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Abstract

This thesis investigates the feasibility and stability of using atomic emission spectroscopy
as a means of determining the composition of liquid steel in an electric arc furnace (EAF).
In the first step of the data processing, the observed spectra from the spectroscope are
smoothed (Savitzky-Golay polynomial smoothing) and the baseline is removed, with
methods based on “minimizing non-quadratic cost functions” or “penalized least-squares”.
Next, the corresponding chemical elements are assigned to the peaks in the spectra with
the help of the online database “NIST Atomic Spectra Database”. In the final step, cal-
ibration curves are established for each element, in order to determine, whether there is
correlation between the observations and the actual content of the corresponding element
in the steel sample.
The experimental setup, conceived and implemented in the course of this work, covers a
small-scale laboratory EAF and a spectroscope. In order to conduct the required exper-
iments, low alloy steel samples of known chemical composition are utilized and the arc
that is established between the molten steel and the graphite electrode is observed by the
spectroscope.
The results of this thesis lead to the assumption, that the setup, that was available for the
experimental work may not be sufficiently suitable to be conclusive with respect to an
industrial oven and equipment.
Another major finding of this work is, that the uncontrolled nature of the arc in an EAF is
not suitable as an excitation source for atomic spectroscopy, due to the instability and the
sensitivity to impurities in the sample.

Index Terms
Atomic Emission Spectroscopy; Spectroscopy; Electric Arc Furnace; EAF; Steel Analy-
sis; In-Situ Analysis; Steelmaking
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Kurzfassung

Diese Arbeit untersucht die Machbarkeit und das Potential der Methode, die chemische
Zusammensetzung der Stahlschmelze in einem Lichtbogenofen (EAF) mittels Atomemis-
sionsspektroskopie zu bestimmen.
Im ersten Schritt der Datenverarbeitung werden die vom Spektroskop erhaltenen Spek-
tren geglättet (Savitzky-Golay polynomial smoothing) und die Basislinie mittels Metho-
den, die auf der ”Minimierung nicht-quadratischer Cost-Functions” und ”Penalized Least-
Squares” basieren, entfernt. Im nächsten Schritt werden die entsprechenden chemischen
Elemente den Peaks in den Spektren, unter Zuhilfenahme der Online-Datenbank ”NIST
Atomic Spectra Database”, zugewiesen. Das Erstellen sogenannter ”Kalibrierkurven”
ermöglicht es sodann, zu ermitteln, ob eine Korrelation zwischen den beobachteten Daten
und den tatsächlichen chemischen Zusammensetzungen der Stahlproben zu verzeichnen
ist.
Die Versuchsanordnung, welche während dieser Arbeit ersonnen und implementiert wird,
umfasst einen EAF im Labormaßstab und ein Spektroskop. Für die experimentelle Durch-
führung werden Proben aus niedriglegiertem Stahl bekannter chemischer Zusammenset-
zung verwendet und der Lichtbogen, welcher sich zwischen Elektrode und ebendieser
Stahlproben ausbildet, vom Spektroskop erfasst. Die Ergebnisse dieser Arbeit führen zu
der Annahme, dass die zur Verfügung stehende Versuchsanordnung keine eindeutigen
Rückschlüsse auf eine mögliche Anwendung in einem Industrie-EAF zulässt.
Des Weiteren eignet sich der Lichtbogen in einem EAF, aufgrund seiner instabilen Aus-
bildung, nur bedingt für Atomemissionsspektroskopie.

Schlagwörter
Atomemissionsspektroskopie; Spektroskopie; Lichtbogenofen; EAF; Stahlanalyse; In-
Situ Analyse; Stahlerzeugung
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Chapter 1

Introduction

Over the past ten years, the annual worldwide crude steel production has increased by
25 percent, reaching 1690,5 million tons in 2017. Figure 1.1 depicts the data [15] sepa-
rated by region. Due to this significant rise and the increasingly stringent environmental
requirements, the overall percentage of steel produced from scrap has also seen some sig-
nificant growth [16].
In steelplants, so-called electric arc furnaces (EAFs) are utilized to convert this recycled
scrap back to crude steel. Since electrical energy is used as the main energy source, and
the average consumption in modern versions is 375kWh for each ton of steel, it is endeav-
ored to increase the performance with respect to economical and environmental reasons
[1], [16].

 

Figure 1.1: Worldwide Crude Steel Production in Million Tonnes in 2017

One possible approach of increasing the effectiveness might be to avoid a free burning
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CHAPTER 1. INTRODUCTION 2

arc. In other words, such arcs are not enveloped in slag or scrap, which leads to unwanted
energy losses due to radiation. However, detecting such a lack of slag covering is not
trivial and is usually estimated with the help of the water temperature in the cooling
panels of the furnace. One major disadvantage of this method is, that there is a certain
delay (of up to several minutes), since the water in the cooling panels does not change its
temperature immediately [17].
To bypass this issue though, the temperature of the arc might be acquired with the aid of
spectroscopy. It is known, that these temperatures are in a range of approximately 8000
to 11000K [5]. Whenever values are measured, that are slightly underneath this range,
it can be assumed, that the arc is covered with slag and the energy losses are therefore
minimized.
What is more, not only the temperature in the region of the arc can be measured with this
mentioned approach, but also that of the steel bath. This could replace the usual method,
where a sleeve with an attached thermocouple gets either immersed normally or with a
lance manipulator through a slag door of the furnace. By opening the slag door, cold air
from the surrounding atmosphere gets inside the furnace, which leads to an increase of
nitrogen in the vessel of the furnace and also an energy loss, which is both unwanted.
Finally, another aspect of improving the overall efficiency of an EAF with the help of
spectroscopy is to conduct an in-situ analysis of the chemical composition of the steel.
This implicates to the same advantages as the previously described method to measure
the temperature, since an opening of the slag door to obtain a sample of molten steel,
which is then analysed via XRF, is not required [17].

1.1 Outlook of this Thesis

Even though spectroscopy is capable of the previously mentioned measurements, this the-
sis solely puts its focus on developing and evaluating a method to analyse the chemical
composition during the meltdown process in an industrial electric arc furnace.
In the first part of this thesis, a profound literature research on EAFs is provided, since it is
inevitable to investigate the surroundings and the possible influences on the measurement
equipment.
The second part addresses the subject of spectroscopy with respect to the basic physical
principles and how the measurements are conducted under laboratory conditions.
The section, that covers the experimental setup, describes a laboratory version of an elec-
tric arc furnace and the overall experimental setup, that was conceptualized and imple-
mented during this thesis.
What is more, the chapter Data Processing demonstrates a procedure on how to handle
the acquired data, for example, how to reduce the noise in the signal, remove the baseline
in each spectrum and detect the local maxima (i.e. peaks).
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Subsequently, all the findings and problems, with respect to the construction and data
processing are being presented, and discussed.

1.2 Motivation

Throughout the past decades, the main focus on research conducted in the area of steel-
making in an EAF has been on the improvement of their overall efficiency. This includes,
among others, the consumption of electrical energy, the tap-to-tap time and the wear of
the graphite electrodes.
Considering an example of a furnace of the approximate size of 120t, the energy consump-
tion was decreased from about 650kWh/t to roughly 350kWh/t within only 40 years,
which might be explained due to the reduction of the tap-to-tap times to 30-40mins. Fig-
ure 1.2 illustrates these mentioned trends together with significant inventions [1].

 

Figure 1.2: Overview of Innovations and Overall Improvements in EAF Steelmaking [1]

With the aim of continuing this trend of increasing the EAF’s overall efficiency, the ob-
jective of this thesis is to evaluate, whether it is possible to determine the composition of
molten steel in-situ. As mentioned previously, this would replace the method of obtaining
a sample with the help of a sleeve through the slag door, which causes an unwanted loss
of energy and an increase of the tap-to-tap time.
Taking a closer look at the overall energy balance of a typical electric arc furnace, it is
possible to make an assumption about the energy saving potential. The energy input of an
EAF consists of the following [2]:
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1. Electrical energy, that is transferred to the (liquid) scrap via graphite electrodes

2. Energy supplied by natural gas burners, that decrease the time to melt the scrap and
to avoid cold spots

3. Energy, that is released by exothermic reactions (i.e. oxidations) during the refining
phase

Computing the input energy leads to the following representation [2]:

EInput =

tTapping∫
tCharging

PElectricdt +∆HNG−Burner +∆HOxygen−In jection (1.1)

PElectric . . . Electrical power input
∆HNG−Burner . . . Reaction enthalpy of natural gas
∆HOxygen−In jection . . . Reaction enthalpy caused by exothermic reactions

The output energy, that has to be equal to the input is obtained as [2]:

EOut put = ∆HSlag +∆HSteal +

tTapping∫
tCharging

∆ḢO f f gasdt +

tTapping∫
tCharging

∆Q̇Coolingdt+

+

tTapping∫
tCharging

∆Q̇Radiation,OtherLossesdt (1.2)

∆HSlag . . . Increase of the slag’s enthalpy
∆HSteel . . . Increase of the steel’s enthalpy
∆ḢO f f gas . . . Enthalpy flow rate (off-gas)
∆Q̇Cooling . . . Heat flow rate (cooling system)
∆Q̇Radiation,OtherLosses . . . Heat flow rate (radiation and other losses)

Finally, the conservation of energy leads to [2]:

ETotal = EOut put = EInput (1.3)

Figure 1.3 illustrates the energy balance (energy sources and sinks) of an EAF, together
with typical values. What is more, this figure demonstrates, that up to three quarters of the
input is due to electrical or chemical energy from natural gas/oil burners and, therefore,
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mainly from fossile fuels [2].

 

Figure 1.3: Energy Sources and Sinks in an EAF [2]

However, the CO2-emissions are not solely due to the previously described sources, but
are also caused by oxidation reactions during oxygen injection and the combustion of off-
gas, see Figure 1.4.
The overall CO2-emissions (mCO2/ETotal) of electric arc furnaces in the steelmaking in-
dustry amount to approximately 0,11 to 0.21kg CO2/kWh [2].

 

 

 

Figure 1.4: Main Sources of Carbon Dioxide in an EAF, adapted from [2]

In conclusion, equation 1.1 and 1.2 proof, that a reduction of the tap-to-tap time (i.e. by
bypassing the issue of taking a sample of liquid steel with the aid of a sleeve) reduces the
overall energy consumption of an EAF and therefore lowers the amount of CO2 for each
produced ton of steel.



Chapter 2

Electric Arc Furnace

2.1 The Role of the Electric Arc Furnace in the Steel-
making Industry

Generally, there are two different methods, separated by the iron source, to obtain steel as
a raw material. One possible way is to use iron ore as the feedstock to transform it into
its liquid state with the help of a blast furnace, that is fuelled by coke, or to receive DRI
(direct reduced iron) or HBI (hot briquetted iron) through the process of direct reduction
[6] [16]. The other possibility is to convert recycled scrap metal into liquid metal. Both,
the final product of the direct reduction (briquettes or pellets), as well as the scrap, then
get liquified with the help of electrical energy in the EAF.
Usually, the pig iron received from the blast furnace is transformed into molten steel with
the help of a BOF (Basic Oxygen Converter). In this steelmaking process, the carbon
content is reduced by injecting oxygen from approximately four percent to a value of 0.1-
1% (mainly depending on the demands of the required steel quality). Furthermore, the
overall sulfur and phosphorus content are also decreased in this step. A detailed overview
of the mentioned processes (and their links to each other) in the steelmaking industry
is illustrated in Figure 2.1. One of the major advantages of an EAF in comparison to a
blast furnace is the reduced emission of toxic gasses. This pollution occurs due to the
operation with coke that leads to emissions of CO, CO2 or SO2. However, converting
scrap metal into steel grades of higher quality with specified demands on the chemical
composition is often complicated, due to the fact, that scrap contains impurities such as
nickel, chromium or copper, which are not removable in this process. This issue can be
bypassed by separating the scrap before charging the furnace.
Further refining of the molten steel to the desired chemical composition is subject to
secondary metallurgy. Here, any unwanted (non-)metallic inclusions or dissolved gaseous
elements get removed with the assistance of a vacuum degasser or ladle furnace and the
steel bath is brought to a temperature required for the following casting process [16].

6



CHAPTER 2. ELECTRIC ARC FURNACE 7

 

 

Figure 2.1: Overview of the Processes and their Links to Each Other in the Steelmaking
Industry, adapted from [3]

2.1.1 The Process Stages During the Operation of an EAF

A tap-to-tap cycle of an electric arc furnace usually consists of these operations in the
following order [6]:

• Charging of the Furnace

• Meltdown
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• Refining

• De-Slagging

• Tapping

Conducting these operations, tap-to-tap times of around 60min are achieved. Modern
EAFs, however, often skip the refining-process, which is later done in a ladle furnace.
This lowers the tap-to-tap time to about 35-40min [3][6].

Charging

In this step, both the roof part as well as the electrodes of the furnace are lifted to their
top position and swiveled to the side, to allow the crane to deposit the scrap into the fur-
nace’s containment. An important aspect is to pre-select the scrap, since it later mainly
determines the quality of the produced steel. Any additives, such as carbon or lime, may
be included in the charge or added later via injection.
After the charging is done, the roof and the electrodes are moved back to their designated
position. As the electrodes are lowered, an arc is established between the scrap and the
electrodes, where the next stage, called meltdown, begins.
During a single tap-to-tap cycle, the process of charging can be done several times, de-
pending on the volume of the containment and the density of the steel scrap. However, it
is desirable to keep the number of backcharges as low as possible, since they decrease the
productivity and cause energy losses of up to 10-20kWh/t of molten steel [6].

Meltdown

During this operation, the scrap in the vessel is transformed into liquid steel, which is
accomplished by the help of electrical and chemical energy. Usually, the chemical energy
is supplied via oxy-fuel burners, that are fueled by natural gas, whereas the electrical
energy is transferred to the scrap via graphite electrodes.
In the first part of the melting process, the so-called boredown-phase, the scrap pile gets
penetrated by the descending graphite electrodes (see Figure 2.2), whereas their pace is
mainly determined by the density of scrap and input power [5] [6].
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Electrode 

Scrap 

Containment 
Arc 

Figure 2.2: The Different Phases of the Meltdown Process, adapted from [4]

The parameter, that mainly determines the diameter of these pits, is the arc length, which
is furthermore depending on the voltage. Thus, a higher voltage contributes to an in-
creased diameter of the pits. Any material, that gets liquified, flows downwards and
re-solidifies as it makes contact with ”cold” scrap (see Figure 2.2 a-e), which rises the
bulk density of material underneath the electrode.
According to [5], the boredown phase is finished, as the material beneath the arc reaches
a density of approximately 7t/m3.
The next stage is known as scrap collapse. As the name implies, a slow descending and
often a collapsing of the scrap pile into molten steel occurs (Figure 2.2 f -g). If there is
a sufficient amount of liquified material in the vessel, often, oxygen is supplied, which
therefore causes exothermic reactions with elements such as iron, phosphorus, carbon,
silicon, manganese and aluminum. The metal oxides then may enter the slag phase. Car-
bon monoxide, that is created in this process, is either burnt inside the furnace, if there
is a sufficient amount of oxygen present or escapes through the furnace exhaust. If the
entire scrap has been transformed into the liquid state, the last stage of the meltdown, the
f lat bath period (Figure 2.2 h), is reached [5] [6].
During this phase, the furnace shell has to endure excessive heat loads due to radiant heat
energy from the arc. In order to reduce these loads, the arc voltage has to be either low-
ered or the arc may be coated with foaming slag. The latter also rises the efficiency of the
furnace, since the quantity of energy transferred to the steel bath gets increased.
Finally, before the refining process is initiated, the temperature of the steel bath is mea-
sured with the help of a sleeve and an attached thermocouple and a sample for the chemi-
cal analysis is taken [5] [17].
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Refining

During this operation, the contents of carbon, manganese, silicon, aluminum, sulfur and
phosphorus are lowered. These impurities are partly removed as the transition into the
slag phase. This is in important task, since the content of these impurities has a strong
influence on the quality as well as the properties of the final steel product.
However, one major difference between an EAF and oxygen steelmaking is, that the ba-
sicity of the slag in an EAF is lower. What is more, the mass ratio of slag to steel is
also lower, which leads to a limited capability of removing the mentioned impurities in
an EAF. Table 2.1 depicts the typical constituents of slag in an electric arc furnace [6].

Constituents Source Rate of Composition

CaO Charged 40−60%
FeO Oxidation Product 10−30%
SiO2 Oxidation Product 5−15%
MgO Charged as Dolomite 3−8%
MnO Oxidation Product 2−5%
CaF2 Charged as Slag Fluidizer
S Absorbed from Steel
P Oxidation Product

Table 2.1: Constituents of the Slag in an EAF [6]

Removing the phosphorus from the molten steel is usually accomplished by increasing
the basicity of the slag, which can be done by charging the furnace with lime. On the
other hand, this method raises the slag’s viscosity, which in return hinders the removal
of phosphorus. In order to bypass this issue, fluorospar is applied to the bath, which is
beneficial for fluidizing the slag. This way, the content of phosphorus is lowered by 20-
50% in an EAF.
The removal of the element sulfur is primarily achieved by sulfides, that are soluble in
the slag, whereas the same conditions as described during the removal of phosphorus are
leading to the desired result.
The final step of this operation includes the measurement of the bath temperature and
taking a sample in the same way as mentioned in the meltdown phase [6].

De-Slagging

In this operation, the impurities, that are dissolved in the slag during the meltdown and
refining phase, get removed from the furnace over the slag door [6].
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Tapping

The tapping of the furnace is done as soon as the molten steel reaches the desired chemical
composition as well as the proper temperature. This step involves the opening of the
taphole and the tilting of the containment to transfer the molten steel into a vessel (i.e.
a ladle). Usually, the steel is then processed in a ladle furnace, an equipment of the
secondary metallurgy [3] [6].

2.2 Brief Historical Overview of Electric Arc Furnace Steel-
making

It was Sir William Siemens, who came up with the first construction of a working elec-
tric arc furnace, in 1878. However, due to the insufficient quality of carbon electrodes,
that were barely capable of carrying the high currents, the poorly developed power grid
and the expensive electrical power, it took more than 20 years until the first commercial
electric arc furnace was established by Heroult in 1899. In this patent, Heroult described
a furnace with one or more phases, creating arcs through the molten steel bath.
In 1906, the first one of these Heroult-furnaces went into operation in the steelplant Halo-
comb Steel Company in Syracuse, New York. This rectangular-shaped furnace had a
capacity of 3,6t, utilized a single phase power and was equipped with two electrodes.
Three years later, in 1909, the first round-shaped three phase electric arc furnace with
a capacity of 13,5t was established by the Illinois Steel Company. Since then, the vast
majority of the EAFs in steel plants around the world are operated by AC current. The
use of DC-powered furnaces in steel plants occurred much later, in the 1980s, due to their
necessity of powerful rectifiers.
Today, the DC-EAFs make up 10% of all furnaces in steel plants [5], [6].

2.3 Construction of an Electric Arc Furnace

Throughout the history of the electric arc furnace, the main focus of the research has been
on the improvement of its productivity. This demand has been achieved by, among other
things, increasing the size of the furnace, an improvement of the power input and reducing
the power-off time with the help of faster moving furnace parts.
Basically, a modern electric arc furnace consists of the following components [6]:

• A containment, where the scrap is charged and gets transformed into molten steel

• Components, responsible for supplying the furnace with electrical power
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• Parts and modules, that enable certain movements of the EAF (i.e.tilting of the
vessel)

A detailed overview of a modern EAF is depicted in Figure 2.3

 

 

 

 

 

Figure 2.3: Parts of an Electric Arc Furnace, adapted from [3]
1...Shell 2...Door 3...Pouring Spout
4...Roof 5...Roof Suspension 6...Electrode Holder
7...Electrode Supporting Arm 8...Conducting Copper Pipe 9...Transformer Room
10...Water Cooled Cables 11...Electrode Lifting Mechanism 12...Passage
13...Roof Lifting Mechanism 14...Roof Swiveling Mechanism 15...Furnace Mount
16...Rocker Rail 17...Tilt Cylinder 18...Rocker
19... Working Platform

2.3.1 Containment of an EAF

The containment of a furnace has a cylindrical shape, whereas the bottom is spherical
and the roof part resembles a flattened sphere. The spherically shaped furnace bottom
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is usually made of a steel shell, which is covered by refractory, that acts as an insulator.
Both, the roof and the panels of the containment, that are placed above the slag-line (the
top level of the liquid bath), are water cooled. This helps to enable higher heat input rates
and should avoid any critical thermal expansion of the cage, that may lead to warping or
unwanted gaps between the panels. What is more, these structural parts of the furnace
also have to be designed to endure high mechanical stress, that occurs when the EAF is
charged with scrap. Thus, the panels should have a sufficient wall thickness in order to
have the ability to withstand these forces. In contrast to that, if the wall thickness is too
high, the heat transfer to the cooling water gets minimized, which is also not desirable.
In general, mainly depending on the heat input and the workload of the furnace, the wall
thickness lies between 8-10mm. Generally, these panels contain pipes, where the water
is flowing, in order to provide sufficient cooling. The preferred material for such pipes
is boiler tube steel with a diameter of 70-90mm, since it features an adequate thermal
conductivity of 50W/mK at a reasonable price.
However, in areas of the furnace, where excessive heat loads might occur (e.g. around
the level of the molten steel bath) the boiler tube steel gets replaced by copper, since
it has an even higher thermal conductivity of 383W/mK and thus enables a better heat
transfer rate to the cooling water. Due to the fact, that the furnace is not operated at
a constant temperature, the panels are exposed to a certain quantity of thermal cycling,
which mainly determines their period of application. In order to increase their lifespan,
both a high cooling rate as well as a low heat flux to the panel should be achieved, which
seems to be a contradictory requirement. A good compromise, that satisfies these two
demands, is to support the build-up of a layer of slag on the panels, since it acts as an
insulator with its low thermal conductivity of 0,12-0,13W/mK. In order to enhance the
adhesion of the slag coating, bolts and cups are placed onto the surface of the panels.
However, it is important to consider, that the temperature difference in the cross section
of the panel should not exceed a critical value, where the mechanical stress (compression
and tension) due to thermal expansion is greater than the yield strength of the panels’
material. Otherwise, an irreversible deformation will occur, that causes cracks and might
lead to a complete failure of the panels.
In order to avoid any formation of steam bubbles in the pipes, which transfer the heat
ten times worse than water, the flow velocity should be in a range of 1,2-2,5m/s. Only in
areas that are exposed to extremely high temperatures (i.e. the slag line), a higher velocity
of the flowing water (5m/s) is unbearable to suppress any accumulation of steam
bubbles [6].
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2.3.2 Electric Circuit of an EAF

AC-Circuit

Due to the fact, that modern industrial EAFs consume approximately 375kWh of electrical
energy to melt one ton of scrap, it is essential to obtain this energy from the high voltage
grid. In order to make the voltage easier to handle at the steel plant, a transformer is used
to step it down from 100-500kV to 30-35kV (see Figure 2.4). On the primary side of the
furnace transformer, there is usually an isolator, a vacuum switch, that acts as a circuit
breaker and a reactor, which is used to regulate the line reactance. The secondary side of
the furnace transformer delivers a voltage in a range of several hundreds of volts, that is
capable of providing a stable arc and a current of several kilo amperes. This transformer
is in most cases located next to the furnace, with the purpose of minimizing the ohmic
losses in the supply cables [5].

 

 

 

 

 

  

Figure 2.4: Schematic Overview of a Steelworks’ Power Grid [5]

An important aspect when designing a power supply of the steel plant is to consider the
installation of a so-called power f actor correction. This system is necessary, due to the
poor power factor of the furnace, which is around 0,7 and therefore helps to lower the
losses in the grid [5].

A schematic overview of the high current system is provided with the help of Figure 2.5.
This high current system consists of the following parts:

• High current busbar system
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• Cables

• Electrode supporting arms

• Electrode clamp

• Graphite electrode

 

 

 

 

 

 

Electrodes 

Electrode Supporting Arms 

Water-Cooled Cables 
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Electrode 

Clamps 

Figure 2.5: High Current System of an EAF, adapted from [4]

From the secondary side of the transformer, a high current busbar system is responsible
for the connection of the furnace transformer and the high current cables. Mainly de-
pending on the required power input , the busbar system is either made of copper plates,
that are cooled by convecting air (allows a current density of up to 1,5A/mm2) or the
most common way are water-cooled pipes (allow a current density of up to 9A/mm2).
Since these plates or pipes are directly mounted to the wall of the transformer’s house,
it is inevitable, that the area of this wall does not contain any iron to avoid any arcing
or inductive heating. Due to the fact, that the electrode supporting arms are moveable
and the furnace itself often gets tilted (i.e. during th process of tapping), the connection
from the busbar system to the electrode supporting arms is established with the help of
flexible high current cables. The cables, that are made of stranded wire ropes, are also
usually water-cooled to enable maximum current densities of 6-7A/mm2. Another impor-
tant design aspect is to keep the reactance of the cables (approx. 0,1mOhm/m) as low as
possible, with the goal of minimizing the ohmic losses [7].
When it comes to the electrode supporting arms, their main functions are holding the
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electrodes in position and providing them with current from the cables. Usually, the sup-
porting arms are attached to a stool of the electrode lifting column, which is responsible
for adjusting the height of the electrodes [7].
Basically, there are three different design-concepts [7]:

• Conventional design: The main purpose of the supporting arms made of steel is
to keep the current conducting copper pipes and the electrodes in place. Since
the arms remain currentless, both the copper pipes and the electrode clamps are
isolated. Figure 2.6 (centre and left) shows, how this design may look like in a real
application.

• Design manufactured from aluminum: In this version (Figure 2.6, left and 2.7),
the arm is manufactured from aluminum and also responsible for conducting the
current. The reactance is kept low with this design, since almost the whole cross
section of the arm body is available for the current conduction (penetration depth
is mainly determined by the frequency: skin effect). In comparison to the copper-
plated version, the current densities are limited to values of 2-3A/mm2, which re-
quires bigger dimensions of the arms.

• Design manufactured from copper-plated steel: In modern steelmaking plants,
this is the preferred version (Figure 2.6, left and 2.7), since it features a high stiff-
ness and allows a greater current density of 6-9A/mm2 (depending on the thickness
of the copper plates), in comparison to the previously described arms made of alu-
minum.

 

Figure 2.6: Overview of the Different Electrode Supporting Arm Designs [6]

The connection between the graphite electrodes and the supporting arms is accomplished
by electrode clamps (see Figure 2.8 and 2.9). What is more, these clamps are responsible
for conducting the current to the electrodes, which is usually done by conductive pads
manufactured from copper [6].
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Figure 2.7: Side and Top View of Electrode Supporting Arms [6]

 

Figure 2.8: Cross Section of an
Electrode Clamp [7]

 

Figure 2.9: Front View of Electrode Holder
[6]

The graphite electrodes are responsible for transferring electrical energy to the scrap with
the aim to melt it down and later for heating up the molten steel to the desired temperature.
These electrodes are exposed to temperatures of up to 11000K [5] and a high amount of
thermal cycling. Hence, graphite is the preferred material, due to its excellent heat resis-
tance, a sufficient electrical conductivity, a low chemical reactivity (oxidation appears at
temperatures higher than 500°C) and a good resistance against thermal shock, due to its
low thermal expansion rates.The raw materials required to manufacture such cylindrically
shaped graphite electrodes for an electric arc furnace are petroleum needle coke (a prod-
uct of crude oil), coal tar pitch (a product of coal) and additives [6] [7].
The diameter mainly depends on the electrode current, which is depicted in Figure 2.10.
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Figure 2.10: Diameter of the Electrode Depending on the Current [7]

A schematic overview of the manufacturing process is shown in Figure 2.11 and includes
the following steps [6] [7]:

1. Grinding and mixing the raw materials (petroleum needle coke, coal tar pitch and

additives)

2. Extrusion of the mixture to get it into a cylindrical shape

Green electrode sections are created

3. Baking the green electrodes at around 800°C

In this process, the electrodes turn into brittle carbon. Any gas build-up caused
by high thermal gradients inside the material should be avoided, since they might
cause cracks. Thus, this production step requires three to four weeks of time.

4. Impregnation of the porous electrodes

During the impregnation, the pores, that were formed during the evaporation of
gases in the baking process, are filled with pitch to support solidification. Hence,
the density and the strength of the electrode material are increased.

5. Re-baking of the impregnated carbon to transfer the pitch into carbon

6. Graphitization

In the step of graphitization, the electrodes are heated up to a temperature of around
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3000°C by passing a direct current of 100kA through them. The amorphous struc-
ture transforms into a layer structure, that is typical for graphite. This transforma-
tion is desirable, since it improves mechanical, thermal and electrical properties of
the electrodes.

7. Machining

The dimensions of the electrode, such as the diameter, are machined with the help
of a lathe.

 

Figure 2.11: Overview of the Manufacturing Steps of a Graphite Electrode [6]

2.4 Fundamentals of a Plasma

The term plasma characterizes a partially or completely ionized gas (it consists of ions
and electrons) and was first described by Irving Langmuir in 1923. Since a plasma con-
sists of ions and electrons, its constituents are attracted to each other due to the elec-
trostatic Coulomb-force. Some important physical properties include the shielding of
electrical fields, electrical conductivity and the interference with magnetic fields [18].
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2.4.1 Classifications of Plasmas

Basically, there are two classes of plasma, that distinguish from each other by the temper-
ature of its electrons Te [18]:

• High temperature plasma (Temperature of the electrons Te ≥ 105K):
The gas solely consists of ionized atoms. Examples: Fusion plasmas, stars

• Low temperature plasma (Temperature of the electrons Te ≤ 2∗104K):
Partial ionization of the gas means, that beside the electrons and ions, also neutral
atoms are present.

– Non-thermal plasma:
The electrons get heated up, while the ions remain cold. (Ti ≈ 300K)

– Thermal plasma:
An exchange of energy between electrons and ions occurs. Furthermore, the
temperature of the ions Ti is approximately the same as that of the electrons
Te, i.e. (Ti ≈ Te)

2.4.2 Important Physical Properties of Plasmas

Electrical Conductivity

Both, the energy consumption, as well as the stability of an arc are mainly determined
by the electrical conductivity of a plasma. In further consequence, the conductivity is
primarily depending on the ionization energy. Figure 2.12 depicts the electrical conduc-
tivity of the gaseous elements Ar, He, H2 and N2 in dependence on the temperature. It is
important to point out, that He has the lowest conductivity, which can be explained by its
high ionization energy [8].
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Figure 2.12: Electrical Conductivity of Ar, He, H2 and N2, adapted from [8]

Enthalpy

One important aspect in therms of enthalpy of plasmas is the fact, that monoatomic gases
(i.e. He, Ar or Ne) have a lower enthalpy than gases with two or more atoms (i.e. O2, N2

or H2) at same temperatures, see Figure 2.13. This phenomenon is explained by the fact,
that gases with two or more atoms dissociate at higher temperatures. Monoatomic gases
show such a significant rise of enthalpy at temperatures of approximately 10000°C.
Such an increase of the plasma’s enthalpy (i.e. by purging the area around the plasma with
hydrogen) is often desired, for instance if a higher melting rate is requested. However,
gases as Argon may be used, since its low ionisation temperature enables a better ignition
and stabilization of the arc. What is more, argon also acts as an inert gas [8].
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Figure 2.13: Enthalpy of H2, Ar, N2, O2, Ne, He as a Function of the Temperature,
adapted from [8]

2.4.3 Some Examples of Plasmas

In this context, the most important examples of plasmas shall be depicted [18],[8]:

• Gas discharge:
The electrons are accelerated in the presence of an electrical field and their ioniza-
tion happens due to their collisions with each other. Usually, this acceleration is
achieved with two opposing electrodes, a cathode (negative electrode and source of
electrons) and an anode (positive electrode). Common examples of gas discharge
are arcs, sparks, glow discharges or dark electrical discharges.

• Flames:
The process of heating and ionization is achieved with the help of a chemical reac-
tion (i.e. oxidation). Temperatures are limited by the dissociation of the molecules
(T ≈ 104K).

• Light-induced plasma:
Inducing a plasma through photo-ionization, which can be achieved with a powerful
laser, for instance.
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2.4.4 The Process of Ionization

The ionization of atoms is inevitable, when it comes to the creation of a plasma. During
this process, which occurs numerous times in a real plasma, an atom acquires a positive
charge (it becomes an ion with almost the same mass), while losing an electron, which
possesses a relatively small mass in comparison to the ion. In order to achieve such an
ionization, a certain amount of energy, usually in the form of electrons or photons in the
case of a plasma, has to be transferred to the atom, known as the so-called ionization

energy. Since this energy is required to remove an electron from the atom’s outer shell,
the ionization potential is a specific constant for each element. Some examples are shown
in Table 2.2 [8].

Element Ionisation Energy Ei [eV ]

Ar 15.76
H 13.6
He 24.58
N 14.55
O 13.62
Cu 7.72
W 7.97
Na 5.14

Table 2.2: Ionisation Energy of Some Elements [8]

Considering the ionization due to impacts of electrons, approximately only one third of
all impacts have a sufficiently high energy required to knock an electron out of an atom’s
shell. The remaining two thirds of these impacts only change the speed of the atoms after
the collision, or promote them to an excited state.
The reversal process to the ionization is called recombination, where the positively charged
ion receives an electron and becomes a neutral atom again [8].

2.4.5 Arcs in Industrial Furnaces

Mainly depending on the size of the furnace, the arc voltage is typically within the range
of 100 to 800V , whereby the currents reach from about 10 to 150kA. Therefore, large
scale electric arc furnaces are capable of consuming an electrical power of 100MW and
beyond.
Generally, there are two types of industrial electric arc furnaces, that are distinguished
from each other through the characteristics of their power supply: AC- and DC- furnaces.
However, mainly explained by the need of elaborated technology to rectify the current,
the DC-furnace only constitutes to ten percent of the EAFs in modern steel plants [5].
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Arcs in AC-Furnaces

Depending on the electrical grid, the electrodes in an AC-powered furnace switch their
polarity 50 to 60 times each second, meaning, that both the graphite electrodes and the
steel (bath) act as cathodes and anodes. During the process of switching the polarity, the
current decreases and eventually reaches zero. Mainly depending on the thermal capac-
ity of the remaining plasma between anode and cathode, the arc either extinguishes or
continues. Both, an instant and sufficiently high enough input from the power supply are
beneficial for a continuing arc [5]. However, the measurements conducted during the re-
search process for this master’s thesis require a stable and continuing arc.
What is more, high speed photographs in industrial electric arc furnaces have shown, that
the arc diameter is much smaller than that of the graphite elctrode. Due to this fact, the arc
is able to move across the tip of the graphite electrode, which leads to a changing lenght
of the arc [5].

2.4.6 Atmosphere in a Steelmaking Electric Arc Furnace

In general, explained by the fact, that metals in their vaporous phase, have significantly
lower ionization potentials, in comparison to gasses, such as oxygen, nitrogen or carbon
monoxide, they are mainly responsible for providing their electrons. This means, that
the characteristics, such as radiation density or electrical conductivity of the plasma, that
carries the arc, is mainly determined by the properties of the metallic vapor.
Since scrap, that is charged into industrial EAFs, may also contain galvanized metal, the
zinc from this coating evaporates during the melting at temperatures below 800°C. Due
to its low ionization potential, zinc therefore increases the electrical conductivity of the
plasma.
Non-metallic elements, such as hydrogen might also be supplied to the furnace’s atmo-
sphere, due to the dissociation of water from wet scrap or from natural gas burners. In
addition to this, carbon monoxide, as well as carbon dioxide are mainly formed during
the oxygen injection [5].
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Atomic Spectroscopy

The term spectrum, when used in physics or chemistry, describes a spread (or range) of
wavelengths.
It was Sir Isaac Newton in 1667, who first observed the spectrum of visible light by dis-
persion, with the help of a simple prism. Roughly two centuries later, in 1859, Kirchhoff
and Bunsen came up with the first spectroscope with the purpose of using it for chemical
analysis. This crude version of a spectroscope consists of a light source (e.g. a flame), an
entrance and exit slit, two lenses and a prism (see Figure 3.1) [9]. 

Figure 3.1: Principle of a Crude Prism Spectroscope [9]

The light from the source travels through the entrance slit and gets then dispersed by the
prism. To ensure, that the separated rays are distinguishable from each other, the prism
is rotatable, so that only one ray is capable of passing through the exit slit and therefore
observable by the spectator. Considering ray 1 has the wavelength λ and ray 2 λ + dλ ,
where dλ represents a short step width. Therefore, the resolution of a spectroscope corre-
sponds to the smallest value of dλ , where the two rays are just separately observable [9].
Nowadays, atomic spectroscopy plays a major role in chemical analysis, when it comes to
determining the chemical composition of a given sample. However, there are three differ-
ent forms of atomic spectroscopy (emission, absorption and fluorescence spectroscopy),
mainly separated by the physical principle behind it. Figure 3.2 depicts the main charac-
teristic differences between the three forms of atomic spectroscopy. In atomic emission
spectroscopy, a flame or more commonly, a plasma is used as a source to get some atoms
of the sample from the ground to their corresponding excited electronic states. When re-
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turning back to their ground states, the electrons emit a photon with their characteristic
wavelengths. The intensity of the emitted photons is proportional to the elements’ con-
centration in the inspected sample [10].

 

Figure 3.2: Schematic Illustration of the Three Forms of Atomic Spectroscopy [10]

Atomic absorption spectroscopy uses a light source (e.g. a hollow-cathode lamp) to emit
photons, which then get partially absorbed by the atoms of the analysed sample. Photons,
that are not absorbed, will then be measured by a detector to determine the concentration
of this element. A flame with a temperature of approximately 2000-3000K and a path-
length of about 10cm is utilized to evaporate and break the sample into its single atoms
(atomization). Another important part of this type of spectroscopy is the light source,
where a hollow-cathode lamp is usually used for. The hollow-cathode of this lamp is
made out of the same element as the one to be analysed. The glass body is filled with
argon or neon at a slightly low pressure of 130-700Pa. When a voltage of around 500V

is applied to the electrodes, the cations of the ionized gas are accelerated towards the
negatively charged cathode. The amount of energy obtained during this acceleration is
sufficiently high to remove metal atoms from the cathode. These energetic Ar+- or Ne+-
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ions (depending on the gaseous filling of the lamp) excite the Fe-atoms of the cathode, so
that these Fe-atoms emit a photon with the same frequency of the one, that gets absorbed
by the sample in the flame. The detector then counts the photons, that have not been ab-
sorbed. Due to the fact, that these Fe-atoms have a significantly lower temperature than
those in the flame, the width of the emitted line by the hollow-cathode lamp is smaller
than the width of the line absorbed by the atoms in the flame. Therefore, the light emitted
by the hollow-cathode lamp can be considered as almost monochromatic. Since the anal-
ysed element has to correspond to the material of the lamp’s cathode, a different lamp is
required when examining a different analyte [10].

3.1 The Effect of Temperature on Spectroscopy

The temperature plays a major role in spectroscopy, since it mainly determines to which
extent the analyte is atomized. Furthermore, a higher temperature is beneficial for in-
creasing the ratio of atoms in their excited states to those in their ground states, which has
a significant influence on the intensity of the observed signal.
Assuming a thermal equilibrium, the Boltzmann- Distribution helps to describe the ratio
of the populations in the ground and excited state. At any given energy level of an atom or
molecule in the sample, there might be one or more possible states. The term degeneracy

describes, how many states at a certain energy level are possible.
The Boltzmann Distribution is given as [10]:

N∗

N0
=

g∗

g0
e
−
4E
kBT (3.1)

With,
N∗...Population of atoms in the excited state
N0...Population of atoms in the ground state
kB...Boltzmann’s constant (kB = 1.381 ·10−23JK−1 [19])
g∗...Degeneracy of the excited state
g0...Degeneracy of the ground state

Considering the following example of sodium: The energy gap ∆E between the ground
and the lowest excited state of sodium amounts to 3,371 ·10−19J/atom, whereas the cor-
responding degeneracies are 1 and 2. Calculating the relative populations of these two
states at a temperature of 2600K (e.g. in a flame, where a mixture of acetylene and air
gets burnt) leads to [10]:



CHAPTER 3. ATOMIC SPECTROSCOPY 28

N∗

N0
=

2
1

e
−

3,371 ·10−19

1,381 ·10−23 ·2600 = 1,6738 ·10−4 (3.2)

According to this computation, approximately 0,017% of all sodium atoms are in their
excited state. Increasing the temperature by 10K also rises the number of atoms in their
excited state [10]:

N∗

N0
=

2
1

e
−

3,371 ·10−19

1,381 ·10−23 ·2610 = 1,7351 ·10−4 (3.3)

This example depicts, that an increase of the temperature by 10K also increases the frac-
tion of atoms in their excited state by [10]:

A = G
p

100
(3.4)

p =
100 ·A

G
=

100 · (1,7351−1,6738) ·10−4

1,6738 ·10−4 = 3,6623% (3.5)

With,
p...Percentage
G...Original value
A...New value

Due to the fact, that the intensity of the emission is proportional to the atoms in the excited
state, a temperature rise of 10K therefore increases the emission intensity by almost 4%
(in the case of sodium). This is why a stable flame is inevitable to obtain a stable signal,
that does not vary too much in its intensity. Hence, an inductively coupled plasma is the
preferred excitation source in emission spectroscopy, since it is capable of delivering a
stable temperature.
In contrast, in atomic absorption spectroscopy, an unstable flame with a varying tempera-
ture does not have the same significant effect on the observed signal [10].

3.2 The Process of Atomization in Spectroscopy

The most important part in spectroscopy is the process called atomization, where the
given substance (also named analyte) gets broken into single atoms. Subsequently, some
of these atoms are promoted to an excited state, which can be achieved with the help of a
flame, a heated furnace or a plasma [10].



CHAPTER 3. ATOMIC SPECTROSCOPY 29

3.2.1 Atomization with the Help of an Inductively Coupled Plasma

The inductively coupled plasma is capable of delivering a stable temperature of 6000 to
15000K. Due to this reason, it is mainly used to simultaneously detect single elements in
a sample.
An inductively coupled plasma-burner is depicted in Figure 3.3. On the top of the shown
cross section is a quartz bonnet, that holds two turns of an induction coil (operating fre-
quency is 27 or 41MHz) in place. Argon is used as a plasma gas, that gets fed in the
corresponding inlet. With the aid of a tesla coil, the argon gets ionized and the free elec-
trons are then accelerated by the field of the radio-frequency coil. Through collisions of
these electrons with atoms of the argon, the entire gas is heated up [10].

 

Figure 3.3: Cross Section of an Inductively Coupled Plasma Burner [10]

Instead of evaporating the solvent with the plasma, specific nebulizers are utilized, with
the purpose of using all the plasma’s energy for the atomization. A cyclone nebulizer
(Figure 3.4) helps to transfer the liquid sample into a fine mist, which is then introduced
into the plasma torch. In order to lower the detection limit for e.g. a specific element
in the analyte, an ultrasonic nebulizer, see Figure 3.5, is used. The sample solution is
applied onto a piezoelectric crystal oscillating at a frequency of around 1MHz. The vi-
bration of the crystal causes the liquid sample to transition into a fine aerosol, which is
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then led through a heated tube to evaporate the solvent. As soon as the stream enters
the cooled zone, condensing solvent gets removed. In the last section, any remaining va-
porous solvent is removed with the help of a PTFE-membrane and flowing argon, so that
only desolvated dry aerosol gets redirected to the plasma [10].

 

Figure 3.4: Working Principle of a
Cyclonic Nebulizer [10]

 

 

 

 

 

Figure 3.5: Cross Section of an Ultrasonic
Nebulizer, adapted from [10]

3.2.2 Atomization with the Help of a Flame

Commonly, the main component of a flame spectrometer is a so-called premix burner,
as shown in Figure 3.6, that is responsible for mixing fuel, the analyte and oxidizer. The
flowing oxidant (in most cases air) causes the liquid sample to transition into a fine mist in
the section of the pneumatic nebulizer. Subsequently, the nebulized analyte passes a glass
bead, which is beneficial to form particles of a smaller size. The baffles, which are located
under the burner head prevent any large droplets of analyte from entering the flame. Any
remaining liquid sample is gathered at the bottom, to exit the spray chamber over the
drain [10].

Usually, in flame spectroscopy, a mixture of acetylene (fuel) and air (oxidant) is uti-
lized to maintain a flame temperature of 2400-2700K. In the case of so-called re f ractory

elements, that require a higher temperature fo the atomization process, due to their higher
boiling points, nitrous oxide is uses instead of air as oxidizer.
When observing the signal from a flame spectroscope, the fact, that the flame itself also
emits photons, has to be taken into account. Hence, this emitted light has to be subtracted
from the observed signal, in order to acquire the signal of the analysed sample.
The cross section of the flame is depicted in Figure 3.7. As soon as the mixture of fuel,
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Figure 3.6: Parts of a Premix Burner, adapted from [10]

oxidizer and nebulized analyte enters the preheated region, its temperature is increased
by radiation and conduction from the blue cone (primary reduction zone). The combus-
tion process reaches up to the outer cone. In this region of the flame, the majority of
elements from the entering analyte tends to form hydroxides or oxides. Molecules, which
are not decomposed into atoms, when exposed to high temperatures during the combus-
tion, emit significantly broader spectra in comparison to single atoms. This fact has to
be taken into consideration, when analysing the measured signal. This means, that the
broader emission lines of the molecules have to be subtracted from the sharper ones of
the atoms. In order to bypass this problem, the flame is operated with an excess of fuel,
which leads to an incomplete combustion and a surplus of carbon. This carbon helps to
reduce some metal hydroxides and oxides. In contrast, if the flame is operated with an
excess of oxidizer, higher temperatures can be achieved. In conclusion, the ratio between
fuel and oxidant mainly depends on the elements in the given sample [10].

 

Figure 3.7: Cross Section of the Flame, adapted from [10]
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3.2.3 Atomization with the Help of Furnaces

The distinguishing feature of a furnace, in comparison to the previously explained flame,
is an increased sensitivity and therefore a smaller amount of analyte is required. The main
part of such an electrically heated furnace is for instance a graphite tube, where a small
amount of sample (1-100µL) gets injected through a hole in the middle as shown in Fig-
ure 3.8 [10].

 

Figure 3.8: Graphite Tubes for Furnaces [10]

The tubes are open at both ends, so that photons from the hollow cathode lamp can pass
through. In order to avoid any oxidation of the graphite, the atmosphere inside the fur-
nace usually consists of an inert gas such as argon and the temperatures should not exceed
2550°C for a time period of less than 7s. In addition, the graphite tubes often get a thin
coating of pyrolytic carbon to diminish the surface porosity.
Compared to a flame or inductively coupled plasma spectrometer, the furnace increases
its temperature step-wise during the whole process, which is necessary to achieve an ade-
quate atomization of the analyte. This might be the case, when elements from i.e. organic
matter like proteins are examined. Hence, the furnace gets heated in three steps.
In the first stage, the sample gets dried for around 20s at a temperature of 125°C. In the
following step, the furnace is heated up to 1400°C in a period of roughly one minute, in
order to break up the organic matter, which is called. pyrolysis. Finally, the process of
atomization is achieved at a temperature of 2100°C within 10s. After completing these
three steps, the furnace gets heated up to 2500°C with the purpose of removing any re-
maining sample.
In the first two steps, the furnace is cleansed with the help of inert gas, such as argon or
nitrogen, to get rid of any remnant gaseous elements from the analyte. This gas flow is
solely halted during the atomization phase, in order to bypass the danger of blowing out
any sample.
It is important to emphasize, that the observed signal changes after each step. In other
words, this means, that the signal from the atomization process is different from the one
of the pyrolysation- or drying process. Hence, the operator itself has to determine, which
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signal is from the sample.
An improved version of the previously described graphite tube is the transversely heated
furnace, shown in Figure 3.9. The analyte is inserted onto a platform through a sample
port. The furnace wall, that surrounds the platform, gets heated up electrically with heat-
ing rates of up to 2000K/s and therefore transfers the heat to the sample via radiation.
Consequently, the temperature of the analyte is lagging behind that of the furnace wall,
until they reach a constant temperature. Thus, any possible evaporation of the analyte is
avoided during the heating process.
In comparison to the previously described graphite tube furnace, with the heat source at
both ends (end-to-end-heating), the transversely heated furnace is capable of providing an
almost consistent temperature distribution over the whole length of the platform. Since
the centre of the furnace has a slightly higher temperature than the ends of the platform,
evaporated analyte condenses at the ends. This leads to the so-called memory− e f f ect,
where atoms of the sample from the previous run may cause an interference with the new
analyte. To bypass this issue, the relatively porous graphite tube or platform are coated
with a sealing layer of pyrolytic carbon, in order to reduce the chance of any unwanted
absorption of atoms from the sample [10].

 

 

Figure 3.9: Sectional View of a Transversely Heated Graphite Furnace, adapted from
[10]



Chapter 4

Experimental Setup

4.1 Small Scale EAF as the Experimental Setup

The experiments required for this thesis were conducted on a simplified small scale DC-
powered electric arc furnace, that was designed and manufactured by [20] and later im-
proved by [8]. A schematic overview of the recent version with the dimensions (in mm)
is illustrated in Figure 4.1.
This laboratory version of an EAF utilizes a DC-power supplying unit, which was usually
intended for plasma cutting operations. The transformer of this unit is capable of deliver-
ing a maximum power of approximately 8kW (voltages of up to 110V and currents of up
to 70A) [13].

4.1.1 Bottom Part of the Furnace

The bottom part, which is similar to the containment of a full-sized EAF, is basically
fabricated from welded steel and has a cylindrical shape. On the inside of this steel con-
tainment, refractory is used, with the aim of providing a sufficient insulation form the high
temperatures and to hold the copper pipes for the cooling water in place. This ring shaped
refractory surrounds the anode, as well as the crucible and a part of the electrode. Since
the crucible may get consumed partly during the melting process, a steel plate is placed
between this crucible and the anode, to avoid any damage of the anode. This replaceable
crucible, which is usually charged with scrap or ore is manufactured from non-alloyed
steel. The chemical composition is shown in Table 4.1, and has to be taken into account,
if parts of the crucible get molten during the experiment.
An important aspect of this furnace’s design is an appropriate gas-proof sealing between
the top and bottom part, which is done with two o-ring sealings. This aspect is inevitable,
since it helps to prevent any gasses from escaping the oven. In addition to this, besides
these sealings, there is also some electrical insulation required between the roof part (i.e.

34
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the cathode) and the vessel (i.e. the anode), see Figure 4.1, 8.
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Figure 4.1: Cross Section of the Laboratory-EAF

1...Steel Sample 2...Graphite Electrode 3...Crucible
4...Arc 5...Bottom Electrode (Anode) 6...Cooling Pipes
7...Vessel 8...Electrical Insulation 9...Roof Part
10...Cooling Pipes (Roof Part) 11...Refractory 12...Exhaust
13...Insulation (Electrode) 14...Electrode (Cathode) 15...Fibre
16...Adjusting Mechanism (Fibre) 17...Fibre To Spectroscope
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Fe C Si Mn P S

99.47 0.0455 0.0182 0.354 0.0119 0.0170

Table 4.1: Constituents of the Crucible, [13]

4.1.2 Roof Part of the Furnace

Like the bottom part, this one is also manufactured from cylindrically shaped steel. In
order to charge the furnace or to perform maintenance work, the roof is fully detachable
with the help of a small crane.
An appropriate insulation is achieved, with the aid of refractory material and sufficient
cooling is provided by copper pipes. On the top section of the roof, five flanges with seal-
ings are attached. The one in the middle is necessary to insert the graphite electrode and
its lifting mechanism for height adjustment. What is more, one of the outer four flanges
is equipped with a glass window, with the purpose of getting a direct view on the arc and
the molten steel. The other three ones have been installed to insert a thermocouple and
therefore measure the temperature of the inside, to guide the exhaust gasses out of the
furnace and to give the option of inserting materials, that are required for the process, i.e.
oxides. In addition to this, the exhaust is equipped with a filter to absorb fine particles and
a heating system, so that the gaseous water in the off-gas does not condense [8].

4.1.3 The Electrode and the Electrode Lifting Mechanism

The electrode of this small scale EAF, which is located in the centre of the roof, acts as
the cathode and consists of two parts. The upper one is manufactured from graphite and
the tip can either be made from tungsten or graphite as well. The main advantages of
dividing the hollow electrode into two sections, that are connected to each other over a
threaded joint, is to keep the tip (which gets consumed) easy to exchange or to use other
materials. The electrode is hollow in the middle, in order to purge the furnace with gasses
such as argon or hydrogen.
The height of the electrode (i.e. the distance between the tip and the steel sample) is ad-
justed with a lifting mechanism, that consists of a DC-motor and a spindle. The electrode
is guided within a pipe made from PTFE, that also acts as an electrical insulator.

4.1.4 Spectrometer and Optical Fibre

The spectrometer used in the required experiments was the AvaSpec ULS3648 High Res-

olution Fibre Optic Spectrometer from AVANTES. Some important properties are shown
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in Table 4.2 [14]. The optical fibre was from Ocean Optics, has a diameter of 600µm and
the optimal wavelength lies in the range of 200-1100nm [21].

Technical Data

Focal Length 75mm
Wavelength Range 200-1000nm
Detector CCD array (3648 pixels)
Signal/Noise Ratio 350:1
AD-Converter 16-Bit, 1MHz
Integration Time 10µs-10mins
Interface USB 2.0

Table 4.2: Technical Data of the Used Spectrometer, taken from [14]

4.1.5 Adjusting Mechanism for the Optical Fibre

As shown in Figure 4.1, a mechanism to adjust the angle and the position of the optical fi-
bre and to provide a steady mounting is attached to the top of a flange. The main objective
is to position the fibre properly, which means to get a direct sight onto the arc between the
steel sample and the electrode.
The overall mechanism was designed with the help of a CAD-software and later 3D-
printed with PLA. To give a better understanding, the cross section and the mounting
position are illustrated in Figure 4.1 and the isometric view is depicted in Figure 4.2.
The horizontal position of the fibre is adjusted via screw 1, while its vertical angle can be
adapted with the aid of screw 2. Figure 4.3 shows the mounting position on the furnace’s
roof and Figure 4.4 gives an overview of the fibre holder’s parts.
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1 

2 

Figure 4.2: Isometric View of the Fibre Holder. Screw 1 adjusts the horizontal position
and screw 2 the angle

 

Figure 4.3: Fibre Holder Mounted on a Flange on Top of the Furnace Roof
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Figure 4.4: Overview of the Fibre Holder’s Parts. The white ones are printed from PLA



Chapter 5

Data Processing

5.1 Savitzky-Golay Polynomial Smoothing

In the paper [22], that was published in 1964, Abraham Savitzky and Marcel J. E. Golay
presented a method of smoothing noisy data by performing a local least-squares-fit [23].
In order to obtain a smoothed signal, Savitzky and Golay fitted a low order geometric
polynomial to the noisy data observed by a spectrometer [24]. The main objective of their
approach was to reduce the amount of noise in the observed signal while preserving both
the height and shape of the spectral peaks [23].
Given a set of data with a finite length n (i.e. noisy spectrometer data), that can be pre-
sented as [25]:

y =
[
y1, ...,yn

]T
(5.1)

x =
[
x1, ...,xn

]T
, (5.2)

where the vector x (containing equally-spaced values) defines the location of the values
in y. Thus, the corresponding elements xi and yi are forming so-called point pairs [25]:

pi =
[
xi,yi

]
. (5.3)

In order to perform a local polynomial approximation, Savitzky-Golay-filters are designed
to successively take out a subset of data (with the length or support length ls) from y and
optimally fit a polynomial of order d (d ≤ ls) with the help of a least-squares-fit [26].
Considering the fact, that the support length ls is an odd number, the half-length lh, or
half-width (as called in [23]) may be written as [11]:

lh =
ls−1

2
(5.4)

40
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To give a better understanding, how such a filtering is achieved, an example is given with
a support length ls = 7 and a fitting polynomial of order d = 3.
To begin, a vector y containing a portion of noisy signal samples, whose length is equal
to ls, is set up. In general, this vector looks like that [11]:

y =
[
y−lh ,y−lh+1, ...,y0, ...,ylh−1,ylh

]T
(5.5)

The corresponding vector xm containing the local x-values is given by [11]:

xm =
[
−lh, ...,0, ..., lh

]T
(5.6)

In the case of the demonstration, y and xm are given by:

y =
[
y−3,y−2,y−1,y0,y1,y2,y3

]T
(5.7)

xm =
[
−3,−2,−1,0,1,2,3

]T
(5.8)

Note that the subscripts of the entries in the vectors imply, that the data points are dis-
tributed symmetrically around their origin. Thus, the support length has to be an odd
number. A visualization of the data points together with the fitting polynomials (constant,
linear, quadratic and cubic) is depicted in Figure 5.1 [11].
Subsequently, the fitting polynomials are represented as geometric polynomials, i.e. a
sum of monovariate monomials, each with a certain degree d. In general, they can be
presented as [25]:

ŷ(xm) = adxd
m + ...+a3x3

m +a2x2
m +a1xm +a0, (5.9)

or in a more compact form [25]:

ŷ(x) =
n

∑
i=0

aixi. (5.10)

In the case of the demonstration, the smoothing polynomials look like this [11]:

Constant : ŷ = a0 (5.11)

Linear : ŷ = a1x+a0 (5.12)

Quadratic : ŷ = a2x2 +a1x+a0 (5.13)

Cubic : ŷ = a3x3 +a2x2 +a1x+a0 (5.14)
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Figure 5.1: Data Points and the Corresponding Fitting Polynomials

It is important to point out, that the hat, as it is used in ŷ, denotes that these equations are
utilized to perform an approximation to y (i.e. in the least-squares-sense). Hence, they are
known as model- or design-equations. The vector containing the residual errors (or fitting
errors) is given by [25] [11]:

r = y− ŷ (5.15)

=



y−lh

y−lh+1
...

y0
...

ylh−1

ylh


−



ŷ−lh

ŷ−lh+1
...

ŷ0
...

ŷlh−1

ŷlh


(5.16)

Next, to get the fitting polynomials (equation 5.11 - 5.14) in a more compact form, the
corresponding polynomial basis-vectors are represented as follows:
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v0 =
[
(−lh)0,(−lh +1)0, . . . ,00, . . . ,(lh−1)0,(lh)0

]T
(5.17)

v1 =
[
(−lh)1,(−lh +1)1, . . . ,01, . . . ,(lh−1)1,(lh)1

]T
(5.18)

v2 =
[
(−lh)2,(−lh +1)2, . . . ,02, . . . ,(lh−1)2,(lh)2

]T
(5.19)

v3 =
[
(−lh)3,(−lh +1)3, . . . ,03, . . . ,(lh−1)3,(lh)3

]T
(5.20)

which yields to the following in the demonstrated example:

v0 =



1
1
1
1
1
1
1


, v1 =



−3
−2
−1
0
1
2
3


, v2 =



9
4
1
0
1
4
9


, v3 =



−27
−8
−1
0
1
8

27


(5.21)

Furthermore, this set of vectors can be represented in form of a matrix, which yields to
the Vandermonde−matrix [25] [11]:

V(x) =



−27 9 −3 1
−8 4 −2 1
−1 1 −1 1
0 0 0 1
1 1 1 1
8 4 2 1

27 9 3 1


(5.22)

=
[
v3,v2,v1,v0

]
(5.23)

The matrix V has the dimensions ls× (d +1), where ls represents the support length and
d the highest degree of the fitting polynomial.
One major advantage of the Vandermonde matrix is to provide a convenient evaluation of
a polynomial with the following vector-matrix equation [25]:

ŷ = Va, (5.24)

where a represents the coefficient vector
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a =
[
ad,ad−1, . . . ,a0

]T
. (5.25)

With the help of equation 5.24, the residual r, that was presented in equation 5.15, can
be formulated as [25]:

r = y− ŷ (5.26)

= y−Va. (5.27)

The initial desire was to fit a polynomial ŷ to the set of given data y, which might be
accomplished in the least-squares-sense. With the assistance of this approach, the coef-
ficients in a are determined by minimizing the fitting error r, which yields to the cost
function [25] [11] :

ε(a) =
n

∑
i=1

r2
i . (5.28)

The cost function is basically the sum of the squared residuals and therefore a scalar
function of the coefficient vector a [25].
Expressing equation 5.28 with vectors leads to [25]:

ε(a) = |r|22 (5.29)

= rT r (5.30)

= (y−Va)T (y−Va). (5.31)

Next, the transpose is applied and the equation gets expanded:

ε(a) = (yT −aT VT )(y−Va) (5.32)

= yT y−yT Va−aT VT y+aT VT Va. (5.33)

A further simplification of the two terms in the middle can be done, since ε(a) is a scalar
function and therefore yT Va and aT VT y are also scalars. Hence, yT Va can be transposed,
which results in the following expression of the cost function [25]:

ε(a) = yT y−2aT VT y+aT VT Va. (5.34)

The minimization is achieved by computing the first derivative of the cost function with
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respect to a and setting it equal to zero [25]:

∂ε(a)
∂a

= 0 (5.35)

0 =−2VT y+2VT Va. (5.36)

Dividing by two and getting the term VT y to the other side, results in a set of linear
equations [25]:

VT Va = VT y, (5.37)

which are also known as normal− equations [25].
Therefore, the optimal solution is given by [11]:

a = (VT V)−1VT y (5.38)

= GT y. (5.39)

Whereby the matrix G, with the dimensions ls× (d +1), is denoted as [11]:

G = V(VT V)−1 (5.40)

In the case of the shown example here, G has the dimensions 7×4, since ls = 7 and d = 3.
By inserting equation 5.39 into 5.24, the smoothed values can be obtained [11]:

ŷ = Va (5.41)

= VGT y (5.42)

= V(VT V)−1VT y (5.43)

= By (5.44)

Whereby the matrix B has the dimensions ls× ls and is computed as follows [11]:

B = VGT (5.45)

= GVT (5.46)

= V(VT V)−1VT (5.47)

(5.48)
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In the shown example, G is given by:

G = V(VT V)−1 (5.49)

=



−27 9 −3 1
−8 4 −2 1
−1 1 −1 1
0 0 0 1
1 1 1 1
8 4 2 1

27 9 3 1






−27 −8 −1 0 1 8 27

9 4 1 0 1 4 9
−3 −2 −1 0 1 2 3
1 1 1 1 1 1 1





−27 9 −3 1
−8 4 −2 1
−1 1 −1 1
0 0 0 1
1 1 1 1
8 4 2 1

27 9 3 1





−1

(5.50)

=



−27 9 −3 1
−8 4 −2 1
−1 1 −1 1
0 0 0 1
1 1 1 1
8 4 2 1

27 9 3 1




1588 0 196 0

0 196 0 28
196 0 28 0
0 28 0 7


−1

(5.51)

=



−27 9 −3 1
−8 4 −2 1
−1 1 −1 1
0 0 0 1
1 1 1 1
8 4 2 1

27 9 3 1




1

216 0 − 7
216 0

0 1
84 0 − 1

21

− 7
216 0 397

1512 0
0 − 1

21 0 1
3

 (5.52)

=
1

1512



−27 9 −3 1
−8 4 −2 1
−1 1 −1 1
0 0 0 1
1 1 1 1
8 4 2 1

27 9 3 1




7 0 −49 0
0 18 0 −72
−49 0 397 0

0 −72 0 504

 (5.53)

=
1

1512



−42 90 132 −144
42 0 −402 216
42 −54 −348 432
0 −72 0 504
−42 −54 348 432
−42 0 402 216
42 90 −132 −144


(5.54)
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The matrix B is then given as [11]:

B = VGT (5.55)

= GVT (5.56)

=
1

1512



−42 90 132 −144
42 0 −402 216
42 −54 −348 432
0 −72 0 504
−42 −54 348 432
−42 0 402 216
42 90 −132 −144




−27 −8 −1 0 1 8 27

9 4 1 0 1 4 9
−3 −2 −1 0 1 2 3
1 1 1 1 1 1 1

 (5.57)

=
1

1512



1404 288 −144 −144 36 144 −72
288 684 576 216 −144 −252 144
−144 576 684 432 72 −144 36
−144 216 432 504 432 216 −144

36 −144 72 432 684 576 −144
144 −252 −144 216 576 684 288
−72 144 36 −144 −144 288 1404


(5.58)

Due to the fact that the columns in the matrix B are the same as its rows, B is symmetric.
Consequently, B can be expressed either row- or column-wise [11]:

B =
[
b−lh,b−lh+1, . . . ,b0, . . . ,blh−1,blh

]
=



bT
−lh

bT
−lh+1

...
bT

0
...

bT
lh−1

bT
lh


= BT (5.59)

B =
[
b−3,b−2,b−1,b0,b1,b2,b3

]
=



bT
−3

bT
−2

bT
−1

bT
0

bT
1

bT
2

bT
3


= BT (5.60)
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Both, the rows and the columns of B represent the so-called Savitzky-Golay-smoothing
filters. More precisely, since b0 (the centre row or centre column of B) is used to smooth a
large set of data in the steady state, it is also referred to as the Steady-State-Savitzky Golay
filter. In contrast to that, the other rows (or columns) of B are named Transient-Savitzky
Golay filters, because they are utilized to perform the smoothing during the input-on and
input-off period, respectively [11]. Figure 5.2 depicts the difference between smoothing
with (using transient-, input-on- and input-off- filters) and without (solely using the tran-
sient filters) endpoint-correction.

 

Figure 5.2: Difference Between Smoothing Polynomial (ls = 41, d = 2) With and With-
out Endpoint-Correction

The smoothed data points are finally obtained by performing convolution of the noisy data
set with the centre row (or column) of B (in the steady-state case) [11][25].
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Algorithm 1: Perform Savitzky-Golay Polynomial Smoothing
Input:

• Noisy data (observations): y

• Order of smoothing polynomial: order

• Supportlength: ls

Output:

• Vector ysmoothed , containing smoothed data

Algorithm:

1. Compute the half-length: lh =
ls−1

2

2. Define a column-vector containing local x-coordinates: x = [−lh, ...,0, ..., lh]

3. Set up the Vandermonde-matrix Vb

4. Compute B (matrix that represents the Savitzky-Golay smoothing-filters):
B = VbV+

b

5. Extract the centre row of B (i.e. the Steady−State Savitzky-Golay filters):
bc = B(lh +1, :)

6. Compute the vector containing smoothed data ySmoothed by performing
convolution: ySmoothed = conv(y,bc)

5.1.1 Some Properties of SG-Smoothing Filters

One advantage of the SG-filters is, that the entries of matrix B only depend on the support-
length ls and the order d of the fitting polynomial, and thus are independent of the ob-
served data. In other words, the smoothing filters b only have to be computed once for
every combination of ls and d, and the smoothed data ŷ is then obtained via convolution.
Another interesting property is, that SG-filters with a polynomial of order d = 0 is equiva-
lent to a moving average-filter, provided that ls is equal in both cases. A moving average-
filter may be given as [23]:

ŷ =
1
ls

lh

∑
j=−lh

y j (5.61)

One major difference between the two FIR filters mentioned above is their capability of
reducing the amount of noise in the signal, which can be measured with the help of the
noise reduction ratio, or NRR [11]:
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NRR = ∑
n

h2
n (5.62)

=
lh

∑
i=−lh

b2
0(i) (5.63)

= bT
0 b0, (5.64)

whereas hn is the n-th impulse response of a filter. In other words, equation 5.63 shows,
that the NRR is obtained by squaring and summing the filter coefficients, which leads to
[11]:

NRRSG =
lh

∑
i=−lh

b2
0(i) (5.65)

= bT
0 b0 (5.66)

in the case of a SG-filter and a moving average filter in their steady-state [11]:

NRRMA =
1
ls

(5.67)

In general, a noise reduction ratio smaller than one implies, that the filter achieved an
attenuation of the noise in the input signal. Hence, the NRR is a convenient method of
evaluating a noise reduction filter [11].
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5.2 Background Correction and Baseline Estimation

In atomic spectroscopy, it is essential to perform a background correction on the observed
signal, in order to solely remove the parts of the signal, which are not from the analyzed
sample. These undesired parts of the obtained data might be from the plasma, the flame,
or glowing parts of the graphite furnace [27].

5.2.1 Background Removal by Minimizing a Non-Quadratic Cost Func-
tion

As stated in the previous section, the data form a spectrometer can be represented by a set
of data with a given length n:

y =
[
y1, . . . ,yn

]T
(5.68)

Furthermore, the vector y consists of the following parts [28]:

y = b+ e, (5.69)

where b represents the background and gets modeled with a polynomial of order d. The
vector e covers the residual, which moreover contains the peaks (positive or negative), any
model uncertainties and physical noise. Note that b can be expressed as a vector-matrix
equation [28]:

b = Va, (5.70)

where V is the Vandermonde matrix and a is the corresponding coefficient vector.
The main objective of this approach is to obtain a, which leads to minimizing the follow-
ing cost-function [28]:

ε(a) =
n

∑
i=1

ϕ(yi−bi). (5.71)

However, a quadratic cost function, as it is used in a least-squares fit, would not lead to
a satisfactory result, in general. This is explained due to the fact, that a quadratic cost
function ϕ(x) would square each residual ri = (yi− bi) and therefore higher values (i.e.
data from peaks) get a much greater cost. Consequently, the flaw of this approach are data
points, that have a sufficiently high distance from the baseline, tend to shift the polynomial
(that models the baseline) towards these values [28].
With the aim of bypassing this issue, the following approach utilizes cost functions, that
are solely quadratic in the close proximity to zero and therefore avoid any insufficiently
high costs for larger values. The shown method for estimating the background considers



CHAPTER 5. DATA PROCESSING 52

the following functions ϕ(x) [28]:

1. Symmetric Truncated Quadratic Function:

ϕST Q(x) =

x2, if |x|< s

s2, otherwise
∀x ∈ R (5.72)

ϕ
′
ST Q(x) =

2x, if |x|< s

0, otherwise
∀x ∈ R (5.73)

2. Asymmetric Truncated Quadratic Function:

ϕAT Q(x) =

x2, if x < s

s2, otherwise
∀x ∈ R (5.74)

ϕ
′
AT Q(x) =

2x, if x < s

0, otherwise
∀x ∈ R (5.75)

3. Symmetric Huber Function:

ϕSH(x) =

x2, if |x|< s

2s|x|− s2, otherwise
∀x ∈ R (5.76)

ϕ
′
SH(x) =


−2s, if x≤−s

2x, if |x|< s

2s, if x≥ s

∀x ∈ R (5.77)

4. Asymmetric Huber Function:

ϕASH(x) =

x2, if x < s

2sx− s2, otherwise
∀x ∈ R (5.78)

ϕ
′
ASH(x) =

2x, if x < s

2s, otherwise
∀x ∈ R (5.79)

For the sake of a better understanding, the functions are illustrated in Figure 5.3.
The main difference between a quadratic function ϕ(x) = x2 (as used in an ordinary least
squares fit) and the proposed ones is, that the (a)symmetric Huber and (a)symmetric trun-
cated quadratic functions only give a quadratic cost to values, that are beneath a certain
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threshold s. Beyond s, the cost of the Huber function is increasing in a linear manner,
while that of the truncated quadratic ones remain, as its name implies, constant.
Symmetric functions ϕ(x), that are depicted in Figure 5.3 le f t, may be used for data that
contains both positive and negative peak values. However, in optical spectroscopy, where
only positive peaks occur, asymmetric cost functions (Figure 5.3 right) are taken into
consideration [28].

 

Figure 5.3: Comparison of Symmetric and Asymmetric Non-Quadratic Cost-Functions
to the Quadratic Cost-Function. (s = 3)

In contrast to the classical least squares method, the cost function shown in this approach
cannot be minimized by deriving equation 5.71 with respect to a and set it equal to zero
to obtain the optimal solution for a. Therefore, the idea is to take the half-quadratic (HQ)

minimization into consideration, which is basically an iterative way of optimizing a non-
quadratic cost function ϕ(x) [28].
The prerequisite for applying the algorithm of the HQ-minimization as given in [29] is
that α lies in the following range:

∀α ∈ [0;αmax[ (5.80)

and for which the following function is strictly convex [28]:

gα(x) =
x2

2
−αϕ(x). (5.81)
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In the case of the truncated quadratic and the Huber function, αmax is given as [28]:

αmax =
1
2
. (5.82)

Next, the algorithm proposed by [30] requires the introduction of an auxiliary variable
[28]

d =
[
d1, . . . ,dn

]T
, (5.83)

that yields to the augmented criterion, which provides the same minimum as ε(a) in
equation 5.71 does [28]:

K (a,d) =
1
α

n

∑
k=1

(
1
2
(yk− (Va)k−dk)

2 +ζ (dk)), (5.84)

in which ζ (dk) is given as [28]:

ζ (d) = sup
x
(ϕ(x)− (x−d)2

2
) (5.85)

It is important to emphasize that the function K (a,d) is convex in d and a quadratic
function of a, which therefore explains the term half quadratic criterion [28].
The iterative algorithm shown above is aborted, if the following condition is met [28]:

K i−K i−1 < c, (5.86)

where c represents a threshold value (i.e. 10−5). In this case, the convergence is reached.
Minimizing the criterion K (a,d) given in equation 5.84 with respect to the coefficient
vector a while keeping d fixed leads to [28]:

â = (VT V)−1VT (y+d), (5.87)

while the same procedure with fixed a and minimizing with respect to d gives [28]:

d̂k = bk− yk +αϕ
′
(yk−bk) (5.88)

The code presented in the appendix was adapted from [28]. Figure 5.4 and 5.5 show, how
this algorithm is applied to synthetic and real data.
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Figure 5.4: Baseline Removal, Demonstrated on Synthetic Spectrometer Data. Baseline
modelled as a polynomial of order d = 4

 

Figure 5.5: Baseline Removal, Demonstrated on Real Spectrometer Data
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Algorithm 2: Background Removal by Minimizing a Non-Quadratic Cost-
Function

Input:

• Vector of locations x

• Vector of observations y

• Order of the polynomial modelling the baseline

• Threshold value s

• Type of the cost function

Output:

• Model of the baseline yBL

Algorithm:

1. Perform a coordinate transformation, to get a better conditioned

Vandermonde-matrix: z =
x− x

σx

2. Set up the Vandermonde-matrix V and perform QR-decomposition:
[Q,R] = qr(V,0)

3. Perform an initial estimation of the baseline:

(a) Initialize the coefficient vector a: a = R+QT y

(b) Model for the baseline: yBL = Va

4. Perform an iteration, that ends, if:

• The maximum number of iterations is reached

• The termination criterion is fulfilled

(a) Compute the residual, i.e. the difference between the current model of the
baseline and that of the previous iteration: r = yBL−yBL,prev.

(b) Define the termination criterion: Terminate i f ∑
n
i=1 r2

i < 10−5

(c) Compute the difference between observations and the model ε = y−yBL

(d) Compute d as follows: d =−ε+αϕ ′(x)

(e) Get the coefficient vector of the model baseline: a = R+QT (y+d)

(f) Get the model baseline yBL: yBL = Va

5. Put out the modelled baseline yBL
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5.2.2 Adaptive Iteratively Reweighted Penalized Least-Squares Back-
ground Correction

The penalized least-squares method was initially intended for smoothing data and pub-
lished by Whittaker in the 1920’s.
According to [31], the idea behind the Penalized Least-Squares Method dates back to
1899, where it was mentioned in Bohlmann’s work [32].
Later, in the 1920’s, this idea was further refined by Whittaker and Herderson, for smooth-
ing operations, giving this method its name Whittaker-Herderson-Smoothing [31].
Basically, this algorithm consists of the introduction and minimization of a criterion which
includes the deviation between the fitted and original data as well as the roughness of the
fitted signal [33], [34].
Considering an observation y with a finite length n

y =
[
y1, . . . ,yn

]T
, (5.89)

and the corresponding x-vector containing equally spaced elements xi

x =
[
x1, . . . ,xn

]T
, (5.90)

the sum of the square errors (cost funciton) is given by [34]:

ε(a) =
n

∑
i=1

(yi− ŷi)
2 (5.91)

In addition to this, summing and squaring the differences of the fitted data results in the
roughness [31] [34]:

R =
n

∑
i=2

(ŷi− ŷi−1)
2 (5.92)

=
n−m

∑
i=1

(∆mŷi)
2, (5.93)

where the expression ∆mŷi denotes the m-th difference between the values of the modelled
data points ŷi in the following manner[31] [34]:

m = 1 : ∆
1ŷi = ∆ŷi = ŷi− ŷi−1 (5.94)

m = 2 : ∆
2ŷi = ∆(∆ŷi) = ŷi+1−2ŷi + ŷi−1 (5.95)

In general, the term ∆mŷ can also be expressed with the help of matrices and vectors [31]
[34]:

∆
mŷ = Dmŷ, (5.96)
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whereas Dm represents the m-th difference matrix with the dimensions (n−m)×n. As an
example, D1 (dimensions (n−1)×n)) is illustrated below [31] [34]:

D1 =



−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1


(5.97)

Finally, the criterion that has to be minimized and contains the sum of square errors and
the roughness, can be written as [31] [34]:

Q = ε +λR, (5.98)

where λ ∈ R is introduced to penalize the roughness, and therefore justifying the term
Penalized Least-Squares Algorithm. Note that larger values of λ lead to smoother values
of the modeled data in ŷ. Therefore, λ is also named as smoothing parameter [33] [34].
Expressing equation 5.98 using vectors and matrices, yields [31] [34]:

Q = (y− ŷ)T (y− ŷ)+λ [(Dmŷ)T (Dmŷ)] (5.99)

= (yT − ŷT )(y− ŷ)+λ [(ŷDT
m)(Dmŷ)] (5.100)

= yT y−yT ŷ− ŷT y+ ŷT ŷ+λ ŷT DT
mDmŷ (5.101)

= yT y−2yT ŷ+ ŷT ŷ+λ ŷT DT
mDmŷ (5.102)

The minimization of the criterion Q is achieved by calculating the derivative with respect
to ŷ and setting the obtained expression equal to zero [31] [34]:

∂Q
∂ ŷ

= 0, (5.103)

which gives:

0 =−2yT +2ŷT +2λ ŷT DT
mDm (5.104)

yT = ŷT (I+λDT
mDm) (5.105)

Provided that the term (I+λDT
mDm) is invertible, leads to the following expression [31]

[34]:
ŷT = yT (I+λDT

mDm)
−1 (5.106)
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Equation 5.106 demonstrates how to smooth data in y with the help of the penalized least-
squares algorithm.
However, in order to obtain the baseline, using the penalized least-squares method, a
weighting matrix W is introduced to the cost function in the following manner [34]:

ε(a) =
n

∑
i=1

wi(yi− ŷi)
2 (5.107)

= (y− ŷ)T W(y− ŷ), (5.108)

where W has the form of a diagonal matrix with wi as the entries on its main diagonal and
the dimension n×n [34]:

W =


w1 . . . 0
... . . . ...
0 . . . wn

 (5.109)

Inserting W into equation 5.106 leads to [34]:

ŷ = (W+λDT
mDm)

−1Wy (5.110)

Implementing the adaptive and iteratively reweighting method
In each step of the iteration with the length t, the criterion Q has to be solved for every
data point of y [34]:

Qt =
n

∑
i=1

wi,t(yi− ŷi,t)
2 +λ

n

∑
j=2

(ŷ j,t− ŷ j−1,t)
2 (5.111)

Furthermore, the entries wi in the matrix W are computed in an adaptive manner. This
means, that wi is obtained in very iteration as shown [34]:

wi,t =


0, if yi ≥ ŷi,t−1

e
t(yi−yi,t−1)
|di,t | , if yi < ŷi,t−1

(5.112)

Whereby the subscript i denotes the i-th element of the corresponding vector and t the t-th
iteration step [34].
Figure 5.6 and 5.7 depict, how this algorithm removes the baseline in synthetic and real
spectrometer data.
The code to this section, provided in the appendix, is adapted from [34].
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Figure 5.6: Baseline Removal, Demonstrated on Synthetic Spectrometer Data. Baseline
modelled as a polynomial of order d = 3

 

Figure 5.7: Baseline Removal, Demonstrated on Real Spectrometer Data
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Algorithm 3: Adaptive Iteratively Reweighted Penalized Least-Squares Back-
ground Correction

Input:

• Vector of locations x

• Vector containing the observations y

• Value m (used for the m-th difference matrix Dm)

• Maximum number of iterations maxNumberIter

• Smoothing parameter λ

Output:

• Model of the baseline yBL

Algorithm:

1. Compute the length of the vector y

2. Set up the difference-matrix Dm

3. Perform an iteration (iteration variable t), that ends, if

• t reaches the maximum number of iterations

• the termination criterion is reached

(a) Set up the matrix W, that has the weighted entries wi on its main diagonal

(b) Compute the modelled baseline yBL as: yBL = (W+λDT
mDm)

−1Wy

(c) Compute d (the difference between the observation and the model):
d = y−yBL

(d) Define the termination criterion

• Compute the absolute value of the sum of negative entries in d:
abs(sum(d(d < 0)))

• Compute the sum of absolute values in y: sum(abs(y))
• Terminate the iteration, if the following criterion is fulfilled:

abs(sum(d(d < 0))) < 0.001 · sum(abs(y))

(e) Set the values of the weighting vector w

• if di,t < 0: wi,t = e
t·(abs(d(d<0)))

abs(sum(d(d<0)))

• if di,t ≥ 0: wi,t = 0

4. Put out the modelled baseline yBL
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5.3 Generating Synthetic Spectrometer Data

The aim of generating synthetic spectrometer data is to evaluate, whether the proposed
methods in this chapter perform as desired and to quantify their accuracy. Therefore,
these generated sets of data will be utilized for test purposes, before the methods are then
applied to the real observed data sets.
According to [28] and [34], synthetic spectrometer data ys can be written as:

ys = b+p+n, (5.113)

where b represents the background (i.e. a low order polynomial), p the analytical signal
and n the noise. For the sake of simplicity, n will be assumed to be white Gaussian noise
with variance σ2

n .

Algorithm 4: Generate Synthetic Spectrometer Data

1. Define x, a column vector that contains n x-values ranging from xmin to xmax

2. Generate the baseline:

(a) Specify a maximum and minimum value for the baseline: yBLmin, yBLmax

(b) Generate n random data points within yBLmin and yBLmax

(c) Approximate these data points with a polynomial of order d

3. Add noise to the baseline

(a) Perturb the data with Gaussian noise N(µ,σ)

4. Create Gaussian-shaped peaks with µ = 0 and σp

(a) yp =
1√

2πσ2
p
e
− (x−µ)2

2σ2p

(b) Normalize the values in yp by dividing them by max(yp)

(c) Specify a maximum and minimum value for the height of the peaks: peakmin,
peakmax

(d) Specify the number of desired peaks nrPeaks

(e) Generate random numbers within peakmin and peakmax

(f) Multiply these random numbers with the normalized peak values

5. Add the peaks at random locations



CHAPTER 5. DATA PROCESSING 63

 

Figure 5.8: Synthetic Spectrometer Data, Baseline: Polynomial of Order d = 3 and Noise
µ = 0, σ = 300

5.4 Peak Detection

After the observed signal was smoothed and the baseline was removed, the next step is
to determine the peaks (i.e. local maxima) in the signal, in order to assign them to the
corresponding chemical elements afterwards.
According to [35] a peak denotes a local maximum and, in contrast to that, a valley a local
minimum.
The function f has a global maximum at x0 ∈ D (D⊆ R), if [36]:

f (x)≤ f (x0) ∀ x ∈ D. (5.114)

Consequently, a local maximum is given, if the following condition is satisfied [36]:

f (x)≤ f (x0) ∀ x ∈ I∩D, (5.115)

whereby I represents a smaller interval, having x0 as its centre.
In contrast to that, a global minimum is represented as [36]:

f (x)≥ f (x0) ∀ x ∈ D, (5.116)
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and, lastly, a local minimum as:

f (x)≥ f (x0) ∀ x ∈ I∩D. (5.117)

The following algorithm for peak detection, that is presented in this work, is adapted from
[37]. To foster understanding, a simple example with numbers is given.
The set of data with the length n, containing the observations can be written as:

y =
[
y1, . . . ,yn

]T
. (5.118)

y =
[
0,2,5,3,1,2,4,1

]T
(5.119)

Recapitulating the definition of a local maximum from above, the first step is to perform
subtraction between the consecutive elements in y, in order to determine the dominant
values. This can be achieved with the built-in MATLAB function diff, that yields the
following result for an input vector y [38]:

ydi f f =
[
y2− y1,y3− y2, . . . ,yn− yn−1

]T
(5.120)

ydi f f =
[
2,3,−2,−2,1,2,−3

]T
(5.121)

The absolute values in ydi f f are not needed and only their sign is required for further
steps. One possible way to extract the sign of each value in ydi f f is by using the signum
function (see Figure 5.9), that is defined as [39]:

sgn(x) :=


−1, if x < 0

0, if x = 0

1, if x > 0

(5.122)

The result of this step is an array that solely consists of −1,0,1 as its entries. In the
demonstrated example, the array ydi f f ,sign looks like this:

ydi f f ,sign =
[
1,1,−1,−1,1,1,−1

]T
(5.123)
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Figure 5.9: Signum Function

Taking a closer look at ydi f f ,sign and comparing it with the initial array of observations y,
it becomes clear, that local maxima are represented as [1,−1]T -pairs in ydi f f ,sign. In order
to determine these pairs (or more precisely, their location) in an array such as ydi f f ,sign,
[37] uses convolution.
Usually, in literature, the convolution operation is represented as [11]:

g = h∗x, (5.124)

where the vectors g, h and x are given as [11]:

h =
[
h0, . . . ,hl

]T
(5.125)

x =
[
x0, . . . ,x f

]T
(5.126)

g =
[
g0, . . . ,gk

]T
(5.127)

Note that k is computed from l and f of h and x as follows [11]:

k = l + f (5.128)

Each entry gm in g is obtained by summing up all products hix j, which fulfill the following
condition [11]:

i+ j = m (5.129)
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Therefore, the m-th entry gm in g is calculated as [11]:

gm = ∑
i, j

i+ j=m

hix j (5.130)

Here, it proves convenient to use a convolution table to get the values in g, see Figure 5.10.

 

Figure 5.10: Convolution table in the case of l = 3 and f = 4, [11]

With the help of the table in Figure 5.10 and equation 5.130, each entry gm of g can now
be computed [11]:

g0 = h0x0 (5.131)

g1 = h0x1 +h1x0 (5.132)

g2 = h0x2 +h1x1 +h2x0 (5.133)

g3 = h0x3 +h1x2 +h2x1 +h3x0 (5.134)

g4 = h0x4 +h1x3 +h2x2 +h3x1 (5.135)

g5 = h1x4 +h2x3 +h3x2 (5.136)

g6 = h2x4 +h3x3 (5.137)

g7 = h3x4 (5.138)

(5.139)

Using the convolution table and the equations for computing the entries in ypeaks, the
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[1,−1]T -pairs in ydi f f ,sign can be located. In order to perform the convolution-
operation [11][37]:

ypeaks = ydi f f ,sign ∗ [−1,1]T , (5.140)

the first step is to flip the entries in the [1,−1]T -vector, which gives [−1,1]T . Next, the
resulting entries in ypeaks are obtained as proposed in equations 5.131- 5.138:

ypeaks =
[
−1,0,2,0,−2,0,2,−1

]T
(5.141)

Finally, the entries in ypeaks, that are equal to 2, indicate the location of a local maxima in
the vector of observations y and can be detected with the MATLAB function find [37]
[40].

 

Figure 5.11: Detecting the Peaks in a Set of Data from a Spectrometer. Windowsize= 10,
T hreshold = 500, hence peaks with Counts lower than 500 are ignored
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Algorithm 5: Peak Detection
Input:

• Vector of locations x

• Vector of observations y

• Windowsize, in which the peak shall be detected

• Threshold (peaks that are smaller than this value will be ignored)

Output:

• Locations of the local maxima xpeak in the input signal

• Value of the local maxima ypeak in the input signal

Algorithm:

1. Compute the differences between the adjacent values in y: ydi f f = di f f (y)

2. Extract the sign of each value in ydi f f : ydi f f ,sign = sign(ydi f f )

3. Perform convolution, to detect all [1,−1]T -pairs ydi f f ,sign:
ypeaks = conv(ydi f f ,sign, [−1,1]T )

4. In a for-loop, detect the maxima in each window:

(a) Detect all possible maxima within the window

(b) Check, whether each detected maxima is bigger than the threshold

(c) Compare each possible maxima with the other ones, to obtain the greatest
one within the window

5. Put out the results of the function:

(a) ypeak

(b) xpeak



Chapter 6

Results and Conclusion

6.1 Results

In the first step of processing the observations by the spectroscope, the data is loaded
into the MATLAB-workspace. For each steel sample, approximately 100 spectra were
obtained. During this thesis, nine samples were examined, amounting to roughly 900
spectra in total. The chemical composition of each of these samples is given in Table 6.1.
The steel samples used in this work were taken from a real EAF and the contents of each
chemical element were determined with the help of a spark spectrometer.

Chemical Element

Sample C Si Mn P S Al Cr Cu Mo Ni

1 0.202 0.33 0.85 0.010 0.006 0.064 0.04 0.056 0.01 0.23
2 0.102 0.00 0.37 0.007 0.006 0.301 0.09 0.055 0.01 0.05
3 0.144 0.00 0.51 0.018 0.006 0.392 0.12 0.071 0.02 0.06
4 0.176 0.28 1.49 0.010 0.005 0.045 0.06 0.052 0.01 0.03
5 0.184 0.69 1.95 0.022 0.004 0.087 0.12 0.056 0.01 0.05
6 0.169 0.00 0.32 0.009 0.007 0.223 0.07 0.049 0.01 0.05
7 0.166 0.00 0.37 0.024 0.009 0.272 0.15 0.046 0.02 0.06
8 0.194 0.45 1.48 0.022 0.007 0.074 0.12 0.058 0.01 0.05
9 0.191 0.33 0.47 0.025 0.007 0.063 0.99 0.07 0.22 1.03

Table 6.1: The Samples and Their Chemical Composition. The contents are given in
wt-%.

Next, if required, the noise, that is contained in the data, gets reduced using the smoothing
technique by Savitzky and Golay, described in chapter 5. It is important to perform this
procedure prior to the baseline removal, to get a better fit of the baseline.
After the baseline has been removed, the peaks can be detected, which is accomplished
as described in the previous chapter. Obtaining the location of each peak permits to de-

69
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termine its wavelength, which in return can be put into the database [41] to assign the
chemical elements (i.e. Fe I, Mn I, Cr I,...) to each corresponding local maxima.
In the last stage, so-called calibration curves are established, that permit to evaluate,

whether the peak ratios (i.e.
ICr

IFe
, I denotes the intensity, or the value of the peak) corre-

late with the actual content of each chemical element in the sample. What is more, the
calibration curve has to be linear, since (as stated in the chapter Atomic Spectroscopy)
the intensity of the emitted photons is proportional to the elements’ concentration in the
inspected sample. In addition to this, after the calibration curve has been established for a
specific element (with samples of known chemical composition), it permits to obtain the
content of this element from a sample of unknown chemical composition.
Figure 6.1 shows an example of how such a calibration curve may look like in a general
case. Each red circle denotes the ratio of two local maxima in one spectrum. With the help
of a histogram, it has been firstly evaluated and in the following consequence confirmed,
that these red circles follow a normal distribution.
In order to check and quantify the linear dependency between the peak ratios and the ac-
tual contents of a given element in the sample, the so-called correlation-coefficient was
computed as follows [42]:

ρ(x,y) =
1

n−1

n

∑
i=1

(
xi−µx

σx

)(
yi−µy

σy

)
(6.1)

With:
x,y . . . Random variables
µx . . . Mean of x
µy . . . Mean of y
σx . . . Standard deviation of x
σy . . . Standard deviation of y

Another representation of the correlation coefficient with the help of the covariance of the
variables x and y is given as [42]:

ρ(x,y) =
cov(x,y)

σx,σy
(6.2)

The overall computation of ρ(x,y) can be accomplished with the help of the MATLAB-
function corrcoef, that returns the following matrix [42]:

R =

[
ρ(x,x) ρ(x,y)
ρ(y,x) ρ(y,y)

]
(6.3)

Note that the main diagonal of R has the value 1 on its entries, since ρ(x,x) = 1 and
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ρ(y,y) = 1.
Next, the dependence between the two random variables x andy (in this work: peak ratios
and contents of the chemical element) is described with a model based on linear regression
[43]:

y = β1x+β0 + ε (6.4)

With,
β0 . . .Intercept on y-axis
β1 . . .Slope (also termed regression coefficient)
ε . . .Error term

 

Figure 6.1: Example of a Calibration Curve. Each horizontal plot of red circles represents
one steel sample with a specific content of a certain chemical element

A more useful and lucid representation of the data in Figure 6.1 can be given with the aid
of box-whisker diagrams (or boxplots) [44]. Figure 6.2 illustrates, how such a boxplot
looks like. The interquartile range is defined as [44] [45]:

iqr = Q3−Q1 (6.5)

With,
Q3 . . .75-th percentile
Q1 . . .25-th percentile
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Figure 6.2: Overview of the Typical Parts of a Boxplot, adapted from [12]

 

Figure 6.3: Example of a Calibration Curve. Data represented with the help of boxplots

An overview of the overall procedure from the raw spectrometer data to a calibration
curve is given with the help of Figure 6.4 and 6.5.
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Figure 6.4: Flowchart, Illustrating Each Step from Raw Spectrometer Data to the Cali-
bration Curves
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Figure 6.5: Schematic Overview of the Overall Process from Raw Spectrometer Data to
a Calibration Curve
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In the following, Figures 6.6 to 6.15 depict the correlation curves for each of the chemical
elements, depicted in Table 6.1.

 

Figure 6.6: Calibration Curve (Chromium)

 

Figure 6.7: Calibration Curve (Chromium)
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Figure 6.8: Calibration Curve (Nickel)

 

Figure 6.9: Calibration Curve (Copper)
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Figure 6.10: Calibration Curve (Manganese)

 

Figure 6.11: Calibration Curve (Carbon)
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Figure 6.12: Calibration Curve (Silicon)

 

Figure 6.13: Calibration Curve (Aluminum)
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Figure 6.14: Calibration Curve (Phosphorous)

 

Figure 6.15: Calibration Curve (Sulfur)
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6.2 Conclusion

The results of this thesis show, that the investigated method does not yield the desired
results and is therefore not suitable for determining the composition of the liquid steel
inside an EAF.

Even though, the calibration curves of chromium, molybdenum and nickel may seem
promising at the first glance, due to the relatively high overall correlation coefficients of
approximately 0.56−0.78, a lot of care has to be taken, when interpreting these results.

In the case of chromium, for instance, at lower contents (0.04-0.15 wt.−%), there is
very little dependency observable between the peak ratios and the actual Cr-contents in
the samples.
The same applies to the calibration curves of molybdenum and nickel.

In the case of manganese, the overall correlation coefficient is even lower, especially
in the region below 1 wt.%, similar to the findings by [46].
Note, that all the remaining elements, modelling the data with the help of linear regression
has been omitted, since it would not deliver reasonable results, due to their low correlation
coefficients.

Another flaw of this discussed method to determine the chemical composition of the
liquid steel is the fact, that the content of carbon in the molten sample is impossible to
determine, due to the fact, that the electrode mainly consists of graphite (see chapter 2)
and therefore falsifies the results. This may explain, why there is almost no correlation
between the data in the calibration curve for carbon.

One conclusion, that can be drawn from the presented findings is, that due to the
uncontrolled nature of the arc (or, instability of the arc) between the graphite electrode
and the molten steel, the arc is not a suitable excitation source for atomic emission spec-
troscopy. Hence, that is why, in laboratory applications, the plasma is established with
the help of an inductively coupled plasma burner, delivering a stable plasma. Whereby
the term stable refers to the temperature here. The effect of the temperature (that may be
caused by an unstable arc, as it is the case in an EAF) on spectroscopy is discussed in
chapter 3.

Furthermore, the laboratory EAF, that was available to conduct the experiments, does
not complete resemble a furnace, that is utilized in steelmaking industry. For instance,
the laboratory furnace was equipped with a DC-power supply and in consequence of its
small size, there was no chance to generate a bath of molten steel (the steel sample could
only liquified at its top). For this reason, there was no possibility to examine the effect of
the slag on the measurements. Therefore, this leads to the assumption, that the small scale
furnace may not be sufficiently suitable to be conclusive with respect to its industrial used
version.
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Code

A.1 Savitzky-Golay Polynomial Smoothing

1 function [ySmoothed] = sgFilt(y,order, ls)

2 % Description: This function performs a Savitzky-Golay ...

polynomial smoothing

3 % Inputs: y...a vector containing noisy data (observations)

4 % order...defines the order of the fitting polynomila

5 % ls...supportlength

6

7 % Output: ySmoothed...smoothed data

8

9

10

11 % Author: Florian Floh

12 % (c) 2019, Florian Floh

13 % email: florian.floh@stud.unileoben.ac.at

14

15 % Check, whether the input y is a column vector, if not, turn it ...

into a

16 % column vector

17 if (iscolumn(y) 6=1)

18 y = y';

19 end

20

21 % The order of the polynomial must be less than the support-length

22 % Check, whether this is true here. If not, display an error message

23 if (order ≥ ls)

24 error(['The order of the polynomial has to be smaller than the',...

25 ' support-length!']);

26 end

27

81
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28 % Another important aspect, that has to be checked, is, whether the

29 % support-length is an odd number

30 if(mod(ls,2) == 0 )

31 error('Support-Length must be an odd number!');

32 end

33

34

35 % Compute the half-length lh

36 lh = (ls-1)/2;

37 % Define a column-vector that contains the local x-coordinates

38 x = linspace(-lh,lh, ls)';

39

40 % Set up the Vandermonde-matrix

41 Vb = ones(length(x), order+1);

42 Vb(:,order) = x;

43

44 for k=order-1:-1:1

45 Vb(:,k) = x.*Vb(:,k+1);

46 end

47

48 % Compute B (i.e. the matrix, that represents the so-called

49 % Savitzky-Golay smoothing filters

50 B = Vb*pinv(Vb);

51

52 % Extract the centre row of B (or the centre column would also work,

53 % since B is symmetric)

54 bC = B(lh+1,:);

55 %bC = B(:,lh+1);

56

57 % The smoothed data is then obtained by performing a convolution ...

of the

58 % noisy data with the centre row of B

59 ySmoothed = conv(y,bC, 'same');

60

61 % In order to perform an end point correction, both the upper ...

half and

62 % lower half of the matrix B have to be extracted

63 BuppH = B(1:lh,:);

64

65 BlowH = B((end-lh+1):end, :);

66

67 % Perform the endpoint-correction

68 ySmoothed(1:lh) = BuppH * y(1:ls);

69 ySmoothed((end-lh+1):end) = BlowH * y((end - ls+1):end);

70

71 end
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A.2 Background Removal by Minimizing a Non-Quadratic
Cost Function

1 function [yBL] = backgroundCorrectionNonQuadr(x,y,order,s,costfct)

2 % Description: The aim of this function is to provide an ...

algorithm, that

3 % models the baseline of the input signal, which can later be ...

subtracted in

4 % the corresponding script file

5

6 % Inputs: x... a column vector, containing the locations of the

7 % observations

8 % y... a column vector, containing the observations

9 % order... the order of the baseline model

10 % s... the threshold value for the cost functions

11 % fct... a char, that represents the desired cost function

12

13 % Output: yBL...a column vector, that contains the values of the ...

modelled

14 % baseline

15

16

17 % Author: Florian Floh

18 % (c) 2019, Florian Floh

19 % email: florian.floh@stud.unileoben.ac.at

20

21

22 % Check, whether the input y is a column vector, if not, turn it ...

into a

23 % column vector

24 if (iscolumn(y) 6=1)

25 y = y';

26 end

27 % Do the same with the x-vector

28 if(iscolumn(x) 6=1)

29 x = x';

30 end

31

32 % Set the maximum number of iterations

33 maxNumberIter = 100000;

34 % limit value alpha

35 alphaMax = 0.5;

36

37 % Perform a coordinate transformation, to get a better conditioned
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38 % Vandermonde-matrix:

39 x = (x-mean(x))/std(x);

40

41 % Use Horner's form to get the Vandermonde-matrix:

42 % Preallocation, the Vandermonde-Matrix has the dimensions n x (d+1)

43 V = ones(length(x), order+1);

44 % Set the d-th column equal to x (the (d+1)-th column is already ...

set equal

45 % to 1 in the prvious step)

46 V(:,order) = x;

47

48 % Set the remaining columns of V, beginning at the (d-1)-th ...

column and

49 % ending at the 1-st column

50 for k=(order-1):-1:1

51 V(:,k) = x.* V(:,k+1);

52 end

53

54 % Perform the QR-decomposition

55 %[Q,R] = qr(V,0);

56 %Rinv = pinv(V);

57 Vinv = pinv(V);

58 %Initialize the coefficient vector a:

59 %a = Rinv * Q' * y;

60 a = Vinv *y;

61 % Perform an initial estimation of the baseline

62 yModel = V*a;

63

64 % Compute the terms, that do not change during the iterative ...

process before

65 % the for-loop, in order to increase the efficiency of the function

66 % Set the value of alpha (it is convenient to set it close to ...

alphaMax, in

67 % order to reach the convergence quicker)

68 alpha = 0.99*alphaMax;

69 yModelprev = zeros(length(y),1);

70

71 % Perform the iteration. End it if:

72 % -- the maximum number of iterations is reached OR

73 % -- the termination-criterion is fulfilled

74 for i= 1:maxNumberIter

75 % Define the termination-criterion (if it is reached or

76 % i=maxNumberIter, the iteration is stopped)

77 if (sum((yModel-yModelprev).ˆ2) < 1e-9)

78 break;

79 end

80 % Compute 'epsilon', which is the difference between the observation
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81 % and the model

82 yModelprev = yModel;

83 epsil = y-yModel;

84

85

86 switch costfct

87 % to avoid another for-loop here, create a logic array, that

88 % consists of zeros and ones, depending on the fulfilled

89 % condition

90 case 'SymmTruncQuadr'

91 % Condition 1: phi'(x) = 2x (if |x| < s)

92 cond1 = (abs(epsil)<s);

93 % Condition 2: phi'(x) = 0 (otherwise)

94 cond2 = (abs(epsil)≥s);

95 % compute d (d=-epsilon+alpha*phi'(epsilon)):

96 d = (-epsil+alpha*2*epsil) .* cond1 + (-epsil) .*cond2;

97 case 'ASymmTruncQuadr'

98 % Condition 1: phi'(x) = xˆ2 (if x < s)

99 cond1 = (epsil <s);

100 % Condition 2: phi'(x) = sˆ2 (otherwise)

101 cond2 = (epsil ≥s);

102 % compute d (d=-epsilon+alpha*phi'(epsilon)):

103 d = (-epsil+alpha*2*epsil) .* cond1 + (-epsil).*cond2;

104 case 'SymmHuber'

105 % Condition 1: phi'(x) = -2s (if x < -s)

106 cond1 = (epsil ≤ -s);

107 % Condition 2: phi'(x) = 2x (if |x| < s)

108 cond2 = (abs(epsil) < s);

109 % Condition 3: phi'(x) = 2s (if x ≥ s)

110 cond3 = (epsil≥s);

111 % compute d (d=-epsilon+alpha*phi'(epsilon)):

112 d = (-epsil+alpha*(-2*s)).*cond1 + (-epsil+alpha*2*epsil).*cond2 ...

+ (-epsil+alpha*2*s).*cond3;

113 case 'ASymmHuber'

114 % Condition 1: phi'(x) = 2x (if x < s)

115 cond1 = (epsil<s);

116 % Condition 2: phi'(x) = 2s (otherwise)

117 cond2 = (epsil ≥s);

118 % compute d (d=-epsilon+alpha*phi'(epsilon))

119 d = (-epsil+alpha*2*epsil) .*cond1 +((-epsil+alpha*2*s) .* cond2);

120

121 end

122 % Calculate the coefficientvector

123 %a = Rinv*Q'*(y+d);

124 a = Vinv*(y+d);

125 % Get the baseline

126 yModel = V*a;
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127

128 end

129

130 yBL = yModel;

131

132 end

A.3 Adaptive Iteratively Reweighted Penalized Least-Squares
Background Correction

1 function yBaseline = ...

adapIterReWeightPenLeastSq(y,m,maxNumberIter,lambda)

2 % Description: The aim of this function is to provide an ...

algorithm, that

3 % models the baseline of the input signal, which can later be ...

subtracted in

4 % the corresponding script file

5

6 % Inputs: y... a column vector, containing the observations

7 % m...used for the m-th difference-matrix Dm

8 % maxNumberIter...maximum number of iterations

9 % lambda...smoothing parameter

10

11 % Output: yBL...a column vector, that contains the values of the ...

modelled

12 % baseline

13

14

15 % Author: Florian Floh

16 % (c) 2019, Florian Floh

17 % email: florian.floh@stud.unileoben.ac.at

18

19

20 % Check if y is a column vector (and if not, make it a column ...

vector)

21 if (iscolumn(y) 6= 1)

22 y = y';

23 end

24

25 % Deal with NaNs (remove all NaN-entries from the vector y)

26 y = y(¬isnan(y));
27 % Compute the number of rows in y

28 n = length(y);
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29

30 % Check how many input arguments have been assigned to the ...

function, and

31 % give them a predefined value if required

32 if nargin < 4, lambda = 10e10;end;

33 if nargin < 3, maxNumberIter = 20;end;

34 if nargin < 2, m = 3; end;

35

36 % Compute the terms, that do not change during the iterative ...

process before

37 % the for-loop, in order to increase the efficiency of the function

38

39 % the m-th difference matrix:

40 Dm = diff(speye(n), m);

41

42 % lambda*Dm'*Dm:

43 lamDmTDm = lambda * Dm' * Dm;

44

45 % the column vector containing the weighting values wi (which ...

will be set to 1 in

46 % the next step)

47 w = ones(n,1);

48

49 % Perform the iteration, until the termination criterion is ...

reached (or the

50 % maximum number of iteration is reached)

51 for t = 1:maxNumberIter

52 % Use the vector w to build up the diagonal matrix W

53 W = spdiags(w,0,n,n);

54

55 % Given a symmetric positive semi definite matrix A, factorize ...

it into

56 % an upper triangular matrix R, so that A = R'R. Use the Matlab ...

function

57 % 'chol', that performs a Cholesky-Factorization. See

58 % Matlab-Documentation

59 R =sparse(chol(W + lamDmTDm));

60

61 % Given a linear equation (R'Rx = b), x is obtained in the following

62 % manner: x = R\(R'\b)

63 % However, here the function 'mldivide' is used, which is ...

equivalent to

64 % the backslash

65 yBL = mldivide(R,mldivide(R',W*y));

66

67 % Compute the vector d (difference between the elements in the

68 % observation vector and the modelled baseline vector)
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69 d = y -yBL;

70

71 % get the negative entries of d:

72 dneg = d(d<0);

73 % compute the sum of all entries in dneg

74 sumdneg = sum(dneg);

75 % compute the absolute value of the sum in dneg. this will be needed

76 % for the termination criterion: abs(d) < 0.01*abs(y)

77 absSumdneg = abs(sumdneg);

78 % get the absolute values of the entries in y

79 yabs = abs(y);

80 % get the sum of the absolute values in yabs

81 yabsSum = sum(yabs);

82

83 % the termination criterion (the function is terminated, if this

84 % criterion is reached)

85 if absSumdneg < 0.001 * yabsSum

86 break;

87 end

88

89 % set the values of the weighting vector w (this is done via ...

indexing,

90 % instead of using a for-loop, since it is much faster)

91 % every entry wi of w is calculated in the following manner

92 % if (y(i,1) < yBL(i,1))

93 w(d<0,1) = exp((t*(abs(dneg)))/absSumdneg);

94

95 % if (y(i,1) ≥ yBL(i,1))

96 w(d≥0,1) = 0;

97

98 end

99

100 yBaseline = yBL;

A.4 Synthetic Spectrometer Data

1 %% Generate Synthetic Spectrometer Data

2 % Description: The aim of this script is to generate synthetic ...

spectrometer

3 % data that permits to evaluate the methods (peak detection, noise

4 % reduction and fitting a baseline) described in this thesis

5

6 % As stated in the chapter "Generating Synthetic Spectrometer ...

Data", data
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7 % from a spectrometer data can be represented in the following way:

8 % ys = b + p + n

9 %

10 % b...vector, whose entries describe the baseline

11 % p...vector, whose entries describe the analytical signal

12 % n...vector containing noise

13

14 % Author: Florian Floh

15 % (c) 2019, Florian Floh

16 % email: florian.floh@stud.unileoben.ac.at

17

18 %% Prepare the Workspace

19

20 clc;

21 clear;

22

23 %% Set up the x-Vector

24

25 % Define the range of the x-vector

26 xMin = 500;

27 xMax = 1000;

28 nrPts = 10000;

29 % Generate a column-vector, whose entries are equally spaced

30 x = linspace(xMin, xMax, nrPts)';

31

32 %% Generate the Baseline

33

34 % Define the minimum and maximum value of the baseline

35 yBLMin = 0;

36 yBLMax = 200000;

37 % Specify the order of the baseline

38 order = 3;

39 yBaseLine = (yBLMax-yBLMin).*rand(nrPts,1) + yBLMin;

40

41 % Fit a polynomial to the data-points, in order to obtain the ...

model of the

42 % baseline

43 [aBaseLineModel, S, mu] = polyfit(x,yBaseLine,order);

44 yBaseLineModel = polyval(aBaseLineModel,x,S,mu);

45

46 %% Add Noise

47

48 % Generate the noise, that is later added to the baseline

49 gain = 300;

50 noise = gain * randn(size(yBaseLineModel));

51

52 %% Create Peaks
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53

54 % Specify the width of the peaks, the standard deviation and the ...

mean

55 peakWidth = 10;

56 standdev = 0.5;

57 meanv = 0;

58

59 % Create a local x-vector solely for the peaks

60 xG = linspace(-peakWidth,peakWidth,51)';

61 g = (1/(standdev*sqrt(2*pi)))*exp(-((1/2)*(xG-meanv)/standdev).ˆ2);

62 % Normalize the values of the peaks, so that their maximum ...

height is equal

63 % to 1, so that their heigth can later be adjusted by ...

multiplying them with

64 % a desired height

65 g = g'/max(g);

66

67 %% Add the peaks

68

69 % Specify the number of desired peaks

70 numberOfPeaks = 100;

71 % Set the maximum and minimum height of the peaks

72 maxPeakHeight = 60000;

73 minPeakHeight = 100;

74

75 % Create random locations, where the peaks should be added

76 a = length(x)-(length(xG)+1)/2;

77 b = (length(xG)+1)/2;

78 xm = randi([b,a],numberOfPeaks,1);

79

80 % Set up a vector containing the height for each corresponding peak

81 peakHeights = (maxPeakHeight - ...

minPeakHeight).*rand(numberOfPeaks,1)+...

82 minPeakHeight;

83

84 % Add the peaks to the baseline

85 % Here, special care is needed, since the peaks shall not be ...

added at the

86 % very beginning or ending of the baseline, otherwise they might get

87 % truncated

88 % Therefore, their width has to be taken into account, to add ...

them at

89 % proper locations

90 for i=1:numberOfPeaks

91 yBaseLineModel(xm(i)-(length(xG)-1)/2:xm(i)+...

92 (length(xG)-1)/2,1) = yBaseLineModel(xm(i)-...

93 (length(xG)-1)/2:xm(i)+(length(xG)-1)/2,1)+peakHeights(i)*g';
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94 end

95

96 % Add the noise to the baseline

97 y = yBaseLineModel+noise;

98

99 %% Plot the result

100 plot(x,y);

101 title('\textbf{Synthetic Spectrometer Data}', 'interpreter',...

102 'latex', 'FontSize', 25);

103 xlabel('\boldmath$Wavelength[nm]$','interpreter', 'latex', ...

'FontSize',20);

104 ylabel('\boldmath$Counts[-]$','interpreter', 'latex', ...

'FontSize',20);

105 grid on;

106 grid minor;

107 set(gca,'FontSize',18);

A.5 Peak Detection

1 function [xPeak, yPeak]=detectPeak(x,y, windowsize, threshold)

2 % Description: The purpose of this function is to detect the ...

peaks (i.e.

3 % local maxima in a signal and give back their locations and values

4

5 %Input: y...vector containing the observations

6 % x...location of the corresponding y-vector

7 % windowsize...specifies the windowsize, in which the peak ...

shall

8 % be detected

9 % threshold...gives a minimum value, where all peak values ...

that

10 % are smaller than the predefined 'threshold' value shall be

11 % ignored

12

13 %Output: xPeak...x-values of the local maxima

14 % yPeak...the peak values

15

16 % Author: Florian Floh

17 % (c) 2019, Florian Floh

18 % email: florian.floh@stud.unileoben.ac.at

19

20

21 % If there is no input for the threshold-value, set it do 0 by ...

default
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22 if nargin ==3

23 threshold =0;

24 end

25

26 % Check if y is a column vector (and if not, make it a column ...

vector)

27 if (iscolumn(y) 6= 1)

28 y = y';

29 end

30

31 % Deal with NaNs (remove all NaN-entries from the vector y)

32 y = y(¬isnan(y));
33

34 % Since a peak is characterized through a higher value than its

35 % neighbouring values, the differences between the adjacent ...

values in

36 % the y-vector are computed. This is done via the MATLAB-function

37 % "diff", that does it in the following way:

38 % Given a vector y=[y(1), y(2), ...., y(m)] with the length m

39 % diff(y) gives: y=[y(2)-y(1), y(3)-y(2),..., y(m)-y(m-1)] with the

40 % length (m-1)

41 ydiff = diff(y);

42

43 % Extract the sign of the values in the ydiff-vector. This can ...

be done

44 % with the "sign" function, that returns:

45 % | 1 if x > 0

46 %sign(x) = | 0 if x = 0

47 % |-1 if x < 0

48

49 ydiffSign = sign(ydiff);

50

51 % The ydiffSign-vector contains -1,0 and 1. A peak is now ...

characterized,

52 % if the pattern [1,-1]' appears. This can be found for ...

instance, via

53 % convolution. If the pattern matches, the output will be equal ...

to 2.

54 ypeaks = conv(ydiffSign, [-1,1]);

55

56 xPeak = [];

57 yPeak = [];

58 % Check the vector ypeaks, in order to find the maximum in each ...

window

59 for i=1:length(ypeaks) - windowsize +1

60 % Create a temporary array, that has the size of each window

61 temparray = ypeaks(i:i+windowsize-1);
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62

63 % Detect all possible maximas within the window

64 possmax = find(temparray ==2);

65

66 defmax = 0;

67 indmax = 0;

68

69 % check for the absolute maximum among all possible maximas in the

70 % window

71 for j=1:length(possmax)

72 if(y(possmax(j)+i-1) > defmax && y(possmax(j)+i-1) > threshold)

73 % get the y-value of the maximum

74 defmax = y(possmax(j)+i-1);

75 % get the indices of the maximum

76 indmax = possmax(j)+i-1;

77 end

78 end

79

80 xPeak = [xPeak indmax];

81 end

82

83 xPeak = unique(xPeak);

84 xPeak = xPeak(xPeak 6=0);

85

86 yPeak = y(xPeak);

87 xPeak = x(xPeak);

88 end
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