

3Σ]m′
3 +

{
κ̄3 tr[m12s]m12 + κ̄4 tr[m13s]m13 + κ̄5 tr[m23s]m23

}
: P

2

[
κ̄2J̃2 +

κ̄3

2
J̃3 +

κ̄4

2
J̃4 +

κ̄5

2
J̃5

]1/2

N̂ = N̄+
9ζ̄1
2

tr[m′
3β]m

′
3 + ζ̄2 tr[m12β]m12 + ζ̄3 tr[m13β]m13 + ζ̄4 tr[m23β]m23

,

(359)
where P is defined in Eqn. (292). Analogous to Eqn. (294), it follows

tr[N̄] = 0, N̄ : P = N̄, N̂ : P = N̂ and tr[N̂] = 0 . (360)

Note that the plastic flow potential φ is of the same functional form as the yield function
χ, but with a different choice of material parameters that govern the plastic flow direction.
In contrast to Eqn. (302), the plastic flow potential is now pressure-dependent, and the
plastic volume change of the material is accounted in the formulation with Eqn. (358).

For the C13 symmetry group, the plastic flow potential corresponding to Model-I, given
by Eqn. (340), is modified as

φ = κ̄1J̃1 +

[
κ̄2J̃2 + κ̄3J̃3

]1/2
−
(
1− κ

ȳ12

)
+
ζ̄1
2
J̃2|σ=0

+
ζ̄2
2
J̃3|σ=0

, (361)

where κ̄1−3 6= κ1−3 are the material parameters governing the pressure-dependent plastic
flow which are determined similar to Eqn. (322). Further, the inequality κ̄3 ≥ κ̄2 is
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assumed to ensure the convexity of the plastic flow potential, as implied by Eqns. (323)–
(331). In line with Eqn. (341), the evolution equations take the form

1. ε̇p − λφ,σ = ε̇p − λ{κ̄1(1 −m) + N̄} = 0 ,

2. ξ̇ − λφ,κ= ξ̇ − λ{1/ȳ12} = 0 ,

3. α̇ − λφ,β = α̇ − λ{κ̄1(1 −m) + N̂} = 0 ,

(362)

with

N̄ =
∑3

i=2 φ,J̃i J̃i, s =

{
κ̄3s+ (κ̄2 − κ̄3)(ms+ sm)

[
κ̄2J̃2 + κ̄3J̃3

]1/2

}
: P

N̂ = N̄ + ζ̄2s+ (ζ̄2 − ζ̄3)(ms + sm)

. (363)

Likewise, for Model-II, it follows that the plastic flow potential (345) can be modified as

χ = κ̄1p+

[
κ̄2 ‖s2‖2+κ̄3 ‖s3‖2

]1/2
−
(
1− κ

ȳ12

)
+
ζ̄1
2
‖s2|σ=0

‖2+ ζ̄2
2
‖s3|σ=0

‖2 ≤ 0 , (364)

allowing for the closed-form expressions of the evolution equations as

1. ε̇p − λφ,σ = ε̇p − λ{κ̄1(1 −m) + N̄} = 0 ,

2. ξ̇ − λφ,κ= ξ̇ − λ{1/ȳ12} = 0 ,

3. α̇ − λφ,β = α̇ − λ{κ̄1(1 −m) + N̂} = 0 ,

(365)

with

N̄ =

{
κ̄3s+ (κ̄2 − κ̄3)(ms+ sm)
[
κ̄2 ‖s2‖2 + κ̄3 ‖s3‖2

]1/2

}
: P

N̂ = N̄+ ζ̄2s+ (ζ̄2 − ζ̄3)(ms+ sm)

. (366)

Note that, while the parameters κi,κ̄i and y12, ȳ12 are obtained from the experimental
curves, the choice of ζi,ζ̄i is arbitrary in the present work. A prescription for the iden-
tification of material parameters associated with kinematic hardening is given in [34].
With these set of equations, the plastic multiplier λ and the fourth-order Prandtl-Reuss
tensors of the non-associative plasticity can be computed analogous to Eqn. (299). Gen-
erally, the continuum elastic-plastic tangent modulus, given for example by Eqn. (299),
will not lead to quadratic convergence when an iterative procedure is used on a global
level for the solution of equilibrium equations. For a proper quadratic convergence, the
choice of the tangent must be consistent with the iterative procedure. Therefore, in the
following subsection, an algorithmic elastic-plastic tangent modulus which is consistent
with the Newton-Raphson-type iteration procedure is derived. This is achieved using an
integration algorithm based on the general return method [76, 92].

5.4. Algorithmic treatment

In this section, aspects of the algorithmic implementation of the proposed plasticity mod-
els are discussed in detail. In particular, emphasis is placed on the numerical integration of
the set of constitutive equations developed in Section 5.2. Precisely, the algorithmic treat-
ment is concerned with solving the governing equations using a predictor-corrector-type
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algorithm [66] which imposes the constraint posed by the yield condition, as discussed in
Chapter 2, Section 2.5.5. Such algorithms are widely used for implicit simulations. In
the present work, the algorithmic developments are identical for the two selected symme-
try groups, however, the first and second derivatives appearing in the developments (for
example in Eqns. (140)–(145)) differ significantly, and they are highlighted in this section.

5.4.1. Time discrete strong form of the governing equations

The first step of the algorithmic treatment is to integrate the governing equations in the
time domain. Following [126], a fully implicit backward Euler time integration scheme
is used for the integration of the balance and evolution equations of all the models.
This integration scheme is fully implicit10 in the plastic multiplier, internal variables
and direction of the plastic flow. The choice of an implicit time integration scheme is
motivated by the stability analysis of the numerical solution methods, where it is well-
known that an implicit time integration scheme always results in an unconditionally stable
solution [127].

Consider a finite time step [tn+1, tn] and set ∆t = tn+1 − tn. Within this time contin-
uous setting, it has to be ensured that any stress state stays inside the elastic domain,
i.e. Eqn. (128) has to be valid at all times.

5.4.1.1. Orthorhombic symmetry group.

5.4.1.1.1. Model-X-RI: Rate-independent setting. Starting with a rate-
independent setting, the associative flow rule given by Eqn. (296) can be numerically
integrated analogous to Eqns. (129) and (131) as

ε
p
n+1 = εpn +∆λn+1{κ1m3 + n̄n+1} ,
ξn+1 = ξn +∆λn+1{1/y12} ,
αn+1 = αn +∆λn+1{κ1m3 + n̂n+1} ,

(367)

where ∆λn+1 = ∆tλn+1 ≥ 0 denotes the plastic increment, and n̄ and n̂ are defined in
Eqn. (291), respectively. Likewise, for the non-associative plasticity rule it follows that
the evolution equations (303) can be integrated as

ε
p
n+1 = εpn +∆λn+1n̄n+1 ,

ξn+1 = ξn +∆λn+1{1/y12} ,
αn+1 = αn +∆λn+1n̂n+1 .

(368)

These two equations allow the statement of relations for the driving forces fn+1 =
{σn+1, κn+1,βn+1}, with the aid of Eqn. (262), as

σn+1 = E : (εn+1 − ε
p
n+1) = E : (εn+1 − εpn −∆λn+1{κ1m3 + n̄n+1})

κn+1 = −h(ξ̄ + ξn+1)
n = −h(ξ̄ + ξn +∆λn+1{1/y12})n

βn+1 = −H : αn+1 = −H : (αn +∆λn+1{κ1m3 + n̂n+1})
, (369)

for the associative flow response, and

σn+1 = E : (εn+1 − ε
p
n+1) = E : (εn+1 − εpn −∆λn+1n̄n+1)

κn+1 = −h(ξ̄ + ξn+1)
n = −h(ξ̄ + ξn +∆λn+1{1/y12})n

βn+1 = −H : αn+1 = −H : (αn +∆λn+1n̂n+1)

, (370)

10Evaluated at the current time step
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for the non-associative flow response, where E and H are defined in Eqn. (264). Setting
∆λn+1 = 0 in Eqns. (369) and (370) and assuming an elastic step between tn and tn+1,
it follows that the trial values ftrialn+1 = {σtrial

n+1, κ
trial
n+1,β

trial
n+1} of the driving forces can be

computed as

σtrial
n+1 = E : (εn+1 − εpn) , κtrialn+1 = −h(ξ̄ + ξn) and βtrial

n+1 = −H : αn , (371)

which allow for the definition of a trial yield function as

χtrial = χtrial(ftrialn+1) = χ(σtrial
n+1, κ

trial
n+1,β

trial
n+1) , (372)

based on which the loading cases can be distinguished as

χtrial < 0 and ∆λn+1 = 0 ⇐⇒ elastic step
χtrial > 0 and ∆λn+1 > 0 ⇐⇒ plastic step

}
. (373)

For an elastic step, the updated values are same as the trial values such that

ε
p
n+1 = εpn, ξn+1 = ξn, αn+1 = αn, σn+1 = σtrial

n+1 and E

ep
n+1 = E . (374)

For χtrial > 0, a plastic step has to be carried out to ensure consistency with Eqn. (372).
In line with Eqns. (140) and (141), the related non-linear system of equations can be
grouped into a residual vector R, taking into account Eqns. (369), (370), (371) and
recalling the consistency condition, as

R =




Rσ

Rκ

Rβ

Rχ



=




σn+1 − σtrial
n+1 +∆λn+1E : {κ1m3 + n̄n+1}

κn+1 + h(ξ̄ + ξn +∆λn+1{1/y12})n

βn+1 − βtrial
n+1 +∆λn+1H : {κ1m3 + n̂n+1}

χ



= 0 , (375)

for the associative flow response, and

R =




Rσ

Rκ

Rβ

Rχ



=




σn+1 − σtrial
n+1 +∆λn+1E : n̄n+1

κn+1 + h(ξ̄ + ξn +∆λn+1{1/y12})n

βn+1 − βtrial
n+1 +∆λn+1H : n̂n+1

χ



= 0 , (376)

for the non-associative flow response, where χ is the yield function defined in Eqn. (279).
The algebraic solution to general non-linear functions (375) and (376) is complicated, and
they often must be numerically solved using some basic concepts of calculus. The com-
monly used technique is the Newton-Raphson method which yields the solution iteratively
considering the function, its gradient and an initial value. If the unknowns are stored in
a vector Pi

n+1 = {σi
n+1, κ

i
n+1,β

i
n+1,∆λ

i
n+1}, then the solution to Eqns. (375) and (376)

is obtained by the linearisation of R around the point Pi, i.e.

Lin
[
R
]
Pi

n+1

= R(Pi
n+1) +R(Pi

n+1),P ·∆Pi
n+1 = 0 , (377)
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which gives the update algorithm

Pi+1
n+1 = Pi

n+1 +∆Pi
n+1, ∆Pi

n+1 = −
[
R(Pi

n+1),P

]−1

R(Pi
n+1) . (378)

In Eqns. (377) and (378), the explicit form of the necessary iteration tangent R(Pi
n+1),P

can be determined based on the residual vectors (375) and (376), with the aid of
Eqns. (144) and (145) as

R(Pi
n+1),P=




(1 ⊕ 1 ) 0 0 E : {κ1m3 + n̄n+1}

0 1 0
nh

y12
(ξ̄ + ξn +∆λn+1/y12)

n−1

0 0 (1 ⊕ 1 ) H : {κ1m3 + n̂n+1}

{κ1m3 + n̄n+1} {1/y12} {κ1m3 + n̂n+1} 0




,

(379)
for the associative flow response, and

R(Pi
n+1),P=




(1 ⊕ 1 ) 0 0 E : n̄n+1

0 1 0
nh

y12
(ξ̄ + ξn +∆λn+1/y12)

n−1

0 0 (1 ⊕ 1 ) H : n̂n+1

{κ1m3 + n̄n+1} {1/y12} {κ1m3 + n̂n+1} 0




,

(380)
for the non-associative flow response, respectively, where 0 is the fourth-order zero tensor.
With these quantities, Eqn. (377) can be solved, and its converged solution gives the
consistent update of the unknowns Pn+1 = {σn+1, κn+1,βn+1,∆λn+1}. Insertion of Pn+1

into Eqns. (367) and (368) yields the consistent update of the internal variables en+1 =
{εpn+1, ξn+1,αn+1}. The algorithmic elastic-plastic tangent modulus which is consistent
with the Newton-Raphson method can be obtained by taking the variation of the residual
equations with respect to the strain. Accordingly, it follows from Eqn. (378) that




σi+1 − σi

κi+1 − κi

βi+1 − βi

∆λi+1 −∆λi


 = −




Cσσ Cσκ Cσβ Cσχ

Cβσ Cβκ Cββ Cβχ

Cκσ Cκκ Cκβ Cκχ

Cχσ Cχκ Cχβ Cχχ







Rσ

Rκ

Rβ

Rχ


 , (381)

with C =
[
R(Pi

n+1),P
]−1

. A straightforward derivation of the first row of Eqn. (381) with
respect to ε while taking into account Eqns. (375) and (376) gives the desired consistent
tangent operator as

E

ep := σ,ε = (σi+1 − σi),ε = Cσσ : E , (382)

where it should be noted that C =
[
R(Pi

n+1),P
]−1

changes for the associative and non-
associative flow based on Eqns. (379) and (380), respectively.
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5.4.1.1.2. Model-X-RD: Rate-dependent setting. Within a rate-dependent set-
ting, the residual vectors (375) and (376) for the associative and non-associative plasticity
reformulate, respectively, for the choice m = 1 to

R =




Rσ

Rκ

Rβ

Rχ



=




σn+1 − σtrial
n+1 +∆λn+1E : {κ1m3 + n̄n+1}

κn+1 + h(ξ̄ + ξn +∆λn+1{1/y12})n

βn+1 − βtrial
n+1 +∆λn+1H : {κ1m3 + n̂n+1}

χ+ − η

∆t
∆λn+1




= 0 , (383)

and

R =




Rσ

Rκ

Rβ

Rχ



=




σn+1 − σtrial
n+1 +∆λn+1E : n̄n+1

κn+1 + h(ξ̄ + ξn +∆λn+1{1/y12})n

βn+1 − βtrial
n+1 +∆λn+1H : n̂n+1

χ+ − η

∆t
∆λn+1




= 0 , (384)

where the pseudo-consistency condition given by (309)/(150) replaces the consistency
condition, in a rate-dependent setting. Likewise, the necessary iteration tangent (379)
and (380) for the associative and non-associative plasticity reformulate, respectively, for
the choice m = 1 to

R(Pi
n+1),P=




(1 ⊕ 1 ) 0 0 E : {κ1m3 + n̄n+1}

0 1 0
nh

y12
(ξ̄ + ξn +∆λn+1/y12)

n−1

0 0 (1 ⊕ 1 ) H : {κ1m3 + n̂n+1}

{κ1m3 + n̄n+1} {1/y12} {κ1m3 + n̂n+1} − η

∆t




,

(385)
and

R(Pi
n+1),P=




(1 ⊕ 1 ) 0 0 E : n̄n+1

0 1 0
nh

y12
(ξ̄ + ξn +∆λn+1/y12)

n−1

0 0 (1 ⊕ 1 ) H : n̂n+1

{κ1m3 + n̄n+1} {1/y12} {κ1m3 + n̂n+1} − η

∆t




,

(386)
where χ is given by Eqn. (279). Clearly, for η = 0, a rate-independent setting is recovered.
The elastic-plastic tangent modulus which is algorithmically consistent can be computed
using Eqn. (382), with the corresponding definitions.
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5.4.1.2. Transversely isotropic symmetry group.

5.4.1.2.1. Model-I-RI: Rate-independent setting. The evolution equations of this
model within the frame of associative plasticity, given by Eqn. (336), can be numerically
integrated using a fully implicit backward Euler time integration scheme as

ε
p
n+1 = εpn +∆λn+1{κ1(1 −m) + n̄n+1} ,
ξn+1 = ξn +∆λn+1{1/y12} ,
αn+1 = αn +∆λn+1{κ1(1 −m) + n̂n+1} .

(387)

Similarly, the evolution equations within the frame of non-associative plasticity, given by
Eqn. (341) can be expressed in the time discrete form as

ε
p
n+1 = εpn +∆λn+1n̄n+1 ,

ξn+1 = ξn +∆λn+1{1/y12} ,
αn+1 = αn +∆λn+1n̂n+1 ,

(388)

in terms of the expressions n̄ and n̂ defined in Eqn. (338). Analogous to subsection 5.4.1.1,
the residual vectors can be defined as

R =




Rσ

Rκ

Rβ

Rχ



=




σn+1 − σtrial
n+1 +∆λn+1E : {κ1(1 −m) + n̄n+1}

κn+1 + h(ξ̄ + ξn +∆λn+1{1/y12})n

βn+1 − βtrial
n+1 +∆λn+1H : {κ1(1 −m) + n̂n+1}

χ



= 0 , (389)

for the associative flow response, and

R =




Rσ

Rκ

Rβ

Rχ



=




σn+1 − σtrial
n+1 +∆λn+1E : n̄n+1

κn+1 + h(ξ̄ + ξn +∆λn+1{1/y12})n

βn+1 − βtrial
n+1 +∆λn+1H : n̂n+1

χ



= 0 , (390)

for the non-associative flow response, where χ is the yield function defined in Eqn. (318).
Based on Eqns. (389) and (389), the necessary iteration tangent for the associative and
non-associative flow response read

R(Pi
n+1),P=




(1 ⊕ 1 ) 0 0 E : {κ1(1 −m) + n̄n+1}

0 1 0
nh

y12
(ξ̄ + ξn +∆λn+1/y12)

n−1

0 0 (1 ⊕ 1 ) H : {κ1(1 −m) + n̂n+1}

{κ1(1 −m) + n̄n+1} {1/y12} {κ1(1 −m) + n̂n+1} 0




,

(391)
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and

R(Pi
n+1),P=




(1 ⊕ 1 ) 0 0 E : n̄n+1

0 1 0
nh

y12
(ξ̄ + ξn +∆λn+1/y12)

n−1

0 0 (1 ⊕ 1 ) H : n̂n+1

{κ1(1 −m) + n̄n+1} {1/y12} {κ1(1 −m) + n̂n+1} 0




,

(392)
respectively, which allow for the computation of algorithmically consistent elastic-plastic
tangent modulus using Eqn. (382).
5.4.1.2.2. Model-I-RD: Rate-dependent setting. For a rate-dependent setting,
Eqns. (389) and (390) reformulate for the choice of m = 1 in Eqn. (347) to

R =




Rσ

Rκ

Rβ

Rχ



=




σn+1 − σtrial
n+1 +∆λn+1E : {κ1(1 −m) + n̄n+1}

κn+1 + h(ξ̄ + ξn +∆λn+1{1/y12})n

βn+1 − βtrial
n+1 +∆λn+1H : {κ1(1 −m) + n̂n+1}

χ+ − η

∆t
∆λn+1




= 0 , (393)

for the associative flow response, and

R =




Rσ

Rκ

Rβ

Rχ



=




σn+1 − σtrial
n+1 +∆λn+1E : n̄n+1

κn+1 + h(ξ̄ + ξn +∆λn+1{1/y12})n

βn+1 − βtrial
n+1 +∆λn+1H : n̂n+1

χ+ − η

∆t
∆λn+1




= 0 , (394)

for the non-associative flow response, respectively, where χ is given by Eqn. (318). The
necessary iteration tangent for the associative and non-associative flow response, respec-
tively, is of the form

R(Pi
n+1),P=




(1 ⊕ 1 ) 0 0 E : {κ1(1 −m) + n̄n+1}

0 1 0
nh

y12
(ξ̄ + ξn +∆λn+1/y12)

n−1

0 0 (1 ⊕ 1 ) H : {κ1(1 −m) + n̂n+1}

{κ1(1 −m) + n̄n+1} {1/y12} {κ1(1 −m) + n̂n+1} − η

∆t




,

(395)
and

R(Pi
n+1),P=




(1 ⊕ 1 ) 0 0 E : n̄n+1

0 1 0
nh

y12
(ξ̄ + ξn +∆λn+1/y12)

n−1

0 0 (1 ⊕ 1 ) H : n̂n+1

{κ1(1 −m) + n̄n+1} {1/y12} {κ1(1 −m) + n̂n+1} − η

∆t




.

(396)
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5.4.1.2.3. Model-II-RI: Rate-independent setting. The corresponding equations
of Model-II-RI are same as that of Model-I-RI for the choice of χ and φ defined in
Eqns. (334) and (345), and the terms n̄ and n̂ defined in Eqn. (344).

5.4.1.2.4. Model-II-RD: Rate-dependent setting. In this setting, the correspond-
ing equations are obtained from those of Model-I-RD by choosing χ and φ in Eqns. (334)
and (345), and n̄, n̂ in Eqn. (344).

5.4.2. Time discrete weak form of the governing equations

In what follows, the time discrete governing equations (for both symmetry groups) ob-
tained from the previous step recast into their weak form. It should be emphasised here
that the plastic variables en+1 = {εpn+1, ξn+1,αn+1} are solved locally at the end of the
previous step, using for example Eqn. (367) which defines the local update algorithm for
these variables. Consequently, the reduced global boundary value problem in its time
discrete strong form reads

div[σn+1] +Υn+1 = 0 , (397)

where σn+1 is obtained from the previous step. Appealing to the standard arguments of
variational calculus, i.e. Eqns. (151)–(157), the desired weak form is obtained as

∫

B

δε : σn+1 dV −
∫

∂B

δu · tn+1 dA−
∫

B

δu ·Υn+1 dV = 0 , (398)

which provides the starting point for the space discretisation using finite elements.

5.4.3. Space discretisation

With reference to the non-linear equation (398), it follows that the displacement un+1(x)
is still an infinite dimensional unknown. It can be solved using the finite element method,
which requires an exact linearisation of the time discrete weak form (398). The spatial dis-
cretisation with finite elements is analogous to that outlined in Chapter 2, Eqns. (158)–

(180), where standard approximations un+1 =
∑NI

I=1NIu
I
n+1 and δun+1 =

∑NI

I=1NIδu
I
n+1

of the actual and virtual displacement fields, respectively, are considered. The primary
field un+1(x) is discretised using C0 continuous interpolations. This will eventually lead to
a set of algebraic equations that can be solved for the displacement field u. To this end, a
summary of the rate-independent algorithmic treatment for C3 and C13 symmetry groups
is given in Box 11 and Box 12, respectively, which can be extended for a rate-dependent
setting in a straightforward manner. Additionally, for alternate non-associative plasticity
models outlined in Section 5.3, the algorithmic treatment is completely analogous to that
of the other models in this section and is therefore overlooked.

Analogous to Chapter 4, three different constitutive laws are implemented for each
model of the two selected symmetry groups. Starting with the C3 symmetry group, they
are defined by

1. Model-X-RI-a/Model-X-RD-a: associative pressure-independent model, represented
by Eqns. (259) and

[
(279)

]∣∣
κ1=0

,

2. Model-X-RI-b/Model-X-RD-b: associative pressure-dependent model, obtained by
Eqns. (259) and (279) ,
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Box 11: Summary of the algorithmic treatment for the C3 symmetry group.

1. Given are the history variables en = {εpn, ξn,αn} and the current strain εn+1

2. Compute the trial values

σtrial
n+1 = ψe(εn+1 − εpn),(ε−εp) , κtrialn+1 = −ψp

iso(ξn),ξ and βtrial
n+1 = −ψp

kin(αn),α

3. Compute the trial plasticity inducing stress tensor in terms of Σtrial
n+1 = σtrial

n+1+βtrial
n+1

strialn+1 = Σtrial
n+1 − tr[m3Σ

trial
n+1]1 + tr[(m3 −m1)Σ

trial
n+1]m1 + tr[(m3 −m2)Σ

trial
n+1]m2

4. Compute the trial yield criterion χtrial = χ(Σtrial
n+1, s

trial
n+1, κ

trial
n+1)

5. IF χtrial ≤ 0 THEN

• Elastic step:

set
ε
p
n+1 = εpn, ξn+1 = ξn, αn+1 = αn ,

σn+1 = σtrial
n+1 and E

ep
n+1 = ψe(ε− εpn),(ε−εp)(ε−ε

p
n)

6. ELSE

• Plastic step:

determine Pi
n+1 = {σi

n+1, κ
i
n+1,β

i
n+1,∆λ

i
n+1} using Eqns. (375)–(381)

Pi+1
n+1 = Pi

n+1 +∆Pi
n+1, ∆Pi

n+1 = −
[
R(Pi

n+1),P

]−1

R(Pi
n+1)

update the internal variables using Eqns. (367), (368)

compute the algorithmically consistent tangent modulus using Eqn. (382)

7. ENDIF

8. Reformulate time discrete governing balance equations to time discrete weak form

9. Solve for the infinite dimensional unknown un+1(x) using the finite element method

3. Model-X-RI-c/Model-X-RD-c: non-associative pressure-dependent model, given by
Eqns. (259), (279) and (302) .

Likewise, with respect to the two plastic response functions defined for the C13 symmetry
group, the three constitutive laws are defined by

1. Model-I-RI-a/Model-I-RD-a: associative pressure-independent model, represented
by Eqns. (268) and

[
(318)

]∣∣
κ1=0

,

2. Model-I-RI-b/Model-I-RD-b: associative pressure-dependent model, obtained by
Eqns. (268) and (318) ,
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Box 12: Summary of the algorithmic treatment for the C13 symmetry group.

1. Given are the history variables en = {εpn, ξn,αn} and the current strain εn+1

2. Compute the trial values

σtrial
n+1 = ψe(εn+1 − εpn),(ε−εp) , κtrialn+1 = −ψp

iso(ξn),ξ and βtrial
n+1 = −ψp

kin(αn),α

3. Compute the trial plasticity inducing stress tensor in terms of Σtrial
n+1 = σtrial

n+1+βtrial
n+1

strialn+1 = Σtrial
n+1 −

1

3
tr[Σtrial

n+1]1 − 3

2
tr[m′Σtrial

n+1]m
′

4. Compute the trial yield criterion χtrial = χ(Σtrial
n+1, s

trial
n+1, κ

trial
n+1)

5. IF χtrial ≤ 0 THEN

• Elastic step:

set
ε
p
n+1 = εpn, ξn+1 = ξn, αn+1 = αn ,

σn+1 = σtrial
n+1 and E

ep
n+1 = ψe(ε− εpn),(ε−εp)(ε−ε

p
n)

6. ELSE

• Plastic step:

determine Pi
n+1 = {σi

n+1, κ
i
n+1,β

i
n+1,∆λ

i
n+1} using Eqns. (389)–(392)

Pi+1
n+1 = Pi

n+1 +∆Pi
n+1, ∆Pi

n+1 = −
[
R(Pi

n+1),P

]−1

R(Pi
n+1)

update the internal variables using Eqns. (387), (388)

compute the algorithmically consistent tangent modulus using Eqn. (382)

7. ENDIF

8. Reformulate time discrete governing balance equations to time discrete weak form

9. Solve for the infinite dimensional unknown un+1(x) using the finite element method

3. Model-I-RI-c/Model-I-RD-c: non-associative pressure-dependent model, given by
Eqns. (268), (318) and (340) ,

and

1. Model-II-RI-a/Model-II-RD-a: associative pressure-independent model, represented
by Eqns. (268) and

[
(334)

]∣∣
κ1=0

,

2. Model-II-RI-b/Model-II-RD-b: associative pressure-dependent model, obtained by
Eqns. (268) and (334) ,
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3. Model-II-RI-c/Model-II-RD-c: non-associative pressure-dependent model, given by
Eqns. (268), (334) and (345) ,

respectively.
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6. Parameter identification

In this section, a methodology designed to calibrate the models developed in the previ-
ous section is described. The identification of material parameters associated with the
constitutive equations is crucial for material models, as the reliability on these models
for non-linear inelastic simulations not only depends on the underlying physical assump-
tions and accuracy of the numerical solution, but also on the accurate deduction of the
material parameters from the experimental data. The parameter identification prob-
lem can be expressed mathematically as a non-linear optimisation problem subjected
to inequality constraints [128]. The solution of this problem using various optimisation
techniques [129–131] yields optimal parameters for a given set of algebraic/differential
equations associated with the model, initial and loading conditions, available experimen-
tal data and the simulated material response.

Remark 8. Discussions in this chapter are restricted only to the transversely isotropic
system due to the lack of experimental data for the orthorhombic symmetry group. Thus,
constitutive equations appearing only in subsections 5.1.2 and 5.2.2 are of interest here.

6.1. Transversely isotropic symmetric group

For the parameter calibration, elastic parameters are taken directly from [7, 18], and
parameters describing the plastic response in Eqns. (268) and (318)/(334) are obtained
by an optimisation procedure [132]. The experimental data for the present study is taken
from [7, 18], which provides the in-plane shear stress curve (Fig. 3(a) from [18]) and the
transverse compression curve (Fig. 4(b) at ε̇0 = 1.5 × 10−4 from [18]). To this end,
the parameters y12, h and n are calibrated from the non-linear in-plane shear stress-
strain curve, y23 is calibrated from the transverse shear stress-strain curve and y22c is
calibrated from the transverse compression data. Due to the lack of experimental data
for the transverse shear response, micro-mechanical models are used to generate missing
data. Two types of micro-mechanical models are used in the present study, namely a

1

2

3

Figure 19: Micro-mechanical models. Geometrical set up of the unit cell (UCA).
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Table 5: Material parameters for the micro-mechanical models

No. Name Par. Value Unit

DIG/UCA
Fibre

1. Young’s modulus 1-axis E1f 214000 [MPa]
2. Young’s modulus 2-axis E2f 26000 [MPa]
3. Shear modulus 12-plane G12f 112000 [MPa]
4. Shear modulus 23-plane G23f 8996.3 [MPa]
5. Poisson’s ratio ν12f 0.28 [−]

Matrix

6. Young’s modulus Em 4100 [MPa]
7. Poisson’s ratio νm 0.356 [−]
8. Initial yield stress σ0

y 13.05/12.99 [MPa]
9. Hardening modulus h 187/220.05 [MPa]
10. Hardening exponent n 0.269/0.228 [−]

unit cell analysis (UCA) with hexagonal arrangement11, see Fig. 19, and an incremental
Mori-Tanaka approach using DIGIMAT (DIG) [133]. For a detailed discussion on the
incremental Mori-Tanaka approach, cf. [17,19,20]. Furthermore, fibres are assumed to be
linear elastic and transversely isotropic with a fibre volume fraction of 60% as given in [18],
and the matrix is assumed to be an isotropic elastic-plastic solid. A rate- and pressure-
independent plasticity formulation using power law hardening is chosen for both the micro-
mechanical models. Due to the availability in the software packages, a standard J2-
plasticity is used in the case of the DIGIMATmodel and the Johnson-Cook material model
provided by ABAQUS [134] is chosen for the UCA. Note that the rate- and temperature-
dependency in the Johnson-Cook model are not considered. Consequently, the yield stress
σy is governed by the Ludwig equation of the form

σy = σ0
y + hξn . (399)

The elastic properties of fibres and the matrix are given in [18] and listed in Table 5,
whereas the plastic parameters are calibrated from the experimental data based on the
τ12 − γ12 curve using the calibration procedure explained subsequently.

Note that all the models use periodic boundary conditions and are discretised using hex-
ahedral 3D continuum elements (C3D8) with linear interpolation. For the UCA, the unit
cell is discretised into 122 C3D8 elements. A convergence study of UCA showed no change
in the overall stress-strain response for increasing mesh resolutions. For the simulations
of the DIG and the models proposed in Chapter 5, a single C3D8 element is used.

6.1.1. Calibration procedure

The plastic parameters of the two micro-mechanical models and the two meso models
associated with the group, are calculated by a least squares minimisation of the function

f(x) =
1

k

n∑

k=1

∥∥δ̄k − δk(x)
∥∥ → min , (400)

11hexagonal arrangement is a better representation of the reality according to [18]
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Table 6: Material parameters for transversely isotropic plasticity

No. Name Par. Value Unit

1. Young’s modulus 1-axis E1 130000 [MPa]

2. Young’s modulus 2-axis E2 11000 [MPa]

3. Shear modulus 12-plane G12 5800 [MPa]

4. Poisson’s ratio ν12 0.306 [−]

5. Poisson’s ratio ν23 0.44 [−]

6. Transverse compressive yield stress y22c

{
45.9/24.6a

50.01/27.4b
[MPa]

7. In-plane shear yield stress y12 17.9/9.41 [MPa]

8. Transverse shear yield stress y23 15.9/10.66 [MPa]

9. Hardening modulus h 192.3/177.5 [MPa]

10. Pre-strain ᾱ 1×10−12 [−]

11. Hardening exponent n 0.296/0.246 [−]

aModel-I-RI-b/-II-RI-b
bModel-I-RI-c/-II-RI-c

where δ̄k and δk(x) represent target and computed values, respectively. The points k =
{1, · · ·, n} denote the identification points at which target and computed values are to be
compared, and x is an array of fitting parameters, i.e. x = {σ0

y , h, n}|12 for the micro-
mechanical models calibration, x = {y12, h, n}|12 and x = {y23}|23 for the pressure-
independent models and additionally x = {y22c}|22 for the two pressure-dependent models
calibration. A simplex Nelder-Mead algorithm [129, 135] is used for the minimisation of
Eqn. (400).

At first, the calibration procedure is used to obtain the plastic parameters of the micro-
mechanical models. As pressure dependency is not considered in these models, only the
experimental τ12−γ12 curve is needed to calibrate the associated parameters σ0

y , h and n.
With the calibrated micro-mechanical models, the transverse compression and transverse
shear predictions can be obtained.

Remark 9. For the micro-mechanics simulations, only phase averaged stresses show zero
hydrostatic pressure under transverse shear loading. Due to the stress concentrations in
the matrix, the UCA locally shows a hydrostatic component which may affect the overall
plastic response. It has been found that this effect is rather low compared to variations
caused by other factors, for example fibre arrangement, and is therefore neglected. The
transverse compression curve, which also does not include pressure sensitivity of the ma-
trix, is used for the additional verification of the meso models and not for calibration. By
considering the pressure-independent models under transverse compression it is possible
to distinguish between the effects of anisotropy (due to the micro-structure) and pressure
dependency of the matrix, which cannot be inferred from experimental data [44].

To calibrate the plastic parameters of meso models, the calibration procedure is first used
to obtain y12, h and n of Model-I-RI-a/-II-RI-a by fitting to the experimental data of the
in-plane shear response. Keeping these parameters fixed, y23 values for Model-I-RI-a and
Model-II-RI-a are obtained from the curves of the calibrated micro-mechanical models.
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Finally, y22c values for Model-I-RI-b/-II-RI-b and Model-I-RI-c/-II-RI-c are obtained from
the experimental σ22 − ε22 curve. The calibrated plastic parameters for all the micro-
mechanical and meso models are reported in Tables 5–6.

6.1.2. Calibration results

Figure 20 shows results of the calibration comparing the experimental data and various
models for the three calibration load cases. It can be seen that all models reproduce
the experimental shear (τ12 − γ12) response very well. Further, the numerical results in
Fig. 20 (a) and (b) show that the transverse shear response is stiffer than the in-plane
shear response for UCA, whereas the transverse shear response is softer than the in-plane
shear response for DIG. The difference between the predicted responses can be attributed
to the fact that mean field methods, such as the incremental Mori-Tanaka approach used
by DIG, are based on analytical solution of phase averaged stresses that do not take
stress concentrations and details of the fibre arrangement into account. As a result, such
incremental Mori-Tanaka schemes are less accurate than discrete unit-cell predictions.
With reference to subsection 5.2.2.2, Eqn. (331), this readily implies that the convexity
requirement for Model-I-RI-a is not fulfilled for calibration to UCA. Hence, Model-I-RI-a
is calibrated to DIG and Model-II-RI-a is calibrated to UCA. Note that calibrating y23
for Model-II-RI-a to DIG would be admissible as well, however this comparison did not
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Figure 20: Calibration results. Comparison of experimental, micro-mechanical and meso
models responses for (a) in-plane shear, (b) transverse shear and (c) transverse compression
load.
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yield any significant insights and is therefore not discussed further.

Figure 20 (c) shows the comparison of micro-mechanical and meso models to the experi-
mental response, for a transverse compression load. It can be seen that the compressive re-
sponse of Model-I-RI-a fits the DIG model very well whereas Model-II-RI-a is significantly
less stiff than UCA in the non-linear compression regime. As stated and computationally
verified in [18,44], this behaviour can be corrected by taking into account the influence of
hydrostatic pressure in the formulation of plastic response functions. Therefore, Model-I-
RI-b/-II-RI-b and Model-I-RI-c/-II-RI-c are used to capture the experimental transverse
compression (σ22 − ε22) data by calibrating y22c. The resulting good agreement between
the experimental data and Model-I-RI-c is shown in Fig. 20 (c). Likewise, Model-I-RI-
b/-II-RI-b and Model-II-RI-c can be calibrated for y22c, which essentially yields the same
compressive response as Model-I-RI-c. It should, however, be noted that, in order to
reproduce the compression test curve, the coefficient of hydrostatic pressure is compara-
tively higher for Model-II-RI-b/-RI-c than that of Model-I-RI-b/-RI-c. Furthermore, y22c
values also differ slightly between associative (b) and non-associative (c) models.
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7. Selected numerical examples

The applicability and predictive capacity of models discussed in Chapters 3–5 is now
demonstrated by means of representative numerical simulations. All the proposed models
are numerically implemented as user subroutines (UMAT) in ABAQUS, a general pur-
pose non-linear finite element program documented in [134]. These numerical examples
highlight the basic constitutive characteristics of the framework of anisotropic elasticity
and plasticity, with respect to the two selected symmetry groups. At first, numerical
simulations for homogeneous deformations are performed to verify the correctness of the
implementation. Subsequently inhomogeneous boundary value problems are considered.

7.1. Anisotropic elasticity

In this section, homogeneous uni-axial deformation is considered in order to highlight the
constitutive characteristics of the framework of elasticity, for instance the effect of fibre
orientation on the overall material response.

7.1.1. Single element test for the orthorhombic symmetry group

Starting with the C3 symmetric group, predictions of the model (Eqns. (182)–(204)) for
various fibre orientations θ, for an applied uni-axial deformation are studied. The geo-
metrical set up and loading conditions are shown in Fig. 21, while the material properties
used in the simulation are listed in Table 7. The simulation is performed in a displacement
driven context with an axial deformation of ū = 0.05 mm applied as shown in Fig. 21. At
y = 0, the vertical movement of the bottom surface is constrained by imposing uy = 0.
Likewise, at x = 0 and z = 0, the constraints ux = 0 and uz = 0, respectively, are imposed.

Figure 22 (a) shows the stress-strain curve for six different fibre orientations. Recall here
that a woven fabric, which is a typical example for the orthorhombic symmetry group,
has two fibre orientations perpendicular to each other and these fibre directions denote
the principal material directions. For such a material, stiffness in the loading direction
decreases when fibre orientations are changed with respect to loading direction, as seen
in Fig. 22 (a). The orientations of fibres with respect to the loading direction are pivotal
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Figure 21: Single element test for the orthorhombic symmetry group. Geometrical
set up and the loading conditions.
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Table 7: Material parameters for the single element test–C3 symmetric group

No. Name Par. Value Unit

1. Young’s modulus 1-axis E1 61340 [MPa]

2. Young’s modulus 2-axis E2 0.5×E1 [MPa]

3. Young’s modulus 3-axis E3 0.75×E1 [MPa]

4. Shear modulus 12-plane G12 19500 [MPa]

5. Shear modulus 13-plane G13 0.5×G12 [MPa]

6. Shear modulus 23-plane G23 0.75×G12 [MPa]

7. Poisson’s ratio ν12 0.3 [−]

8. Poisson’s ratio ν13 0.5×ν12 [−]

9. Poisson’s ratio ν23 0.75×ν12 [−]

parameters affecting the mechanical properties of the composite [105]. Thus, the variation
of elastic moduli with the fibre orientation angle θ is illustrated in Fig. 22 (b). It is seen
that the modulus Ex is highest for θ = 0◦ (loading along x-axis) and lowest for θ = 90◦. In
contrast, the modulus Ey is highest for θ = 90◦ and lowest for θ = 0◦. Furthermore, an U-
shaped dependency of Ex and Ey on the fibre orientation is seen [136]. The shear modulus
Gxy is relatively constant for different fibre orientations. This is a direct consequence of
the choice of G13 and G23, which are nearly identical, see also [106, 107] for a detailed
discussion. Meanwhile, the moduli Gxz and Gyz follow same trend as that of Ey and Ex,
respectively, but at lower magnitudes.

7.1.2. Single element test for the transversely isotropic symmetry group

With respect to the C13 symmetric group, the performance of the model described by
Eqns. (206)–(225) is now analysed by means of numerical simulations. The geometrical
set up, boundary and loading conditions are identical to the previous case, except that
C13 symmetric group is characterised by the existence of a single preferred direction a

(Fig. 23). The material parameters used for the simulation are given in Table 8.
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Figure 22: Single element test for the orthorhombic symmetry group. (a) Stress-
strain curves for varying orientations θ of the fibres, and (b) variation of elastic moduli for
various fibre orientations.
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Table 8: Material parameters for the single element test–C13 symmetric group

No. Name Par. Value Unit

1. Young’s modulus 1-axis E1 121000 [MPa]

2. Young’s modulus 2-axis E2 8600 [MPa]

3. Shear modulus 12-plane G12 4700 [MPa]

4. Poisson’s ratio ν12 0.27 [−]

5. Poisson’s ratio ν23 0.4 [−]

Figure 24 (a) shows the stress-strain curve for varying fibre orientations. In line with the
expectations, it is seen that the material response is stiffer for smaller fibre orientations.
The variation of elastic moduli with fibre orientation is illustrated in Fig. 24 (b), for a
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Figure 23: Single element test for the transversely isotropic symmetry group. Geo-
metrical set up and the loading conditions.
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(a) Stress-strain curves for varying orientations θ of the fibres, and (b) variation of elastic
moduli for various fibre orientations.
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Table 9: Summary of the load paths

Load path No. τ ∗12 -σ∗
22 −σf

22 τ f12 λ = −σf
22/τ

f
12 Unit

τ12 → −ε22 01© 43.1 – – – – [MPa]

02© 56.2 – – – – [MPa]

03© 66.9 – – – – [MPa]

04© 79.5 0 – – – [MPa]

−σ22 → γ12 05© – 50.2 – – – [MPa]

06© – 84.83 – – – [MPa]

07© – 124.1 – – – [MPa]

08© – 164.5 – – – [MPa]

09© 0 242.6 – – – [MPa]

radial load 10© – – 215.6 30.2 7.17 [–]

11© – – 192.1 65.5 2.94 [–]

12© – – 164.7 84.3 1.96 [–]

13© – – 91 93 0.98 [–]

typical carbon epoxy unidirectional material. Analogous to the C3 symmetric group, Ex

is highest for θ = 0◦ and decreases monotonically to reach its minimum value at θ = 90◦.
The shear modulus Gxy is maximum at θ = 45◦ and minimum at θ = 0◦. Indeed, it can be
seen that the form of the variation of elastic moduli depends on the relative magnitudes
of the elastic constants defined with respect to the principal material coordinates [106].

7.2. Anisotropic plasticity. Isotropic dissipative response functions

In this section, the predictions of the two models described in Chapter 4 are compared
with experimental results from the literature [7], for a set of biaxial loads. Note that
MDPR-a and MCOO-a are not considered as it is seen that they are deficient in pre-
dicting transverse compression. The geometrical set up is the same as Fig. 23, except
that periodic boundary conditions are imposed. The material parameters used for the
numerical analysis are listed in Tables 3–4.

7.2.1. Single element test. Predictions for biaxial loads

Thirteen different load paths given in [7] are considered which are summarised in Table 9.
For the first load path, referred to as the τ12 → −ε22 path, the specimen is first sheared
to a predetermined stress level (τ ∗12) and it is then compressed under displacement control
while the shear stress is kept constant. The shear stress values are taken directly from [7]
and the final value of compressive strain is chosen to be −ε22 = 4%. Along the same
lines, in the second load path, referred to as the −σ22 → γ12 path, the specimen is first
compressed to a desired stress level (−σ∗

22) and then sheared with γ12 = 4% while keeping
the transverse compressive stress constant. Finally, for the radial load path, a proportional
increase of compressive and shear stress is considered with four different proportionality
factors. Note that for this particular load path, final stress values (−σf

22 and τ f12) from
the experiments are applied in numerical simulations.



10
2

S
el
ec
te
d
n
u
m
er
ic
a
l
ex
a
m
p
le
s

0

50

100

150

200

250

0 1 2 3 4 5
(a)

0

50

100

150

200

250

0 1 2 3 4 5
(b)

0

1

2

3

4

5

0 1 2 3 4 5

(
)

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5

(d)

C

o

m

p

r

e

s

s

i

v

e

s

t

r

e

s

s

,

-

σ
2
2

[

M

P

a

℄

Compressive strain, -ε22 [%]

Experiment

MDPR-b

01©

02©
03©

09©

C

o

m

p

r

e

s

s

i

v

e

s

t

r

e

s

s

,

-

σ
2
2

[

M

P

a

℄

In-plane shear strain, γ12 [%]

01©
02©

03©

I

n

-

p

l

a

n

e

s

h

e

a

r

s

t

r

a

i

n

,

γ
1
2
[%

]

Compressive strain, -ε22 [%]

01©

02©

03©

I

n

-

p

l

a

n

e

s

h

e

a

r

s

t

r

e

s

s

,

τ 1
2

[

M

P

a

℄

In-plane shear strain, γ12 [%]

01©

02©
03©

Figure 25: Predictions for biaxial loads. Comparison of experimental and MDPR-b model responses for the τ12 → −ε22 loading path.
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Figure 28: Predictions for biaxial loads. Comparison of experimental and MCOO-b model responses for the τ12 → −ε22 loading path.
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Figure 29: Predictions for biaxial loads. Comparison of experimental and MCOO-b model responses for the −σ22 → γ12 loading path.
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Figure 30: Predictions for biaxial loads. Comparison of experimental and MCOO-b model responses for the radial loading path.
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Figure 36: Predictions for biaxial loads. Comparison of experimental and MCOO-c model responses for the radial loading path.
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7.2.1.1. Predictions of MDPR-b. Starting with the τ12 → −ε22 load path, Fig. 25
shows a comparison of the MDPR-b model predictions with the experimental results.
Compressive responses predicted by the model along with a pure compression case (load
path 09©) are shown in Fig. 25 (a). The experimental results show that the material
response first softens and then subsequently stiffens for increasing shear preloads. This
general behaviour is not captured by the model. Additionally, for shear dominated stress
states (load paths 01©– 03©), erroneous predictions of the model can be seen where tensile
rather than compressive strain is predicted. Good qualitative agreement with the exper-
imental response is seen in Figs. 25 (b) and (c), with the predicted shear strains being
rather high. The shear response is captured quite well by the model, see Fig. 25 (d),
where the model predicts the increase in shear strain during compressive loading as seen
in the experiments.

For the −σ22 → γ12 load path, the predicted shear responses of the model do not agree
well with experiments as seen in Fig. 26 (a). Owing to pressure-dependent plastic response
functions, the application of transverse compression load hinders the onset of yielding and
thus results in the reduced plastic flow [18]. Consequently, the shear response in presence
of compression is overpredicted. Excellent agreement with experiments can be seen in
Fig. 26 (b), whereas qualitative agreement with experiments is observed in Fig. 26 (c) with
the predicted compressive strains being quite low. The transverse compressive behaviour
is well reproduced by the model as seen in Fig. 26 (d).

Results of the radial load path are compared in Fig. 27. Though the predicted shear
response is reasonable and the predicted shear strains are quite low, the model partly
reproduces the experimentally observed trends where the material response first shifts up
(from 04© to 13©) before shifting down, as seen in Fig. 27 (a). However, the response of load
path 12© is overestimated. The predicted compressive responses, as seen in Fig. 27 (d),
are in excellent agreement with the experimental responses.

7.2.1.2. Predictions of MCOO-b. Figure 28 shows a comparison of MCOO-b model
predictions and experimental results for the τ12 → −ε22 load path. Though there are
no erroneous predictions for shear dominated loads, the general trends of experimentally
observed behaviour are not captured by the model, see Fig. 28 (a). For the load path 03©,
there is an observable overprediction by the model. In comparison with the MDPR model,
the agreement with the experimental response is not satisfactory, as seen in Figs. 28 (b)
and (c). It can be inferred from Fig. 28 (d) that the shear response agrees reasonably well
with the experimental response, although the predicted shear strains are noticeably low.

Analogous to MDPR-b model, the shear response in presence of compression is overpre-
dicted by the MCOO-b model in the −σ22 → γ12 load path, as seen in Fig. 29 (a). Good
qualitative agreement is seen with the experimental response in Fig. 29 (b), while the pre-
dicted compressive strains in Fig. 29 (c) are much higher and the qualitative agreement
is also not good. Meanwhile, the predicted transverse compressive responses agree well
with the experiment as seen in Fig. 29 (d), again with the predicted −ε22 much greater
than those observed experimentally.

The material responses for radial load paths are also not reproduced well by the MCOO-b
model, which is evident from Figs. 30 (a)–(c). However, compressive responses predicted
by the model is in good agreement with experiments as seen in Fig. 30 (d).

7.2.1.3. Predictions of MDPR-c. Figure 31 shows a comparison of MDPR-c model
predictions and experimental responses for the τ12 → −ε22 load path. The non-associative
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flow rule corrects the physically inconsistent material response exhibited by the associative
flow rule under shear dominated loads, as seen in Fig. 31 (a). A good qualitative agreement
with experiments is seen for the compressive response. In comparison with MDPR-b, the
predicted shear strains are much lower, and significant deviations are observed for load
paths 01©– 03© which is visible from Figs. 31 (b) and (c). The shear response is captured
well by the model as seen in Fig. 31 (d).

Figure 32 shows MDPR-c model predictions for the −σ22 → γ12 load path. Similar to the
associated flow response, the shear response in presence of compression is overpredicted
by the MDPR-c model as seen in Fig. 32 (a). The compressive strains are overpredicted
for load paths 05©– 08©, and rather high deviations can be seen in Fig. 32 (c). The overall
compressive response for this load path is captured well by the model, with a slightly
overpredicted compressive strain as seen in Fig. 32 (d).

For the radial load path, material responses are again overpredicted by the model, see
Figs. 33 (a)–(c). Under shear dominated stress states (lower proportionality factors),
the agreement with experimental results is not good. In Fig. 33 (b), a rather linear
relationship between the shear and compressive strain is observed for load paths 11©– 13©.
Nevertheless, the compressive response is captured quite well as seen in Fig. 33 (d).

7.2.1.4. Predictions of MCOO-c. Figures 34–36 show the MCOO-c model predictions
for the thirteen load paths. Predictions of the non-associative model are largely similar
to that of the associative model (MCOO-b). Overall, the MCOO-c model reproduces
the shear and compressive response accurately for the non-proportional loading paths.
However, predictions are not good for the radial load path where deviations are strong.

From a theoretical standpoint, while the use of pressure-dependent plastic response func-
tions corrects the underpredictions of transverse stress, an excessive hardening is induced
in the shear response for combined compressive/shear loads. This can mainly be at-
tributed to the cone shaped Drucker-Prager-type yield surface used by these models, an
effect which is also observed in [18]. Moreover, the MCOO model does not ensure a linear
elastic fibre response owing to singularity problems of the transformation tensor. Thus,
the use of isotropic plastic response functions is not desirable on the meso scale since
they do not reproduce the full complexity of the problem. The lack of a decoupled stress
response results in significant deviations under biaxial loads.

7.3. Anisotropic plasticity. Anisotropic dissipative response functions

Restricting to the C13 symmetric group, the performance of the six respective models
developed in Chapter 5 are now analysed by homogeneous and inhomogeneous boundary
value problems. The material parameters used in the numerical simulations are listed in
Table 6.

7.3.1. Single element test. Rate dependency and homogeneous strain cycling

To demonstrate the effect of rate dependency and anisotropic plastic response, the analysis
of a single element test is considered. The geometrical set up is same as that in Fig. 23.
Figure 37 (a) shows stress-strain curves of Model-I-RD-a (without kinematic hardening)
for the in-plane shear response, for increasing viscosity parameters. In line with the
expectations, it can be seen that as η → 0, the material response is rate-independent. On
the other hand, a linear elastic material response is expected as η → ∞. Between these
limits, the material response is expected to be stiffer for increasing viscosity parameters,
which can be clearly inferred from Fig. 37 (a).
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Table 10: Kinematic hardening parameters for the C13 symmetric group

No. Par. Value Unit

1. ϑ1 0.015×E2 [MPa]

2. ϑ2 0.025×E2 [MPa]

3. ϑ3 0.035×E2 [MPa]

4. ϑ4 0.045×E2 [MPa]

5. ϑ5 0.055×E2 [MPa]

6. ζ2 0.004 [−]

7. ζ3 0.003 [−]

Figure 37 (b) shows the stress-strain curves of a single element subjected to longitudinal
cyclic load, for three different fibre orientations. The kinematic hardening parameters
used in the simulation are listed in Table 10. The response of 0◦ fibre orientation is linear
elastic as expected. For 45◦ fibre orientation, the initial elastic response is stiffer than
that of 90◦. However, in the plastic regime, the response of 90◦ fibre orientation is stiffer
as significant plastic strains that develop during shear deformation softens the material
response.

7.3.2. Single element test. Tension–compression asymmetry

The six meso models are now applied to the analysis of a single element test for a uni-
axial strain cycle to verify the implementation. The geometrical set up is identical to the
previous case. In addition to the material parameters in Table 6, the kinematic hardening
parameters are chosen to be same as those in the previous example, as listed in Table 10.
It should be noted here that for comparison purposes, in this particular example, the same
transverse compressive yield stresses are used for associative and non-associative pressure-
dependent models, i.e. y22c = 50.01 MPa for Model-I-RI-b/-c, and y22c = 27.4 MPa for
Model-II-RI-b/-c, such that differences in the predicted response can purely be attributed
to the respective model formulations.

The first test case is a uni-axial cyclic test where the specimen is loaded in the transverse
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direction up to a magnitude of ε22 = ±5%. The results of the finite element analyses
for one loading/unloading/reloading cycle are shown in Fig. 38 (a) for Model-I-RI and
Fig. 38 (c) for Model-II-RI. It can be seen that the stress in the direction of straining be-
haves symmetrically in the tension and compression regime for the pressure-independent
models. In contrast, the two pressure-dependent models exhibit the well-known tension-
compression asymmetry, where a difference between the yield limits in tension and the
compression regime is observed. Also, hardening effects are more dominant in the com-
pression regime.

As a subsequent example, a combined compression-shear test is analysed. Recall here
that the associative pressure-independent model and non-associative pressure-dependent
model yield identical results for a simple shear load. Therefore, a full shear loading cycle
is superimposed by additional transverse strain. To this end, a transverse compressive
strain of magnitude ε22 = −1.5% is first applied. While ε22 is kept fixed, the specimen is
sheared upto a shear strain of magnitude γ12 = 5%. The computed results for one load-
ing/unloading/reloading cycle are summarised in Fig. 38 (b) and (d). Since the hardening
parameters are identical for the pressure-independent and pressure-dependent models, it is
expected that the predicted response of the non-associative pressure-dependent model be
bound by the associative pressure-independent and associative pressure-dependent mod-
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Figure 38: Single element test. Tension-compression asymmetry. Stress-strain curves
of a single element test for (a),(c) transverse and (b),(d) in-plane shear behaviour of Model-I-

RI and Model-II-RI, respectively, for one loading/unloading/reloading cycle.



118 Selected numerical examples

els. The numerical results in Fig. 38 (a)–(d) are in agreement with this expectation. These
results are similar to predictions reported in [109] in their work on finite strain plasticity.

7.3.3. Single element test. Predictions for biaxial loads

In this section, predictions of the six (rate-independent) models developed in Chapter 5

are compared with micro-mechanics simulations and experimental results for the set of
biaxial loads listed in Table 9. Note that the pressure-independent models Model-I-RI-a
and Model-II-RI-a are still considered even though they are deficient in predicting trans-
verse compression. Their predictions are compared against DIG and UCA respectively,
to get a broader evaluation of their performance. The geometrical set up is same as that
in Fig. 23, and periodic boundary conditions are imposed.

7.3.3.1. Comparison of Model-I-RI-a and DIG models predictions. Figure 39
compares the Model-I-RI-a and DIG predictions for the τ12 → −ε22 load path. The
compressive response predicted by Model-I-RI-a agree well with that of DIG as seen in
Fig. 39 (a). There is a slight underprediction of the shear stress for load paths 01©– 03©.
However, the shear strains are reasonably overpredicted in Figs. 31 (b) and (c), though
the shape of these curves is similar to that of DIG. An excellent agreement is seen with
DIG in the predicted shear response which is evident from Fig. 39 (d).

Predictions of Model-I-RI-a and DIG for the −σ22 → γ12 load path is shown in Fig. 40.
The in-plane shear response is slightly underpredicted by Model-I-RI-a in comparison
with DIG, mainly for load paths 07© and 08© as seen in Fig. 40 (a). The predicted com-
pressive strains are in good agreement for load paths 05© and 06©, but large deviations
are seen for load paths 07© and 08© in Figs. 40 (b) and (c). This can be attributed to the
pressure-independent formulation of these models, which causes the deficiency in trans-
verse compression. The predicted transverse compressive response as seen in Fig. 40 (d),
is in excellent agreement with DIG model predictions.

Of all three load paths, the best agreement of Model-I-RI-a with DIG is for the radial
loading as seen in Fig. 41. The predicted shear response is in excellent agreement with
DIG, which is clear from Fig. 41 (a). Figures 41 (b) and (c) also show very good agreement.
The predicted compressive responses by Model-I-RI-a are substantially the same as that
predicted by DIG, which is clearly evident in Fig. 41 (d).
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7.3 Anisotropic plasticity. Anisotropic dissipative response functions 125

7.3.3.2. Comparison of Model-II-RI-a and UCA models predictions. Predic-
tions of Model-II-RI-a are now compared with that of UCA for the thirteen load paths.
Figure 42 shows the comparison for the τ12 → −ε22 load path. The predicted compressive
response by Model-II-RI-a is significantly less stiff than that of UCA for load paths 01©– 03©
and 09©, as seen in Fig. 42 (a). This effect can also be seen in Fig. 42 (b) though the
model predictions qualitatively agree with those of UCA. The shear response predicted
by the model agrees with that of UCA quite well as seen in Figs. 42 (c) and (d).

Plots depicting Model-II-RI-a and UCA predictions for the −σ22 → γ12 load path is shown
in Fig. 43. The shear response predicted by the model agrees fairly well with that of UCA,
see Fig. 43 (a). Only high compression preloads (load paths 07© and 08©) cause noticeable
underpredictions in the shear response. Furthermore, the predicted compressive strains
are much higher for load paths 07© and 08© as seen in Figs. 43 (b) and (c), again owing to
the pressure-independent plastic response functions. The predicted compressive response
by the model agrees well with that of UCA for the load paths 05© and 06© as seen in
Fig. 43 (d). Notable deviations are observed for high compression preloads ( 07© and 08©).

Predictions of Model-II-RI-a for the radial load path are reported in Fig. 44. The shear
response predicted by the model, as seen in Fig. 44 (a), is less stiff than that of UCA for
increasing proportionality factors λ. Good qualitative agreement is seen in Figs. 44 (b)
and (c), with the compressive and shear strains overpredicted for increasing proportion-
ality factors. In line with the discussions in Chapter 6, the compressive response is
significantly underpredicted for all the load paths as seen in Fig. 44 (d).

In summary, the main deficiency of the pressure-independent models is that they un-
derpredict the transverse compressive stress in the non-linear regime. Additionally they
exhibit an insensitivity to initial shear/compression preloads – an effect observed in ex-
periments where the material response first softens and then subsequently stiffens for
increasing shear/compression preloads [7, 18]. Nevertheless, good qualitative agreement
can be seen with the micro-mechanical models predictions. Recall here that the convexity
requirement for Model-I-RI-a is not fulfilled for calibration to UCA. Hence, Model-I-RI-a
is compared with DIG and Model-II-RI-a is compared with UCA.

7.3.3.3. Predictions of Model-I-RI-b. Figure 45 shows the comparison of Model-
I-RI-b predictions and the experimental response for τ12 → −ε22 load path. The use of
associative flow rule induces physical inconsistencies in the material response where tensile
rather than compressive transverse strains are predicted for shear dominated stress states
(load paths 02© and 03©). The predicted compressive response by the model agrees well
with experiments, as seen in Fig. 45 (a). Only for the highest shear preload (load path 03©),
the response is slightly overpredicted. The general trend of the experimental behaviour
where the material response first shifts up and then down for increasing shear preloads
is also not captured by the model, though the effect is minimal. The predicted shear
and compressive strains agree well with the experimental response (Figs. 45 (b) and (c)),
except for load path 03©. The increase in shear strain caused by compression is captured
well by the model in Fig. 45 (d) with minor over predictions.

Predictions of the model for the −σ22 → γ12 load path is shown in Fig. 46. Figure 46 (a)
depicts a comparison of the model predictions and experimental shear response in presence
of compression. The agreement with experiments is good although the experimental shear
response for load paths 05©– 07© are almost same as that of load path 04©, see [7] for a
detailed discussion. The predicted compressive strains are in excellent agreement with
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experiments as seen in Fig. 46 (b). The transverse predictions by the model qualitatively
and quantitatively agree with the experimental response as seen in Fig. 46 (d).

Plots depicting the model predictions for the radial load path are shown in Figs. 47 (a)–(d).
It is seen that the predicted shear and compressive response are in very good agreement
with the experimental results.

7.3.3.4. Predictions of Model-II-RI-b. Figures 48–50 show the predictions of Model-
II-RI-b for all the thirteen different load paths. The predictions of this model are to a large
extent similar to that of Model-I-RI-b. Only for radial loads, it is seen from Fig. 50 (a)
that the predicted material response for load paths 04© and 12© is essentially the same,
albeit not much change is observed in the experimental response as well.

An assessment of the predictions from Figs. 45–50 reveals that pressure dependency is
needed in order to reproduce the trends of experimentally observed behaviour. It is also
reported that whilst using an associated flow rule, the predictions are in excellent agree-
ment with the experimental results. For the two non-radial load paths, the compressive
response with shear preload and shear response with compression preload is overpredicted
by both models, only at the highest value of the respective preload. It has been reported
in [7] that the presence of shear preload does not affect the compressive response signifi-
cantly. Likewise, the shear response is almost insensitive to the presence of compression
preload. These aspects are also reflected in the models predictions as seen in Figs. 45 (a),
46 (a), 48 (a) and 49 (a). However, for the two non-radial load paths, the associated flow
rule exhibits non-physical constitutive response under shear dominated combined stress
states. This aspect is discussed in detail in the following subsection. Of all the three load
paths, predictions for radial load path are the best. An increase in the strain induced by
a proportional increase in the stress is captured excellently by both models.
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Figure 45: Predictions for biaxial loads. Comparison of experimental and Model-I-RI-b responses for the τ12 → −ε22 loading path.
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Figure 46: Predictions for biaxial loads. Comparison of experimental and Model-I-RI-b responses for the −σ22 → γ12 loading path.
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Figure 47: Predictions for biaxial loads. Comparison of experimental and Model-I-RI-b responses for the radial loading path.
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Figure 49: Predictions for biaxial loads. Comparison of experimental and Model-II-RI-b responses for the −σ22 → γ12 loading path.
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Figure 50: Predictions for biaxial loads. Comparison of experimental and Model-II-RI-b responses for the radial loading path.
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7.3.3.5. Erroneous predictions of the associated flow response. To illustrate the
erroneous predictions of an associated flow response for a pressure sensitive fibre-reinforced
composite, the τ12 → −ε22 load path is considered. Figure 51 shows MDPR-b, Model-
I-RI-b and Model-II-RI-b predictions for the load paths 01©– 04©. The assessment of the
plastic flow direction is apparent in these γ12 vs. −ε22 strain plots. For a pure shear
stress state (load path 04©), positive transverse strain is induced which is not expected
(Figs. 51 (a)–(c)). The same phenomenon is observed for shear dominated combined
stress states (load paths 01©– 03©) where unexpected transverse tensile strain is predicted
rather than expected compressive strain. This aspect is also demonstrated in [18] for load
paths 05©– 08© where the pressure-dependent model with an associative flow rule predicts
a decrease in the transverse strain for an increasing shear strain, a trend opposite to the
experimental results reported in [7]. Similarly, the non-physical behaviour of associated
flow response is also discussed in the recent work [112], with respect to compressive off-axis
tests on a carbon-epoxy material. Again, it is seen that tensile rather than compressive
transverse strain is predicted for 15◦ and 45◦ off-axis angles. This non-physical behaviour
is a consequence of the negative slope of the Drucker-Prager-type yield surfaces used by
these models, for pure shear and shear dominated combined stress states.

The corrected material response using a non-associative flow rule is shown in Figs. 52 (a)–
(c). In line with the expectations, it is seen that the direction of plastic flow is aligned to
the vertical axis for pure shear stress state. Additionally, the predicted transverse strains
are compressive for shear dominated combined compression/shear stress states. In what
follows, predictions of the pressure-dependent models with a non-associative flow rule are
reported and discussed based on the foregoing observations.

7.3.3.6. Predictions of Model-I-RI-c. Figure 53 shows a comparison of Model-I-RI-c
predictions and the experimental results for the τ12 → −ε22 load path. The predicted
compressive response by the model is in good agreement with experiments, as seen in
Fig. 53 (a). The predicted transverse strains are compressive for the load paths 01©– 04©,
thereby eliminating the inconsistencies exhibited by Model-I-RI-b. Additionally, there
is no overprediction of transverse stress for load path 03©. Good agreement with the
experimental response is seen in Figs. 53 (b) and (c). The shear response in presence of
compression is captured by the model rather accurately as seen in Fig. 53 (d).

Plots depicting the model predictions and experimental results for the −σ22 → γ12 load
path are shown in Fig. 54. The shear response in presence of compression is slightly
overpredicted by the model as seen in Fig. 54 (a). This is a direct consequence of a higher
value of the governing coefficient of hydrostatic pressure, as higher transverse stress leads
to excessive stiffening in the shear response [18]. The parameter κ1 in Eqn. (318) should
be rather low based on the experimental results where shear responses of the load paths
04©– 07© are almost the same, see [7]. The predicted −ε22 agrees well with the experimental
results as seen in Fig. 54 (b) with slight over estimation for load path 08©. Figure 54 (c)
shows the predicted −ε22 for an applied shear strain γ12 = 4%, for the load paths 05©–
08©. The predicted transverse strains are much higher than the experimental ones, mainly
because of the pressure-independent flow rule. The compressive response predicted by the
model is in excellent agreement with the experimental results as seen in Fig. 54 (d).

The predictions of the model for the radial load path are compared with the experimental
response in Fig. 55. The shear response is captured quite well by the model as seen in
Fig. 55 (a). The assessment of the plastic flow direction is shown in the γ12−(−ε22) strain
plot in Fig. 55 (b), where notable deviations from the experimental results are observed for
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shear dominated loads (decreasing proportionality factors). The predicted shear strains
are in excellent agreement with the experimental results (Fig. 55 (b)); only for load paths
12© and 13© is there a significant underprediction. The transverse predictions of the model
are accurate as seen in Fig. 55 (d).

7.3.3.7. Predictions of Model-II-RI-c. Figures 56–58 show a comparison of Model-
II-RI-c predictions and experimental response for the thirteen different load paths. It is
seen that the model essentially predicts the same response as that of Model-I-RI-c. The
only noticeable change is for the radial load path where the predicted material response
for load paths 04© and 12© is now different (Fig. 58 (a)), in contrast to that of Model-I-RI-c
(Fig. 50 (a)) where the material response is indistinguishable for these two load paths.

In summary, the non-associated flow response circumvents the physical inconsistencies
induced by the associated flow response under shear dominated combined stress states, and
yields the expected behaviour. However, notable deviations are observed for non-radial
load paths where the shear response in presence of compression is overestimated. This can
be attributed to the choice of a pressure-independent plastic flow potential and thereby
a pressure-independent flow rule, as a result of which the predicted transverse strains are
much higher than those observed experimentally. In view of these characteristics, the
proposed alternative formulations of non-associative plasticity in Chapter 5 can be used
to overcome these deviations.
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Figure 53: Predictions for biaxial loads. Comparison of experimental and Model-I-RI-c responses for the τ12 → −ε22 loading path.
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Figure 54: Predictions for biaxial loads. Comparison of experimental and Model-I-RI-c responses for the −σ22 → γ12 loading path.
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Figure 55: Predictions for biaxial loads. Comparison of experimental and Model-I-RI-c responses for the radial loading path.
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Figure 56: Predictions for biaxial loads. Comparison of experimental and Model-II-RI-c responses for the τ12 → −ε22 loading path.
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Figure 57: Predictions for biaxial loads. Comparison of experimental and Model-II-RI-c responses for the −σ22 → γ12 loading path.
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Figure 58: Predictions for biaxial loads. Comparison of experimental and Model-II-RI-c responses for the radial loading path.
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7.3.4. Tension of a plate with a hole

The last example is a benchmark test concerned with the uni-axial tension of a rectan-
gular plate with a centrally located circular hole. The geometrical set up and boundary
conditions are illustrated in Fig. 59. The radius of the hole is chosen to be 3.175 mm.
With respect to the numerical implementation of the problem using the finite element
method, the plate is discretised using 5218 C3D8 elements. At x = 0, the movement of
the bottom surface of the plate is minimally constrained by imposing ux = 0 (shaded
area). At points A and B, uy = uz = 0 and uy = 0, respectively, are imposed. The com-
putation is performed in a deformation driven context where a prescribed deformation
of ūx = 1.0 mm is applied on the top surface of the plate as shown in Fig. 59. For the
numerical simulations, Model-II-RI-c is used and the corresponding material parameters
are listed in Table 6 and Table 10.

25.4 [mm]

10
1.
6
[m

m
]

2 [mm]

A

B

ūx

x

y

z

Figure 59: Tension of a plate with a hole. Geometrical set up and loading conditions.
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0◦ 10◦ 30◦

60◦ 80◦ 90◦

0.0815

ξ

0.00

Figure 60: Tension of a plate with a hole. Distribution of equivalent plastic strain ξ for
various fibre orientations.
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Figure 60 shows the contour plots of equivalent plastic strain ξ, at the final deforma-
tion state for various fibre orientations. As it is well known, the equivalent plastic strain
localises in the shear band-type distribution along the fibre orientation. Similar to the
observations in [78], it is seen that the plastic deformation spreads along the fibre di-
rection and there is no localisation along the width of the specimen for 0◦ and 90◦ fibre
orientations. However, inclined shear bands with slightly uneven branches can be seen for
all the other fibre orientations. The anisotropic effect also makes the shear bands more
diffuse which can be attributed to a change in the direction of the plastic flow.
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8. Conclusion

8.1. Summary

This thesis is concerned with the formulation and numerical implementation of anisotropic
elastoplasticity at infinitesimal strains, with application to fibre-reinforced composites.
In this context, physically motivated and relatively general meso models are presented
to simulate the non-linear plastic response of fibre-reinforced composites. From a con-
tinuum perspective, two symmetry groups (orthorhombic and transversely isotropic) are
chosen and the governing constitutive equations of anisotropic elasticity applicable to
these groups are first proposed with the aid of representation theorems. Next, two plas-
ticity models that use isotropic plastic response functions to describe the plastic behaviour
of composites are presented. The objective is to investigate the effect of using isotropic
plastic response functions to capture the biaxial experimental responses, and understand
the reasons for observed deficiencies and shortcomings of these models. Based on the
foregoing observations, the main contribution of this work is the formulation of elastic-
plastic constitutive equations which explicitly account for anisotropic behaviour in the
stress response, yield condition, flow and hardening rules for the two symmetry groups.
A point of departure from the previous chapter is the introduction of plasticity inducing
stress tensors for the two symmetry groups, and the subsequent formulation of anisotropic
plastic response functions using general representation theorems. The proposed plastic
response functions are governed by only a few coefficients and the convexity conditions are
rather simple to derive and impose. A set of canonical and non-conventional evolution
equations are derived for the associative and non-associative plasticity theories, which
result in a symmetric and non-symmetric constitutive structure, respectively. With re-
spect to non-associative plasticity, a plastic flow potential which is purely deviatoric and
stress free in the fibre direction is chosen to correct the physical inconsistencies by the
associated flow rule under shear dominated loads. Further, a rate-dependent approxi-
mation of the rate-independent setting is outlined and implemented, apropos to the fact
that a time regularisation of the rate-independent model always stabilises the algorithmic
setting. From a theoretical standpoint, Model-I of the transversely isotropic symmetry
group cannot be used in situations where the transverse shear response is stiffer than the
in-plane shear response, owing to the restrictions imposed by the convexity requirement.
This constraint is not applicable to Model-II. From a computational standpoint, the use
of plasticity inducing stress in the formulation of plastic response functions results in a
decoupled representation of the stress tensor, thus simplifying the problem of parameter
identification.

The material parameters associated with the plastic response functions are identified by
defining a non-linear optimisation problem with least-squares type functional, and evalu-
ating the minimum of the functional using a simplex Nelder-Mead algorithm. Here, focus
is restricted only to the transversely isotropic symmetry group due to a lack of experi-
mental data for the orthorhombic system. The two models of the transversely isotropic
system are first calibrated to reproduce the experimental shear response. The pressure-
independent models reproduce the experimental shear response quite well, however, the
predicted compressive response is notably less stiff. The associative and non-associative
pressure-dependent models calibrated in a similar manner overcome this deficiency.

All the calibrated meso models are evaluated in detail by comparison to micro-mechanics
simulations and experimental results, for a range of biaxial loads. Overall, the proposed
models perform well in predicting the experimentally observed trends. In particular,
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the predictions when combined with an associated flow rule are in excellent agreement
with the experimental results. The asymmetric behaviour in the tension-compression
regime is also well represented by these models. Besides the fact that the plastic flow is
governed by fewer anisotropic coefficients, the findings are affirmative to state that the
proposed plastic response functions are relatively general and can accurately describe the
elastic-plastic response of fibre-reinforced composites. For the biaxial loads, the shear
response in presence of compression is slightly over-predicted for some load paths, mainly
by the pressure-dependent models when combined with a non-associative flow rule. Also,
there is an observable deviation between the biaxial experimental response and the non-
associative model predictions. This can purely be attributed to the respective model
formulation, where it has been assumed that the plastic flow is traceless and stress-free
in the fibre direction. In view of these characteristics, alternative formulations of non-
associative plasticity are provided that account for dilatation during the course of plastic
deformation. The proposed formulations still need to be validated with the experimental
data. However, to the author’s knowledge, this modification gives better results than
the presented non-associative models where a purely pressure-independent flow response
is assumed. The performance of the proposed models is also demonstrated by means of
benchmark boundary value problems.

8.2. Outlook

Fundamentally, the development of constitutive relations for a homogenised composite is
a challenging task where the formulation has to be simple, yet accurate for a wide range of
loading scenarios. For instance, such formulations are applied in the failure analysis where
an important partial ingredient is the modelling of non-linearity under shear dominated
loads, i.e. plasticity. Plasticity prior to damage affects the onset of failure and therefore
it is necessary to precisely model the elastic-plastic behaviour. In this context, necessary
simplifications such as disregarding the influence of the stress in the fibre directions on
plasticity under combined loads may lead to a loss of accuracy. Hence, the influence of
fibre stress on plasticity under combined stress states, such as shear or compression load
with tension/compression in the fibre direction should be quantified prior to the failure
analysis. Furthermore, the effect of temperature on the elastic-plastic response could
also be considered, see Appendix C for a general discussion, as polymeric composites are
known to be temperature sensitive.

Moreover, the proposed framework can also be extended to include geometric non-
linearities to account for the effects of the interface failure. A particularly interest-
ing aspect in this extension would be to incorporate deformation-induced evolution of
anisotropy, which demands the specification of additional constitutive (evolution) equa-
tions for the structural tensors, that allows for fibre rotations to be taken into account
during the course of elastic/inelastic deformations.
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A. Isotropic functions of the symmetry groups

Table 11: List of invariants for scalar valued functions.

Variables Invariants{
A
} {

tr[A], tr[A2], tr[A3]
}

{
V
} {

tr[V 2]
}

{
A,U

} {
tr[AU ], tr[A2U ], tr[AU 2], tr[A2U 2]

}
{
A,V

} {
tr[AV 2], tr[A2V 2], tr[A2V 2AV ]

}
{
V 1,V 2

} {
tr[V 1V 2]

}
{
A,U ,V

} {
tr[AUV ], tr[A2UV ], tr[AU 2V ], tr[AV 2UV ]

}
{
A,U 1,U 2

} {
tr[AU 1U 2]

}
{
A,V 1,V 2

} {
tr[AV 1V 2], tr[AV 2

1V 2], tr[AV 1V
2
2]
}

{
V 1,V 2,V 3

} {
tr[V 1V 2V 3]

}

In this appendix, explicit form of the scalar-valued potential (80) is derived for the sym-
metry groups listed in Table 2, following closely [75, 137]. Recall here that {a, b, c} is a
vector triad representing an orthonormal preferred frame, as depicted in Fig. 61. For the
sake of simplicity, focus is restricted to a quadratic form of Eqn. (80). At this stage, the
functional bases for one, two and three tensor-valued arguments, introduced in [138], are
listed in Table 11 which will play an important role in the derivation of the scalar-valued
potential12.

A.1. Triclinic symmetry group C1

The triclinic symmetry group C1, generated by 1 , has the lowest symmetry characterising
a fully anisotropic material. The orientation of such a material is determined by two

a

b

c

x ∈ B

Figure 61: Preferred directions. Positively oriented orthonormal vector triad {a, b, c}
attached to a material point x ∈ B.

12the invariants based on the vector-valued arguments in [138] are neglected as they are not of interest
in the present work.
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orthonormal vectors a and b, such that the general form of the scalar-valued function F

is given by

F = F(A,V 1,V 2) with V 1 = ǫa and V 2 = ǫb , (401)

in terms of the argument tensor A, and two skew-symmetric second-order tensors V 1 and
V 2. It can be seen from Table 11 that the functional basis for the C1 group consists of
the basic invariants of the arguments A, V 1 and V 2, given by

{
tr[A], tr[A2], tr[A3], tr[V 2

1], tr[V
2
2]
}
, (402)

the mixed invariants of every two arguments {A,V 1}, {A,V 2} and {V 1,V 2} such that

{
tr[AV 2

1], tr[A
2V 2

1], tr[A
2V 2

1AV 1], tr[AV 2
2], tr[A

2V 2
2], tr[A

2V 2
2AV 2], tr[V 1V 2]

}
,

(403)
and the relative invariants of all the argument tensors {A,V 1,V 2}, namely

{
tr[AV 1V 2], tr[AV 2

1V 2], tr[AV 1V
2
2]
}
, (404)

see also [139]. The invariants in Eqns. (402)–(404) are multiplicatively combined to obtain
quadratic terms in A, which leads to the definition of an irreducible integrity basis as

IC1
=
{

tr 2[A], tr[A2], tr 2[AV 2
1], tr

2[AV 2
2], tr

2[AV 1V 2], tr
2[AV 2

1V 2],

tr 2[AV 1V
2
2], tr[A

2V 2
1], tr[A

2V 2
2], tr[A] tr[AV 1V 2],

tr[A] tr[AV 2
1V 2], tr[A] tr[AV 1V

2
2], tr[AV 2

1] tr[AV 1V 2],

tr[AV 2
1] tr[AV 2

1V 2], tr[AV 2
1] tr[AV 1V

2
2], tr[AV 2

2] tr[AV 1V 2],

tr[AV 2
2] tr[AV 2

1V 2], tr[AV 2
2] tr[AV 1V

2
2], tr[AV 1V 2] tr[AV 2

1V 2]

tr[AV 1V 2] tr[AV 1V
2
2], tr[AV 2

1V 2] tr[AV 1V
2
2

}
,

(405)

where the invariants

tr[A] tr[AV 2
1] = −1

2
(tr 2[A] + tr 2[AV 2

1] + tr 2[AV 1V 2] + tr[AV 2
1V 2]− tr[A2]− tr[A2V 2

1]) ,

tr[A] tr[AV 2
2] = −1

2
(tr 2[A] + tr 2[AV 2

2] + tr 2[AV 1V 2] + tr[AV 1V
2
2]− tr[A2]− tr[A2V 2

2]) ,

tr[AV 2
1] tr[AV 2

2] = −1

2
tr 2[A] + tr 2[AV 1V 2]−

3

2
tr[A2]− tr[AV 2

1]− tr[A2V 2
2] ,

(406)
are dropped from Eqn. (405) since they can be expressed in terms of the other invariants.
A quadratic form of Eqn. (80) can be readily written with the aid of Eqn. (405) as

F =
21∑

i=1

µiIi , (407)

where I1−21 are the elements of the integrity basis IC1
, and µ1−21 are material constants.

The second-order stress-like tensor S associated with the potential is given by the deriva-
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tive of Eqn. (407) with respect to the argument A as

S = F,A=
21∑

i=1

F,Ii Ii,A

=2µ1 tr[A]1 + 2µ2A+ 2µ3 tr[AV 2
1]V

2
1 + 2µ4 tr[AV 2

2]V
2
2

+µ5tr[AV 1V 2](V 1V 2 + V 2V 1) + µ6 tr[AV 2
1V 2](V

2
1V 2 − V 2V

2
1)

+µ7 tr[AV 1V
2
2](V 1V

2
2 − V 2

2V 1) + µ8(AV 2
1 + V 2

1A)

+µ9(AV 2
2 + V 2

2A) + µ10

{
tr[AV 1V 2]1 +

1

2
tr[A](V 2V 1 + V 1V 2)

}

+µ11

{
tr[AV 2

1V 2]1 +
1

2
tr[A](V 2

1V 2 − V 2V
2
1)
}

+µ12

{
tr[AV 1V

2
2]1 +

1

2
tr[A](V 1V

2
2 − V 2

2V 1)
}

+µ13

{
tr[AV 1V 2]V

2
1 +

1

2
tr[AV 2

1](V 2V 1 + V 1V 2)
}

+µ14

{
tr[AV 2

1V 2]V
2
1 +

1

2
tr[AV 2

1](V
2
1V 2 − V 2V

2
1)
}

+µ15

{
tr[AV 1V

2
2]V

2
1 +

1

2
tr[AV 2

1](V 1V
2
2 − V 2

2V 1)
}

+µ16

{
tr[AV 1V 2]V

2
2 +

1

2
tr[AV 2

2](V 2V 1 + V 1V 2)
}

+µ17

{
tr[AV 2

1V 2]V
2
2 +

1

2
tr[AV 2

2](V
2
1V 2 − V 2V

2
1)
}

+µ18

{
tr[AV 1V

2
2]V

2
2 +

1

2
tr[AV 2

2](V 1V
2
2 − V 2

2V 1)
}

+
µ19

2

{
tr[AV 2

1V 2](V 2V 1 + V 1V 2) + tr[AV 1V 2](V
2
1V 2 − V 2V

2
1)
}

+
µ20

2

{
tr[AV 1V

2
2](V 2V 1 + V 1V 2) + tr[AV 1V 2](V 1V

2
2 − V 2

2V 1)
}

+
µ21

2

{
tr[AV 1V

2
2](V

2
1V 2 − V 2V

2
1) + tr[AV 2

1V 2](V 1V
2
2 − V 2

2V 1)
}

. (408)
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The constant fourth-order Hessian F associated with the potential F is obtained by the
second derivative with respect to the argument A as

F = F,AA=

21∑

i=1

21∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}
+ 2µ3V

2
1 ⊗ V 2

1 + 2µ4V
2
2 ⊗ V 2

2

+
µ5

2

{
(V 2V 1 + V 1V 2)⊗ (V 2V 1 + V 1V 2)

}

+
µ6

2

{
(V 2

1V 2 − V 2V
2
1)⊗ (V 2

1V 2 − V 2V
2
1)
}

+
µ7

2

{
(V 1V

2
2 − V 2

2V 1)⊗ (V 1V
2
2 − V 2

2V 1)
}

+
µ8

2

{
(1 ⊕ V 2

1) + (V 2
1 ⊕ 1 ) + (1 ⊖ V 2

1) + (V 2
1 ⊖ 1 )

}

+
µ9

2

{
(1 ⊕ V 2

2) + (V 2
2 ⊕ 1 ) + (1 ⊖ V 2

2) + (V 2
2 ⊖ 1 )

}

+
µ10

2

{
[1 ⊗ (V 2V 1 + V 1V 2)] + [(V 2V 1 + V 1V 2)⊗ 1 ]

}

+
µ11

2

{
[1 ⊗ (V 2

1V 2 − V 2V
2
1)] + [(V 2

1V 2 − V 2V
2
1)⊗ 1 ]

}

+
µ12

2

{
[1 ⊗ (V 1V

2
2 − V 2

2V 1)] + [(V 1V
2
2 − V 2

2V 1)⊗ 1 ]
}

+
µ13

2

{
[V 2

1 ⊗ (V 2V 1 + V 1V 2)] + [(V 2V 1 + V 1V 2)⊗ V 2
1]
}

+
µ14

2

{
[V 2

1 ⊗ (V 2
1V 2 − V 2V

2
1)] + [(V 2

1V 2 − V 2V
2
1)⊗ V 2

1]
}

+
µ15

2

{
[V 2

1 ⊗ (V 1V
2
2 − V 2

2V 1)] + [(V 1V
2
2 − V 2

2V 1)⊗ V 2
1]
}

+
µ16

2

{
[V 2

2 ⊗ (V 2V 1 + V 1V 2)] + [(V 2V 1 + V 1V 2)⊗ V 2
2]
}

+
µ17

2

{
[V 2

2 ⊗ (V 2
1V 2 − V 2V

2
1)] + [(V 2

1V 2 − V 2V
2
1)⊗ V 2

2]
}

+
µ18

2

{
[V 2

2 ⊗ (V 1V
2
2 − V 2

2V 1)] + [(V 1V
2
2 − V 2

2V 1)⊗ V 2
2]
}

+
µ19

2

{
[(V 2V 1 + V 1V 2)⊗ (V 2

1V 2 − V 2V
2
1)]

+[(V 2
1V 2 − V 2V

2
1)⊗ (V 2V 1 + V 1V 2)]

}

+
µ20

2

{
[(V 2V 1 + V 1V 2)⊗ (V 1V

2
2 − V 2

2V 1)]

+[(V 1V
2
2 − V 2

2V 1)⊗ (V 2V 1 + V 1V 2)]
}

+
µ21

2

{
[(V 2

1V 2 − V 2V
2
1)⊗ (V 1V

2
2 − V 2

2V 1)]

+[(V 1V
2
2 − V 2

2V 1)⊗ (V 2
1V 2 − V 2V

2
1)]
}

,

(409)

with the identities {
(•)⊗ (•)

}
ijkl

= (•)ij(•)kl ,{
(•)⊕ (•)

}
ijkl

= (•)ik(•)jl ,{
(•)⊖ (•)

}
ijkl

= (•)il(•)jk .
(410)
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If the orthonormal vectors are chosen such that a = [1, 0, 0]T and b = [0, 1, 0]T , the
fourth-order tensor F appears in the coordinate form

[F] =




F1111 F1122 F1133 F1112 F1113 F1123

F2222 F2233 F2212 F2213 F2223

F3333 F3312 F3313 F3323

F1212 F1213 F1223

sym . F1313 F1323

F2323




, (411)

with the components

F1111 = 2(µ1 + µ2 + µ4 − µ9), F1122 = 2µ1, F1133 = 2(µ1 + µ4),

F1112 =
1

2
(µ10 − µ16), F1113 =

1

2
(µ17 − µ11), F1123 =

1

2
(µ18 − µ12),

F2222 = 2(µ1 + µ2 + µ3 − µ8 + µ13), F2233 = 2(µ1 + µ3) + µ13,

F2212 =
1

2
(µ10, F2213 =

1

2
(µ14 − µ11), F2223 =

1

2
(µ15 − µ12),

F3333 = 2(µ1 + µ2 + µ3 + µ4 − µ8 + µ9), F3312 =
1

2
(µ10 − µ16),

F3313 =
1

2
(µ14 + µ17 − µ11), F3323 =

1

2
(µ15 + µ18 − µ12),

F1212 = µ2 +
1

2
(µ5 − µ8 − µ9), F1213 = −1

4
µ19, F1223 = −1

4
µ20,

F1313 = (µ2 − µ9) +
1

2
(µ6 − µ8), F1323 = −1

4
µ21,

F2323 = (µ2 − µ8) +
1

2
(µ7 − µ9),

(412)

in terms of twenty one material constants µ1−21.

A.2. Monoclinic symmetry group C2

The orientation of the materials belonging to the monoclinic symmetry group C2 is de-
termined by two arbitrary orthonormal vectors a and b, which are perpendicular to an
unit normal vector ñ. The scalar-valued potential F which has a functional dependence
on these vectors, can generally be specified as

F = F(A,U ,V ) where U = a⊗ a− b⊗ b and V = ǫñ , (413)

in terms of two symmetric second-order tensors A and U , and a skew-symmetric second-
order tensor V . It follows from Table 11 that the functional basis of the C2 group consists
of the basic invariants

{
tr[A], tr[A2], tr[A3], tr[U ], tr[U 2], tr[U 3], tr[V 2]

}
, (414)

of the argument tensor A and the additional arguments tensors U and V , the mixed
invariants of every two arguments {A,U}, {A,V } and {U ,V }

{
tr[AU ], tr[A2U ], tr[AU 2], tr[A2U 2], tr[AV 2], tr[A2V 2], tr[A2V 2AV ],

tr[UV 2], tr[U 2V 2], tr[U 2V 2UV ]
} , (415)
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and the relative invariants of all the argument tensors {A,U ,V } such that

{
tr[AUV ], tr[A2UV ], tr[AU 2V ], tr[AV 2UV ]

}
. (416)

With reference to Eqns. (415) and (416), the following linear dependencies can be trivially
verified

− tr[AU 2] = tr[AV 2] ,

− tr[A2U 2] = tr[A2V 2] ,

− tr[AUV ] = tr[AV 2UV ] ,

tr[AU 2V ] = 0 .

(417)

An irreducible integrity basis can be defined with the combination of invariants in
Eqns. (414)–(416) to obtain quadratic terms in A, taking into account Eqn. (417) as

IC2
=
{

tr 2[A], tr[A2], tr 2[AU ], tr 2[AU 2], tr 2[AUV ], tr[A2U ], tr[A2UV ],

tr[A] tr[AU ], tr[A] tr[AU 2], tr[A] tr[AUV ], tr[AU ] tr[AU 2]

tr[AU ] tr[AUV ], tr[AU 2] tr[AUV ]
}

, (418)

where the invariant

tr[A2U 2] =
1

2

(
tr[A2]− tr 2[A]

)

+
1

2

(
tr 2[AU ]− tr 2[AU 2])

+
1

4
tr 2[AUV ] + tr[A] tr[AU 2]

, (419)

is dropped as it can be expressed in terms of other invariants. Equation (418) allows for
the definition of a quadratic scalar-valued potential (80) as

F =

13∑

i=1

µiIi , (420)

where I1−13 are the elements of the integrity basis IC2
, and µ1−13 are material constants.

The second-order stress-like tensor S associated with the potential is given by

S = F,A=

13∑

i=1

F,Ii Ii,A

=2µ1 tr[A]1 + 2µ2A+ 2µ3 tr[AU ]U + 2µ4 tr[AU 2]U 2

+2µ5 tr[AUV ]UV + µ6

{
AU +UA

}
+ µ7

{
AUV +UV A

}

+µ8

{
tr[AU ]1 + tr[A]U

}
+ µ9

{
tr[AU 2]1 + tr[A]U 2

}

+µ10

{
tr[AUV ]1 + tr[A]UV

}
+ µ11

{
tr[AU 2]U + tr[AU ]U 2

}

+µ12

{
tr[AUV ]U + tr[AU ]UV

}

+µ13

{
tr[AUV ]U 2 + tr[AU 2]UV

}

. (421)
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Likewise, the constant fourth-order Hessian F associated with the potential F is given by

F = F,AA=

13∑

i=1

13∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}
+ 2µ3U ⊗U + 2µ4U

2 ⊗U 2

+2µ5UV ⊗UV +
µ6

2

{
(1 ⊕U) + (U ⊕ 1 ) + (1 ⊖U) + (U ⊖ 1 )

}

+
µ7

2

{
(1 ⊕UV ) + (UV ⊕ 1 ) + (1 ⊖UV ) + (UV ⊖ 1 )

}

+µ8

{
1 ⊗U +U ⊗ 1}+ µ9{1 ⊗U 2 +U 2 ⊗ 1

}

+µ10

{
1 ⊗ (UV ) + (UV )⊗ 1

}
+ µ11

{
U ⊗U 2 +U 2 ⊗U

}

+µ12

{
U ⊗ (UV ) + (UV )⊗U

}
+ µ13

{
U 2 ⊗ (UV ) + (UV )⊗U 2

}

. (422)

For a = [1, 0, 0]T , b = [0, 1, 0]T and ñ = [0, 0, 1]T , the fourth-order tensor F appears in
the simple coordinate form

[F] =




F1111 F1122 F1133 F1112 0 0

F2222 F2233 F2212 0 0

F3333 F3312 0 0

F1212 0 0

sym . F1313 F1323

F2323




, (423)

with the definitions

F1111 = 2(µ1 + µ2 + µ3 + µ4 + µ6 + µ8 + µ9 + µ11) ,

F1122 = 2(µ1 − µ3 + µ4 + µ9) , F1133 = 2µ1 + µ8 + µ9 ,

F1112 = µ7 + µ10 + µ12 + µ13 ,

F2222 = 2(µ1 + µ2 + µ3 + µ4 + µ6 − µ8 + µ9 − µ11) ,

F2233 = 2µ1 − µ8 + µ9 , F2212 = µ7 + µ10 − µ12 + µ13 ,

F3333 = 2(µ1 + µ2) , F3312 = µ10 ,

F1212 = µ2 + 2µ5 ,

F1313 = µ2 +
1

2
µ6 , F1323 =

1

2
µ7 ,

F2323 = µ2 −
1

2
µ6 ,

(424)

in terms of thirteen material constants µ1−13.

A.3. Orthorhombic symmetry group C3

The orthorhombic symmetry group C3 is generated by orthogonal rotations Qπ
a and Qπ

b ,
which correspond to 180◦ rotations around the orthonormal vectors a and b, respectively.
A general form of the scalar potential F can be specified as

F = F(A,U) where U = a⊗ a− b⊗ b , (425)
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in terms of two symmetric second-order tensors A and U . Analogous to the previous two
symmetry groups, the functional basis for the C3 group consists of the basic invariants

{
tr[A], tr[A2], tr[A3], tr[U ], tr[U 2], tr[U 3]

}
, (426)

of the arguments A and U , and the mixed invariants of the two arguments {A,U}
{
tr[AU ], tr[A2U ], tr[AU 2], tr[A2U 2]

}
, (427)

see Table 11. An irreducible integrity basis can be specified by multiplicatively combining
the invariants in Eqns. (426) and (427) to obtain quadratic terms in A as

IC3
=
{

tr 2[A], tr[A2], tr 2[AU ], tr[A2U ], tr 2[AU 2], tr[A2U 2] ,

tr[A] tr[AU ], tr[A] tr[AU 2], tr[AU ] tr[AU 2]
} , (428)

which allows for the definition of a quadratic scalar-valued function F as

F =
9∑

i=1

µiIi , (429)

where I1−9 are the elements of the integrity basis IC3
, and µ1−9 are the material constants.

The second-order stress-like tensor S associated with the potential is given by

S = F,A=

9∑

i=1

F,Ii Ii,A

=2µ1 tr[A]1 + 2µ2A+ 2µ3 tr[AU ]U + 2µ4 tr[AU 2]U 2

+µ5

{
AU +UA

}
+ µ6

{
AU 2 +U 2A

}
+ µ7

{
tr[AU ]1 + tr[A]U

}

+µ8

{
tr[AU 2]1 + tr[A]U 2

}
+ µ9

{
tr[AU 2]U + tr[AU ]U 2

}

. (430)

It follows that the constant fourth-order Hessian F associated with the scalar-valued
potential F can be expressed as

F = F,AA=
9∑

i=1

9∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}
+ 2µ3U ⊗U + 2µ4U

2 ⊗U 2

+
µ5

2

{
(1 ⊕U) + (U ⊕ 1 ) + (1 ⊖U) + (U ⊖ 1 )

}

+
µ6

2

{
(1 ⊕U 2) + (U 2 ⊕ 1 ) + (1 ⊖U 2) + (U 2 ⊖ 1 )

}

+µ7

{
1 ⊗U +U ⊗ 1

}
+ µ8

{
1 ⊗U 2 +U 2 ⊗ 1

}

+µ9

{
U ⊗U 2 +U 2 ⊗U

}

. (431)

For the choice a = [1, 0, 0]T and b = [0, 1, 0]T of the orthonormal vectors, the fourth-order
tensor F appears in the coordinate form

[F] =




F1111 F1122 F1133 0 0 0

F2222 F2233 0 0 0

F3333 0 0 0

F1212 0 0

sym . F1313 0

F2323




, (432)



156 Isotropic functions of the symmetry groups

along with the definitions

F1111 = 2(µ1 + µ2 + µ3 + µ4 + µ5 + µ6 + µ7 + µ8 + µ9) ,

F1122 = 2(µ1 − µ3 + µ4 + µ8) , F1133 = 2µ1 + µ7 + µ8 ,

F2222 = 2(µ1 + µ2 + µ3 + µ4 − µ5 + µ6 − µ7 + µ8 − µ9) ,

F2233 = 2µ1 − µ7 + µ8 ,

F3333 = 2(µ1 + µ2) ,

F1212 = µ2 + µ6 , F1313 = µ2 +
1

2
µ5 +

1

2
µ6 , F2323 = µ2 −

1

2
µ5 +

1

2
µ6 ,

(433)

in terms of nine material constants µ1−9. Note that for special choices of the material
constants µ1−9 in Eqn. (429) of the orthorhombic symmetry group, a number of other
symmetry groups can be characterised [78].

A.4. Tetragonal symmetry group C4

The tetragonal symmetry group C4 is generated by orthogonal rotation Q
π
2
c , which cor-

responds to 90◦ rotation around an orthonormal vector c. The functional basis of the
C4 symmetry group comprises of three symmetric second-order tensors A,U 1,U 2, and
a single skew-symmetric second-order tensor V , based on which a general form of the
scalar-valued potential can be specified as

F = F(A,U1,U 2,V ) , (434)

where
U 1=(a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b) : A

U 2=(a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b) : A2

V = ǫñ

, (435)

see [75]. The vectors a and b are two orthonormal vectors perpendicular to the unit
normal vector ñ. It can be seen from Table 11 that the functional basis of the C4 group
consists of the basic invariants of the arguments A, U 1, U 2 and V , namely that

{
tr[A], tr[A2], tr[A3], tr[U 1], tr[U

2
1], tr[U

3
1], tr[U 2], tr[U

2
2], tr[U

3
2], tr[V

2]
}
, (436)

the mixed invariants of every two arguments {A,U1}, {A,U 2},{A,V }, {U 1,U 2},
{U 1,V } and {U 2,V } defined by

{
tr[AU 1], tr[A

2U 1], tr[AU 2
1], tr[A

2U 2
1], tr[AU 2], tr[A

2U 2], tr[AU 2
2],

tr[A2U 2
2], tr[AV 2], tr[A2V 2], tr[A2V 2AV ], tr[U 1U 2], tr[U

2
1U 2],

tr[U 1U
2
2], tr[U

2
1U

2
2], tr[U 1V

2], tr[U 2
1V

2], tr[U 2
1V

2U 1V ],

tr[U 2V
2], tr[U 2

2V
2], tr[U 2

2V
2U 2V ]

}
, (437)

and the relative invariants of each three argument tensors {A,U 1,U 2}, {A,U 1,V },
{A,U 2,V } and {U 1,U 2,V } such that
{
tr[AU 1U 2], tr[AU 1V ], tr[A2U 1V ], tr[AU 1V

2], tr[AV 2U 1V ], tr[AU 2V ],

tr[A2U 2V ], tr[AU 2V
2], tr[AV 2U 2V ], tr[U 1U 2V ],

tr[U 2
1U 2V ], tr[U 1U 2V

2], tr[U 1V
2U 2V ]

}
, (438)
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Analogous to Eqn. (417), the following linear dependencies for the C4 symmetry group
can also be trivially verified

tr[U 1] = − tr[AV 2] = − tr[U 1V
2] ,

tr[U 2] = − tr[A2V 2] = − tr[U 2V
2] ,

tr[U 2
1] = tr[AU 1] = − tr[A2V 2] ,

tr[AUV ] = − tr[AV 2U 1V ] .

(439)

An irreducible integrity basis can be defined by combining the invariants in Eqns. (436)–
(438) to obtain quadratic terms in A, and taking into account Eqn. (439) as

IC4
=
{
tr 2[A], tr[A2], tr 2[U 1], tr[U

2
1], tr[U 2], tr[A] tr[U 1], tr[AU 1V ]

}
. (440)

Equation (440) allows for the definition of a scalar-valued quadratic potential as

F =
7∑

i=1

µiIi , (441)

where I1−7 are the elements of the integrity basis IC4
defined in Eqn. (440), and µ1−7 are

the material constants. Given the potential (441), the second-order stress-like tensor S

takes the form

S = F,A=
7∑

i=1

F,Ii Ii,A

=2µ1 tr[A]1 + 2µ2A++2µ3 tr[U 1][(a · a)(a⊗ a) + (b · b)(b⊗ b)]

+2µ4

{
(a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b) : U 1

}

+2µ5[(a · a)(a⊗ a) + (b · b)(b⊗ b)]A

+µ6

{
tr[U 1]1 + tr[A][(a · a)(a⊗ a) + (b · b)(b⊗ b)]

}

+µ7

{
UV + (a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b) : V A

}

, (442)

and the fourth-order Hessian F can be expressed as

F = F,AA=

7∑

i=1

7∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}

+2µ3

{
[(a · a)(a⊗ a) + (b · b)(b⊗ b)]⊗ [(a · a)(a⊗ a) + (b · b)(b⊗ b)]

}

+2µ4

{
(a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b) : (a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b)

}

+
µ5

2

{{
[(a · a)(a⊗ a) + (b · b)(b⊗ b)]⊕ 1

}

+
{
[(a · a)(a⊗ a) + (b · b)(b⊗ b)]⊖ 1

}

+
{
1 ⊕ [(a · a)(a⊗ a) + (b · b)(b⊗ b)]

}

+
{
1 ⊖ [(a · a)(a⊗ a) + (b · b)(b⊗ b)]

}}

+µ6

{
1 ⊗ [(a · a)(a⊗ a) + (b · b)(b⊗ b)] + [(a · a)(a⊗ a) + (b · b)(b⊗ b)]⊗ 1

}

+µ7F̄

,

(443)



158 Isotropic functions of the symmetry groups

where the term F̄ is expressed in the index notation as

F̄ijkl =
1

2

[
(abalacad + bbblbcbd)Vla+(aaalacad + bablbcbd)Vlb

+(adalaaab + bdblbabb)Vlc+(acalaaab + bcblbabb)Vld
] . (444)

If a coordinate system is chosen such that a = [1, 0, 0]T , b = [0, 1, 0]T and ñ = [0, 0, 1]T ,
then the fourth-order tensor F in Eqn. (443) takes the coordinate-dependent form

[F] =




F1111 F1122 F1133 F1112 0 0

F2222 F1133 −F1112 0 0

F2222 0 0 0

F1212 0 0

sym . F1313 0

F1313




, (445)

along with the definitions

F1111 = 2

6∑

i=1

µi , F1122 = 2(µ1 + µ3 + µ6) , F1133 = 2µ1 + µ6 ,

F1112 =
µ7

2
, F2222 = 2

6∑

i=1

µi , F3333 = 2(µ1 + µ2) ,

F1212 = µ2 + µ5 , F1313 = µ2 +
µ5

2
,

(446)

in terms of seven material constants µ1−7.

A.5. Tetragonal symmetry group C5

The constitutive expressions of the C5 symmetry group, generated by Q
π
2
c ,Q

π
a, are ob-

tained from the C4 group by replacing the skew-symmetric tensor V with the symmetric
tensor U 3. Thus, the general form of the scalar-valued potential now reads

F = F(A,U 1,U 2,U 3) , (447)

where
U 1=(a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b) : A

U 2=(a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b) : A2

U 3=ñ⊗ ñ

. (448)

According to Table 11, the functional basis of the C5 group comprises of the basic invari-
ants of the arguments A, U 1, U 2 and U 3 namely
{
tr[A], tr[A2], tr[A3], tr[U 1], tr[U

2
1], tr[U

3
1], tr[U 2], tr[U

2
2], tr[U

3
2], tr[U 3], tr[U

2
3], tr[U

3
3]
}
,

(449)
the mixed invariants of every two arguments {A,U 1}, {A,U2},{A,U 3}, {U 1,U 2},
{U 1,U 3} and {U 2,U 3} defined by

{
tr[AU 1], tr[A

2U 1], tr[AU 2
1], tr[A

2U 2
1], tr[AU 2], tr[A

2U 2], tr[AU 2
2],

tr[A2U 2
2], tr[AU 3], tr[AU 2

3], tr[A
2U 2

3], tr[U 1U 2], tr[U
2
1U 2], tr[U 1U

2
2],

tr[U 2
1U

2
2], tr[U 1U 3], tr[U

2
1U 3], tr[U 1U

2
3], tr[U

2
1U

2
3],

tr[U 2U 3], tr[U
2
2U 3], tr[U 2U

2
3], tr[U

2
2U

2
3]
}

, (450)
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and the relative invariants of each three argument tensors {A,U 1,U 2}, {A,U1,U 3},
{A,U 2,U 3} and {U 1,U 2,U 3} such that

{
tr[AU 1U 2], tr[AU 1U 3], tr[AU 2U 3], tr[U 1U 2U 3]

}
. (451)

Additionally, the following linear dependencies for the C5 symmetry group are valid

tr[U 1U 3] = tr[U 2
1U 3] = tr[U 2U 3] = tr[AU 1U 3] = 0 ,

tr[U 2
1] = tr[AU 1] ,

tr[AU 3] = tr[A]− tr[U 1] ,

tr[A2U 3] = tr[A2]− tr[U 2] ,

U 2
3 = U 3 .

(452)

An irreducible integrity basis can be defined by combining the invariants in Eqns. (449)–
(451), and taking into account Eqn. (452) as

IC5
=
{
tr 2[A], tr[A2], tr 2[U 1], tr[U

2
1], tr[U 2], tr[A] tr[U 1]

}
, (453)

appealing to which, a general form of the quadratic potential can be specified as

F =

6∑

i=1

µiIi , (454)

where I1−6 are the elements of the integrity basis IC5
defined in Eqn. (453) and µ1−6 are

the material constants. The second-order stress-like tensor S is given by the expression

S = F,A=

7∑

i=1

F,Ii Ii,A

=2µ1 tr[A]1 + 2µ2A+ 2µ3 tr[U 1][(a · a)(a⊗ a) + (b · b)(b⊗ b)]

+2µ4

{
(a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b) : U 1

}

+2µ5[(a · a)(a⊗ a) + (b · b)(b⊗ b)]A

+µ6

{
tr[U 1]1 + tr[A][(a · a)(a⊗ a) + (b · b)(b⊗ b)]

}

, (455)

and the fourth-order Hessian F takes the form

F = F,AA=

6∑

i=1

6∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}

+2µ3

{
[(a · a)(a⊗ a) + (b · b)(b⊗ b)]⊗ [(a · a)(a⊗ a) + (b · b)(b⊗ b)]

}

+2µ4

{
(a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b) : (a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b)

}

+
µ5

2

{{
[(a · a)(a⊗ a) + (b · b)(b⊗ b)]⊕ 1

}

+
{
[(a · a)(a⊗ a) + (b · b)(b⊗ b)]⊖ 1

}

+
{
1 ⊕ [(a · a)(a⊗ a) + (b · b)(b⊗ b)]

}

+
{
1 ⊖ [(a · a)(a⊗ a) + (b · b)(b⊗ b)]

}}

+µ6

{
1 ⊗ [(a · a)(a⊗ a) + (b · b)(b⊗ b)] + [(a · a)(a⊗ a) + (b · b)(b⊗ b)]⊗ 1

}

,

(456)
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similar to the C4 group for µ7 = 0. If a coordinate system is chosen such that a = [1, 0, 0]T ,
b = [0, 1, 0]T and ñ = [0, 0, 1]T , the fourth-order tensor F appears in the coordinate form

[F] =




F1111 F1122 F1133 0 0 0

F2222 F1133 0 0 0

F2222 0 0 0

F1212 0 0

sym . F1212 0

F2323




, (457)

along with the expressions

F1111 = 2
6∑

i=1

µi , F1122 = 2(µ1 + µ3 + µ6) , F1133 = 2µ1 + µ6 ,

F2222 = 2

6∑

i=1

µi , F3333 = 2(µ1 + µ2) ,

F1212 = µ2 + µ5 , F1313 = µ2 +
µ5

2
,

(458)

in terms of six material constants µ1−6.

A.6. Trigonal symmetry group C6

The trigonal symmetry group C6 is generated by orthogonal rotation Q
2π
3
c , which corre-

sponds to 120◦ rotation around an orthonormal vector c. The functional basis of the C6

group is defined by a single symmetric second-order tensor A and three skew-symmetric
tensors V 1,V 2 and V 3, based on which the scalar-valued potential can generally be
specified as

F = F(A,V 1,V 2,V 3) , (459)

with

V 1=

(
3∑

i=1

ǫai ⊗ ai ⊗ ai

)
: A

V 2=

(
3∑

i=1

ǫai ⊗ ai ⊗ ai

)
: A2

V 3= ǫñ

, (460)

where ñ is the unit vector denoting the principle axis of the C6 group. The three vectors
a1−3 are all orthogonal to ñ, and are inclined at 120◦ to each other. From Table 11 it
follows that the functional basis for the C6 group consists of the basic invariants of the
arguments A,V 1,V 2 and V 3, given by

{
tr[A], tr[A2], tr[A3], tr[V 2

1], tr[V
2
2], tr[V

2
3]
}
, (461)

the mixed invariants of every two arguments {A,V 1}, {A,V 2}, {A,V 3}, {V 1,V 2},
{V 1,V 3} and {V 2,V 3} such that

{
tr[AV 2

1], tr[A
2V 2

1], tr[A
2V 2

1AV 1], tr[AV 2
2], tr[A

2V 2
2], tr[A

2V 2
2AV 2],

tr[AV 2
3], tr[A

2V 2
3], tr[A

2V 2
3AV 3], tr[V 1V 2], tr[V 1V 3], tr[V 2V 3]

}
,

(462)
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and the relative invariants of each three argument tensors {A,V 1,V 2}, {A,V 1,V 3},
{A,V 2,V 3} and {V 1,V 2,V 3} such that

{
tr[AV 1V 2], tr[AV 2

1V 2], tr[AV 1V
2
2],

tr[AV 1V 3], tr[AV 2
1V 3], tr[AV 1V

2
3],

tr[AV 2V 3], tr[AV 2
2V 3], tr[AV 2V

2
3], tr[V 1V 2V 3]

}
,

(463)

An irreducible integrity basis can be defined by multiplicative combination of the invari-
ants in Eqns. (461)– (463) to obtain quadratic terms in A as

IC6
=
{
tr 2[A], tr[A2], tr 2[AV 2

3], tr[V
2
1], tr[A] tr[AV 2

3], tr[AV 1V 3], tr[AV 1V
2
3]
}
. (464)

The following linear dependencies can be trivially verified, and hence the invariants are
dropped from Eqn. (464)

tr[V 1V 3] = tr[V 2V 3] = 0

tr[A2V 2
3] =

1

2

(
tr[A2] + tr 2[A]

)
+

1

4
tr 2[AV 2

3] + tr[A] tr[AV 2
3] +

2

9
tr[V 2

1] .
(465)

Scalar quadratic potential Eqn. (80) can be specified using Eqn. (465) as

F =
7∑

i=1

µiIi , (466)

where I1−7 are the elements of the integrity basis IC6
defined in Eqn. (464) and µ1−7 are

material constants. The second-order stress-like tensor S is given by

S = F,A =
7∑

i=1

F,Ii Ii,A=2µ1 tr[A]1 + 2µ2A+ 2µ3 tr[AV 2
3]V

2
3 + µ4S̄1

+µ5

{
tr[AV 2

3]1 + tr[A]V 2
3

}
+ µ6S̄2 + µ7S̄3

, (467)

where S̄1−3 are expressed in the index notation as

S̄1ab = V1ij [Dijab +Dijba] with Dijab = eijma1ma1aa1b + eijma2ma2aa2b + eijma3ma3aa3b ,

S̄2ab =
1

2

{
[V1bnV3na

+ V1anV3nb
] + [Dmnab +Dmnba]V3ni

Aim

}
,

S̄3ab =
1

2

{
[V1bnV3np

V3pa + V1anV3np
V3pb ] + [Dmnab +Dmnba]V3np

V3piAim

}
.

(468)
The Hessian associated with the potential can be expressed as

F = F,AA=

7∑

i=1

7∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}

+µ3V
2
3 ⊗ V 2

3 + µ4F̄1 + µ5

{
(1 ⊗ V 2

3) + (V 2
3 ⊗ 1 )

}

+µ6F̄2 + µ7F̄3

, (469)
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along with the expressions

F̄1abcd=
1

2
[Dijcd +Dijdc][Dijab +Dijba] ,

F̄2abcd=
1

4

{
[Dbncd +Dbndc]V3na

+ [Dancd +Dandc]V3nb

+[Ddnab +Ddnba]V3nc
+ [Dcnab +Dcnba]V3nd

}
,

F̄3abcd=
1

4

{
[Dbncd +Dbndc]V3np

V3pa + [Dancd +Dandc]V3np
V3pb

+[Ddnab +Ddnba]V3np
V3pc + [Dcnab +Dcnba]V3np

V3pd
}
.

(470)

For the choice ñ = [1, 0, 0]T , a1 = [0, 1, 0]T , a2 = [0,−1/2,
√
3/2]T and a3 =

[0,−1/2,−
√
3/2]T , the fourth-order Hessian F appears in the coordinate form

[F] =




F1111 F1122 F1122 0 0 0

F2222 F2233 F2212 F2213 0

F2222 −F2212 −F2213 0

F1212 0 F2213

sym . F1212 −F2212

1
2
(F2222 − F2223)




, (471)

with the components

F1111 = 2(µ1 + µ3) , F1122 = 2µ1 − µ5 ,

F2222 = 2(µ1 + µ2 + µ3 +
9

4
µ4 − µ5) , F2223 = 2(µ1 + µ2 −

9

4
µ4 − µ5) ,

F2212 =
3

8
µ6 , F2213 =

3

8
µ7 ,

F1212 = µ3 ,

(472)

in terms of seven material constants µ1−7.

A.7. Trigonal symmetry group C7

The constitutive expressions of the C7 symmetry group are obtained from the C6 group
by replacing the skew-symmetric tensor V 3 with a symmetric tensor U . Thus, the scalar-
valued potential now reads

F = F(A,V 1,V 2,U) , (473)

with

V 1=

(
3∑

i=1

ǫai ⊗ ai ⊗ ai

)
: A

V 2=

(
3∑

i=1

ǫai ⊗ ai ⊗ ai

)
: A2

U = ñ⊗ ñ

. (474)

Analogous to the previous case, the three vectors a1−3 are all orthogonal to the unit vector
ñ, and aligned at 120◦ to each other. It can be seen from Table 11 that the functional
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basis for the C7 group consists of the basic invariants of the arguments A,V 1,V 2 and U

such that
{
tr[A], tr[A2], tr[A3], tr[V 2

1], tr[V
2
2], tr[V

2
3], tr[U ], tr[U 2], tr[U 3]

}
, (475)

the mixed invariants of every two arguments {A,V 1}, {A,V 2}, {A,U}, {V 1,V 2},
{V 1,U} and {V 2,U} given by

{
tr[AV 2

1], tr[A
2V 2

1], tr[A
2V 2

1AV 1], tr[AV 2
2], tr[A

2V 2
2], tr[A

2V 2
2AV 2],

tr[AU ], tr[A2U ], tr[AU 2], tr[A2U 2], tr[V 1V 2], tr[V
2
1U ], tr[V 2

1U
2],

tr[V 2
1U

2V 1U ], tr[V 2
2U ], tr[V 2

2U
2], tr[V 2

2U
2V 2U ]

}
,

(476)

and the relative invariants of each three argument tensors {A,V 1,V 2}, {A,V 1,U},
{A,V 2,U} and {V 1,V 2,U} such that

{
tr[AV 1V 2], tr[AV 2

1V 2], tr[AV 1V
2
2],

tr[AV 1U ], tr[A2V 1U ], tr[AV 1U
2], tr[AV 2

1UV 1],

tr[AV 2U ], tr[A2V 2U ], tr[AV 2U
2], tr[AV 2

2UV 2],

tr[V 1V 2U ], tr[V 1V
2
2U ], tr[V 2

1V 2U ]
}
,

(477)

A multiplicative combination of invariants in Eqns. (475)–(477) to obtain quadratic terms
in A leads to the definition of an irreducible integrity basis for this symmetry group as

IC7
=
{
tr 2[A], tr[A2], tr 2[AU ], tr[V 2

1], tr[A] tr[AU ], tr[AV 1U ]
}
, (478)

where the following invariants are not considered in Eqn. (478) as they can be expressed
in terms of other invariants

tr[A2U ] =
1

4

(
tr 2[AU ]− tr 2[A]

)
+

1

2

(
tr[A] tr[AU ] + tr[A2]

)
+

2

9
tr[V 2

1] ,

tr[UV 2
1] =

1

2
tr[AU ] ,

U = U 2 .

(479)

A scalar quadratic potential can be defined with the aid of Eqn. (478) as

F =
6∑

i=1

µiIi , (480)

where I1−6 are the elements of the integrity basis IC7
and µ1−6 are material constants.

The second-order stress-like tensor S associated with the potential is given by

S = F,A =
6∑

i=1

F,Ii Ii,A=2µ1 tr[A]1 + 2µ2A+ 2µ3 tr[AU ]U + µ4S̄1

+µ5

{
tr[AU ]1 + tr[A]U

}
+ µ6S̄2

, (481)

where S̄1 is defined in Eqn. (468), and

S̄2ab =
1

2

{
[V1bnUna + V1anUnb] + [Dmnab +Dmnba]UniAim

}
. (482)
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Likewise, the fourth-order Hessian matrix can be expressed as

F = F,AA=
6∑

i=1

6∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}
+ µ3U ⊗U

+µ4F̄1 + µ5

{
(1 ⊗U) + (U ⊗ 1 )

}
+ µ6F̄2

, (483)

where F̄1 is defined in Eqn. (468), and

F̄2abcd=
1

4

{
[Dbncd +Dbndc]Una + [Dancd +Dandc]Unb

+[Ddnab +Ddnba]Unc + [Dcnab +Dcnba]Und

}
.

(484)

If the vectors ñ,a1−3 are chosen in complete analogy to the C6 group, the fourth-order
tensor F appears in a coordinate form as

[F] =




F1111 F1122 F1122 0 0 0

F2222 F2233 F2212 0 0

F2222 −F2212 0 0

F1212 0 0

sym . F1212 −F2212

1
2
(F2222 − F2223)




, (485)

with the components

F1111 = 2(µ1 + µ3) , F1122 = 2µ1 − µ5 ,

F2222 = 2(µ1 + µ2 + µ3 +
9

4
µ4 − µ5) , F2223 = 2(µ1 + µ2 −

9

4
µ4 − µ5) ,

F2212 =
3

8
µ6 , F1212 = µ3 ,

(486)

in terms of six material constants µ1−6.

A.8. Hexagonal symmetry group C8

The hexagonal symmetry group C8 is characterised by the existence of three symmetric
second order tensorsA,U 1,U 2 and a single skew-symmetric second-order tensor V . Thus,
one may specify a general form of the scalar-valued potential as

F = F(A,U1,U 2,V ) , (487)

with

U 1=

{(
3∑

i=1

ai ⊗ ai ⊗ ai ⊗ ai ⊗ ai ⊗ ai

)
: A

}
: A

U 2=

{(
3∑

i=1

ai ⊗ ai ⊗ ai ⊗ ai ⊗ ai ⊗ ai

)
: A2

}
: A2

V = ǫñ

, (488)

where the three vectors a1−3 are aligned at 120◦ to each other, and are all orthogonal
to a unit normal vector ñ. The functional basis for the C8 group can be specified from
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Table 11 for the arguments A,U 1,U 2 and V . The basis consists of the fundamental
invariants of each argument such that

{
tr[A], tr[A2], tr[A3], tr[U 1], tr[U

2
1], tr[U

3
1], tr[U 2], tr[U

2
2], tr[U

3
2], tr[V

2]
}
, (489)

together with the mixed invariants of each two arguments {A,U 1}, {A,U 2}, {A,V },
{U 1,U 2}, {U 1,V } and {U2,V } given by

{
tr[AU 1], tr[A

2U 1], tr[AU 2
1], tr[A

2U 2
1], tr[AU 2], tr[A

2U 2], tr[AU 2
2], tr[A

2U 2
2],

tr[AV 2], tr[A2V 2], tr[A2V 2AV ], tr[U 1U 2], tr[U
2
1U 2], tr[U 1U

2
2], tr[U

2
1U

2
2],

tr[U 1V
2], tr[U 2

1V
2], tr[U 2

1V
2U 1V ], tr[U 2V

2], tr[U 2
2V

2], tr[U 2
2V

2U 2V ]
}
,

(490)

and the relative invariants of each three argument tensors {A,V 1,V 2}, {A,V 1,U},
{A,V 2,U} and {V 1,V 2,U} such that

{
tr[AU 1U 2], tr[AU 1V ], tr[A2U 1V ], tr[AU 2

1V ], tr[AV 2U 1V ],

tr[AU 2V ], tr[A2U 2V ], tr[AU 2
2V ], tr[AV 2U 2V ],

tr[U 1U 2V ], tr[U 2
1U 2V ], tr[U 1U

2
2V ], tr[U 1V

2U 2V ]
}
.

(491)

With respect to the C8 symmetry group, the following linear dependencies of the invariants
can be trivially verified

tr[U 1] = − tr[U 1V
2] ,

tr[A2V 2] =
1

2

(
tr 2[A]− tr[A2]

)
+

3

4
tr 2[AV 2] + tr[A] tr 2[AV 2]− 2

3
tr[U 1] ,

U = U 2 .

(492)

An irreducible integrity basis for the C8 symmetry group can be obtained by multiplica-
tively combining the invariants in Eqns. (489)–(491) to obtain quadratic terms inA, while
taking into account Eqn. (492) as

IC8
=
{
tr 2[A], tr[A2], tr[AV 2], tr[U 1], tr[A] tr[AV 2]

}
, (493)

which allows for the definition a scalar-valued quadratic potential as

F =

5∑

i=1

µiIi , (494)

where I1−5 are the elements of the integrity basis IC8
and µ1−5 are material constants. It

follows that the second-order stress-like tensor S can be expressed as

S = F,A =
5∑

i=1

F,Ii Ii,A=2µ1 tr[A]1 + 2µ2A+ 2µ3 tr[AV 2]V 2

+µ4S̄1 + µ5

{
tr[AV 2]1 + tr[A]V 2

} , (495)

where

S̄1ab =
1

2

{
[Diiklab +Diiklba]Akl + [Diiabmn +Diibamn]Amn

}
. (496)
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The fourth-order Hessian matrix takes the form

F = F,AA=

5∑

i=1

5∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}
+ µ3V

2 ⊗ V 2

+µ4F̄1 + µ5

{
(1 ⊗ V 2) + (V 2 ⊗ 1 )

}
, (497)

where F̄1 is expressed in the index notation as

F̄1abcd=
1

4

{
Diicdab +Diicdba +Diidcab +Diidcba +Diiabcd +Diibacd +Diiabdc +Diibadc

}
.

(498)
Setting ñ = [1, 0, 0]T , a1 = [0, 1, 0]T , a2 = [0,−1/2,

√
3/2]T and a3 = [0,−1/2,−

√
3/2]T ,

a coordinate form of the Hessian matrix is obtained as

[F] =




F1111 F1122 F1122 0 0 0

F2222 F2233 0 0 0

F2222 0 0 0

F1212 0 0

sym . F1212 0
1
2
(F2222 − F2223)




, (499)

where

F1111 = 2(µ1 + µ3) , F1122 = 2µ1 − µ5 ,

F2222 = 2(µ1 + µ2 + µ3 +
9

8
µ4 − µ5) , F2223 = 2(µ1 + µ2 −

3

8
µ4 − µ5) ,

F1212 = µ3 ,

(500)

in terms of five material constants µ1−5.

A.9. Hexagonal symmetry group C9

Analogous to the C7 group, the constitutive expressions of the C9 symmetry group are
obtained from those of the C8 group by replacing the skew-symmetric tensor V with a
symmetric tensor U 3. The scalar-valued potential now reads

F = F(A,U 1,U 2,U 3) , (501)

with

U 1=

{(
3∑

i=1

ai ⊗ ai ⊗ ai ⊗ ai ⊗ ai ⊗ ai

)
: A

}
: A

U 2=

{(
3∑

i=1

ai ⊗ ai ⊗ ai ⊗ ai ⊗ ai ⊗ ai

)
: A2

}
: A2

U 3= ñ⊗ ñ

, (502)

Again, it follows from Table 11 that the functional basis for the C9 group consists of the
basic invariants of A,U 1,U 2 and U 3 such that
{
tr[A], tr[A2], tr[A3], tr[U 1], tr[U

2
1], tr[U

3
1], tr[U 2], tr[U

2
2], tr[U

3
2], tr[U 3], tr[U

2
3], tr[U

3
3]
}
,

(503)
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along with the mixed invariants of {A,U1}, {A,U2}, {A,U 3}, {U1,U 2}, {U1,U 3} and
{U 2,U 3} given by

{
tr[AU 1], tr[A

2U 1], tr[AU 2
1], tr[A

2U 2
1], tr[AU 2], tr[A

2U 2], tr[AU 2
2], tr[A

2U 2
2],

tr[AU 3], tr[A
2U 3], tr[AU 2

3], tr[A
2U 2

3], tr[U 1U 2], tr[U
2
1U 2], tr[U 1U

2
2], tr[U

2
1U

2
2],

tr[U 1U 3], tr[U
2
1U 3], tr[U 1U

2
3], tr[U

2
1U

2
3], tr[U 2U 3], tr[U

2
2U 3], tr[U 2U

2
3], tr[U

2
2U

2
3]
}
,

(504)
and the relative invariants of each three argument tensors {A,U 1,U 2}, {A,U1,U 3},
{A,U 2,U 3} and {U 1,U 2,U 3} such that

{
tr[AU 1U 2], tr[AU 1U 3], tr[AU 2U 3], tr[U 1U 2U 3]

}
. (505)

The invariants in Eqns. (503)–(505) are multiplicatively combined to obtained quadratic
terms in A, leading to the definition of an irreducible integrity basis as

IC9
=
{
tr 2[A], tr[A2], tr 2[AU 2

3], tr[U 1], tr[A] tr[AU 2
3]
}
, (506)

where the following invariants are dropped as they can be expressed in terms of other
invariants

tr[U 1U 3] = 0 ,

tr[A2U 3] =
1

2

(
1

2
tr 2[A] + tr[A2]

)
+

3

4
tr 2[AU 3]−

1

2
tr[A] tr[AU 3]−

2

3
tr[U 1] ,

U 3 = U 2
3 .

(507)
A scalar-valued potential can readily be written with the aid of Eqn. (506) as

F =
5∑

i=1

µiIi , (508)

where I1−5 are the elements of the integrity basis IC9
and µ1−5 are material constants.

The second-order stress-like tensor S can be expressed as

S = F,A =

5∑

i=1

F,Ii Ii,A=2µ1 tr[A]1 + 2µ2A+ 2µ3 tr[AU 3]U 3

+µ4S̄1 + µ5

{
tr[AU 3]1 + tr[A]U 3

} , (509)

with S̄1 defined in Eqn. (496). Likewise, the fourth-order Hessian associated with the
potential (508) is given by

F = F,AA=
5∑

i=1

5∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}
+ µ3U

2
3 ⊗U 2

3

+µ4F̄1 + µ5

{
(1 ⊗U 3) + (U 3 ⊗ 1 )

}
, (510)
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where F̄1 is defined in Eqn. (498). For the choice of ñ,a1−3 same as that of the C8 group,
the coordinate form of the Hessian matrix looks

[F] =




F1111 F1122 F1122 0 0 0

F2222 F2233 0 0 0

F2222 0 0 0

F1212 0 0

sym . F1212 0
1
2
(F2222 − F2223)




, (511)

where
F1111 = 2(µ1 + µ2 + µ3 + µ5) , F1122 = 2µ1 + µ5 ,

F2222 = 2(µ1 + µ3 +
9

8
µ4) , F2223 = 2(µ1 +

3

8
µ4) ,

F1212 = µ3 ,

(512)

in terms of five material constants µ1−5.

A.10. Cubic symmetry group C10

The cubic symmetry group C10 is characterised by the existence of three symmetric second-
order tensors A,U 1 and U 2, such that a general form of the scalar-valued potential can
be specified as

F = F(A,U 1,U 2) , (513)

with

U 1=

(
3∑

i=1

ai ⊗ ai ⊗ ai ⊗ ai

)
: A

U 2=

(
3∑

i=1

ai ⊗ ai ⊗ ai ⊗ ai

)
: A2

, (514)

where a1−3 denote three unit vectors which are orthogonal to each other. With reference
to Table 11, the functional basis for the C10 group comprises of the basic invariants of the
arguments A,U 1 and U 2, namely

{
tr[A], tr[A2], tr[A3], tr[U 1], tr[U

2
1], tr[U

3
1], tr[U 2], tr[U

2
2], tr[U

3
2]
}
, (515)

together with the mixed invariants of {A,U1}, {A,U2} and {U 1,U 2} given by

{
tr[AU 1], tr[A

2U 1], tr[AU 2
1], tr[A

2U 2
1], tr[AU 2], tr[A

2U 2],

tr[AU 2
2], tr[A

2U 2
2], tr[U 1U 2], tr[U

2
1U 2], tr[U 1U

2
2], tr[U

2
1U

2
2]
}
,

(516)

and the relative invariants of all the three argument tensors {A,U 1,U 2} such that

{
tr[AU 1U 2]

}
. (517)

A possible complete and irreducible integrity basis can be defined by multiplicatively
combining the invariants in Eqns. (515)–(517) as

IC10
=
{
tr 2[A], tr[A2], tr[U 2

1]
}
, (518)
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where the following equalities are already taken into account

tr[A] = tr[U 1] ,

tr[A2] = tr[U 2] ,

tr[U 2
1] = tr[AU 1] .

(519)

Equation (518) allows for the definition of a scalar-valued potential as

F =

3∑

i=1

µiIi , (520)

where I1−3 are the elements of the integrity basis IC10
and µ1−3 are material constants.

The second-order stress-like tensor S is given by

S = F,A =

3∑

i=1

F,Ii Ii,A=2µ1 tr[A]1 + 2µ2A+ 2µ3S̄1 , (521)

with S̄1 defined analogous to Eqn. (468)1. Likewise, the fourth-order Hessian is given by

F = F,AA=
3∑

i=1

3∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}
+ µ3F̄1

, (522)

where F̄1 is defined similar to Eqn. (470)1. For the choice a1 = [1, 0, 0]T , a2 = [0, 1, 0]T

and a3 = [0, 0, 1]T , the fourth-order Hessian F appears in the coordinate form

[F] =




F1111 F1122 F1122 0 0 0

F1111 F1122 0 0 0

F1111 0 0 0

F1212 0 0

sym . F1212 0

F1212




, (523)

with the individual components

F1111 = 2(µ1 + µ2 + µ3) , F1122 = 2µ1 , F1212 = µ2 , (524)

in terms of three material constants µ1−3.

A.11. Cubic symmetry group C11

The second cubic symmetry group C11 is characterised by the existence of two symmetric
second-order tensors A,U and a single skew-symmetric second-order tensor V , which
allow to specify a general form of the scalar-valued potential as

F = F(A,U ,V ) , (525)
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with
U=

{
(a1 ⊗ a1 ⊗ a2 ⊗ a2 − a2 ⊗ a2 ⊗ a1 ⊗ a1)

−(a1 ⊗ a1 ⊗ a3 ⊗ a3 − a3 ⊗ a3 ⊗ a1 ⊗ a1)

−(a2 ⊗ a2 ⊗ a3 ⊗ a3 − a3 ⊗ a3 ⊗ a2 ⊗ a2)
}
: A

V =
{
ǫa1 ⊗ (a2 ⊗ a3 + a3 ⊗ a2)

+ǫa2 ⊗ (a1 ⊗ a3 + a3 ⊗ a1)

+ǫa3 ⊗ (a1 ⊗ a2 + a2 ⊗ a1)
}
: A

. (526)

The functional basis for the C11 group comprises of the basic invariants of the arguments
A,U and V , namely

{
tr[A], tr[A2], tr[A3], tr[U ], tr[U 2], tr[U 3], tr[V 2]

}
. (527)

Additionally, the mixed invariants of {A,U}, {A,V } and {U ,V } are given by

{
tr[AU ], tr[A2U ], tr[AU 2], tr[A2U 2], tr[AV 2], tr[A2V 2], tr[A2V 2AV ],

tr[UV 2], tr[U 2V 2], tr[U 2V 2UV ]
}
,

(528)

and the relative invariants of each three argument tensors {A,U ,V } are given by

{
tr[AUV ], tr[A2UV ], tr[AU 2V ], tr[AV 2UV ],

}
. (529)

It can be easily verified that the following linear dependencies are valid for the C11 group

tr[V 2] =
4

3

(
tr 2[A] + tr[U 2]

)
− 4 tr[A2] ,

tr[U ] = 0 and tr 2[AU ] = 0 .

(530)

An irreducible integrity basis for the C8 symmetry group can be defined as

IC11
=
{
tr 2[A], tr[A2], tr[U 2]

}
, (531)

which allows for the the definition of a scalar-valued potential as

F =

3∑

i=1

µiIi , (532)

where I1−3 are the elements of the integrity basis IC11
and µ1−3 are material constants.

The second-order stress-like tensor S is given by

S = F,A =
3∑

i=1

F,Ii Ii,A=2µ1 tr[A]1 + 2µ2A+ 2µ3S̄1 , (533)

with S̄1 defined analogous to Eqn. (468)1. Likewise, the fourth-order Hessian is given by

F = F,AA=

3∑

i=1

3∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}
+ µ3F̄1

, (534)
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where F̄1 is defined similar to Eqn. (470)1. For the choice a1 = [1, 0, 0]T , a2 = [0, 1, 0]T

and a3 = [0, 0, 1]T , the fourth-order Hessian F appears in the coordinate form

[F] =




F1111 F1122 F1122 0 0 0

F1111 F1122 0 0 0

F1111 0 0 0

F1212 0 0

sym . F1212 0

F1212




, (535)

with the individual components

F1111 = 2(µ1 + µ2 + 2µ3) , F1122 = 2(µ1 − µ2 + µ3) , F1212 = µ2 , (536)

in terms of three material constants µ1−3.

A.12. Transversely isotropic symmetry group C12

The transversely isotropic symmetry group C12 is characterised by the existence of two
skew-symmetric second-order tensors A and V , based on which a general form of the
scalar-valued potential can be specified as

F = F(A,V ) with V = ǫñ , (537)

where ñ denotes a unit normal vector. The functional basis for the C12 symmetry group,
with reference to Table 11, consists of the basic invariants of the two arguments A and
V such that {

tr[A], tr[A2], tr[A3], tr[V 2]
}
, (538)

the mixed invariants of {A,V } given by

{
tr[AV 2], tr[A2V 2]

}
. (539)

With no linear dependencies, an irreducible integrity basis for this symmetry group can
be specified by multiplicatively combining the invariants in Eqns. (538)–(539) as

IC12
=
{
tr 2[A], tr[A2], tr 2[AV 2], tr[A] tr[AV 2], tr[A2V 2]

}
, (540)

which allows for the definition of a scalar-valued potential as

F =
5∑

i=1

µiIi , (541)

where I1−5 are the elements of the integrity basis IC12
and µ1−5 are material constants.

Given the potential (541), the second-order stress-like tensor S can be expressed as

S = F,A =
5∑

i=1

F,Ii Ii,A=2µ1 tr[A]1 + 2µ2A+ 2µ3 tr[AV 2]V 2

+µ4

{
AV 2 + V 2A

}
+ µ5

{
tr[A]V 2 + tr[AV 2]1

} . (542)
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Likewise, the constant fourth-order Hessian can be expressed as

F = F,AA=
5∑

i=1

5∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}
+ µ3V

2 ⊗ V 2

+µ4

{
(1 ⊗ V 2) + (V 2 ⊗ 1 )

}

+
µ5

2

{
(1 ⊕ V 2) + (1 ⊖ V 2) + (V 2 ⊕ 1 ) + (V 2 ⊖ 1 )

}

, (543)

which for the choice of ñ = [1, 0, 0]T appears in the coordinate form

[F] =




F1111 F1122 F1122 0 0 0

F2222 F2233 0 0 0

F2222 0 0 0

F1212 0 0

sym . F1212 0
1
2
(F2222 − F2223)




, (544)

with the individual components

F1111 = 2(µ1 + µ4) , F1122 = 2µ1 − µ3 ,

F2222 = 2(µ1 + µ2 − µ3 + µ4 − µ5) , F2233 = 2(µ1 + µ2 − µ3) ,

F1212 = µ4 −
µ5

2

(545)

in terms of five material constants µ1−5.

A.13. Transversely isotropic symmetry group C13

The constitutive expressions of the second transversely isotropic symmetry group C13 are
obtained from those of C12 by replacing the skew-symmetric tensor V with a symmetric
tensor U , such that the scalar-valued potential takes the form

F = F(A,U) with U = ñ⊗ ñ , (546)

where ñ denotes a unit normal vector. The functional basis for the C13 symmetry group,
with reference to Table 11, consists of the basic invariants of the two arguments A and
U such that {

tr[A], tr[A2], tr[A3], tr[U ], tr[U 2], tr[U 3],
}
, (547)

the mixed invariants of {A,U} given by

{
tr[AU ], tr[A2U ], tr[AU 2], tr[A2U 2]

}
. (548)

An irreducible integrity basis for the C13 symmetry group can be specified by multiplica-
tively combining the invariants in Eqns. (547)–(548) as

IC13
=
{
tr 2[A], tr[A2], tr 2[AU ], tr[A2U ], tr[A] tr[AU ]

}
, (549)
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where the following linear dependencies are already taken into account

tr[AU ] = tr[AU 2] and tr[A2U ] = tr[A2U 2] . (550)

The explicit form of the scalar-valued potential is given by

F =

5∑

i=1

µiIi , (551)

where I1−5 are the elements of the integrity basis IC13
and µ1−5 are material constants.

The second-order stress-like tensor S is expressed as

S = F,A =
5∑

i=1

F,Ii Ii,A=2µ1 tr[A]1 + 2µ2A+ 2µ3 tr[AU ]U

+µ4

{
AU +UA

}
+ µ5

{
tr[A]U + tr[AU ]1

} . (552)

Likewise, the constant fourth-order Hessian is given by

F = F,AA=

5∑

i=1

5∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}
+ µ3U ⊗U

+µ4

{
(1 ⊗U) + (U ⊗ 1 )

}

+
µ5

2

{
(1 ⊕U) + (1 ⊖U) + (U ⊕ 1 ) + (U ⊖ 1 )

}

, (553)

which appears in the coordinate form for the choice of ñ = [1, 0, 0]T as

[F] =




F1111 F1122 F1122 0 0 0

F2222 F2233 0 0 0

F2222 0 0 0

F1212 0 0

sym . F1212 0
1
2
(F2222 − F2223)




, (554)

with the individual components

F1111 = 2
5∑

i=1

µi , F1122 = 2µ1 + µ3 ,

F2222 = 2(µ1 + µ4) , F2233 = 2µ1 ,

F1212 = µ4 +
µ5

2

(555)

in terms of five material constants µ1−5.
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A.14. Isotropic symmetry group C14

The isotropic symmetry group C14, generated by O(3), is characterised by the existence
of a single symmetric second-order argument tensor A such that

F = F(A) . (556)

With reference to Table 11, the functional basis for the isotropic symmetry group com-
prises only of the basic invariants of the argument A namely

{
tr[A], tr[A2], tr[A3]

}
, (557)

which allows to specify an irreducible integrity basis for the C14 symmetry group as

IC14
=
{
tr 2[A], tr[A2]

}
, (558)

based on which the explicit form of the scalar-valued potential is given by

F =

2∑

i=1

µiIi , (559)

where I1−2 are the elements of the integrity basis IC14
and µ1−2 are material constants.

The second-order stress-like tensor S is expressed as

S = F,A =
2∑

i=1

F,Ii Ii,A = 2µ1 tr[A]1 + 2µ2A , (560)

and the constant fourth-order Hessian is given by

F = F,AA=

2∑

i=1

2∑

j=1

F,Ii Ii,AA
+ F,IiIj Ii,A ⊗ Ij,A

=2µ11 ⊗ 1 + µ2

{
(1 ⊕ 1 ) + (1 ⊖ 1 )

}
, (561)

which can be equivalently expressed in the coordinate form as

[F] =




F1111 F1111 − 2F2222 F1111 − 2F2222 0 0 0

F1111 F1111 − 2F2222 0 0 0

F1111 0 0 0

F2222 0 0

sym . F2222 0

F2222




, (562)

with the individual components

F1111 = 2(µ1 + µ2) and F2222 = µ2 , (563)

in terms of two material constants µ1−2.
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B. Comparison to Hill’s orthotropic yield criterion

In this appendix, the orthotropic yield function proposed by Hill [25] within the framework
of infinitesimal deformations is compared with the yield function in Eqn. (279). Setting
κ1 = 0, κ = 0, β = 0 , and choosing a1 = [1, 0, 0]T and a2 = [0, 1, 0]T , the latter
reformulates to the component form

χ =

[
9κ2

4

(2σ33 − σ11 − σ22)
2

9
+ 2κ3τ

2
12 + 2κ4τ

2
13 + 2κ5τ

2
23

]1/2
− 1 . (564)

Now, it can be trivially verified that

(2σ33 − σ11 − σ22)
2

9
=

2

9
(σ22 − σ33)

2 +
2

9
(σ33 − σ11)

2 − 1

9
(σ11 − σ22)

2 . (565)

Inserting the above identity into Eqn. (564) yields

χ =

[
κ2

2
(σ22−σ33)2+

κ2

2
(σ33−σ11)2−

κ2

4
(σ11−σ22)2+2κ3τ

2
12+2κ4τ

2
13+2κ5τ

2
23

]1/2
−1 .

(566)
The yield function proposed by Hill [25, Chapter XII] reads

χ =

[
F (σ22−σ33)2+G(σ33−σ11)2+H(σ11−σ22)2+2Lτ 223+2Mτ 213+2Nτ 212

]1/2
−1 , (567)

where F,G,H, L,M and N are the six parameters governing the orthotropic plastic yield-
ing. A direct comparison of Eqns. (566) and (567) gives the equalities

F = G =
κ2

2
, H = −κ2

4
, L = κ5, M = κ4 and N = κ3 , (568)

see also [77] for a higher-order generalisation of the yield function.
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C. Extension to coupled thermoplasticity

In this appendix, a general framework for the analysis of coupled thermo-mechanical
boundary value problems of anisotropic thermoplasticity is discussed. An infinitesimal
anisotropic thermoplasticity model is presented to describe the temperature-dependent
elastic and plastic response at the continuum level. The constitutive response functions
of the presented model are straightforward extensions of those described in Chapter 5.
Additionally, the algorithmic treatment of the model is provided which is slightly com-
plicated than that discussed in Chapter 5, but yields a structure that is very useful for
coupled problems. Non-local constitutive formulation of this problem has been recently
explored in [73], with an emphasis on the isotropic response. In this work, anisotropic
effects are incorporated while restricting to the local theory.

Following [73], a decoupled scalar energetic potential reads

ψ(ε− εp, ξ,α,Θ) = ψe(ε− εp) + ψth−e(ε− εp,Θ) + ψth−p(ξ,α,Θ) + ψth(Θ) , (569)

in terms of an elastic, thermo-elastic, thermo-plastic and a purely thermal part. The
individual contributions can be expressed as

ψe(ε− εp) =
1

2
‖ε− εp‖2

E

,

ψth−e(ε− εp,Θ) = −(ε− εp) : E : αt(Θ−Θ0) ,

ψth−p(ξ,α,Θ) =
h(Θ)

n+ 1
(ξ̄ + ξ)n+1 +

1

2
‖α‖2

H(Θ) ,

ψth(Θ) = c
[
(Θ−Θ0)−Θ ln[Θ/Θ0]

]
,

(570)

where E is of the form in Eqn. (202), αt is a second-order tensor that contains the
coefficients of thermal expansion and Θ0 is the reference temperature of the body. The
temperature dependent isotropic hardening modulus h(Θ) is defined following [72] as

h(Θ) = h[1− wh(Θ−Θ0)] . (571)

To express the temperature dependent anisotropic kinematic hardening modulus H(Θ), a
second-order anisotropy tensor is defined following [140] as

T = wh1
(a1 ⊗ a1) + wh2

(a2 ⊗ a2) + wh3
(a3 ⊗ a3) , (572)

based on which a fourth-order anisotropy tensor is given by

T = (1 ⊕ 1 )− 1

2
{(T⊕T) + (T⊖T)}(Θ−Θ0) . (573)

With Eqns. (572) and(573), the modulus H(Θ) is proposed to have the following form

H(Θ) = H : T , (574)

where H is defined in Eqn. (264)3. Note that Eqns. (572) and (573) are formulated for the
C3 symmetry group, and they represent the C13 symmetry group for the choice wh1

= wh2
.

Further, for wh1
= wh2

= wh3
, the C14 symmetry group is characterised.
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Given the potential in Eqn. (570), the closed-form expressions of the stress tensor, entropy
and the driving forces are obtained with the aid of Eqns. (51) and (96), respectively, as

σ = E : [(ε− εp)−αt(Θ−Θ0)] ,

̺ = (ε− εp) : E : αt −
hwh

n+ 1
(ξ̄ + ξ)n+1 − 1

2
‖α‖2

H

+ c ln[Θ/Θ0] ,

κ = −h(Θ)(ξ̄ + ξ)n ,

β = −H(Θ) : α ,

(575)

where

H = H : T with T = −1

2
{(T⊕T) + (T⊖T)} . (576)

As outlined in Chapter 2, Section 2.1, the heat flux can be constitutively prescribed as

q = −K · ∇Θ , (577)

where K is a second-order tensor containing the thermal conductivities. With the pre-
ceding definitions at hand, the thermodynamic restriction can be evaluated in line with
Eqns. (53) and (54) as

D
red = σ : ε̇p + κξ̇ + β : α̇︸ ︷︷ ︸

Dred
loc

− 1

Θ
∇Θ · q

︸ ︷︷ ︸
Dred

con

≥ 0 , (578)

from which it is clear that the evolution of plastic variables {ε̇p, ξ̇, α̇} has to be prescribed
along with the heat flux q. To formally prescribe the evolution of plastic variables, a yield
function is defined in the space of admissible thermodynamic forces as

χ = κp+ ‖Σ‖
X

−
√

2

3
[y0(Θ)− κ] +

1

2
‖β‖2

Y

with Σ = σ + β , (579)

where κ is the coefficient of the hydrostatic pressure, p is the hydrostatic pressure of
the form in Eqn. (277)1 and y0(Θ) is temperature dependent initial threshold yield stress
defined analogous to Eqn. (571). The fourth-order Hill-type tensors X and Y can be
defined based on appropriate considerations, see for example [141]. In the present work,
they are defined as follows. Firstly, set X = E in Eqn. (202) with temperature dependent
yield surface parameters instead of the elastic constants, i.e.

[X] =




κ1(Θ) κ4(Θ) κ5(Θ) 0 0 0

κ2(Θ) κ6(Θ) 0 0 0

κ3(Θ) 0 0 0

κ7(Θ) 0 0

sym . κ8(Θ) 0

κ9(Θ)




, (580)

where κ1(Θ)−κ9(Θ) are the nine temperature dependent yield parameters. The deviatoric
property of X is satisfied for

X : 1 = 0 , (581)
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which yields the relations

κ4(Θ) =
κ3(Θ)− κ1(Θ)− κ2(Θ)

2
,

κ5(Θ) =
κ1(Θ)− κ2(Θ)− κ3(Θ)

2
,

κ6(Θ) =
κ2(Θ)− κ1(Θ)− κ3(Θ)

2
,

(582)

see also [84]. Thus, Eqn. (580) reformulates to

[dev[X]] =




κ1(Θ)
κ3(Θ)− κ1(Θ)− κ2(Θ)

2

κ1(Θ)− κ2(Θ)− κ3(Θ)

2
0 0 0

κ2(Θ)
κ2(Θ)− κ1(Θ)− κ3(Θ)

2
0 0 0

κ3(Θ) 0 0 0

κ7(Θ) 0 0

sym . κ8(Θ) 0

κ9(Θ)




.

(583)
Next, it is presumed that the deviatoric stress in the two preferred directions does not
contribute to the plastic yielding. This property is satisfied by the equalities

dev[X] : m1 = 0 and dev[X] : m2 = 0 , (584)

which yields
κ1(Θ) = 0 ,κ2(Θ) = 0 and κ3(Θ) = 0 . (585)

Substituting Eqn. (585) into Eqn. (583), and taking into account the contribution of
deviatoric stress in the third preferred direction to plastic yielding, the fourth-order tensor
X finally reads

X = [dev[X]]|(κ1(Θ)=κ2(Θ)=κ3(Θ)=0) +
9

4
κ10(Θ)(m′

3 ⊗m′
3) , (586)

which can be expressed in the coordinate form as

[X] =




κ10(Θ)

4

κ10(Θ)

4
−κ10(Θ)

2
0 0 0

κ10(Θ)

4
−κ10(Θ)

2
0 0 0

κ10(Θ) 0 0 0

κ7(Θ) 0 0

sym . κ8(Θ) 0

κ9(Θ)




. (587)

The three temperature dependent parameters κ7(Θ) − κ10(Θ) in Eqn. (587) can be de-
termined by evaluating Eqn. (579) for three shear modes and one simple tension mode
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as

κ7(Θ) =
2

3

y20(Θ)

y212(Θ)
, κ8(Θ) =

2

3

y20(Θ)

y213(Θ)
, κ9(Θ) =

2

3

y20(Θ)

y223(Θ)
and κ10(Θ) =

2

3

y20(Θ)

y233(Θ)
.

(588)
The fourth-order tensor Y that governs the non-linearity of kinematic hardening can be
expressed analogously as

[Y] =




ζ10(Θ)

4

ζ10(Θ)

4
−ζ10(Θ)

2
0 0 0

ζ10(Θ)

4
−ζ10(Θ)

2
0 0 0

ζ10(Θ) 0 0 0

ζ7(Θ) 0 0

sym . ζ8(Θ) 0

ζ9(Θ)




, (589)

in terms of four material parameters. Note that the parameter κ governing the hydrostatic
pressure can be determined similar to Eqn. (285)1.

A canonical form of the evolution equations for plastic variables is determined by invoking
the principle of maximum dissipation, which yields the normality rules as

ε̇p = λχ,σ = λ{κm3 + n̄} ,
ξ̇ = λχ,κ = λ

√
2/3 ,

α̇ = λχ,β = λ{κm3 + n̄+ Y : β} ,
(590)

along with the plastic loading/unloading conditions

λ ≥ 0, χ ≤ 0 and λχ ≡ 0 , (591)

where λ and n̄ denote the amount and direction of the plastic flow respectively, with a
closed-form expression of the latter reading

n̄ =
X : Σ

‖Σ‖
X

. (592)

The framework of non-associative thermoplasticity can be derived by relaxing the prin-
ciple of maximum dissipation, i.e. using a separate flow potential to derive the evolution
equations. This aspect is precluded in the present appendix as the framework is entirely
similar to that in Chapter 5.

The next computational aspect is to express the governing balance and evolution equa-
tions of coupled thermoplasticity in a time discrete setting, which is the first step of the
algorithmic implementation. To do so, it can be seen from Eqn. (60) that the latent heat
H needs to be defined for the present model. Appealing to Eqn. (61), it follows that H
can be expressed with the aid of Eqn. (570) as

H = −Θ{αt : E : (ε̇− ε̇p)− hwh(ξ̄ + ξ)nξ̇ −α : H : α̇} . (593)
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Employing a fully implicit backward Euler time integration scheme, the associated equa-
tions (16), (60) and (590) can be integrated while taking into account Eqns. (575)1, (578)
and (593) as

div[σn+1] +Υn+1 = 0 ,

c

∆t
(Θn+1 −Θn) = − div[qn+1] + Rn+1

+ σn+1 : (ε
p
n+1 − εpn)/∆t

+ κn+1(ξn+1 − ξn)/∆t

+ βn+1 : (αn+1 −αn)/∆t

− Θn+1

[
αt : E :

{
(εn+1 − εn)

∆t
− (εpn+1 − εpn)

∆t

}

+hwh(ξ̄ + ξ)n
(ξn+1 − ξn)

∆t

+αn+1 : H :
(αn+1 −αn)

∆t

]
,

ε
p
n+1 = εpn +∆λn+1{κm3 + n̄n+1} ,

ξn+1 = ξn +∆λn+1

√
2/3 ,

αn+1 = αn +∆λn+1{κm3 + n̄n+1 + Y : βn+1} .

(594)

where ∆λn+1 = ∆tλn+1 is the time discrete plastic increment. Before proceeding to the
next steps, the internal variables are locally updated using a Newton-Raphson iteration
scheme in line with Chapter 5. To do so, recall the time discrete conjugate driving forces
dual to {εp, ξ,α}

σn+1 = E : [(εn+1 − ε
p
n+1)−αt(Θn+1 −Θ0)] ,

κn+1 = −h(Θ)(ξ̄ + ξn+1)
n ,

βn+1 = −H(Θ) : αn+1 ,

(595)

and define the thermoelastic trial values by setting ∆λn+1 = 0 in Eqns. (594)3−5 and
substituting the resulting expressions in Eqn. (595) as

σtrial
n+1 = E : [(εn+1 − εpn −αt(Θn+1 −Θ0)] ,

κtrialn+1 = −h(Θ)(ξ̄ + ξn)
n ,

βtrial
n+1 = −H(Θ) : αn ,

(596)

which allows to compute the trial value of the yield function as

χtrial = χ(σtrial
n+1, κ

trial
n+1,β

trial
n+1) , (597)

based on which loading cases can be identified. For a thermoelastic step characterised
by χtrial ≤ 0, Eqn. (374) is recovered, whereas for a thermoplastic step (χtrial > 0),
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Eqns. (594) and the consistency condition lead to a system of non-linear equations as

R =




Rεp

Rξ

Rα

Rχ



=




ε
p
n+1 − εp −∆λn+1{κm3 + n̄n+1}

ξn+1 − ξn −∆λn+1

√
2/3

αn+1 −αn −∆λn+1{κm3 + n̄n+1 + Y : βn+1}

χ



= 0 , (598)

in terms of the unknowns Pn+1 = {εpn+1, ξn+1,αn+1,∆λn+1}. Following Eqns. (377)–
(378), the necessary iteration tangent R(Pn+1),P reads

R(Pi
n+1),P=




Rεp,εpn+1
Rεp ,ξn+1

Rεp,αn+1
Rεp,∆λn+1

Rξ,εpn+1
Rξ,ξn+1

Rξ,αn+1
Rξ,∆λn+1

Rα,εpn+1
Rα,ξn+1

Rα,αn+1
Rα,∆λn+1

Rχ,εpn+1
Rχ,ξn+1

Rχ,αn+1
Rχ,∆λn+1




, (599)

where

Rεp,εpn+1
= (1 ⊕ 1 )−∆λn+1{κm3 + n̄n+1},σn+1

: σn+1,εpn+1
,

Rεp,κn+1
= 0 ,

Rεp,αn+1
= −∆λn+1{κm3 + n̄n+1},βn+1

: βn+1,αn+1
,

Rεp,∆λn+1
= −{κm3 + n̄n+1} ,

Rξ,εpn+1
= 0 ,

Rξ,κn+1
= 1 ,

Rξ,αn+1
= 0 ,

Rξ,∆λn+1
= −

√
2/3 ,

Rα,εpn+1
= −∆λn+1{κm3 + n̄n+1 + Y : βn+1},σn+1

: σn+1,εpn+1
,

Rα,κn+1
= 0 ,

Rα,αn+1
= (1 ⊕ 1 )−∆λn+1{κm3 + n̄n+1 + Y : βn+1},βn+1

: βn+1,αn+1
,

Rα,∆λn+1
= −{κm3 + n̄n+1 + Y : βn+1} ,

Rχ,εpn+1
= χ,σn+1

: σn+1,εpn+1
,

Rχ,κn+1
= χ,κn+1

: κn+1,ξn+1
,

Rχ,αn+1
= χ,βn+1

: βn+1,αn+1
,

Rχ,∆λn+1
= 0 .

(600)

The closed-form expressions of the partial derivatives appearing in the equation above are



182 Extension to coupled thermoplasticity

given by

{κm3 + n̄n+1},σn+1
= n̄n+1,σn+1

=
1

‖Σn+1‖
X

{X− n̄n+1 ⊗ n̄n+1} ,

{κm3 + n̄n+1},βn+1
= n̄n+1,βn+1

=
1

‖Σn+1‖
X

{X− n̄n+1 ⊗ n̄n+1} ,

{κm3 + n̄n+1 + Y : βn+1},σn+1
= n̄n+1,σn+1

=
1

‖Σn+1‖
X

{X− n̄n+1 ⊗ n̄n+1} ,

{κm3 + n̄n+1 + Y : βn+1},βn+1
= {n̄n+1 + Y : βn+1},βn+1

=
1

‖Σn+1‖
X

{X− n̄n+1 ⊗ n̄n+1 + Y} ,
(601)

and

σn+1,εpn+1
= −E , κn+1,ξn+1

= −H = −nh(Θ)(ξ̄ + ξ)n and βn+1,αn+1
= −H . (602)

Having locally updated the internal variables, the next step of algorithmic implementation
is to recast the time discrete strong form of equations, namely Eqns. (594)1,2, into a time
discrete weak form using the standard Galerkin procedure. Accordingly, one can write

∫

B

δu ·
{
− div[σn+1 −Υn+1

}
dV

+

∫

B

δΘ
{
div[qn+1 − Rn+1 +

c

∆t
(Θn+1 −Θn)− D

red
loc n+1 −Hn+1

}
dV = 0

, (603)

where δu and δΘ are virtual displacement and temperature fields defined on the body B,
respectively. Appealing to Eqns. (154)–(157), Eqn. (603) reformulates to

−
∫

∂B

δu · tn+1 dA−
∫

B

δu ·Υn+1 dV +

∫

B

δε : σn+1 dV

+

∫

∂B

δΘhn+1 dA−
∫

B

δΘRn+1 dV −
∫

B

∇δΘ · qn+1 dV

+

∫

∂B

δΘ

[
c

∆t
(Θn+1 −Θn)− D

red
loc n+1 −Hn+1

]
dV = 0

, (604)

where tn+1 and hn+1 are used from Eqn. (5). Equation (604) denotes the time discrete
weak form of Eqn. (594).

In the final step of algorithmic implementation, the unknowns un+1 and Θn+1 in Eqn. (604)
are solved using the finite element method. Following the same procedure as outlined in
Chapter 2, the vector of internal and external forces respectively read

Rint(Dn+1) =

∫

B

{BT
ε · σn+1 +NT

Θ · Qn+1 −BT
∇Θ · qn+1} dV (605)

and

Rext =

∫

∂B

(NT
u · tn+1 −NT

Θ · hn+1) dA+

∫

B

(NT
u ·Υn+1 +NT

Θ · Rn+1) dV , (606)
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where Dn+1 = {εn+1,Θn+1,∇Θn+1} denotes the nodal displacements and temperatures
analogous to Eqn. (163), and

Qn+1 =
c

∆t
(Θn+1 −Θn)− D

red
loc n+1 −Hn+1 . (607)

To this end, Eqn. (605) can be generalised to

Rint(Dn+1) =

∫

B

BT
D · Sn+1 dV , (608)

where Sn+1 is the generalised stress tensor of the form

Sn+1 =



σn+1

Qn+1

−qn+1


 =




E : [(εn+1 − ε
p
n+1)−αt(Θn+1 −Θ0)]

c

∆t
(Θn+1 −Θn)− D

red
loc n+1 −Hn+1

K · ∇Θn+1


 . (609)

Furthermore, it follows from Eqn. (177) that the material dependent term Rint(Dn+1),D
can be expressed as

Rint(Dn+1),D =

∫

B

BT
D · Sn+1,D dV =

∫

B

BT
D · Fn+1 ·BD dV , (610)

where Fn+1 denotes the generalised modulus tensor. For the present model, it is defined
by

Fn+1 = Sn+1,D =




dσn+1

dεn+1

dσn+1

dΘn+1

dσn+1

d∇Θn+1

dQn+1

dεn+1

dQn+1

dΘn+1

dQn+1

d∇Θn+1

dqn+1

dεn+1

dqn+1

dΘn+1

dqn+1

d∇Θn+1




. (611)

It can be seen from Eqn. (611) that the sensitivities ε
p
n+1,εn+1

, ξn+1,εn+1
,αn+1,εn+1

as
well as ε

p
n+1,Θn+1

, ξn+1,Θn+1
and αn+1,Θn+1

need to be computed to correctly define the
modulus tensor. The sensitivities can be computed by first defining a residuum vector as

R = R(εn+1,Θn+1,Pn+1) , (612)

in terms of the unknowns Pn+1 = {εpn+1, ξn+1,αn+1,∆λn+1}. For infinitesimal perturba-
tions, it follows that Eqn. (612) can be expressed as

dR = R,εn+1
: dεn+1 +R,Θn+1

: dΘn+1 +R,Pn+1
: dPn+1 . (613)

Setting dR = 0 , the sensitivities can be evaluated as

dPn+1 = −
[
R,Pn+1

]−1
R,εn+1︸ ︷︷ ︸

Pn+1,εn+1

: dεn+1−
[
R,Pn+1

]−1
R,Θn+1︸ ︷︷ ︸

Pn+1,Θn+1

dΘn+1 . (614)

With the aid of Eqns. (598)–(602), the sensitivities can be reformulated as

Pn+1,εn+1
=




ε
p
n+1,εn+1

ξn+1,εn+1

αn+1,εn+1

∆λn+1,εn+1



= −

[
R,Pn+1

]−1




−∆λn+1{κm3 + n̄n+1},σn+1
: σn+1,εn+1

0

{κm3 + n̄n+1 + Y : βn+1},σn+1
: σn+1,εn+1

{κm3 + n̄n+1},σn+1
: σn+1,εn+1




,

(615)
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and similarly

Pn+1,Θn+1
=




ε
p
n+1,Θn+1

ξn+1,Θn+1

αn+1,Θn+1

∆λn+1,Θn+1



= −

[
R,Pn+1

]−1




−∆λn+1{κm3 + n̄n+1},σn+1
: σn+1,Θn+1

0

{κm3 + n̄n+1 + Y : βn+1},σn+1
: σn+1,Θn+1

{κm3 + n̄n+1},σn+1
: σn+1,Θn+1




,

(616)
where

σn+1,Θn+1
= −E : αt . (617)

The remaining partial derivatives appearing in Eqns. (615) and (616) are defined in
Eqns. (601) and (602). In the system of equations (614)–(616), the term R,Pn+1

is the
necessary iteration tangent defined in Eqn. (599). With the expressions (615) and (616)
at hand, the generalised modulus tensor (611) for the present model can be evaluated as

Fn+1 =




dσn+1

dεn+1

dσn+1

dΘn+1

0

dQn+1

dεn+1

dQn+1

dΘn+1
0

0 0 K




, (618)

where

dσn+1

dεn+1
= σn+1,εn+1

+σn+1,εpn+1
: εpn+1,εn+1

= E− E : εpn+1,εn+1
,

dσn+1

dΘn+1
= σn+1,Θn+1

+σn+1,εpn+1
: εpn+1,Θn+1

= −αt : E− E : εpn+1,Θn+1
,

(619)

and similarly, albeit cumbersome

dQn+1

dεn+1
= Qn+1,εn+1

+Qn+1,εpn+1
: εpn+1,εn+1

+Qn+1,ξn+1
ξn+1,εn+1

+Qn+1,αn+1
: αn+1,εn+1

,

dQn+1

dΘn+1
= Qn+1,Θn+1

+Qn+1,εpn+1
: εpn+1,Θn+1

+Qn+1,ξn+1
ξn+1,Θn+1

+Qn+1,αn+1
: αn+1,Θn+1

.

(620)
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