

Lehrstuhl für Aufbereitung und Veredlung

Masterarbeit

Umrüstung einer Pellet-Brenneinrichtung auf elektrische Beheizung und deren Automatisierung

Johann Alexander Gargulak, BSc

Oktober 2019

ID SSTATTLICH RKLÄRUNG

Ich erkläre an Eides statt, dass ich diese Arbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt, und mich auch sonst keiner unerlaubten Hilfsmittel bedient habe.

Ich erkläre, dass ich die Richtlinien des Senats der Montanuniversität Leoben zu "Gute wissenschaftliche Praxis" gelesen, verstanden und befolgt habe.

Weiters erkläre ich, dass die elektronische und gedruckte Version der eingereichten wissenschaftlichen Abschlussarbeit formal und inhaltlich identisch sind.

Datum 30.09.2019

ohn Gozhit

Unterschrift Verfasser/in Johann Alexander, Gargulak Matrikelnummer: 00835323

Kurzfassung

Im Zuge dieser Masterarbeit wurde ein bestehender Laborofen zum Brennen von Eisenerz-Pellets umgebaut und automatisiert. Der Umbau der Maschine umfasste die Änderung des Heizsystems von einer kombinierten Beheizung mittels elektrischem Lufterhitzer und Gasbrenner auf ein rein elektrisches System. Die Möglichkeit zur Nutzung des Brenners blieb bestehen, wurde aber in der Automatisierung nicht berücksichtigt. Die saugende Gasführung mittels Seitenkanalverdichter und der restliche Ofenaufbau – inklusive des länglichen zylindrischen Versuchsraums – blieben unverändert.

Weiters wurde die Automatisierung geplant und mit den dafür notwendigen Betriebsmitteln aufgebaut. Eine speicherprogrammierbare Steuerung (SPS) und eine Bedieneinrichtung (Touchscreen), mit den eigens für diese Arbeit entwickelten Programm und Bedienoberfläche, übernehmen die Steuerung und Temperaturregelung des Ofens. Die Maschine ermöglicht einen gezielten Versuchsablauf und eine gesammelte Datenaufzeichnung. Die Funktionalität und Sensibilität der Versuchseinrichtung mit zusätzlich aufgebauter Gasmessung wurden anhand der mineralselektiven Kalzinierung von karbonatischem Eisenerz erfolgreich getestet.

Abstract

In this master thesis an existing laboratory kiln for the induration of iron ore pellets was modified and automated. The modifications included changing the heating system from a combined gas burner and electric heater system to sole electric heating. The possibility of using the gas burner was preserved but not included in the automation. The other main features of the kiln like the gas transport by suction and the mechanical build were kept as before.

The automation was planned and set up with suitable equipment. A programmable logic controller (PLC) and a touchscreen as the human machine interface (HMI) in combination with custom built programs and user interfaces are used to control the kiln. The machine provides a stable platform for controlled experiments and concentrated data acquisition. The functionality and sensitivity of the machine were successfully tested together with a supplementary gas measurement system during experiments concerning the mineral selective calcination of carbonatic iron ore.

Inhaltsverzeichnis

Inhalts	verzeich	nnisI
Abkürz	ungsver	zeichnisIV
Abbildu	ingsverz	zeichnisV
Tabelle	nverzei	chnisVII
1.	Einleit	ung1
1.1.	Prob	lemstellung1
1.2.	Pelle	t-Pot
1.2	2.1.	Maschinenbeschreibung 2
1.2	2.2.	Vorhandene Bauteile zur Automatisierung
1.2	2.3.	Vorhandene Dokumentation
1.2	2.4.	Vorversuche
2.	Aufgal	penstellung
3.	Zusam	menfassung
4.	Anpas	sungen am Pellet-Pot
4.1.	Mess	stechnik
4.1	l.1.	Thermoelemente
4.1	L.2.	Drucksensoren
4.1	L.3.	Gasmessung und Luftfeuchtigkeit 14
4.2.	Elekt	trik
4.2	2.1.	Austausch Lufterhitzer 14
4.2	2.2.	Leitungsführung
4.3.	Mech	nanik15
4.3	3.1.	Befestigung Lufterhitzer
4.3	3.2.	Dämmung15
5.	Autom	atisierung/Schaltschrank 17
5.1.	Siche	erheitskonzept
5.2.	Plan	ung
5.2	2.1.	Elektrik
5.2	2.2.	Mechanik
5.2	2.3.	Thermische Auslegung
5.2	2.4.	Bedienkonzept
5.2	2.5.	Programmierung
5.3.	Durc	hführung
5.3	3.1.	Mechanik

	5.3.2		Elektrik	25
	5.3.3	3.	Programmierung	26
5.3.4.		ŀ.	Not-Halt-Funktion	28
	5.3.5	5.	Bedienung und Bedienoberfläche des HMI	28
6.	. Iı	nbetr	iebnahme	31
	6.1.	Regl	lereinstellung	31
	6.2.	Auto	omatikmodus – Test 1 – Differenzdruckregelung	33
	6.3.	Auto	omatikmodus – Test 2 – volle Leistung	35
	6.4.	Verb	bleibende Probleme der Maschine	38
	6.4.1		Leck im Gaskühler	38
	6.4.2		Lambda-Sonde	39
	6.4.3	8.	Erwärmung bei langem Betrieb	39
	6.4.4	ŀ.	Abgasabsaugung	40
	6.4.5	5.	Ein- und Ausbau des Pots	40
	6.4.6	.	Kühlwassertemperatur	41
7.	. Е	rzcha	arakterisierung	42
	7.1.	Liter	aturstudie Kalzinierung	42
	7.2.	Anal	yseverfahren zur Erzcharakterisierung	44
	7.2.1		Beschreibung des Analyseverfahrens	44
	7.2.2		Modellannahmen	45
	7.2.3	3.	Validierung des Verfahrens	46
	7.2.4	ŀ.	Alternatives Analyseverfahren	47
	7.3.	Prob	enbeschreibung	47
	7.3.1		Gebrochenes Roherz	47
	7.3.2		Spateisensteinstandard	48
	7.3.3	8.	Ankeritstandard	48
	7.4.	Gasr	nessgerät	49
	7.5.	Prob	enbehälter	50
	7.6.	Gasr	nessstrecke	54
	7.7.	Vers	suchsauswertung	59
	7.7.1		Datenvorbereitung	60
	7.7.2		Programmablauf	60
	7.7.3	3.	Berechnung	61
	7.8.	Vers	suchsdurchführung	72
	7.8.1		PPV-001-IB "Erster Test"	72
	7.8.2		PPV-002-IB "Externe Gaspumpe"	75

7.8.3.	PPV-003-IB "Gasmessung"	77
7.8.4.	PPV-004-IB "Spateisensteinstandard"	80
7.8.5.	PPV-005-IB "Nullmessung"	82
7.8.6.	PPV-006-IB "Ankeritstandard"	83
7.8.7.	PPV-007-IB "Kleine Probenmenge"	85
7.9. Disł	kussion der Ergebnisse	87
7.9.1.	Erkenntnisse aus den Versuchen	87
7.9.2.	Probleme aufgrund des Versuchsaufbaus	90
7.9.3.	Weiterführende Untersuchungen	91
7.9.4.	Bedeutung für die Entwicklung eines Analyseverfahrens	92
7.9.5.	Vorschläge zur Entwicklung einer produktiv einsetzbaren Maschine	93
Literaturverze	ichnis	95
Anhangsverze	ichnis	97

Abkürzungsverzeichnis

Kohlenstoffmonoxid
Kohlenstoffdioxid
Central Processing Unit
Differential Scanning Calorimetry
Differenz-Thermoanalyse
Emissionsgasanalyse
Elektromagnetische Verträglichkeit
Human Machine Interface (Benutzerschnittstelle)
Lufterhitzer
Mess-, Steuer- und Regelungstechnik
Stickstoff
Sauerstoff
Programmable Logic Controller (siehe SPS)
Programmable Logic Controller (siehe SPS) Röntgenfluoreszenzanalyse
Programmable Logic Controller (siehe SPS) Röntgenfluoreszenzanalyse Seitenkanalverdichter
Programmable Logic Controller (siehe SPS) Röntgenfluoreszenzanalyse Seitenkanalverdichter Speicherprogrammierbare Steuerung
Programmable Logic Controller (siehe SPS) Röntgenfluoreszenzanalyse Seitenkanalverdichter Speicherprogrammierbare Steuerung Thermogravimetrische Analyse

Abbildungsverzeichnis

Abbildung 1: Pellet-Pot – Ausgangssituation
Abbildung 2: Pellet-Pot – links: Reaktionsraum von außen, rechts: Reaktionsraum leer und befüllt 3
Abbildung 3: Pellet-Pot – Messeinrichtungen – vor dem Umbau (Quelle: [1]) 4
Abbildung 4: Pellet-Pot – Ursprünglicher Aufbau – Temperaturverlauf (Quelle: [1]) 4
Abbildung 5: Pellet-Pot – Ausgangssituation – Elektrik und Messtechnik
Abbildung 6: Pellet-Pot – Vollständiges Messkonzept (Hintergrundgrafik aus [1]) 11
Abbildung 7: Pellet-Pot – Zusätzliche Temperatursensoren 12
Abbildung 8: Pellet-Pot – Drucksensoren
Abbildung 9: Pellet-Pot – Lufterhitzer und Befestigung 15
Abbildung 10: Pellet-Pot – ungedämmt/gedämmt 16
Abbildung 11: Automatisierung – HMI-Konzept 23
Abbildung 12: Schaltschrank – Aufbau 25
Abbildung 13: Schaltschrank – Elektrik
Abbildung 14: Automatisierung – HMI-Grundbild mit Statuszeile im oberen Bereich
Abbildung 15: Reglereinstellung – Regelstreckenkenngrößen nach Chien, Hrones, Reswick anhand einer Sprungantwort (Quelle: [2])
Abbildung 16: Reglereinstellung – Sprungantwort – Temperatur Lufterhitzerausgang
Abbildung 17: Inbetriebnahme – Automatikmodus – Test 1 – Temperaturverlauf
Abbildung 18: Inbetriebnahme – Automatikmodus – Test 1 – Differenzdruckverlauf
Abbildung 19: Inbetriebnahme – Automatikmodus – Test 1 – Differenzdruckregelung
Abbildung 20: Inbetriebnahme – Automatikmodus – Test 2 – Temperaturvergleich
Abbildung 21: Inbetriebnahme – Automatikmodus – Test 2 – Temperaturen im Pot
Abbildung 22: Inbetriebnahme – Automatikmodus – Test 2 – Luftmassenregelung
Abbildung 23: Inbetriebnahme – Maximale Oberflächentemperaturen am Pellet-Pot
Abbildung 24: Erzcharakterisierung – Gasabgabebereiche der relevanten Karbonate
Abbildung 25: Erzcharakterisierung – Geplanter Versuchsablauf
Abbildung 26: Gasmessung – Gasmessgerät (testo 350 XL) 49
Abbildung 27: Gasmessung – Gasmessgerät testo 350-XL – Technische Daten der Sensoren (Quelle: [18])
Abbildung 28: Probenbehälter – Funktionsprinzip
Abbildung 29: Probenbehälter – Ringförmiger Proberaum – Fertigungszeichnung
Abbildung 30: Probenbehälter – Einzelteile
Abbildung 31: Gasmessstrecke – Austritt der Messleitung aus dem Pot

Abbildung 32: Gasmessung – Vergleich Gastemperaturen – Temperatur Messgerät Temperatur Messgasstrom (blau)	(orange), 57
Abbildung 33: Gasmessung – Aufbau zur Kalibrierung des Rotameters	57
Abbildung 34: Gasmessung – Entwicklung der Gasmessstrecke	59
Abbildung 35: PPV-001-IB "Erster Test" – Versuchsablauf	75
Abbildung 36: PPV-002- IB "Externe Gaspumpe" – Versuchsablauf	77
Abbildung 37: PPV-003-IB "Gasmessung" – Versuchsablauf	79
Abbildung 38: PPV-004-IB "Spateisensteinstandard" – Versuchsablauf	81
Abbildung 39: PPV-005-IB "Nullmessung" – Versuchsablauf	82
Abbildung 40: PPV-006-IB "Ankeritstandard" – Versuchsablauf	84
Abbildung 41: PPV-007-IB "Kleine Probenmenge" – Versuchsablauf	86
Abbildung 42: Auswertung – Vergleich Massenänderung berechnet/gemessen Originalmessdaten, grün: korrigierte Messdaten)	(schwarz: 89

Tabellenverzeichnis

Tabelle 1: Pellet-Pot – Auflistung der eingebauten Betriebsmittel
Tabelle 2: Pellet-Pot – Auflistung der vorhandenen Bauteile und Software für die Automatisierung 5
Tabelle 3: Technische Daten – Drucksensoren – E+H Cerabar PMC21 13
Tabelle 4: Technische Daten – Lufterhitzer – Leister LE 10000 HT 14
Tabelle 5: Technische Daten – Schaltschrank – RITTAL AE 1260.500 19
Tabelle 6: Schaltschrank – Verlustleistungsberechnung
Tabelle 7: Bedienung – Signale und deren Bedeutung
Tabelle 8: Reglereinstellung – Regelparameter nach Chien, Hrones, Reswick (Quelle: [2])
Tabelle 9: Inbetriebnahme – Automatikmodus – Test 1 – Einstellungen
Tabelle 10: Inbetriebnahme – Automatikmodus – Test 2 – Einstellungen
Tabelle 11: Temperaturbereiche der Kalzinierung ausgewählter Karbonate
Tabelle 12: Luftzusammensetzung (Annahme für die Berechnung)
Tabelle 13: Zusammensetzung von Spateisenstein und Ankerit (Angabe als Stoffmengenanteil) (Quelle: [14])
Tabelle 14: Probe "Schwertrübezyklon-Aufgabe" – Chemische Zusammensetzung (Angaben in Masse- %, außer Hg)
Tabelle 15: Probe "Spateisensteinstandard" – Chemische Zusammensetzung (Angaben in Masse-%, außer Hg)
Tabelle 16: Probenbehälter – Mögliche Probenmengen (angenommene Schüttdichte: 1,65 g/cm ³) 53
Tabelle 17: Gasmessung – Messgeräte 54
Tabelle 18: PPV-001-IB "Erster Test" – Versuchsdaten
Tabelle 19: PPV-002-IB "Externe Gaspumpe" – Versuchsdaten
Tabelle 20: PPV-003-IB "Gasmessung" – Versuchsdaten
Tabelle 21: PPV-003-IB "Gasmessung" – Auswertungsergebnisse
Tabelle 22: PPV-004-IB "Spateisensteinstandard" – Versuchsdaten
Tabelle 23: PPV-004-IB "Spateisensteinstandard" – Auswertungsergebnisse
Tabelle 24: PPV-006-IB "Ankeritstandard" – Versuchsdaten
Tabelle 25: PPV-006-IB "Ankeritstandard" – Auswertungsergebnisse
Tabelle 26: PPV-007-IB "Kleine Probenmenge" – Versuchsdaten
Tabelle 27: PPV-007-IB "Kleine Probenmenge" – Auswertungsergebnisse
Tabelle 28: Zusammenfassung der Auswertungsergebnisse 88
Tabelle 29: Zusammenfassung der Auswertungsergebnisse nach Korrektur der CO2-Konzentrationen

1. Einleitung

1.1. Problemstellung

Die Erzcharakterisierung der VA Erzberg GmbH erfolgte bisher über die Bestimmung der Elementgehalte mittels Röntgenfluoreszenzanalyse (RFA) an zerkleinerten Teilproben des Bohrschmants. Eine Prognose der Aufbereitbarkeit ist mit den dabei ermittelten Elementgehalten allerdings nicht möglich. Die dazu benötigten Mineralgehalte konnten bis jetzt nur durch aufwändige und/oder teure Verfahren wie Thermogravimetrie (TGA), Differenz-Thermoanalyse (DTA), Glühverlustbestimmung oder Röntgenbeugung (XRD) bestimmt werden.

Das größte Problem all dieser Verfahren ist die benötigte Probenmenge und -feinheit und die damit verbundene Probenvorbereitung (Probenahme, -zerkleinerung und -teilung). Ein neues Analyseverfahren, das eine größere Probenmasse in einer geringeren Feinheit verwenden könnte und eine Aussage über die Mineralgehalte treffen würde, wäre somit ein großer Fortschritt für die Erzcharakterisierung und Prognose der Aufbereitbarkeit.

Einen möglichen Ansatz für ein solches Verfahren bietet die selektive Kalzinierung von Karbonaten bei gleichzeitiger Messung des entstehenden Kohlenstoffdioxids (CO₂). Da die Kalzinierung der einzelnen Karbonate bei unterschiedlichen Temperaturen abläuft, ist es durch eine stufenweise Kalzinierung vielleicht möglich, die Gasabgabephasen der einzelnen Karbonate durch gezielte Temperatursteuerung zu trennen. Dadurch wäre es möglich über die eindeutig einem Karbonat zuordenbare CO₂-Menge dessen Gehalt zu berechnen.

Die Vorteile des von Ass.Prof. Dr. mont A. Böhm vorgeschlagenen Analyseverfahrens gegenüber der Glühverlustbestimmung wären die direkte Verwendbarkeit der Bohrschmantproben zur Messung (kein Aufmahlen notwendig) und die Trocknung im selben Gerät und Arbeitsgang (bei zusätzlicher Feuchtemessung). Weiters würde das langwierige Abkühlen und Wiedererhitzen der Proben bei diesem Verfahren entfallen, da keine Zwischenwägungen für die einzelnen Karbonate notwendig sind. Außerdem kann der beider Glühverlustbestimmung auftretende Masseverlust durch explosionsartig entgasende Körner in der Schüttung vermieden werden. Aufgrund der erzwungenen Durchströmung mit frischem Gas kann eine Konzentration des anfallenden Gases vermieden werden und die Entsäuerung unbehindert ablaufen.

Erste Versuche einer Gasmessung mit geringen Probenmengen wurden bereits durchgeführt, allerdings war das Ziel dieser Untersuchungen die Aufnahme von Schwefeldioxid bei der Kalzinierung. Für den Test des Messprinzips an größeren Probemengen wäre am Lehrstuhl eine Pellet-Brenneinrichtung vorhanden, die für die notwendigen Versuche angepasst werden könnte.

1.2. Pellet-Pot

1.2.1. Maschinenbeschreibung

Abbildung 1: Pellet-Pot – Ausgangssituation

Im Rahmen einer angestrebten Projektkooperation mit Primetals Technologies Austria GmbH wurde in den Jahren 2011–2013 ein Mini-Pellet-Pot für Brennversuche mit (Eisenerz-)pellets konzipiert und gebaut, dessen Grundaufbau und Funktionsprinzip in Abbildung 1 bis Abbildung 3 ersichtlich ist. Er ist als Downdrafteinrichtung bis zu Temperaturen von 1400 °C einsetzbar. [1]

Der Pellet-Pot kann mit einem elektrischen Lufterhitzer in Kombination mit einem Gasbrenner beheizt werden (elektrische Luftvorerhitzung bis 650 °C), wobei die Ansteuerung des Lufterhitzers durch einen Leistungssteller erfolgt. Die Gasdurchströmung wird durch einen saugend betriebenen Seitenkanalverdichter am Ende der Gasstrecke erzeugt, dessen Drehzahl durch einen Frequenzumrichter gesteuert wird. Der Vorteil der saugenden Betriebsweise liegt darin, dass der Austritt von heißen Prozessgasen vermieden und damit die Verbrennungsgefahr wesentlich verringert werden kann.

Durch einen Kühler wird das Prozessgas vor dem Seitenkanalverdichter auf eine für diesen verarbeitbare Temperatur gebracht. Der Kühler ist als Wärmetauscher in einem mit Wasser gefüllten Fass ausgeführt. Die Strömung des Prozessgases erfolgt in einem in Spiralen ausgelegten, rostfreien Wellschlauch, der wiederum im Kühlwasser liegt. Die wichtigsten Betriebsmittel der Maschine sind in Tabelle 1 aufgelistet.

Betriebsmittel	Hersteller	Herstellerbezeichnung
Lufterhitzer	Leister	LE 10000 S o.E.
Leistungssteller	JUMO	TYA 202
Temperaturregler	JUMO	Quantrol LC100
Seitenkanalverdichter	CreativeBlower	RJET K030SS/3/2
Frequenzumrichter	ABB	ACS310-03E-17A2-4
Brenner	Eigenbau	

Tabelle 1: Pellet-Pot – Auflistung der eingebauten Betriebsmittel

Der Pellet-Pot besitzt einen länglichen, zylinderförmigen Reaktionsraum von Ø 90 x 250 mm und der unterzügig durchströmt wird. Der Reaktionsraum mit einem Volumen von ca. 1.600 cm³ (Probenmasse: ~ 2,5 kg, bei Schüttdichte 1,6 g/cm³) wird nach unten hin von einem Rost mit 5 mm Stababstand begrenzt. Dieses Maß ergab sich aus dem ursprünglichen Verwendungszweck, dem Brennen von Pellets, mit denen der gesamte Reaktionsraum gefüllt wurde. Abbildung 2 zeigt rechts oben den leeren Reaktionsraum mit den in die Mitte ragenden Thermoelementen und darunter eine Befüllung mit Cylpebs, die eine ähnliche Größe wie Pellets aufweisen.

Abbildung 2: Pellet-Pot – links: Reaktionsraum von außen, rechts: Reaktionsraum leer und befüllt

Die Messtechnik bestand ursprünglich aus verschiedenen Einzelmessgeräten (zwei 4-Kanal-Temperaturmessgeräte, zwei Druckmessgeräte, ein Multimeter für die Luftmassenmessung und eine Lambda-Sonde samt dazugehöriger Auswerteeinheit zur Messung des Sauerstoffgehalts). Eine automatische Aufzeichnung fand nur für die Temperaturen im Pot statt, alle anderen Messdaten mussten händisch mitgeschrieben werden. Abbildung 4 zeigt beispielhaft die mit kombinierter Beheizung (Lufterhitzer und Brenner) erzielten Temperaturverläufe, die mit dem ursprünglichen Aufbau des Pellet-Pots erreicht wurden.

Abbildung 3: Pellet-Pot – Messeinrichtungen – vor dem Umbau (Quelle: [1])

1.2.2. Vorhandene Bauteile zur Automatisierung

Zusätzlich zu den verbauten Betriebsmitteln wurden zu einem späteren Zeitpunkt einige für die Verbesserung und Automatisierung der Maschine benötigte Bauteile beschafft, aber nicht mehr aufgebaut. Zu diesen Bauteilen zählen eine vollständige speicherprogrammierbare Steuerung (SPS, bestehend aus zentraler Steuerungseinheit (CPU) und Ein- und Ausgabemodulen) und ein Touchscreen als Benutzerschnittstelle (Human Machine Interface, HMI) zur Bedienung der Maschine. Dazu passend wurden die Software-Lizenzen zur Programmierung von SPS und HMI gekauft. Alle bisher aufgezählten Produkte stammen von der Firma Siemens.

Weiters wurden die wichtigsten Teile der Gasdruckregel- und Sicherheitsstrecke für den sicheren Einsatz des Brenners beschafft. Zur Einhausung der elektrischen Geräte wurde außerdem ein leerer Schaltschrank gekauft. In Tabelle 2 sind die bereits vorhandenen Bauteile und die Software-Lizenzen zur Automatisierung der Maschine aufgelistet.

Bauteil	Hersteller	Herstellerbezeichnung
SPS – CPU	Siemens	S7-1200 - CPU 1215C DC/DC/DC
SPS – Analogausgabemodul	Siemens	SM 1232 AO 2 x 14 bit
SPS – Analogeingabemodul	Siemens	SM 1231 AI 8 x 13 bit
SPS – Analogeingabemodul für Thermoelemente, 2x	Siemens	SM 1231 TC 8 x 16 bit
SPS – Analogeingabemodul für Widerstandsthermometer	Siemens	SM 1231 RTD 4 x 16 bit
HMI – Touchscreen mit 4 Hardwaretasten	Siemens	KTP400 Comfort
Software – Programmierung SPS	Siemens	SIMATIC Step 7 Basic (TIA-Portal V13)
Software – Programmierung HMI	Siemens	SIMATIC WinCC Comfort (TIA-Portal V13)
Schaltschrank	Rittal	AE 1360.500

Tabelle 2: Pellet-Pot – Auflistung der vorhandenen Bauteile und Software für die Automatisierung

1.2.3. Vorhandene Dokumentation

Die vorhandene Dokumentation bezieht sich größtenteils auf die abgebrochene Planung der Automatisierung und die dafür beschafften Betriebsmittel. Dazu zählen ein Übersichtsschaltplan, Überlegungen zu den Regelungsstrecken und der Messtechnik und Fotos vom ursprünglichen Versuchsaufbau im Technikum des Lehrstuhls. Von der eigentlichen Planung des Pellet-Pots und den bereits durchgeführten Versuchen sind nur wenige Dokumente vorhanden, unter anderem die Herstellerdokumentation der meisten Betriebsmittel, einige Illustrationen, Sicherheitsüberlegungen zur Gasdruckregel- und Sicherheitsstrecke und Präsentationen zur Darstellung der Funktionsweise und Verwendung des Pellet-Pots. Außerdem sind einige Excel-Dateien zur Verbrennungsrechnung sowie Daten für drei Versuche vorhanden. [1]

1.2.4. Vorversuche

Im Herbst 2017 wurden nach dem erneuten Zusammenbau des Pellet-Pots Vorversuche durchgeführt um die Funktion der einzelnen Betriebsmittel sowie des Gesamtsystems zu überprüfen. Dazu wurde der Pot mit Cylpebs gefüllt, die als Alternative für die eigentlich verwendeten Pellets dienten. Nach den ersten Inbetriebnahmetests der Einzelkomponenten wurden Versuche zur Überprüfung der erreichbaren Temperaturen durchgeführt. Dabei konnten einige, für die spätere Planung der Automatisierung, interessante Beobachtungen gemacht werden.

Die Anlage funktionierte bis auf einige kleine Probleme sehr gut, allerdings war jeder Maschinenteil einzeln am jeweiligen Steuerungsgerät zu bedienen. Eine schnelle Änderung der Betriebsparameter war nicht möglich, da die Steuergeräte nicht dafür ausgelegt sind und die Steuerparameter normalerweise über elektrische Signale vorgegeben werden. Der in Abbildung 5 ersichtliche, damalige Aufbau der Elektrik war außerdem für eine dauerhafte Verwendung nicht geeignet.

Abbildung 5: Pellet-Pot – Ausgangssituation – Elektrik und Messtechnik

Durch einen fehlenden Regler für die Betriebsfrequenz des Seitenkanalverdichters konnten die Versuche nur mit am Frequenzumrichter eingestellten Festdrehzahlen durchgeführt werden. Der Luftmassenstrom hing somit stark von der Temperatur im Pellet-Pot ab. Eine manuelle Nachstellung der Frequenz war aufgrund der sich schnell ändernden Temperaturen nicht möglich. Die Regelung des Lufterhitzers war gut eingestellt und funktionierte problemlos.

Da nur ein Temperaturmessgerät eine Aufzeichnungsfunktion besaß, konnten nur vier Temperaturen automatisch aufgezeichnet werden. Die restliche Datenaufzeichnung erfolgte händisch, daraus resultierte eine Aufzeichnungsrate von einem Messdatensatz pro Minute, abschnittsweise auch weniger. Zusammen mit der Steuerung der Maschine war eine Bedienperson damit vollkommen ausgelastet. Wenn Probleme aufgetreten sind musste die Aufzeichnung der Messdaten unterbrochen werden, um reagieren zu können. Ein geordneter Ablauf über die gesamte Versuchsdauer war dadurch schwierig zu erreichen.

Im Zuge der Vorversuche musste festgestellt werden, dass die Temperaturen für die Kalzinierung in der Probe mit rein elektrischer Beheizung nicht erreicht werden konnten. Die maximale Ausgangstemperatur des Lufterhitzers von 650 °C reichte nicht aus, um die Wärmeverluste vor dem Pot ausgleichen zu können. Die Temperatur von 720 °C zur Ankeritkalzinierung war selbst theoretisch nicht zu erreichen. Die längliche Form des Reaktionsraum und die Abkühlung am Rand durch die feuerfeste Auskleindung verlangsamten außerdem auch die Durchwärmung der Probe. Dieses Problem wurde auch während der ursprünglichen Versuche mit dem Gasbrenner festgestellt und eine Änderung der Pot-Geometrie geplant [1].

Ein weiteres Problem, das durch die Wärmeverluste zwischen Lufterhitzer und Pot auftrat, war die starke Erwärmung dieses Bereichs. Es konnten Oberflächentemperaturen von bis zu 300 °C gemessen werden. Eine Berührung der Maschine musste somit auf jeden Fall vermieden werden. Durch die auftretende Wärmestrahlung war der Aufenthalt im Nahbereich des Pots sehr unangenehm. Zusätzlich entstehen durch die Oberfläche des gewellten Kühlerrohrs bei manchen Luftmassenströmen bzw. SKV-Frequenzen starke Pfeifgeräusche die einen Gehörschutz notwendig machten.

Eines der in den Pot eingebauten Thermoelemente wurde anscheinend bei vorangegangenen Versuchen beschädigt. Das keramische Schutzrohr um das oberste Thermoelement wies einen Bruch auf, war aber prinzipiell noch funktionstüchtig. Während der Vorversuche wurde noch eine zweite Schutzhülle beschädigt. Die Ursache für die Beschädigung konnte nicht gefunden werden, wahrscheinlich trat sie aber während des Befüllens oder Entleerens des Pots auf.

Grundsätzlich war festzustellen, dass eine gezielte Versuchsführung mit dem ursprünglichen Aufbau nicht möglich war. Die Bedienung und Datenaufzeichnung beanspruchte eine einzelne Bedienperson vollständig. Etwaige zusätzliche Tätigkeiten konnten nicht erfolgen, ohne eine der vorher genannten Aufgaben zu vernachlässigen. Eine Automatisierung der Maschine war auf jeden Fall notwendig, um die Maschine in den Tests des geplanten Analyseverfahren einsetzen zu können.

Aufgabenstellung

2. Aufgabenstellung

Umrüsten eines bestehenden Pellet-Pots auf automatisierten, elektrisch beheizten Betrieb bis zu Temperaturen von 750°C, Implementierung einer Gasmessstrecke und Funktionstests mit Spateisensteinerz.

Die notwendigen Arbeiten zum Aufbau einer funktionsfähigen Maschine und dem Test des Messprinzips des vorgeschlagenen Verfahrens zur Erzcharakterisierung lassen sich in drei größtenteils voneinander unabhängige Arbeitspakete einteilen, den Umbau des Pellet-Pots, die Automatisierung und den Test des Analyseverfahrens. Die Aufgabenstellungen jedes Themenbereichs werden nachfolgend genauer beschrieben. Zu Beginn muss aber auf einige wichtige Rahmenbedingungen eingegangen werden.

Der Grundaufbau des Pellet-Pots soll weitestgehend erhalten bleiben. Bereits vorhandene Komponenten sollen verwendet und notwendige weitere durch Lehrstuhlmittel beschafft werden. Die Anpassungen sollen möglichst rückbaubar ausgeführt werden, um den Pellet-Pot weiterhin für unterschiedlichste Verwendungszwecke einsetzen zu können. Die umgebaute Maschine soll zur Überprüfung des Messprinzips und als Grundlage für eventuelle weitere Untersuchungen verwendet werden, ein Produktiveinsatz ist nicht geplant. Die Sicherheit von Mensch und Maschine hat in allen Planungs- und Durchführungsschritten oberste Priorität.

von Der Pellet-Pot soll für den Test des Analyseverfahrens der Hybridbeheizung (Gasbrenner/Lufterhitzer) auf ein rein elektrisch beheiztes System umgestellt werden. Aus diesem Grund soll ein Lufterhitzer ausgewählt werden, mit dem eine Temperatur von mindestens 560 °C (Kalzinierungstemperatur von Spateisenstein) in der Probe erreicht werden kann. Wenn möglich sollten Temperaturen bis zu 720 °C erreicht werden können, um auch Ankerit und andere Karbonate kalzinieren zu können. Bei der Auswahl soll vor allem auf die mechanische Kompatibilität zum bisherigen Aufbau der Maschine geachtet werden.

Aufbauend auf der bestehenden Maschine soll eine Detailplanung der Automatisierung durchgeführt und ein Schaltschrank entsprechend der zu erstellenden Planungsdokumente aufgebaut werden. Die Automatisierung soll die Bereiche elektrische Einrichtung, Messtechnik, Steuerung und Bedienung umfassen. Die Steuerung mittels der vorhandenen speicherprogrammierbaren Steuerung (SPS) soll den sicheren Betrieb der Maschine gewährleisten. Für Standardversuche soll ein Automatikmodus mit zwei Heizstufen und einstellbarem Heiz- und Kühlverhalten programmiert werden. Für erfahrenere Bediener soll es durch einen eigenen manuellen Modus möglich sein auch komplizierte Versuchsabläufe durchzuführen. Um diese Anforderungen zu erfüllen, muss die Maschine über diverse Regler für den Lufterhitzer und den Seitenkanalverdichter verfügen. Neben dem Betrieb der Maschine soll die Steuerung die Messwerte und Einstellparameter aufzeichnen und für eine spätere Auswertung in geeigneter Form abspeichern. Die Bedienung soll so einfach gestaltet werden, dass eine sichere Verwendung der Maschine nach einer kurzen Einschulung möglich ist.

Der Test des Analyseverfahrens umfasst die Entwicklung eines Probenbehälters und einer Gasmessstrecke zur Verwendung in Verbindung mit dem Pellet-Pot. Die mit dem Versuchsaufbau durchzuführenden Versuche sollen vor allem das Messprinzip, die Differenzierbarkeit der CO₂-Abgabe der Karbonatminerale bei verschiedenen Temperaturen, überprüfen. Dabei sollen Erkenntnisse für ein etwaiges Berechnungsmodell zur Bestimmung der Mineralgehalte in Erzproben gewonnen werden. Weiters soll durch die Versuche ein ausführlicher Abschlusstest der Automatisierung des Pellet-Pots erfolgen.

Zusammenfassung

3. Zusammenfassung

Im Zuge dieser Masterarbeit wurde der Pellet-Pot des Lehrstuhls für Aufbereitung erfolgreich auf eine rein elektrische Beheizung umgestellt. Dazu wurde ein passender Lufterhitzer ausgewählt und eingebaut. Um die Wärmeabstrahlung und die Verbrennungsgefahr zu verringern, wurde der Bereich zwischen Lufterhitzer und Reaktionsraum mit Mineralwolle gedämmt. Weiters wurden die fehlenden für den Betrieb der Maschine notwendigen Temperatur- und Drucksensoren beschafft und eingebaut.

Um den Betrieb der Versuchsmaschine zu erleichtern, wurde die Automatisierung des Versuchsablaufs der Anlage geplant und durchgeführt. Dafür war es notwendig, die gesamte elektrische Einrichtung in einem Schaltschrank unterzubringen. Die Planung und Durchführung der Automatisierung und des Aufbaus des Schaltschranks wurde auf Basis der geltenden Normen durchgeführt. Die bereits vorhandenen Bauteile konnten größtenteils verwendet werden. Weitere notwendige Betriebsmittel wurden im Zuge der Arbeit ausgewählt, beschafft und verbaut. Ein Großteil der elektrischen Planung wurde im Programm "EPLAN" der Fa. "EPLAN Software & Service GmbH und Co. KG" durchgeführt.

Die Steuerung der Maschine mittels SPS umfasst ein eigens für den Pellet-Pot angefertigtes Programm, das im "TIA Portal (V13)" der Fa. "Siemens AG" umgesetzt wurde. Bei der Programmierung wurde vor allem auf einen sicheren Betrieb der Maschine geachtet. Die Bedienung erfolgt über einen Touchscreen mit eigens entwickelter Bedienoberfläche. Die Maschine kann entweder durch ein zweistufiges Heizprogramm automatisch oder in einem manuellen Modus für komplizierte Versuchsabläufe vom Bedienpersonal gesteuert werden. Zur gezielten Versuchsführung wurden mehrere Regler in das Programm eingebaut und während der Inbetriebnahme parametriert.

Die Maschine wurde im Rahmen des Tests eines Analyseverfahrens zur Bestimmung der Mineralgehalte der Karbonate in karbonatischem Eisenerz erfolgreich getestet. Dazu wurden zusätzlich ein Probenbehälter und eine externe Gasmessstrecke entwickelt und aufgebaut. Das Messprinzip der selektiven Kalzinierung zur Differenzierung von Karbonaten konnte durch Versuche für Spateisenstein bestätigt werden. Andere enthaltene Karbonate wie Ankerit, Dolomit und Kalzit konnten aufgrund der Überlappung der CO₂-Abgabe nicht unterschieden werden. Im Zuge der Durchführung des Tests wurde ein Modell für die Berechnung der Karbonatgehalte und der auftretenden Massenverluste auf Basis der Gasmessung erstellt und eine Auswertesoftware in Python entwickelt. Die damit berechneten Masseverluste korrelierten mit den tatsächlich gemessenen Massenverlusten. Die Bestimmung des Spateisensteingehalts von Eisenerzproben sollte nach einer Kalibrierung der Gasmesstrecke möglich sein.

4. Anpassungen am Pellet-Pot

Die veränderten Anforderungen an den Ofen machten einige Anpassungen am Pellet-Pot notwendig. Neben der rein elektrischen Erhitzung der Luft waren als Voraussetzung für die Automatisierung auch einige Änderungen an der Messtechnik notwendig. Die Gründe für die Anpassungen und deren Planung und Durchführung werden in den nachfolgenden Kapiteln beschrieben.

4.1. Messtechnik

Für die einzuführende Automatisierung wurde eine leichte Anpassung des Messkonzepts notwendig. Zur Überwachung und Steuerung einzelner Maschinenteile wurden vor allem zusätzliche Thermoelemente eingebaut. Weiters wurde die Differenzdruckmessung über ein externes Messgerät durch zwei Relativdrucksensoren ersetzt, die direkt in die Steuerung eingebunden werden können. In Abbildung 6 ist das vollständige Messkonzept mit den Bezeichnungen der Sensoren zu sehen.

(Hintergrundgrafik aus [1])

4.1.1. Thermoelemente

Zur Steuerung der Maschine und um ein vollständiges Prozessabbild zu erhalten, wurden zusätzliche Thermoelemente eingebaut. Zur Absicherung des Seitenkanalverdichters wurden je ein Thermoelement im Ansaug- und Abgasbereich (-BT08 & -BT09) verbaut. Damit kann die Leistung des Lufterhitzers im Falle einer zu hohen Temperatur nach dem Kühler herabgesetzt oder komplett abgeschaltet werden. Zusätzlich wurde im Luftansaugkanal des Lufterhitzers ein weiteres Thermoelement installiert (-BT01), um die Temperatur des angesaugten Gases und die Umgebungstemperatur zu überwachen.

Abbildung 7: Pellet-Pot – Zusätzliche Temperatursensoren

4.1.2. Drucksensoren

Bisher wurde die Differenzdruckmessung über den Pot mit einem Handgerät durchgeführt, das keine Aufzeichnung der Messwerte zulässt und nicht in die Steuerung eingebunden werden kann. Um eine durchgehende, automatische Druckmessung zu ermöglichen, wurden zwei Relativdrucksensoren beschafft. Der Einbau erfolgte nebeneinander am Gerüst der Maschine und die Verbindung zum Pot wurde mittels flexibler Schläuche hergestellt. Dadurch sind die Sensoren vor Wärme und beim Hantieren mit dem Pot vor Beschädigungen geschützt. Die vorhandenen Druckmessanschlusspunkte konnten für den Einsatz mit den neuen Drucksensoren wiederverwendet werden.

Abbildung 8: Pellet-Pot – Drucksensoren

Der Messbereich der Sensoren von -250 bis 50 mbar wurde so gewählt, dass der gesamte erwartete Arbeitsbereich des Seitenkanalverdichters abdeckt werden konnte. Die wichtigsten technischen Daten der Drucksensoren sind in Tabelle 3 aufgeführt, alle weiteren Informationen sind in der Dokumentation des Sensors zu finden.

Eigenschaft	Wert
Hersteller	Endress + Hauser
Bezeichnung	Cerabar PMC21-4QW5/125
Bestellcode	PMC21-AA1M1EJWAJA
Messbereich	-250 50 mbar
Genauigkeit	±1 mbar
Messwertsignal	Strom, 4 20 mA
Prozessanschluss	G 1/4"

Tabelle 3: Technische Daten – Drucksensoren – E+H Cerabar PMC21

Es wurde überlegt die Drucksensoren durch ein Wassersackrohr vor der Einwirkung der Gasatmosphäre im Ofen zu schützen. Diese Idee wurde allerdings verworfen, da keine aggressiven Gase zu erwarten waren und eine eventuelle Hitzeeinwirkung auf den Drucksensor vorher die flexible Anschlussleitung zerstört würde. Außerdem hätten die Wassersackrohre einen zusätzlichen Kontrollund Wartungsaufwand erzeugt.

4.1.3. Gasmessung und Luftfeuchtigkeit

Es wurden Überlegungen zum direkten Einbau einer CO₂- und Luftfeuchtigkeitsmessung in die Maschine gemacht. Die Idee wurde allerdings verworfen, nachdem die Komplexität der notwendigen Gasaufbereitung für beide Sensortypen erkannt wurde. Die meisten kommerziell verfügbaren Sensoren sind vor allem für die Verwendung im Bereich der Raumklimatisierung ausgelegt und damit nicht für den Einbau in eine Industrieanlage geeignet. Sensoren für erschwerte Umgebungsbedingungen existieren zwar, sind aber wesentlich teurer. Ein weiterer Grund der gegen den Einbau eines Gassensors sprach, war die Flexibilität (einfacher Anschluss und mehrere Gassensoren) und die wesentlich höhere Genauigkeit des bereits vorhandenen Gasmessgeräts. Auf die Luftfeuchtigkeitssensoren wurde verzichtet, da sie für diese Aufgabenstellung nicht benötigt wurden.

4.2. Elektrik

4.2.1. Austausch Lufterhitzer

Schon während der Vorversuche (siehe Kapitel 1.2.4 Vorversuche) stellte sich heraus, dass die gewünschte Mindesttemperatur von 560 °C mit dem eingebauten Lufterhitzer (max. Ausgangstemperatur: 650 °C) nicht erreicht werden kann. Es kam im Bereich vor dem Reaktionsraum zu hohen Wärmeverlusten, die mit einem stärkeren Lufterhitzer ausgeglichen werden sollten. Die Wahl für das Austauschgerät fiel auf einen Lufterhitzer des gleichen Herstellers, allerdings mit 900 °C Ausgangstemperatur. Damit sollte es möglich sein auch die höhere gewünschte Temperatur zur Kalzinierung von Ankerit zu erreichen. Der mechanische Aufbau war bis auf die längere Bauform gleich zum ursprünglichen Gerät, was den Einbau erleichterte. Die technischen Daten des neuen Lufterhitzers sind in Tabelle 4 aufgelistet.

Eigenschaft	Wert
Hersteller	Leister
Bezeichnung	LE 10000 HT
Netzanschluss	3~ 400 V AC / 15 kW
Max. Ausgangstemperatur	900 °C
Min. Luftstrom bei max. Leistung	1200 l/min (~ 72 m³/h)

4.2.2. Leitungsführung

Im Zuge der Änderungen am Pellet-Pot wurden die Leitungen der Sensoren in Kabelkanäle verlegt und zu einem gemeinsamen Endpunkt am Gerüst geführt. Damit konnten die Sensorleitungen gesammelt in einem, an beiden Enden am Schaltschrank und Gerüst befestigtem, flexiblen Schutzrohr über den Boden geführt werden. Die Leitungen mit höheren Querschnitten (Einspeisung, Lufterhitzer und Seitenkanalverdichter) werden weiterhin einzeln über den Boden geführt und sind, wenn möglich an beiden Enden mit Klemmen mechanisch befestigt. Damit ist eine Zugentlastung der Anschlusspunkte gewährleistet. Durch die getrennte Leitungsführung der Energieübertragungs- und Messleitungen können Störungen aufgrund von elektromagnetischen Feldern minimiert werden.

4.3. Mechanik

4.3.1. Befestigung Lufterhitzer

Durch die längere Bauform des leistungsstärkeren Lufterhitzers musste die Befestigung angepasst werden. Das alte Gerät wurde nur an der Luftausgangsseite gehalten und hing damit in der Luft, dies war beim neuen Gerät aufgrund der Länge nicht mehr möglich. Es wurde ein zusätzliches Holzgestell am Rahmen des Pellet-Pots angebaut, um das Gewicht des Lufterhitzers sicher abstützen zu können. Die Befestigung und der Lufterhitzer sind in Abbildung 9 zu erkennen.

Abbildung 9: Pellet-Pot – Lufterhitzer und Befestigung

4.3.2. Dämmung

Die bisherige Dämmung der Pellet-Pots bestand hauptsächlich aus Feuerfestmaterial in Form von feuerfestem Leichtbeton (Füllmaterial: Hohlkugelkorund, Durchmesser: 0–3 mm, Dichte: 1,37 g/cm³) im Heiß- und Brennerbereich. Zusätzlich ist im Bereich vor dem Gasbrenner an der Innenseite lose Mineralwolle angebracht. Im Bereich nach dem elektrischen Lufterhitzer war keine Dämmung

angebracht, da ein Großteil der Energie erst mit dem Brenner eingebracht wurde und eine Dämmung deshalb für nicht notwendig erachtet wurde. An dieser Stelle ist der Gasstrom nur durch ein Rohr aus ca. 2 mm dickem Stahlblech von der Umgebung getrennt.

Um den Wärmeverlust zu vermindern, wurde jener Teil des Pellet-Pots, vom Lufterhitzer bis zum Eingang des Reaktionsraums, zusätzlich außen gedämmt. Als Dämmmaterial wurden bereits vorhandene Mineralwollplatten verwendet, die im Zuge des ursprünglichen Pellet-Pot Projekts gekauft worden sind. Neben der Vermeidung von Energieverlusten, schützt die Dämmung außerdem vor Verbrennungen durch unabsichtliches Berühren der Metalloberfläche. Bei einem Vergleich der Aufwärmgeschwindigkeit unter 200 °C konnten allerdings keine Unterschiede zwischen gedämmten und ungedämmten Zustand festgestellt werden. Abbildung 10 zeigt einen Vergleich der Gasstrecke vor und nach dem Anbringen des Dämmmaterials.

Abbildung 10: Pellet-Pot – ungedämmt/gedämmt

5. Automatisierung/Schaltschrank

Die Automatisierung des Pellet-Pots soll die Durchführung von Versuchen auf der Maschine vereinfachen indem so viele Aufgaben wie möglich von der Steuerung übernommen werden. Eine der Hauptaufgaben ist die Regelung des Luftmassenstroms und der Temperatur zur Einhaltung konstanter Versuchsbedingungen. Zusätzlich soll die Steuerung den Bediener entlasten, indem im Hintergrund alle Messwerte und relevante Betriebsparameter aufzeichnet werden. Dadurch kann sich der Bediener voll auf die Versuchsdurchführung konzentrieren.

Der Schaltschrank, das zentrale Element der Automatisierung, soll alle frei berührbaren, spannungsführenden Bauteile aufnehmen und gleichzeitig alle Bedienelemente an einem Punkt konzentrieren. Die Einhausung der Betriebsmittel soll diese außerdem vor Schmutz und Staub aus der Umgebung schützen und somit eine lange Lebensdauer sicherstellen. Der Schaltschrank soll freistehend und fahrbar gestaltet werden, um ihn zusammen mit dem Ofen an einen anderen Aufstellungsort bringen zu können. Die Verbindung zum Pellet-Pot ist dementsprechend flexibel zu gestalten.

5.1. Sicherheitskonzept

Die auf dem Schaltschrank und dessen eingebauten Betriebsmitteln basierende Automatisierung der Maschine soll vor allem einen sicheren Betrieb gewährleisten. Das eingesetzte Sicherheitskonzept beruht auf einem mehrstufigen Ansatz zur Vermeidung und Minimierung der Auswirkungen gefährlicher Betriebszustände. Die Gefahren können dabei sowohl auf Menschen in der Umgebung als auch auf die Maschine selbst bezogen sein. Die Grundlage für die Beurteilung der Gefährdung bildete eine im Zuge dieser Arbeit durchgeführte Risikoanalyse, deren Ergebnis in Anhang A zu finden ist.

Die unterste Ebene des Sicherheitskonzepts beinhaltet die grundsätzliche elektrische Sicherheit der Maschine, darunter fallen zum Beispiel die ausschließliche Verwendung CE geprüfter Bauteile, die Anbindung dieser Bauteile mit der Stromstärke entsprechend ausgelegten Leitungen und deren Absicherung durch passende Leitungsschutzschalter. Damit kann die Maschine und das Bedienpersonal gegen elektrischer Fehlfunktionen oder Beschädigungen einzelner Betriebsmittel geschützt werden.

Darauf aufbauend muss die Programmierung der SPS – unabsichtlich aber auch absichtlich herbeigeführte – gefährliche Betriebszustände verhindern. Dazu sind Verriegelungen ein gutes Mittel, sie blockieren bestimmte Aktionen, die negative Auswirkungen auf die Maschine haben könnten. Weiters muss die Steuerung auf die Einhaltung der Grenzwerte der Betriebsmittel achten. Dazu müssen diese mit passenden Sensoren überwacht werden, um wenn nötig korrigierend in den Prozess eingreifen zu können.

Wenn ein potenziell gefährlicher Betriebszustand eintritt, der durch die Steuerung nicht korrigiert werden kann, soll eine automatische Abschaltung der Maschine eingeleitet werden. Falls die Steuerung einen gefährlichen Zustand nicht erkennen sollte, soll am Schaltschrank eine leicht erreichbare Not-Halt-Einrichtung angebracht werden, die vom Bedienpersonal händisch ausgelöst werden kann und ebenfalls eine kontrollierte Abschaltung zur Folge hat.

Der Grund für die Wahl eines Not-Halts im Gegensatz zu einem Not-Aus liegt in der schnellstmöglichen, kontrollierten Abschaltung der Maschine, da bei einem einfachen Trennen der Stromversorgung kein Sicherheitsgewinn erzielt werden kann. Die Begründung dafür liegt in den hohen Temperaturen an den Oberflächen und im Inneren des Pellet-Pots, die das Hauptrisiko darstellen. Dieses Risiko würde durch eine Trennung der Energieversorgung und damit wegfallende interne Kühlung sogar noch verstärkt werden. Da Verletzungen so nicht verhindert werden, aber durch die unkontrollierte Abschaltung Schäden an der Maschine entstehen können, gibt es zwei Gründe die gegen einen direkten Not-Aus sprechen. Als letzte Sicherheitseinrichtung soll es trotzdem möglich sein, die Maschine über den Hauptschalter abzuschalten und von der Energieversorgung zu trennen.

5.2. Planung

5.2.1. Elektrik

Die Planung der Elektrik musste als erstes durchgeführt werden, da die meisten anderen Planungsschritte darauf aufbauten. Der erste Schritt bestand in der Aufnahme der technischen Daten aller vorhandenen Betriebsmittel und deren Überprüfung zum Einsatz in der Maschine. Fehlende Herstellerdokumentation wurde ergänzt und zusammen mit den bestehenden Dokumenten gesichtet und zusammengefasst, um einen Ausgangspunkt für die restliche Planung zu haben.

Die für die Automatisierung notwendige speicherprogrammierbare Steuerung (SPS) und dazu passende Module für die Sensoren und Kommunikation mit anderen Betriebsmitteln wurden schon im Zuge des vorangegangenen Projekts gekauft. Die über die SPS-Module vorhandenen Ein- und Ausgänge waren auch für das neue, erweiterte messtechnische Konzept ausreichend, somit brauchten hier keine Nachkäufe getätigt werden. Für die Bedienung waren neben dem vorhandenen Touchscreen noch weitere Bedienelemente (Not-Halt-Pilz, Reset-Druckknopf, Signallampen, Summer) notwendig, die erst beschafft werden mussten.

Ein Großteil der elektrischen Planung fand im Programm EPLAN der Firma "EPLAN Software & Service GmbH & Co. KG^w statt, die freundlicherweise eine Bildungslizenz zur Verfügung stellte. Mit Hilfe der technischen Daten aus Herstellerdokumentation konnten die Stromlaufpläne, die Basis der gesamten elektrischen Planung, in EPLAN erstellt werden. Dafür wurden, wenn diese vorhanden waren, vorgefertigte Schaltpläne, Symbole und Artikeldaten für die Betriebsmittel aus der im Programm integrierten Bibliothek verwendet. Weitere Datensätze, die lokal nicht vorhanden waren, konnten aus dem Internet heruntergeladen werden. Für wieder andere Betriebsmittel, die in beiden Quellen nicht verfügbar waren, mussten diese Daten noch erzeugt und eingetragen werden.

Der Vorteil bei der Verwendung von EPLAN für die Planung besteht vor allem in den automatischen Auswertungen. Diese können, aus den erstellten Stromlaufplänen und den in den Betriebsmitteln hinterlegten Daten, unter anderem Betriebsmittellisten, Klemmenpläne und Anschlussbelegungslisten automatisch erzeugen. Bei einer Änderung der zugrundeliegenden Daten werden auch die Auswertungen automatisch aktualisiert. Die Gesamtplanung ist somit immer konsistent und auf dem neuesten Stand.

Auf Basis der erforderlichen Stromstärken aus der technischen Dokumentation der Hauptbetriebsmittel konnte eine Anschlussstromstärke für die gesamte Anlage von 32 A errechnet werden. Die Energieversorgung sollte über eine neu zu errichtende CEE-Steckdose erfolgen. Die dafür notwendige Planung wurde von der Gebäudetechnik der Universität und einem externen Elektriker übernommen. Für die Gleichstromkreise wurde errechnet, dass die vorhandenen Netzteile ausreichend Strom zu Verfügung stellen konnten. Die erforderlichen Stromstärken wurden außerdem zur Berechnung der notwendigen Leitungsquerschnitte innerhalb und außerhalb des Schaltschranks und deren Absicherung durch Leitungsschutzschalter verwendet.

Als nächster Schritt wurden die notwendigen Hilfsbetriebsmittel wie Stromverteiler, Leitungsschutzschalter, Klemmen, usw. ausgewählt und in EPLAN als Artikel hinterlegt. Der letzte Arbeitsschritt bestand in der Auswahl der Verbrauchsmaterialien (Leitungen, Aderendhülsen, …) und der Ermittlung der benötigten Mengen. Die Erstellung der Bestelllisten erfolgte dann fast vollkommen automatisch aus den in EPLAN hinterlegten Informationen. Die elektrische Dokumentation ist in Anhang B beigelegt.

5.2.2. Mechanik

Auf Basis der Betriebsmittelliste aus EPLAN und einer vorläufigen Planung des Montagelayouts in AutoCAD konnte der ungefähre Platzbedarf im Schaltschrank ermittelt werden. Dabei fiel schnell auf, dass der bereits vorhandene Schaltschrank zu klein sein wird. Es wurde entschieden einen größeren Schaltschrank zu kaufen, der dieselbe Breite und Tiefe hatte, allerdings um das Doppelte höher war. Dadurch konnten alle Bauteile, mit genügend Platz für Kabelkanäle, untergebracht werden. Die technischen Daten des neuen Schaltschranks sind in Tabelle 5 aufgelistet.

Eigenschaft	Wert
Hersteller	Rittal
Bezeichnung	AE 1260.500
Abmessungen	600 x 1200 x 300 mm
Eigengewicht	48 kg
Abführbare Leistung ($\Delta T = 20$ K, freistehend)	242 W
Tragkapazität	3000 N

Tabelle 5: Technische Daten – Schaltschrank – RITTAL AE 1260.500

Die Positionen der Betriebsmittel im Schaltschrank wurden nach dem folgenden Schema von oben nach unten geplant:

- 1. Wechselstromverteilung und Wechselstromabsicherung
- 2. Stromversorgung, Gleichstromabsicherung und -verteilung
- 3. Steuerung (SPS)
- 4. Leistungsbauteile (Frequenzumrichter, Leistungssteller)
- 5. Einspeiseklemmen, Ein- und Ausgangsklemmen, Erdungsschiene für geschirmte Leitungen

Mit dieser Positionierung der Betriebsmittel ist eine einfache und logische Verfolgung des Stromflusses möglich. Außerdem wird damit der Leistungsteil vom Steuerungsteil getrennt. Das endgültige Layout der Montageplatte des Schaltschranks wurde in EPLAN erstellt und ist in Anhang B enthalten.

Bei der Planung der Verkabelung innerhalb des Schaltschranks wurde auf eine Trennung der Starkstromleitungen von Steuer- und Messleitungen geachtet, um eine möglichst hohe elektromagnetische Verträglichkeit zu erzielen. Die Starkstromleitungen wurden bevorzugt auf der linken Seite und die restlichen Leitungen auf der rechten Seite verlegt. Diese Positionierung wurde auch bei der Planung der Kabeldurchführungen auf der Unterseite des Schaltschranks und bei der Leitungsverlegung außerhalb des Schaltschranks beibehalten.

Die Position der Bedienelemente auf der Schaltschranktüre wurden gemeinsam mit dem fahrbaren Gestell geplant. Bei der Höhe der Bedienelemente vom Boden wurde darauf geachtet, für möglichst viele Personen eine ergonomische Bedienung zu ermöglichen. Die Höhe des Touchscreens als Hauptbedienelement wurde mit 155 cm festgelegt. Die Signallampen sollten auf derselben Höhe wie das Display angebracht werden, während der Not-Halt-Pilz, der Taster zum Zurücksetzen des Not-Halts und der Hauptschalter weiter unten geplant wurden, um sie leichter erreichbar zu machen. Der Hauptschalter wurde zur einfacheren Verkabelung auf der gleichen Höhe an der Seite des Schaltschranks positioniert.

Die Abmessungen des fahrbaren Gestells für den Schaltschrank ergaben sich aus den Abmessungen des Schaltschranks und den gewünschten Höhen für Bedienelemente. Die Fertigungszeichnung für das fahrbare Gestell des Schaltschranks ist in Anhang C zu finden. Die darin unterste eingezeichnete Querstrebe wurde zusätzlich eingeplant, um die ein- und abgehenden Leitungen daran befestigen zu können und die Leitungsdurchführungen am darüberliegenden Schaltschrank zu entlasten.

5.2.3. Thermische Auslegung

Aufgrund der in der Dokumentation der Betriebsmittel angegebenen Verlustleistungen konnte die abzuführende thermische Gesamtleistung ermittelt werden. Die ermittelte Gesamtverlustleistung lag mit 413 W höher als die vom Schaltschrank ohne Kühlung abführbare Leistung von 242 W bei 20 K Temperaturdifferenz. Dadurch wurde es notwendig eine zusätzliche Lüftung in den Schaltschrank einzuplanen.

Die gewählte Lüftung kann, bei einer Temperaturdifferenz von 20 K, weitere 280 W abführen. Somit kann im Schaltschrank jederzeit eine Temperatur von unter 50 °C gewährleistet werden. Außerdem verringert sich die Schutzklasse des Schaltschranks durch die IP54 Kennzeichnung der Lüfteröffnungen nur geringfügig. Ein Schutz gegen Staub und Spritzwasser ist für die eingebauten Betriebsmittel somit weiterhin gegeben.

Betriebsmittel	Verlustleistung	Anmerkung
Frequenzumrichter	110,8 W	
Leistungssteller	96,4 W	
Netzteil 24 V	30,0 W	max.
Netzteil 15 V	9,0 W	max.
Netzteil 5 V	10,0 W	max. (geschätzt)
SPS CPU	12,0 W	
SPS AI	2,3 W	
SPS AO	1,8 W	
SPS TC 1	1,5 W	
SPS TC 2	1,5 W	
Summe	275,4 W	
Sicherheitsfaktor	1,5	
Gesamt	413,0 W	

Tabelle 6: Schaltschrank – Verlustleistungsberechnung

Die Lüftung wurde so geplant, dass die angesaugte Außenluft, durch den Eintritt am rechten unteren Ende, zuerst auf die Leistungskomponenten trifft. Der Luftaustritt liegt auf der gegenüberliegenden Seite am oberen Ende des Schaltschranks. Um einen Überdruck im Schaltschrank zu erhalten und damit einen möglichen Staubeintritt durch andere Öffnungen zu verhindern, wurde der Lüfter an der Eintrittsöffnung eingebaut. Er wird aktiviert, wenn eine Temperatur von 30 °C im oberen Teil des Schaltschranks erreicht wird. Im Leerlauf und bei niedriger Last bleibt der Schaltschrank somit passiv gekühlt.

Bei der berechneten Verlustleistung tritt im Gleichgewicht eine Temperaturdifferenz von ca. 16 °C zwischen dem Schaltschrankinnenraum und der Umgebungsluft ein. Bei der maximalen Umgebungstemperatur von 30 °C ergibt sich so eine Temperatur im Schaltschrank von 46 °C. Bei dieser Temperatur funktionieren alle Betriebsmittel ohne Einschränkungen. Die Berechnungen zur thermischen Auslegung des Schaltschranks sind in Anhang D zu entnehmen.

5.2.4. Bedienkonzept

Die Bedienung der Maschine soll zentral über den Schaltschrank erfolgen. Das Bedienkonzept wurde darauf ausgerichtet, dem Bedienpersonal die wichtigsten Informationen so einfach wie möglich darzustellen, um schnell auf die jeweilige Situation reagieren zu können. Dazu wurde geplant den derzeitigen Maschinenzustand optisch durch Signallampen und in speziellen Situationen (Fehler, Gefahr, Änderung des Zustands) zusätzlich akustisch über einen lauten Summer mitzuteilen. Die Überlegungen zur Positionierung der Bedienelemente werden in 5.2.2 Mechanik dargelegt.

Messwerte und zusätzliche Informationen sollen über das HMI mit Touchscreen abgerufen werden, wobei die wichtigsten Informationen gebündelt am HMI-Startbildschirm dargestellt werden, der eine Übersicht über die gesamte Maschine bieten soll. Die Navigation am Bildschirm soll durch eine immer sichtbare Statuszeile am oberen Bildschirmrand ermöglicht werden. In der Statuszeile wurden außerdem weitere Anzeigeelemente geplant, die Informationen zum Betriebszustand der Maschine (Maschine läuft, Fehler, Datenaufzeichnung, Not-Halt aktiviert) darstellen können. Weiters ist in der Statuszeile eine Anzeige der Systemzeit geplant, um diese als Referenzzeit für Versuche verwenden zu können.

Die Hardwaretasten unter dem Touchscreen sollen für wichtige und häufig verwendete Funktionen verwendet werden. Dies beinhaltet zum Beispiel den Aufruf des Startbilds und die Anzeige der derzeit anstehenden Meldungen. Außerdem soll auch das Hauptmenü, über das die restlichen Einstellungen und Funktionen erreicht werden können, durch eine Taste aufrufbar sein.

In Abbildung 11 ist das geplante Layout für das HMI dargestellt. Die Erstellung der einzelnen Bilder für das HMI soll parallel zur Programmierung erfolgen. Die endgültige Ausgestaltung der Bilder und Menüstruktur sollte erst während der Inbetriebnahme erfolgen, um möglichst viele Erkenntnisse über die Abläufe des Prozesses in die Bedienoberfläche einfließen lassen zu können.

Abbildung 11: Automatisierung – HMI-Konzept

Eine der wichtigsten Funktionen des HMI wird es sein, informative Meldungen beim Auftreten außerordentlicher Betriebszustände der Maschine anzuzeigen. Während die Signallampen und der Summer auf Probleme aufmerksam machen können, sollen die Meldungen genauere Informationen liefern, wo Probleme aufgetreten sind oder wo sie in Zukunft auftreten könnten und Vorschläge zur Behebung derselben liefern. Damit soll es dem Bedienpersonal möglich gemacht werden, gezielter reagieren zu können und eventuell unerwünschte Betriebszustände schon vor dem Eintreten abzuwenden.

5.2.5. Programmierung

Es wurden zwei grundsätzliche Betriebsmodi geplant, Automatik und Manuell. Im Automatikmodus soll ein Temperaturprofil mit jeweils zwei Heiz- und Haltestufen und einer Kühlstufe für einen bestimmtes Thermoelement abgearbeitet werden. Im manuellen Modus sollen die Einstellungen jederzeit vom Bediener geändert und somit auch kompliziertere Versuche durchgeführt werden können. Beide Modi sollen auf demselben Hauptprogramm aufbauen, um grundlegende Funktionen nicht doppelt programmieren zu müssen. Prinzipiell sollen Programmabläufe, die mehrmals verwendet werden, in Funktionen gepackt werden (wie z.B.: die Berechnung eines Relativdrucks aus einem eingelesenen Stromwert). Änderungen an der Funktion werden dann an allen Einsatzorten automatisch übernommen, eine mehrfache Korrektur entfällt.

In beiden Modi sollen verschiedene Möglichkeiten zur Regelung des Lufterhitzers und des Seitenkanalverdichters verfügbar sein. Die Regelung der Heizleistung soll entweder über die Gastemperatur am Lufterhitzerausgang oder Poteingang erfolgen. Zusätzlich soll es im manuellen Modus möglich sein die Anlage mit einer festgelegten Heizleistung zu betreiben, dabei ist nur die interne Regelung des Leistungsstellers in Betrieb. Bei der Ansteuerung des Seitenkanalverdichters sollen drei verschiedene Fahrweisen ermöglicht werden, eine Luftmassestromregelung, eine Regelung

der Differenzdrucks (zwischen Poteingang und -ausgang) oder die Einstellung einer Festdrehzahl (feste Frequenz).

Das in einer Endlosschleife laufende Hauptprogramm soll die folgenden Abschnitte enthalten:

- Ausführung der Sicherheitsfunktionen/Not-Halt
- Erfassung und Berechnung der Messwerte
- Überprüfung des Maschinenzustands (Fehler, Warnungen, automatische Abschaltung)
- Ausführung des Automatikmodus (nur wenn der Automatikmodus aktiv ist)
- Ansteuerung von Seitenkanalverdichter und Lufterhitzer (inklusive Verriegelungen)
- Kommunikation mit dem HMI (Reaktion auf Benutzereingaben, Auslösung von Meldungen, Weitergabe der für die Bedienung und Datenaufzeichnung benötigten Variablen)

Zusätzlich wird es zwei weitere Programme geben, die in regelmäßigen Zeitabständen ausgeführt werden sollen. Darunter fallen die sekündlich ausgelöste Datenaufzeichnung und die in einem kürzeren Zeitabstand (< 100 ms) ausgeführte Regelschleife. Während die Datenaufzeichnung nur eine Variable setzen soll, die nach der Abarbeitung durch das HMI zurückgesetzt wird, soll die Regelschleife die Stellwerte für die Aktuatoren vorgeben. Dies beinhaltet die folgenden Schritte in der Reihenfolge der Aufzählung (jeweils für die aktivierte Regelung des Seitenkanalverdichters und des Lufterhitzers):

- 1. die Erfassung und Berechnung der Regelgrößen (Istwerte),
- 2. die Auswahl der Sollwerte, je nach gewählter Regelung,
- 3. die Ausführung der Regelalgorithmen und
- 4. die Ausgabe der jeweiligen Stellwerte.

5.3. Durchführung

5.3.1. Mechanik

Der Aufbau des Schaltschranks begann mit dem Bestücken der Montageplatte. Dazu wurden zuerst die Montagelöcher für die Kabelkanäle, Tragschienen und Bauteile gebohrt. Weiters wurden die Löcher für den Anschluss der späteren Schutz- und Funktionserdungen gebohrt, da die Montageplatte gleichzeitig als zentraler Erdungspunkt dient. Nach der Montage der zurechtgeschnittenen Verdrahtungskanäle und Tragschienen (35 mm Hutschienen) wurden die beiden größten Bauteile, der Frequenzumrichter und der Leistungssteller angebracht. Danach wurden alle weiteren Bauteile auf den Montageschienen befestigt.

In das Gehäuse des Schaltschranks wurden die notwendigen Öffnungen für die Bedienelemente und die Belüftung geschnitten. Die Schnittkanten wurden mit Klarlack versiegelt, um möglichem Rost vorzubeugen. Diese Arbeitsschritte wurden für die Schaltschranktüre und die Kabeldurchführungsplatte wiederholt. Danach wurde die bestückte Montageplatte in den liegenden Schaltschrank gehoben und befestigt. Der Schaltschrank samt Montageplatte wurde aufgestellt und

die Bedienelemente und Belüftung montiert. Abschließend wurden die Beschriftungen der Bedienelemente an den Schaltschrank angebracht.

Abbildung 12: Schaltschrank – Aufbau

Das fahrbare Gestell des Schaltschranks wurde wie geplant aus Stahlformrohren gefertigt. Die vorbereiteten Einzelteile wurden verschweißt und die Rollen befestigt. Aus Stabilitätsgründen mussten die ursprünglich auf der Rückseite geplanten Rollen auf die Vorderseite verlegt werden. Den Abschluss der mechanischen Arbeiten bildete die Montage des verdrahteten Schaltschranks auf dem fertigen Gestell.

5.3.2. Elektrik

Die Verkabelung des Schaltschranks erfolgte nach den zuvor erstellten Plänen. Dabei wurde vor allem auf die Einhaltung der elektromagnetischen Verträglichkeit (Trennung von Leistungsleitungen und Messleitungen, ordnungsgemäße Schirmauflage, usw.) der Maschine geachtet, um später schwer zu findende Fehler aufgrund gegenseitiger elektromagnetischer Beeinflussung (EMV) zu vermeiden. Im linken Bildteil der Abbildung 13 ist die Trennung von Versorgungsleitungen (links) und Mess- & Steuerleitungen (rechts) gut zu erkennen.

Die Verkabelung wurde in folgender Reihenfolge durchgeführt:

- 1. Einspeisung
- 2. Schutz- und Funktionserdungen
- 3. Frequenzumrichter und Leistungssteller (Versorgung und Ausgangsstromkreise)
- 4. Gleichspannungsnetzteile und Lüftung
- 5. Gleichspannungsverteilung

- 6. Steuerstromkreise
- 7. Messstromkreise
- 8. Bedienelemente auf der Türe
- 9. Anschluss der externen Betriebsmittel

Abbildung 13: Schaltschrank – Elektrik

An der zugrundeliegenden Planung mussten während der Inbetriebnahme nur zwei Fehler korrigiert werden. Einerseits waren vier Thermoelemente bei der Verkabelung vertauscht worden und andererseits war der Steuerungsausgang für den Lufterhitzer nicht funktionstüchtig. Der erste Fehler konnte durch den richtigen Anschluss der Thermoelemente leicht behoben werden. Für den Steuerungsausgang war es notwendig einen Optokoppler zwischen die SPS und Leistungssteller einzubauen, da die internen Schaltungen der beiden Geräte nicht kompatibel waren. Sonst wurden während der Inbetriebnahme nur die bereits geplanten Änderungen, der Einbau des leistungsfähigeren Lufterhitzers und der Anschluss an die stärkere Einspeisung, durchgeführt.

5.3.3. Programmierung

Aufgrund der einfachen Programmstruktur wurde eine inkrementelle Strategie gewählt und die Programmteile in getrennten Funktionsmodulen erstellt, getestet und in das Gesamtprogramm eingefügt. Zu Beginn wurde sichergestellt, dass die bereits angeschlossenen Aktuatoren (Seitenkanalverdichter und Lufterhitzer) aufgrund von Programmierfehlern nicht unbeabsichtigt über ihre Schaltausgänge aktiviert werden konnten. Die späteren Logik- und Funktionstests des Programms
erfolgten deshalb mittels der am Schaltschrank eingebauten Signallampen und über Anzeigen am HMI in einer Art Simulationsmodus. Die Sicherungen der Schaltausgänge verblieben bis zum Start der endgültigen Inbetriebnahme im Programm.

Zeitgleich mit den Sicherungen der Ausgänge und der Ansteuerung der Signaleinrichtungen (Lampen und Summer) wurde die grundlegende Programmstruktur aus der Planung umgesetzt. Diese bestand aus dem kontinuierlich ablaufenden Hauptprogramm, in das nacheinander die später programmierten Module eingefügt wurden. Begonnen wurde mit den grundlegenden Sicherheitsfunktionen (siehe Not-Halt-Funktion) und der Inbetriebnahme der Temperatursensoren. Im Zuge dieses ersten Arbeitspakets wurden außerdem noch die Ansteuerung und Verriegelung der beiden Aktuatoren programmiert. Die Verriegelungen beinhalten einerseits die Einschaltsperre des Lufterhitzers bei nicht eingeschaltetem Seitenkanalverdichter und die Ausschaltsperre des SKVs bei zu hohen Temperaturen im Pellet-Pot. Diese Sperren wurden im Zuge der Fertigstellung weiterer Programmteile erweitert (z.B.: Mindestluftmassenstrom für das Einschalten des Lufterhitzers).

Im zweiten Arbeitspaket wurde zusammen mit der Einbindung der restlichen Sensoren (Drucksensoren, Massenflusssensor und Lambdasonde) die Datenaufzeichnung in Betrieb genommen. Auf der SPS wird dazu jede Sekunde eine Variable gesetzt. Die eigentliche Datenaufzeichnung läuft im Hintergrund auf dem Computer des HMI und speichert über ein, durch die gesetzte Variable aufgerufenes, Visual Basic Skript die Messwerte und Betriebsparameter in eine "csv"-Datei auf einem USB-Stick. Abschließend setzt sie die Variable auf der SPS zurück und signalisiert ihr somit die erfolgreiche Speicherung eines Datensatzes. Die Messdaten können somit nach einem Versuch einfach auf einen Computer übertragen und weiterverarbeitet werden.

Den Abschluss der Programmierarbeiten bildeten die Funktionen des Automatikmodus und die Einrichtung der Regelschleife. Diese unterbricht alle 25 ms das derzeit ausgeführte Programm und führt die Algorithmen der derzeit laufenden Regelfunktionen aus. Die Regler sind von Siemens programmierte Standardbausteine, die flexibel konfiguriert werden können. Die Einstellung der Regelparameter wurde erst während der Inbetriebnahme durchgeführt, da dazu Messungen des Systemverhaltens im laufenden Betrieb notwendig waren. Die grundlegende Programmierung war damit abgeschlossen und der Pellet-Pot funktionstüchtig, die endgültige Programmstruktur ist in Anhang E dargestellt.

Im Zuge der Inbetriebnahme wurden vor allem noch zusätzliche Sicherheitsfunktionen und Verbesserungen an verschiedenen Programmteilen implementiert. Weiters wurde die Kommunikation mit dem HMI verbessert und Logik zur Erkennung von Fehlern und Störungen in der Hardware eingebaut, damit aussagekräftige Meldungen an das Bedienpersonal gegeben werden können. Zu erwähnen ist auch, dass manche Regelparameter während der Inbetriebnahme mehrmals geändert werden mussten, vor allem nach dem Einbau des neuen Lufterhitzers und dem Erreichen der vollen Heizleistung mit der neuen Einspeisung. Außerdem wurde während der Versuche im Rahmen der

27

Erzcharakterisierung ein zusätzlicher Temperaturregler implementiert, mit dem die Regelung der Probentemperatur möglich ist.

Zum Abschluss der Inbetriebnahme wurden möglichst viele Szenarien von Einzelfehlern aber auch Fehlerkombinationen getestet und das Programm entsprechend der Ergebnisse der Tests angepasst. Dabei wurden unter anderem Grenzwertüberschreitungen, Sensorausfälle, Schäden an Betriebsmitteln und absichtliche Fehlbedienungen der Maschine simuliert. Wo es möglich und sinnvoll war, wurden Meldungen zu diesen Fehlern in das HMI programmiert, um eine einfache und schnelle Fehlerbehebung zu ermöglichen.

5.3.4. Not-Halt-Funktion

Der eingebaute Not-Halt-Pilz beendet den laufenden Prozess so schnell wie möglich. Dies beinhaltet die sofortige Abschaltung des Lufterhitzers. Der Seitenkanalverdichter bleibt solange in Betrieb bis die alle Temperaturen unter 45 °C gefallen sind, erst dann schaltet auch er sich ab. Die Programmierung ist so gestaltet, dass auch kritische Betriebszustände zu einem automatischen Not-Halt führen. Dieser verhält sich wie der oben beschriebene manuell ausgelöste Not-Halt.

Die Wiederinbetriebnahme ist in beiden Fällen nur durch die Rücksetzung des Not-Halt-Pilzes (durch Drehen im Uhrzeigersinn) und der nachfolgenden Betätigung des Reset-Tasters möglich. Das abschließende Zurücksetzen ist nur möglich, wenn der kritische Betriebszustand beendet wurde, ansonsten wird der Reset ignoriert und der Not-Halt bleibt aktiv.

5.3.5. Bedienung und Bedienoberfläche des HMI

Die Signallampen am Schaltschrank werden wie geplant eingesetzt, um den derzeitigen Betriebszustand einfach verständlich anzuzeigen. Um wichtige Ereignisse hervorzuheben wird zusätzlich der eingebaute Summer eingesetzt. Bei Fehlern und Warnungen wird am HMI eine Meldung generiert, die eine nähere Beschreibung des Problems enthält. Die Meldungen von Fehlern müssen quittiert werden (d.h.: das Lesen der Meldung muss bestätigt werden) bevor das HMI wieder für andere Aufgaben zur Verfügung steht. In Tabelle 7 sind alle Betriebszustände und Ereignisse aufgeführt, die die Signaleinrichtungen melden können.

Signal	Bedeutung
Grüne Lampe (blinkend)	Anlage Betriebsbereit (Grundzustand)
Grüne Lampe (durchgehend)	Anlage in Betrieb
Gelbe Lampe	Warnung
Rote Lampe	Fehler, Not-Halt
Weiße Lampe – SKV	SKV in Betrieb
Weiße Lampe – Lufterhitzer	Lufterhitzer in Betrieb
Summer (kurzer Einzelton)	Nächster Abschnitt im Automatikmodus & Bestätigung des Reset-Tasters
Summer (langer Einzelton)	Warnung
Summer (intermittierend)	Fehler

Tabelle 7: Bedienung – Signale und deren Bedeutung

Die Umsetzung des Bedienkonzepts für das HMI wurde mit dem grundlegenden Bildaufbau (Statuszeile und Startbild) begonnen. Die Detailimplementierung einzelner Bilder erfolgte gleichzeitig mit der Erstellung der damit verbundenen Programmteile. Durch die Wiederverwendbarkeit der einmal konfigurierten Bedienelemente konnte die graphische Oberfläche schnell und mit einheitlichem Design umgesetzt werden.

Aufgrund der geringen Größe der vorhandenen Bedieneinheit können die Schaltflächen zum Starten und Stoppen der Maschine nicht dauerhaft angezeigt werden. Sie werden durch Betätigung einer der vier vorhandenen Hardwaretasten des Touchscreens (Taste F3) eingeblendet. Das hat den Vorteil, dass eine unabsichtliche Betätigung fast unmöglich ist. Die weiteren Tasten führen zum Startbild (Taste F1), der Meldungsübersicht (Taste F2) und die Letzte blendet das Hauptmenü ein (Taste F4). Somit sind die wichtigsten Funktionen und Informationen durch nur einen Tastendruck erreichbar und der verfügbare Platz am Bildschirm kann optimal ausgenutzt werden.

Alle nicht zeitkritischen Funktionen sind über das einblendbare Hauptmenü erreichbar. Dazu zählen die Auswahl des Betriebsmodus, die Parameter für den jeweiligen Betriebsmodus, die Datenaufzeichnung sowie alle weiteren Einstellungen und Funktionen. Der Zugriff auf kritische Systemfunktionen, wie die Reglereinstellung und das im Hintergrund laufende Betriebssystem, ist erst nach einer erfolgreichen Anmeldung am System mit Benutzernamen und Passwort möglich. Damit können ungewollte Veränderungen verhindert werden.

In der Reglereinstellung wurde die Rezepte-Funktion der Visualisierungssoftware eingesetzt, damit lassen sich einmal gefundene Regelparameter unter einem Rezeptnamen abspeichern und später wieder laden. Dadurch kann die Regelung schnell für verschiedene bekannte Anwendungsszenarien angepasst werden, ohne immer alle Werte erneut eingeben zu müssen.

SIEMENS	SIMATIC HMI
Construction Co	26.09.2019 20:06:31 U D PR 0 47,1 °C PR U 53,4 °C 43 °C 75,4 kg/h
	F3 F4

Abbildung 14: Automatisierung – HMI-Grundbild mit Statuszeile im oberen Bereich

6. Inbetriebnahme

6.1. Reglereinstellung

Die Einstellung der PID-Regler (Proportional-, Integral- und Differentialanteil) erfolgte nach den Regeln Chien, Hrones und Reswick [2]. Dieses Verfahren kann bei proportionalen Verzögerungsstrecken mit oder ohne Totzeit angewendet werden. Zur Bestimmung der Regelparameter wird zuerst die dynamische Reaktion der Regelgröße aufgrund einer sprunghaften Änderung der Stellgröße aufgenommen (Sprungantwort der Regelstrecke) und daraus die Regelstreckenkenngrößen Stationärverstärkung, Verzugszeit und Anstiegszeit ermittelt. Anhand dieser Messwerte können danach die Regelparameter anhand von einfachen Formeln berechnet werden. Die Abfolge der Berechnung wird nachfolgend anhand des Beispiels der Temperaturregelung für den Lufterhitzerausgang Pellet-Pot erläutert. Abbildung am 15 zeiqt die Ermittlung der Regelstreckenkenngrößen anhand einer angenommenen Sprungantwort.

Abbildung 15: Reglereinstellung – Regelstreckenkenngrößen nach Chien, Hrones, Reswick anhand einer Sprungantwort (Quelle: [2])

Nach dem Einschalten der Datenaufzeichnung und des Seitenkanalverdichters (Luftmasseregelung: 50 kg/h, normaler Betriebspunkt) wurde der Lufterhitzer mit einer Heizleistung (Stellgröße) von 70 % eingeschaltet. Durch die Aufzeichnung der Temperatur am Lufterhitzerausgang (Regelgröße) erhält man die dazugehörige Sprungantwort dieser Regelstrecke. Aufgrund des in Abbildung 16 (linker Bildteil) dargestellten Temperaturverlaufs kann die Erwärmung der Luft auf eine Endtemperatur von 677 °C (obere horizontale Linie) abgelesen werden. Durch Subtrahieren der Starttemperatur von 24 °C (untere horizontale Linie) ist die Temperaturerhöhung (653 °C) aufgrund der gewählten Heizleistung berechenbar. Es ergibt sich eine stationäre Verstärkung von 9,33 °C/% an diesem Betriebspunkt.

$$k_{S} = \frac{\Delta x_{a}}{\Delta x_{e}} = \frac{T_{ende} - T_{start}}{P_{ende} - P_{start}} = \frac{677 - 24}{70 - 0} = \frac{653}{70} = 9,33$$
(1)

- \mathbf{k}_{S} Stationärverstärkung [-]
- x_a Regelgröße [-]
- x_a Regelgröße [-]

Abbildung 16: Reglereinstellung – Sprungantwort – Temperatur Lufterhitzerausgang

Zur Bestimmung der Regelparameter müssen die Verzugszeit und die Anstiegszeit abgelesen werden. Dazu wird die Tangente im Wendepunkt der Kurve konstruiert und mit dem Start- und Endniveau der Regelgröße zum Schnitt gebracht werden. Die Zeit von der sprunghaften Änderung der Stellgröße zum ersten Schnittpunkt der Tangente ist die Verzugszeit und gibt die Zeit bis zur ersten Reaktion der Regelgröße auf die Änderung der Stellgröße an. Die Anstiegszeit ist durch den Zeitabstand der beiden Schnittpunkte definiert und gibt an wie lange die Regelgröße benötigt, um den Endwert zu erreichen.

		20% Über	rschwingen	aperiodisch			
		$(D \approx$	(0.45)	$(D \approx 0.8)$			
Regler		Störung Führung		Störung	Führung		
Р:	k_R	0.7 x	0.7 x	0.3 x	0.3 x		
PI:	k_R	0.7 x	0.6 x	0.6 x	0.35 x		
	T_N	$2.3 T_u$	T_g	$4 T_u$	$1.2 T_g$		
PID:	k_R	1.2 x	0.95 x	0.95 x	0.6 x		
	T_N	$2 T_u$	$1.35T_g$	$2.4 T_u$	T_{g}		
	T_V	$0.42 T_u$	$0.47 T_u$	$0.42 T_u$	$0.5 T_u$		

Tabelle 8: Reglereinstellung – Regelparameter nach Chien, Hrones, Reswick (Quelle: [2])

Mit der stationären Verstärkung, der Verzugszeit und der Anstiegszeit ist die Regelstrecke ausreichend beschrieben und es kann eine Hilfsgröße x berechnet werden, die für die Berechnung der Regelparameter benötigt wird. Die Berechnung der Regelparameter erfolgt nun durch Einsetzen der Werte in die Formeln der Tabelle 8. Dabei kann neben dem einzusetzenden Regler und der Reglerbetriebsart (Störung oder Führung) auch das Überschwingverhalten des geschlossenen Regelkreises ausgewählt werden. Für das gewählte Beispiel wird ein PID-Regler zur Führung ohne Überschwingen (aperiodischer Grenzfall) ausgewählt. Die Regelparameter können damit wie folgt berechnet werden:

1. Berechnung der Hilfsgröße

$$x = \frac{T_g}{k_s \cdot T_u} = \frac{77}{9.3 \cdot 11} = 0.75$$
 (2)

- x Hilfsgröße [-]
- T_g Anstiegszeit [s]
- T_u Verzugszeit [s]
- 2. Berechnung der Reglerverstärkung (P-Anteil des Reglers)

$$k_{\rm R} = 0.6 \cdot x = 0.6 \cdot 0.75 = 0.45 \tag{3}$$

- k_R Reglerverstärkung [-]
- 3. Berechnung der Nachstellzeit (I-Anteil des Reglers)

$$T_{\rm N} = T_{\rm g} = 77 \, s$$
 (4)

- T_N Nachstellzeit [s]
- 4. Berechnung der Vorhaltezeit (D-Anteil des Reglers)

$$T_V = 0.5 \cdot T_u = 6.5 s$$
 (5)

T_V Vorhaltezeit [s]

6.2. Automatikmodus – Test 1 – Differenzdruckregelung

In den nachfolgenden Diagrammen ist ein erfolgreicher Test des Automatikmodus mit Regelung des Seitenkanalverdichters aufgrund des Differenzdrucks über die Probeschüttung dargestellt. Da die Leistung aufgrund des elektrischen Anschlusses zu diesem Zeitpunkt noch begrenzt war, wurden bewusst niedrige Zieltemperaturen gewählt. In Tabelle 9 sind die Einstellungen der Anlage angeführt.

Einstellung	Wert
Regler Luftmasse	Differenzdruck, 20 mbar
Regler Temperatur	Pot Eingang
Wartezeit	1 min
Vorheiztemperatur	65 °C
Vorheizzeit	5 min
Vorheizhaltezeit	3 min
Heiztemperatur	150 °C
Aufheizzeit	15 min
Haltezeit	3 min
Abkühlzeit	10 min
Temperaturtoleranz	1 %

Tabelle 9: Inbetriebnahme – Automatikmodus – Test 1 – Einstellungen

Die Temperaturtoleranz gibt an, ab welcher Temperaturabweichung vom Sollwert der Haltezeit-Countdown begonnen werden soll (gilt für Vorheizen und Heizen). Die Haltezeit wird erst gestartet, wenn sich die Temperatur im durch die Temperaturtoleranz angegebenen Bereich befindet, somit ist eine zu kurze Haltezeit aufgrund von Verzögerungen beim Aufheizen ausgeschlossen.

Abbildung 17: Inbetriebnahme – Automatikmodus – Test 1 – Temperaturverlauf

Abbildung 18: Inbetriebnahme – Automatikmodus – Test 1 – Differenzdruckverlauf

6.3. Automatikmodus – Test 2 – volle Leistung

Bei diesem Test wurde die Lufterhitzer-Ausgangstemperatur geregelt. In vorhergegangenen Tests wurde festgestellt, dass bei einem Luftmassenstrom von 50 kg/h eine Temperatur von 850 °C gerade noch erreicht werden kann, welche als Endtemperatur festgelegt wurde. Als Vorheiztemperatur wurden 560 °C gewählt. Die vollständigen Einstellungen sind in Tabelle 10 dokumentiert. Die Hauptziele dieses Tests waren die Funktion des Reglers bei höheren Temperaturen zu testen und

Einstellparameter	Wert
Regler Luftmasse	Luftmassestrom, 50 kg/h
Regler Temperatur	Lufterhitzerausgang
Wartezeit	1 min
Vorheiztemperatur	560 °C
Vorheizzeit	5 min
Vorheizhaltezeit	10 min
Heiztemperatur	850 °C
Aufheizzeit	5 min
Haltezeit	15 min
Abkühlzeit	5 min
Temperaturtoleranz	0,5 %

einen ungefähren Wert für die Aufheizzeit zu erhalten. Die Heizzeiten sind absichtlich sehr kurz gewählt worden, um das System an seine Leistungsgrenze zu bringen.

Tabelle 10: Inbetriebnahme – Automatikmodus – Test 2 – Einstellungen

Der Vergleich von Soll- und Ist-Temperatur ist in Abbildung 20 dargestellt. Bei der Vorheiztemperatur von 560 °C ist ein leichtes Überschwingen von 10 °C zu sehen, das durch eine weniger aggressive Reglereinstellung vermieden werden könnte. Allerdings würden sich dadurch vermutlich die Aufheizzeiten verlängern. Aufgrund der Trägheit durch die Wärmekapazität der Proben ist eine Anpassung nicht notwendig.

Das Erreichen der Endtemperatur gestaltet sich durch die Wahl an der Grenze zur Maximaltemperatur schwierig. Die Heizphase verlängert sich dadurch um 12 min (von 5 auf 17 min). Es ist gut zu erkennen wie die Solltemperatur zunächst noch gehalten werden kann und ab 11:16 die Heizleistung nicht weiter erhöht werden kann und damit ein Abflachen der Temperaturkurve eintritt.

In Abbildung 21 sind die Temperaturverläufe im Pot gezeigt. Es ist zu beachten, dass das Thermoelement T3 am Eingang des Pots während des Aufheizens die höchste Temperatur messen sollte, dies aufgrund einer Beschädigung nicht kann. Ein Tausch war für diesen Test zeitlich nicht mehr möglich.

Abbildung 20: Inbetriebnahme – Automatikmodus – Test 2 – Temperaturvergleich

Abbildung 21: Inbetriebnahme – Automatikmodus – Test 2 – Temperaturen im Pot

Der Vollständigkeit halber ist in Abbildung 22 der Verlauf des Luftmassenstroms dargestellt. Die Erhöhung des Luftmassenstroms von 50 kg/h auf 70 kg/h erfolgte nach Ablauf der Abkühlphase des Automatikmodus, um die Abkühlzeit zu weiter zu verringern.

Abbildung 22: Inbetriebnahme – Automatikmodus – Test 2 – Luftmassenregelung

6.4. Verbleibende Probleme der Maschine

Im Zuge der Inbetriebnahme und Versuche sind einige Probleme an der Maschine aufgetreten, die im Zuge dieser Arbeit nicht behoben werden konnten.

6.4.1. Leck im Gaskühler

Während eines Tests der Maschine wurde über eine undichte Stelle in der Verbindung von Abgasrohr und Kühlschlauch Wasser angesaugt. Der Kühler war zu diesem Zeitpunkt fast voll befüllt und das Verbindungstück somit unter Wasser. Über Nacht füllte sich der Kühlschlauch mit immer mehr Wasser. Beim Start am nächsten Tag erzeugte der Seitenkanalverdichter genug Unterdruck, um dieses Wasser anzusaugen und durch den Verdichtungsraum in den Abgasauslass zu befördern.

Nach dem Bemerken des Problems durch die auftretenden Geräusche wurde die Maschine stillgelegt und das Kühlwasser aus dem Fass ausgelassen. Zum Trocknen des Seitenkanalverdichters wurde dieser zerlegt und mit Hilfe einer Heißluftpistole getrocknet. Beim Wiederzusammenbau wurde der Lüfter des Antriebsmotors leicht beschädigt, da dieser von der Antriebswelle in das Luftansauggitter gedrückt wurde. Nach der Reparatur konnte allerdings keine nachteilige Wirkung auf die Kühlleistung und Funktion des Lüfters im Betrieb festgestellt werden.

Das Leck konnte zwar leicht gefunden werden, eine Reparatur wäre allerdings äußert aufwendig gewesen, da der gesamte Kühleraufbau zerlegt und die Verbindung neu geschweißt werden müsste. Da die geringe Menge angesaugter Falschluft den Betrieb nicht stört wurde entschieden keine Reparatur durchzuführen. Es wurde beschlossen den Kühler nur bis 5 cm unter die Unterkante des Verbindungsstücks zu befüllen, um einen Wassereintritt zu vermeiden. Allerdings ist zu beachten, dass beim Absenken des Pots auch das gesamte Abgasrohr und damit auch das Verbindungsstück abgesenkt wird. Vor dem Ausbau des Pots sollte deshalb der Kühlwasserspiegel um 10 cm verringert werden.

6.4.2. Lambda-Sonde

Die ursprüngliche Planung sah vor, dass die Lambda-Sonde mittels 4–20 mA Stromsignals ihren Messwert an die SPS übermittelt, allerdings konnte der Stromausgang des Messwandlers nicht in Betrieb genommen werden. Der Messwandler und die SPS wurden deshalb auf ein 0–10 V Spannungssignal umgestellt. Eine dadurch ausgelöste Beeinträchtigung der Signalqualität konnte nicht festgestellt werden.

Im weiteren Verlauf der Inbetriebnahme wurde außerdem erkannt, dass die Beschaltung des Störungsausgangs des Messwandlers nicht mit dem Digitaleingang der SPS zusammenpasste und somit immer eine Störung an der SPS gemeldet wurde, auch wenn das nicht der Fall war. Da die Lambda-Sonde für den Betrieb der Maschine ohne Gasbrenner nicht essenziell ist, wurde beschlossen dem Fehler nicht weiter nachzugehen und die Störungsmeldung zu ignorieren.

Während der Kalzinierungsversuche zeigte die Lambda-Sonde nicht plausible Sauerstoff-Konzentrationen an und der Wert sank beim Betrieb mit Umgebungsluft mit jedem weiteren Versuch. Eine grundsätzliche Beschädigung der Lambda-Sonde oder des Messwandlers ist nicht auszuschließen.

6.4.3. Erwärmung bei langem Betrieb

Es musste festgestellt werden, dass sich der gesamte Pot während des Betriebs stark aufheizt. Vor allem im oberen Bereich vor dem Brenner, der über keine interne Dämmung verfügt, wird die Oberfläche sehr heiß. Durch das im Zuge der Anpassungen außen angebrachte feuerfeste Dämmmaterial wird zwar ein die Temperatur an der Oberfläche niedriger gehalten, allerdings treten nach einiger Zeit trotzdem Temperaturen von bis zu 300 °C auf.

Das dünne Metallrohr im direkten Anschluss an den Lufterhitzer wird im Dauerbetrieb bei maximaler Heizleistung auf die Temperatur der im Inneren geführten Luft von 900 °C erhitzt und beginnt unter der Dämmung rot zu glühen. Auch in anderen Abschnitten der Maschine treten hohe Oberflächentemperaturen auf und das Gerüst erwärmt sich in der Nähe der Aufhängung des Pots auf bis zu 100 °C.

Die Temperatur des Pellet-Pots muss deshalb während des Betriebs laufend kontrolliert werden und die Maschine bei zu starker Erwärmung abgestellt werden. Vor allem die Temperatur des Gerüsts ist aufgrund der angebauten Kabelkanäle und Messgeräte regelmäßig zu kontrollieren. Die Umgebung des Pellet-Pots muss während des Betriebs frei von brennbaren Materialien gehalten werden und der Aufenthalt von Personen in unmittelbarer Nähe ist zu vermeiden. In Abbildung 23 sind die jeweilig

höchsten gemessenen Oberflächentemperaturen an verschiedenen Teilen der Maschine dargestellt. Die Messung dieser Werte erfolgte berührungslos mittels eines Infrarotthermometers (testo 830-T4).

Abbildung 23: Inbetriebnahme – Maximale Oberflächentemperaturen am Pellet-Pot

6.4.4. Abgasabsaugung

Ein weiteres Problem stellt das warme Abgas dar, das nach dem Seitenkanalverdichter aus der Maschine austritt. Derzeit wird das Abgas über einen Absaugrüssel in die Abluftanlage des Gebäudes geleitet. Allerdings wurde während der Inbetriebnahme festgestellt, dass der Volumenstrom der Absaugung zu gering ist, ein Teil des Abgases tritt somit in den Raum aus. Dadurch erwärmt sich der Raum (im Sommer auf über 35 °C) und die Luftqualität verschlechtert sich. Zur Abhilfe wurde der Raum während des Betriebs durchgehend gelüftet, dadurch steigt allerdings die Lärmbelastung der Umgebung.

6.4.5. Ein- und Ausbau des Pots

Die Handhabung des Pots beim Ein- und Ausbau aus der Maschine ist durch das Gewicht und die Einbauposition schwierig. Durch die Hilfe einer zweiten Person könnte die Belastung zwar verringert werden, allerdings ist das aufgrund der engen Platzverhältnisse schwierig. Für dieses Problem konnte keine zufriedenstellende Lösung gefunden werden. Eventuell könnte die Handhabung des Pots durch zusätzliche Hilfsmittel verbessert werden. Beim Handling des Pots ist weiters auf die feuerfeste Auskleidung zu achten, da diese leicht beschädigt werden kann. Auch beim Ein- und Ausbau der Thermoelemente mit Keramikschutzhülle ist besondere Vorsicht geboten.

6.4.6. Kühlwassertemperatur

Durch die hohen Gastemperaturen erwärmt sich das Kühlwasser an der Oberfläche schnell und beginnt nach einiger Zeit zu Kochen. Dieser Umstand macht es notwendig das Kühlwasser regelmäßig zu tauschen (ca. jede Stunde) und erschwert dadurch die Versuchsdurchführung. Weiters kommt hinzu, dass der Kühler über keinen eingebauten Abflusshahn verfügt und deshalb über einen Schlauch entleert werden muss. Ein kontinuierlicher Tausch des Kühlwassers ist dadurch nicht möglich, wäre aber eine sinnvolle Ergänzung der Maschine. Der Einbau eines Abflusshahns in das Fass wurde nicht durchgeführt, da dazu eine komplette Zerlegung des Kühlers notwendig gewesen wäre und dies aus Zeitgründen nicht möglich war.

Durch den entstehenden Wasserdampf steigt die Luftfeuchtigkeit im Aufstellungsraum stark an und führt zusammen mit der Wärmeabgabe der restlichen Maschine zu einem unangenehmen Raumklima. Außerdem kondensiert ein Teil des Wasserdampfs am direkt über dem Fass montierten Seitenkanalverdichter. Um die Sicherheit und Lebensdauer zu erhöhen wäre eine Trennung von Kühler und Seitenkanalverdichter sinnvoll.

7. Erzcharakterisierung

7.1. Literaturstudie Kalzinierung

Um einen Überblick über die Kalzinierung der Karbonate zu erhalten wurde eine Literaturstudie durchgeführt. Besonderes Augenmerk wurde auf die Temperaturbereiche gelegt, in denen die Zersetzung der Karbonate abläuft, da sie für die die Planung des Verfahrensablaufes wichtig sind. Es wurde festgestellt, dass die meisten Untersuchungen mit Probemengen durchgeführt wurden, die mit handelsüblichen Analysegeräten (TGA, DTA, DSC) leicht zu analysieren sind. Die dabei verwendeten Probenmassen bewegten sich in einem Bereich von einigen zehn Milligramm bis einigen Gramm, um Beeinflussungen der Umgebungsbedingungen durch die ablaufende Reaktion zu vermeiden. Auch die eingesetzten Korngrößen von meistens < 100 μ m oder feiner befinden sich in einem Bereich, der für das angedachte Analyseverfahren nur begrenzte Aussagekraft hat.

Unter Kalzinierung versteht man die Zersetzungsreaktion, die bei allen Karbonaten ab einer bestimmten Temperatur einsetzt und zu einer CO₂-Abgabe führt. Diese Zersetzungs- oder auch Entsäuerungstemperatur ist charakteristisch für das jeweilige Karbonatmineral, kann sich aber aufgrund der Umgebungsbedingungen (Zusammensetzung der Gasatmosphäre, Probenmenge, Durchströmung der Probe, Verunreinigungen der Probe) verschieben. Die Zersetzung läuft meistens einstufig ab es gibt aber auch Minerale, die unter bestimmten Bedingungen mehrstufige Zersetzungen über Zwischenprodukte aufweisen (z.B.: Dolomit, Ankerit).

Mineral	Kalziniertemperaturbereich	Quellen
Spateisenstein	400 – 600 °C	[3], [4], [5], [6], [7]
Ankerit	650 – 850 °C	[8], [9], [10]
Dolomit	650 – 900 °C	[11], [9], [12]
Calcit	650 – 950 °C	[11], [13]

Tabelle 11: Temperaturbereiche der Kalzinierung ausgewählter Karbonate

Tabelle 11 zeigt die Temperaturbereiche in denen die Kalzinierung der für den Erzberg relevanten Karbonate abläuft. Es ist zu erkennen, dass eine Differenzierung von Ankerit, Dolomit und Kalzit schwierig ist, da eine starke Überlappung der Temperaturbereiche auftritt. Die Gasabgabephase von Siderit bzw. Spateisenstein sollte jedoch eindeutig abgrenzbar sein. Die angegebenen Bereiche spiegeln eine breite Menge von Zusammensetzungen der einzelnen Minerale wider und sollten als Richtwerte verstanden werden und nicht als feste Grenzen. In Abbildung 24 sind die Temperaturbereiche noch einmal graphisch dargestellt.

Erzcharakterisierung

Abbildung 24: Erzcharakterisierung – Gasabgabebereiche der relevanten Karbonate

Im Folgenden soll kurz auf die bei der Kalzinierung von Spateisenstein ablaufenden Reaktionen eingegangen werden, im Besonderen auf die Reaktionen in sauerstoffhaltiger Atmosphäre. Die nachfolgende Literatur bezeichnet Siderite mit Verunreinigungen ebenfalls als Siderit. In der weiteren Betrachtung werden mit Mg, Mn und in Kleinstmengen auch Ca verunreinigte Siderite als Spateisenstein bezeichnet.

Gallagher und Warne (1981) [3] haben mit einer Kombination von Analyseverfahren (TGA, XRD, TM, EGA) den Beweis erbracht, dass die Zersetzung von Spateisenstein über Wüstit (FeO) und CO₂ abläuft. Der entstehende Wüstit ist allerdings nur im Vakuum stabil, ist eine Gasphase vorhanden reagiert Wüstit mit dem abgegeben CO₂ sofort zu Magnetit (Fe₃O₄) unter Bildung von CO. Sollte Sauerstoff in der umgebenden Gasatmosphäre vorhanden sein oxidiert auch der Magnetit sofort zu Hämatit (Fe₂O₃). Bei Versuchen in Sauerstoffatmosphäre konnten Gallagher und Warne (1981) das Zwischenprodukt Fe₃O₄ aufgrund der Reaktionsgeschwindigkeit nicht feststellen. Weiters geben sie an, dass die Zusammensetzung und die Menge der gebildeten Zwischenphasen (Spinelle) neben der Atmosphäre auch stark von den Verunreinigungen im Spateisenstein abhängen, da die zweiwertigen Verunreinigungen im Spinellgitter eingebaut werden können. Eine Zunahme der Verunreinigungen im Spateisenstein führt laut Gallagher und Warne (1981) zu einer Abnahme der Curie-Temperatur der Spinelle.

Zum Verhalten von Ankerit und Dolomit während der Kalzinierung sei nur gesagt, dass die dabei charakteristischen Temperaturen und auftretenden Reaktionen stark von den Umgebungsbedingungen und der Zusammensetzung der Minerale abhängen und nicht pauschal beantwortet werden können. Genauere Informationen können der Literatur entnommen werden. (Quellen: siehe Tabelle 11)

7.2. Analyseverfahren zur Erzcharakterisierung

7.2.1. Beschreibung des Analyseverfahrens

Das von A. Böhm vorgeschlagene Analyseverfahren auf Basis einer mineralselektiven Kalzinierung soll zur Ermittlung des Spateisensteingehalts in Bohrschmantproben des steirischen Erzbergs dienen. Die Proben sollen in einem mehrstufigen Prozess erhitzt und die dabei abgegebene CO₂-Menge gemessen werden. Ziel ist es die Haltetemperaturen so zu wählen, dass eine bestmögliche Differenzierung der Gasabgabephasen der unterschiedlichen Karbonate erreicht wird. Die in den einzelnen Stufen abgegebene Gasmenge soll zur Berechnung der Mineralgehalte der zugeordneten Karbonate herangezogen werden.

Die Voraussetzung für die eindeutige Zuordnung sind sich nicht überschneidende Gasabgabephasen, zumindest für Spateisenstein sollte dies laut der Literatur möglich sein. Die Temperaturbereiche der Kalzinierung von Ankerit, Dolomit und Kalzit überschneiden sich stark, eine Differenzierung dieser Minerale wird als unwahrscheinlich eingestuft.

Aus der Literatur vor allem aber aus Versuchstätigkeit am Lehrstuhl ist bekannt, dass die Entsäuerung von Spateisenstein des Steirischen Erzbergs bei 560 °C vollständig abläuft. Die Ankeritentsäuerung beginnt frühestens bei ca. 600 °C, damit kann die Haltetemperatur der ersten Stufe (Spateistensteinstufe) mit 570 °C gewählt werden. Die Haltetemperatur wird eher niedrig gewählt, um einen eventuellen Start der Zersetzungsreaktionen anderer Karbonate zu verhindern oder deren Reaktionsgeschwindigkeit zumindest so niedrig wie möglich zu halten. Die Temperatur wird so lange gehalten, bis der gesamte Spateisenstein kalziniert ist. Das Reaktionsende sollte durch ein Absinken der CO₂-Konzentration im Gasstrom auf null oder nahezu null erkennbar sein. Die Haltetemperatur für die zweite Stufe kann nicht festgelegt werden, da die mit dem Pellet-Pot erreichbare Temperatur der Probe nicht eindeutig festlegbar ist (Temperaturbereich: 750 – 800 °C).

Zur Bestimmung der abgegebenen CO₂-Inhalts muss der CO₂-Gasvolumenstrom über die gesamte Versuchsdauer gemessen werden. Die Bestimmung des CO₂-Gasvolumenstroms wird durch die gleichzeitige Messung der CO₂-Konzentration und des dazugehörigen Gesamtvolumenstroms erreicht. Der Mineralgehalt kann dann, wie zu Beginn erwähnt, aufgrund der abgegebenen CO₂-Menge berechnet werden. Der Versuchsablauf des Analyseverfahrens ist in Abbildung 25 graphisch dargestellt.

Abbildung 25: Erzcharakterisierung – Geplanter Versuchsablauf

7.2.2. Modellannahmen

Die Gase werden für die Berechnungen als ideal angenommen. Die angesaugte Frischluft wird als trocken angesehen, eventuelle Reaktionen der Luftfeuchtigkeit mit der Probe werden bewusst ignoriert. Die Zusammensetzung der Umgebungsluft wird mit der in Tabelle 12 aufgelisteten Zusammensetzung angenommen. Weiters wird vorausgesetzt, dass die gemessene Gaszusammensetzung repräsentativ für den gesamten Messgasvolumenstrom ist, das gesamte Reaktionsgas beim Messgerät ankommt und die Messwerte keine systematischen Messfehler enthalten. Die Sensoransprechzeiten von bis zu 40 s werden nicht berücksichtigt, es wird angenommen, dass die aufgezeichneten Messwerte für die jeweilige Zeit der Aufzeichnung gelten.

Gas	Konzentration in Luft
Stickstoff (N ₂)	78,08 %
Sauerstoff (O ₂)	20,95 %
Argon (Ar)	0,93 %
Kohlenstoffdioxid (CO ₂)	0,04 %

Tabelle 12: Luftzusammensetzung (Annahme für die Berechnung)

Die vielleicht wichtigste Annahme ist, dass in der Spateisensteinstufe (erste Stufe) bis 570 °C nur Spateisenstein reagiert. Diese Annahme ist ein essenzieller Teil des Messprinzips des Analyseverfahrens und muss durch die Versuche bestätigt werden. Das reagierende Karbonat in der zweiten Stufe wird als Ankerit angenommen. Die für das Modell verwendeten Stoffmengenanteile von Spateisenstein und Ankerit wurden von A. Böhm (2018) übernommen und sind in Tabelle 13 angegeben.

Bestandteil	Spateisenstein	Ankerit
FeO	53,21 %	21,53 %
MgO	3,83 %	5,90 %
MnO	3,20 %	1,76 %
CaO	0,56 %	28,06%
CO ₂	39,20 %	42,75 %
Gesamt	100,00 %	100,00 %

 Tabelle 13: Zusammensetzung von Spateisenstein und Ankerit (Angabe als Stoffmengenanteil)

 (Quelle: [14])

Für die Reaktion der Probe werden folgende Annahmen getroffen. Es wird angenommen, dass das gebildete FeO vollständig zu Fe₂O₃ oxidiert, gleiches gilt für die Oxidation von MnO zu Mn₂O₃. MgO und CaO werden unter den Versuchsbedingungen als stabil angenommen.

7.2.3. Validierung des Verfahrens

Die Validierung des Messprinzips erfolgt auf Basis der während der Versuche aufgezeichneten CO₂-Konzentrationsverläufe. Für jedes Karbonat muss überprüft werden, ob es einen eindeutig abgrenzbaren und zuordenbaren Gasabgabebereich gibt. Ein Gasabgabebereich sollte davor und danach eine gewisse Zeit eine CO₂-Konzentration von nahezu null aufweisen, um als abgegrenzt gelten zu können. Die Zuordnung zu einem Karbonat erfolgt mittels der in der Literatur angegebenen Temperaturbereiche.

Die Bestimmung der Genauigkeit des Analyseverfahrens erfolgt durch den Vergleich der berechneten Massenabnahme durch die Gasabgabe und der tatsächlich gemessenen Massenabnahme. Um eine Abschätzung der Mineralgehalte vornehmen zu können, sollte die Abweichung zwischen diesen Werten nicht größer als ±5 % sein. Für diesen Vergleich und das Verfahren selbst ist es wichtig, dass alle ablaufenden Reaktionen berücksichtigt werden.

Die Validierung soll durch Versuche mit verschiedenen Mineralproben im dafür angepassten Pellet-Pot des Lehrstuhls für Aufbereitung und Veredlung durchgeführt werden. Eine passende Gasmesstrecke ist auf Basis des vorhandenen Gasmessgeräts während der Testversuche zu entwickeln.

7.2.4. Alternatives Analyseverfahren

In Kleinstmengen (40 mg) wurde ein ähnliches Verfahren zur quantitativen Bestimmung von Karbonaten bereits getestet [15]. Die Aufheizgeschwindigkeit im Messgerät liegt bei 20 °C/min. Pillot et al. (2014) verwendeten ein "Rock-Eval 6" Analysegerät der Firma "Vinci Technologies SA" das einen IR-Sensor zur Messung von CO und CO₂ einsetzt und die verwendeten Proben auf 850 °C erhitzen kann. Es besteht die Möglichkeit den Versuch mit N₂ (Pyrolyse) oder Luft (Oxidation) durchzuführen.

Pillot et al. (2014) beschreiben die Möglichkeit auch Mischungen von Karbonaten deren CO₂-Abgabebereich sich überschneiden zu ermitteln, allerdings wird nicht ausgeführt wie die Ermittlung der Mineralgehalte in diesem Fall durchgeführt werden soll. Es werden nur Beispiele gezeigt, in denen die CO₂-Abgabe der einzelnen Minerale eindeutig getrennt werden kann (z.B.: Magnesit-Kalzit, Magnesit-Dolomit). Die durch die CO₂-Messung errechnete Zusammensetzung wich nie mehr als 1 % von der tatsächlichen Zusammensetzung ab. Es ist zu beachten, dass in dieser Studie nur Kleinstmengen an Proben (40 mg) eingesetzt wurden und selbst diese manchmal zu einer Sättigung der CO₂-Messung führten.

7.3. Probenbeschreibung

Alle für den Test des Analyseverfahrens verwendeten Proben stammen direkt vom steirischen Erzberg (Österreich) und wurden bei unterschiedlichen Probenahmen gezogen. Die angegebenen Elementgehalte wurden mit der automatisierten RFA-Anlage am Erzberg bestimmt.

7.3.1. Gebrochenes Roherz

Diese Probe entstammt der Aufbereitungsanlage am Erzberg. Sie wurde im Zuge Erzaufbereitungsübung im Jahr 2017 am Schwertrübezyklon genommen. Bei dieser Beprobung wurden alle Ströme des Zyklons bei verschiedenen Schwertrübedichten und Aufgabedrücken beprobt, um die Trenncharakteristik des Schwertrübezyklons ermitteln zu können. Die Probe stammt aus dem Aufgabestrom bei einer Trenndichte von 3,0 g/cm³, einem Aufgabedruck von 1,6 bar und wurde am 10.07.2017 um 10:15 mit der Bezeichnung "Aufgabe 1" gezogen.

Die Aufgabe des Schwertrübezyklon enthält in der Kornklasse 10/1 mm (entspricht der gesamten Aufgabekorngrößenverteilung) noch sämtliche Bestandteile des Roherzes. Das Erz ist an diesem Punkt

47

in der Aufbereitungsanlage nur zerkleinert und klassiert worden, eine Sortierung fand noch nicht statt. Es sollten alle wichtigen Karbonate des Roherzes vom Erzberg enthalten sein, damit stellt die Probe ein gutes Testmaterial für das Messprinzip dar. Durch vorangegangene Untersuchungen ist die chemische Zusammensetzung bereits bekannt und wird in Tabelle 14 beschrieben.

Fe	CaO	MgO	Mn	SiO ₂	Al ₂ O ₃	S	Р	Na ₂ O	K ₂ O	Hg (ppm)
25,03	13,18	6,14	1,48	5,97	1,40	0,05	0,03	0,04	0,43	1,06

Tabelle 14: Probe "Schwertrübezyklon-Aufgabe" – Chemische Zusammensetzung (Angaben in Masse-%, außer Hg)

7.3.2. Spateisensteinstandard

Um eine Referenz für die Reaktion von Spateisenstein zu erhalten, wurde ein bereits bestehender Spateisensteinstandard verwendet. Dieser Standard wurde im Zuge der aufbereitungstechnischen Projektstudie von Christoph Höcher im Jahr 2018 [16] hergestellt und basiert auf derselben Schwertrübezyklonbeprobung wie das Roherz. Die Ausgangsprobe stammt jedoch aus dem Schwergutstrom des Schwertrübezyklons und nicht aus der Aufgabe. Sie enthält deswegen hauptsächlich jene Minerale mit einer höheren Dichte wie Spateisenstein und Ankerit.

Der Spateisensteinstandard wurde hergestellt, indem das Schwergut durch Siebung in zwei Kornklassen und durch eine Schwimm-Sink-Analyse jeder Kornklasse in weitere Dichteklassen unterteilt wurde. Diese Probe ist die Fraktion mit der höchsten Dichte (> 3,5 g/cm³) in der Kornklasse 4/1 mm, die genaue Probenbezeichnung ist "STZ_10/07/17_2_3.0_4/1_10". Auch an dieser Probe wurde die chemische Zusammensetzung bestimmt, sie ist in Tabelle 15 dargestellt.

Fe	CaO	MgO	Mn	SiO ₂	Al ₂ O ₃	S	Р	Na ₂ O	K ₂ O	Hg (ppm)
39,35	1,80	3,48	2,29	3,0	0,75	0,046	0,025	0,035	0,267	57,33

Tabelle 15: Probe "Spateisensteinstandard" – Chemische Zusammensetzung (Angaben in Masse-%, außer Hg)

7.3.3. Ankeritstandard

Der Ankeritstandard besteht aus zerkleinerten Handstücken vom Erzberg (Klaubeprobe A. Stadtschnitzer 2014) die mit einem Backenbrecher auf 100% < 6,3 mm und danach mit einer Stabmühle auf 100% < 1 mm weiter zerkleinert wurde. Eine chemische Zusammensetzung ist nicht bekannt.

7.4. Gasmessgerät

Abbildung 26: Gasmessung – Gasmessgerät (testo 350 XL)

Die Gasmessung erfolgt mit einem testo 350 XL Abgas-Analysegerät und der dazugehörigen testo 454 Kontrolleinheit. Das Gasmessgerät kann sechs in Serie geschaltete austauschbare Gasmesszellen aufnehmen. In der verwendeten Konfiguration waren Messzellen für Sauerstoff, Schwefeldioxid, Stickstoffmonoxid, Stickstoffdioxid, Kohlenstoffmonoxid (COlow) und Kohlenstoffdioxid (CO2i) eingebaut.

Das Messgas wird über eine interne Pumpe in das Messgerät gesaugt. Nach dem Eintritt in das Messgerät wird die Luft mittels eines Filters von Staub befreit und durch ein Peltierelement gekühlt. Nach der Gasvorbereitung wird das Messgas nacheinander durch die Messzellen und abschließend aus dem Messgerät geleitet. Die Kohlendioxidmessung ist über Infrarotabsorption realisiert, während die restlichen Messzellen auf elektrochemischen Messprinzipien basieren. Bedingt durch das Messprinzip der Zellen ist die Ansprechzeit relativ lang (bis zu 40 s).

Über die Kontrolleinheit können die Parameter für die Messung eingestellt werden und die Messwerte auf dem eingebauten Speicher abgelegt werden. Die Einstellparameter beinhalten neben der Messfrequenz, die Messdauer, die Verdünnung für die CO-Messzelle und die Spüldauer. Die Parameter können auf einem von vier Speicherplätzen abgelegt und später wieder geladen werden. Der integrierte Messdatenspeicher reicht bei der maximalen Messfrequenz von einer Messung pro Sekunde für eine Versuchszeit von ca. 4 Stunden. Mit Hilfe der testo Comfort-Software können die Messwerte auf einen Computer übertragen und in andere Dateiformate exportiert werden.

49

Die Genauigkeiten der einzelnen Zellen sind in Abbildung 27 angeführt. Im für die Versuche relevanten Messbereich von 0 bis 25 % des Infrarot-CO₂-Sensors ergibt sich eine maximale Abweichung von $\pm 0,55$ %, bei Messungen von 25 bis 50 % eine Abweichung von maximal $\pm 1,25$ %. Die Genauigkeit des CO-Sensors wird mit ± 2 ppm im unteren Messbereich von 0 bis 39 ppm angegeben. Bei CO-Messungen von bis zu 500 ppm beträgt die Abweichung maximal 25 ppm (± 5 % des Messwerts). Kreuzabhängigkeiten zwischen den verwendeten Gasen sind laut Datenblatt nicht vorhanden oder werden im Messgerät kompensiert [17].

Probe type	Temperature measurement	O ₂ measurement	CO (H2 compensated)	COlow meas. (H2 compensated)	CO2	NO meas. (option for testo 350 M)	NOlow measurement	NO2 measuring module (option for testo 350 M)	SO2 measurement
Meas. range	-40 to +1200 °C	_{0 to +25} Vol. % O ₂	0 to +10000 ppm CO	0 to +500 ppm CO	0 to CO ₂ max Vol. % CO ₂	0 to 3000 ppm	0 to 300 ppm	0 to 500 ppm	0 to 5000 ppm
Accuracy ±1 digit	±0.5% of mv (+100 to +1200 °C) ±0.5 °C (-40 to +99.9 °C)	±0.8% of fsv (0 to +25 Vol. % O ₂)	#5% of mv (+200 to +2000 ppm CO) #10% of mv (+2001 to +10000 ppm CO) ±10 ppm CO (0 to +199 ppm CO)	±5% of mv (+40 to +500 ppm CO) ±2 ppm CO (0 to +39.9 ppm CO)	Calculated from O ₂	±5% of mv (+100 to +1999.9 ppm NO) ±10% of mv (+2000 to +3000 ppm NO) ±5 ppm NO (0 to +99 ppm NO)	±5% of mv (+40 to +300 ppm NO) ±2 ppm NO (0 to +39.9 ppm NO)	±5% of mv (+100 to +500 ppm NO ₂) ±5 ppm NO ₂ (0 to +99.9 ppm NO ₂)	±5% of mv (+100 to +2000 ppm SO ₂) ±10% of mv (+2001 to +5000 ppm SO ₂) ±5 ppm SO ₂ (0 to +99 ppm SO ₂)
Resolution	0.1 °C (-40 to +1200 °C)	0.01 Vol. % O ₂ (0 to +25 Vol. % O ₂)	1 ppm CO (0 to +10000 ppm CO)	0.1 ppm CO (0 to +500 ppm CO)	0.01 Vol. % CO ₂	1 ppm NO (0 to +3000 ppm NO)	0.1 ppm NO (0 to +300 ppm NO)	0.1 ppm NO ₂ (0 to +500 ppm NO ₂)	1 ppm SO ₂ (0 to +5000 ppm SO ₂)
Reaction time		20 s	40 s	40 s	20 s	30 s	30 s	40 s	30 s
Reaction type		t ₉₆	t ₉₀	t ₉₀	t ₉₅	t ₉₀	t ₉₀	t ₉₀	t ₉₀
Probe type	Efficiency	Flue gas loss	Differential pressure 1	Differential pressure 2	Velocity	CO ₂ meas. (IR)			
Meas. range	0 to +120 %	-20 to +99.9 % qA	-200 to +200 hPa	-40 to +40 hPa	0 to +40 m/s	0 to 50 Vol. % CO ₂			
Accuracy ±1 digit			±1.5% of mv (-50 to -200 hPa) ±1.5% of mv (+50 to +200 hPa) ±0.5 hPa (- 49.9 to +49.9 hPa)	$\begin{array}{c} \pm 1.5\% \text{ of } mv \\ (-40 \text{ to } -3 \text{ hPa}) \\ \pm 1.5\% \text{ of } mv \\ (+3 \text{ to } +40 \\ \text{hPa}) \\ \pm 0.03 \text{ hPa} \\ \pm 0.03 \text{ hPa} (-2.99 \text{ to } +2.99 \\ \text{hPa}) \end{array}$		$\begin{array}{c} \pm 0.3 \; \text{Vol. \%} \\ \text{CO}_2 \\ + 1\% \; \text{of mv} \; (0 \\ \text{to} \; 25 \; \text{Vol. \%} \\ \text{CO}_2 \\ \pm 0.5 \; \text{Vol. \%} \\ \text{CO}_2 \\ + 1.5\% \; \text{of mv} \\ (>25 \; \text{to} \; 50 \; \text{Vol.} \\ \% \; \text{CO}_2 \\ \end{pmatrix}$			
Resolution	0.1 % (0 to +120 %)	0.1 % qA (-20 to +99.9 % qA)	0.1 hPa (-200 to +200 hPa)	0.01 hPa (-40 to +40 hPa)	0.1 m/s (0 to +40 m/s)	0.01 Vol. % CO ₂ (0 to 25 Vol. % CO ₂) 0.1 Vol. % CO ₂ (>25 Vol. % CO ₂)			
Reaction time						<10 s			
Reaction type						t _{ao}			

Abbildung 27: Gasmessung – Gasmessgerät testo 350-XL – Technische Daten der Sensoren (Quelle: [18])

Das Messgerät wurde vor dem Versuch "PPV-002-IB" von der Fa. "testo GmbH" in Wien überprüft und die defekte Gaskühlung und Sauerstoffmesszelle ausgetauscht. Dabei wurde eine Abweichung der CO₂-Messzelle von +1 % bei einer Konzentration von 10 % festgestellt (Messfehler von +10 %), die vermutlich durch das Alter der Zelle hervorgerufen wird [19]. Da die Überprüfung des Messprinzips auch mit einem ungenauen Gasmessgerät möglich ist, wurde auf einen Austausch der Messzelle verzichtet und entschieden die Versuche in diesem Zustand durchzuführen.

7.5. Probenbehälter

Da der Pellet-Pot zum Brennen von Eisenerzpellets gebaut wurde, ist eine Probenkorngröße von unter 10 mm nicht vorgesehen. Zur Verwendung von feineren Proben muss daher entweder ein zusätzlicher feiner Siebbelag über den groben Rost (5 mm) gelegt werden oder die Proben in einen eigenen Behälter gefüllt und dieser danach in den Reaktionsraum gestellt werden. Da die zu untersuchenden Proben einen hohen Feinanteil (< 1 mm) enthalten, werden und damit einen höheren Strömungswiderstand als Pellets besitzen, wurde die Variante mit einem zusätzlichen Behälter gewählt. Durch die Verwendung eines Probenbehälters kann der heiße Hauptgasstrom ungehindert um den Behälter fließen, während der für die Reaktion der Probe und die Gasmessung benötigte Messgasstrom durch die Probe gesaugt wird. Durch die Umströmung mit dem Hauptgasstrom erfolgt eine gleichmäßigere Erhitzung der Probe über die gesamte Höhe des Behälters. Abbildung 28 zeigt das Funktionsprinzip des Probenbehälters.

Abbildung 28: Probenbehälter – Funktionsprinzip

Es wurde entschieden einen nach oben offenen zylindrischen Probenbehälter zu fertigen, der ca. 2/3 des Querschnitts des Pellet-Pots ausfüllt. Im Behälter hält ein herausnehmbarer Siebträger (Maschenweite: 500 µm) die Probe zurück. Der Siebträger wird von oben in den Reaktionsraum des Pots eingesetzt und kann mit einem Siebbelag mit geringerer Maschenweite belegt werden. Dadurch können noch feinere Proben verwendet werden, ohne diese vorher absieben zu müssen. Für die Versuche im Zuge dieser Arbeit wurde ein Siebgewebe mit einer Maschenweite von 100 µm benutzt.

Im unter der Probe durch den Siebträger entstehenden Hohlraum kann durch das Aufbringen eines Unterdrucks das entstehende Gas abgesaugt werden. Der dafür notwendige Unterdruck kann

Erzcharakterisierung

entweder durch das Messgerät, den Seitenkanalverdichter oder eine externe Vakuumpumpe erzeugt werden. Durch einen ausreichenden Messgasstrom sollte sichergestellt werden, dass das Reaktionsgas nur nach unten abgezogen wird und keine Verluste über den um den Behälter fließenden Hauptgasstrom auftreten. Durch die gezielte Absaugung des Messgases wird heiße Frischluft aus dem Hauptgasstrom in den Probenbehälter gezogen. Dadurch kann eine höhere Reaktionsgeschwindigkeit erreicht werden, die wiederum zu einer kürzeren Versuchsdauer führen sollte.

Der weitere Gastransport erfolgt durch ein ansteckbares zweiteiliges Rohr, das durch eine der Durchführungen für die Thermoelemente aus dem Reaktionsraum herausgeführt werden kann. Die Abdichtung der zwei Verbindungsstellen des Rohrs erfolgt mit hitzebeständiger Dichtmasse (lt. Datenblatt bis zu 1500 °C). Durch die gewählte Gasführung ist keine Änderung am Grundaufbau des Pellet-Pots notwendig und somit eine vollständige Rückbaubarkeit der Veränderungen gewährleistet.

Abbildung 29: Probenbehälter – Ringförmiger Proberaum – Fertigungszeichnung

Zusätzlich wurde noch ein zweiter zylindrischer Behälter gefertigt, der im Inneren ein weiteres Rohr zur Durchströmung des Behälters besitzt. Der Querschnitt des Probenraums ist in diesem Fall ein Ring statt einem Kreis. Dadurch wird die Probe von zwei Seiten erhitzt, und die Erwärmung sollte noch schneller erfolgen. Nachteile dieses Behälters sind die geringere maximale Probenmasse und die kompliziertere Fertigung. Die Fertigungszeichnung dieser Variante des Probenbehälters ist in Abbildung 29 dargestellt.

52

Probenbehälter	Probenvolumen	Probenmasse
Kreisquerschnitt	320 cm ³	530 g
Ringquerschnitt	280 cm ³	461 g

Tabelle 16: Probenbehälter – Mögliche Probenmengen (angenommene Schüttdichte: 1,65 g/cm³)

Alle Bauteile wurden aus Edelstahl (Werkstoffnummer: 1.4301) gefertigt und durch WIG-Schweißen zusammengefügt. Eine Übersichtszeichnung und die Fertigungszeichnungen für die Probenbehälter, Siebträger und die Gasrohre sind im Anhang F zu finden. Die fertigen Einzelteile des Probenrückhalteund Gasführungssystems sind in Abbildung 30 gezeigt. Die maximal möglichen Probenvolumina und abgeschätzten Probenmassen sind in Tabelle 16 für beide Probenbehältervarianten angegeben.

Abbildung 30: Probenbehälter – Einzelteile

7.6. Gasmessstrecke

Gerätetyp	Hersteller	Herstellerbezeichnung	Technische Daten
Gasreglersteuergerät (GRS)	Brooks Instrument BV	Read Out & Control Electronics 0154	4 Kanäle
Gasvolumenstromregler (GVR1)	Brooks Instrument BV	Smart-Series Digital Mass Flow Controller 5850S	Kalibrierung: 0 – 1 Nm ³ /h "Mischgas"; p _e = 1 bar; p _{max} = 100 bar
Gasvolumenstromregler (GVR2)	Brooks Instrument BV	Smart-Series Digital Mass Flow Controller 5850S	Kalibrierung: $0 - 1 \text{ Nm}^3/\text{h}$ "Air with some PPM SO ₂ "; $p_a = 2 \text{ bar};$ $p_{max} = 100 \text{ bar}$
Volumenstrommessgerät (Rotameter)	Porter Instrument Company Inc.	Model 150 Gas Purge Rotameter, B-250-6 (Glass)	Eigene Kalibrierung: (siehe Anhang G)
Infrarot-Thermometer	testo	830-T4	Anschluss für ein Thermoelement vorhanden
Druckmessgerät	testo	435-4	
Drahtloser Luftfeuchtigkeits- messfühler	testo	Feuchtemodul Compact Professional + Griff	-20 +70 °C (±0,3 °C) 0 100 %rF (±2 %rF)

Tabelle 17: Gasmessung – Messgeräte

Die Gasmessstrecke beginnt mit dem Austritt des Gasrohrs des Probenbehälters aus dem Pellet-Pot. Der Weitertransport des Messgases erfolgt durch ein weiteres Metallrohr (L = 50 cm, ID = 8 mm) das mittels einer Schneidringverschraubung lösbar mit dem Austrittsrohr verbunden wird. Die Wahl von Edelstahl als Werkstoff dieser Bauteile erfolgte unter der Berücksichtigung der hohen Gastemperaturen im Messgas. An dieses Rohr wurde in allen Versuchen ein Temperatursensor (-BT05, normalerweise im Hauptgasstrom eingebaut) mit Isolierband bzw. später zusätzlich mit Drähten befestigt, um eine Abschätzung für die Temperatur des austretenden Messgases zu erhalten. Der Austritt des Gasrohrs, das Verbindungsrohr und der daran angebrachte Temperatursensors sind in Abbildung 31 dargestellt.

Abbildung 31: Gasmessstrecke – Austritt der Messleitung aus dem Pot

In der ersten Ausbaustufe endete die Gasmessstrecke am Ende des Rohrs und das Messgerät wurde direkt über einen hitzebeständigen Schlauch angeschlossen. Die Erzeugung des notwendigen Unterdrucks und die Messung des Gasvolumenstroms erfolgten durch das Gasmessgerät. Der Aufbau ist in Abbildung 34 (a) skizziert und wurde nur für Versuch "PPV-001-IB" verwendet. Es zeigte sich, dass der vom Gasmessgerät erzeugte Gasstrom (ca. 1 l/min) für die Absaugung der Reaktionsgase zu schwach war. Dadurch wurde die Konzentration von CO₂ und CO im Messgasstrom sehr hoch und führte zu einer Sättigung beider Messzellen im Gasmessgerät.

In der zweiten Version der Gasmessstrecke wurde die Erzeugung des Unterdrucks bzw. Gasstroms von einer Luftpumpe (Kompressor) übernommen, um den Messgasvolumenstrom zu erhöhen. Am Ende des Metallrohres wurde ein Gaskühler, bestehend aus einem spiralförmigen Kupferrohr in einem Kübel mit Wasser, mittels einer zweiten Schneidringverschraubung verbunden. Am kalten Ende des Kühlers befand sich ein Y-Stück zur Teilung des Messgasstroms. Der erste Teilstrom führte direkt in das Gasmessgerät. Der Zweite führte über die Luftpumpe, ein Rotameter ("Lauda"), einen Gasvolumenstromregler (GVR1, siehe Tabelle 17) und ein weiteres Rotameter ("Porter") zum Gasauslass.

In einem Testversuch ohne Probe konnte die Funktion des Gaskühlers und des Gasreglers bestätigt werden. Der Regler wurde auf 30 % eingestellt, was umgerechnet einem Gasvolumenstrom von ca. 5 l/min entsprechen sollte. Der Skalenwert des Rotameters blieb zwar über die gesamte Testdauer konstant, der daraus berechnete Volumenstromwert (ca. 9 l/min) entsprach aber nicht dem am Gasregler eingestellten. Tests mit anderen Gerätereihenfolgen (z.B.: Luftpumpe vor Gasregler und Rotameter) brachten ebenfalls keine Übereinstimmung von Reglersollwert und mittels Rotameter gemessenem Gasvolumenstrom (beide auf Normbedingungen rückgerechnet). Die Abweichung vom

eingestellten Wert wurde durch die von den Kalibrierbedingungen abweichenden Betriebsbedingungen hervorgerufen.

Da der Regler den Gasstrom aber zumindest konstant halten konnte wurde der nächste Versuch "PPV-002-IB" mit dem in Abbildung 34 (b) gezeigten Aufbau durchgeführt. Die Luftpumpe wurde direkt nach dem Y-Stück eingesetzt, danach der Gasregler und das bereits verwendete Rotameter vor dem Gasauslass. Alle Verbindungen nach dem Kühler wurden durch flexible Schläuche hergestellt. Zur Ermöglichung einer nachträglichen Korrektur des Gasvolumenstroms wurde vor dem Rotameter der Differenzdruck (Messgerät: testo 435-4) zur Umgebung gemessen. Dazu sollte später eine Kalibrierung des Rotameters erfolgen.

Aufgrund mehrerer Messbereichsüberschreitungen des CO₂-Sensors während des Versuchs, war eine Auswertung nicht möglich. Die Aufkonzentration des Reaktionsgases wurden wieder durch einen zu schwachen Messgasvolumenstrom (ca. 2 l/min mit der Luftpumpe + ca. 1 l/min mit dem Gasmessgerät) ausgelöst. Nach einigen weiteren Tests wurde erkannt, dass der Gasregler aufgrund der sich verändernden Gaszusammensetzung nicht korrekt funktionieren konnte. Der Regler wurde auf ein konstantes Gasgemisch kalibriert, das Messgas weist aber eine schwankende Zusammensetzung auf. Der Versuch eine Gasmessstrecke mit konstantem Gasvolumenstrom aufzubauen, war daher nicht mit einfachen Mitteln zu erreichen. Es wurde entschieden den Gasvolumenstrom nicht zu regeln sondern einfach nur zu messen.

Für den nächsten Versuch wurden die Luftpumpe und der Regler aus der Gasmessstrecke entfernt. Durch die Verwendung des stillgelegten By-Passes des Pellet-Pots, konnte der Seitenkanalverdichter zur Bereitstellung des notwendigen Unterdrucks (-40 bis -50 mbar bei ca. 7 l/min) herangezogen werden und für einen größeren Messgasvolumenstrom sorgen. Weiters wurden die Reihenfolge des Rotameters und des Drucksensors in der Gasstrecke vertauscht. Der genaue Messaufbau ist in Abbildung 34 (c) ersichtlich. Mit diesem Aufbau wurde der erste erfolgreiche auswertbare Versuch "PPV-003-IB" durchgeführt.

Bei der Auswertung des Versuchs wurde allerdings noch ein Fehler im Volumenstrommesssystem gefunden. Es wurde ein Temperatursensor im Gasstrom vergessen, wodurch eine exakte Bestimmung des Gasvolumenstroms nicht möglich war. Die Temperatur des Messgases wurde behelfsmäßig mit der Temperatur des Gases im Gasmessgerät angenommen, was zumindest eine Abschätzung des Gasvolumenstroms ermöglichte. Wie vermutet, zeigte sich in späteren Versuchen, nach dem Einbau des Messgastemperatursensors, dass die Gastemperatur im Gasmessgerät nicht mit der eigentlichen Temperatur des Messgases übereinstimmt (siehe Abbildung 32). Mit der Verwendung des Seitenkanalverdichters zur Erzeugung des Messgasstroms konnte ein Gasvolumenstrom von mehr als 7 l/min erreicht werden, das entsprach einer Verdopplung des Volumenstroms gegenüber des vorangegangenen Versuchs und ermöglichte einen ausreichenden Gasaustausch.

Als Vorbereitung für den nächsten Versuch wurde die Kalibrierung des Rotameters durchgeführt. Diese erfolgte durch den zuvor erwähnten Luftvolumenstromregler (GVR2 "Air with some PPM SO₂"), wobei die Kalibrierbedingungen des Reglers vollständig eingehalten wurden (2 bar Druck eingangsseitig, synthetische Luft als Gas) und der Regler dadurch einwandfrei arbeiten sollte. Die vollständige Kalibrierkurve des Rotameters ist in Anhang G zu finden. Der Messaufbau für die Kalibrierung ist in Abbildung 33 dargestellt.

Die Gastemperatur und der Absolutdruck nach dem Rotameter wurden zur Angabe des Bezugspunkts der Kalibrierung gemessen und dokumentiert. Der Absolutdruck konnte aus dem örtlichen Luftdruck und dem nach dem Rotameter gemessen Differenzdruck errechnet werden. Der Luftdruck konnte von der Webseite der ZAMG (Zentralanstalt für Meteorologie und Geodynamik) [20] übernommen werden. Mit Hilfe der Kalibrierkurve, des berechneten Absolutdrucks, der molaren Masse von synthetischer Luft und der Gastemperatur können sämtliche Einflussfaktoren auf die Gasvolumenstrommessung korrigiert werden. Mit der laufenden Messung dieser Größen während des Versuchs kann der angezeigte Gasvolumenstrom korrigiert und dann auf Normbedingungen rückgerechnet werden. Mit dem Normgasvolumenstrom kann die abgegebene Gasmenge berechnet werden.

Abbildung 33: Gasmessung – Aufbau zur Kalibrierung des Rotameters

Nach der Kalibrierung des Rotameters und den Vorbereitungen für den Versuch "PPV-004-IB" wurde die endgültige vierte Version der Gasmessstrecke aufgebaut. Das Y-Stück nach dem Kühler wurde entfernt und der Kühler wurde direkt mit dem Rotameter verbunden, um den gesamten

Erzcharakterisierung

Messgasvolumenstrom messen zu können. Eine Verwendung der ungenauen Volumenstrommessung des Gasmessgeräts war somit nicht mehr notwendig. Nach dem Rotameter wurden ein Thermoelement (Messgerät: testo 830-T4) und ein Druckmessgerät (testo 435-4) analog zum Messaufbau in der Kalibrierung eingebaut, um die Gastemperatur und den Differenzdruck zur Umgebung messen zu können. Erst danach erfolgte die Abzweigung des Teilgasstroms für das Messgerät. Zusätzlich musste für die Korrektur des Gasvolumenstroms der absolute Luftdruck erfasst werden. Der endgültige Messaufbau ist in Abbildung 34 (d) dargestellt, er wurde für alle weiteren Versuche verwendet.

Die Datenaufzeichnung zur Messgasvolumenstrommessung erfolgte händisch, da die verwendeten Messgeräte nicht in die Automatisierung eingebunden werden konnten und über keine eingebaute Aufzeichnungsfunktion verfügen. Ein Messdatensatz, bestehend aus Skalenwert des Rotameters, Messgastemperatur, Messgasdifferenzdruck und der Uhrzeit der Messung, konnte jede Minute erfasst werden. Der Absolutdruck wurde ca. halbstündlich während des Versuchs abgerufen und notiert. In der Auswertung wurde der Mittelwert der aufgezeichneten Messwerte verwendet. Zusätzlich wurde die relative Luftfeuchtigkeit in der Umgebungsluft (Messgerät: testo 435-4, Funksensor: testo "Feuchtemodul Compact Professional") jede halbe Stunde gemessen und aufgezeichnet, da diese eventuell später für Korrekturen in der Auswertung oder für die Erklärung von eventuellen Fehlern gebraucht werden könnte.

Eine detailliertere Übersicht über den Gesamtaufbau ist in Anhang H dargestellt.

58

Abbildung 34: Gasmessung - Entwicklung der Gasmessstrecke

7.7. Versuchsauswertung

Nachfolgend sind die Datenverarbeitungs- und Berechnungsschritte zur Ermittlung des Spateisensteingehalts und des Masseverlusts der Probe beschrieben. Die gesamte Datenverarbeitung erfolgt in einem Python-Skript unter der Verwendung einiger frei verfügbarer Programmmodule. Die Auswertung der Versuchsdaten wäre zwar auch in einem Tabellenkalkulationsprogramm möglich gewesen, allerdings ist die Zusammenführung der mit unterschiedlichen Messfrequenzen aufgezeichneten Datensätze schwierig durchzuführen, weshalb die Wahl auf Python fiel.

Erzcharakterisierung

7.7.1. Datenvorbereitung

Das Ziel der Datenvorbereitung ist es alle Messdaten in digitaler Form konzentriert in einem Ordner am Auswertecomputer vorliegen zu haben. Dazu ist es sinnvoll einen Versuchsordner zu erstellen in dem später alle Datendateien abgelegt werden. Die Messdatenaufzeichnungsdatei des Pellet-Pots kann direkt vom USB-Stick auf den Auswertecomputer kopiert werden. Diese Datei muss zur automatischen Auswertung das Präfix "pp-data" im Namen enthalten und als "csv"-Datei vorliegen, beide Voraussetzungen werden von der Originaldatei bereits erfüllt.

Die Messwerte für den Messgasvolumenstrom müssen, da sie nur händisch im Versuchsprotokoll aufgezeichnet wurden, zuerst digitalisiert werden. Zu diesem Zweck existiert eine vorbereitete Excel-Tabelle, in die die Daten übertragen werden müssen. Die ausgefüllte Datei ist unter "gas_flow_measurements.xls" im Versuchsordner abzuspeichern.

Die Messdatensätze aus dem Gasmessgerät müssen mittels serieller Schnittstelle (RS232) auf einen Laptop mit dem Programm "testo Comfort-Software" übertragen und von dort auf einem USB-Stick zum Auswertecomputer übertragen werden. Eine Hilfestellung zur Vorbereitung der Daten ist in Anhang I zu finden.

7.7.2. Programmablauf

Nach dem Starten des Auswertungsprogramm muss zuerst der Versuchsname eingegeben werden, danach wird automatisch eine vordefinierte Ordnerstruktur und die Versuchsdatei erstellt. Die Versuchsdatei soll zu jeder Zeit der Auswertung einen Überblick über den Versuch, die Probe, die Messdateien und die bereits erfolgten Datenverarbeitungsschritte und Ergebnisse bieten. Dazu müssen die Versuchsdaten händisch in die Versuchsdatei eingetragen werden. Im nächsten Schritt müssen die vorbereiteten Messdateien in den am Bildschirm angegebenen Rohdatenordner des Versuchs kopiert werden.

Die eigentliche Auswertung erfolgt dann größtenteils automatisch, nur an einigen Stellen müssen Entscheidungen von der Bedienperson getroffen werden. Diese händischen Eingriffe in den Programmablauf wurden durch Probleme im derzeitigen Versuchsaufbau bzw. Verfahrensablauf notwendig und beinhalten unter anderem, die Korrektur der Startzeit von Gasmessdaten, die Auswahl eventueller Nullwerte für die CO₂- und CO-Messung und die Wahl der Start- und Endzeiten der einzelnen Karbonatstufen.

Die Ergebnisse eines Berechnungsschritts werden im Zuge der Auswertung immer in neue Spalten abgespeichert. Wenn die Korrektur einer Rohdatendatei notwendig ist, wird die korrigierte Fassung in einem eigens dafür angelegten Ordner abgespeichert. Aufgrund dieser beiden Maßnahmen ist sichergestellt, dass nach dem Abschluss der Berechnungen alle Zwischenergebnisse vorliegen und nachvollzogen werden können. Die Ergebnisse der Auswertung werden in der Versuchsdatei und zusätzlich in einer Excel-Datei abgespeichert.

60

Erzcharakterisierung

In Anhang J ist der Ablauf der Datenverarbeitung genauer beschrieben. Eine Beschreibung der eingesetzten Python-Umgebung und eine Anleitung zur Installation derselben ist in Anhang K zu finden.

7.7.3. Berechnung

Die folgenden Berechnungsschritte basieren auf den Annahmen des Modells des Analyseverfahrens und werden vom Python-Auswertungsprogramm am Computer umgesetzt. Das Auswertungsprogramm bietet noch einige zusätzliche Funktionen, die aber für die eigentliche Berechnung des Spateisensteingehalts und des Massenverlusts nicht relevant sind und deshalb hier nicht beschrieben werden. Beispiele dafür sind unter anderem die Korrektur der CO2-Konzentrationswerte aufgrund des Messfehlers des Gasmessgeräts und die Nullwertkorrektur von CO₂- und CO-Konzentration. Im Folgenden wird angenommen, dass alle notwendigen Korrekturen bereits durchgeführt wurden.

Indexerklärung:

- Index i: Zeitpunkt der Datenaufzeichnung
- Index j: Stoff in einem Stoffgemisch

Berechnungsgang:

- 1. Laden der Versuchsdatei
- 2. Laden der kombinierten Messwertdatei
- 3. Korrektur der CO₂-Konzentration
 - a. Anwendung eines Korrekturfaktors (optional)
 - b. Nullung der CO₂-Konzentration (optional)
- 4. Nullung der CO-Konzentration (optional)
- 5. Berechnung der Gaszusammensetzung
 - a. Berechnung der CO₂-Konzentration für die Bestimmung der Mineralgehalte

$$\varphi_{\text{CO}_2;\text{calc};i} = \varphi_{\text{CO}_2;i} - \varphi_{\text{CO}_2;\text{env}} \tag{6}$$

$\phi_{CO_2;calc;i}$	CO ₂ -Konzentration für die Berechnung [%]
$\phi_{CO_2;i}$	Korrigierte gemessene CO ₂ -Konzentration [%]
$\phi_{CO_2;env}$	CO ₂ -Konzentration in der Umgebungsluft [%] (0,04 %)

b. Umrechnung der CO-Konzentration von ppm in %

$$\varphi_{\rm CO;i} = \frac{\varphi_{\rm CO;i;ppm}}{10000}$$
 (7)

 $\phi_{CO;i}$ CO-Konzentration für die Berechnung [%]

 $\phi_{CO;i;ppm}$ Korrigierte gemessene CO-Konzentration [ppm]

c. Berechnung der Summe der Konzentrationen von O_2 , CO_2 und CO

$$\varphi_{O_2+CO_2+CO;i} = \varphi_{O_2;i} + \varphi_{CO_2;i} + c_{CO;i}$$

$$\varphi_{O_2+CO_2+CO;i} \quad \text{Summe der Konzentrationen von } O_2, CO_2 \text{ und CO [\%]}$$

$$\varphi_{O_2;i} \quad O_2\text{-Konzentration [\%]}$$
(8)

d. Berechnung der Summe der Konzentrationen von Stickstoff und Argon im Messgasstrom (restliche Gase, nehmen an keiner Reaktion teil)

$$\varphi_{N_2+Ar;i} = 100 - \varphi_{O_2+CO_2+CO;i}$$
(9)

 $\phi_{N_2+Ar;i}$ Summe der Konzentrationen von N_2 und Ar [%]

- e. Berechnung der Konzentrationen von Stickstoff und Argon im Messgasstrom (N₂ und Ar reagieren in diesem Prozess nicht, deshalb bleiben die Verhältnisse zwischen diesen beiden Gasen gleich und es kann das Verhältnis in Umgebungsluft angenommen werden)
 - i. Berechnung der Konzentration von N_2 im Messgas

$$\varphi_{N_2;i} = \varphi_{N_2+Ar;i} \cdot \frac{\varphi_{N_2;air}}{\varphi_{N_2+Ar;air}}$$
(10)

ii. Berechnung der Konzentration von Ar im Messgas

$$\varphi_{\text{Ar};i} = \varphi_{\text{N}_2 + \text{Ar};i} \cdot \frac{\varphi_{\text{Ar};air}}{\varphi_{\text{N}_2 + \text{Ar};air}}$$
(11)

f. Berechnung der mittleren molaren Masse des Mischgases

(für die näherungsweise Berechnung unter Voraussetzung eines idealen Gases werden die Stoffmengenanteile x_j mit den Volumenanteilen ϕ_j gleichgesetzt)

$$\overline{M}_{gas} = \sum_{j=1}^{Z} x_j \cdot M_j$$
 (12)

\overline{M}_{gas} Molare Masse des Messgase	s [g/mol]
--	-----------

Z Anzahl der Bestandteile des Messgases [1]

- x_j Gehalt des Stoffs j im Messgas [1]
- M_j Molare Masse des Stoffs j [g/mol]
$$\overline{M}_{gas} \approx \sum_{j=1}^{Z} \phi_j \cdot M_j$$
 (13)

*φ*_i Konzentration des Stoffs j im Messgas [1]

- 6. Interpolation der Gasvolumenstromdaten
 - a. Originaldatensätze markieren
 - b. Lineare Interpolation von:
 - i. Skalenwert Rotameter
 - ii. Relativer Druck hinter dem Rotameter
 - iii. Temperatur hinter dem Rotameter
- 7. Berechnung des Gasvolumenstroms
 - a. Hilfsgrößen berechnen
 - i. Absoluten Luftdruck im Messgasstrom nach dem Rotameter berechnen

$$p_{gas;i} = p_{abs;env} + p_{rel;i}$$
(14)

p _{gas;i}	Absolutdruck im Messgasstrom [bar]
p _{abs;env}	Absolutdruck in der Umgebung [bar]
p _{rel;i}	Relativdruck zwischen Messgasstrom und Umgebung [bar]

ii. Absolute Gastemperatur nach dem Rotameter berechnen

$$T_{Kelvin;i} = T_{Celsius;i} + 273,15 \,^{\circ}C$$
 (15)

T _{Kelvin;i}	Absolute Temperatur im Messgasstrom [K]
T _{Celsius;i}	Temperatur im Messgasstrom [°C]

b. Ermittlung des angezeigten Gasvolumenstroms

(Annahmen: Gas = künstliche Luft, Temperatur = Kalibriertemperatur,

Druck = Kalibrierdruck)

Der Gasvolumenstrom wird ermittelt, indem der abgelesene Skalenwert mit der Kalibrierkurve des Rotameters verglichen wird. Das Rotameter wurde im Bereich von 0 – 1 m³/h über 10 Messpunkte kalibriert. Die Berechnung des angezeigten Gasvolumenstroms erfolgt durch lineare Interpolation des Skalenwerts zwischen den Messpunkten.

$$\dot{V}_{ind;i} = f(SV_i) \tag{16}$$

 $\dot{V}_{ind,i}$ Angezeigter Messgasvolumenstrom [l/min]flineare InterpolationSViSkalenwert Rotameter [1]

 c. Berechnung des Korrekturfaktors f
ür die Umrechnung von angezeigtem Gasvolumenstrom zum tats
ächlichen Gasvolumenstrom
 Der angezeigte Luftvolumenstrom bezieht sich auf die Verh
ältnisse bei der Kalibrierung
 des Rotameters. Da der Zusammenhang zwischen Gasvolumenstrom und Gasmassestrom

des Rotameters. Da der Zusammenhang zwischen Gasvolumenstrom und Gasmassestrom über die Dichte besteht und die Dichte von Temperatur, Druck und molarer Masse des Gases abhängig ist wird, müssen Korrekturen für jede dieser Eigenschaften durchgeführt werden (Erklärung der Korrekturen siehe: [21] [22] [23]):

Kalibrierbedingungen: M_{cal} = 28,8 g/mol; p_{cal} = 0,9457 bar; T_{cal} = 296,6 K

- Künstliche Luft → tatsächliche Gaszusammensetzung
- Kalibriertemperatur → tatsächlicher Temperatur
- Kalibrierdruck → tatsächlicher Druck

$$K_{1;i} = \sqrt{\frac{M_{cal}}{M_{gas;i}} \cdot \frac{p_{cal}}{p_{gas;i}} \cdot \frac{T_{gas;i}}{T_{cal}}}$$
(17)

K _{1;i}	Korrekturfaktor "angezeigt" \rightarrow "tatsächlich" [1]
M _{cal}	Molare Masse des Kalibriergases (synth. Luft) [g/mol]
M _{gas;i}	Molare Masse des Messgases [g/mol]
p _{cal}	Absolutdruck im Kalibriergasstrom [bar]
p _{gas;i}	Absolutdruck im Messgasstrom [bar]
T _{gas;i}	Absolute Temperatur im Messgasstrom [K]
T _{cal}	Absolute Temperatur im Kalibriergasstrom [K]

d. Berechnung des Korrekturfaktors für die Umrechnung von tatsächlichem Gasvolumenstrom zum Gasvolumenstrom bei Normbedingungen (Gasmassenstrom bleibt gleich, Bezugspunkt ändert sich) Normbedingungen: $p_N = 1013,25$ mbar; $T_N = 273,15$ K

$$K_{2;i} = \frac{p_{gas;i}}{p_N} \cdot \frac{T_N}{T_{gas;i}} = \frac{p_{gas;i}}{1,01325 \text{ bar}} \cdot \frac{273,15 \text{ K}}{T_{gas;i}}$$
(18)

 $K_{2;i}$ Korrekturfaktor "tatsächlich" \rightarrow "Normbedingungen"

e. Berechnung des Korrekturfaktors für die Umrechnung vom tatsächlichen Gasvolumenstrom zum Gasvolumenstrom bei Standardbedingungen (Gasmassenstrom bleibt gleich, Bezugspunkt ändert sich) Standardbedingungen: $p_{STP} = 1000$ mbar; $T_{STP} = 273,15$ K

$$K_{3;i} = \frac{p_{gas;i}}{p_{STP}} \cdot \frac{T_{STP}}{T_{gas;i}} = \frac{p_{gas;i}}{1 \text{ bar}} \cdot \frac{273,15 \text{ K}}{T_{gas;i}}$$
(19)

K_{3;i}

Korrekturfaktor "tatsächlich" \rightarrow "Standardbedingungen"

f. Berechnung des Gasvolumenstroms bei tatsächlichen Bedingungen

$$\dot{V}_{act;i} = \dot{V}_{ind;i} * K_{1;i}$$
 (20)

Vact;i Tatsächlicher Messgasvolumenstrom [I/min]

g. Berechnung des Gasvolumenstroms bei Normbedingungen

$$\dot{V}_{\text{norm};i} = \dot{V}_{\text{act};i} * K_{2;i}$$
(21)

 $\dot{V}_{norm;i}$ Messgasvolumenstrom bei Normbedingungen [l/min]

h. Berechnung des Gasvolumenstroms bei Standardbedingungen

$$\dot{V}_{\text{STP};i} = \dot{V}_{\text{act};i} * K_{3;i}$$
(22)

 $\dot{V}_{STP;i}$ Messgasvolumenstrom bei Standardbedingungen [l/min]

- 8. Berechnung des kumulativen CO₂-Volumens
 - a. Berechnung des CO₂-Volumenstroms

$$\dot{V}_{CO_2;norm;i} = \dot{V}_{norm;i} \cdot \varphi_{CO_2;i}$$
(23)

 $\dot{V}_{CO_2;norm;i}$ CO₂-Teilgasvolumenstrom bei Normbedingungen [l/min]

b. Berechnung des CO₂-Volumens pro Zeitschritt

$$\Delta V_{\rm CO_2;norm;i} = \dot{V}_{\rm CO_2;norm;i} \cdot \Delta t$$
(24)

 $\Delta V_{norm;CO_2;i}$ CO₂ Normvolumen pro Zeitschritt [I] Δt Länge eines Zeitschritts [s]

c. Berechnung des kumulativen CO₂-Volumens

$$V_{CO_2;norm;i} = \sum_{k=0}^{1} \Delta V_{CO_2;norm;k}$$
 (25)

 $V_{CO_2;norm;i}$ Kumulatives CO₂-Normvolumen bis Zeitschritt i [I]

9. Berechnung des kumulativen CO-Volumens

(Wiederholung der Schritte von CO₂ für CO)

a. Berechnung des CO-Volumenstroms

$$\dot{V}_{\rm CO;norm;i} = \dot{V}_{\rm norm;i} \cdot \varphi_{\rm CO;i}$$
(26)

 $\dot{V}_{CO;norm;i}$ CO-Teilgasvolumenstrom bei Normbedingungen [l/min]

b. Berechnung des CO-Volumens pro Zeitschritt

$$\Delta V_{\rm CO;norm;i} = \dot{V}_{\rm CO;norm;i} \cdot \Delta t$$
(27)

ΔV_{norm;CO;i} CO-Normvolumen pro Zeitschritt [I]

c. Berechnung des kumulativen CO-Volumens

$$V_{CO;norm;i} = \sum_{k=0}^{i} \Delta V_{CO;norm;k}$$
 (28)

V_{CO;norm;i} Kumulatives CO-Normvolumen bis Zeitschritt i [I]

- 10. Berechnung des in der Spateisensteinstufe abgegebenen Gasvolumens
 - a. Ermittlung der Start- und Endzeit der Spateisensteinstufe (Temperaturverlauf)

$$t_{start;spat} = t_{start}$$

$$t_{end;spat} = t_{T_{sample}=const}$$
(29)

t _{start;spat}	Startzeitpunkt der Spateisensteinstufe [hh:mm:ss]	
t _{start}	Gewählter Startzeitpunkt (normalerweise: Start der Messung) [hh:mm:ss]	
t _{end;spat}	Endzeitpunkt der Spateisensteinstufe [hh:mm:ss]	
$t_{T_{sample}=const}$	_{ple=const} Zeitpunkt an dem die Probentemperatur überall gleich ist (580 °C)	
	[hh:mm:ss]	

b. Berechnung des CO2-Gasvolumens in der Spateisensteinstufe

$$V_{\rm CO_2; spat; norm} = V_{\rm CO_2; norm; t_{end; spat}} - V_{\rm CO_2; norm; t_{start; spat}}$$
(30)

V _{CO2} ;spat;norm	CO2-Normvolumen in der Spateisensteinstufe [I]
$V_{CO_2;norm;t_{end;spat}}$	Kumulatives Normvolumen CO_2 am Ende der Spateisensteinstufe [I]
V _{CO2} ;norm;t _{start;spat}	Kumulatives Normvolumen CO_2 am Start der Spateisensteinstufe [I]

c. Berechnung des CO-Gasvolumens in der Spateisensteinstufe

$V_{CO;Spat;Norm} = V_{CO;Norm;t_{End;Spat}} - V_{CO;Norm;t_{Start;Spat}} $ (3)		
V _{CO;Spat;Norm}	CO-Normvolumen in der Spateisensteinstufe [I]	
$V_{CO;Norm;t_{End;Spat}}$	Kumulatives Normvolumen CO am Ende der Spateisensteins	stufe [l]
V _{CO;Norm;t_{Start;Spat}}	Kumulatives Normvolumen CO am Start der Spateisensteins	stufe [l]

11. Berechnung des in der Reststufe abgegebenen Gasvolumens

a. Ermittlung der Start- und Endzeit der Reststufe (Temperaturverlauf)

$$t_{start;rest} = t_{end;spat}$$
(32)
$$t_{end;rest} = t_{end}$$

$$t_{start;rest}$$
Startzeitpunkt der Reststufe [hh:mm:ss]
$$t_{end;rest}$$
Endzeitpunkt der Reststufe [hh:mm:ss]
$$t_{end}$$
Gewählter Endzeitpunkt (normalerweise: Ende der Messung) [hh:mm:ss]

b. Berechnung des CO2-Gasvolumens in der Reststufe

tend

$$V_{CO_2;rest;norm} = V_{CO_2;norm;t_{end;rest}} - V_{CO_2;norm;t_{start;rest}}$$
(33)

$$V_{CO;rest;norm}$$

$$CO_2-Normvolumen in der Reststufe [I]$$

$$V_{CO_2;norm;t_{end;rest}}$$

$$Kumulatives Normvolumen CO_2 am Ende der Reststufe [I]$$

$$V_{CO_2;norm;t_{start;rest}}$$

$$Kumulatives Normvolumen CO_2 am Start der Reststufe [I]$$

c. Berechnung des CO-Gasvolumens in der Reststufe

- 12. Berechnung des Masseverlusts aufgrund der Reaktion von Spateisenstein (Spateisensteinstufe)
 - a. Berechnung der Kohlenstoffmenge im CO₂-Gasvolumen (entspricht der CO₂-Menge)

$$n_{C;CO_2;spat} = \frac{V_{CO_2;spat;norm}}{V_{m;CO_2;norm}} = \frac{V_{CO_2;spat;norm}}{22,262\frac{l}{mol}}$$
(35)

CO₂-Stoffmenge in der Spateisensteinstufe [mol] n_{C;CO2};spat Molares Volumen von CO2 bei Normbedingungen [l/mol] V_{m;CO2};norm

b. Berechnung der Kohlenstoffmenge im CO-Gasvolumen (entspricht der CO-Menge)

$$n_{C;CO;spat} = \frac{V_{CO;spat;norm}}{V_{m;CO;norm}} = \frac{V_{CO;spat;Norm}}{22,402\frac{1}{mol}}$$
(36)

CO-Stoffmenge in der Spateisensteinstufe [mol] n_{C;CO;spat} Molares Volumen von CO bei Normbedingungen [l/mol] $V_{m;CO;norm}$

c. Berechnung der Gesamtkohlenstoffmenge

$$n_{C;Spat} = n_{C;CO_2;Spat} + n_{C;CO;Spat}$$
 (37)

Stoffmenge Kohlenstoff in der Spateisensteinstufe [mol] n_{C;spat}

d. Berechnung der Stoffmengen mit der Zusammensetzung von Spateisenstein

$$\begin{split} n_{Fe;spat} &= n_{C;spat} \cdot X_{Fe;spat} \\ n_{Mn;spat} &= n_{C;spat} \cdot X_{Mn;spat} \\ n_{Mg;spat} &= n_{C;spat} \cdot X_{Mg;spat} \\ n_{Ca;spat} &= n_{C;spat} \cdot X_{Ca;spat} \end{split}$$
(38)

n_Fe;spatStoffmenge von involviertem Eisen in der Spateisensteinstufe [mol]n_Mn;spatStoffmenge von involviertem Mangan in der Spateisensteinstufe [mol]n_Mg;spatStoffmenge von involviertem Magnesium in der Spateisensteinstufe [mol]n_Ca;spatStoffmenge von involviertem Kalzium in der Spateisensteinstufe [mol]

$$X_{j;spat} = \frac{g_{j;spat} \cdot M_{j}}{\sum_{k=1}^{m} g_{k;spat} \cdot M_{k}}$$

mit:
$$\sum_{j=1}^{m} X_{j;spat} = 1$$

 $j \in k$
 $k \in \{Fe, Mn, Mg, Ca\}$ (39)

X _{j;spat}	Teilchenzahlanteil von Element j an der Eisenposition von Spateisenstein [1]
m	Anzahl verschiedener Elemente an der Eisenposition von Spateisenstein [1]
g _{j;spat}	Gehalt von Element j an der Eisenposition von Spateisenstein [1]
M _k	Molare Masse von Element k [g/mol]

e. Berechnung der Masse des abgegebenen CO2 anhand der gesamten Kohlenstoffmenge

$$\Delta m_{\text{spat};\text{CO}_2} = -n_{\text{C};\text{spat}} \cdot M_{\text{CO}_2}$$
(40)

$$\begin{split} \Delta m_{spat;CO_2} & \text{Massenänderung aufgrund der CO_2-Abgabe in der Spateisensteinstufe [g]} \\ M_{CO_2} & \text{Molare Masse von CO_2 [g/mol]} \end{split}$$

f. Berechnung der Masse Spateisenstein anhand der gesamten Kohlenstoffmenge je nach Zusammensetzung des Spateisensteins

$$\begin{split} M_{spat} &= X_{Fe;spat} \cdot M_{Fe} + X_{Mn;spat} \cdot M_{Mn} + X_{Mg;spat} \cdot M_{Mg} + N_{C;spat} \cdot M_{C} + N_{O;spat} \cdot M_{O} \\ &= X_{Fe;spat} \cdot 55,845 + X_{Mn;spat} \cdot 54,938 + X_{Mg;spat} \cdot 24,305 + 1 \cdot 12,011 + 2 \cdot 15,999 \end{split}$$
(41)

mit:
$$X_{Fe} + X_{Mn} + X_{Mg} = 1$$

M _{spat}	Molare Masse von Spateisenstein [g/mol]	
N _{i;spat}	Teilchenanzahl von Element i in Spateisenstein [1]	
Mi	Molare Masse von Element i [g/mol]	

$$m_{spat} = n_{C;spat} \cdot M_{spat}$$
 (42)

m_{spat} Masse Spateisenstein [g]

g. Berechnung der Masse des durch FeO aufgenommenen O₂, bei Annahme einer vollständigen Oxidation zu Fe₂O₃

4 FeO (s) + O₂ (g)
$$\rightarrow$$
 2 Fe₂O₃ (s)
=> Aufnahme von ¹/₄ O₂ pro Fe-Atom

$$\Delta m_{\text{spat};O_2;Fe} = +0.25 \cdot n_{\text{Fe};\text{spat}} \cdot M_{O_2}$$
(43)

$$\begin{split} \Delta m_{spat;O_2} & \text{Massenänderung aufgrund der } O_2 \text{ Aufnahme in der Spateisensteinstufe [g]} \\ M_{O_2} & \text{Molare Masse von } O_2 \text{ [g/mol]} \end{split}$$

h. Berechnung der Masse des durch MnO aufgenommenen O_2 , bei Annahme einer Oxidation zu Mn_2O_3

$$\begin{array}{l} 4 \text{ MnO } (s) + O_2 \left(g\right) \rightarrow 2 \text{ Mn}_2 O_3 \left(s\right) \\ => \text{ Aufnahme von } \frac{1}{2} O_2 \text{ pro Fe-Atom} \\ \\ \Delta m_{\text{spat};O_2;Mn} = +0.25 \cdot n_{\text{Mn};\text{spat}} \cdot M_{O_2} \end{array} \tag{44}$$

i. Berechnung des Masseverlusts durch Spateisenstein

$$\Delta m_{\text{spat}} = \Delta m_{\text{spat};\text{CO}_2} + \Delta m_{\text{spat};\text{O}_2;Fe} + \Delta m_{\text{spat};\text{O}_2;Mn}$$
(45)

 Δm_{spat} Gesamtmassenänderung in der Spateisensteinstufe [g]

- 13. Berechnung des Masseverlusts aufgrund der Reaktion der restlichen Karbonate
 - a. Berechnung der Kohlenstoffmenge im CO₂-Gasvolumen

$$n_{C;CO_2;rest} = \frac{V_{CO_2;rest;norm}}{V_{m;CO_2;norm}} = \frac{V_{CO_2;rest;norm}}{22,262\frac{l}{mol}}$$
(46)

 $n_{C;CO_2;rest}$ CO₂-Stoffmenge in Stufe Rest [mol]

b. Berechnung der Kohlenstoffmenge im CO-Gasvolumen

$$n_{C;CO;rest} = \frac{V_{CO;rest;norm}}{V_{m;CO;norm}} = \frac{V_{CO;rest;norm}}{22,402\frac{l}{mol}}$$
(47)

 $n_{C;CO;rest}$ CO-Stoffmenge in Stufe Rest [mol]

c. Berechnung der Gesamtkohlenstoffmenge

$$n_{C;rest} = n_{C;CO_2;rest} + n_{C;CO;rest}$$
(48)

n_{C;rest} Stoffmenge Kohlenstoff in Stufe Rest [mol]

d. Berechnung der Masse des abgegebenen CO2 anhand der gesamten Kohlenstoffmenge

$$\Delta m_{\text{rest;CO}_2} = -n_{\text{C;rest}} \cdot M_{\text{CO}_2} \tag{49}$$

 $\Delta m_{rest;CO_2}$ $\hfill Massenänderung aufgrund der CO_2-Abgabe in Stufe Rest [g]$

e. Berechnung der Stoffmengen mit der Zusammensetzung von Ankerit

$$\begin{split} n_{Fe;rest} &= n_{C;rest} \cdot X_{Fe;Ankerit} \\ n_{Mn;rest} &= n_{C;rest} \cdot X_{Mn;Ankerit} \\ n_{Mg;rest} &= n_{C;rest} \cdot X_{Mg;Ankerit} \\ n_{Ca;rest} &= n_{C;rest} \cdot X_{Ca;Ankerit} \end{split}$$
(50)

n _{Fe;rest}	Stoffmenge von involviertem Eisen in Stufe Rest [mol]
n _{Mn;rest}	Stoffmenge von involviertem Mangan in Stufe Rest [mol]
n _{Mg;rest}	Stoffmenge von involviertem Magnesium in Stufe Rest [mol]
n _{Ca;rest}	Stoffmenge von involviertem Kalzium in Stufe Rest [mol]

$$X_{j;Ankerit} = \frac{g_{j;Ankerit} \cdot M_j}{\sum_{k=1}^{m} g_{k;Ankerit} \cdot M_k}$$

mit:
$$\sum_{j=1}^{m} X_{j;Ankerit} = 1$$

 $j \in k$
 $k \in \{Fe, Mn, Mg, Ca\}$ (51)

X _{j;rest}	Teilchenzahlanteil von Element j in Ankerit [1]	
m	Anzahl verschiedener Elemente in Ankerit [1]	
g _{j;rest}	Gehalt von Element j in Ankerit [1]	
M _k	Molare Masse von Element k [g/mol]	

f. Berechnung der Masse des auf durch FeO aufgenommenen O₂, bei Annahme einer vollständigen Oxidation zu Fe₂O₃

$$\Delta m_{\text{rest};O_2;Fe} = +0.25 \cdot n_{\text{Fe};\text{rest}} \cdot M_{O_2}$$
(52)

 $\Delta m_{rest;O_2;Fe} \quad \text{Massenänderung aufgrund der } O_2 \text{ Aufnahme von Fe in Stufe Rest [g]}$

g. Berechnung der Masse des durch MnO aufgenommenen O₂, bei Annahme einer vollständigen Oxidation zu Mn₂O₃

$$\Delta m_{\text{rest;O}_2;Mn} = +0.5 \cdot n_{\text{Mn;rest}} \cdot M_{\text{O}_2}$$
(53)

 $\Delta m_{rest;O_2;Mn}$ Massenänderung aufgrund der O₂ Aufnahme von Mn in der Stufe Rest [g]

h. Berechnung des Masseverlusts durch die restlichen Karbonate

$$\Delta m_{\text{rest}} = \Delta m_{\text{rest};CO_2} + \Delta m_{\text{rest};O_2;Fe} + \Delta m_{\text{rest};O_2;Mn}$$
(54)

 Δm_{rest} Gesamtmassenänderung in Stufe Rest [g]

14. Berechnung des Gesamtmasseverlusts

$$\Delta m = \Delta m_{spat} + \Delta m_{rest}$$
 (55)

Δm Gesamtmassenänderung [g]

7.8. Versuchsdurchführung

7.8.1. PPV-001-IB "Erster Test"

Dieser Versuch wurde hauptsächlich als Test aller Systemkomponenten angesehen, ein verwertbares Versuchsergebnis wurde nicht unbedingt erwartet. Als Probe diente die zuvor beschriebene Aufgabe des Schwertrübezyklons. Um ein Bild für die Arbeiten zu bekommen, die zur Vor- und Nachbereitung des Versuchs durchgeführt werden müssen, werden diese Arbeiten hier genauer beschrieben.

Das Einsetzen des Probenbehälters und das gleichzeitig durchzuführende Anstecken des Gasführungsrohrs an den Probebehälter gestalteten sich aufgrund der engen Platzverhältnisse schwierig. Durch das Aushärten der Dichtmasse muss dieser Vorbereitungsschritt relativ schnell durchgeführt werden, was den Vorgang noch zusätzlich erschwert. Die Befüllung wurde mittels eines Trichters durchgeführt und konnte ohne Probleme durchgeführt werden. Die Probenhöhe im Behälter wurde mittels Messschieber gemessen, um sie später mit der Höhe nach dem Versuch vergleichen zu können und dadurch eventuelle Veränderungen in der Schüttung feststellen zu können.

Der Versuch wurde mit der ersten Version der Messgasstrecke durchgeführt, dazu wurde das Messgerät einfach direkt mit dem Ende des verlängerten Gasführungsrohr des Probenbehälters verbunden. Die Kühlung des Messgases erfolgte durch das lange Metallrohr und den internen Gaskühler des Messgeräts. Die Volumenstrommessung wurde ebenfalls vom Gasmessgerät übernommen.

Die Temperatur in der Probe wurde durch ein flexibles Thermoelement ca. 1-2 cm unter der Probenoberfläche im Probenbehälter gemessen. Das Thermoelement wurde am Anschluss BT14 (Temperaturmessung im nicht verwendeten By-Pass) angesteckt und über die Durchführung von Temperatursensor BT10 in den Pellet-Pot verlegt. Der Temperatursensor BT10 musste dazu ausgebaut werden und konnte dadurch für diesen Versuch nicht verwendet werden. Zusätzlich wurde der Temperatursensor BT05 vom Hauptgasrohr außen auf das verlängerte Gasführungsrohr befestigt, um einen Anhaltswert für die Abgastemperatur zu erhalten.

Versuchsnummer	PPV-001-IB
Probe	"Zyklon Aufgabe"
SKV Regelung	Luftmasse – 50 kg/h
Temperaturregler	Poteingang
Gasmessstrecke	Version 1
Probenmasse vorher	458,54 g
Probenmasse nachher	313,35 g
Masseverlust absolut	145,19 g
Masseverlust relativ	31,7 %
Füllhöhe vorher	106 mm
Füllhöhe nachher	107 mm
Füllhöhe Differenz	+ 1 mm
Messgasvolumenstrom	~ 1 l/min

Tabelle 18: PPV-001-IB "Erster Test" – Versuchsdaten

Am Beginn des Versuchs wurde die Sprungantwort der Probentemperatur bei einer Heizleistung von 50 % aufgezeichnet, um beim nächsten Versuch schon einen Temperaturregler für die Probentemperatur verwenden zu können. Die Aufzeichnung funktionierte problemlos und der Regler konnte auf Basis dieser Messungen parametriert werden. Nach dem Abschluss dieses Tests wurde der Temperaturregler für die Gastemperatur oberhalb der Probe auf 500 °C gestellt und auf das Ausregeln der Temperatur gewartet.

Als die Temperatur in der Probe 400 °C erreicht hatte (ca. um 11:30), begann sich auch messbares CO₂ zu bilden und die CO₂-Konzentration stieg in den nächsten Minuten weiter stark an. Um 11:40 musste die Gasmessung aufgrund der Sättigung der CO₂- und der CO-Messzelle das erste Mal abgebrochen werden. Nach dem Erreichen der 500 °C Poteingangstemperatur wurde der Sollwert auf 600 °C erhöht. Kurz nach dem Erreichen der gewünschten Gastemperatur begann die Probentemperatur auf über 600 °C zu steigen, anscheinend führt die exotherme Oxidation von FeO zu Fe₂O₃ zu einem unkontrollierten Ablauf der Reaktion (thermisches Durchgehen der Reaktion) und die Probe kann sich so sogar über die Gastemperatur hinaus erwärmen. Der Sollwert der Gastemperatur wurde daraufhin wieder auf 500 °C zurückgestellt.

Um 11:55 bei einer Probentemperatur von 600 °C wurde versucht die Gasmessung wieder zu starten, jedoch waren sofort wieder beide Messzellen gesättigt und die Messung musste wieder abgebrochen werden. Erst um 12:25 konnte das Abklingen der Reaktion durch einen erneuten Versuch der Gasmessung aufgezeichnet werden. Die CO-Konzentration war nach dem Abklingen 0 ppm und die

CO₂-Konzentration kam bei knapp 1 % zum Stillstand. Die Probetemperatur sank aufgrund der fehlenden zusätzlichen Energie der Oxidation in dieser Zeit von 600 °C auf 550 °C ab.

Um 12:41 wurde mit der Änderung des Sollwerts auf 750 °C die zweite Stufe gestartet, die CO₂-Konzentration war zu diesem Zeitpunkt auf vernachlässigbare 0,13 % abgesunken. Durch diese niedrige Konzentration war die Spateisensteinstufe von der Reststufe eindeutig abgrenzbar. Bei einer Probentemperatur von 650 °C, mit einer leichten Verzögerung nach der Erhöhung der Heizleistung, begann die Entsäuerung erneut und die Messzellen wurden wieder überlastet. Die Solltemperatur wurde danach wieder auf 720 °C gesenkt, um die Gasabgabe vielleicht etwas zu verlangsamen.

Um ca. 13:11 wurde erneut versucht die Messung zu starten, dadurch stieg die Probentemperatur sichtlich an, obwohl sich weder die Gastemperatur oberhalb des Pots noch der Energieeintrag in die Maschine geändert hatte. Dieser Effekt ist wahrscheinlich auf das Absaugen, des hauptsächlich aus CO2 und CO im Lückenraum der Schüttung bestehenden Messgases zurückzuführen, da dadurch wieder frischer Sauerstoff zur Probe kommt und somit die Oxidation von Eisen wieder starten konnte.

Während die Probentemperatur bis auf 750 °C anstieg, nahm die CO₂-Konzentration in der mittlerweile durchlaufenden Messung immer weiter ab. Nach einem Absenken der Probentemperatur auf unter 700 °C verlangsamte sich die Reaktion zusätzlich, nahm aber nach dem erneuten Aufwärmen auf 750 °C wieder zu. Nach einer Versuchsdauer von knapp 6 Stunden wurde beschlossen den Versuch durch ein langsames Zurücknehmen der Temperatur zu beenden, dadurch sollte es möglich sein die Temperatur zu finden, bei der die Reaktion aufhört zu laufen. Während die CO₂-Konzentration zu Beginn der Abkühlung 7 % betrug, sank sie bei 650 °C auf 1 % und bei 550 °C kam sie vollständig zum Erliegen. Es wird vermutet, dass die weiterlaufende Entsäuerung in diesem Temperaturbereich auf Kalzit zurückzuführen ist.

Während des Versuchs musste mehrmals das Kühlwasser getauscht werden, um den Seitenkanalverdichter nicht zu stark zu erwärmen. Der Austausch des Kühlwassers gestaltete sich durch die beengten Platzverhältnisse und einen fehlenden Wasserablass im Kühler äußerst schwierig. Das Wasser musste über einen Schlauch abgezogen werden, aufgrund der hohen Wassertemperatur war dies aber nicht einfach durchzuführen.

Abschließend ist anzumerken, dass der abgezogene Messgasstrom mit ungefähr 1 l/min (lt. Gasmessgerät) auf jeden Fall zu niedrig war. Eine Erhöhung der Konzentration von CO₂ und CO über die maximal zulässigen Konzentrationen der Messzellen konnte somit nicht verhindert werden. Für den nächsten Versuch musste eine stärke Gasabsaugung installiert werden. Eine Auswertung des Versuchs war aufgrund der Probleme mit der Gasmessung nicht möglich. Tabelle 18 enthält die wichtigsten Versuchsdaten. Eine Übersicht mit den wichtigsten Messdatenverläufen über den gesamten Versuch bietet Abbildung 35. Die Automatisierung des Pellet-Pots arbeitete während des gesamten Versuchs einwandfrei.

Weiters ist zu erwähnen, dass die Probe beim Entfernen aus dem Probenbehälter in 5 getrennten Schichten abgetragen wurde. Optische Unterschiede zwischen den Schichten konnten dabei nicht

festgestellt werden. Davor wurde die Höhe der Probe im Behälter erneut gemessen, es konnte keine Veränderung gegenüber der Höhe vor dem Versuch festgestellt werden. Der Ausbau, die Zerlegung und die Reinigung des Probenbehälters und der Gasführungsleitung konnten ohne Probleme durchgeführt werden.

Das Gasmessgerät wurde nach dem Versuch zum Austausch der Sauerstoffzelle und des Gaskühlsystems nach Wien zur Fa. testo GmbH gebracht, dabei wurde weiters festgestellt, dass der CO₂-Sensor nicht mehr einwandfrei arbeitet und eine Abweichung von bis zu 10 % aufweist. Da die Genauigkeit für einen Test des Messprinzips aber ausreichte, wurde entschieden die Versuche mit dem beschädigten Sensor fortzuführen.

Abbildung 35: PPV-001-IB "Erster Test" – Versuchsablauf

7.8.2. PPV-002-IB "Externe Gaspumpe"

Beim zweiten Versuch gab es gegenüber dem ersten Versuch zwei große Änderungen. Einerseits wurde die Gasmessstrecke verändert (Umbau auf Version 2, siehe Kapitel 7.6 Gasmessstrecke), andererseits konnte die Probentemperatur in diesem Versuch direkt geregelt werden. Weiters wurde ein zweites flexibles Thermoelement zur Messung der Probentemperatur im unteren Bereich des

Probenbehälters eingebaut. Damit sollte die Gleichmäßigkeit der Durchwärmung überprüft werden. Das obere Thermoelement wurde an den Anschluss BT13 und das untere an Anschluss BT14 angesteckt. Beide dadurch verdrängten Temperatursensoren waren für diesen Versuch nicht wichtig und wurden einfach weggelassen.

Der Versuchsablauf war prinzipiell sehr ähnlich zum Vorangegangenen. Die Gasabgabe der Spateisensteinstufe war wieder deutlich erkennbar und wahrscheinlich abgeschlossen, während die vollständige Reaktion in der zweiten Temperaturstufe nicht abgewartet werden konnte. In der Spateisensteinstufe traten wieder Unterbrechungen der Messung aufgrund der Messbereichsüberschreitungen von CO₂ und CO auf. Eine Auswertung des Versuchs war deswegen ebenfalls nicht möglich.

Versuchsnummer	PPV-002-IB
Probe	"Zyklon Aufgabe"
SKV Regelung	Luftmasse – 50 kg/h
Temperaturregler	Probe oben
Gasmessstrecke	Version 2
Probenmasse vorher	510,45 g
Probenmasse nachher	368,93 g
Masseverlust absolut	141,52 g
Masseverlust relativ	27,7 %
Füllhöhe vorher	124 mm
Füllhöhe nachher	124 mm
Füllhöhe Differenz	±0 mm

Tabelle 19: PPV-002-IB "Externe Gaspumpe" – Versuchsdaten

Auffällig während des Versuchs war der Ausfall des Lufterhitzers durch einen Programmierfehler um 16:00, der allerdings schnell korrigiert werden konnte. Weiters konnte die exotherme Oxidationsreaktion in der Spateisensteinstufe beobachtet werden. Während die Probentemperatur im unteren Bereich des Probenbehälters beim Erhitzen um bis zu 100 °C gegenüber der Probentemperatur oben nachlief, konnte am Ende der Spateisensteinkalzinierung ein starkes Überschwingen der unteren Probetemperatur beobachtet werden. Dieser Effekt wird durch die selbsterhitzende Reaktionsfront (exotherme Oxidationsreaktion) in der Probe ausgelöst und erschwert die Temperaturregelung erheblich. Durch ein vorsichtigeres Erhitzen in der Spateisensteinstufe sollte dieses Verhalten vermeidbar sein. Anhand des Überschwingens beider Sensoren konnte die Zeit für die vollständige Durchwärmung der Probe grob abgeschätzt werden, sie beträgt ungefähr 20 min.

Das größte Problem mit diesem Versuch war wieder der unzureichende Messgasvolumenstrom, der die Reaktionsgase nicht schnell genug wegfördern konnte und somit die Messzellen überlastete.

Abbildung 36: PPV-002- IB "Externe Gaspumpe" – Versuchsablauf

7.8.3. PPV-003-IB "Gasmessung"

Der Schwerpunkt des dritten Versuchs lag in der Durchführung eines auswertbaren Versuchs. Mit der erneuten Anpassung der Messgasstrecke sollte eine ausreichende Durchströmung des Probenbehälters erfolgen und eine Überlastung der Messzellen vermieden werden können. Die Erwärmung der Probe sollte diesmal noch vorsichtiger erfolgen, um ein thermisches Durchgehen der Reaktion und damit eine Bildung von zu großen CO₂- und CO-Mengen vermeiden zu können. Die wichtigsten Daten zum Versuch sind in Tabelle 20 zusammengefasst. Der Versuchsablauf mit den wichtigsten Messgrößen wird in Abbildung 37 gezeigt.

Versuchsname	PPV-003-IB
Probe	"Zyklon Aufgabe"
SKV Regelung	Luftmasse – 50 kg/h
Temperaturregler	Probe oben
Gasmessstrecke	Version 3
Probenmasse vorher	477,23 g
Probenmasse nachher	352,17 g
Masseverlust absolut	125,06 g
Masseverlust relativ	26,2 %
Füllhöhe vorher	119 mm
Füllhöhe nachher	119 mm
Füllhöhe Differenz	±0 mm

Tabelle 20: PPV-003-IB "Gasmessung" – Versuchsdaten

Im Großen und Ganzen wurden die geplanten Ziele des Versuchs erreicht. Die Reaktion konnte durch eine Kombination aus langsamerer Erwärmung und den höheren Messgasvolumenstrom besser kontrolliert werden und dadurch in einer zusammenhängenden Messung erfasst werden. Die Differenzierung der Spateisensteinreaktion ist im CO₂- und CO-Konzentrationsverlauf gut zu erkennen, wobei auch zu erwähnen ist, dass bei dieser vorsichtigen Versuchsführung allgemein weniger CO entsteht als sonst. Die Temperatur der maximalen CO₂-Abgabe ist bei ca. 540 °C erreicht und stimmt damit gut mit der Literatur überein.

In der Reststufe sieht man, dass die Reaktion nach einem kleinen Peak bei ca. 700 °C im weiteren Verlauf gehemmt wird. Ein Grund für diese Geschwindigkeitsbeschränkung konnte nicht gefunden werden. Grundsätzlich sind zwei Möglichkeiten denkbar, einerseits die Limitierung durch das Gleichgewicht mit dem entstehenden CO₂, andererseits die Limitierung durch die der Probe zugeführte Energie (Temperatur). Die CO₂-Konzentration ändert sich nach dem Erreichen des Plateaus bis zum Abbruch des Versuchs nur mehr geringfügig. Beim Abkühlen wurde wieder versucht die Temperatur zu ermitteln bei der die letzte CO₂-Abgabe erfolgt. Wie bei Versuch PPV-001-IB liegt diese Temperatur bei 550 °C.

Um die Aufzeichnung der Messdaten zukünftig zu vereinfachen wurde eine Vorlage für ein Versuchsprotokoll (siehe Anhang L) erstellt, damit soll es ermöglicht werden alle wichtigen Versuchsdaten gesammelt erfassen zu können.

Durch die kontinuierliche Gasmessung war eine Auswertung des Versuchs möglich, allerdings wurde noch keine Temperaturmessung implementiert, die zur vollständigen Korrektur des Gasvolumenstrom notwendig gewesen wäre. Diese Temperatur wurde in der Auswertung durch eine ähnliche Temperatur ersetzt, um wenigstens eine Abschätzung des Spateisensteingehalts und des Massenverlusts zu erhalten. Die in Tabelle 21 angeführten Versuchsergebnisse scheinen trotzdem zumindest plausibel zu sein.

Spateisensteingehalt	65,2 %
Berechneter Massenverlust	-154,30 g
Gemessener Massenverlust	-125,06 g
Abweichung absolut	-29,24 g
Abweichung relativ	-23,38 %

Tabelle 21: PPV-003-IB "Gasmessung" – Auswertungsergebnisse

Abbildung 37: PPV-003-IB "Gasmessung" – Versuchsablauf

7.8.4. PPV-004-IB "Spateisensteinstandard"

In diesem Versuch wurde die endgültige vierte Version der Gasmessstrecke das erste Mal verwendet, sie bindet den fehlenden Temperatursensor ein und kann deshalb den Messgasvolumenstrom vollständig korrigieren. Dieser Versuch mit Spateisensteinstandard wird durchgeführt um den Verlauf der CO₂-Abgabe von "reinem" Spateisenstein ermitteln zu können und somit einen Vergleich mit den in der Literatur gefundenen Werten durchführen zu können. Weiters konnte anhand dieser Probe getestet werden ob eine normale Beendigung des Versuchs mit einem definierten Ende der CO₂-Abgabe möglich ist. Die Versuchsdaten sind in Tabelle 22 aufgeführt.

Versuchsname	PPV-004-IB
Probe	"Spateisensteinstandard"
SKV Regelung	Luftmasse – 50 kg/h
Temperaturregler	Probe oben
Gasmessstrecke	Version 4
Probenmasse vorher	170,66 g
Probenmasse nachher	117,62 g
Masseverlust absolut	53,04 g
Masseverlust relativ	31,1 %
Füllhöhe vorher	37 mm
Füllhöhe nachher	37 mm
Füllhöhe Differenz	±0 mm

Tabelle 22: PPV-004-IB "Spateisensteinstandard" – Versuchsdaten

Wie aus dem Versuchsablauf in Abbildung 38 zu erkennen ist, ist in der Probe wirklich fast ausschließlich Spateisenstein vorhanden. Die in ihrer Menge äußerst gering ausfallende zweite CO₂-Abgabephase ist wahrscheinlich auf verwachsenen Ankerit zurückzuführen, was sich auch mit den Temperaturen decken würde. Dieser Versuch ist der Einzige, der nicht abgebrochen werden musste, sondern bis zum Ende durchgeführt wurde. Allerdings ist es möglich, dass bei höheren Temperaturen noch weitere Reaktionen stattgefunden hätten.

Obwohl der Versuch ähnlich vorsichtig wie der vorangegangene Versuch durchgeführt wurde, konnte ein hoher Temperaturanstieg in den tieferen Schichten der Schüttung nicht verhindert werden. Die Temperatur fällt – wahrscheinlich aufgrund der fehlenden Moderationswirkung der anderen Minerale – mit 680 °C äußerst hoch aus. Aufgrund der hohen Temperatur beschleunigt auch die Gasabgabe des Spateisensteins und sättigt beinahe beide Gassensoren.

Die Auswertungsergebnisse sind in Tabelle 23 angeführt. Der zu hohe Spateisensteingehalt ist konsistent mit der positiven Abweichung des berechneten Masseverlust im Vergleich mit dem Gemessenen.

Spateisensteingehalt	(112,2 %)
Berechneter Massenverlust	-64,91 g
Gemessener Massenverlust	-53,04 g
Abweichung	-11,87 g
Abweichung	-22,39 %

Abbildung 38: PPV-004-IB "Spateisensteinstandard" - Versuchsablauf

7.8.5. PPV-005-IB "Nullmessung"

Zur Überprüfung des Analyseverfahrens wurde auch eine Nullmessung mit einer inerten Probe (Cylpebs aus Stahl) durchgeführt. Dazu wurde der erstmals der Probenbehälter mit kreisförmigem Querschnitt verwendet. Das Überschwingen der Temperatur bei diesem Versuch ist wahrscheinlich auf das verwendete Material zurückzuführen (andere spezifische Wärmekapazität), da es bei anderen Versuchen noch nicht aufgetreten ist. Die Auswertung lieferte wie zu erwarten keinen Massenverlust, auf eine Angabe der Versuchsdaten und Auswertungsergebnisse wird deshalb verzichtet. Die Nullmessung wurde somit erfolgreich durchgeführt.

Abbildung 39: PPV-005-IB "Nullmessung" – Versuchsablauf

7.8.6. PPV-006-IB "Ankeritstandard"

Zur Überprüfung ob durch reinen Ankerit ein Ende der Reaktion herbeigeführt werden kann wurde ein Versuch mit einem Ankeritstandard durchgeführt. In Tabelle 24 sind die wichtigsten Daten zu diesem Versuch angeführt.

Versuchsname	PPV-006-IB
Probe	"Ankeritstandard"
SKV Regelung	Luftmasse – 50 kg/h
Temperaturregler	Probe oben
Gasmessstrecke	Version 4
Probenmasse vorher	125,04 g
Probenmasse nachher	90,01 g
Masseverlust absolut	35,03 g
Masseverlust relativ	31,1 %
Füllhöhe vorher	38 mm
Füllhöhe nachher	36 mm
Füllhöhe Differenz	-2 mm

Tabelle 24: PPV-006-IB "Ankeritstandard" – Versuchsdaten

Am Anfang des Versuchs wurde vermutlich eine kleine Menge Spateisenstein kalziniert, was an dem kleinen Peak von 400 bis 560 °C ersichtlich ist. Der Ankerit beginnt bei ca. 600 °C zu reagieren. Der in Abbildung 40 ersichtliche Knick in allen Kurven bei einer Zeit von 17:50 entstand durch das Umschalten von Temperaturregelung auf maximale Heizleistung. Um 18:30 kann ein CO₂-Peak festgestellt werden, allerdings kann die Abnahme nicht lange verfolgt werden, da eine Überhitzung der Maschine ein Abschalten notwendig machte. Die in dieser Phase reagierenden Karbonate entsäuern äußerst langsam. Wie schon einmal erwähnt ist es nicht sicher was die Reaktionsgeschwindigkeit beschränkt (chemisches Gleichgewicht oder fehlende Energie für die endothermen Reaktionen). Die in Tabelle 25 angeführten Auswertungsergebnisse für den Versuch zeigen die bis jetzt höchste Abweichung aller Versuche, sie ist aber nicht viel größer als bei den anderen Versuchen.

Spateisensteingehalt	6,7 %
Berechneter Massenverlust	-44,50 g
Gemessener Massenverlust	-35,03 g
Abweichung absolut	-9,47 g
Abweichung relativ	-27,03 %

Tabelle 25: PPV-006-IB "Ankeritstandard" – Auswertungsergebnisse

Abbildung 40: PPV-006-IB "Ankeritstandard" – Versuchsablauf

7.8.7. PPV-007-IB "Kleine Probenmenge"

Zum Abschluss der Versuchsreihe wurde Versuch PPV-003-IB mit einer kleineren Probenmenge wiederholt, um eventuell Erkenntnisse über den Einfluss der Probenmasse auf das Verfahren gewinnen zu können. Die in Abbildung 41 dargestellten Messgrößenverläufe zeichnen ein sehr ähnliches Bild wie die von Versuch PPV-003-IB. Auch die gemessen Massenverluste sind bei beiden Versuchen sehr ähnlich. Wenn es einen Einfluss der Probenmenge auf das Versuchsergebnis gibt, ist er nicht so einfach aufzudecken.

Versuchsname	PPV-007-IB
Probe	"Zyklon Aufgabe"
SKV Regelung	Luftmasse – 50 kg/h
Temperaturregler	Probe oben
Gasmessstrecke	Version 4
Probenmasse vorher	88,07 g
Probenmasse nachher	64,19 g
Masseverlust absolut	23,88 g
Masseverlust relativ	27,1 %
Füllhöhe vorher	20 mm
Füllhöhe nachher	20 mm
Füllhöhe Differenz	±0 mm

Tabelle 26: PPV-007-IB "Kleine Probenmenge" – Versuchsdaten

Die Auswertungsergebnisse in Tabelle 27 zeigen einen sehr ähnlichen Spateisensteingehalt wie bei Versuch PPV-003-IB. Die wesentlich geringere Probenmasse hat anscheinend nur geringe Auswirkungen auf die Analysenergebnisse.

Spateisensteingehalt	66,8 %
Berechneter Massenverlust	-30,15 g
Gemessener Massenverlust	-23,88 g
Abweichung absolut	-6,27 g
Abweichung relativ	-26,26 %

Tabelle 27: PPV-007-IB "Kleine Probenmenge" – Auswertungsergebnisse

Abbildung 41: PPV-007-IB "Kleine Probenmenge" - Versuchsablauf

7.9. Diskussion der Ergebnisse

7.9.1. Erkenntnisse aus den Versuchen

Der Pellet-Pot des Lehrstuhls hat sich für den Test des Analyseverfahrens als prinzipiell geeignet herausgestellt, ist allerdings aufgrund des eigentlichen Hauptverwendungszwecks nicht ideal. Während die Spateisensteinstufe aufgrund der zusätzlichen exothermen Reaktion (Oxidation von FeO) schnell abläuft, war der vollständige Verlauf der restlichen Karbonatreaktion in der zweiten Stufe nur in einem Versuch (PPV-004-IB "Spateisensteinstandard") beobachtbar ohne die Apparatur zu überlasten. Der limitierende Faktor in der zweiten Stufe ist somit die Reaktionsgeschwindigkeit, eine genauere Eingrenzung des eigentlichen Problems wäre eventuell mit weiteren Untersuchungen möglich.

Die Gasabgabe des Spateisensteins in der ersten Stufe des Verfahrens ist eindeutig abgrenzbar, allerdings geht die CO₂-Konzentration im Messgasstrom nicht ganz auf null zurück. Es ist als wahrscheinlich anzusehen, dass im Hintergrund eine andere Entsäuerungsreaktion beginnt. Welches Karbonat dafür verantwortlich, konnte nicht ermittelt werden und war nicht Gegenstand der Untersuchungen. Aufgrund der niedrigen Temperatur (im Vergleich mit den Entsäuerungstemperaturen der anderen Karbonate) und der hohen CO2-Konzentration durch die schnelle Entsäuerung des Spateisensteins wird diese Hintergrundreaktion aber vermutlich über einen Großteil der ersten Stufe stark verlangsamt und ist wahrscheinlich vernachlässigbar. Durch die Zuordenbarkeit der abgegebenen Gasmenge und der dargestellten, bisher erzielten Korrelation erscheint eine Bestimmung des Spateisensteingehalts auf Basis der selektiven Kalzinierung zur Erzcharakterisierung realistisch.

Der Beginn der Reaktion des Spateisensteins bei ca. 450 °C wird durch einen Anstieg der CO-Konzentration im Messgas angezeigt. Das CO entsteht durch die Reduktion von CO₂ durch die Oxidation von FeO zu Fe₃O₄ und Fe₂O₃. Wenn genügend Sauerstoff vorhanden ist bleibt die CO-Konzentration unter 100 ppm, steigt die CO₂-Konzentration jedoch über ca. 50 % an (verbunden mit einer O₂-Konzentration von weniger als 10 %) entsteht plötzlich eine größere Menge CO und dessen Konzentration im Messgas steigt stark an (> 400 ppm). Nachdem die gesicherten Messbereiche des Gasmessgeräts auf 50 % CO₂ bzw. 500 ppm CO begrenzt sind, ist es wichtig die CO₂-Konzentration zu jedem Zeitpunkt unter 50 % zu halten, da so auch der Messbereich von CO eingehalten wird.

Eine weitere interessante Beobachtung in der ersten Stufe war der Energiebeitrag des Spateisensteins bei größeren Probenmengen. Diese zusätzliche Energie entsteht durch die der Spateisensteinentsäuerung folgenden exothermen Oxidation von FeO zu Fe₂O₃. Sie erhitzt die umliegende Probe und das Gas im Probebehälter, was zu einer Beschleunigung der Reaktion führt. Wenn die eintretende Frischluft zu heiß ist, kann die zusätzliche Energie zu einer Überhitzung der Probe (Erwärmung in den Bereich der zweiten Stufe) in den tieferen Schichten führen (gut zu sehen in

Versuch PPV-004-IB "Spateisensteinstandard"). Dadurch ist es möglich, dass auch andere Entsäuerungsreaktionen beginnen abzulaufen. Eine Verhinderung dieses Effekts ist nur durch ein vorsichtiges Erhitzen der Probe im Reaktionsfenster möglich.

Eine Unterscheidung der Karbonate in der zweiten Stufe ist bei den durchgeführten Versuchen nicht möglich, da hier keine abgrenzten CO₂-Abgaben erfolgten. Nach dem Erliegen der Spateisensteinreaktion und dem Starten der zweiten Stufe beginnt die CO₂-Abgabe bei ca. 600 °C erneut. Während die Temperatur an der Probenoberfläche kontinuierlich bis zu 770 °C weiter ansteigt, bleibt die Temperatur tiefer in der Probe bei ca. 725 °C konstant (siehe Versuch "PPV-006-IB"). Dies deutet auf einen Abschluss der Reaktion an der Oberfläche und eine weiterhin laufende Reaktion in der Probe hin. Es könnte sein, dass dem Gas durch die ablaufenden endothermen Reaktionen so viel Energie entzogen wird, dass eine weitere Aufwärmung der tieferen Probenschichten nicht möglich ist. Eine Begrenzung der Reaktion aufgrund der CO₂-Konzentration wird durch diese Beobachtung unwahrscheinlicher.

Vorsuch	Spateisenstein-	Masser	iverlust	Abwei	chung
Versuen	gehalt [%]	gemessen [g]	berechnet [g]	absolut [g]	relativ [%]
PPV-003-IB	65,2	-125,06	-154,30	-29,24	-23,38
PPV-004-IB	112,2	-53,04	-64,91	-11,87	-22,39
PPV-005-IB	0,0	0,00	-0,02	-0,02	
PPV-006-IB	6,7	-35,03	-44,50	-9,47	-27,03
PPV-007-IB	66,8	-23,88	-30,15	-6,27	-26,26

Tabelle 28: Zusammenfassung der Auswertungsergebnisse

Die Auswertung der Versuche mit dem vorgeschlagenen Modell ergibt ausnahmslos einen zu hohen berechneten Masseverlust gegenüber dem gemessenen Verlust, wobei die relative Abweichung von gemessenem zu berechnetem Massenverlust stark korreliert. Die CO₂-Konzentrationsmessung mit der alten Messzelle wird als Hauptgrund für die Abweichungen angesehen und könnte eine Abweichung mit konstantem Faktor erklären. Eine Zusammenfassung der Auswertungsergebnisse ist in Tabelle 28 dargestellt.

Um eine Aussage über die Genauigkeit des Analyseverfahrens nach einem Austausch der Messzelle und Kalibration des Messsystems treffen zu können, wurden die CO₂-Konzentrationsmesswerte mit einem Korrekturfaktor von 0,8 (entspricht der durchschnittlichen Abweichung von +25 % aller Versuche) multipliziert und erneut ausgewertet. Das Ergebnis dieser Auswertung ist in Tabelle 29 dargestellt.

Vorsuch	Spateisenstein-	Massen	verlust	Abwei	chung
versuch	gehalt [%]	gemessen [g]	berechnet [g]	absolut [g]	relativ [%]
PPV-003-IB	52,6	-125,06	-124,26	0,80	0,64
PPV-004-IB	91,2	-53,04	-52,73	0,31	0,58
PPV-005-IB	0,0	0,00	-0,01	-0,01	
PPV-006-IB	5,3	-35,03	-35,68	-0,65	-1,87
PPV-007-IB	53,8	-23,88	-24,23	-0,35	-1,49

Tabelle 29: Zusammenfassung der Auswertungsergebnisse nach Korrektur der CO2-Konzentrationen Abbildung 42 zeigt den Unterschied zwischen den berechneten und gemessenen Massenveränderungen. Die bereits erwähnte Korrelation der Massendifferenzen ist in diesem Diagramm gut erkennen und zeigt die mögliche Genauigkeit des kalibrierten Messsystems.

Abbildung 42: Auswertung – Vergleich Massenänderung berechnet/gemessen (schwarz: Originalmessdaten, grün: korrigierte Messdaten)

Alle Produkte enthielten eine ferromagnetische Phase, die beim Abmessen der Füllhöhe des Probenbehälters nach dem Versuch auf dem Messschieber hängen blieb. Dieser Ferromagnetismus ist vermutlich durch die Bildung eines Ferrits (Fe, Mn, Mg)₃O₄ während des Versuchs zu erklären, der sämtliche Verunreinigungen des Spateisensteins aufnimmt, während das reine Eisen zu Fe₂O₃ weiteroxidiert (siehe: [3], [8]). Andere Erklärungen der ferromagnetischen Eigenschaften der Versuchsprodukte, wie die Bildung von metallischem Eisen oder FeO, sind aufgrund der oxidierenden Reaktionsbedingungen während des gesamten Versuchs unwahrscheinlich. Aufgrund der nicht vollständigen Umsetzung von Fe₃O₄ zu Fe₂O₃ ist eine Anpassung des Modells anzudenken.

Zusammenfassend ist zu sagen, dass das Messprinzip für Spateisenstein bestätigt wurde, und es für die restlichen Karbonate abgelehnt werden muss. Wenn die vorgeschlagenen Verbesserungen an der Versuchsdurchführung (nur Spateisensteinstufe durchführen) und dem verwendeten Messaufbau (Reparatur des Gasmessgeräts, Überprüfung der Gasvolumenstrommessung) umgesetzt werden, sollte die Genauigkeit des Analyseverfahrens auch mit dem derzeitigen relativ einfachen Aufbau und Berechnungsmodell ermittelt werden können. Eine Genauigkeit von mindestens ±5 % sollte mit dem korrigierten Messaufbau auf Basis der bis jetzt gesammelten Daten durchaus möglich sein.

7.9.2. Probleme aufgrund des Versuchsaufbaus

Die Versuchsdauer wird vor allem durch die erreichbaren Aufheiz- und Abkühlgeschwindigkeiten begrenzt. Ein nicht unwesentlicher Faktor dabei sind die großen Totmassen, die in Form von Einbauten im Bereich zwischen Lufterhitzer und Pot vorhanden sind. Diese beinhalten unter anderem den Brennerstein, den Brenner und die feuerfeste Auskleidung der Brennkammer.

Ein weiteres Problem könnte eine Limitierung der Reaktionsgeschwindigkeit durch den geringen Gasvolumenstrom durch die Probe darstellen. Es fällt auf, dass sich die Messgasvolumenströme in den verschiedenen Versuchen nicht wirklich unterscheiden. Es ist deshalb wahrscheinlich, dass der Gasvolumenstrom in diesem Aufbau nicht durch die Probendispersität limitiert wird, sondern durch die Gasmessstrecke selbst. Eine Erhöhung des Unterdrucks oder eine Verminderung des Strömungswiderstands in der Gasmessstrecke, würde eine Erhöhung der Messgasvolumenstroms mit sich bringen und die somit vielleicht die Reaktionen schneller ablaufen lassen, da die Reaktionsgase schneller wegbefördert werden.

Die, bei zu schneller Erwärmung entstehende, heiße Reaktionsfront kann im derzeitigen Versuchsaufbau mit nur zwei Temperatursensoren in der Probe nur schwer kontrolliert werden. Der erste Temperatursensor an der Probenoberfläche kann die Selbsterhitzung der Probe nicht messen, da sie an dieser Stelle nur in geringem Maße auftritt. Der untere Temperatursensor kann die erhöhte Temperatur zwar erkennen, aber die Maschine nicht mehr darauf reagieren, da die Spateisensteinentsäuerung dann schon beinahe vollständig abgeschlossen ist. Bei großen Probenmengen müssten weitere Temperatursensoren zwischen der Oberfläche und den untersten Schichten eingebaut werden, um die Temperatur in der gesamten Probe regeln zu können. Alternativ

dazu kann die Erhitzung der Probe vorsichtiger erfolgen und damit ein thermisches Durchgehen der Reaktion verhindert werden, allerdings führt dieses Vorgehen zu längeren Versuchen.

Bei der Vorbereitung der Versuche sind diverse Probleme bei der Handhabung der Bauteile des Messsystems aufgetreten. Der Einbau des Probebehälters in den Pellet-Pot gestaltet sich aufgrund der beengten Verhältnisse äußerst schwierig. Außerdem ist die Installation der Messfühler im Probenbehälter schwierig, da verhindert werden muss, dass diese den Probenbehälter selbst berühren.

Die händische Aufzeichnung des Gasvolumenstroms mit all seinen notwendigen Messwerten ist äußerst zeitaufwändig. Lücken in der Datenaufzeichnung entstehen vor allem dann, wenn andere Aufgaben, wie zum Beispiel der Austausch des Kühlwassers, gleichzeitig erledigt werden müssen. Eine Integration der Gasvolumenstrommessung in die Automatisierung würde eine wesentliche Erleichterung der Versuchsdurchführung bringen. Dazu müssten zusätzliche Sensoren angeschafft und die Steuerung dementsprechend angepasst werden.

7.9.3. Weiterführende Untersuchungen

Eine der wichtigsten offenen Fragen ist die direkte Verwendbarkeit von Bohrschmant in diesem Analyseverfahren. Die höhere Feinheit der Probe führt zu einer Erhöhung des Strömungswiderstands mit allen Folgen bezüglich der Verringerung des Gasvolumenstroms bei gleichen Druckverhältnissen oder notwendiger Erhöhung des Differenzdrucks über die Probe, um den Volumenstrom aufrechtzuerhalten. Der Druckabfall wird in der Größenordnung der Sintermischung liegen und ist technisch beherrschbar. Dahingehende Versuche sind im Laufen.

Zur Bestätigung des Analyseverfahrens für die Spateisensteinstufe müssen Versuche mit einem geeichten oder zumindest kalibrierten Gasmengenmessgerät durchgeführt werden, was beim derzeitigen Gasmessgerät durch Tausch der Sensoren und Kalibrierung mit Referenzgasen möglich ist. Weiters muss die Gasvolumenstrommessung mit Referenzgasströmen geprüft und gegebenenfalls erneut kalibriert werden. Die Genauigkeit des Analyseverfahrens muss im Anschluss mit Spateisenstein-Kalibrierstandards erarbeitet werden. Dadurch könnte die Unsicherheit der Zusammensetzung der restlichen Karbonate umgangen und die Massezunahme durch Sauerstoffaufnahme in der zweiten Stufe einfach umgangen werden. Der berechnete Massenverlust könnte dann ohne Probleme direkt mit dem gemessenen Massenverlust verglichen werden.

Zur Beschleunigung des Versuchsablaufs müsste geprüft werden, ob ein erhöhter Gasvolumenstrom in der Probe den Reaktionsablauf in der zweiten Stufe beschleunigt. Damit könnte abgeklärt werden ob die Anreicherung von CO₂ im Probenbehälter die Reaktionsgeschwindigkeit beschränkt oder ob die Beschränkung der Geschwindigkeit durch die fehlende Energie für die endothermen Reaktionen ausgelöst wird. Allerdings wäre es denkbar, dass der erhöhte Gasvolumenstrom auch die Spateisensteinstufe beschleunigen könnte und dadurch die Reaktion schwerer zu kontrollieren wäre. Dieses Problem könnte durch einen regelbaren Messgasvolumenstrom behoben werden.

Obwohl die durchgeführten Versuchsergebnisse einen Verlust von Reaktionsgas nahezu sicher ausschließen, würde eine Kontrollmessung im Hauptgasstrom weitere Sicherheit in dieser Sache bringen. Wenn dabei im Hauptgasstrom keine erhöhte CO₂-Konzentration festgestellt wird, kann ein Austreten von Reaktionsgas aus dem Probebehälter und der internen Messgasführung ausgeschlossen werden. Da der Messgasstrom vor dem Seitenkanalverdichter wieder mit dem Hauptgasstrom vereinigt wird, ist eine Messung des Hauptgasstroms allerdings nicht ohne weiteres möglich.

Ein gänzlich anderer Ansatz wäre es die Probe vollständig vom Hauptgasstrom durchströmen zu lassen. Dadurch würden sich einige Erleichterungen gegenüber dem derzeitigen Aufbau mit der externen Gasmessstrecke ergeben. Einerseits würde die Anreicherung der Reaktionsgase im Probebehälter durch die stärkere Durchströmung erschwert, andererseits könnte die Gasmessung direkt im Hauptgasstrom erfolgen und würde diese dadurch wesentlich vereinfachen. Allerdings wäre die Messung des Gasvolumenstroms wahrscheinlich etwas schwieriger, da der Hauptgasstrom wesentlich größer als der Messgasstrom ist. Der im Lufteinlass eingebaute Luftmassenstrommesser könnte nur zur Ermittlung des Gasvolumenstroms herangezogen werden, wenn der Pellet-Pot entlang der gesamten Gasstrecke vollkommen dicht wäre. Außerdem wäre zu überprüfen ob der Seitenkanalverdichter überhaupt den notwendigen Gasstrom erzeugen kann, da der Druckverlust über die Probe gegenüber dem umströmten Probenbehälter wesentlich höher wäre. Die Verwendung eines Probenbehälters wäre aber auch in diesem Aufbau unumgänglich, da der Pellet-Pot nicht für die Aufnahme von Proben unter 10 mm konzipiert wurde und die Proben damit in die vielen Öffnungen und Zwischenräume eindringen würden.

7.9.4. Bedeutung für die Entwicklung eines Analyseverfahrens

Das Messprinzip des Analyseverfahrens kann für die Spateisensteinstufe bestätigt werden. Eine Abschätzung des Spateisensteingehalts in der Probe sollte über die abgegebene Gasmenge möglich sein. Nimmt man die relative Abweichung der berechneten Abweichung von gemessenem und berechneten Massenverlust als Basis für die Betrachtung der Genauigkeit, ist bei einem kalibrierten Gasmesssystem mit einer Messgenauigkeit von mindestens ±5 % zu rechnen, was ein sehr gutes Ergebnis für einen so einfachen Messaufbau darstellen würde.

Eine direkte Berechnung des Ankeritgehalts auf Basis der abgegebenen Gasmenge kann mit dem derzeitigen Messaufbau ausgeschlossen werden, da die restlichen Karbonate in der Probe gleichzeitig reagieren und somit eine eindeutige Zuordnung der Gasmenge zu einem Karbonat nicht möglich ist. Ohne weitere Annahmen im Modell ist somit auch eine Berechnung der restlichen Karbonatgehalte nicht möglich.

Eine endgültige Überprüfung des Analyseverfahrens für die Spateisensteinstufe wäre nur durch Versuche mit einem vollständig kalibrierten Gasmesssystem möglich. Dabei verbleibende Abweichungen zwischen berechnetem und gemessenem Massenunterschied könnten nur mehr durch ein fehlerhaftes Modell oder Messungenauigkeiten erklärt werden.

7.9.5. Vorschläge zur Entwicklung einer produktiv einsetzbaren Maschine

Anhand der zuvor erklärten Probleme und Nachteile des eingesetzten Aufbaus für dieses Analyseverfahren, konnten einige Verbesserungsvorschläge für die Entwicklung einer produktiv einsetzbaren Maschine erarbeitet werden. Diese basieren auf den Erfahrungen, die während der Versuche mit dem Pellet-Pot gemacht wurden.

Eines der größten Probleme des derzeitigen Aufbaus ist das Handling des Pots und des darin eingebauten Probenbehälters. Der Einbau des Probenbehälters und der Anschluss der Messgasstrecke muss aufgrund der Zweckerweiterung des ursprünglichen Pellet-Pots ohne Sichtkontrolle durchgeführt werden und ist deshalb selbst mit Erfahrung nur schwer durchzuführen. Weiters gestaltet sich das Einbringen der Thermoelemente in den Probenraum aufgrund der beengten Platzverhältnisse schwierig. Auch die Handhabung des Pots ist durch sein Gewicht und seine Form nicht einfach und erfordert viel Kraft vom Bedienpersonal. Die Ausführung des Probebehälters als auswechselbare Patrone könnte hier Abhilfe schaffen.

Die Patrone könnte sämtliche Teile der Gasführung und Thermoelemente bereits integriert haben und somit den komplizierten Zusammenbau des Pots vermeiden. Mit fest eingebauten Thermoelementen würde außerdem deren schwierige Positionierung wegfallen. Dadurch wäre auch der Einsatz mehrerer Temperatursensoren in der Probe einfacher möglich und die Erhitzung könnte gezielter gesteuert werden. Die nicht unbedingt an der Patrone benötigten Sensoren könnten fest in der Maschine verbaut werden und würden somit die Anzahl der Verbindungen zwischen Patrone und Maschine verringern.

Weiters könnte durch das Ersetzen der feuerfesten Auskleidung und dem Einsatz von zwei Lagen hitzebeständigem Stahl (getrennt durch Dämmmaterial) das Gewicht wesentlich reduziert und damit die Handhabung vereinfacht werden. Ein weiterer positiver Effekt der verringerten Masse wäre eine wesentlich kürzere Versuchszeit durch die Beschleunigung von Erhitzen und Abkühlen. Mit dem Einsatz mehrerer Patronen könnte die Zykluszeit eines Versuchs noch weiter gesenkt werden, da die nächste Probe schon während des laufenden Versuchs vorbereitet und die Vorherige bereits entleert werden könnte.

Durch einen vereinfachten Aufbau könnten die Aufheiz- und Abkühlzeiten wesentlich verkürzt werden, indem der Hauptgasstrom durch möglichst kurze und gerade Verbindungsstücke geleitet wird. Dies ist durch das Weglassen des Brenners und einer Vereinfachung der Abgasführung sicher durchführbar. Durch das Wegfallen der Temperaturen über 1000 °C könnten überall die feuerfesten Ausmauerungen entfallen und die Masse des Gesamtaufbaus gesenkt werden, dadurch würden zudem die Aufheiz- und Abkühlzeiten weiter gesenkt werden.

Eine weitere Vereinfachung des Systems würde eine drückende Gasführung bieten, da die Kühlung des Seitenkanalverdichters nicht mehr notwendig wäre und der Kühler nicht mehr so wichtig wäre. Die heißen Abgase könnten direkt in die Umgebung abgegeben werden oder in einem Wärmetauscher

für eine Vorheizung der angesaugten Luft vor dem elektrischen Lufterhitzer herangezogen werden. Dies könnte die Effizienz der Maschine steigern und ökologischen Fußabdruck des Verfahrens verbessern. Ein Nachteil der drückenden Gasführung ist allerdings der Austritt von heißem Gas im Falle eines Lecks in der Gasstrecke. Durch die Vereinfachung und damit einhergehende Verkleinerung der Maschine wäre sogar der Anbau an ein Bohrgerät denkbar.

Zur besseren Integration in den betrieblichen Ablauf wären außerdem noch weitere Verbesserungen bei der Datenverarbeitung denkbar. Die gewonnenen Analysedaten könnten direkt auf einem zentralen Server gespeichert und ausgewertet werden und würden damit den Zugriff anderer Systeme auf die Analyseergebnisse möglich machen. Dazu müsste zuvor die Gasmessung in die Maschine integriert werden, was allerdings kein allzu großes Problem darstellen sollte.

Weiters wäre es auch denkbar das Handling der vorbereiteten Patronen zu automatisieren, um somit die Sicherheit weiter zu erhöhen und eventuell die Versuchszeit durch die Entnahme noch heißer Patronen und dem Abstellen in einem eigenen Abkühlbereich und dem Laden einer neuen Patrone in die heiße Maschine noch weiter zu verringern. Zur Sicherheit des im Maschinenbereich befindlichen Bedienpersonals und zum Schutz der Maschine vor äußeren Einflüssen müsste die Maschine vollständig eingehaust werden. Dadurch könnten mit einer Maßnahme gleichzeitig Verbrennungen an heißen Oberflächen und Beschädigungen an der Maschine vermieden werden.

Literaturverzeichnis

Literaturverzeichnis

- A. Böhm, M. Lanthaler und G. Weingrill, "Pellet-Pot Gesammelte Dokumente," Lehrstuhl für Aufbereitung und Veredlung, Montanuniversität Leoben, 2011-2013.
- [2] W. Haager, Regelungstechnik, 2. Hrsg., Wien: Hölder-Pichler-Tempsky, 2010.
- [3] P. K. Gallagher und S. S. Warne, "Thermomagnetometry and thermal decomposition of siderite," *Thermochim. Acta*, Nr. 43, pp. 253-267, 1981.
- [4] F. J. Gotor, M. Macías, A. Ortega und J. M. Criado, "Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples," *Phys Chem Minerals*, Nr. 27, pp. 495-503, 2000.
- [5] D. Alkaç und Ü. Atalay, "Kinetics of thermal decomposition of Hekimhan–Deveci siderite ore samples," *International Journal of Mineral Processing*, Nr. 87, pp. 120-128, 2008.
- [6] A. P. Dhupe und A. N. Gokarn, "Studies in the Thermal Decomposition of Natural Siderites in the Presence of Air," *International Journal of Mineral Processing*, Nr. 28, pp. 209-220, 1990.
- [7] S. B. Jagtap, A. R. Pande und A. N. Gokarn, "Kinetics of thermal decomposition of siderite: effect of particle size," *International Journal of Mineral Processing*, Nr. 36, pp. 113-124, 1992.
- [8] A. Böhm, M. Böhm und A. Kogelbauer, "Neutrons for Mineral Processing Thermo Diffractometry to Investigate Mineral Selective Magnetizing Flash Roasting," *Chemie Ingenieur Technik,* Nr. 86, pp. 883-890, 2014.
- [9] J. V. Dubrawski und S. S. Warne, "Differential scanning calorimetry of the dolomite-ankerite mineral series in variable atmospheres," *Thermochimica Acta*, Nr. 135, pp. 225-230, 1988.
- [10] G. Baldauf-Sommerbauer, S. Lux, J. Wagner und M. Siebenhofer, "Determination of the kinetic triplet by an isoconversional and a regression method applied to the decomposition of mineral iron carbonate in nitrogen," *Thermochimica Acta*, Nr. 649, pp. 1-12, 2017.
- [11] M. Olszak-Humienik und M. Jablonski, "Thermal behavior of natural dolomite," *J Therm Anal Calorim,* Nr. 119, p. 2239–2248, 2015.
- [12] M. Olszak-Humienik und J. Możejko, "Kinetics of Thermal Decomposition of Dolomite," *Journal of Thermal Analysis and Calorimetry*, Nr. 56, pp. 829-833, 1999.
- [13] I. Galan, F. P. Glasser und C. Andrae, "Calcium carbonate decomposition," J Therm Anal Calorim, Nr. 111, pp. 1197-1202, 2013.

- [14] A. Böhm, "Aktuelle Mineralstandards des steirischeren Erzbergs," Lehrstuhl für Aufbereitung und Veredlung, Montanuniversität Leoben, 2018.
- [15] D. Pillot, E. Deville und A. Prinzhofer, "Identification and Quantification of Carbonate Species Using Rock-Eval Pyrolysis," *Oil & Gas Science and Technology – Rev. IFP Energies nouvelles,* Nr. 69, pp. 341-349, 2014.
- [16] C. Höcher, "Aufbereitungstechnische Projektstudie," Lehrstuhl für Aufbereitung und Veredlung, Montanuniversität Leoben, 2018.
- [17] Testo GmbH, testo 350 M/XL Englisches Handbuch, p. 233.
- [18] Testo GmbH, testo 350 M/XL Englische Broschüre, p. 11.
- [19] Testo GmbH, "Prüfprotokoll Gasmessgerät," Wien, 21.05.2019.
- [20] ZAMG, "Luftdruck Steiermark," [Online]. Available: https://www.zamg.ac.at/cms/de/wetter/wetterwerteanalysen/steiermark/luftdruck/?mode=geo&druckang=stat. [Zugriff am jeweiligen Versuchstag].
- [21] A. Mosedale, "Instrumentation Note: The Surprisingly Confusing World of Rotameters,"
 [Online]. Available: http://www.myweb.ttu.edu/amosedal/documents/rotameter.pdf. [Zugriff am 08 06 2019].
- [22] G. Rollmann, "Calculation of correction factors for variable area flow meters at deviating working conditions," [Online]. Available: http://www.ktflow.de/fileadmin/kirchnerundtochter/physikalische_grundlagen/korrekturfaktorenberechnung_ en_2.3.pdf. [Zugriff am 08 06 2019].
- [23] R. Barat, "Memorandum: Gas Rotameter Corrections," [Online]. Available: https://web.njit.edu/~barat/ChE496_Spring2011/gas_rotameters.pdf. [Zugriff am 08 06 2019].

Anhangsverzeichnis

Anhang	Beschreibung	Seitenanzahl
Anhang A	Risikoanalyse Pellet-Pot	1
Anhang B	Elektroplanung Pellet-Pot	44
Anhang C	Fertigungszeichnung Schaltschrankgestell	1
Anhang D	Schaltschrank Temperaturberechnung	1
Anhang E	SPS-Programmablauf	1
Anhang F	Fertigungszeichnungen Probenbehälter	4
Anhang G	Kalibrierung Rotameter	1
Anhang H	R&I-Fließbild "Pellet-Pot + Gasmessung"	1
Anhang I	Vorbereitung der Auswertung	2
Anhang J	Auswertungsablauf	2
Anhang K	Eingesetzte Software	1
Anhang L	Versuchsprotokoll Vorlage	4

				•
Arbeitspaket	# Schrittname	Getahren Mensch	Getahren Maschine	wichtige Anmerkungen
Probebehandlung	0 Zusammenfassung	Gewicht. Material. Staub. Stolbern. Rutschen		
D	1 Heben	Gewicht, Material, Staub		
	2 Tragen	Gewicht, Material, Stolpern, Rutschen		
	3 Mischen	Gewicht, Material, Staub		
	4 Teilen	Gewicht, Material, Staub	-	
Vontrollo dor Aniore	0.7	Material Otarik Can Tamazatus	Wantantina Tamaanti Elianistaik Otarik	
Noritrolle der Arilage	U Zusammeriassung	Iviaterial, Staup, Gas, Terriperatur	versiopiurig, remperatur, riussigken, otaup	
	2 Uberprüfung Lutteinlass	-	Verstoptung	
	3 Uberprüfung Absaugung	Material, Staub, Gas	Staub	
	4 Uberprüfung Kühler	Temperatur	Temperatur, Flüssigkeit	
Vorbereitung des Versuchs	0 Zusammenfassung	Gewicht, Material, Staub, Kanten, Quetschen, Stolpern, Rutschen	mech. Beschädigung	
þ	1 Probevorbereitung	Gewicht, Material, Staub, Stolpern, Rutschen		
	2 Gesamtprobemasse bestimmen	Gewicht, Material, Staub, Stolpern, Rutschen	1	
	3 Pot vorbereiten	Gewicht, Kanten, Quetschen, Stolpern, Rutschen	mech. Beschädigung	
	4 Probe einfüllen	Material, Staub	mech. Beschädigung	
	5 Restprobemasse bestimmen	Material, Staub	-	
	6 Pot einbauen	Gewicht, Material, Staub, Kanten, Quetschen	mech. Beschädigung	
	7 Versuchsprotokoll vorbereiten			
Versuchsdurchführung	0 Zusammenfassung	Material, Staub, Gas, Umgebungstemperatur, Temperatur, elektrischer Schlag	mech. Beschädigung, Temperatur	
	1 Hauptschalter einschalten			
	2 Versuchsparameter eingeben		mech. Beschädigung, Temperatur	
	3 Absaugung einschalten	Material, Staub, Gas, Umgebungstemperatur	-	
	4 Datenaufzeichnung starten		-	
	5 Versuch durchführen	Material, Staub, Gas, Umgebungstemperatur, Temperatur	mech. Beschädigung, Temperatur	
	6 Maschine abkühlen lassen	Temperatur	mech. Beschädigung, Temperatur	
	7 Datenaufzeichnung stoppen	-	1	
	8 Hauptschalter ausschalten		-	
	9 Schaltschranktür öffnen	elektrischer Schlag		nur bei ausgeschalteter Maschine!
	10 USB-Stick entnehmen	elektrischer Schlag		nur bei ausgeschalteter Maschine!
	11 Messdaten abspeichern			nur bei ausgeschalteter Maschine!
	12 USB-Stick einstecken	elektrischer Schlag		nur bei ausgeschalteter Maschine!
	13 Schaltschranktür schließen	elektrischer Schlag		nur bei ausgeschalteter Maschine!
	14 Versuchsprotokoll ausfüllen			
N				
Nacribereitung des versuchs		- - - - - - - - - - - - - - - - - - -	mech. Beschadigung	
	1 Pot ausbauen	Gewicht, Kanten, Quetschen, Stolpern, Hutschen	mech. Beschadigung	
			IIIedii. Descriadugurig	
	3 Probemasse bestimmen	Isiene Probebenandiung		
	4 Reinigung Pot	Material, Staub, Kanten, Quetschen	mech. Beschädigung	
1X 8 F 1	L C		4 8 4 C 4	
Kunwasserwecnsei	U Zusammentassung		Temperatur, Flussigkeit, mech. Beschadigung	
	I Vorbereitung Abriuss	I emperatur		
	Z Entleerung	I emperatur T	Temperatur, Flussigkeit Temperatur Elinoiatoit mooh Boochädiauna	Included Accession Accession
	3 Beluiurig			
	4 Abschluss des Kuniwassertauschs	l emperatur	I emperatur, Flussigkeit	

Risikoanalyse - Pellet-Pot (MUL-AuV-PP)

Г

mente IVIUL-AUV-LY von 44	threibung Titel- / Deckblatt Anmerkungen Einleitende Doku	Seitenbesc	Datum Name Urspr Projektbeschreibung	Änderung
Maßstab 1:1	2 AAA2	Cocococococococococococococococococococ	Bearb. JAG Geor Elektrik und Automatisierund	
+ Blatt 2	ispezifikationen =	Anlagen	Datum 28.09.2019 Pellet-Pot	
				%AAA1/1
eingeschulte Personen	Bedienung durch:			
F-F-F (alle fest)	Art der elektr. Verbindung der Funktionseinheiten:			
Form 1 (keine)	Innere Unterteilung:	2	Stoppkategorie (nach EN 60204-1):	
fest eingebaute Bauteile	Art des Aufbaus:		Sicherheitslevel:	
Kastenbauform	Äußere Bauform:		Sicherheitsnorm:	
413 W	Maximale Verlustleistung:		Sicherheit:	
522 W	Kühlleistung (bei dT=20K):	(FI-Schutzschalter extern)	Zusatzschutz:	
Zwangsbelüftung ab 30 °C	Maßnahmen zur Einhaltung der Grenztemperatur:	Nullung	Fehlerschutz:	
50 °C	Grenztemperatur:	Basisisolierung, Berührungsschutz	Basisschutz:	
	Kühlung:		Schutzsmaßnahmen gegen elektrischen Schlag:	
Umgebung A (Industrie)	EMV-Umgebung:		ERGÄNZENDE DATEN	
Verschmutzungsgrad 2	Verschmutzungsgrad:			
	Umgebungson t.	IP40	Schutzart:	
	Umgebungsbedingungen:	32 A	Bemessungsstrom (In):	
TO KA	bemessungsstromstobresugkeit (1pk):	50 Hz	Bemessungsfrequenz (fn):	
24 VDC	Bemessungsbetriebsspannung (Ue) der Steuerstromkreise:	400 V	Bemessungsspannung (Un)	
2 kV	Bemessungsstoßspannungsfestigkeit (Uimp):	Š	Stromart:	
400 V	Bemessungsbetriebsspannung (Ue):	2018	Baujahr:	
400 V	Bemessungsisolationsspannung (Ui):	MUL-Auv-PP	Projektnummer:	
TN-C-S	Netzsystem:	Pellet-Pot	Projektbezeichnung:	
	ERGÄNZENDE DATEN		DATEN TYPENSCHILD	
				JL
Lehrstuhl für Aufbereitung und Veredlung	Montanuniversität Leoben Lehrstuhl für Aufbereitung und Veredlung Franz-Josef-Straße 18, 8700 Leoben Tel.: +43 3842 402 1801 Fax: + 43 3842 402 1802 aufbereitung@unileoben.ac.at	ation	Anlagenspezifik	
F26_MUL_AV_Spezifikationen				
6	5 6 7	3	0 1 2	

	1	e.	*	L.	9			9 26MUL_AV_Sicherheit	
	Sicherh Montan WWW.INTERSITÄT	eitsvorschrift	en	Leh	Montanuniversit: rstuhl für Aufbereitung und \ Franz-Josef-Straße 18, 870 Tel.: +43 3842 Fax: + 43 3842 aufbereitung@unileo	ät Leoben Veredlung 00 Leoben 402 1801 402 1802 oben.ac.at	Lehrstuhl für und V	r Aufbereitung	
	GENERELLE SICHE	RHEITSVORSCHRI	FTEN						
	Beim Betriek	der Anlage stehen besti ung der Sicherheitshinwei	mmte Bauteile unter se kann zum Tod, s	gefährlicher Sp chweren Körper	aannung! verletzungen und Si	achschäde	:n führen.		
	GEFAHR !	sonal darf Arbeiten zum	Fransport, zur Instal	lation und zur I	nbetriebnahme der ,	Anlage au:	sführen.		
	Zu beachten	sind die geltenden Norm	en sowie nationale u	und/oder werks	eigene Unfallverhütı	ungsvorsch	nriften.		
	Folgende Sicherheitshinweise sind zu t	<u>beachten:</u>							
	Der Aufbau, die Inbetriebnahme, die 5 werden.	törungssuche sowie die Reparatur c	ler Anlage darf nur durch qu	alifiziertes Personal, d	ass mit den entsprechenden	Bedienungsan	leitungen vertraut	ist, ausgeführt	
	Die Montage der Geräte muss nach ge Eine ordnungsgemäße Erdung und Lei Diese Maßnahmen dienen der Gewährl	ltenden Normen, staatlichen und örl terdimensionierung sowie ein ordnu ieistung der Sicherheit der Anlage u	dichen Vorschriften erfolgen. 1989emäßer Kurzschlussschu 10 des Bedienpersonals.	itz muss sichergestellt	. werden.	4			
	Vor Durchführung von Sicherheitsprüft entsprechend gekennzeichnet sind.	ungen, Wartungs- und Reparaturma	3nahmen ist sicherzustellen,	dass alle Stromversor	gungen abgeschaltet, gegen	Wiedereinsch	alten gesichert und	T	
	Zur Durchführung von Messungen sinc	l nur technisch einwandfreie und fü	· die jeweilige Messung geeic	jnete Messgeräte zu v	erwenden!				
	Die in den betreffenden Betriebsanleit Gefahren-, Warn-, und Sicherheitshinw	ungen angegebenen Anweisungen s veise sind zwingend zu beachten!	ind genau zu befolgen!						
	Während des Betriebes der Anlage sin Sind in der Anlage Kühlgeräte verbaut, Hierunter fällt auch die regelmäßige Rı	d alle Türen und Abdeckungen gesc ist für einen einwandfreien Betrieb einigung der Filter.	nlossen zu halten. dieser Systeme zu sorgen.						
5									4
	Datum 28.09.2019 Bearb. JAG	Pellet-Pot	Sicherheitsv	orschriften		11	+	Blatt Maßstab	3 1:1
Änderung	Dahim Name Lison	Elektrik und Automatisierung	Lehrstuhl für Aufbereitung und Verediung Seitenbeschreib	Titel	- / Deckblatt Anmerkungen	& AAA2 Einleitende Dokumente	MUL-Auv	V-PP Seite	ω 4

0 1 3	υ	6 8
		F26_MUL_AV_Sicherheit_Elektrik
Sicherheitsvorschriften	Monta Lehrstuhl für Aufberei Franz-Josef-Stral Tel.: Fax: + aufbereitu	nuniversität Leoben ung und Veredlung e 18, 8700 Leoben 43 3842 402 1801 43 3842 402 1802 43 3842 402 1802 g@unileoben.ac.at
ACHTUNG	WARNUNG	
Das Hantieren an der elektrischen Anlage kann lebensgefährlich sein. Arbeiten an dieser Anlage dürfen nur durch Fachpersonal durchgeführt werden.	Jene Teile der Anlage die sich vor dem Ausschalten unter Spannung.	Hauptschalter befinden stehen auch nach dem
Vor allen Arbeiten im Schaltschrank folgende Maßnahmen setzen:		
 Allpolig und allseitig abschalten! Gegen Wiedereinschalten sichern! Auf Spannungsfreiheit prüfen! Erden und Kurzschließen! Benachbarte unter Spannung stehende Teile abdecken (Gefahrenstelle eingrenzen)! 		
Wiederinbetriebnahme geschieht sinngemäß durch Aufheben der vorgenannten Maßnahm in umgekehrter Reihenfolge.	nen	
HINWEISE		
Elektroinstallation und Kabelverlegung:		
Alle Angaben über Kabeltypen und Querschnitte sind als Empfehlung zu verstehen, die national verbindlichen Vorschriften und Normen müssen berücksichtigt werden. Kabel trittsicher verlegen, insbesondere bei Not-Halt (bzw. Not-Aus).	J	
Wartung:		
Einbauteile, die einer Wartung bedürfen (z.B.: FI-Schutzschalter, Lüftermatten, Überspannungsableiter,) sind zyklisch zu überprüfen. Dabei sind die Betriebs- und Wartungsanleitungen der Gerätehersteller zu beachten.		
3 Datum 28.09.2019 Pellet-Pot	Sicherheitsvorschriften	= + Blat 4
Image: Instant JAG Elektrik und Automatisierung Elektrik und Automatisierung Ärderung Datum Name Ursp. Projektisestriebung	eretung Urg Setenbeschreibung Titel- / Deckbitt Anmerkungen	8. AA2 8. AA2 Einterride Dolumente MUL-AUV-PP von 41

0 1 2 3 4	10	9	8 9 F26_MUL_AV_Technik
Technische Ausführung	Lehrstuhl Fran	Montanuniversität Leoben für Aufbereitung und Veredlung z-Josef-Straße 18, 8700 Leoben Tel.: +43 3842 402 1801 Fax: + 43 3842 402 1802 aufbereitung@unileoben.ac.at	Lehrstuhl für Aufbereitung und Veredlung
VERDRAHTUNGSVORSCHRIFTEN (Kurzeichen gemäß IEC 60757)			
VERDRAHTUNGSFARBEN			
Hauptstrom AC schwarz (BK) Steuerstromkreis AC rot (RD Hauptstrom DC schwarz (BK) Steuerstromkreis DC L+ grau (G Neutralleiter N hellblau (BU) Steuerstromkreis DC M dunkell)) SY) blau (DBU)	Fremdspannung Verriegelungsstromkreis Messleitungen	- - orange (OG), arün (GN)
Schutzleiter PE grün-gelb (GNYE) Analogsignale Weiß (V	(HW	Stromwandler	
MINDESTQUERSCHNITTE	VERDRAHTUNG		
Hauptstrom	0,5 - 1,0 mm ²	H05V-K PVC-Aderleitung	
Steuerleiter	-111111 OCT - C'T	HOLV-N FVC-Adelieitung	
SPS-Verdrahtung			
MATERIALVORSCHRIFTEN		XC	
SCHALTSCHRÄNKE	KLEMMEN		
Schaltschränke	bis 2,5 mm² 4 bis 150 mm²		
schrankfarbe			5
Schutzart			
Datum 28.09.2019 Pellet-Pot Technische Ausfi Baserb JAG Pellet-Pot Ausfi	ührung		8AAB1/6 + Blatt Blatt Maßstab 1:
derung Datum Name Urspr. Projektheschreibung Ceitenbeschreibung Seitenbeschreibung Seitenbeschreibung Seitenbeschreibung	Titel- / Deckblatt	8. AAA2 Anmerkungen Einleitende Dokum	mult-AuV-PP

Montanuniversität Leoben, Lehrstuhl für Aufbereitung und Veredlung Franz-Josef-Straße 18, 8700 Leoben, Österreich

et ttum Bearbeite 9.2019 JAG 9.2019 JAG 9.2019 JAG 9.2019 JAG	et for itum Bearbeiter 9.2019 JAG 9.2019 JAG 9.2019 JAG 9.2019 JAG 9.2019 JAG 9.2019 JAG 9.2019 JAG 9.2019 JAG	the set of	t food the set of the	tium Bearbeiter ide	ft F06_M 9.2019 JAG 4.2019 JAG
te sette wurde manuell nacroearbettet Datun 28.09.20 28.00 28.	te Sette wurde manuell nacroearbertet Datun 28.09.20 28.00	te Sette Wirde manuell nacroearbettet Datun 28.09.20 28.00.20 28.00.20 28.00.20 28.00.20 28.00.20 28.00.20 28.	te sette wurde manuell nacroearbetet Datun Datun 28.09.20 28.09.20 28.09.20 28.09.20 28.09.20 28.09.20 28.09.20 28.09.20 29.09.20 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.00000000000000000000000000000000000	te sette wurde manuell nacroearbetet Datun Datun 28.09.20 28.09.20 28.09.20 28.09.20 28.09.20 29.09.20 29.09.20 29.09.20 29.09.20 29.09.20 29.09.20 29.09.20 29.04.20 29.04.20 29.04.20 29.04.20 29.04.20 29.04.20 29.04.20 29.04.20 29.04.20 20.09.04.20 20.09.04.20 20.000 20.04.20 20.000 20.04.20 20.0000 20.000 20.0000 20.000	te sette wurde manuell nacroearbetet Datun Datun Datum Datum
	1 - =A21+A01&EFS1/10 A01&EFS1/11 - &EPD1/1.e :ht A01-A01 - =A21+LOC-B001	1 - =AZ1+A01&EFS1/10 A01&EFS1/11 - &EPD1/1.e cht A01-A01 - =AZ1+LOC-BQ01 LOC-BT01 - =EM1+LOC-XG16	1 - =A21+A01&EFS1/10 A01&EFS1/11 - &EPD1/1.e A01.A01 - =A21+LOC-BQ01 A01-A01 - =A21+LOC-BQ01 LOC-BT01 - =EM1+LOC-XG16 LOC-BT01 - =EM1+LOC-XG16 2.2x14bit &XTC 16bit	1 - =AZ1+A01&FFS1/10 A01&FFS1/11 - &EPD1/1.e A01-A01 - =AZ1+LOC-BQ01 LOC-BT01 - =EM1+LOC-XG16 LOC-BT01 - =EM1+LOC-XG16 SX13bit SX13bit SX14bit	1 - =AZ1+A01&EFS1/10 A01&EFS1/11 - &EPD1/1.e ht A01.A01 - =AZ1+LOC-BQ01 A01-A01 - =AZ1+LOC-BQ01 LOC-BT01 - =EM1+LOC-XG16 LOC-BT01 - =EM1+LOC-XG16 LOC-BT01 - =EM1+LOC-XG16 ang-versorgung
Sicherheitsvorschriften Sicherheitsvorschriften Technische Ausführung	Sicherheitsvorschriften Sicherheitsvorschriften Technische Ausführung Inhaltsverzeichnis : &AAA1/1 - =AZ Inhaltsverzeichnis : =AZ1+A01&EFS Strukturkennzeichenübersicht R&1-Fließbild Betriebsmittelliste : =AZ1+A01-A01	Sicherheitsvorschriften Sicherheitsvorschriften Technische Ausführung Inhaltsverzeichnis : &AAA1/1 - =AZ Inhaltsverzeichnis : =AZ1+A01&EF5 Strukturkennzeichenübersicht R&I-Fließbild Betriebsmittelliste : =AZ1+LOC-BT0 Betriebsmittelliste : =AZ1+LOC-BT0 Schaltschranktüre Schaltschranktüre	Sicherheitsvorschriften Sicherheitsvorschriften Technische Ausführung Inhaltsverzeichnis : &AAA1/1 - =AZ Inhaltsverzeichnis : =AZ1+A01&EF5 Strukturkennzeichenübersicht R&I-Fileßbild Betriebsmittelliste : =AZ1+A01-A01 Betriebsmittelliste : =AZ1+A01-A01 Betriebsmittelliste : =AZ1+A0130 Betriebsmittelliste : =AZ1+A01-A01 Betriebsmittelliste : =AZ1+A0130 Betriebsmittelliste : =AZ131 Betriebsmittelliste : =AZ1310 Betriebsmittelliste : =AZ1310 Betriebsmittelliste : =AZ1310 Betriebsmittelliste : =AZ1310 Betriebsmittelliste : =AZ1310 Betriebsmittelliste : =AZ13100 Betriebsmittelliste : =AZ13100 Betriebsmittelliste : =AZ13100 Betriebsmittelliste : =AZ13100 Betr	Sicherheitsvorschriften Sicherheitsvorschriften Technische Ausführung Inhaltsverzeichnis : &AA1/1 - =AZ Inhaltsverzeichnis : &AZ1+A01&EFS Strukturkennzeichenübersicht R&L-Fließbild Betriebsmittelliste : =AZ1+LOC-BTO Betriebsmittelliste : =AZ1+LOC-BTO Schaltschranktüre Netzwerkplan Schaltschranktüre Schaltschranktüre Schaltschranktüre Schaltschranktüre Schaltschranktüre Ses-Übersicht - CPU SpS-Übersicht - SM1231 AI &ATC 16 SPS-Übersicht - SM1231	Sicherheitsvorschriften Sicherheitsvorschriften Technische Ausführung Inhaltsverzeichnis : &AAA1/1 - =AZ Inhaltsverzeichnis : &AAA1/1 - =AZ Inhaltsverzeichnis : =AZ1+A01&EF Strukturkennzeichenübersicht R&L-Fließbild Betriebsmittelliste : =AZ1+A01-A01 Betriebsmittelliste : =AZ1+LOC-BT0 Schaltschrankaufbau Schaltschrankaufbau Schaltschrankutire Netzwerkeplan Netzwerkeplan Schaltschrankutire Schaltschrankutire Schaltschrankutire Schaltschrankutire Schaltschrankutire Schaltschrankutire Schaltschrankutire Schaltschrankutire Sestensanalverdichter Lufterhitzer
Sicherh	Sicherh Techni Techni Inhalts Inhalts Struktu R&L-Fii Betrieb	Sicherh Sicherh Technic Technic Technic Inhalts Inhalts Inhalts R&I-Fli Betrieb HAOI Schalts +AOI Schalts +AOI Schalts	Sicherh Sicherh Technic Technic Technic Inhalts Inhalts Inhalts Struktu Betrieb HA01 Schalts HA01 SpS-Ub	Sicherh Sicherh Technic Technic Technic Inhalts Inhalts <tr inhalts<="" tr=""> Inhalts</tr>	Sicherh Sicherh Technic Technic Technic Inhalts Inhalts Inhalts Inhalts
		+ 11ZA= + 12ZA= + + 1ZA=		= = + = = + = = + = = + = = + = = + = = + = = + = + + = + + = + + = + + = + + = + + = + + = + + = + + = = + = = + = = + = = + = = + = = + = = + = = + = = + = = + = = + = = + = = + = = + = = + = = + = + = <td>= + =</td>	= + =
	8AAB1/6.a 8AAB1/6.b 8AB1/6.b 8AB1/7.a 8PFB1/1 8PFB1/1 8EPB1/8.a	&AAB1/6.a &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/1 &AAB1/1 &AAB1/1 &AAB1/1 &AAB1/1 &AAB1/1 &AAB1/1 &AAB1/1 &AAB1/8.b &AAB1/8.b	&AAB1/6.a &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/1.a &AAB1/1.a &AAB1/1.a &AAB1/8.b	&AAB1/6.a &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/1 &AB1/1.a &AAB1/1 = &AAB1/1 = &AAB1/1 = &AAB1/2 = &AAB1/3 = &AAAB1/3 = &AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	&AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/6.b &AAB1/8.b &AAB1/1.a &BPB1/8.b &AAB1/1.a &EFB1/8.b &AAB1/3.a &EFA1/3 = &EFS1/1 = &EFS1/5 = &EFS1/6 =
altsverzeichnis	altsverzeichnis a kturbeschreibung f Fließbild rebsmittelliste	kturbeschreibung Kturbeschreibung Fließbild iebsmittelliste iebsmittelliste tagelayout tragelayout	Itsverzeichnis kturbeschreibung kturbeschreibung Fileßbild Fileßbild iebsmittelliste iebsmittelliste iebsmittelliste vut tagelayout tagelayout d'Übersicht -Übersicht -Übersicht -Übersicht -Übersicht -	Itsverzeichnis Kturbeschreibung Fleßbild iebsmittelliste iebsmittelliste iebsmittelliste iebsmittelliste iagelayout Jbersicht -Übersicht - Übersicht - Übersicht - Ubersicht - - - - - - - - - - - - - - - - - - -	Itsverzeichnis kturbeschreibung kturbeschreibung iebsmittelliste iebsmittelliste iebsmittelliste iebsmittelliste iebsmittelliste iebsmittelliste tagelayout tagelayout Ubersicht -Übersicht - Übersicht - Übersicht - Übersicht - Übersicht - Übersicht - Übersicht - Übersicht - Übersicht - Übersicht - Übersicht - I - Übersicht - I - Übersicht - - - - - - - - - - - - - - - - - - -
6 Inhalts	 / IIIIIauss 8 Struktu 9 R&I Fliv 10 Betrieb 	/ Ittitutus 8 Struktu 8 Struktu 9 R&I Flk 9 R&I Flk 10 Betrieb 11 Betrieb 12 Montag 13 Montag 14 Netzwe	/ Ittituense 8 Struktu 9 R&I Flik 9 R&I Flik 10 Betrieb: 11 Betrieb: 12 Montag 13 Montag 14 Netzwe 15 SPS-Üt 16 SPS-Üt 17 SPS-Üt 18 SPS-Üt 19 SPS-Üt	/ ⊥IIIIdiats 8 Struktu 9 R&I Flik 10 Betrieb: 11 Betrieb: 11 Betrieb: 11 Betrieb: 11 Betrieb: 11 Betrieb: 11 Betrieb: 12 Montag 13 Montag 13 Montag 13 Montag 14 Netzwe 15 SPS-Üb 16 SPS-Üb 17 SPS-Üb 18 SPS-Üb 20 Stromk 21 Stromk 23 Stromk 23 Stromk	/ JIIIIalias 8 Struktu 9 R&I Flie 10 Betrieb: 11 Betrieb: 11 Betrieb: 11 Betrieb: 11 Betrieb: 11 Betrieb: 11 Betrieb: 12 Montag 13 Montag 13 Montag 13 Montag 13 Montag 13 Montag 14 Netzwe 15 SPS-Üb 16 SPS-Üb 17 SPS-Üb 18 SPS-Üb 19 SPS-Üb 20 Stromk 21 Stromk 25 Stromk 26 Stromk 27 Stromk 28 Stromk

						-	_		
Inhā	altsv	/erzeichnis				Spalte X: eine automatisch erzeugte Seite w.	ırde manuell nachbearbeitet	FO	AUL_AV
Seit	ite	Dokumentenart	Blatt	Anlage	Einbauort	Seitenbeschreibung	Datum	Bearbeiter	×
	30 Si	Stromlaufplan	8EFS1/11	=AZ1	+A01	Drucksensoren	09.09.2019	JAG	
	31 S	Stromlaufplan	&EFS1/12	=AZ1	+A01	Luftmassenmesser	09.09.2019	JAG	
	32 S	Stromlaufplan	&EFS1/13	=AZ1	+A01	Lambda-Sonde	09.09.2019	JAG	
	33 K	(abelübersicht	&EMA1/1			Kabelübersicht : =AZ1+A01-WD01 - =EB1+A01-WD01	28.09.2019	JAG	
	34 K	Klemmenübersicht	&EMA2/1.a			Klemmenleistenübersicht : =AZ1+A01-XD01 - =EM1+A03-XZ16	28.09.2019	JAG	
	35 K	demmenpläne	&EMB2/1.a			Klemmenplan =A21+A01-XD01	28.09.2019	JAG	
	36 K	demmenpläne	&EMB2/2.a			Klemmenplan =A21+A01-X230	28.09.2019	JAG	
	37 K.	demmenpläne	&EMB2/3.a			Klemmenplan =A21+A01-X240	28.09.2019	JAG	
	38 K	(lemmenpläne	&EMB2/4.a			Klemmenplan =A21+A01-X250	28.09.2019	JAG	
	39 K.	(lemmenpläne	&EMB2/5.a			Klemmenplan =EB1+A01-XD60	28.09.2019	JAG	
	40 A	Artikelstückliste	&EPD1/1.a			Artikelstückliste : WEI.1112910000 - SIE.5SY4102-7	28.09.2019	JAG	
	41 A	Artikelstückliste	8EPD1/1.b			Artikelstückliste:SIE.5SY4105-7 - PXC.2868619	28.09.2019	JAG	
	42 A.	Artikelstückliste	&EPD1/1.c			Artikelstückliste : RS.712-7402 - BOSCH.0280218113	28.09.2019	JAG	
	43 A	Artikelstückliste	&EPD1/1.d			Artikelstückliste : E+H.PMC21-AA1M1E/WAJA - SIE.5SY4316-6	28.09.2019	JAG	
	44 A	Artikelstückliste	&EPD1/1.e			Artikelstückliste : ABB.ACS310-03E-17A2-4 - LEI.LE10000HT	28.09.2019	JAG	
6.a		Datum 28.09.201	9 Pellet-Po	r	(Inhaltsverzeichnis : =AZ1+A01&EFS1/11 -	+		8ADB1/7.a Blatt 6.b
		Bearb. JAG		tomaticiarund	(Solo) (Solo)	All first Andreadersons and a second se			Maßstab 1:1
Änderung Datu	atum	Name Urspr	Projektbeschreib	ung		un rur kunketeurug und Veredlung Seitenbeschreibung Inhaltsverzeichnis Anmerkungen 1	ML ML	JL-AuV-PP	Von 44

>	7 Τ	δ.	0	۶ م ۲
Strukturkennzei	cheniihersicht			E3A MILL AV
				144-101-74
Bezeichnung	Strukturtyp	Strukturbeschreibung	Vollständige Bezeichnung	ng Strukturbeschreibung
=AZ1	Anlage	Allgemein		
=6Q1	Anlage	Seitenkanalverdichter		
=EB1	Anlage	Lufterhitzer		
=BQ1	Anlage	Gasmessung		
=EM1	Anlage	Gasbrenner		
=A00	Anlage			
+A01	Einbauort	Hauptschaftschrank		
+A02	Einbauort	Klemmenkasten Lambda-Sonde		
+A03	Einbauort	Gasschaltschrank		
+LOC	Einbauort	Feld		
+A3	Enbauort			
+A1	Einbauort			
&AAA1	Dokumentenart	Deckblatt		
8AAA2	Dokumentenart	Einleitende Dokumente		
&AAB1	Dokumentenart	Inhaltsverzeichnis		
&ADB1	Dokumentenart	Strukturbeschreibung		
&PFB1	Dokumentenart	R&I Fließbild		
&EPB1	Dokumentenart	Betriebsmittelliste		
&ETL1	Dokumentenart	Montagelayout		
&EFA1	Dokumentenart	Netzwerkplan		
&EFA2	Dokumentenart	SPS-Übersicht		
&EFS1	Dokumentenart	Stromlaufplan		
&EMA1	Dokumentenart	Kabelübersicht		
&EMB1	Dokumentenart	Kabelpläne		
8EMA2	Dokumentenart	Klemmenübersicht		
&EMB2	Dokumentenart	Klemmenpläne		
&EPD1	Dokumentenart	Artikelstückliste		
&EPD2	Dokumentenart	Artikelsummenstückliste		
&EPD3	Dokumentenart	RS-Bestellliste		
8.AAB1/6.b				&PFB1/1 8
Datum	Dellet-Pot	t Struk	turkennzeichenübersicht	= + Blatt 7.a Ma65tab 1:1
Gepr	Elektrik und	Automatisierung		& ADB1 MIII-AIIV-PP Seite 8
* Änderung Datum Name Urspr	Projektbeschreibu	ung Seltenb	eschreibung Strukturkennzeichenübersicht Anmerkungen	Strukturbeschreibung

Montanuniversität Leoben, Lehrstuhl für Aufbereitung und Veredlu Franz-Josef-Straße 18, 8700 Leoben, Österreich

		M			T	no llotono Ll	Autil collar rate and a	Coite / Dend			
0.0000 1 0.00000 0.00000 0.000000 0.00	BINK	Menge	bezeicnnung		Iypnummer	Hersteller	Artikeinummer	Selfe / Prad	Funktionste	the	
Constrain I Constraint	=AZ1+A01-A01	-	S7-1200, CPU 1.	215C, DC/DC/DC, 14DI/10D0/2AI/2AO	6ES7215-1AG40-0XB0	SIE	SIE.6ES7215-1AG40-0XB0	&EFS1/3.0	SPS-CPU		
0.0000 1 0.00000000000000000000000000000000000	=AZ1+A01-A02		57-1200, ANALC	OGEINGABE SM 1231, 8AI	6ES7231-4HF32-0XB0	SIE	SIE.6ES7231-4HF32-0XB0	&EFA2/5.3	SPS-Analogei	ingänge	
Section P Section	=A71+A01-A04	-	57-1200, AIMALC	OGADOGABE SHI 1232, 240 MGEINGARE SM 1231 TC 8 AI	6FC7231-50F22-0XB0	SIF	SIE 6EC7231-50E32-0AB0	&EFA2/7.3	SPS-Thermos	usyaniye alamenta (Tvn S)	
600000 1 0 0000000 1000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 000000000000000000000000000000000000	=AZ1+A01-A05	-	57-1200. ANALC	OGEINGABE SM 1231 TC. 8 AI	6ES7231-50F32-0XB0	SIE	SIE.6ES7231-50E32-0XB0	&EFA2/8.3	SPS-Thermoe	elemente (Tvn K)	
GG (G) (G) (G) (G) (G) (G) (G) (G) (G) (G)	=AZ1+A01-FC01		Leitungsschutzsc	schalter 230/400V 10kA. 1-polia. B. 10A	5SY4110-6	SIE	SIE.5SY4110-6	&EFS1/1.3	Sicheruna - N	Vetzteil 24VDC	
0.0000 1 0.89906000 1.9 0.8990600 0.0000 </td <td>=AZ1+A01-FC02</td> <td></td> <td>Leitungsschutzsc</td> <td>schalter 230/400V 10kA. 1-polia, B, 6A</td> <td>5SY4106-6</td> <td>SIE</td> <td>SIE.5SY4106-6</td> <td>&EFS1/1.6</td> <td>Sicherung - N</td> <td>Vetzteil 15VDC</td> <td></td>	=AZ1+A01-FC02		Leitungsschutzsc	schalter 230/400V 10kA. 1-polia, B, 6A	5SY4106-6	SIE	SIE.5SY4106-6	&EFS1/1.6	Sicherung - N	Vetzteil 15VDC	
Control State <	=AZ1+A01-FC03	1	Leitungsschutzsc	schalter 230/400V 10kA, 1-polig, B, 6A	5SY4106-6	SIE	SIE.5SY4106-6	&EFS1/1.8	Sicherung - N	Vetzteil SVDC	
Control Image: control	=AZ1+A01-FC04	1	Leitungsschutzso	schalter 230/400V 10kA, 1-polig, B, 6A	5SY4106-6	SIE	SIE.5SY4106-6	&EFS1/2.1	Sicherung - L	üfter	
COUCCI Image: Control (Control) (Contro) (Control) (Control) (Contro) (Control) (Control) (Contr	=AZ1+A01-FC11	1	Leitungsschutzso	schalter 230/400V 10kA, 1-polig, C, 0.5A	5SY4105-7	SIE	SIE.5SY4105-7	&EFS1/1.6	Sicherung - L	uftmassenmesser 15V	
0.0000 1 Description (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	=AZ1+A01-FC12	1	Leitungsschutzsc	schalter 230/400V 10kA, 1-polig, C, 0.5A	5SY4105-7	SIE	SIE.5SY4105-7	&EFS1/1.8	Sicherung - L	uftmassenmesser 5V	
0.00000 1 Description (0.00000) 0.0000 0.00000 0.0000 0.000000 0.00000 0.000000	=AZ1+A01-FC21	1	Leitungsschutzsc	schalter 230/400V 10kA, 1-polig, C, 2A	5SY4102-7	SIE	SIE.5SY4102-7	&EFS1/4.1	Sicherung - 2	24 VDC Versorgung Lambda-Sonde	
Outcol I Description Sector Sector<	=AZ1+A01-FC22	1	Leitungsschutzso	schalter 230/400V 10kA, 1-polig, C, 0.5A	5SY4105-7	SIE	SIE.5SY4105-7	&EFS1/11.1	Sicherung - E	Drucksensor Pot In	
COLOR I Important MORPORATION (MARLA) Control Model	=AZ1+A01-FC23	1	Leitungsschutzsc	schalter 230/400V 10kA, 1-polig, C, 0.5A	5SY4105-7	SIE	SIE.5SY4105-7	&EFS1/11.4	Sicherung - [Drucksensor Pot Out	
0.00000 1 Number of the condition	=AZ1+A01-FC24	1	Leitungsschutzst	schalter 230/400V 10kA, 1-polig, C, 4A	5SY4104-7	SIE	SIE.5SY4104-7	&EFS1/1.3	Sicherung - S	SPS/HMI	
Control I Control Contro Control Control <	=AZ1+A01-GQ01	-	Filterlüfter, 44m	1 ³ /h, 230VAC, 19W	PF 22.000	PF	PF.11622101055	&EFS1/2.1	Lüfter - Scha	ttschrank	
Control Image: control Image: control Contro Contro Control <td>=AZ1+A01-KF01</td> <td>1</td> <td>Optokopplermoc</td> <td>dul 24VDC/0,5A</td> <td>MIRO TR 24VDC SK</td> <td>MURR</td> <td>MURR.52500</td> <td>&EFS1/8.9</td> <td>Optokoppler</td> <td>- Lufterhitzer</td> <td></td>	=AZ1+A01-KF01	1	Optokopplermoc	dul 24VDC/0,5A	MIRO TR 24VDC SK	MURR	MURR.52500	&EFS1/8.9	Optokoppler	- Lufterhitzer	
0.00010 1 Nether 6A, AL Destruction 0 Destruction 0 Nether 6A, AL Destruction 0 Nether 6A, AL Nether	=AZ1+A01-PF01	1	Meldeleuchte Ro	ot, 24V, LED	LEDtecRed024VAC/DC	LEDT	LEDtecRed024Vac-dc	&EFS1/6.1	Meldelampe	"Fehler"	
Control I Description Description <thdescription< td=""><td>=AZ1+A01-PF02</td><td>1</td><td>Meldeleuchte Gé</td><td>ielb, 24V, LED</td><td>LEDtecYellow024VAC/DC</td><td>LEDT</td><td>LEDtecYellow024Vac-dc</td><td>&EFS1/6.2</td><td>Meldelampe</td><td>"Warnung"</td><td></td></thdescription<>	=AZ1+A01-PF02	1	Meldeleuchte Gé	ielb, 24V, LED	LEDtecYellow024VAC/DC	LEDT	LEDtecYellow024Vac-dc	&EFS1/6.2	Meldelampe	"Warnung"	
Control 1 Control Cont	=AZ1+A01-PF03	1	Meldeleuchte Gr	irün, 24V, LED	LEDtecGreen024VAC/DC	LEDT	LEDtecGreen024Vac-dc	&EFS1/6.3	Meldelampe	"OK"	
Control I Network (i) Control	=AZ1+A01-PF04	1	Meldeleuchte W	veiß, 24V, LED	LEDtecWhite024VAC/DC	LEDT	LEDtecWhite024Vac-dc	&EFS1/6.6	Meldelampe	"SKV Ein"	
(6000) 1 Image: Section of the section	=AZ1+A01-PF05		Meldeleuchte W	veiß, 24V, LED	LEDtecWhite024VAC/DC	LEDT	LEDtecWhite024Vac-dc	&EFS1/6.7	Meldelampe	"Heizung Ein"	
(5000) 1 (5000) 0 (5000) 0 (5000) 0 (5000) (50	=AZ1+A01-PH01	-	KTP400 COMFO	DRT	6AV2124-2DC01-0AX0	SIE	SIE.6AV2124-2DC01-0AX0	&EFA1/3.5	IMH		
control 1 montrol 6 control contro contro contro<	=AZ1+A01-PJ01	-	Akustischer War	mmelder, 24V, 75dB	877-1832	RS	RS.877-1832	&EFS1/6.4	Summer "Fet	ller"	
(1) (1) <td>=A21+A01-QA01</td> <td></td> <td>Tronnechalline 2</td> <td>Lurter, einstellbär 2. molio: 62A</td> <td>FLZ 330 466-130</td> <td>1 20</td> <td>DC 456-130</td> <td>1.2/ICT30</td> <td></td> <td>urter</td> <td></td>	=A21+A01-QA01		Tronnechalline 2	Lurter, einstellbär 2. molio: 62A	FLZ 330 466-130	1 20	DC 456-130	1.2/ICT30		urter	
(5.0.001) 1 Demolscience 1 Demolscience Description Descripion Description Descripion <td>-AZ1+A01-SE01</td> <td>-</td> <td>Drucktacter 1NC</td> <td>D/1NC @33mm Schwarz</td> <td>XB7NA25</td> <td>2 5</td> <td>CE XB7NA75</td> <td>&EFC1/5 1</td> <td>Reet</td> <td>_</td> <td></td>	-AZ1+A01-SE01	-	Drucktacter 1NC	D/1NC @33mm Schwarz	XB7NA25	2 5	CE XB7NA75	&EFC1/5 1	Reet	_	
4000000000000000000000000000000000000	=471+401-5F100	-	Not-Halt Tacter	NC 0/40mm Pilz-Form Rot	15EA619550R1041	ARR	ΔRR 15F4619550R1041	&EFS1/5 2	Not-Halt		
cutacitie 1 1 1 1 1 1 1 1 1 <td>=AZ1+A01-TB01</td> <td></td> <td>Stromversorgune</td> <td>na. 24VDC, 10A</td> <td>TRIO-PS/1AC/24DC/10</td> <td>PXC</td> <td>PXC.2866323</td> <td>&EFS1/1.3</td> <td>Netzteil - 24</td> <td>VDC</td> <td></td>	=AZ1+A01-TB01		Stromversorgune	na. 24VDC, 10A	TRIO-PS/1AC/24DC/10	PXC	PXC.2866323	&EFS1/1.3	Netzteil - 24	VDC	
cd:0.0101 1 3000000000000000000000000000000000000	=AZ1+A01-TB02	-	Stromversorgune	ng, 15VDC, 4A	STEP-PS/1AC/15DC/4	PXC	PXC.2868619	&EFS1/1.6	Netzteil - 15	V DC	
Cutoliti 1 Consistention & Lings of Controllorium K Cutolitie Cutolitie <td>=AZ1+A01-TB03</td> <td>-</td> <td>Stromversorgune</td> <td>19, 5VDC, 2A</td> <td>712-7402</td> <td>RS</td> <td>RS.712-7402</td> <td>&EFS1/1.8</td> <td>Netzteil - 5 V</td> <td>DC</td> <td></td>	=AZ1+A01-TB03	-	Stromversorgune	19, 5VDC, 2A	712-7402	RS	RS.712-7402	&EFS1/1.8	Netzteil - 5 V	DC	
Cutuod11 1 Indum (notifier) 1 Remain (notifier) 1 <th< td=""><td>=AZ1+A01-U1</td><td>-</td><td>Kompakt-Schalts</td><td>tschrank AE, 1-türig, BHT 600x1200x300 mm</td><td>AE.1260500</td><td>RIT</td><td>RIT.1260500</td><td>&ETL1/1.1</td><td>Hauptschalts</td><td>chrank</td><td></td></th<>	=AZ1+A01-U1	-	Kompakt-Schalts	tschrank AE, 1-türig, BHT 600x1200x300 mm	AE.1260500	RIT	RIT.1260500	&ETL1/1.1	Hauptschalts	chrank	
«««сполисца: 1 Свелини собски, распыт ил Молбилу 30:2006 БЕП. Бело собски БЕП. Бело собски БЕП. Бело собски БЕП. Бело собски БЕП.	=AZ1+A01-U1.1							&ETL1/2.0	Türe		
off:00011 1 Review ofform, genetit, mitchening 10:2006 RS: 03:006 RTI/11:1	=AZ1+A01-U11	-	Kabelkanal 60x6	60mm, geschlitzt, mit Abdeckung	301-2006	RS	RS.301-2006	&ETL1/1.1			
Cutotititi 1 Construction 01:2005 65:201:2005 65:201:2005 61:11:11	=AZ1+A01-U12	-	Kabelkanal 60x6	60mm, geschlitzt, mit Abdeckung	301-2006	RS	RS.301-2006	&ETL1/1.3			
-47-401/14 1 Conduction (exact) (11/2) 1 Conduction (exact) (11/2) (exact) (11/2) (exac) (11/2) </td <td>=AZ1+A01-U13</td> <td>1</td> <td>Kabelkanal 60x6</td> <td>60mm, geschlitzt, mit Abdeckung</td> <td>301-2006</td> <td>RS</td> <td>RS.301-2006</td> <td>&ETL1/1.1</td> <td></td> <td></td> <td></td>	=AZ1+A01-U13	1	Kabelkanal 60x6	60mm, geschlitzt, mit Abdeckung	301-2006	RS	RS.301-2006	&ETL1/1.1			
	=AZ1+A01-U14	1	Kabelkanal 60x6	60mm, geschlitzt, mit Abdeckung	301-2006	RS	RS.301-2006	&ETL1/1.1			
Mathematical Lange Restant	=AZ1+A01-U15	1	Kabelkanal 40x6	60mm, geschlitzt, mit Abdeckung	879-3731	RS	RS.879-3731	&ETL1/1.1			
4.201.01 1 Kolman Godfmin, gentler, minh Abodeurg 59-373 Kest 201.3 Kent 201.3	=AZ1+A01-U16	1	Kabelkanal 40x6	60mm, geschlitzt, mit Abdeckung	879-3731	RS	RS.879-3731	&ETL1/1.1			
-utransmission 1 Semulation Memory Semulation	=AZ1+A01-U17	1	Kabelkanal 40x6	60mm, geschlitzt, mit Abdeckung	879-3731	RS	RS.879-3731	&ETL1/1.2			
ACI: 401:401 Isometochner, 64fe 3.00m Mcc.0.31061 (0000000 PCC PCC/040174 (000000000000000000000000000000000000	=AZ1+A01-WE01							&EFS1/1.2	Schutzerdung	g - Montageplatte	
Also Bits 1.1.1 Vertalencio 4 Folgi Bit 1.0.1 Refs 1.1.1 Refs 1.1.1 Vertalencio 4 Folgi 2.2.4.01.W013 1 Vertalencio 4 Folgi Bit 1.0.1 Vertalencio Bit 1.1.1 Vertalenci 2.2.4.01.W013 1 Vertalencio 4 Folgi Bit 1.0 Vertalenci Bit 1.1.1 Vertalenci 2.2.4.01.W013 1 Alconsignemini 1 Alconsignemini Bit 1.1.1 Vertalenci 2.2.4.01.W013 1 Alconsignemini 1 Alconsignemini Bit 1.1.1 Vertalenci 2.2.4.01.W014 1 Alconsignemini 1 Alconsignemini Bit 1.1.1 Vertalenci 2.2.4.01.W014 1 Alconsignemini Element	=AZ1+A01-WE02	1	Sammelschiene,	, Kupfer 3x10mm	NLS-CU 3/10 SN 1000MM	PXC	PXC.0402174	&EFS1/11.2	Schirmauflag	e	
-utraining 1 Verteinencox(-1oli) 1 Verteinencox(-1oli) Netting Netting<	=AZ1+A01-WE03							&EFS1/1.4	Erdung - 0 V	DC (auf Montageplatte)	
Action:Wortine Image: Month Sector Mont	=AZ1+A01-WZ01	1	Verteilerblock 4-	-polig	BRT 160 A	ABB	ABB.BRT160A	&ETL1/1.1	Verteilung		
Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-	=AZ1 +A01-WZ01_WC01							%EFS1/1.1	Verteilung - F	nase I Dhase 7	
4/21-14/01/2012/46 1 Atmonified Effection Effectin <	=A71+A01-W701-WC03							&FFS1/1 1	Verteilung -	Dhace 3	
-a21+01-3C24 1 Azonegylemme 15-polg, grau etch/1,3 Venellyd - 34 V C -a21+401-3C24 1 Azonegylemme 15-polg, grau Azonegylemme 15-polg, grau Venellyd - 34 V C -a21+401-3C24 1 Azonegylemme 15-polg, grau Azonegylemme 15-polg, grau Venellyd - 34 V C -a21+401-3C807C_13 1 Azonegylemme 15-polg, grau Kenellyd - 34 V C Azonegylemme 15-polg, grau Venellyd - 34 V C -a21+401-3C807C_13 1 Azonegylemme 15-polg, grau Kenellyd - 34 V C Venellyd - 34 V C -a21+401-3C807C_13 1 Azonegylemme 15-polg, grau Kenellyd - 34 V C Venellyd - 34 V C -a21+401-3C807 1 Azonegylemme 15-polg, grau Kenellyd - 34 V C Venellyd - 34 V C -a21+401-3C807 1 Invescrimester Azonegylemme 15-polg, grau Kenellyd - 34 V C -a21+401-3C801 1 Invescrimester Azonegylemme 15-polg, grau Kenellyd - 34 V C -a21+401-3C801 1 Invescrimester Kenellyd - 34 V C Kenellyd - 34 V C -a21+401-3C801 1 Invescrimester Kenellyd - 34 V C Kenellyd - 34 V C	=AZ1+A01-WZ01-WE02							&EFS1/1.1	Verteilung - I	Neutralleiter	
-421-HO1-X024_SF5 1 Abzweigkerme Is poligi grau kertellung - 24V DC (SFS) vertellung - 24V DC (SFS) -421-HO1-X020_L1 1 Abzweigkerme Is poligi grau Kers/I1.4 Vertellung - Masse (0 V DC) -421-HO1-XEDVC_2 1 Abzweigkerme Is poligi grau Kers/I1.4 Vertellung - Masse (0 V DC) -421-HO1-XEDVC_2 1 Invelocement Spoligi grau Kers/I1.4 Vertellung - Masse (0 V DC) -421-HO1-XEDVC_2 1 Invelocement Spoligi grau Kers/I1.3 Levelore Internation -41-HO1-XEDVC_2 1 Invelocement Spoligi grau Kers/I1.3 Levelore Internation -41-HO2-XEDVC_2 1 Invelocement Spolie Kers/I1.4 Kers/II.4 Kers/II.4 -41-HO2-XEDVC_2 1 Invelocement Spolie Kers/II.4 Kers/II.4 Kers/II.4	=AZ1+A01-XD24	-	Abzweigklemme	e 15-polia, grau			Abzweidklemme 15pol grau	&EFS1/1.3	Verteilung - 2	24 V DC	
-a21-M01/SEUDC1 1 Abzweigkemme 15 polig grau kereining Mase (0 V DC) kereining Mase (0 V DC) kereining Mase (0 V DC) -a21-401/SEUDC2 1 Abzweigkemme 15 polig grau kereining Mase (0 V DC) kereinin	=AZ1+A01-XD24_SPS	1	Abzweigklemme	e 15-polig, grau			Abzweigklemme_15pol_grau	&EFS1/1.3	Verteilung - 2	24V DC (SPS)	
-aZ1+A17/EUDC_2 1 Abzweigkemme 15polig gau e/ES1/1.3 Vertelling- Mase 2 (0 V C) -aZ1+A017/EUDC_2 1 IuVi-Buches Bioretrerschluss RCP-35PFH-TU/2001 RES1/1.3 Vertelling- Mase 2 (0 V C) -aZ1+A02.01 1 IuVi-Buches Bioretrerschluss RCP-35PFH-TU/2001 RES1/1.3 Vertelling- Mase 2 (0 V C) -aZ1+A02.01 1 IuVi-Buches Bioretrerschluss RCP.320 MADH Amme 15pol.gau RES1/1.3 Vertelling- Mase 2 (0 V C) -aZ1+A02.01 1 IuVi-Buches Bioretrerschluss RFS1/1.3 Vertelling- Mase 2 (0 V C) REF3/1.3 Vertelling- Mase 2 (0 V C) -aZ1+CG-BP1 1 IuVimassemesser Price PP1 REF3/1.3 Vertelling- Mase 2 (0 V C) -aZ1+CG-BP1 1 IuVimassemesser Price PP1 REF3/1.1 Puck - P0 ch -aZ1+CG-BP1 1 Druckersor, E+H Cenbar PMC1 Puck - P1 Puck - P0 ch -aZ1+CG-BP1 1 Druckersor, E+H Cenbar PMC1 REF3/1.1.4 Puck - P0 ch -aZ1+CG-BP1 1 Imme25nde SEG1/1.1.4 Puck - P0 ch REF3/1.1.4 <	=AZ1+A01-XE0VDC_1		Abzweigklemme	e 15-poliq, grau			Abzweigklemme_15pol_grau	&EFS1/1.4	Verteilung - h	Masse (0 V DC)	
-#21+A01-XG100 1 LAN-Buchse, Bejonetverschluss RCP-5SFFH-TCU7001 REFA1/3.3 LAN-Buchse, Immoderschluss AMPH, RCP-5SFFH-TCU7001 REFA1/3.3 LAN-Buchse, Immoderschluss Landbarschluss Eaz1401-XG10 REFA1/3.3 Landbarschluss Landbarschluss =Z1+A02-A01 1 Lumbarssemmeser EXTL-MM-V4.0 SeTL-MM-V4.0 REF3/13 Lumbarssemmeser =Z1+A02-A01 1 Lumbarssemmeser Ber5/133 Lumbarssemmeser Lumbarssemmeser =Z1+A02-A01 1 Lumbarssemmeser BEF3/131 Duuk c-PPt OL Lumbarssemmeser =Z1+LCC-BP01 1 Lumbarssemmeser E+H E+H-MC21-AMMENVAA REF3/131 Druk c-PPt OL =Z1+LCC-BP02 1 Lumbarssemmeser E+H E+H-MC21-AMMENVAA REF3/131 Druk c-PPt OL =Z1+LCC-BP02 1 Lumbarssemmeser E+H-MC21-AMMENVAA REF3/131 Druk c-PPt OL =Z1+LCC-BP01 1 Lumbarssemmeser E+H-MC21-AMMENVAA REF3/133 Lumbarssemmeser =Z1+LCC-BP01 1 Lumbda-Socie, Beoch LSU49 REF3/133 L	=AZ1+A01-XE0VDC_2	1	Abzweigklemme	e 15-polig, grau			Abzweigklemme_15pol_grau	&EFS1/1.3	Verteilung - h	Masse 2 (0 V DC)	
=Z1+A02-401 1 Lumbda-Sondler Va,0, 24V L-mW V4,0 24V SKT.L-MW V4,0 SKT.L-MW V4,0 Lambda-Sondler Auswerteelektronk =Z1+A02-401 1 Lumbasesmasser HFM S BSCH	=AZ1+A01-XG100	1	LAN-Buchse, Baj	ajonettverschluss	RCP-55PFFH-TCU7001	AMPH	AMPH.RCP-5SPFFH-TCU7001	&EFA1/3.3	LAN-Buchse		
=Z1+LIC-EPCI 1 Luftmassenmesser HF/II BDSCH DIACK PDIII Luftmassenmesser =Z1+LIC-EPPID 1 Drucksensor, E+H Carabar PMC21 PMC1-AMILEUMAIA EFH E+HFMC21-AMINEUMAIA REFS/113 Druck- Pot Out =Z1+LIC-EPPID 1 Imude-Sonde, Bosh LSU+9 USU+9 BES/114 Druck- Pot Out Pulter-Pot =Z1+LIC-EPQD1 1 Imude-Sonde, Bosh LSU+9 Isol 2019 Besch.128-30 BEFS/113 Druck- Pot Out =Z1+LIC-EPQD1 1 Imude-Sonde, Bosh LSU+9 Isol 2019 Isol 2019 Imude-Sonde =Z1+LIC-EPQD1 1 Imude-Sonde Berrielosmittelliste : =Z1+A01-A01 - Isol 2013 Isol 2014 Imude-Sonde = 1 Imude-Sonde Isol 2010 BCCH-0250017025 BEFS/113 Imude-Sonde 1 Imude-Sonde 1 Imude-Sonde Imude-Sonde Imude-Sonde Imud	=AZ1+A02-A01	1	Lambda-Messwa	andler V4.0, 24V	L-MW V4.0 24V S	SKT	SKT.L-MW.V4.0	&EFS1/13.3	Lambda-Son	den Auswerteelektronik	
-ZZ1+LGC EPD1 1 Drucksensor, E+H Carbar PMC21 PMC21-AAIM1EWAIA E+H E+H.HMC21-AAIM1EWAIA BEFS//1.1.1 Druck - Fot In -ZZ1+LCC EPD2 1 Drucksensor, E+H Carbar PMC21 PMC21-AAIM1EWAIA E+H.HMC21-AAIM1EWAIA REFS//1.1.4 Druck - Fot Out -ZZ1+LCC EPD2 1 Jucksensor, E+H Carbar PMC21 PMC21-AAIM1EWAIA REFS//1.1.4 Druck - Fot Out -ZZ1+LCC EPD2 1 Lambda-Sonde, Bash LSU4.9 LSU4.9 B657(1) B057(1) B057(1) Druck - Fot Out -ZZ1+LCC EPD21 1 Lambda-Sonde, Bash LSU4.9 Lambda-Sonde Lambda-Sonde E+H.HMC21-AAIM1EWAIA REFS//1.3 Lambda-Sonde -ZZ1+LCC EPD21 1 Lambda-Sonde, Bash LSU4.9 B657(1) B057(1) B057(1) B057(1) B07(1) PL 1 1 Lambda-Sonde Lambda-Sonde Lambda-Sonde Lambda-Sonde Lambda-Sonde Lambda-Sonde 1 Lambda-Sonde Lambda-Sonde Lambda-Sonde Lambda-Sonde Lambda-Sonde Lambda-Sonde Lambda-Sonde Lambda-Sonde Lambda-Sonde <	=AZ1+LOC-BF01	1	Luftmassenmes	ser	HFM 5	BOSCH	BOSCH.0280218113	&EFS1/12.3	Luftmassenm	lesser	
= AL1+LL-EPL2 1 Indecensity, E+H, Litrating LBWAIA E+H, PML1-ALINGLIAMA EH, PML1-ALINGLIAMA BERFIX-10.010 =ZL1+LLC-EPO1 1 Lambda-Sonde, Besch LSU4.9 LSU4.9 BSCH BSCH </td <td>=AZ1+LOC-BP01</td> <td></td> <td>Drucksensor, E+</td> <td>+H Cerabar PMC21</td> <td>PMC21-AA1M1EJWAJA</td> <td>H+H</td> <td>E+H.PMC21-AAIM1EJWAJA</td> <td>&EFS1/11.1</td> <td>Druck - Pot I</td> <td></td> <td></td>	=AZ1+LOC-BP01		Drucksensor, E+	+H Cerabar PMC21	PMC21-AA1M1EJWAJA	H+H	E+H.PMC21-AAIM1EJWAJA	&EFS1/11.1	Druck - Pot I		
1 Determined of exponent 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	=AZ1+LOC-BP0Z		Drucksensor, E+	+H Cerabar PMC21 Bood 1 Sita a		E+H BOCCH	E+H.PMCZI-AAIMIEJWAJA BOSCH 0358013035	&EF51/11.4 8.FEC1/12.2	Druck - Pot (Jut	
1 Datum 28.09.2019 Pellet-Pot aerb Jac # bearb Jac # cepr is Elskrik und Automatisierung #		-	railinda Joinc,			10000			raiiima-20ik		
Dealm 26 99, 2019 Pellet-Pot each. JAG Bearlo. JAG Bearlo. H Bearlo. H Maßkab Abort Gepr Gepr Bearlo. MULL-ALV-PP Sete Activity Sete											
Bearb. Jaid Each of the second secon		Datum 28.0	<u> 9.2019</u>	Dallat-Dot	Batriahemittall	icte · -471+401-401 -		1		+	Blatt
Ger Elektrik und Automatisierung Kuthmenung		Bearb. JAG			=AZ1+LOC-BC	201					Maßstab
		Gepr		Elektrik und Automatisierung	Lehrstuhl für Aufbereitung und Verediung			& EPB1		MI II - Δι //- PP	Seite

Montanuniversität Leoben, Lehrstuhl für Aufbereitung und Veredlung Franz-Josef-Straße 18, 8700 Leoben, Österreich

~

	0		1	2	e	4	Ω		9	7	8		
Not Notion Notion <td></td> <td>ebsmittellis</td> <td>ste</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F03</td> <td>MULAV</td>		ebsmittellis	ste									F03	MULAV
1 1 000000000000000000000000000000000000	1	Men	ange B	tezeichnung		Typnummer	Hersteller	Artikelnu	Immer	Seite / Pfad	Funktionstext		
1 1 1 0	18	-BT01	1	1 100 Antelthermoelement, Typ K, D3 x 100	mm (MTE031592	ICCP	ICCP.MTEC	031592	&EFS1/9.1	Temperatur Lufterhitze	er In	
	121	-8702	1	4antelthermoelement, Typ K, D3 x 15(1 mm	MTE031075	ICCP	ICCP.MTE(031075	&EFS1/9.3	Temperatur Lufterhitze	er Out	
	$\cup 1^{\circ}$	-8T03	<u>-</u>	Finsteckthermoelement, Typ S, D7 x 1:	50 mm	THE071112	ICCP	ICCP.THEC	071112	&EFS1/10.1	Temperatur Pot In		
1 1 0	210	-1104		antethermoelement, Iyp K, D6 x 200	mm	MIE031199	ICCP	ICCP.MIEL	031199	&EF51/9.4	Temperatur Pot Out		
	219	-5103		anternermoerment, Typ K, D3 X 130 anterhormoolomoot Tym V D2 v 100	THU CONTRACTOR				C/0100	0.6/TC1/0	Tomoratur CIVI In		T
	10	0010		intelligencement, Typ N, D3 X 100			TCD		20100	0.EEC1/0.1	Tomocratur CIVI Out		T
1000000000000000000000000000000000000	219	-5109	- 1			MI EU2112	ICCP		266160	01/1/1/2	Temperatur SAV Out		
1 1	214	0118-		instecktnermoelement, Typ S, U/ X I:	0 mm	THEU/1112	ICCP	ICUP.IHEL	2111/0	&EF51/10.3 8.EF51/10.4	Temperatur Schüttung	-	
1 1	219		-	Einsteckthermoelement, Typ S, D/ X I.	0 mm	111/01172	ICCP	ICUP.IHEL	2/11/0	&EF51/10.4	Temperatur Schuttung	7	
	υı	-BT12	1	Einsteckthermoelement, Typ S, D7 x 1.	70 mm	THE071172	ICCP	ICCP.THEC	071172	&EFS1/10.6	Temperatur Schüttung		
1 1	ا ر ن	-8713	-	Vantelthermoelement, Typ K, D6 x 200	mm (MTE031199	ICCP	ICCP.MTEC	031199	&EFS1/9.3	Temperatur Schüttung	4	
(10) (10) <th< td=""><td></td><td>-BT14</td><td>1</td><td>fantelthermoelement, Typ K, D6 x 200</td><td>1 mm</td><td>MTE031199</td><td>ICCP</td><td>ICCP.MTEC</td><td>031199</td><td>&EFS1/9.4</td><td>Temperatur Bypass</td><td></td><td></td></th<>		-BT14	1	fantelthermoelement, Typ K, D6 x 200	1 mm	MTE031199	ICCP	ICCP.MTEC	031199	&EFS1/9.4	Temperatur Bypass		
1 1	ιU	-XD200	1 S	stecker 32A, 3L+N+PE, IP44		5 552 39	LGR	LGR.55523	39	&EFS1/1.1	Stecker Einspeisung, ol	ptional	
Noticity 1 International (NA) Statuti (NA) Statut (NA)	U I	XG55	1	"lachsteckergehäuse, 6-polig, 2-reihig,	Stecker	42064700	FEP	FEP.42064	1700		Stecker Lambda-Sonde		
1 1	15	-FC01	1	eitungsschutzschalter 400V 10kA, 3-pr	olig, B, 16A	5SY4316-6	SIE	SIE.5SY43.	316-6	&EFS1/7.1	Sicherung - Frequenzu	Imrichter	
1 1	15	TA01	1	requenzumrichter 400V / 17 A / 7.5kV	Λ	ACS310-03E-17A2-4	ABB	ABB.ACS3	10-03E-17A2-4	&EFS1/7.1	Frequenzumrichter		
1000000000000000000000000000000000000	١Ŋ	:-G001	1	eitenkanalverdichter, 2.2kW, 2950U/n	nir	RJET K030SS/3/2	8	CB.RJET-K	(030SS/3/2	&EFS1/7.1	Seitenkanalverdichter		
1 Important co.31, kip, (x) Scool Scool<	ιż	-FC01	1	eitungsschutzschalter 400V 10kA, 3-pt	olig, B, 25A	SSY4325-6	SIE	SIE.5SY43.	125-6	&EFS1/8.1	Sicherung - Leistungss	teller (Gesamt)	
1 Improvement control 1	15	-FC02	-	eitungsschutzschalter 400V 10kA, 3-pr	olid, C, 2A	5SY4302-7	SIE	SIE.5SY43(102-7	&EFS1/8.7	Sicherung - Leistungs	teller (Steuerung)	
	ЦÉ	-TA01		eistungssteller 400 V / 20 A		TYA202-400V-20A	OWINE	JOMUL 2090	062/8-01-020-100-400-00/252	&EFS1/8.1	Leistungssteller		
	18	-EB01		leizpatrone, Leister LE 10000 HT		LE10000HT	LEI	LEI.LE1000	00HT	&EFS1/8.8	Lufterhitzer		
	١X	÷XG15									Gasregler - M16		
	ı۲	;XG16									Gasregler - DSub HD 1	5	
	1										•		
	1		$\left \right $										Γ
								4					
Image: second													
Image: marked bioleter													
Image: marked back descent desc													
Image: Second			+										
Image: Section of the sectio													
Image: marked back in the second back in the se													
Image: marked back description Image: marked description <													
Image: marked back description Image: marked description <													
Image: Section of the sectio													
- -													
Image: marked back of the second se			+										
Image: marked back of the second se	1												
Image: marked back of the sector of	- 1												
- -	- I												
Image: marked back of the second se	- I												
Image: Section of the sectio													
Image: Section of the sectio													
Image: Section of the sectio	1												
Image: Section of the sectio	1												
Image: Section of the sectio													
Image: Section of the sectio	1												
Image: Second													
Image: Second													
Betriebsmitteliste : Betriebsmitteliste : =Z11LOC-BT01 - = + Betriebsmitteliste : = #ELL 0 atom 28.09.2019 Pellet-Pot EetKrist und Automatisierung EetKrist und Automatisierung EetKrist und Automatisierung = + 100LL-AUV-PP 050L <	-												
Betriebsmitteliste : = ZZ1+LOC-BT01 - Errichsmitteliste : = ZZ1+LOC-BT01 - Errichsmitteliste : = ZZ1+LOC-BT01 - 0 atum 28.09.2019 Pellet-Pot													
Metric Datum 28.09.2019 Pellet-Pot mode bain 28.01 Pellet-Pot mode mode administration administration mode mode administration administration mode mode mode bain													
Betriebsmittelliste : = AZ1+LOC-BT01 - = + Betriebsmittelliste : = AZ1+LOC-BT01 - Betriebsmittelliste : Betriebsmittelliste : = AZ1+LOC-BT01 - = + Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste : = AZ1+LOC-BT01 - = + Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste : = AZ1+LOC-BT01 - = + Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste : = AZ1+LOC-BT01 - = + Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste : = AZ1+LOC-BT01 - = + Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste : = AZ1+LOC-BT01 - = + Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste : = AZ1+LOC-BT01 - = = + Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste : = + Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste : Betriebsmittelliste :													
Berrie Datum 28.09.2019 Pellet-Pot Berrie Berriebsmittelliste : =AZ1+LOC-BT01 - = + Berriebsmittelliste : Berrieb Medication = EPR1+LOC-XG16 = + Berrieb and addition = EPR1+LOC-XG16 = + Berrieb Medication and addition addition addition addition addition addition addition		-				-	-	-		-	-	r]
Datum 28.09.2019 Pellet-Pot Beart Maintain Standard Beart Maintain Standard Beart Maintain Standard Beart Maintain Standard Standard <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Determ 28.09-2019 Pellet-Pot Bart Hold Hold <td>-</td> <td>-</td> <td></td> <td>:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>SETL.</td>	-	-		:									SETL.
Bearb. JAG ERM1+LUC-XG16 EM1+LUC-XG16 Mellistab		Datum	n 28.09.2015	Pellet-Pot		Bet	riebsmittelliste : =AZ1+LOC-BT	T01 -		п	+		Blatt
Cebr Gepr Gepr Gepr Automatisierung Consistent Amerikani		Bearb.	, JAG				M1+LOC-XG16						Maßstab 1:
man Income International Income International Internationa	£	Gepr		Elektrik und Autor	matisierung	Lehrstuhl für Aufbereitung				& EPB1			Seite
		Namo Ilrsnr	╞	Drviaktheschreihung		und Verediung	urkaan krai hun a	Ratriahsmittellist.	a Armarkiinnan	atrillettims dei ratri		Auv-pp	4 UU
	i.												

Mor Frai	0		1	2	e	4			6 7		8	6
ntanunive nz-Josef-S			115	5 x 540 mm			Schalt	tschrankle	gende			
sität Leo traße 18,	-	-			=	-		=AZ1+A01-U1				
ben, Le , 8700			0		0	< -	Position	BM-Kennzeichen	Typnummer	Bezeichnung		
ehrstul Leober	5			-113		u	10	-U13	301-2006	Kabelkanal 60x60mm, g	eschlitzt, mit Abdeckung	
nl für / n, Öste	u			10		m 08	20	-WZ01	BRT 160 A	Verteilerblock 4-polig		
Aufbe erreic	im 0:				[1	30	=GQ1-FC01	5SY4316-6	Leitungsschutzschalter 4	400V 10kA, 3-polig, B, 16/	
ereitur :h	sz			0		1	40	=EB1-FC01	5SY4325-6	Leitungsschutzschalter	400V 10kA, 3-polig, B, 25/	
ng und				=601-FC0 = EB1-FC01 56 67 30 40 01 02 37	86 -0A01	uuu	50	-FC01	5SY4110-6	Leitungsschutzschalter 2	230/400V 10kA, 1-polig, B	10A
d Ver	ų				04-	00 1	60	-FC02	5SY4106-6	Leitungsschutzschalter 2	230/400V 10kA, 1-polig, B	.6A
edlun	1m 0					,	70	-FC03	5SY4106-6	Leitungsschutzschalter 2	230/400V 10kA, 1-polig, B	.6A
g	64			-U14 100		u	80	-FC04	5SY4106-6	Leitungsschutzschalter 2	230/400V 10kA, 1-polig, B	.6A
		7		TOOT		1m 0	06	-QA01	FLZ 530	Thermostat für Lüfter, e	einstellbar	
	աա					19	100	-U14	301-2006	Kabelkanal 60x60mm, g	leschlitzt, mit Abdeckung	
	069						110	-TB01	TRIO-PS/1AC/24DC/10	Stromversorgung, 24VD	C, 10A	
			=EB1-FC02 -TB01 10	1300 1700 1700 1700 1700 1700	530 530 530		120	=EB1-FC02	5SY4302-7	Leitungsschutzschalter	400V 10kA, 3-polig, C, 2A	
			-11803	-EC33 -EC53 -EC75 -EC77 -EC77 -EC74 -EC74	\DC ⁻ 3 \DC ⁻ 1 -XD54 + Zb2		140	-TB02	STEP-PS/1AC/15DC/4	Stromversorgung, 15VD	iC, 4A	
	u				-XE0. -XE0. -XE0.		150	-FC24	5SY4104-7	Leitungsschutzschalter 2	230/400V 10kA, 1-polig, C	4A
	••						160	-FC21	5SY4102-7	Leitungsschutzschalter 2	230/400V 10kA, 1-polig, C	2A
)86	-U11 260		-U15 250	-U12 270	uu	170	-FC11	5SY4105-7	Leitungsschutzschalter 2	230/400V 10kA, 1-polig, C	0.5A
						I SZO	180	-FC12	5SY4105-7	Leitungsschutzschalter 2	230/400V 10kA, 1-polig, C	0.5A
						T	190	-FC22	5SY4105-7	Leitungsschutzschalter 2	230/400V 10kA, 1-polig, C	. 0.5A
			-A01	- <u>A02</u> - <u>A03</u> - <u>A04</u> - <u>A05</u>			200	-FC23	5SY4105-7	Leitungsschutzschalter 2	230/400V 10kA, 1-polig, C	0.5A
			007	07C 0TC 00C 067			210	-XD24_SPS		Abzweigklemme 15-poli	g, grau	
	1						220	-XD24		Abzweigklemme 15-poli	g, grau	
				-116			230	-XE0VDC_1		Abzweigklemme 15-poli	g, grau	
				330			240	-XE0VDC_2		Abzweigklemme 15-poli	g, grau	
					0+2 (230	•	250	-U15	879-3731	Kabelkanal 40x60mm, g	eschlitzt, mit Abdeckung	
					- 0 1 2		260	-111	301-2006	Kabelkanal 60x60mm, g	eschlitzt, mit Abdeckung	
					<u>ie</u> ZX-		270	-012	301-2006	Kabelkanal 60x60mm, g	eschlitzt, mit Abdeckung	
			=G01-TA01	210-	<u>09</u> 2 05ZX-	աա	280	-A01	6ES7215-1AG40-0XB0	S7-1200, CPU 1215C, D	C/DC/DC, 14DI/10DO/2AI	'2AO
			370	380]	520	290	-A02	6ES7231-4HF32-0XB0	S7-1200, ANALOGEING/	ABE SM 1231, 8AI	
				=EB1-TA01 390			300	-A03	6ES7232-4HB32-0XB0	S7-1200, ANALOGAUSG	ABE SM 1232, 2AO	
							310	-A04	6ES7231-5QF32-0XB0	S7-1200, ANALOGEING/	ABE SM 1231 TC, 8 AI	
	-					-	320	-A05	6ES7231-5QF32-0XB0	S7-1200, ANALOGEING/	ABE SM 1231 TC, 8 AI	
			1		110 mm		330	-U16	879-3731	Kabelkanal 40x60mm, g	leschlitzt, mit Abdeckung	
					160 mm		340	-XZ30				
						-,	350	-XZ40				
				410	-WE02 -1121		360	-XZ50				
				430	420 440		370	=GQ1-TA01	ACS310-03E-17A2-4	Frequenzumrichter 400V	/ / 17 A / 7.5kW	
			0		0		380	-017	879-3731	Kabelkanal 40x60mm, g	eschlitzt, mit Abdeckung	
							390	=EB1-TA01	TYA202-400V-20A	Leistungssteller 400 V /	20 A	
							400	-XD01				
							410	=EB1-XD60				
b) M Johan	B1/8.b	2014C					-			- 471	+ 401	2
astera n Gan		Bearb.	JAG	Pellet-Pot			Schaltschrankaurbau			= мст Allgemein	+ AU 1 Hauptschaftschrank	Pidu ± Maßstab 1:5
arbeit gulak		Gepr		Elektrik und Automatisie	srung	Lehrstuhl für Aufbereitung und Veredlung				& ETL1	- MUL-AuV-PP	Seite 12
And The And	erung Datum NK	lame Urspr		Projektbeschreibung		1	Seitenbeschreibung	Schaltschrar	nkaufbau Anmerkungen	Montagelayout		von 44

	ung	ite Rot, 24V, LED	ite Gelb, 24V, LED	ite Grün, 24V, LED	DMFORT	r Wammelder, 24V, 75dB	ite Weiß, 24V, LED	ite Weiß, 24V, LED	aster, NC, Ø 40mm, Pilz-Form, Rot	rr, 1NO/1NC, Ø22mm Schwarz		: AZ1 + A01 8	
	Bezeichn	Meldeleuch	Meldeleuch	Meldeleuch	KTP400 CC	Akustischer	Meldeleuch	Meldeleuch	Not-Halt Ta	Drucktaste			
ende	Typnummer	LEDtecRed024VAC/DC	LEDtecYellow024VAC/DC	LEDtecGreen024VAC/DC	6AV2124-2DC01-0AX0	877-1832	LEDtecWhite024VAC/DC	LEDtecWhite024VAC/DC	1SFA619550R1041	XB7NA25			
Schaltschrankleg	Position BM-Kennzeichen	10 -PF01	20 -PF02	30 -PF03	40 -PH01	50 -PJ01	60 -PF04	70 -PF05	90 -SF100	100 -SF01		Crhaltechranthiira	
		T T										(
		33.4465	L OHG	40							Trais Sea	Dollot-Dot	201101-000
			7F01 PF02 PF03 -PJ01 10 20 30 50			5F04 PF05 60 70					O O O S	Datum 28.09.2019	Induli terrarente
344			ф 1			<u>ا</u> م ۳							

Montanuniversität Leoben,	Lehrstuhl f	für Aufbereitung	und Veredlun
Franz-Josef-Straße 18, 870	0 Leoben,	Österreich	

<u>A</u>																																Π	\top]	8EMA2/1.a	stab 1:1	. 33
F10_MUI	Grafikseite des Kabelplans																																		Blatt	Maßs	
-																																			+		•
	Funktionstext	isung	oelement -BT01	oelement -BT02	oelement -BT04	oelement -BT08	oelement -BT09	oelement -BT13	oelement -BT14	oelement -BT03	oelement -BT10	oelement -BT11	oelement -BTLZ asonde - Messinna	0	abel		ensor BP01		ensor BP02			asonde			iitzer												
-	Länge [m]	Einspe	Therm	Them	Therm	Therm	Therm	Therm	Therm	Therm	Therm	Them	Inerm		LAN-K		Drucks		Drucks	- compared and a second s		Lambo	10 m SKV		10 m Lufterh												1
-	Querschnitt [mm]	4 mm ²	13/0,2 mm	13/0,2 mm	13/0,2 mm	13/0,2 mm 0.75 mm ²		26 AWG	26 AWG	0,75 mm ²		0,75 mm²	5 mm (C 0	-11111 77/0	0,35 mm ²	1,5 mm²		4 mm ²									_										
-	verwendete Adem	5	2	2	2 5	2 2	2	2	2	2	2	2	2 C	4	0	0	2		2	2	r	4	4		4										: =AZ1+A01-WD01 -		TO
	alle Adern	5	2	2	2 5	2	2	2	2	2	2	2 2	7 C	1	ø	8	2		2	ų	D	4	4		5										Kabelübersicht		=EB1+AU1-WL
-	Kabeltyp	H07RN-F 5G4	Thermoel. Kompensation Typ K	Thermoel. Kompensation Typ RS	Thermoel. Kompensation Typ RS	Thermoel. Kompensation Typ RS	I nermoei. Kompensauon Typ KS VSI CY-O7		ETHERLINE Cat.Se Y FLEX	ETHERLINE Cat.Se Y FLEX	YSLCY-OZ		KSLCY-OZ	Xei 22	13101	цети	YSLCY-JB		H07RN-F 5G4										(1000 V	333						
	Ziel (bis)	=AZ1+LOC-XD200	=AZ1+LOC-BT01	=AZ1+L0C-BT02	=AZ1+LOC-BT04	=AZ1+LOC-BT03	=AZ1+LOC-BT09	=AZ1+LOC-BT13	=AZ1+LOC-BT14	=AZ1+LOC-BT03	=AZ1+LOC-BT10	=AZ1+LOC-BT11	=AZ1+LUC-B112 =AZ1+AN2-AN1	=AZ1+A01-WE02	=AZ1+A01-PH01	=AZ1+A01-A01	=AZ1+LOC-BP01	=AZ1+A01-WE02	=AZ1+LOC-BP02	=AZ1+A01-WE02	=AZ1+LOC-BF01 =AZ1+A01-WE02	=AZ1+A02-A01	=GQ1+L0C-GQ01	=GQ1+A01-TA01	=EB1+LOC-EB01										Pellet-Pot		: : :
lt	Quelle (von)	=AZ1+A01-XD01	=AZ1+A01-A05	=AZ1+A01-A05	=AZ1+A01-A05	CON-TOAT12A-	=AZ1+A01-A05	=AZ1+A01-A05	=AZ1+A01-A05	=AZ1+A01-A04	=AZ1+A01-A04	=AZ1+A01-A04	=A21+A01-A04 =A71+A01-X750		=AZ1+A01-A01	=AZ1+A01-XG100	=AZ1+A01-XZ30		=AZ1+A01-XZ30	-471 - 401 - 740	0+7V-T04+T74=	=AZ1+A01-XZ50	=GQ1+A01-TA01		=EB1+A01-XD60										Datum 28.09.2019	Dearth 160	DCdI D. JAU
abelübersich	Kabelname	Z1+A01-WD01	Z1+A01-WG11	Z1+A01-WG12	Z1+A01-WG13	Z1+A01-WG15	Z1+A01-WG16	Z1+A01-WG17	Z1+A01-WG18	Z1+A01-WG21	Z1+A01-WG22	Z1+A01-WG23	Z1+A01-WG24 Z1+A01-WG51		Z1+A01-WG100	Z1+A01-WG101	Z1+A01-WZ30		Z1+A01-WZ31	74 - AO1 1M/740	0+7 - 104 + 17	Z1+A01-WZ50	Q1+A01-WD01		B1+A01-WD01												_
Ϋ́		=Až	=A.	H=	-A=	=A2	=Až	=A2	=Ai	=A,	=A.		=A		=A.	=A.	"H=		=A.		¥=	=A2	9		=										&EFS1/13		

enclosed enclosed monotorial	Tenleiste Einspection mmenleiste Druck 230 Druck 230 Luftm 250 Luftm 250 Lufter 250 Jufter 250 Lufter 250 Lufter 250 Lufter 250 Lufter 250 Jufter 250 Lufter 250 Lufter 250 Lufter 250 Lufter 250 Lufter 250 Lufter 250 Lufter	rsicht klemmenleistendefinitionstext peisung sesensonen mæssenmesser bida-Sonde erhizer - versorgung 230VAC - versorgung 230VAC erhizer bida-Sonde erhizer - versorgung 230VAC - versorgung 230VAC - versorgung 230VAC erhizer - versorgung 24VDC erhizer - versorgung 24VDC erhizer - versorgung 230VAC erhizer - versorgung 230VAC erhizer - versorgung 230VAC erhizer - versorgung 230VAC erhizer - versorgung 230VAC - versorgung 240DC - versorgung - versorgu	- 1 1 erste		nommed 7			F14_
Image: market of the second secon	Menleiste Alemmenleiste XD01 XD01 Einspe X230 Druck X250 Lufter XD50 Lufter XD01 Lamb XD01 Einspe XD02 B XD01 Ansch SX011 Druck	rsicht klemmenleistendefinitionstext peisung kensoren kensoren kensoren bda-Sonde erhtzer bda-Sonde	erste		Norman			F14_
Contractional Contract	Klemmenleiste Einspenderste 11-XD01 Einspenderste 11-XD01 Einspenderste 11-XZ50 Druck 11-XZ50 Luftm 11-XD01 Gas 01-XD01 Druck 01-XD01 Druck	Klemmenleistendefinitionstext peisung :sensoren massenmesser bda-Sonde erhitzer - Versorgung 230VAC - Versorgung 240C - Versorgung	erste		VI-mmen			
Herrinetida	Klemmenleiste Einspelaste 1-XD01 Einspelaste 1-X230 Druck 1-X240 Luftm 1-X250 Luftm 1-X250 Lamb 1-X250 Lamb 1-X250 Lamb 1-X01 Gas 1-X02 Gas 3-X01 Ansch 3-X01 Druck	Klemmenleistendefinitionstext peisung :sensoren massenmesser bda-Sonde erhitzer - Versorgung 230VAC - Versorgung 230VAC - Versorgung 230VAC - Versorgung 230VAC - Versorgung 24VDC - Versorgung 230VAC - Versorgung 24VDC - Versorgung 24	erste		Nellinen			
000000000000000000000000000000000000	- XD01 Einspective - XZ30 Druck - XZ50 Druck 1-XZ50 Lufter 1-XD60 Lufter 1-XD01 Gas 1-XD02 Gas 1-XD01 Gas 13-XD01 Ansch 13-XD01 Druck	peisung ksensoren massenmesser bda-Sonde bda-Sonde erhitzer - versorgung 230VAC - Versorgung 230VAC - Versorgung 24VDC chluss 230VAC chluss 24VDC chluss 24VDC		letzte	Summe PE	Summe N	Gesamtzahl	Grafikseite der Klemmenpläne
000000000000000000000000000000000000	1-X230 Druck 1-X240 Luftm 1-X250 Lamb 1-X060 Lamb 1-X01 Gas 1-X02 Gas 3-X01 Ansch 3-X011 Druck	ksensoren mæssenmesser bda-Sonde erhitzer - Versorgung 230VAC - Versorgung 230VAC - Versorgung 24VDC - Versorgung 24VDC - Versorgung 24VDC - Versorgung 24VDC - Versorgelung - Kerler PHK tile - Keschalter DHK tile - Keschalter DHK - Kerler BHK - Kerler BHD - South HD - Fouth HD		2	1		5	&EMB2/1.a
0000 1 4 0 0 0 0 0 0 0000 0000 0 0 0 0 0 0 0 0000 0000 0000 0 0 0 0 0 0 0000 0000 0000 0 0 0 0 0 0 0000 0000 0000 0 0 0 0 0 0 0000 0000 0000 0000 0 0 0 0 0000 0000 0000 0 0 0 0 0000 0000 0000 0 0 0 0 0000 0000 0000 0 0 0 0 0000 0000 0000 0 0 0 0 0000 0000 0000 0 0 0 0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000 000000 000000<	-XZ40 Luftm -XZ50 Lamb -XD01 Gas 1-XD01 Gas -1-XD01 Gas 3-XD01 Ansch 3-XD11 Druck	massenmesser bda-Sonde erhitzer - Versorgung 230VAC - Versorgung 24VDC - bluuss 230VAC chluss 230VAC chluss 230VAC chluss 24VDC chluss	-	4	0	0	4	&EMB2/2.a
0000 10006000000000000000000000000000000000	I-XZ50 Lamb I-XD60 Luffer I-XD01 Gas - I-XD02 Gas - I-XD02 Gas - I-XD02 Gas - I-XD01 Ansch I-XD02 Ansch I-XD01 Ansch I-XD01 Druck	bda-Sonde erhitzer - Versorgung 230VAC - Versorgung 24VDC - Versorgung 24VDC - Aluuss 230VAC - Aluuss 24VDC - A	т 	4	0	0	4	&EMB2/3.a
00000 circumstration 1 4 1 0 0 0 0000 circumstration circumstration 0 0 0 0 0000 circumstration circumstration circumstration 0 0 0 0000 circumstration circumstration circumstration circumstration circumstration 0000 circumstration circumstration circumstration circumstration <td< td=""><td>1-XD60 Lufter 01-XD01 Gas - 01-XD02 Gas - 03-XD01 Ansch 03-XD02 Ansch 03-XD11 Druck</td><td>erhitzer - Versorgung 230VAC - Versorgung 230VAC - Muss 230VAC - Muss 230VAC - Muss 24VDC - Accelater DHK - Casechatter DHK - Casechatter</td><td>1</td><td>9</td><td>0</td><td>0</td><td>9</td><td>&EMB2/4.a</td></td<>	1-XD60 Lufter 01-XD01 Gas - 01-XD02 Gas - 03-XD01 Ansch 03-XD02 Ansch 03-XD11 Druck	erhitzer - Versorgung 230VAC - Versorgung 230VAC - Muss 230VAC - Muss 230VAC - Muss 24VDC - Accelater DHK - Casechatter	1	9	0	0	9	&EMB2/4.a
01001 0000 windowing (2004) 0 0 0 0 01011 Amilyan (2004) 0 0 0 0 01011 Amilyan (2004) Amilyan (2004) 0 0 0 01011 Amil	01-XD01 Gas - 01-XD02 Gas - 03-XD01 Ansch 03-XD02 Ansch 03-XD11 Druck	- Versorgung 230VAC - Versorgung 230VAC - Versorgung 24VDC - Alluss 230VAC - Alluss 230VAC - Alluss 24VDC - Alluss 24VD - Alluss 24VDC - Alluss 24VDC - Alluss 24VDC - Alluss 24VD - Alluss 24VDC - Alluss 24VDC - Alluss 24VDC - Alluss 24VD - Alluss 24VDC - Alluss 24VD - Alluss - Alluss 24VD - Alluss 24VD - Alluss - Alluss 24VD		4	1	0	4	&EMB2/5.a
000000000000000000000000000000000000	01-XD02 Gas - 03-XD01 Ansch 03-XD02 Ansch 03-XD11 Druck	- Versorigung 24VDC hluss 230VAC thuss 230VAC thuss 24VDC thuss 24VDC the phice phice phice the phice phice phice the phice phice phice phice tegler - DSub HD regler - DSub HD			0	0	0	
2000 Redension 0 0 0 0 2001 Inversion Redension 1 0 0 0 2001 Inversion Inversion 0 0 0 0 2002 Inversion Inversion 0 0 0 0 2003 Inversion Inversion 0 0 0 0 2004 Inversion Inversion 0 0 0 0 2005 Inversion Inversin 0 0 0 <t< td=""><td>03-XD01 Ansch 03-XD02 Ansch 03-XD11 Druck</td><td>hluss 230VAC Alluss 23VDC .kschalter DHK .kschalter DHK .keriegelung .ngen extern .ngen extern .ngen extern .ngen extern .nger Ausgänge .og Eingänge/Ausgänge .egler - DSub HD</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td></td></t<>	03-XD01 Ansch 03-XD02 Ansch 03-XD11 Druck	hluss 230VAC Alluss 23VDC .kschalter DHK .kschalter DHK .keriegelung .ngen extern .ngen extern .ngen extern .ngen extern .nger Ausgänge .og Eingänge/Ausgänge .egler - DSub HD			0	0	0	
20000 Endinamento 0 0 0 0 20101 London Disk London Disk London Disk 0 0 20101 London Disk London Disk London Disk 0 0 20101 London Disk London Disk London Disk 0 0	03-XD02 Ansch 03-XD11 Druck	hluss 24VDC Kschalter DHK kriegelung ungen extern Lal Eingänge/Ausgänge log Eingänge/Ausgänge regler - DSub HD regler - DSub HD			0	0	0	
32011 Including city 0 0 0 0 30205 Renepting Renepting 0 0 0 0 30215 Renepting Renepting Renepting 0 0 0 30215 Renepting Renepting Renepting 0 0 0 30215 Renepting Renepting Renepting 0 0 0 30216 Renepting Renepting 0 0 0 0 30216 Renepting Renepting <t< td=""><td>03-XD11 Druck</td><td>kschalter DHK tile reriegelung ingen extern ingen extern ing Eingänge/Ausgänge tog Eingänge/Ausgänge tegler - BSub HD regler - DSub HD</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td></td></t<>	03-XD11 Druck	kschalter DHK tile reriegelung ingen extern ingen extern ing Eingänge/Ausgänge tog Eingänge/Ausgänge tegler - BSub HD regler - DSub HD			0	0	0	
3000000000000000000000000000000000000		:ile reriegelung ingen extern tal Eingänge/Ausgänge tog Eingänge/Ausgänge regler - DSub HD regler - DSub HD			0	0	0	
3033	03-XD12 Ventil	reriegelung ingen extern ial Eingänge/Ausgänge og Eingänge/Ausgänge regler - DSub HD regler - DSub HD			0	0	0	
32000 Distribution 0	403-XD13 Gasve	ingen extern Lal Eingänge/Ausgänge Log Eingänge/Ausgänge regler - Rundstecker M16 regler - DSub HD			0	0	0	
30000 Ongointennoncolonition 0 </td <td>403-XE01 Erdun</td> <td>al Eingänge/Ausgänge og Eingänge/Ausgänge regler - Rundstecker M16 regler - DSub HD</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td></td>	403-XE01 Erdun	al Eingänge/Ausgänge og Eingänge/Ausgänge regler - Rundstecker M16 regler - DSub HD			0	0	0	
3303 Among Engreger/engine 0 0 0 0 3213 Energier-Stuhen 0 0 0 0 0 3214 Energier-Stuhen 0 0 0 0 0 3215 Energier-Stuhen 0 0 0 0 0 3216 Energier-Stuhen 0 0 0 0 0 3216 Energier-Stuhen 0 0 0 0 0 3216 Energier-Stuhen 0 0 0 0 0 3217 Energier-Stuhen 0 0 0 0 0 3218 Energier-Stuhen 0 0 0 0 0 3219 Energier-Stuhen 0 0 0 0 0	403-XG03 Digita	og Eingänge/Ausgänge regler - Rundstecker M16 regler - DSub HD			0	0	0	
3313 Georger - conditioner MG 0 0 0 0 3216 Georger - conditioner MG 0 0 0 0 341 Georger - conditioner MG 0 0 0 0 341 Georger - conditioner MG 0 0 0 0 341 Herrison Herrison 0 0 0	403-XG04 Analo	regler - DSub HD regler - DSub HD			0	0	0	
32216 Georger Colo HO 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	03-XZ15 Gasre	regler - DSub HD			0	0	0	
Image: Section of the section of t	(03-XZ16 Gasre				0	0	0	
Image: Section of the sectio								
Image: Section of the sectio								
Image: Section of the sectio		7						
Image: Section of the sectio								
Image: Section of the sectio								
Image: Second								
Image: Section of the sectio	-							
Image: constrained of the sector of the s								
Image: Section of the sectio								
Image: Neuropean description Image: Neuropean description <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
Image: Section of the sectio								
Image: Section of the sectio								
Image: Second								
Image: second								
Reference Second Second Image: Second Image: Second Image: Second								
Refer Refer Refer Refer Image: Second Control Image: Second Control Image: Second Control Image: Second Control								
ReM2 Rem0 act 1								
Reference Barrin 26.09.2019 Pellet-Pot a batim 26.09.2019 Battik und Automatisierung								
ReM2 Addition Addition Addition Addition Image: Serie in the intervention of the intervention Image: Serie intervention Image: Serie intervention Image: Serie intervention								
National Sector Dealer bot Remembersion Image: sector 260 3:019 Pellet-Pot Image: sector Accord Kemmenelistenübersicht : =AZ1+A01-XD01 - Image: sector Accord EM1+A03-XZ16 Image: sector Accord Revention Image: sector Accord Revention Image: sector Accord Revention Image: sector Accord Revention								
Renew Benew 28.09.2019 Pellet-Pot Klemmenelistentibersicht := AZ1+A01-XD01 - = + Bistration Militian 1 Mil								
Datum 28.09.2019 Pellet-Pot Hemmenelestenübersicht : =AZ1+A01-XD01 - = + Biat Makkab 1 Makab 1 Makkab								
I Genr 20 8 BM2 Antheneting Revention Automatisierung 8 BM2 Antheneting Sete	Datum 28.09.201 Rearh 14G	2019 Pellet-Pot	Klemmenleistenüber	'sicht : =AZ1+A01->	XD01 -		п	+
	Gepr	Elektrik und Automatisierung	ULT Aufbereitung				& EMA2	

0 1	2	_	3	4		2	_	6	7		8	6	
Klemmenplan												F13_001	
		-WD01	Ka			Leiste							
			belname		=AZ	1+A01	l-XDO	1					
Funktionstext		H07RN-F 5G4	Kabeltyp	zzeichnung	Anschluss	Klemme	Brücke	Zielbezeichnung	Anschluss	Kehelkar	Seite	/ Spalte	
		BN	+LOC-XD200				- B		2		&EFS1/1.1		
		5 X	+LOC-XD200		2	2	P P	1	1 4		&EFS1/1.1		
		GY	+LOC-XD200		3	3	-QBI	1	6		&EFS1/1.1		
		BU	+LOC-XD200		4	•	ZM-	01-WE02	1		&EFS1/1.1		
		GNYE	+LOC-XD200		2	•	-WE	01	1		&EFS1/1.2		
						+							
						-							
							+						
						L							
						_							
						_							
						-							
						_							
						+	-						
						-							
	-	-								_			
&EMA2/1.a	:							_					2.a
Datum 28.09.2019 Bearb. JAG	Pellet-Pot			Klem	ımenplan =/	4Z1+A01-X	D01		н		+	Blatt Maßstab	1.a 1:1
Gepr	Elektrik und Autom	atisierung		ehrstuhl für Aufbereitung					8	EMB2		DD Selte	35
Änderung Datum Name Urspr	Projektbeschreibung)	unu verealung Seiten	beschreibung			Klemmenplan Anmerkungen	Kle	nmenpläne			4

Klemmenplan	-	-	-							-		3_001
		-WZ30 -WZ31	Kabelname		=AZ1 - Druc	Leiste HA01-X cksensorer	Z30		Kabelname			
Funktionstext		YSLCY-OZ YSLCY-OZ	Kabeltyp	Zielbezzichnung	Klemme	Brücke	Z	elbezeichnung	Kabeltyp		Seite / Spalte	
		1	+LOC-BP01		1	-	-FC22		2		&EFS1/11.1	
		2	+LOC-BP01		3 2	-	-A02	X-	13:6		&EFS1/11.2	
		1	+LOC-BP02		1 3	-	-FC23		2		&EFS1/11.4	
		2	+LOC-BP02		ω 4	-	-A02	×-	13:4		&EFS1/11.4	
					-							
			,									
					ſ							
			-			 			-			
	_	_				_						
					_							
1.a												3.a
Datum 28.09.2019	Pellet-Pot			Klemr	menplan =AZ1	+A01-XZ30			н		+	Blatt 2.a Maßstah 1 : 1
Gepr	Elektrik und Automa	cisierung		Lehrstuhl für Aufbereitung					& EME	22		Seite 36
Änderung Datum Name Urspr	Projektbeschreibung			Contraction Seltenby	eschreibung		Klemmen	olan Anmerkungen	Klemm	enpläne	MUL-AUV-FF	von 44

0
0 1	2		3 4	5	9	7	8	_	6
Klemmenplan									F13_001
		-WZ40	Ka	Leiste		Ka			
			helname	=AZ1+A01-	XZ40	abelname			
		YSLCY	Kaheltun	Brücke Klemme Anschluss		Kabeltyp Anschluss			
Funktionstext		_	Zielbezeichnung		Zielbezeichnung			Seite / S	balte
		¥	+LOC-BF01	2 1 -	-Fa1	2		&EFS1/12.3	
		BU	+LOC-BF01	3 2	-XE0VDC_1	14		&EFS1/12.4	
		RD WH	+LOC-BF01 +LOC-BF01	4 ru w 4	-FC12 -A01	-X11:5		&EFS1/12.4 &EFS1/12.4	
				• •	1.10.8				
	-	-					+		
2.a Datum 28.09.2019	Pellet-Pot		(Klemmenplan =AZ1+A01-XZ40		Ш		+	Blatt 3.a
Bearb. JAG	Elektrik und Automa	iciaruna	Sooo I advertual file Auffreen						Maßstab 1:1
Änderung Datum Name Urspr	Projektbeschreibung	Islerung	und Veredium	secure Settenbeschreibung	Klemmenplan Anmerkungen	Klemmenp	oläne	MUL-AuV-P	P Selice J

			-			-				-			
Klemmenplan												F13_001	
			-WZ50 -WG51	Kabelname		= 42	Leis 21 + A	ste 01-XZ -Sonde	50	Kabelname			
Funktionstext			LIFYY YSLCY-OZ	Kabeltyp	Zielbezeichnung	Anschluss	Klemme	Brücke	Anschluss	Kabeltyp		Seite / Spalte	
			*		+402-401		1	-	-FC21 2		&EFS1	/13.3	
			BU		+A02-A01	2	2	-	-XE0VDC_1 10		&EFS1,	/13.3	
			BN		+A02-A01	5	e	-	-401		&EFS1,	/13.4	
			ЧМ		+A02-A01	9	4	-	-401		&EFS1,	/13.4	
					+A02-A01	6	<u>ہ</u> د	-	-402		&EFS1,	/13.5	
			2		+402-401	10	9	-	-X10:4		&EFS1	/13.5	
		+				,							
		-											
		+											
				_									
				_									
		-											
		+					ſ						
		-											
		-		_									
		-											
		+											
		+											
		-											
		+											
		+		_									
		_											
3.a													5.a
Datum 28.09.2019	Pellet-Po	L L			Kler	menplan	=AZ1+A01	I-XZ50		п	+	Blatt	4.a
Gepr	Elektrik und	Automat	isierung		Lehrstuhl für Aufbereitung					& EMB2		Seite	38
Änderung Datum Name Urspr	Projektbeschreib	bun			C und verediung Seite	nbeschreibung			Klemmenplan Anmerkungen	Klemmenpläne			4

Klemmenplan	-	-				_		- - - -		- E13	001
		-WD01		=EB1	Leiste . +A01 .ufterhit			Kabelname			
Funktionstext		Kabeltyp H07RN-F 5G4	Zielbezeichnung	Anschluss	Klemme	Brücke	Anschluss	Kabeltyp		Seite / Spalte	
		BN	+LOC-EB01		•	-TA01	1_U2			&EFS1/8.1	
		BK	+LOC-EB01	2	2	-FC01	4			&EFS1/8.1	
		GY	+LOC-EB01	3	•	-TA01	2_U2			&EFS1/8.1	
		GNYE	+LOC-EB01	FE	•	=AZ1-WE01	LO .			&EFS1/8.2	
				-	+				Ì		_ _
4.8											&EPD1/1.a
Datum 28.09.2019	Pellet-Pot		Kler	mmenplan =E	B1+A01-XD	960		П	+		Blatt 5.a Moethe 1.1
Gepr	Elektrik und Automa	tisierung	Lehrstuhl für Aufbereitung					& EMB2			Seite 39
Änderung Datum Name Urspr	Projektbeschreibung		Seite	nbeschreibung		Klemmenp	lan Anmerkungen	Klemmenpläne		MUL-AUV-FF	von 44

Masterarbeit Johann Gargulak

Artikelstückliste	0					F01_MUL_AV
Betriebsmittelkennzeiche	an Menge	Bezeichnung	Hersteller	Typnummer	Lieferant	Bestellnummer
		Klemmentkierung groß	Weidmueller	WAD 5 MC NE WS		297045-62
	1	Austauschfilter, 119x119mm	Pfannenberg	18611600030	RS-Components	744-4595
	1	Abluftausgang passend zu PF 22.000	Pfannenberg	PFA 20.000	RS-Components	744-4634
		Erdungsauftkleber, 12.5 x 12.5 mm, 100 Stück	RS-Components	776-0939	RS-Components	776-0939
	1	Klemmenmarkierung, weiß, blank	Weidmueller	DEK 5/5 PLUS MC NE WS	RS-Components	124-4697
	1	Klemmenmarkierung, mit Zahlen 2x 1-50	Weidmueller	DEK 5 FW 1-50	RS-Components	705-9734
	1	Hutschiene 35mm, Geschlifzt	RS-Components	RS.467-416	RS-Components	467-416
=AZ1+A01-A01 &EF51/3.0	1	S7-1200, CPU 1215C, DC/DC/DC, 14DI/10DO/2AI/2AO SIMATTC, S7-1200	Siemens	6ES7215-1AG40-0XB0	Siemens	6ES7215-1AG40-0XB0
=AZ1+A01-A02 &EFA2/5.3	1	S7-1200, ANALOGEINGABE SM 1231, 8AI SIMATTC, S7-1200	Siemens	6ES7231-4HF32-0XB0	Siemens	6ES7231-4HF32-0XB0
=AZ1+A01-A03 &EFA2/6.2	1	S7-1200, ANALOGAUSGABE SM 1232, 2AO SIMATTC, S7-1200	Siemens	6ES7232-4HB32-0XB0	Siemens	6ES7232-4HB32-0XB0
=AZ1+A01-A04 &EFA2/7.3	1	S7-1200, ANALOGEINGABE SM 1231 TC, 8 AI SIMATTC, S7-1200	Siemens	6ES7231-5QF32-0XB0	Siemens	6ES7231-5QF32-0XB0
=AZ1+A01-A05 &EFA2/8.3	1	S7-1200, ANALOGEINGABE SM 1231 TC, 8 AI SIMATIC, S7-1200	Siemens	6ES7231-5QF32-0XB0	Siemens	6ES7231-5QF32-0XB0
=AZ1+A01-FC01 &EF51/1.3	1	Leitungsschutzschalter 230/400V 10kA, 1-polig, B, 10A SENTRON Leitungschutzschalter SSY	Siemens	5SY4110-6	RS-Components	383-1964
=AZ1+A01-FC02 &EF51/1.6	1	Leitungsschutzschalter 230/400V 10kA, 1-polig, B, 6A SENTRON Leitungschutzschalter SSY	Siemens	5SY4106-6	RS-Components	383-1958
=AZ1+A01-FC03 &EF51/1.8	1	Leitungsschutzschalter 230/400V 10kA, 1-polig, B, 6A SENTRON Leitungschutzschalter 5SY	Siemens	5SY4106-6	RS-Components	383-1958
=AZ1+A01-FC04 &EF51/2.1	1	Leitungsschutzschalter 230/400V 10kA, 1-polig, B, 6A SENTRON Leitungschutzschalter 5SY	Siemens	5SY4106-6	RS-Components	383-1958
=AZ1+A01-FC11 &EFS1/1.6	1	Leitungsschutzschalter 230/400V 10kA, 1-polig, C, 0.5A SENTRON Leitungschutzschalter SSY	Siemens	5SY4105-7	RS-Components	622-0042
=AZ1+A01-FC12 &EF51/1.8	1	Leitungsschutzschalter 230/400V 10kA, 1-polig, C, 0.5A SENTRON Leitungschutzschalter 5SY	Siemens	5SY4105-7	RS-Components	622-0042
=AZ1+A01-FC21 &EF51/4.1	1	Leitungsschutzschalter 230/400V 10kA, 1-polig, C, 2A SENTRON Leitungschutzschalter 5SY4	Siemens	5SY4102-7	RS-Components	622-0014
&EMB2/5.a Datu	im 28.09.2019	Pellet-Pot Artikelstückliste :	: WEI.1112910000 -	1		+ Blatt
Bear	rb. JAG č	Elektrik und Automatisierung			FPD1	Maßstab 1 Seite
Änderung Datum Name Ursp		Projektbeschreibung Seitenbeschreibung		Artikelstückliste Anmerkungen Art	tikelstückliste	

AI UKEISLUCKIISLE						F01_MUL_/	₹ [
Betriebsmittelkennzeichen	Menge	Bezeichnung	Hersteller	Typnummer	Lieferant	Bestellnummer	
=AZ1+A01-FC22 &EFS1/11.1	1	Leitungsschutzschalter 230/400V 10kA, 1-polig, C, 0.5A SENTRON Leitungschutzschalter 5SY	Siemens	5SY4105-7	RS-Components	622-0042	
=AZ1+A01-FC23 &EFS1/11.4	1	Leitungsschutzschalter 230/400V 10kA, 1-polig, C, 0.5A SENTRON Leitungschutzschalter 5SY	Siemens	5SY4105-7	RS-Components	622-0042	
=AZ1+A01-FC24 &EFS1/1.3	1	Leitungsschutzschalter 230/400V 10kA, 1-polig, C, 4A SENTRON Leitungschutzschalter SSY	Siemens	5SY4104-7	RS-Components	622-0036	
=AZ1+A01-GQ01 &EFS1/2.1	1	Filterlüfter, 44m ³ /h, 230VAC, 19W	Pfannenberg	PF 22.000	RS-Components	250-860	
=AZ1+A01-KF01 &EF51/8.9	1	Optokopplermodul 24VDC/0,5A Murr MIRO TR 24VDC SK	Murrelektronik GmbH	MIRO TR 24VDC SK	RS-Components	918-6986	
=AZ1+A01-PF01 &EFS1/6.1	1	Meldeleuchte Rot, 24V, LED	LEDTec	LEDtecRed024VAC/DC	RS-Components	763-7909	
=AZ1+A01-PF02 8EF51/6.2	1	Meldeleuchte Gelb, 24V, LED	LEDTec	LEDtecYellow024VAC/DC	RS-Components	763-7915	
=AZ1+A01-PF03 &EF51/6.3	1	Meldeleuchte Grün, 24V, LED	LEDTec	LEDtecGreen024VAC/DC	RS-Components	763-7918	
=AZ1+A01-PF04 &EFS1/6.6	1	Meldeleuchte Weiß, 24V, LED	LEDTec	LEDtecWhite024VAC/DC	RS-Components	763-7905	
=AZ1+A01-PF05 &EF51/6.7	1	Meldeleuchte Weiß, 24V, LED	LEDTec	LEDtecWhite024VAC/DC	RS-Components	763-7905	
=AZ1+A01-PH01 &EFA1/3.5	1	KTP400 COMFORT SIMATIC HMI	Siemens	6AV2124-2DC01-0AX0	Siemens	6AV2124-2DC01-0AX0	
=AZ1+A01-PJ01 &EFS1/6.4	1	Akustischer Warnmelder, 24V, 75dB Periodischer Summton	RS-Components	877-1832	RS-Components	877-1832	
=AZ1+A01-QA01 &EFS1/2.1	1	Thermostat für Lüfter, einstellbar Einstellbereich	Pfannenberg	FLZ 530	RS-Components	103-257	
=AZ1+A01-QB01 &F51/1.1	1	Trennschalter, 3-polig, 63A	RS-Components	466-138	RS-Components	466-138	
=AZ1+A01-QB01 &EFS1/1.1	1	Dichtung für Lasttrenrschalter 63A, IP65	RS-Components	LBGASKET	RS-Components	773-7995	
=AZ1+A01-SF01 &EF51/5.1	1	Drucktaster, 1NO/1NC, Ø22mm Schwarz Harmony XB7	Schneider Electric	XB7NA25	RS-Components	815-2023	
=AZ1+A01-SF100 &F51/5.2	1	Not-Halt Taster, NC, Ø 40mm, Pilz-Form, Rot ABB Notfalttaste, Serie 15FA	ABB	1SFA619550R1041	RS-Components	757-9036	
=AZ1+A01-TB01 &F51/1.3	1	Stromversorgung, 24VDC, 10A	Phoenix Contact	TRIO-PS/1AC/24DC/10	Phoenix Contact	2866323	
=AZ1+A01-TB02 %EF51/1.6		Stromversorgung, 15VDC, 4A	Phoenix Contact	STEP-PS/1AC/15DC/4	Phoenix Contact	2868619	
							Ŧ
Datum	28.09.2019	Pellet-Pot Artikelstü	ickliste:SIE.5SY4105-7 - P)	(C.2868619		+ Blatt Maßstah	
Gepr	2007	Elektrik und Automatisierung Lansuh für Autometung			k EPD1	MUL-AuV-PP	4
vnderung Luatum jivatme jusini			reibung	Artikelstuckliste Anmerkungen	Artikeistuckiiste	10A	

3etriebsmittelkennzeichen	Menge	Bezeichnung	Hersteller	Typnummer	Lieferant	Bestellnummer
≓AZ1+A01-TB03 &EFS1/1.8	-	Stromversorgung, SVDC, 2A	RS-Components	712-7402	RS-Components	712-7402
=AZ1+A01-U1 &етц/1.1	1	Kompakt-Schaltschrank AE, 1-türig, BHT 600x1200x300 mm AE kompakt-Schaltschrank, BHT: 600x1200x300 mm, Stahlblech, mit Montageplatte, entürig, 3-Punkt-Verschluss-System	Rittal	AE.1260500	RS-Components	111-3719
-AZ1+A01-U11 &етц/1.1	1	Kabelkanal 60x60mm, geschlitzt, mit Abdeckung	RS-Components	301-2006	RS-Components	301-2006
-AZ1+A01-U12 &ет⊔/1.3	1	Kabelkanal 60x60mm, geschlitzt, mit Abdeckung	RS-Components	301-2006	RS-Components	301-2006
-AZ1+A01-U13 &ет⊔/1.1	1	Kabelkanal 60x60mm, geschlitzt, mit Abdeckung	RS-Components	301-2006	RS-Components	301-2006
-AZ1+A01-U14 &ет⊔/1.1	1	Kabelkanal 60x60mm, geschlitzt, mit Abdeckung	RS-Components	301-2006	RS-Components	301-2006
-AZ1+A01-U15 &ет⊔/1.1	-	Kabelkanal 40x60mm, geschlitzt, mit Abdeckung	RS-Components	879-3731	RS-Components	879-3731
-AZ1+A01-U16 &етц/1.1		Kabelkanal 40x60mm, geschlitzt, mit Abdeckung	RS-Components	879-3731	RS-Components	879-3731
-AZ1+A01-U17 &ет⊔/1.2		Kabelkanal 40x60mm, geschlitzt, mit Abdeckung	RS-Components	879-3731	RS-Components	879-3731
-AZ1+A01-U20 &етц/1.2	-	Auflagebock für Sammelschiene	Phoenix Contact	AB/SS	RS-Components	649-0055
-AZ1+A01-U21 &ет⊔/1.3		Auflagebock für Sammelschiene	Phoenix Contact	AB/SS	RS-Components	649-0055
=AZ1+A01-WE02 &етц/1.2	1	Sammelschiene, Kupfer 3x10mm	Phoenix Contact	NLS-CU 3/10 SN 1000MM	RS-Components	290-1258
=AZ1+A01-WZ01 &ет⊔/1.1	1	Verteilerblock 4-polig	ABB	BRT 160 A	RS-Components	413-2347
=AZ1+A01-XD24 &EFS1/1.3		Abzweigklemme 15-polig, grau			Elektrofachmarkt	200147-1
=AZ1+A01-XD24_SPS &EFS1/1.3	1	Abzweigklemme 15-polig, grau			Elektrofachmarkt	200147-1
=AZ1+A01-XE0VDC_1 &EFS1/1.4	1	Abzweigklemme 15-polig, grau			Elektrofachmarkt	200147-1
=AZ1+A01-XE0VDC_2 &EF51/1.3	1	Abzweigklemme 15-polig, grau			Elektrofachmarkt	200147-1
=AZ1+A02-A01 &EFS1/13.3	1	Lambda-Messwandler V4.0, 24V	Sebastian Knödler Technologie	L-MW V4.0 24V S	Sebastian Knödler Technologie	L-MW V4.0 24V S
=AZ1+LOC-BF01 &FF51/12.3		Luftmassenmesser	Bosch	HFM 5	Bosch	0280218113
Datum	28.09.2019 1AG	Pellet-Pot Artikestücklis	te:RS.712-7402 -			+ Blatt
	2.5	The second		_		I Mabste

Artikelstü	ickliste							F01_MUL	L_AV
Betriebsmittelk	kennzeichen	Menge	Bezeichnung		Hersteller	Typnummer	Lieferant	Bestellnummer	
=AZ1+LOC-BP01 &EF51/11.1		1	Drucksensor, E+H Cerabar PMC21 PMC21-AA1M1EJWAJA		Endress+Hauser	PMC21-AA1M1EJWAJA	Endress+Hauser	PMC21-4QW5/125	
=AZ1+LOC-BP02 &EF51/11.4		1	Drucksensor, E+H Cerabar PMC21 PMC21-AA1M1EJWAJA		Endress+Hauser	PMC21-AA1M1EJWAJA	Endress+Hauser	PMC21-4QW5/125	
=AZ1+LOC-BQ01 &EF51/13.3		1	Lambda-Sonde, Bosch LSU4.9		Bosch	LSU 4.9	Bosch	0258017025	
=AZ1+LOC-BT01 &EF51/9.1		1	Mantelthermoelement, Typ K, D3 x 100 mm		ICCP Messtechnik	MTE031592	ICCP Messtechnik	MTE031592	
=AZ1+LOC-BT02 &EF51/9.3		1	Mantelthermoelement, Typ K, D3 x 150 mm		ICCP Messtechnik	MTE031075	ICCP Messtechnik	MTE031075	
=AZ1+LOC-BT03 %EFS1/10.1		1	Einsteckthermoelement, Typ S, D7 x 150 mm		ICCP Messtechnik	ТНЕ071112	ICCP Messtechnik	ТНЕ071112	
=AZ1+LOC-BT04 %EFS1/9.4		1	Mantelthermoelement, Typ K, D6 x 200 mm		ICCP Messtechnik	MTE031199	ICCP Messtechnik	MTE031199	
=AZ1+LOC-BT05 &EFS1/9.6		1	Mantelthermoelement, Typ K, D3 x 150 mm		ICCP Messtechnik	MTE031075	ICCP Messtechnik	MTE031075	
=AZ1+LOC-BT08 &EFS1/9.7		1	Mantelthermoelement, Typ K, D3 x 100 mm		ICCP Messtechnik	MTE031592	ICCP Messtechnik	MTE031592	
=AZ1+LOC-BT09 &EFS1/9.1		1	Mantelthermoelement, Typ K, D3 x 100 mm		ICCP Messtechnik	MTE031592	ICCP Messtechnik	MTE031592	
=AZ1+LOC-BT10 &EFS1/10.3		1	Einsteckthermoelement, Typ S, D7 x 150 mm		ICCP Messtechnik	ТНЕ071112	ICCP Messtechnik	ТНЕ071112	
=AZ1+LOC-BT11 &EFS1/10.4		1	Einsteckthermoelement, Typ S, D7 x 170 mm		ICCP Messtechnik	тнео71172	ICCP Messtechnik	ТНЕ071172	
=AZ1+LOC-BT12 &EF51/10.6		1	Einsteckthermoelement, Typ S, D7 x 170 mm		ICCP Messtechnik	тнео71172	ICCP Messtechnik	ТНЕ071172	
=AZ1+LOC-BT13 &EFS1/9.3		1	Mantelthermoelement, Typ K, D6 x 200 mm		ICCP Messtechnik	MTE031199	ICCP Messtechnik	MTE031199	
=AZ1+LOC-BT14 8EFS1/9.4		1	Mantelthermoelement, Typ K, D6 x 200 mm		ICCP Messtechnik	МТЕ031199	ICCP Messtechnik	MTE031199	
=AZ1+LOC-XD200 &EFS1/1.1		1	Stecker 32A, 3L+N+PE, IP44 Legrand P17 Tempra Pro		Legrand	5 552 39	RS-Components	821-1955	
=AZ1+LOC-XG55 %EFS1/13.3		1	Flachsteckergehäuse, 6-polig, 2-reihig, Stecker		Fahrzeugelektrik Pirna GmbH & Co. KG	42064700	Fahrzeugelektrik Pirna GmbH & Co. KG	42064700	
=AZ1+LOC-XG55 &EF51/13.3		1	Flachsteckergehäuse, 6-polig, 2-reihig, Buchse		Fahrzeugelektrik Pirna GmbH & Co. KG	42121700	Fahrzeugelektrik Pirna GmbH & Co. KG	42121700	
=GQ1+A01-FC01 &EFS1/7.1		1	Leitungsschutzschalter 400V 10kA, 3-polig, B, 16A SENTRON Leitungschutzschalter 5SY		Siemens	5SY4316-6	RS-Components	383-2074	
	Datum	28.09.2019	Pellet-Pot	Artikels	ückliste: E+H.PMC21-AA1M1	EJWAJA -		+ Blatt	tah
++	Gepr	NHC	Elektrik und Automatisierung	TCC.JLC Intheretung Interview	4316-6		& EPD1	MIII_AII/_DD	i slau
derung Datum N	Name Urspr		Projektbeschreibung	Seitenbeso	hreibung	Artikelstückliste Anmerkungen	Artikelstückliste		~

	0		1	2	Ω	4		5	9	7		8	6	
	Artikelstüch	kliste		_	-		-	-	-		-	-	F01_MUL_AV	
	Betriebsmittelken Platzierung	Inzeichen	Menge	Bezeichnung				lersteller	Typnumer	Lie	eferant	Bestellnummer		
	=GQ1+A01-TA01 &EF51/7.1		-	Frequenzumrichter 400V / 17 ACS310 Serie	7 A / 7.5kW		A	BB	ACS310-03E-17A2-4	ABI		ACS310-03E-17A2-4		
0	=GQ1+LOC-GQ01 &EFS1/7.1		1	Seitenkanalverdichter, 2.2kM RJET Series	l, 2950U/min		Ö	reative Blower	RJET K030SS/3/2	Cre	ative Blower	RJET-K030SS/3/2		
. 1.4	=EB1+A01-FC01 &EF51/8.1		1	Leitungsschutzschalter 400V	10kA, 3-polig, B, 25A			iemens	5SY4325-6	Ś	-Components	383-2096		
	=EB1+A01-FC02 &EF51/8.7		1	Leitungsschutzschalter 400V SENTRON Leitungschutzscha	10kA, 3-polig, C, 2A liter 5SY			iemens	5SY4302-7	Ś	-Components	622-0086		
	=EB1+A01-TA01 &EF51/8.1		1	Leistungssteller 400 V / 20 A TYA200 Serie				OML	TY A202-400V-20A	Nr.	ę	709062/8-01-020-100	-400-00/252	
	=EB1+LOC-EB01 &EF51/8.8		1	Heizpatrone, Leister LE 1000	ОНТ			eister	LE10000HT	Lei.	ster	LE10000HT		
9														
;		Datum Rearh.	28.09.2019 1AG	Pellet-Pot		600	Artikelstückliste : AE	3B.ACS310-03E-17/	22-4 -			+	Blatt Maßstab	1:1
		Gepr	nwr	Elektrik und Automat	isierung	Lehrstuhl für Aufbereitung und Verediung	LEI.LE10000HI			& EPD1		MIII-AIN	DD Seite	44
F Änden.	yrung Datum Name	3 Urspr		Projektbeschreibung		J	Seitenbeschreibung		Artikelstückliste Anmerkungen	Artikelstü	ckliste			4

Thermische Auslegung - Schaltschrank Pellet-Pot

Berechnung der Gesamtverlustleistung

Betriebsmittel		Verlustleistung	Anmerkung
Frequenzumrichter		110,8 W	
Leistungssteller		96,4 W	
Netzteil 24 V		30,0 W	max.
Netzteil 15 V		9,0 W	max.
Netzteil 5 V		10,0 W	max. (geschätzt)
SPS CPU		12,0 W	
SPS AI		2,3 W	
SPS AO		1,8 W	
SPS TC 1		1,5 W	
SPS TC 2		1,5 W	
Su	mme	275,4 W	
Sicherheitsfaktor		1,5	
Ge	samt	413,0 W	

Berechnung der Gleichgewichtstemperatur

Bezeichnung	Wert	Anmerkung
Verlustleistung	413,0 W	
Umgebungstemperatur	30,0 °C	
delta_T Bezug	20,0 °C	
Wärmeabgabe Gehäuse	242,0 W	delta_T = 20 K
Wärmeabgabe Lüfter	280,0 W	delta_T = 20 K
Kühlleistung Gehäuse	191,5 W	
Kühlleistung Lüfter	221,6 W	
Kühlleistung	413,0 W	
delta_T	15,8 °C	
Schaltschranktemperatur	45,8 °C	

berechnet mit Solver in Excel Bedingung: Verlustleistung = Kühlleistung

	8	7	6	5	4	3	2	1	Γ
н		0 "' k	Start - Hauptprog kontinuierlich"	ramm [OB1]	50	"Start - Rege alle 25 ms"	elung [OB32]		н
┝		M1 "	Messung / Mess	verte"	M51	"SKV-Messv	verterfassung"		
G		M2 ","	SKV/Lufterhitzer	Messwerte"	M52	"SKV-Sollwe	ertauswahl"		G
		M3 "	Fehler/Warnunge Femperatur"	en	M53	"SKV-Regel	ung"		
F		M4 "	Not-Halt"		M54	"SKV-Stellw	ertausgabe"		F
		M5 ""	Automatikmodus	ч	M55	"Lufterhitzer	-Messwerterfass	ung"	
E		M6 "	Lufterhitzer-Verri	egelungen"	M56	"Lufterhitzer	-Sollwertauswah	١	E
		M7 "	Lufterhitzer-Steu	erung"	M57	"Lufterhitzer	-Regelung"		
D		M8 ",	SKV-Verriegelun	gen"	M58	"Lufterhitzer	-Stellwertausgab	e"	D
		M9 "	SKV-Steuerung"						
С		M10 "	Fehler/Warnunge Allgemein"	en	70	"Start - Arch jede Sekund	ivierung [OB30] le einmal"		с
		M11 "	HMI-Kommunika	tion"		Setze Archi	vierungsbit"		
В		M12 ",	SCB safe off"						В
	· · · · · · · · · · · · · · · · · · ·		Bearb. 28	Datum Name 3.09.19 JAG	Pellet-Pot Ster Hauptprogram	uerung: Im			1
			Gepr. 28 Norm	3.09.19 JAG	Regelung Archivierung				
A				Lehrstuhl für Aufbereitung und Veredlung	pp-main "Main [OB1]", "CY_1s_Archiv	"CY_25ms_Control /ing [OB30]"	[OB32]",	Blatt 1/1	A
	Zust: Änder	ung Datum	Name (Urspr.)		(Ers. f.)		(Erst. d.)	· · ·	\bot
	8	/	6	5	4	3	2		

A-A (1:1)

Firma		Erstellt von	Geändert von	Geprüft von	Bemerkungen	
Montanuniversität Leoben	(2°°°)	JAG	JAG			
Franz-Josef-Straße 18	Lehrstuhl für Aufbereitung	Erstellt am	Geändert am	Geprüft am	1	
8700 Leoben	und Veredlung	21.03.2019	11.04.2019			
Projekt		Dokumentenart			Version	Maßstab
Pellet-Pot		Fertigungsz	eichnung			1:1
Titel		Sachnummer			Blatt	Format
Probenbehälter – Siebt	träger				2	A4

Kalibrierung Rotameter

Regler 100 %

1000 l/h (STP)

nin]	1,19	1,18	1,16	1,14	1,12	1,09	1,05	1,03	0,96	0,85	
] Steigung [I/I	,8	,8	,8	,8	,8	,8	,8	,8	,8	,8	,8
T Umg. [°C	23	23	23	23	23	23	23	23	23	23	23
r Gas [°C]	23,4	23,4	23,4	23,4	23,4	23,4	23,4	23,4	23,4	23,4	23,4
Druck abs. [mbar]	945,6	945,6	945,6	945,6	945,6	945,6	945,6	945,6	945,6	945,6	945,6
Druck rel. [mbar]	0,24	0,21	0,19	0,15	0,13	0,11	80'0	90'0	0,04	0,02	00'0
Skala MW [1]	14,00	12,73	11,45	10,23	8,95	7,68	6,38	4,85	3,48	1,95	0,00
Skala AUF [1]	13,90	12,70	11,40	10,20	8,90	7,65	6,25	4,80	3,45	1,90	0,00
Skala AB [1]	14,10	12,75	11,50	10,25	9,00	7,70	6,50	4,90	3,50	2,00	0,00
Durchfluss [I/min]	16,67	12,00	13,33	11,67	10,00	8,33	6,67	2'00	3,33	1,67	00'0
Durchfluss [I/h]	1000	006	800	002	009	200	400	300	200	100	0
Regler [%]	100	06	80	20	60	50	40	30	20	10	0

Massenstromregler: Brooks Smart Mass Flow Controller - 5850S Massenstromcontroller: Brooks Control Unit 0154 Rotameter: Porter Instrument Company - Model 150 - B-250-6 p Regler (Eingang): 2 bar (Kalibrierbedingungen) Eingangsdruck so gut wie möglich nachgeregelt Durchflusswerte bei Standardbedingungen (STP) Kalibrierung mit synthetischer Luft (N2 80 %, O2 20 %); M=28,8 g/mol Druck absolut lt. ZAMG (halbstündlich)

Anhang I – Vorbereitung der Auswertung

Ausgangsdaten

Es folgt eine Liste der für die Auswertung notwendigen Daten:

Datenaufzeichnung Pellet-Pot

(Messwertdatei vom USB-Stick: "pp-data-YYYYMMDD-HHMMSS.csv")

- Gasmessdaten (testo 350 XL) (am Gasmessgerät, Messdatenübertragung wird nachfolgend erklärt)
- Versuchsprotokoll (in Papierform)
 - Mehrmals in unregelmäßigen Abständen erfasst:
 - Absolutdruck Leoben (ZAMG)
 - Luftfeuchtigkeit (testo 435-4)
 - Laufende Messung für Gasvolumenstrom:
 - Skalenwert des Rotameters ("Porter Instrument Company", B-250-6)
 - Temperatur Messgas (testo 830-T4)
 - Relativdruck Messgas (testo 435-4)

Zusammenführung der Messdaten

Die drei zuvor aufgelisteten Datensätze liegen bis auf die Datenaufzeichnung des Pellet-Pots nicht in einer verarbeitbaren Form vor und müssen für die Auswertung vorbereitet und zusammengeführt werden. Die folgende Auflistung beschreibt die dafür notwendigen Arbeitsschritte.

- 1. Versuchsordner erstellen (Versuchsname als Ordnername)
- 2. Übertragung der Messdaten vom USB-Stick des Pellet-Pots in den Versuchsordner (Maschine abschalten!)
- 3. Digitalisierung der Messdaten des Versuchsprotokolls

(Abspeichern als "gas_flow_measurements.xlsx")

- a. Zeit (HMI-Systemzeit)
- b. Messwerte zur Bestimmung des Messgasvolumenstroms
 - i. Volumenstrom (Skalenwert, Rotameter)
 - ii. Temperatur
 - iii. Relativdruck
- c. Anmerkungen (optional)

- 4. Vorbereitung der Gasmessdaten
 - a. Auslesen der Messdaten aus dem Gasmessgerät mittels "testo Comfort-Software"
 - i. Verbindung testo 454 mit Laptop ("Windows 98", Toughbook) mittels RS-232
 - ii. Öffnen der "testo Comfort-Software"
 - iii. Verbindung des Messgeräts mit dem Computer (Messgerät in der Liste links doppelklicken, die verfügbaren Datensätze erscheinen in derselben Liste)
 - iv. Laden des gewünschten Datensatzes mittels Doppelklick
 - v. Abspeichern der Messwertdatei am Laptop
 - b. Exportieren der Messwertdateien (für jede Messwertdatei durchführen)
 - i. Öffnen der Messwertdatei (falls zwischendurch geschlossen)
 - ii. Rechtsklick in die Messwerte der geöffneten Messwertdatei →
 Alle Datensätze markieren
 - iii. Rechtsklick \rightarrow "Kopieren"
 - iv. Excel öffnen

gas_flow_measurements.xlsx pp-data-20190527-151502.csv

- v. Rechtsklick \rightarrow "Einfügen"
- vi. Messwertdaten als ".xls" abspeichern
 - (Nullwerte mit "-null" und Messungen mit "-messung" im Dateinamen, siehe unten)
- c. Messwertdaten mit USB-Stick übertragen

Bezüglich der Datei- und Ordnerbenennung der Versuchsdaten hat sich für die Gasmessdaten folgendes Schema bewährt "Versuchsname\[laufende Nummer]-[Datentyp]-[laufende Nummer zum Datentyp]" wobei das Feld Datentyp die Werte "-messung" (für eine Messung) oder "-null" (für eine Nullmessung) annehmen kann. Eine beispielhafte Dateistruktur des Versuchsordners ist nachfolgend angeführt.

PPV-003-IB\

	1-null-1.xls	(Nullmessung vor Start des SKV)
	2-null-2.xls	(Nullmessung nach Start des SKV)
	3-messung-1.xls	(Messung)
	4-null-3.xls	(Nullmessung nach Versuchsende; T < 100 °C)
	gas_flow_measurements.xlsx	(digitalisierte Gasflussmessung)
	pp-data-20190527-151502.csv	(Messdatei des Pellet-Pots)
PPV-00	4-IB\	
	1-null-1.xls	
	2-null-2.xls	
	3-messung-1.xls	
	4-null-3.xls	

Anhang J – Auswertungsablauf

- 1. Erstellung der Versuchsdatei und Vorbereitung der Messdaten (Benutzeraktionen notwendig)
 - a. Manuelle Eingabe der Versuchsnamens (Benutzeraktion)
 - b. Erzeugung der Ordnerstruktur
 - c. Erzeugung der Versuchsdatei mit vorausgefüllten Beispieldaten
 - d. Manuelle Eingabe der Versuchs- und Probendaten in die Versuchsdatei auf Basis des Versuchsprotokolls (Benutzeraktion)
 - e. Kopieren der Messdateien in den angegebenen Ordner (Benutzeraktion)
 - f. Automatische Erkennung der Messdateien
 - g. Abspeichern der aktualisierten Versuchsdatei
 - h. Ausgabe der Versuchsdaten zur Überprüfung
- 2. Vorbereitung der Daten der Gasmessung (Korrektur der Startzeit) (Benutzereingabe erforderlich)
 - a. Laden der Versuchsdatei
 - b. Laden der ersten Gasmessdatei ("X-messung-Y.xls")
 - c. Ausgabe der Startzeit der Messdatei
 - d. Benutzerabfrage "Startzeit okay?" (Benutzereingabe, ja/nein)
 - e. (optional) Eingabe einer neuen Startzeit (Benutzereingabe)
 - f. (optional) Erneute Benutzerabfrage "Startzeit okay?" (Benutzereingabe)
 - g. Korrektur aller Zeiten auf Basis der gewählten Startzeit
 - h. Ausgabe der korrigierten Gasmessdaten als Diagramm
 - i. Abspeichern der korrigierten Gasmessdaten
 - j. Abspeichern des Pfads der korrigierten Messwertdatei in der Versuchsdatei
- 3. Vorbereitung der Daten der Gasvolumenstrommessung (Automatisch)
 - a. Laden der Versuchsdatei
 - b. Laden der Messdatei der Gasvolumenstrommessung ("gas_flow_measurements.xlsx")
 - c. Zeitstempel aus Zeit der Messwertdatei und Datum der Versuchsdatei erzeugen
 - d. Visualisierung der Gasvolumenstrommessung
 - e. Abspeichern der korrigierten Gasvolumenstrom-Messdaten
 - f. Abspeichern des Pfads der korrigierten Messwertdatei in der Versuchsdatei
- 4. Korrektur der Zeitstempeln der Messdatei des Pellet-Pots (Automatisch)

(Notwendig, weil manchmal zwei Datensätze in einer Sekunde abgespeichert werden)

- a. Laden der Versuchsdatei
- b. Laden der Messdatei des Pellet-Pots ("pp-data-YYYYMMDD-HHMMSS.csv")
- c. Korrektur der Messdaten
- d. Abspeichern der korrigierten Pellet-Pot-Messdaten
- e. Abspeichern des Pfads der korrigierten Messwertdatei in der Versuchsdatei

- 5. Zusammenführung der Messdaten (Automatisch)
 - a. Laden der korrigierten Messwertdatei des Pellet-Pots
 - b. Laden der korrigierten Gasvolumenstrommessdatei
 - c. Laden der korrigierten Gasmessdatei
 - d. Kombination der Messwerte
 - e. Abspeichern der kombinierten Messwertdatei
 - f. Abspeichern des Pfads der kombinierten Messwertdatei in der Versuchsdatei
- 6. Bestimmung der Nullwerte für die Gasmessung
 - a. Für jede Nullmessung (Automatischer Ablauf):
 - i. Laden der Nullmessung
 - ii. Laden der Referenzgasmessdaten
 - iii. Korrektur der CO2-Messwerte mittels CO2-Korrekturfaktor
 - iv. Berechnung der mittleren Konzentration über den Zeitraum der Nullmessung von CO₂ und CO
 - v. Ausgabe der mittleren Konzentrationen
 - vi. Erstellung und Abspeichern eines Diagramms mit der Nullmessung
 - b. Auswahl der zu berücksichtigenden Nullmessungen (Benutzereingabe)
 - c. Berechnung des Mittelwerts der ausgewählten Nullmessungen
 - d. Abspeichern der Mittelwerte und ausgewählten Nullmessungen in der Versuchsdatei
- 7. Vorberechnung der notwendigen Werte für die Auswertung
 - a. Laden der kombinierten Messwertdatei
 - b. Korrektur der Überschriften der Messwertdatei
 - c. Korrektur der CO2-Messwerte mittels CO2-Korrekturfaktor
 - d. Nullung der CO₂- und CO-Messwerte
 - e. Berechnung der Messgaszusammensetzung
 - f. Berechnung des CO₂- und CO-Volumenstroms im Messgas
 - g. Berechnung des CO₂- und CO-Volumens je Zeitschritt
 - h. Berechnung des kumulativen CO₂- und CO-Volumens
 - i. Abspeichern der fertigen Messwertdatei
 - j. Abspeichern des Pfads der fertigen Messwertdatei in der Versuchsdatei
- 8. Berechnung laut Berechnungsvorschrift (für Spateisenstein-Stufe und Rest-Stufe)
 - a. Laden der fertigen Messwertdatei
 - b. Berechnung des gemessenen Massenverlusts
 - c. Berechnung von Spateisensteingehalt und -masse
 - d. Berechnung des Masseverlusts auf Basis des Modells
 - e. Vergleich von berechnetem und gemessenem Massenverlust
 - f. Abspeichern der Ergebnisse in der Versuchsdatei

Anhang K – Eingesetzte Software

Das Auswertungsprogramm benötigt zur Ausführung die passende Python-Umgebung. Die Installation von Python und der notwendigen Pakete ist am einfachsten mit der Python-Distribution Anaconda durchzuführen. Diese Distribution enthält alle für die Ausführung der Auswertungssoftware notwendigen Module und verwaltet deren Abhängigkeiten. Mit Hilfe des darin enthaltenen Jupyter Notebook als Arbeitsumgebung kann Python einfach im Browser verwendet werden.

Die Installationsanleitung von Anaconda ist unter folgendem Link zu finden: https://docs.anaconda.com/anaconda/install/ (Python 3.7 Version)

Die ersten Schritte mit Anaconda und Jupyter Notebook werden auf dieser Webseite beschrieben: https://docs.anaconda.com/anaconda/user-guide/getting-started/

Auflistung der eingesetzten Software

Python 3.7.2

Module:

- matplotlib 3.0.2
- numpy: 1.16.2
- pandas: 0.24.1
- xlrd: 1.2.0
- xlwt: 1.3.0
- xlsxwriter: 1.1.7
- setuptools: 40.8.0
- python-dateutil: 2.8.0
- pytz: 2018.9
- scipy: 1.2.1

Start der Auswertung

Es ist darauf zu achten, dass Python im richtigen Ordner ausgeführt wird. Der Quellcode muss als "pp_analyzer.py" im aktiven Ordner vorhanden sein. Das Auswertungsprogramm wird in Python über folgende Befehle gestartet:

```
from pp_analyzer import PelletPotAnalyzer as PPA
ppv = PPA()
ppv.run_analysis()
```

Danach ist nur mehr auf die Anweisungen im Programm zu achten.

Auf einen Druck des vollständigen Quellcodes wurde aufgrund des Umfangs verzichtet.

Versuch:

Datum:

Probe:

Versuchsziele

Versuchsziel	ОК

Versuchsziel	ОК

Zusammenfassung

	Start		Ende
Masse vorher		Masse nachher	
Höhe vorher		Höhe nachher	
Luftdruck (abs.)		Luftdruck (abs.)	
Luftfeuchtigkeit		Luftfeuchtigkeit	
Temperatur		Temperatur	

Anmerkungen

Ablauf

Zeit	Tätigkeit, Ereignis	Zeit	Tätigkeit, Ereignis

_

Volumenstrommessung (Porter Rotameter) – Teil 1

Zeit	Skala	dp [mbar]	Temp. [°C]		Zeit	Skala	dp [mbar]	Temp. [°C]
				-				
				-				
				-				

Volumenstrommessung (Porter Rotameter) – Teil 2

Zeit	Skala	dp [mbar]	Temp. [°C]		Zeit	Skala	dp [mbar]	Temp. [°C]
				-				