
Chair of Nonferrous Metallurgy

Doctoral Thesis

Clustering and diffusion in aluminium
alloys

Dipl.-Ing. Phillip Dumitraschkewitz, BSc
June 2019

Montanuniversität Leoben

Department Metallurgie - Department of Metallurgy

Nichteisenmetallurgie - Nonferrous Metallurgy

Dissertation

Clustering and diffusion in aluminium alloys

by:

Dipl.-Ing. Phillip Dumitraschkewitz

Supervisors:

Assoz.-Prof. Dipl.-Ing. Dr.mont. Stefan Pogatscher

Univ.-Prof. Dipl.-Ing. Dr.mont. Peter J. Uggowitzer

in cooperation with:

Department of Physical Metallurgy and Materials Testing,

Montanuniversität Leoben

Laboratory of Metal Physics and Technology, ETH Zurich

AMAG Rolling GmbH

Leoben, April 2019

A F FI D A VI T

D at e 0 6. 0 6. 2 0 1 9

I d e cl ar e o n o at h t h at I wr ot e t hi s t h e si s i n d e p e n d e ntl y, di d n ot u s e ot h er t h a n t h e s p e cifi e d s o ur c e s a n d
ai d s, a n d di d n ot ot h er wi s e u s e a n y u n a ut h ori z e d ai d s.

I d e cl ar e t h at I h a v e r e a d, u n d er st o o d, a n d c o m pli e d wit h t h e g ui d eli n e s of t h e s e n at e of t h e
M o nt a n u ni v er sit ät L e o b e n f or " G o o d S ci e ntifi c Pr a cti c e".

F urt h er m or e, I d e cl ar e t h at t h e el e ctr o ni c a n d pri nt e d v er si o n of t h e s u b mitt e d t h e si s ar e i d e nti c al, b ot h,
f or m all y a n d wit h r e g ar d t o c o nt e nt.

Si g n at ur e A ut h or
P hilli p, D u mitr a s c h k e wit z

M atri c ul ati o n N u m b er: 0 0 9 3 5 4 2 5

Acknowledgements

I wish to express my sincere thanks to Univ.-Prof. Dr.mont. Helmut Antrekowitsch, head

of the chair, for the possibility to write my doctor thesis at this chair.

I would like to thank my supervisor Assoz.-Prof. Dr. mont. Stefan Pogatscher for his

engagement, patience and guidance through this thesis, and the endurance to proof-read

manuscipts over and over again. Also I would like to thank Univ.-Prof. Dr. mont. Peter

Uggowitzer for his help in writing, input on research direction, hospitality during the stay

in Zürich and his endless list of anectodes always good for a laugh.

Dr. Stephan Gerstl is kindly thanked for the hospitality during the stay in Zürich and his

support with the cryo-transfer experiments.

The support from the technicians of the chair is very much acknowledged, epecially I like to

thank Mr. Erich Troger and Mr. Tom Link for machining the parts for the eletro-polishing

setup and their competent advices regarding manufactoring in general. Mr. Bartelme is

kindly thanked for his help with sample production and transport.

A big thanks goes out to my colleagues, which make the chair to such a great and friendly

working place.

Finally, I would like to thank my family, encouraging and supporting me in all cir-

cumstances.

ii

Contents

Contents iii

1 Abstract / Kurzfassung 1

2 Introduction 2

2.1 Problem & Aim . 3

2.2 Structure of the thesis . 3

3 Clustering in age-hardenable aluminum alloys 5

3.1 Introduction . 6

3.1.1 Natural aging . 8

3.1.2 Artificial aging . 8

3.1.3 Conventional precipitation sequences 9

3.2 Indirect characterization of clusters . 15

3.2.1 Resistivity . 15

3.2.2 Differential scanning calorimetry . 18

3.2.3 Hardness evolution and tensile test findings 21

3.2.4 Positron annihilation spectroscopy 25

3.2.5 Other techniques . 28

3.3 Direct characterization of clusters - atom probe tomography 28

3.3.1 Functionality . 29

3.3.2 Artefacts, trajectories and calibration 30

iii

Contents

3.3.3 Analysis of solute distribution . 31

3.3.3.1 Clusterfinding and algorithms 31

3.3.3.2 Interpretation via pair correlation functions/ partial RDF . 33

3.3.4 Findings on clustering in aluminum alloys 33

3.3.5 Important early findings . 35

3.3.6 Latest findings . 37

3.3.6.1 Natural aging . 37

3.3.6.2 Pre-aging . 42

3.3.6.3 Artificial aging . 45

4 Experimental approach and applied methods 50

4.1 Sample production & Atom probe tomography 50

4.1.1 ”Blank” production . 50

4.1.2 First-step electro-polishing . 51

4.1.3 Second-step electro-polishing . 56

4.1.4 Solution heat treatment and quenching 58

4.1.5 Artefacts of sample production . 58

4.1.6 APT experimental parameters . 59

4.2 APT data analysis . 60

4.2.1 From .RHIT to .pos and .epos . 60

4.2.1.1 Selection of a ion sequence range 61

4.2.1.2 Selection of a detector region of interest 61

4.2.1.3 Time-of-flight to mass-to-charge ratio (m/n) 61

4.2.1.4 Correction of the mass-to-charge ratio 61

4.2.1.5 Ranging . 62

4.2.1.6 Reconstruction . 64

4.2.2 Customized data analysis . 67

4.2.2.1 Spatial analysis . 68

iv

Contents

4.2.2.2 Analyses regarding the reconstruction protocol 73

4.2.2.3 Other data analysis methods 74

5 Atom probe tomography study of as-quenched Al-Mg-Si alloys 76

5.1 Introduction . 77

5.2 Experimental . 78

5.3 Results . 80

5.4 Discussion and conclusion . 81

6 Size Dependent Diffusion: Material Dimensions Determine Solid State

Reactions 84

6.1 Introduction . 85

6.2 Results . 86

6.2.1 Nano tip aging . 86

6.2.2 Vacancy annihilation . 86

6.2.3 Bulk aging . 88

6.3 Conclusion . 91

6.4 Methods . 91

6.5 Contribution . 93

6.6 Supplementary Material . 94

6.6.1 Hardness evolution . 94

6.6.2 Pair Correlation and Radial Distribution Functions 94

6.6.3 Si migration/surface relaxation and regions of interests 95

6.6.4 Clustersearch . 100

6.6.5 Non-equilibrium vacancy evolution 100

7 Summary & Outlook 102

Bibliography 104

v

Contents

8 Appendix 116

8.1 Further publications . 116

8.2 apt importers.py . 116

8.3 plot multiple hits Si.py . 162

8.4 analyse recon.py . 167

8.5 ranging kryo proto.py . 176

8.6 multiple ion analysis.py . 178

8.7 proto function RDF data.py . 184

8.8 Vis.py . 191

8.9 largeSDM.py . 193

8.10 C14 art.py . 196

8.11 script SDM auswertung.py . 199

8.12 clusteranalyse AlMgSi.m . 207

8.13 motorsteuerung v09.ino . 208

vi

List of symbols and abbreviations

AA artificial aging

APFIM atom probe field ion microscopy

APT atom probe tomography

AQ as-quenched

BH bake-hardening

DB Doppler broadening

DC direct current

DSC differential scanning calorimetry

FIB focused ion beam

FLANN fast library for approximate nearest neighbors

FSAK model Fischer-Svoboda-Appel-Kozeschnik model

FWHM full-width at half maximum

GP Guinier-Preston

GPB Guinier-Preston-Bagaryatsky

HRTEM high resolution transmission electron microscopy

ICF image compression factor

kNN kth nearest neighbor

LEAP local electrode atom probe

LN2 liquid nitrogen

NA natural aging

NMR nuclear magnetic resonance

PA pre-aging

PAS positron annihilation spectroscopy

PALS positron annihilation lifetime spectroscopy

PLC Portevin Le-Chatelier

RDF radial distribution function

RT room temperature

SANS small angle neutron scattering

SAXS small angle x-ray scattering

SDM saptial distribution map

vii

SEM scanning electron microscopy

SHT solution heat treatment

SRS strain rate sensitivity

SSSS super-saturated solid solution

TEM transmission electron microscopy

tof, ToF time-of-flight

UHV ultra-high vacuum

WQ water quenched

viii

Chapter 1

Abstract / Kurzfassung

This thesis gives an overview of existing information on natural aging and clustering in

aluminum alloys. An in-depth understanding of existing analysis methods of clustering is

established. Moreover, an approach is developed, and applied, to access natural aging times

below one hour via atom probe tomography. With the realized experiments it is shown

that the as-quenched state can be investigated. Moreover it is demonstrated that clustering

and all non-equilibrium vacancy controlled diffusionional processes are size-dependent and

natural aging is effectively stopped when the material dimensions reach the nanometer scale.

Diese Arbeit gibt eine Übersicht über existierende Informationen hinsichtlich Kaltaus-

lagerung und Clusterbildung in Aluminium Legierungen. Es wird ein detailliertes

Verständnis von existierenden Methoden zur Clusteranalyse erarbeitet. Weiters ist ein

Lösungsansatz entwickelt, und angewandt worden, um Kaltauslagerungszeiten kleiner einer

Stunde mittels Atomsondenmessungen zugänglich zu machen. Mit den durchgeführten

Experimenten konnte aufgezeigt werden, dass auch der abgeschreckte Zustand des Ma-

terials untersuchbar ist. Weiters hat sich gezeigt, dass alle Diffusionsprozesse, die auf

Nicht-Gleichgewichtskonzentrationen von Leerstellen basieren, größenabhängig sind und die

Kaltauslagerung effektiv gestoppt wird, sobald die Materialdimensionen die Nanometerskala

erreichen.

1

Chapter 2

Introduction

“In the beginning the Universe was created. This has made a lot of people very

angry and been widely regarded as a bad move.” – Douglas Adams, The Restau-

rant at the End of the Universe.

Aluminum (Al) alloys are nowadays an important technological material and spread over a

broad strength spectrum ranging from high-strength for aerontautic applications, to middle

and low strength alloys for automotive, profile or other applications. [1]

The main hardening mechanism for middle- and high-strength Al alloys is precipitation

hardening. The applied principle is to solve alloying elements in the α-matrix at a high

temperature (solution heat treatment), quench fast enough to form a super-saturated solid

solution (SSSS), and further apply a heat treatment at elevated temperature (artificial

aging, AA), to form metastable phases in the size of several nanometers (precipitates).

Besides that a super-saturated solid solution forms, also a non-equilibrium vacancy fraction

is conserved by fast quenching. Only substitutional alloying elements (Si, Cu, Zn, Mg)

with also Al are used for classical Al alloys for precipitation formation. Hence the main

diffusional process is vacancy movement. If age-hardenable Al alloys are stored at room

temperatures an hardness increase is obtained, natural aging (NA). The hardness increase

is explained by a precipitation-like process, where small aggregations of solute atoms (below

to few nanometers in size) are formed – so-called clusters. The formation of clusters is

possible due to the enhanced diffusion by an increased vacancy fraction. [1]

While natural aging occures for all age-hardenable Al alloys, it has an especially large

technological impact in AlMgSi alloys. AlMgSi alloys are important for the use as structural

material, on automotive or profile applications, due to their cost-effectiveness, good forma-

bility and potential hardening ability. A typical production route, for example an AlMgSi

automotive sheet, includes the production of the sheet itself via rolling, shipping to the part

producer for shaping and the final artificial aging heat treatment by a paint-bake cycle.

Natural aging in AlMgSi alloys causes often a negative effect on mechanical properties,

2

2.1 Problem & Aim

when the material is further artificially aged. Peak hardness is lowered and the artificial

aging kinetics are slowed, if the material is stored at room temperature, before the final

artificial aging treatment is applied. [1–3]

2.1 Problem & Aim

High resolution techniques such as transmission electron microscopy techniques were not

able to identify the origin of the natural aging and its negative effect in AlMgSi alloys, which

already occures within about minutes of room temperature storage. Two statements were

concluded, the formed clusters do not show ordering, and clusters are very small. Based

on the fact that not even with high resolution transmission electron microscopy (HRTEM)

clusters in AlMgSi alloys could be investigated, due to the similar atomic masses of Al, Mg,

and Si, the further development of the atom probe tomography (APT) technique made it

”the” direct investigation tool of choice for clusters. The advantage of APT lies in the easy

discrimination of Mg, Si and Al atoms within a three-dimensional reconstruction, which

closely corresponds to the real sample geometry. [3, 4]

While a large literature basis on clustering in AlMgSi alloys and the ”negative effect”

generally already exists (see chapter 3 [3]), the direct observation of the early stages of

clusters remains unclear, due to the contradictionary published findings. An obstacle in

APT for investigation of early stages of clusters is that from the material a sample needs

to be manufactured and transferred to the ultra high vacuum (UHV) system of the atom

probe, which both is done at room temperature where natural aging occurs. Therefore

earliest investigated natural aging states in the literature correspond to 60 to 100 min.

Aim of this work is to access the time-region below 100 min of natural aging via atom

probe tomography, to investigate the early stage of clustering and identify pitfalls causing

the contradictionary results in literature. [3]

2.2 Structure of the thesis

An extensive literature survey on existing information of clustering in Al alloys was realized

within a review paper given in chapter 3. Which serves as an introduction to the details

of the topic. Due to the need of a special sample production strategy and a careful as-

sessment of the gained data, the used methods and sample production process are in detail

discussed in chapter 4. Scripts developed and used for analyzing purposes are reported in

the appendix, chapter 8. The applied cryo-transfer to the atom probe is described within

chapter 5 together with the first gained results on as-quenched AlMgSi alloys. In chapter 6

3

2.2 Structure of the thesis

results of naturally aged APT specimen (in-situ) are reported, compared to specimen nat-

urally aged at bulk dimensions, and a possible explanation for contradictionary results for

early stages of clustering in literature is presented. Finally, a summary and outlook is given

in chapter 7.

4

Chapter 3

Clustering in age-hardenable aluminum

alloys∗,∗∗

This review gives an overview of the effects of clusters in various aluminum alloys. Char-

acterization methods are discussed in general and results for the important AlMgSi alloys

are presented in detail. Indirect characterization methods, such as hardness, tensile testing,

electrical resistivity, differential scanning calorimetry and positron annihilation spectroscopy

are discussed, as well as atom probe tomography for the direct measurement of clusters. A

particular focus is set on atom probe tomography, where possible artifacts influencing the

cluster measurements as well as different cluster finding methods are summed up. A compre-

hensive summary of investigated alloys and cluster algorithm parameters is given. Moreover,

the findings in AlMgSi alloys regarding clusters and changes upon different heat treatments

are discussed, starting from early to the latest works. Drawn conclusions are discussed and

compared to give a résumé.

∗Chapter 3 was already published in [3].
∗∗Thankfully, this research is supported by the Austrian FFG Bridge project, number 853208 (P.D.). S.P.
acknowledges financial support by the Austrian Federal Government and the Styrian Provincial Government
under the frame of the Austrian COMET Competence Center Programme (K2 Competence Center “Inte-
grated Research in Materials, Processing and Product Engineering”, Project A3.31). AMAG Rolling GmbH
is kindly thanked for financial support and discussion.

5

3.1 Introduction

3.1 Introduction

Low density, a broad strength spectrum ranging from 70 to 800 MPa, non-toxicity, high

thermal conductivity, high electrical conductivity and a wide range of forming and working

processes are just a few reasons why aluminum alloys are currently used [1]. Minimizing

energy consumption is the driving force for the application of lightweight materials. Hence

one of the main application areas for aluminum alloys is transport. [5] Aluminum alloys

typically have a low Hall-Petch coefficient, and therefore their strength cannot be increased

extensively for technical applications via grain refinement. In addition, no allotropic phase

transitions are known for aluminum at ambient pressure, which restricts hardening strategies

in comparison with steels. Solid solution strengthening is indeed used as a strengthening

mechanism in low to medium strength alloys. However, aluminum generally shows a tendency

towards low miscibility with many other metals in thermal equilibrium. Often intermetallic

phases with alloying metals form even at low alloying content. Together with the formation

of metastable phases, which can be efficient barriers to dislocation movement, this is the

basis for high strength aluminum alloys with age hardening as their dominant strengthening

mechanism. Among these alloys the AlCuMg (2000) and AlZnMg(Cu) (7000) alloy series of-

fer the highest strength. They are mainly used in aeronautic applications. The AlMgSi(Cu)

(6000) alloy series shows somewhat lower strength, but exhibits a favorable properties profile

(including good formability, weldability and corrosion behavior) which makes it the commer-

cially most important of the three classical groups of age hardenable aluminum alloys. All

these alloys have been reported to show clustering of super-saturated solute atoms in the

very early stages of aging. The phenomenon has huge technological impact and has been

intensively addressed in academia and industry over the last decades. However, the term

”cluster” is not always well defined in literature and sometimes depends on the characteri-

zation method. Note that here we define clusters to be a homogenous decomposition (local

aggregation) of alloying atoms, without a detectable structure or ordering [1, 6]. In this

review we focus primarily on two alloy classes where, particularly from the technological

point of view, clustering plays the most important role: AlMgSi(Cu) and AlCuMg [1, 6–8].

The equilibrium phase common in the AlMgSi(Cu) series is Mg2Si (β); with additional small

amounts of alloyed Cu the Q phase is also prominent [1]. FIG. 3.1 [9] shows several 6000

series alloys and their Si and Mg concentration ranges. A representative Si-rich alloy is AA

6016, with typical 1.2 at.-% Si and 0.5 at-% Mg, in contrast to a typical Mg-rich alloy AA

6061 (0.9 at-% Mg and 0.6 at-% Si). A low content alloy AA 6060 is also shown. We define a

balanced alloy as having an Mg/Si ratio of approximate unity and stronger deviating values

whether Mg- or Si-rich. The alloy properties are determined by the overall alloying element

content, the Mg/Si-ratio, and possible Cu additions which alter the properties even at low

content. AA 6016 is deployed in car body sheets, and 6061 can be used in bicycle parts and

even in aerospace applications. These two alloys are typical examples where clusters have

6

3.1 Introduction

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4
0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

6063

Mg/Si = 0.5

Mg/Si = 2

60616061

M
g

/ %
 a

t.

Si / % at.

6063

6061

6111

6022

6016

Mg/Si = 1

6060

Figure 3.1: Approximate compositions ranges of commercial 6000 series
alloys, with guidelines for different Mg/Si-ratios. Redrawn with permis-
sion from [9], c⃝2012 The Japan Institute of Metals and Materials.

a strong negative effect on artificial aging performance: their presence slows down precipi-

tation kinetics and reduces the achievable strength. However, there are also other alloys in

the 6000 series (with low Mg and Si content, such as AA 6060) where clusters can have a

positive effect on artificial aging. [10–12] For the AlCuMg alloys – depending on the Cu/Mg

ratio – the phases Al2CuMg (S), Al2Cu (θ) or a mixture of these is formed at equilibrium.

Typical alloy compositions of the AlCuMg series where clusters do play an important role

are in the range of approximately 1.1 - 1.6 at.-% Cu [1] and Mg > 0.5 at.-% [13]. A typical

AlCuMg-based alloy is AA 2024. Interestingly it also is an AlCuMg alloy in which Wilm

first discovered age hardening. [8, 14] Applications of AA 2024 are in airframe construction,

for example in fuselage/pressure cabin skins or lower wing covers [15]. Generally, the 2000

series of alloys is deployed in aerospace due to a high strength to weight ratio. Clustering

in AlCuMg alloys is important, because it is the reason for the ”rapid hardening” observed

during early artificial aging in these alloys. [8, 16] In the following we address the main aging

treatments and the complex role which clusters can play there. The effects of natural aging,

pre-aging and artificial aging, and their interdependent influences, are discussed in detail.

We also address the techniques which have been used to indirectly and directly characterize

clustering during the very early stages of aging in aluminum alloys. We start with indi-

rect characterization techniques such as resistivity measurements, calorimetry, hardness and

tensile tests and positron annihilation. Although long in use, these techniques nevertheless

7

3.1 Introduction

require assumptions and models to link the presences of clusters to studied properties. The

only technique which enables direct imaged observations of clusters is often atom probe to-

mography. This technique, its capability, the issues and the most important results gained

are a major part of this review. Aging phenomena Aluminum alloys frequently undergo a

homogenization treatment subsequent to casting, followed by a thermomechanical treatment.

If we assume, as an example, that our final product is a sheet, thermomechanical processing

will include hot rolling and perhaps inter-pass annealing; cold rolling and adjusting of surface

roughness; solution heat treatment and quenching; possibly pre-aging; and finally cleaning

and surface passivation. Solution heat treatment is used to dissolve the alloying elements in

the aluminum matrix (solid solution) and to increase the vacancy concentration. Quenching

is applied to freeze in this condition to room temperature in order to form a supersaturated

solid solution, which can be used as potential for precipitation hardening. This occurs in

various distinct stages of phase transition. Often the earliest stage is clustering, which can

have a significant impact on the final material properties. [1]

3.1.1 Natural aging

The as-quenched material has a volatile nature, and exhibits diffusion induced changes even

at room temperature (RT). When the material is stored at RT its hardness increases over

time. This process has been dubbed ”natural aging” (NA), and is caused by clustering of

the solute atoms. Clustering at RT occurs in all age-hardenable Al alloys (2000, 6000 and

7000), but is technologically most important in the 6000 alloys. This is discussed in detail

in Section 2.4, ”Phenomenological description of the effect of clusters”. Alloys of types 7000

and 2000 also show NA, where hardness increases during storage at RT. In the 2000 series

alloys the natural aged state is in some cases used directly for application. In the 7000 series

clustering during NA is of minor importance because it is not an applied materials state and

has no strong implications for final properties.

3.1.2 Artificial aging

Aging at elevated temperatures is called ”artificial aging” (AA). The influence of clustering

on hardness development during AA varies widely among the different alloy families. While

in the 6000 series clustering due to prior NA often has a deleterious effect on the AA response,

clustering is important for 2000 series alloys because of the occurrence of the rapid hardening

effect at AA temperatures. For 7000 series alloys no significant influence of clustering on

final AA properties is known.

8

3.1 Introduction

3.1.3 Conventional precipitation sequences

Typically the phase transitions which occur during aging are simplified by using sequences

of different precipitates with increasing thermodynamic stability or decreasing formation

kinetics. Recent investigations summarize the precipitation sequence in AlMgSi alloys, as

follows in Equation 3.1 [17, 18]:

SSSS → atomic clusters [7] → GP zones(pre β
′′
) [19, 20] → β

′′
[20, 21] →

β
′
[22], U1 [23], U2 [24], B

′
[25] → β, Si(stable) (3.1)

This precipitation sequence should be interpreted as the chronological occurrence of the dom-

inant metastable phases at isothermal aging at different temperatures for a certain amount

of time, increasing from low (NA) temperatures for atomic clusters, over β
′′
at the AA tem-

perature to the equilibrium phases of β and Si at high temperatures or very long ageing

times. However, this is also often observed in linear heating experiments (e.g. using differ-

ential scanning calorimetry). A recent detailed tabulated overview of the different phases

which occur is given in reference [26]. U1, U2, Si (diam.) and B’ are present in Si-rich alloys

in a typical overaged state [26]. β’ is present at peak hardness and overaged states in Mg

or Si rich alloys; it forms from β
′′
or on dislocations [22, 26, 27]. For AlMgSi alloys with

Cu, L, ”S”, C, Q’ and Q phases also occur, where L, ”S” and C are predecessors of Q,’

which is present at overaged and artificially aged states where Q is the overaged (equilib-

rium) phase. [26] It has been shown that at peak hardness a Cu-containing alloy (0.3 % Cu),

β
′′
and pre- β

′′
only account for 30% of precipitates; the rest is Cu-containing GP and the

precursor of the Q’ [28, 29] phase. [30] A suggested precipitation sequence is given below in

Equation 3.2 [30]; QP is possibly related to L, ”S” is possibly related to QC (”S” should not

be confused to the S phase in AlCuMg alloys) [26]:

SSSS → atomic clusters → GP zones → β
′′
, L,QP,QC → β

′
, Q

′ → Q (3.2)

For AlCuMg alloys the precipitation sequence was constructed, as follows in Equation 3.3 [26,

31]:

SSSS → atomic clusters → S
′′ → S

′ → S (3.3)

There are different opinions on the exact precipitation sequence and the intermediate

phases [8, 26, 32, 33], and also on their impact on the rapid hardening effect. Earlier works

declare GPB (Guinier–Preston–Bagaryatsky) zones to be the cause of the rapid hardening

effect [31]; later Cu-Mg clusters are explained as the source [8], although in some publica-

tions the two are used synonymously [32]. For longer AA times overlapping S (or S
′
) phase

formation is reported [32]; their relative volume fraction is low in the plateau region, but

becomes dominant in the peak-aged state. The designations S
′′
[34] and S

′
phase as precursor

phases of the S phase is controversial, especially for the S
′
phase due to its strong similarity

9

3.1 Introduction

Figure 3.2: Column arrangement principles following from a line defect:
(a) If a [001] column segment (4) is moved to interstitial positions (z=0 →
1/2), it is surrounded by (b) four coloumns of same height (3) and (c) four
columns of opposite height (5). The atoms marked 3 and 5 have 9 and
15 NNs, respectively. (d) Columns with fewer NNs fit smaller elements
(Si or Cu) and columns with more NNs fit larger atoms (such as Mg).
Columns with small and large atoms obtain 3-fold (Si/Cu) and 5-fold (Mg)
surroundings, respectively. [37] Reproduced with permission from [37],
c⃝2017 Trans Tech Publications.

to the structure of S [26]. For completeness it should further be mentioned that in Mg-rich

AlCuMg alloys the T phase [35] can also occur, although it is ”rarely found in commercial

applications” [26]. For a long time a common general concept was sought regarding the

formation of hardness-relevant phases in the different alloying classes, due to the recurrence

of similar crystallographic features [36]. An interesting approach to this issue is briefly de-

scribed as follows. Recent analyses of metastable precipitates in the AlMgSi and AlCuMg

systems have shown that the columns along the <100> Al extension follow ”the same, simple

arrangement principles; columns of large Mg atoms obtain a 5-fold surrounding, while the

smaller (Si, Cu) show a 3-fold surrounding.” A possible model explaining this behavior is

shown in FIG. 3.2 [37]. This principle uses a line defect, by which a segment of <100> Al

column is moved half of the conventional unit cell size in the appropriate <100> direction.

Therefore, atoms are moved to the octahedral interstitial position. The fcc crystal is now

partitioned in columns of 15 and 9 nearest neighbors (NN), instead of 12. The sites with 9

NN would fit smaller atoms like Si or Cu, and the sites with 15 NN would fit larger atoms

like Mg. Such a defect needs only one vacancy, and ordering of such defects can explain, for

example, the structure of GPB and β
′′
phase. DFT calculations suggest ordering of Si or

Cu, followed by Mg, prior to the defect. If the defect is produced, the direction of the pre-

cipitate is fixed. [37] Interestingly, this accords with previous statements which outline the

importance of free excess vacancies in the formation of β
′′
[38] and the latter’s interference

with natural aging via the available concentration of free excess vacancies determined via the

vacancy-prison mechanism [12]. 2.4 Phenomenological description of the effect of clusters

While AlCuMg alloys show no essential influence of NA on subsequent AA, AlMgSi alloys

exhibit a clear effect. This was already noticed by Brenner and Kostron in 1939 [2]. They

observe that for a 0.89 at.-% Mg, 0.77 at.-% Si alloy the yield strength (σ0.2) increases about

50% within three days (FIG. 3.3 [2]). After NA for 7 days they obtain a much slower hard-

10

3.1 Introduction

0,1 1 10
0

50

100

150

200

250

300
 0.2
 B
 

time / days

st
re

ss
 /

M
P

a

16

18

20

22

24

26

el
on

ga
tio

n
to

 fr
ac

tu
re

 /
%

Figure 3.3: Evolution of mechanical properties for increasing natural aging
time for a 0.89 at.-% Mg and 0.77 at.-% Si alloy. σ0.2 is the yield strength
and σB the ultimate tensile strength and δ is the elongation to fracture.
Redrawn with permission from [2], c⃝2018 Carl Hanser Verlag GmbH &
Co.KG München.

ening reaction and a lower maximum of yield and ultimate tensile strength upon subsequent

AA compared to direct AA without NA [2] (FIG. 3.4). Natural aging is also seen to increase

the activation energies of subsequent AA precipitation kinetics [12]. This undesirable effect

on the mechanical properties of NA is later called the ”negative effect” in literature, and has

its origin in the clustering which occurs during NA [4]. Note that some lean AlMgSi alloys

with low strength can also show a positive hardening effect of RT storage on subsequent

AA [11, 39]. Brenner and Kostron investigated the effect of a pre-aging (PA) treatment di-

rectly after quenching. They observed that PA slows down hardening at RT and accelerates

the aging response at elevated temperatures (FIG. 3.5). It is proven that with PA the neg-

ative effect can be significantly reduced; nowadays this is the basis for industrial pre-aging

treatments in the production of 6000 series alloys used for automotive body panels [10, 40].

Brenner and Kostron also stated that even small amounts of Cu may lessen the negative

effect, without changing the NA hardness evolution. [2] It was further demonstrated that in-

terrupted quenching to AA temperatures for short periods of up to 10 min can also stabilize

the material (similar to PA [41, 42]) and generate a beneficial aging response compared to

a quenched and RT-stored material [38]. An interesting approach was applied in [43] with

a long-term PA (100◦C / ∼25 days) of a Si 0.72 at.-%, Mg 0.78 at.-%, low Cu alloy. The

material exhibits a yield strength similar to the T6 condition, but higher tensile strength

and significantly higher total and higher uniform elongation [43]. A different strategy to

11

3.1 Introduction

0,01 0,1 1 10
0

50

100

150

200

250

300

350

 B direct AA
 0.2 direct AA
 B NA+AA
 0.2 NA+AA
  direct AA
  NA+AA

time / days

st
re

ss
 /

M
P

a

10

15

20

25

30

35

el
on

ga
tio

n
to

 fr
ac

tu
re

 /
%

Figure 3.4: Evolution of mechanical properties for direct artificial aging
(AA) and AA with prior natural aging of 7 days (NA+AA) for a 0.89 at.-%
Mg and 0.77 at.-% Si alloy. σ0.2 is the yield strength, σB the ultimate ten-
sile strength and δ is the elongation to fracture. Redrawn with permission
from [2], c⃝2018 Carl Hanser Verlag GmbH & Co.KG München.

hinder the negative effect of NA, microalloying for AlMgSi alloys with Sn or In, was recently

introduced by Pogatscher et. al. [44–46]. The study in [44] demonstrates a significant delay

of NA for AA 6061 due to microalloying of Sn (see FIG. 3.6 [44]). The Sn-enhanced material

with NA and subsequent AA also reaches the T6 hardness of the non-Sn-enhanced reference,

which was artificially aged directly; see FIG. 3.7. For an AA 6061 with traces of Sn an

unusually high and fast hardness increase for high AA temperatures (250◦C) was obtained,

although not reaching full T6 hardness at this temperature. The effect of Sn alloying was

phenomenologically similar to the known effect of PA on high AA temperatures [47]. The

temperature influence (5 to 45 ◦C) for NA was also studied for AA 6061 with and without Sn,

Sn + In additions. Higher temperatures lead to faster increase in hardness; Sn+In delayed

the hardness increase the most. Sn and Sn+In were seen to increase the effective activation

energy [45]. When Si is substituted by Ge the NA kinetics is notably retarded [48]. This is

also attributed to vacancy solute interaction energies and could be interpreted as an effect

similar to Sn. A design strategy for microalloying in AlMgSi alloys was also proposed by

Werinos et. al. [49]. They outline the importance of solution heat treatment temperature,

to ensure the dissolving of the micro-alloyed elements. A strong detrimental effect of Si

on the delaying nature of microalloying NA was observed. A smaller influence of Mg was

seen; less Mg led to a delayed increase in hardness. Cu marginally retained NA with higher

content. A designed alloy was shown to exceed 180 days RT stable hardness values with

12

3.1 Introduction

1 10
100

150

200

250

300

350

yi
el

d
st

re
ng

th
 /

M
P

a

artificial aging time / h

 A
 B
 C
 D

Figure 3.5: Yield strength of an AlMgSi alloy for different heat treatments.
Artificial aging and pre-aging at 150◦C, given is the total aging time. A)
Direct artificial aging. B) 7 days natural aging, subsequent artificial aging.
C) 1 h pre-aged, 7 days natural aging and artificial aging. D) 1 h pre-
aged, 7 days natural aging, 4 % straining and subsequent artificial aging.
Redrawn with permission from [2], c⃝2018 Carl Hanser Verlag GmbH &
Co.KG München.

increased AA response at higher AA temperatures. [49] Various microalloying elements for

Al-Cu were investigated in [50, 51]. In this alloying system, too, adding trace amounts of Sn,

In and Cd reduces clustering upon NA due to their large binding energy to vacancies and

the limited orbit motion of vacancies around these solutes [44]. However, compared with

6000 series alloys the influence of NA on AA is different for 2000 series alloys, since small

precipitates are formed serving as nuclei during AA. Moreover, no negative interdependence

of NA and AA has so far been reported. Nevertheless, cluster formation is present during

NA in 2000 series alloys, which is a material state of application, and AA incorporates an

important hardening phenomenon which is linked to clustering [52]. The aging process at

elevated temperatures has a two-step nature in 2000 series alloys. FIG. 3.8 shows a typical

AA response. The first stage of hardening occurs very rapidly (within about 60 seconds), and

generates about 60% of the absolute hardness increase [8]. This technologically important

hardening phenomena has been linked to very fast cluster formation and is called ”rapid

hardening” [33]. Interestingly, this behavior actually needs a minimum of about 0.5 at.-%

Mg to be present (FIG. 3.8) [53]. The hardness increases with further increasing alloying

content of Mg for the rapid hardening response and the later aging peak. Cu-Cu or Mg-Mg

clusters were not found to correlate to the rapid hardening effect, but Cu-Mg clusters. An

13

3.1 Introduction

102 103 104 105 106 107
40

45

50

55

60

65

70

75

RT

ha
rd

ne
ss

 /
H

B
W

time / s

 AA6061
 40 at.ppm
 70 at.ppm
 200* at.ppm
 430* at.ppm

1 day 2 weeks

Figure 3.6: Evolution of hardness during RT storage after quenching for
the AA 6061 alloy, with and without Sn addition. The increase in hardness
is retarded with increasing amount of Sn. Sn additions above the solubility
limit (approx. 100 at. ppm) are marked with an asterisk. Adapted with
permission from [44], c⃝2018 by the American Physical Society.

101 102 103 104 105
40

50

60

70

80

90

100

110

120

60 s RT storage
 AA6061

1 day RT storage
 commercial AA6061
 40 at.ppm
 200* at.ppm

2 weeks RT storage
 200* at.ppm
 40 at.ppm

443 K

ha
rd

ne
ss

 /
H

B
W

time / s

Factor 6

Figure 3.7: Evolution of hardness during artificial aging at 170◦C with and
without Sn for different prior natural aging times. Minute additions of Sn
hinder the negative effect. Sn additions above the solubility limit (approx.
100 at. ppm) are marked with an asterisk. Adapted with permission
from [44], c⃝2018 by the American Physical Society.

14

3.2 Indirect characterization of clusters

100 101 102 103 104 105 106

50

60

70

80

90

100

110

120
 Al-1.1Cu
 Al-1.1Cu-0.5Mg
 Al-1.1Cu-1.7Mg

V
ic

ke
rs

 h
ar

dn
es

s
/ H

V

aging time / s

Figure 3.8: Artificial aging at 150 ◦C. Three different alloys are studied
Al-1.1Cu-xMg for x=0, 0.5 and 1.7. Above a critical Mg concentration a
rapid hardening effect is seen. Redrawn with permission from [13], c⃝2018
Elsevier.

approximate ratio of Mg/Cu of 2 and small cluster sizes with high number density are seen

as most potent strengthening agents [13].

3.2 Indirect characterization of clusters

The presence of clusters is deduced from various different measurement methods. Often in-

direct methods are utilized to follow the temporal property changes. ”Indirect” means that

only the effect of clusters is measured, and not the distribution or size of clusters themselves.

In this section we discuss important results regarding electrical resistivity, differential scan-

ning calorimetry, hardness and tensile test findings, and finally positron annihilation stud-

ies. Characterization methods are discussed in general and major results for the important

AlMgSi alloys are presented in detail. Although we try to sketch the overall picture in the

literature, we do not claim completeness.

3.2.1 Resistivity

A very precise way to measure early stages of decomposition in metals is via specific electrical

resistivity measurements. Due to the high conductivity of metals, high precision measure-

ment setups are required. An advantage is that in-situ data can be obtained quite easily by

measuring over time at a fixed temperature or heating rate. The resistivity signal is sensitive

15

3.2 Indirect characterization of clusters

to structural evolution such as vacancy annihilation, solute depletion, cluster formation, or-

dering of phases, and precipitation. [54–56] The classical view is that resistivity is dependent

on the mean free electron path. This mean free path is disturbed by several sources, i.e.

crystal defects (vacancies, grain boundaries, dislocations), solute atoms in the matrix, phase

boundaries, ordering in precipitates/phases, and temperature, due to electron-phonon inter-

actions. To reveal changes due to clustering and precipitation effects the resistivity change

is usually measured at a fixed temperature. As to precipitation, one would expect decreas-

ing resistivity changes due to decreased matrix solute content, which typically increases the

electron mean free path in the matrix; this is indeed obtained for precipitation at AA temper-

atures. Although counter-intuitive, clusters generate an anomalous resistivity maximum [57]

due to increased electron scattering [58], with a maximum cluster size at the scale of approx-

imately 1 nm [56]. In-situ resistivity measurements at several temperatures were performed

on Mg-rich AlMgSi alloys decades ago. Large differences in the evolution of resistivity change

over time were revealed for different temperatures, as shown in FIG. 3.9 [59], and confirmed

by other authors [57]. Most significant is the resistivity increase over aging time in the tem-

perature range (10 – 50 ◦C) the material behavior changes for temperatures > 50◦C [59]. An

early fast increase of resistivity is obtained followed by a log(t) resistivity change. Based on

considerations of Hirosawa et al. [60], Zurob et al. [61] concluded that the logarithmic time

dependence of the resistivity change is due to cluster growth, which is dominated by vacancy

escape. But in later works [62] cluster growth could not be obtained for natural aging, only

an increase in number density of clusters was observed with APT (FIG. 3.10). Seyedrezai

et al. [63] reports about changes in the slopes of the resistivity over log(t). Several ”stages”

were obtained, with temperature dependent changes between stages. The relationship of

resistivity changes to alterations in mechanical behavior is complex and is alloy dependent as

can be seen for hardness change over resistivity change (FIG. 3.11). For the low Si containing

alloy in the work of Kim et. al. [9] an increase in electrical resistivity is connected to an

increase in hardness, but with high Si content a region (”region 2”) is built up where relative

large changes in resistivity do not result in increased hardness. Generally higher Si of the

alloy leads to lower measured hardness increase for the same electrical resistivity change. A

linear relationship was found between the number density of aggregates and the maximum

of the electrical resistivity anomaly for pre-aging and artificial aging temperatures. It is con-

cluded that the larger spacing in between clusters results in smaller resistivity anomaly. [64]

Generally, the drawback of the resistivity method is the weak connection between signal,

cluster development and mechanical properties. On the opposite, the in-situ measurements

can be conducted with a high sensitivity and time-resolution, and it has the potential to

investigate early vacancy related processes.

16

3.2 Indirect characterization of clusters

0 20 40 60 80 100

0

50

100

150

90°C

80°C

60°C

40°C
25°C

20°C

50°C

15°C
10°C

5°C5°C5°C




/ m


cm

t / min

5°C

Figure 3.9: Resistivity change over natural aging time for different tem-
peratures. Material (0.60 at.-% Mg, 0.30 at.-% Si and 0.02 at.-% Cu) is
quenched to -78◦C. Redrawn with permission from [59], c⃝2018 Elsevier.

Figure 3.10: Effect of natural aging time on the volume fraction of solute
aggregates (Mg, Si and Cu) and on the electrical conductivity in a) T4
and b) T61 condition. Aggregate sizes are binned into 4-9, 10-22, 23-75
and > 75 solutes (not corrected for detection efficiency). Adapted with
permission from [62], c⃝2018 Elsevier.

17

3.2 Indirect characterization of clusters

Figure 3.11: Micro-hardness over electrical resistivity change due to Clus-
ter (1) formation at RT for different Si concentrations. Changes are
grouped into three regions. Redrawn with permission from [9], c⃝2012
The Japan Institute of Metals and Materials.

3.2.2 Differential scanning calorimetry

Differential scanning calorimetry (DSC) has been widely used to study phase transitions

in metallic systems and has been also used to measure clustering in aluminum alloys [9].

It enables access to thermodynamics and kinetics of phase changes and reveals the heat

related to a phase transition in dependence on temperature and/or time. [56, 65] Note

that compared to steels, Al alloys usually lack in measureable thermal expansion changes

induced by phase transitions, which is why DSC is used much more than dilatometry [66, 67].

However, recently it became possible to observe precipitation reactions in AlMgSi alloys via

dilatometry. This was achieved by high stability laser dilatometry measurements, which

may also become an interesting method for measuring clustering stages [68]. Generally,

DSC experiments measure the difference in the heat flow required to heat a sample mass.

The exact measuring procedure depends on the type of DSC used. The sample is measured

in a crucible in reference to an empty crucible or a crucible with a reference mass. In

case of the very small heat-release associated with clustering in aluminum alloys, the excess

quantities are usually measured, i.e. the thermograms of the samples are measured against

an equi-mass reference of pure Al. For a detailed description of execution and analysis

we refer readers to [69]. In the following, typical results of DSC measurements of AlMgSi

alloys are discussed. The Mg-rich alloy AA 6061 was first investigated by DSC by Dutta

and Allen [70]. The thermograms show typical cluster formation peaks at ∼50-100 ◦C

18

3.2 Indirect characterization of clusters

50 100 150 200 250 300 350
-10

-8

-6

-4

-2

0

2

ex
ot

he
rm

ic

'' formation

 S + Q
 25 °C age
 40 °C age


c p /

 J
K

-1
m

ol
-1

temperature / °C

Si cluster
formation pre-''

formation

' formation

Figure 3.12: DSC thermograms, excess specific heat capacity, of an as-
quenched (S+Q), RT (25 ◦C) and elevated temperature (40 ◦C) aged AA
6061 alloy (Mg-rich). Redrawn with permission from [70], c⃝2018 Springer
Nature.

and endothermic traces at ∼210 ◦C due to cluster dissolution. Further clusters formed

during NA generate a change in the following precipitation; a right shift of the β
′′
peak

to higher temperatures due to NA is observed. In the as-quenched condition the β
′′
peak

is an overlapping double peak (see FIG. 3.12) and no endothermic traces are found. The

exact shape of the thermogram is dependent on the heating rate used, suggesting that the

processes are kinetically controlled [71]. Note that the DSC curves are different for Mg-rich

and Si-rich alloys; in Si-rich alloys Si-precipitates are formed at higher temperatures and

the Mg2Si phase precipitation is suppressed [72]. The thermogram of an Si-rich alloy for

different heating rates is shown in FIG. 3.13 [71]; compare with FIG. 3.12. Several different

heat treatments or thermo-mechanical treatments (such as NA, PA, pre-straining and AA

or combinations of these) change the appearance of the DSC signal. Important findings

which focus on the formation of clusters and their influence on the precipitation sequence

are summarized in the following. Natural aging [73, 74]: Usually a double cluster peak is

present for the solution heat treated material, and for NA only one of the two peaks is

apparent. The double peak nature is attributed to the existence of two kinds of clusters,

Cluster 1 (C1) and Cluster 2 (C2) [73]. The exothermic cluster peak was even fitted into

three overlaying peaks in [75]. The peak temperatures (C1, C2) and peak areas also depend

on the Si and Mg content and ratios [9]. Cluster formation generally increases with increasing

Mg and Si alloying content and is most pronounced for the Mg/Si ratio of approximately

1.0 (FIG. 3.14). The C1 reaction was seen to be completed within 60 to 100 min of NA;

19

3.2 Indirect characterization of clusters

0 100 200 300 400 500 600
-0,10

-0,05

0,00

0,05

0,10

(d)

(b)

(c)

endothermic cluster

peak

he
at

 fl
ow

 /
W

g-1

temperature / °C

exothermic cluster

peak

(a)

''

endothermic solution

ex
ot

he
rm

ic

Figure 3.13: DSC thermograms, excess heat flow, of as-quenched Al-
0.4%Mg-1.3%Si alloy (Si-rich) for different heating rates. (a) 5◦C/min;
(b) 10◦C/min; (c) 15◦C/min and (d) 20◦C/min. Additionally guidelines
for the peak shifting is added. Redrawn with permission from [71], c⃝2018
Elsevier.

C2 exists up to one week of NA but is later low in signal [76]. Two important changes with

increasing NA time are relevant: a shift of the exothermic β
′′
peak to higher temperatures

and an increase in the β
′′
peak. After roughly one week the DSC traces stabilize [77]. Also in

the Cu containing alloy AA 6111, naturally aging shifts the β
′′
peak to higher temperatures

and the exothermic cluster peaks disappear. The Q’ peak was found not to be influenced

significantly by NA. Although the exothermic cluster peak seems to vanish, the endothermic

cluster dissolution peak is present [74]. Pre-aging [10, 73]: The β
′′
peak is shifted to lower

temperatures with increasing PA time at 60◦C, as well as decreasing endothermic traces of

cluster dissolution, which indicates their increasing stability against NA with PA (FIG. 3.15).

For short PA times the exothermic cluster peak (C1, C2) vanishes. With increasing NA after

PA the endothermic traces re-appear. [77] Pre-straining [76] results in a left shift of the β
′′

peak and in a disappearance of endothermic cluster reactions. When the temperature regime

of the exothermic cluster reaction is rapidly overcome at a high heating rate the β
′′
peak

activation energy, measured via a Kissinger-like method [65, 78], is significantly lowered. The

lower activation energy for the β
′′
peak demonstrates the essential changes for the following

precipitation sequence due to low temperature cluster formation, and shows another DSC

experimental verification of the delaying nature of the clustering on further precipitation

reactions [79]. The double peak C1, C2 attribution to NA and PA clusters is possibly not

as straight forward, since both, NA and PA, consume the exothermic peaks if applied, but

20

3.2 Indirect characterization of clusters

Figure 3.14: Peak areas of Cluster (1) and Cluster (2) as a function Mg+Si
at. % and (b) Mg/Si. Reprinted with permission from [9], c⃝2012 The
Japan Institute of Metals and Materials.

increasing endothermic cluster peaks with NA after PA hints in the direction that at NA

clusters are formed at RT which are resolved at AA temperature. A direct connection from

DSC to mechanical properties can be drawn for the occurrence for the endothermic cluster

peak of NA material, where at temperatures around 225 – 250 ◦C a decrease of hardness is

obtained i.e. reversion of NA clusters can be obtained (see section 3.3). Also the delay for

short artificial aging times for naturally aged material can be related by the shift of the β
′′

peak, which for NA material moves to higher temperatures away from usual bake hardening

temperatures of approximately 180 ◦C.

3.2.3 Hardness evolution and tensile test findings

Phase transitions often result in changes in mechanical properties, which is also the reason

for using such transitions to optimize engineering materials. An old, but still frequently

used method is to follow the change of hardness over time or temperature for a certain heat

treatment. Unfortunately interpretation is relatively difficult because the processes moni-

21

3.2 Indirect characterization of clusters

Figure 3.15: DSC thermograms, excess heat flow, of an AA 6016 alloy
(Si-rich) for different pre-aging times at 60◦C. (a) naturally aged, (b) 2
min, (c) 10 min and (d) 30 min of pre-aging. Redrawn with permission
from [10], c⃝2018 Elsevier.

tored can be complex. Adequate models for hardness are also unavailable, and direct linking

of hardness to atomic processes is not possible. Nevertheless, a set of clever experiments

in composition-time-temperature space can still help us to understand the underlying pro-

cesses. [56] Tensile testing is also an established way to measure the decomposition of solid

solutions [80]. However, it requires more time and effort than hardness measurements. Note

that linear conversion of hardness to yield strength is often performed in literature studies

(e.g. [81]). In certain cases this can be done, but experimental justification is almost al-

ways needed. [56] For clustering one needs to be aware that models have been discussed for

yield strength, but these are still subject to debate [82–84]. The complex kinetic situation

of NA followed by AA in 6000 series alloys is demonstrated by hardness measurements in

FIG. 3.16 [26], for an almost balanced alloy (Mg/Si ∼ 0.87). The AA response for longer

holding times (120 – 480 min) at elevated temperatures exhibits a minimum in hardness in

the range of prior storage of 30 to 6000 min at RT. The AA response shows a re-increase

for longer prior NA times, although the negative effect is not fully restored. Especially the

detrimental effect of natural aging for shorter artificial aging times is apparent and therefore

most important for bake-hardening treatments. Sometimes the hardness evolution during

RT storage is also separated into different stages: see FIG. 3.17. Hardness evolution is often

seen to be proportional to log(t) over RT in the stages, beginning with a stage with practical

no hardness increase, followed by an accelerated stage and again a deceleration. Activa-

tion energies can be calculated from transitions between different stages. [45] For naturally

22

3.2 Indirect characterization of clusters

Figure 3.16: Artificial aging response as a function of prior natural aging
time in an Al-0.67%Mg-0.77%Si alloy. Natural aging is presented as 0
min AA. [26, 77] Adapted with permission from [26], c⃝2018 ASM Inter-
national.

aged material a decrease in hardness for short AA tempering times can often be obtained,

as shown in FIG. 3.18 [12]. The AA response for an unusual AA temperature of 250◦C is

shown. The decrease is interpreted from solving NA co-clusters (some authors refer to this

as retrogression or reversion). The cluster dissolution kinetics was studied (AA 6061) via

hardness curves, based on a simple model from [74], which states:

∆H ∼
√︁
f, (3.4)

where ∆H is the hardness change and f is the relative volume fraction of clusters. This

generates a Qdiss = 0.79 eV [12], in general agreement with values measured via isothermal

calorimetry for AA 6111 [74]. However, note that the model used has not been justified via

experimental insight in the microstructure [12]. Further, short time reversion treatments at

225 ◦C for several minutes lowered the yield strength and were shown to almost restore the

BH response [85]. In addition to simply following the evolution of strength or hardness upon

the formation or dissolution of clusters, an interesting indirect effect of clusters can be seen

for tensile test curves. As-quenched (or short NA) AlMgSi alloys exhibit the PLC (Portevin

Le-Chatelier) effect [86]. The PLC effect is eliminated with longer NA or PA times, as can

be seen for NA in FIG. 3.19 [86] for an excess Si alloy. It is also found that the strain rate

23

3.2 Indirect characterization of clusters

102 103 104 105 106 107 108

40

50

60

70

80

90

IV

III

IIha
rd

ne
ss

 /
H

B
W

natural aging / s

 AA 6061
5 °C
25 °C
45 °C

12 h58 min16 min

I

Figure 3.17: Hardness over natural aging for different low temperatures
(5, 25 and 45◦C) for the alloy AA 6061. Transition in between stage I
and II labeled with 16 min, 58 min and 12 h respectively. Adapted with
permission from [45], c⃝2018 Elsevier.

101 102 103 104
40

45

50

55

60

65

70

75

80

85

90

ha
rd

ne
ss

 /
H

B
W

t / s

 NA value
 NA 1.2x106s + AA
 direct AA

Figure 3.18: Hardness over artificial aging at 250 ◦C for the alloy AA 6061
without prior natural aging (NA) and with 1.2 × 106 s of NA. Adapted
with permission from [12], c⃝2018 Elsevier.

24

3.2 Indirect characterization of clusters

Figure 3.19: Stress-strain curves for Al-1.18%Mg-0.48%Si alloy with in-
creasing natural aging time: Asq – as-quenched, NA1h – one hour natural
aging, NA1d – natural aging one day and NA1w – natural aging for one
week. Adapted with permission from [86], c⃝2018 Elsevier.

sensitivity (SRS) is higher for NA samples than for PA + NA samples. The PLC effect was

more readily observed for the excess Mg alloy and cannot be eliminated with too short NA

or PA in some cases. [86] The effects of clusters on the mechanical properties can be followed

by tensile tests and hardness measurements, although no direct conclusions to the cluster

form or chemistry can be made. Also no general accepted model for the strength / cluster

correlation exists, but kinetics are often interpreted by means of a monotonous function,

i.e. increased strength corresponds to more clusters (e.g. the mentioned ∆H ∼
√
f relation

based on shearable obstacles, or ∆τ ∼ f [82] based on short range ordering contributions).

3.2.4 Positron annihilation spectroscopy

Positron annihilation lifetime spectroscopy (PALS) and Doppler broadening (DB) can be

used to study clustering phenomena. Positron lifetime is sensitive to electron densities

around annihilation sites in the material; earlier, PALS has been used for measuring vacancy

concentrations in metals. In principle, DB can be used to study the chemical environment of

trapping sites. For positrons different annihilation sites exist in the material, but mixtures

of different lifetime signals can be difficult to separate in PALS. [4, 13] Clustering during

NA phenomena in AlMgSi alloys has been studied via PALS [87]. A schematic signal for the

positron lifetime (τ) is shown in FIG. 3.20 [4]. The NA process has been subdivided into 5

stages by Banhart et al. [4] according to the curve found (where stage 0 is not observable).

The first stage is characterized by a constant lifetime for Si-excess, followed by a decrease

to a minimum at about 60 to 80 min, followed by a re-increase (stage 3). After reaching

25

3.2 Indirect characterization of clusters

Figure 3.20: Schematic course of the average positron lifetime over natural
aging time after solution heat treatment for Al-0.44%Mg-0.38%Si (at.)
and Al-0.66%Mg-0.79%Si alloy. Black dot corresponds to the lifetime of
free vacancies in Al (0.25 ns) which is considered the starting point of the
curve. Adapted from [4].

a local maximum at approximately 800 min the lifetime decreased slowly until >104 min

(stage 4). For a balanced alloy stage 1 is different [4]. Stage 2 was investigated in detail

for a balanced low content alloy; the measured signal was seen to be influenced by the

sort of quenching (FIG. 3.21) [88]. The measuring signal was seen to be dependent on the

temperature during the measurement, which generally caused parallel shifts of the curves

to lower lifetimes for lower temperatures [88]. The quench sensitivity was also studied by

Strobel et. al. [53]. They investigated a balanced low content alloy (AA 6060) and found the

above mentioned type of curve in their measurements of a water-quenched (WQ) sample.

However, the overall picture changes for slower cooling rates, as shown in FIG. 3.22 [53].

Increasing lifetimes are seen until the end of stage 2 of the oil-quenched sample in [53].

Similar behavior was seen for NA at elevated RT (37 ◦C) in [87], but with lower absolute

increase. The effect of additional elements has also been investigated. For example, adding

Cu causes a concentration dependent time-shift to longer times of the local minimum (end

stage 2) and seems to reduce the time from local minimum to local maximum [48]. This

corresponds to a delay in hardness increase for Cu alloyed samples early in time and the

outpace later in time of the non-Cu added alloy [48]. Such behavior has not been seen in

pure Al 99.99 % during RT storage after quenching [53]. The authors show that the lifetime

decreases monotonously (FIG. 3.23 [53]) and that the lifetime for WQ material is reasonable

higher after 104 min than for Al nearly free from quenched vacancies. The lifetime signal

for a pure Al is interpreted that vacancies (as positron traps) concentration decreases over

RT time. For AlMgSi alloys early vacancy concentrations decrease (decreasing signal) and

superposition the signal from forming clusters. They also act as positron traps and finally

dominate the signal contribution (increasing lifetime). The again falling lifetime for long NA

26

3.2 Indirect characterization of clusters

Figure 3.21: One-component positron lifetime in samples of alloy Al-
0.4%Mg-0.4%Si after quenching into various quenching media. Adapted
with permission from [88], c⃝2018 Elsevier.

Figure 3.22: Evolution of average positron lifetime during natural aging
of AA 6060 for different quenching conditions. WQ – water quenched, OQ
– oil quenched and AC – air cooled. Adapted with permission from [53],
c⃝2018 Elsevier.

27

3.3 Direct characterization of clusters - atom probe tomography

Figure 3.23: Evolution of average positron lifetime during natural ag-
ing of pure Al (99.99%) for different quenching conditions. WQ – water
quenched, OQ – oil quenched and AC – air cooled. The horizontal lines in-
dicate the average positron lifetime for the well-annealed and slow cooled
Al in literature. [53] Adapted with permission from [53], c⃝2018 Elsevier.

times is somehow surprising, but could be interpreted by a change in chemistry /ordering of

clusters.

3.2.5 Other techniques

Other techniques are sometimes used to characterize cluster evolution in aluminum alloys.

Note that for the 2000 [32, 89] and 7000 series [90], in-situ small angle x-ray scattering

(SAXS), and in [32] SAXS with nuclear magnetic resonance (NMR), was used to charac-

terize clusters. However, these techniques cannot be deployed in a satisfying manner for

the important 6000 alloys [4]. Small angle neutron scattering (SANS) has been applied for

AlMgSi, but generated insufficient results [4]. Time dependent magnetization [91] and muon

measurements have also been used recently [92, 93].

3.3 Direct characterization of clusters - atom probe to-

mography

In contrast to most microscopic imaging techniques, for example scanning electron mi-

croscopy (SEM) or TEM, atom probe tomography measures direct particle properties of ions

of the target material, compared to secondary signals resulting from impinging waves in other

methods. This makes it a destructive technique. Nowadays it is a frequently used tool, espe-

cially in materials sciences due to its strength in content analysis at the nanometer scale of

28

3.3 Direct characterization of clusters - atom probe tomography

precipitates, grain boundaries, nano-particles, clusters and the matrix compositions in three

dimensions. [94–96]. The technique is unique for visualizing and measuring of fine-scaled

microstructural (nanostructural) features with near atomic resolution and gaining precise

information of compositions in 3D. Especially, where transmission electron microscopy does

not produce distinct contrast (e.g. for low alloying element content and elements of similar

atomic number, which is the case for AlMgSi alloys [4, 97]), APT is the sole technique for

gaining direct insight into the early decomposition of metallic systems. [56]

3.3.1 Functionality

A short overview is given over the principal functionality of an atom probe in the following

text. A needle-shaped sample is fabricated, with a tip radius in the range of 50 nm. The

most common techniques to achieve this is either by two-step electro-polishing [98] or sample

preparation via a focused ion beam [96]. In an ultra-high vacuum chamber a high positive

voltage (DC or standing voltage) is applied to the specimen, creating a high field environment

at its apex; an additional impulse signal, provided by a voltage or laser pulse is applied at

a high repetition rate (typically between 100-500kHz). Nowadays, atom probes with a local

electrode setup are usually used. The local electrode is cone shaped with an aperture at

its center; it is positioned in front of the specimen apex along the needle axis. In voltage

mode the pulsed voltage is applied on the local electrode (with a negative bias), thereby

causing a momentary increase in electric field. This setup enables a much larger field of view

than earlier setups, and additionally has instrumental advantages. [96] The combined DC

and pulsed high voltage yields to high electrical fields at the specimens’ apex and, when a

critical field is reached, a surface atom of the specimen is ionized in a process called field

evaporation. Tabulated evaporation fields values exist for each element (usually calculated

via a simplified model [94]), however the exact physical and electronic processes are still

under debate in the community. There are various relationships between analysis parameters

and it should be noted that the field evaporation process is temperature dependent such

that at higher temperatures generally lower fields are required for field evaporation. The

resulting ion is ejected from the sample and accelerated through the aperture in the local

electrode by the local electric field, towards a two-dimensional position sensitive detector.

To measure the field-evaporated ions in a controlled manner the pulsed signal is used as a

start clock to a time-of-flight (ToF) mass spectrometer. The arrival time and two spatial

coordinates are then recorded by the detector. The resulting ToF is used to calculate the

mass-to-charge state ratio (typically measured in Da), which is then assigned to the species.

This information, combined with the sequence of the arriving ions [99], is used to build a

three dimensional reconstruction – the so-called atom map, ultimately representing relative

positions of the atoms originating from the specimen apex [100]. [95] Multiple parameters

define the ‘parameter space’ for collecting a successful atom probe tomography experiment;

29

3.3 Direct characterization of clusters - atom probe tomography

the most important ones include: voltage pulse fraction or laser pulse energy, specimen

temperature, detection rate, and pulse frequency. [96]

3.3.2 Artefacts, trajectories and calibration

Besides its strengths, atom probe tomography also has its drawbacks, as with any charac-

terization method. In general, the resulting analyzed volumes of material compared to other

techniques are small (maximal spatial extensions up to hundreds of nanometers). A further

aspect is that not all atoms are detected. The two dimensional detectors have usually a

detection efficiency of ∼37 to ∼57 %, though most recent developments have improved de-

tectors (as in the Cameca LEAP 5000) up to 80 % [101]. Therefore, only a fraction of the

atoms of the original sample are pictured in the reconstruction. This is especially crucial

for small sized features such as clusters. With high enough detection efficiency cluster size

distributions can be estimated to real clusters size distributions [102]. Another limitation is

the loss of crystallographic information, strongly dependent on the alloy and – experimental

parameters; in some regions of the reconstruction can lattice planes of certain directions

be resolved (pole regions – poles). Although, in special cases, APT can be used to clarify

occupancy of elements on sub-lattices [103, 104] or it has been shown that crystallographic

arrangement of atoms may be regained altogether [105, 106]. Pole regions are visible due to

crystallographic faceting of the sample during the experiment; the field-evaporated ions near

to a pole are deflected away locally from the flat regions, which leads to lower density of pole

regions in the reconstruction. This is a so-called trajectory aberration since the trajectory of

the ion is influenced by its local neighborhood on the specimen surface. A similar artefact ex-

ists for precipitates which have a different evaporation field (high-field, low-field) compared

to the matrix of the sample; this leads to precipitates appearing less dense, respectively

denser in the final reconstruction. These are known as local magnification (demagnification)

artifacts. [95] Crystallographic pole regions are often present when Al alloys are investigated

with APT. With the use of spatial distribution maps (SDM) [107] or other techniques where

the inter-planar lattice spacings can be measured, the reconstruction can be calibrated. Often

the protocol based on a modified stereographic projection is used for the reconstruction [108],

here the two parameters (namely the image compression factor and the field factor times the

evaporation field) can be used to tune the reconstruction, so that the inter-planar distances

in the atom map fit to the real inter-planar distances [109, 110]. It should be noted that

there are large and ongoing efforts being made to increase the accuracy of the reconstruction

algorithm [100], recently also revisiting a different projection model [111] or building the re-

construction in a reverse manner and calculating the ion trajectories [112]. Distorted or bad

reconstructions would affect cluster analysis in shape or absolute size analysis, and worsen

comparability in between different measurements. In general, different elements have differ-

ent evaporation fields. In alloys the evaporation field of an element can be different from

30

3.3 Direct characterization of clusters - atom probe tomography

the evaporation field of the pure metal since the evaporation field depends on the chemical

(local bonding) environment, this is especially true if the species is bound in an intermetallic

phase [94]. However, if the evaporation field of solute elements differ largely from the matrix

evaporation field, preferential retention (for solutes with a higher evaporation field) can oc-

cur. To hinder this an adequate choice of measurement parameter space is important, chiefly

among them being specimen temperature and pulse fraction [95]. Preferential retention of

one species can lead to surface migration during the APT experiment. Surface migration is

possible to occur for interstitial and substitutional elements [113]. A prominent example in

Al alloys is Si, which is known to migrate to the (111)-pole [114]. The migration of solutes

during the experiment results in false reconstructed location, and thus errors introduced in

elemental distributions. To minimize this artefact optimized parameter spaces are to be

applied, and if still present in the reconstruction, usually the distinct regions affected by

this known artifact can be removed – though one should keep in mind that this potentially

could affect the analysis, since the starting positions of the migrated atoms are unknown. A

similar effect, but for precipitates, is seen for example in Al-Ag alloys, where the Ag atoms

in the precipitates tend to be shifted to the nearest low-index pole [115]. It is concluded

that subtle changes of the evaporation field of the matrix atoms in the precipitates cause

this aberration, by changing the local field distribution. This is known to occur in various

systems. Due to the aberrations specific to certain atomic species this is called chromatic

aberration. [95, 115] In general, it is not straight forward to characterize clusters even with

APT, due to the above mentioned challenges. In recent literature these issues are gaining

consideration more and related topics are continuously being discussed in the community.

However, this has not always been the case and full evaluations of these influences on the

analysis of clusters is usually not given. Although one needs to be aware of these artifacts

APT is still the most powerful technique to gain insight into clustering.

3.3.3 Analysis of solute distribution

There are many approaches to analyze the solute distributions that can occur within APT

datasets and many can consider fine-grained and possibly subtle variation in composition.

Two of interest to the analysis of fine solute clustering are cluster-finding algorithms and

pair correlation algorithms.

3.3.3.1 Clusterfinding and algorithms

The most frequently used cluster-finding algorithm for APT analysis of aluminum alloys was

named ”maximum separation” [116], but in other fields it has been known as ”single linkage”

and ”friends-of-friends”. For APT data, maximum separation connects data points from a

particular solute range, and two solute atoms are connected if they are closer than a certain

distance dmax, this parameter chosen by the user. Choosing a dmax value filters the solute

31

3.3 Direct characterization of clusters - atom probe tomography

data based upon its first nearest neighbor (1NN) distance distribution. Better discrimination

between physical clusters and the adjacent matrix, though with a lower sensitivity to smaller

clusters, can be achieved through applying this filtering upon the kth nearest neighbor dis-

tance distribution. In other words, a population of core atoms are identified by testing the

expression dmax < dkNN for each solute atom. To find clusters, these core atoms are then

linked with any solute atoms (both core & filtered) that are closer than dmax. This is the

basis of the DBSCAN algorithm [117]. Further filtering can be applied by removing found

groups smaller than Nmin detected solute atoms, and for a chemical analysis, enveloping and

erosion steps were then used to include non-solute atoms [118]. The ”maximum separation”

technique has long been implemented in the commercial IVASTM software by Cameca In-

struments Ltd. as ”envelope”. The DBSCAN algorithm (of which the maximum separation

algorithm is a special case where k = 1) is separately implemented in IVASTM under the

option ”Create Cluster Analysis”. Results can be sensitive to the choice of algorithm and

parameter values. Results are also dependent upon the studied material and the capabilities

of a particular atom probe instrument. In other words, these methods cannot be taken from

a particular study and applied to another without considerable thought. This review study

confines itself on the use of the maximum separation and DBSCAN algorithms for their

ubiquitous use. However, we must acknowledge that these algorithms may not be optimal

for all purposes. There are many other algorithms that have been developed and considered

for APT data analysis, some similar to maximum separation and DBSCAN [119–121], some

employing mixture models [122] and others dependent upon computational or networking

geometry [123–125]. This should not be regarded as an exhaustive list and there are many

more algorithms besides which have not yet been applied to APT data analysis. Justifying

”good” parameter selection is often an annoyingly difficult task and, in many respects, it

must be remembered that it is merely ancillary to the materials science problem. Rigorous

approaches to using the maximum separation algorithm have been developed; exploring the

sensitivity of maximum separation [126], examining a manifold of results with the variation

of parameters [127], and using simulations to determine optimal parameters [128]. It can

be hoped that unsupervised machine learning approaches can be developed and trained in

combination with APT data simulations. Heuristic rules have also been used to establish

consistent cluster-finding analyses (but not necessarily providing optimal or correct results)

and many of these have been considered in 3.2. Selecting parameters based upon estab-

lishing the least conservative parameter values that resulted in no ”random” clusters being

found in a random labelled version of the original APT data [64, 101, 129–134]. Other more

elaborate approaches using randomized datasets to generate various heuristic metrics have

been developed [135–137] but could be considered as less than physical so caution must be

employed to at least apply these consistently.

32

3.3 Direct characterization of clusters - atom probe tomography

3.3.3.2 Interpretation via pair correlation functions/ partial RDF

Pair correlation and partial radial distribution functions provide the means to directly in-

vestigate solute-solute interactions on short- to long-range orders in aluminum alloys. Pair

correlation functions were developed for such analyses without recourse to the complexities

behind cluster-finding algorithms [138, 139]. The similar application of radial distribution

functions was investigated for bulk metallic glasses [140]. APT data can provide the means

to directly query short range order; for multicomponent alloys, this has been recently for-

malized [141].

3.3.4 Findings on clustering in aluminum alloys

Over time different atom probe instruments applying varying APT measurement parameters

and sample preparation methods have been used. Moreover there are differences in the solu-

tion heat treatment and quenching which is the basis for the studied SSSS. This information

on measurements needs to be considered and is comprised in 3.1 for all referred studies.

Since often also different parameters for the clustering algorithm are used, this information

is summarized in 3.2. Additionally, the investigated aluminum alloys are summarized in view

of content in 3.3. In terms of detailed results on clusters we focus here on the important

class of AlMgSi alloys.

33

3.3 Direct characterization of clusters - atom probe tomography

Table 3.1: Overview over the experimental parameters for studies dis-

cussed in direct characterization of clusters. APT - the type of the atom

probe used, PF – pulse fraction, T – Specimen temperature, SHT – solu-

tion heat treatment temperature (T) and time (t), Quenching – type of

quenching from SHT temperature used, Ref. – Reference.

APT PF /

%

T / K Vacuum Preparation

Method

SHT

T/◦C

/

t/min

Quenching Ref.

APFIM 20 25 <

1.5×10−10

mbar

N/A 530 /

90

Ice water [7]

1DAP &

3DAP

20 30 1×10−10

Torr

N/A 550 /

30

Water [6]

ECoTAP 20 40 /

80

N/A 5% HClO4 in 2-

butoxyethanol

527 /

30

Water [138]

PPoSAP 20 30 < 10−10

mbar

Standard two-

step

560 /

30

Water [64]

Imago

3DAP

20 30 < 10−8 Pa N/A 560 /

30

Ice water [73]

3DAP

ON3DAP

20 25 ∼3.4×10−11 N/A 550 /

30

Water [137]

LEAP

3000X Si

20 ∼20 Standard two-

step

560 /

10

Water [135]

Imago

3DAP

20 30 < 10−8 N/A 560 /

30

Ice water [142]

LEAP

3000 X

HR

15 35 < 10−10

mbar

Standard two-

step

570 /

20

N/A [143]

Energy

compen-

sated

20 40 < 10−8 Pa 25% HClO4 in

acetic acid 1st &

2 % HClO4 in

2-buthoxyethanol

540 /

60

Water [136]

Reflectron

ON3DAP

20 25 3.4 ×10−11

mbar

N/A 550 /

30

Water [62]

LEAP

4000 X

HR

20 23.7 < 10−10

mbar

Standard two-

step

570 /

20

Water [44]

34

3.3 Direct characterization of clusters - atom probe tomography

LEAP

3000 X

HR

15 35 < 10−10

mbar

Standard two-

step (15 % HClO4

in acetic acid &

2% HClO4 in 2-

buthoxyethanol)

570 /

20

Water

900◦C/s

[12]

LEAP

and

LAR3DAP

15-20 25-30 N/A Standard electro-

polishing

562 /

30

Water [129,

130,

133]

LEAP

4000 HR

20 25 < 10−10

mbar

Standard two-

stage

560 /

30

Water [132]

LEAP

3000 HR

20 30 < 10−8 Pa Standard two-

step (25 % HClO4

in acetic acid &

2% HClO4 in 2-

buthoxyethanol)

570 /

30

Water [131]

LEAP

3000 HR

20 30 < 10−8 Pa Standard two-

step (25 % HClO4

in acetic acid &

2% HClO4 in 2-

buthoxyethanol)

570 /

30

Water 90◦C [134]

LEAP

4000 HR

20 33 N/A Cryo-FIB 530 /

5

LN2 [144]

LEAP

3000 HR

& LEAP

5000 XS

20 30 1.0 ×10−8

Pa

Standard two-

step

570 /

30

N/A [101]

LEAP

4000 HR

20 20 <5×10−11

Torr

10% perchloric

acid in glacial

acetic acid,

560 /

75

N/A [145]

2% perchloric

acid in bu-

toxyethanol

LEAP

3000 HR

20 30 <10−8Pa Standard electro-

polishing

560 /

30

Water [146]

3.3.5 Important early findings

An early and famous reference investigation of clustering and precipitation sequence of the

AlMgSi system via an atom probe like technique (atom probe field ion microscopy APFIM)

was done by Edwards et al. in 1998 [7]. The studied alloy was AA 6061 and the results

35

3.3 Direct characterization of clusters - atom probe tomography

are interpreted in terms of concentration profiles along cylinders of approximately 1.6 nm

in diameter. For a heating of an as-quenched alloy with 5 K/min to 100 ◦C Mg, Si and

Mg-Si co-clusters were detected. Longer times (8 h and 60 h) of aging at 70 ◦C showed

existing Mg-Si co-clusters, for 0.5 h of aging the data was not conclusive and did not show

Mg-Si co-clusters via contingency table testing. Here the data is grouped into blocks and

the number of blocks containing different amounts of specified atoms are counted and can be

compared and tested against randomized data [95]. The Mg/Si ratio for most of the clusters

found for 8 h aging was 0.7 and strongly deviating in both directions. For 60 h of aging at

70 ◦C the ratio of most of the clusters was close to unity, which is close to the Mg/Si ratio

in the β
′′
precipitates. Interestingly these finding already fit well into the recent picture of

early clustering, which was developed during the subsequent 20 years (see section 4.5). Cu

has not been found enriched in the clusters. It was concluded that independent Si and Mg

clusters do form first followed by the formation of Mg-Si co-clusters. It was speculated that

either or both Mg and Si clusters formed directly after quenching. It is already outlined

that measuring the as-quenched state of the alloy is difficult due to preparation time needed

at RT after quenching. Finally the following initial cluster sequence based upon previous

thermal analysis and atom probe analysis was suggested [7]:

SSSS → clusters of Si and clusters of Mg → wdissolution of Mg clusters → Mg/Si co-clusters

(3.5)

Note that, although this was a reference for numerous studies over last two decades, the

dissolution of Mg cluster in the sequence has not been confirmed and seems to be ques-

tionable. Another important early APT work by Murayama et. al. [6] investigated the

interaction for a balanced and a Mg excess AlMgSi alloy without Cu. The balanced material

was studied in detail as described in the following text if not otherwise mentioned. Only a

uniform fringe contrast for long-term NA could be obtained in high resolution transmission

electron microscope (HRTEM), in comparison to PA (here 16 h at 70 ◦C) where approx. 2

nm sized clusters (arbitrarily termed as GP zones) are observable. Contingency tables from

APT data indicate positive correlation for Mg and Si for long-term NA, although no visual

appearance can be found. Integral profiles of Si and Mg show the presence of Mg, Si and

Mg-Si clusters, and the Mg-Si cluster have a Mg/Si-ratio close to unity. Strong correlation

in between Mg and Si is found for PA where enriched regions can also be observed by eye.

Mg-Si co-clusters show a Mg/Si-ratio of approximately unity. Also the interaction of differ-

ent types of clusters created via PA and NA on the formation of β
′′
precipitates was studied.

It was concluded that NA clusters do not act as nucleation sites for β
′′
, while PA clusters act

as nuclei [6]. Moreover, the authors summarize that in the as-quenched condition separate

Si and Mg clusters exist and Mg and Si clusters aggregate during NA. The different effect of

co-clusters formed upon NA and PA was argued based on a critical radius for nucleation of

β
′′
precipitates, so that small co-clusters (NA) revert at AA temperatures. It is also already

36

3.3 Direct characterization of clusters - atom probe tomography

stated that co-clusters, GP zones and β
′′
precipitates follow the overall alloy composition. [6]

3.3.6 Latest findings

Since these early works, numerous studies have been carried out. As time progressed, the

atom probes evolved and the data analysis methods got more powerful and extensive [147].

Even the earlier used analysis tools such as the 1D concentration profiles could be misleading

due to random statistical fluctuations which could be wrongly interpreted as clusters [147,

148]. Today much larger data sizes are usually gained in the experiment, but due to the small

size of clusters, APT is still operating at its limits for this purpose. In later works the effect

of clusters on further different heat treatment procedures is investigated. The evolution of

clusters during RT storage and PA, influence of combined heat treatments as NA and AA,

or PA and AA is studied. Also the influence of alloy chemistry on the clustering behavior

is analyzed. The findings have been grouped by the different applied heat treatment states

and are discussed in the following.

3.3.6.1 Natural aging

Only recently, it was shown that the as-quenched condition for an excess Si alloy (∼1 min

of RT storage) can be measured via APT [144]. Natural aging times < 60 min became

available due to the use of a customized cryo-transfer system to the APT measurement

chamber [149, 150]. No Si-Si, Mg-Mg nor Mg-Si correlation, with a radial distribution

function - like measure, is seen. [144] Based on a 5th nearest neighbor distribution it is

shown that no clusters are expected for the Cu-containing alloy AA 6111 for 2 h of NA. [135]

In [142] it is stated that also for an Mg excess alloy for the quenched state (time at RT for

APT sample preparation and transfer into the APT analysis chamber is not given in [142]

but is technologically expected to be > 1 h for the used setup), no clusters were found.

However, these data [135, 142] contradict the results of other studies. Contrary, in [138] for

the alloy 6016 and 60 min natural aging the material already shows positive autocorrelation

for Mg-Mg and Si-Si, but not for Si-Mg. Therefore, it was concluded that two distinct

populations of clusters form for short RT storage, as already stated in the sequences 3.5. A

large proportion of Mg is involved in the clusters as compared to Si, where the proportion

in solution is higher. For one week at RT only significant Si-Si correlation was found, which

would actually support sequence 3.5 where early Mg-clusters again revert. [138] This finding

is often contradicted by other studies where usually Mg, Si co-clusters are found, although

radial distribution functions as a measure of clustering in literature is rare [105, 138, 144]

and therefore direct comparison to other measures is difficult.

37

3.3 Direct characterization of clusters - atom probe tomography

Table 3.2: Overview over cluster search algorithm parameters used for

cluster identification (same cases as in 3.1). dmax – maximum separation

distance, Nmin / K – minimum nearest neighbor for a cluster / nearest

neighbor for core identification, L – linking distance, derode – erosion dis-

tance, Core atoms – atoms chosen as possible core atoms in the cluster

identification algorithm, Parameter choice – on which basis the parameters

are chosen, Ref. – Reference.

dmax /

nm

Nmin / K L / nm derode

/nm

Core

atoms

Parameter choice Ref.

0.70-0.80 10 N/A N/A Mg, Si,

Cu

No random clusters

identified

[64]

0.60 20 N/A N/A Mg, Si N/A [73]

0.62 6 dmax dmax Mg, Si,

Cu

Max. ratio actual to

random signals

[137]

See pa-

rameter

choice

2 / 5 dmax/2 N/A Mg, Si,

Cu

Max sum(5NN)-

sum(5NNrand)

[135]

0.45 6 N/A N/A Mg, Si,

Cu, Ag

N/A [142]

0.48 N/A 0.48 0.48 Mg, Si,

Cu

[118] [143]

0.60 8 N/A N/A Mg, Si Low noise-per-cluster [136]

0.50 4 dmax L Mg, Si,

Cu

Literature and atomic

reconstruction results

[62]

[151]

0.65 10 / 5 N/A N/A Mg, Si No aggregates found in

random comparators

LEAP [129,

130]

0.70 10 / 5 N/A N/A Mg, Si No aggregates found in

random comparators

LAR3DAP [129,

130]

0.60 /

0.65

10 / 5 N/A N/A Mg, Si,

Cu

No aggregates found in

random comparators

LEAP [133]

0.50 10 N/A N/A Solute

atoms

No aggregates found in

random solid solution

[132]

[128]

0.75 10 N/A N/A Mg, Si No aggregates found in

random solid solution

[131]

0.75 10 N/A N/A Mg, Si No aggregates found in

random solid solution

[134]

38

3.3 Direct characterization of clusters - atom probe tomography

0.74 5 / 5 dmax dmax Mg, Si,

Cu

N/A [144]

0.75 /

0.65

10 / 20 N/A N/A Mg, Si No aggregates found in

random solid solution

[101]

See pa-

rameter

choice

5 and 1 /

65 and

1/2 dmax 1/2 dmax Mg, Si Max sum(5NN)-

sum(5NNrand) /

Max sum(1NN)-

sum(1NNrand)

[145]

0.75 10 N/A N/A Mg, Si No aggregates found in

random solid solution

[146]

Cao et al. reported that after 1.1 h of NA, Mg and Si show correlation in contingency

table analysis for an excess Si alloy, whereas Mg-Cu and Si-Cu show no significant difference

from a random solution. With NA time the significance is increased for any of the two

combinations of Mg, Si and Cu. Cu is therefore concluded to cluster after slightly higher NA

times (≥ 3 h). The number density of identified clusters stagnates after 24h of NA. [62] For

AA 6111, increasing number densities within up to two weeks of Mg-Si clusters are reported

in [135]. In general, the found clusters have a size expressed in solute atom numbers ≤ 50

(here the number of solutes in the APT datasets are given, not the physical values, these

values should be corrected for detection efficiency of the specific atom probe, 3.1). Mg-Si

clusters dominate the cluster population, Mg-Si-Cu, Cu-Mg and Mg-Mg clusters roughly

follow this scheme of increasing number densities. About 10 to 20 % of the solutes are

reported to be bound in aggregates for NA samples. Also only small changes in cluster size

is reported for NA. The volume fraction of atoms in aggregates is seen to increase over the

first week of NA (which is correlating with yield strength). They also observe a decrease

of the number densities of clusters after one week of NA, which is however not explained

and seems to be physically unrealistic. [135] For increasing NA time starting from 3 h to

325 days Aruga et al. obtained increasing number density in a balanced alloy in [131]. The

Mg/Si ratio of 0.8-1.0 had the highest number density in all NA states. The number density

of Si-rich clusters is shown to stagnate already after short NA times. It is concluded that

Si-rich clusters can form at the earlier stage of NA. Moreover, Aruga et al. [131] suggest

that non-solvable Si-rich clusters may reduce supersaturation and lead to a retardation of

the hardness increase during AA. No influence of the size of clusters on reversion was seen,

contradicting the conclusions of Murayama et al. [6]. [131] For Si-rich alloys the cluster

number density is shown by Jia et al. [132] to be higher, in comparison to Mg-rich alloys,

after two weeks of NA. The average composition of the clusters is reported to follow the alloy

composition. [132] Recently, Zandbergen et al. show a substantial number of clusters to be

formed within 100 min of NA which then only slightly increase in size for further NA, but

the number density increases up to one week of NA [129, 130]. The clusters contain mainly

39

3.3 Direct characterization of clusters - atom probe tomography

Mg and Si, 2% of them are only-Si-clusters, but no Mg-only clusters have been detected at

any stage [129, 130]. It is concluded that limited diffusion capabilities drives the clusters

at NA towards a ”metastable state from which it is difficult to escape either energetically

or kinetically”. [129] Zandbergen et al. [133] also reported that only small differences are

obtained for NA of AlMgSi alloys with the addition of Cu in cluster numbers and sizes. The

most important difference is obtained in the composition, the majority of clusters do contain

Cu (high-Cu content alloy). The Mg/Si ratio is increased for the high-Cu alloy, also the

(Mg+Cu)/Si ratio is increased, here to about unity. [133] Jia et. al [132] also show that for

Cu added alloys the larger clusters found approached a Mg/Si ratio of 1.0. Furthermore, Cu

is suggested to change the stability of Mg-Si co-clusters through its incorporation and enables

them to transform more easily to hardening phases upon AA. [132] Trace elements have been

reported to suppress clustering during NA via APT. For two weeks of NA of AA 6061 alloy

with the addition of Sn, a 1st NN spatial distribution shows no discernable difference from

a random distribution of Mg and Si atoms. [44] We conclude the following: No clusters

are found in the as-quenched state Mg, Si and or Mg, Si co-clusters are detected after a

very short time of NA (60 – 100 min) by several studies, but there are also contradictions

Mg, Si co-clusters have been always found after long-term NA Mg, Si co-clusters increase

small in size for short times, then stagnate in size Si-rich clusters number densities already

stagnate after short NA times Increasing number densities of clusters up to one year of NA

are confirmed by several studies, but there are also contradictions Cu aggregates at later

stage of NA to the clusters Only small difference in size and number density for NA clusters

for Cu containing alloys are observed, but the Mg/Si- ratio is increased and the majority

does contain Cu. In general, the very early stages of NA seem to be still unclear because

of contradicting APT results. This may be caused by reaching the limits of detection, APT

artefacts and an uncompleted selection of the investigated alloys.

40

3.3 Direct characterization of clusters - atom probe tomography

Table 3.3: Overview of the AlMgSi alloys and aging treatments investi-

gated by APT (same cases as in 3.1 and 3.2), Mg, Si and Cu contents. If

wt.% were originally given, the at.% values are calculated on the assump-

tion that only Al, Mg, Si and Cu exist in the alloy. Cu contents are set

to zero if not explicitly given in the reference. Mg/(Mg+Si) and Mg+Si

values are calculated from this contents.

Alloy # Mg / at.-

%

Si / at.-

%

Cu / at.-

%

Mg/(Mg+Si) Mg+Si Aging Ref.

6061 0.89 0.76 0.08 0.54 1.65 PA, AA [7]

N/A 0.70 0.33 0.00 0.68 1.33 NA, PA [6]

0.65 0.7 0.00 0.48 1.35

6016 0.44 0.96 0.00 0.32 1.41 NA, PA, AA,

PA+AA

[138]

6111 0.90 0.60 0.30 0.60 1.50 PA, AA [64]

N/A 1.05 0.78 0.00 0.57 1.83 NA, PA, BH,

NA+BH,

PA+NA,

PA+NA+BH

[73]

6182A

6022-

type

0.97 0.83 0.01 0.54 1.80 PA+NA, NA,

NA+AA,

PA+NA +AA

[137]

0.54 1.03 0.12 0.34 1.57

6111 0.90 0.60 0.30 0.60 1.50 NA, PA, AA [135]

N/A 1.01 0.78 None

/Cu /

Ag

0.57 1.78 NA, PA [142]

6061 0.92 0.58 0.09 0.61 1.50 AA T6, NA+AA

T6

[143]

N/A 0.86 0.43 0.00 0.67 1.29 NA+PA, PA [136]

0.40 0.84 0.00 0.32 1.24

N/A 0.53 1.03 0.12 0.34 1.56 NA, NA+BH [62]

6061 +

Sn

0.90 0.59 0.09 0.60 1.49 NA, AA [44]

6061 0.92 0.58 0.09 0.61 1.5 NA, NA+AA, IQ

to AA

[12]

41

3.3 Direct characterization of clusters - atom probe tomography

N/A 0.51 0.94 0.01 0.35 1.45 AA, NA, PA,

PA+NA,

NA+BH,

PA+NA+BH,

spike+ PA

[129,

130,

133]

0.51 0.94 0.01 /

0.06 /

0.34

0.35 1.45

N/A 0.69 -

1.31

0.55 - 1.1 0.03 -

0.21

0.38 - 0.7 1.77 -

1.88

NA, NA+BH,

NA+AA

[132]

N/A 0.69 0.89 0.00 0.44 1.58 NA, NA+BH [131]

N/A 0.69 0.89 0.00 0.44 1.58 PA+NA [134]

6016 0.40 1.00 0.03 0.29 1.40 NA [144]

N/A 0.69 0.89 0.00 0.44 1.58 NA, PA [101]

N/A 0.36 0.31 0.00 0.54 0.66 NA, AA [41]

N/A 0.33 1.13 0.00 0.23 1.47 NA, NA+AA [145]

1.12 0.39 0.00 0.74 1.51

N/A 0.69 0.89 0.00 0.44 1.58 NA, NA+BH [146]

0.87 0.67 0.00 0.56 1.54

3.3.6.2 Pre-aging

In the following we discriminate in between NA+PA and PA+NA, where NA+PA means

NA followed by PA and for PA+NA the reverse sequence. Moreover, interrupted quenching

treatments are considered as PA treatments here. In [138] it was reported for AA6016 that

PA (90◦C for 8 h) plus NA lead to Si-Mg pair correlation values > 1. Esmaeili et al. [64]

also performed APT investigations for different PA temperatures ranging from 60 ◦C to 180
◦C for the alloy AA 6111, while adjusting the time to be at a local electrical resistivity

maximum. Generally, Mg-Si aggregates were obtained, where a majority also contains Cu.

It was revealed that with increasing temperature the number density of small clusters was

reduced and a second family of large clusters arise, also the average Mg/Si-ratio was seen

to increase. [64] A difference between NA and PA was revealed by Serizawa et al. [73] for

an Mg-excess alloy. Clusters do not grow during NA and the majority of the clusters has

Nsolutes < 50 (not corrected for detection efficiency). Clusters formed upon PA at 100 ◦C

increase in size (see FIG. 3.24) for a time, recalculated from PA time to time at RT equating

diffusion distances and assuming a Ahrrenius type form of the diffusion constant with an

activation energy of 130 kJmol-1. They postulated that clusters formed during NA and PA

are different types of clusters (C1 and C2 respectively). The clusters showed various Mg/Si-

ratios, especially if the clusters are small. Larger clusters were found to have a narrow

Mg/Si-ratio distribution (C2), approaching a Mg/Si ratio of 1.5 to 2.0 and are believed to

42

3.3 Direct characterization of clusters - atom probe tomography

Figure 3.24: Growth rate of clusters formed at room temperature (Cluster

(1)) and at 100◦C (Cluster (2)). The values N
1/3
av (Nav – average solute

number of clusters, N
1/3
av ∼ average cluster radius) are plotted against the

square root of the normalized room temperature time, t
1/2
RT (tRT – recal-

culated time, from time at PA temperature to time at room temperature
RT), time starts after quenching (as-quenched AQ – here also the Nmin

value of the cluster search is printed as AQ, but not measured in AQ
state). The average radius is proportional to the square root of time if
the clusters grow with the diffusion mechanism. Adapted with permission
from [73], c⃝2018 Springer Nature.

be able to transform into β
′′
precipitate upon AA. Serizawa et al. [73] also performed a

comparison of PA and PA followed by NA (∼28 days), which showed similar Mg/Si-ratio

over NMg+NSi (number of solutes in a cluster, NMg number of Mg atoms and NSi number of Si

atoms in a clusters) plots. The Clusters (2) are therefore considered not to grow or dissolve at

RT. [73] Torsæter et al. [136] reported in contrast that PA of Si-excess and Mg-excess alloys

showed clusters of a Mg/Si ratio of approximately unity (broad peak of distribution around

1.0), which means that the composition of clusters formed upon PA does not depend on the

alloy composition. This is in contrast to NA, where the average composition of NA clusters

was concluded to follow more the overall composition of the alloy. If NA is examined prior to

PA a large decrease in identified aggregates can be observed and a dual distribution of Mg/Si

ratios is present. [136] Prolonged NA after PA (examined via quenching into heated water at

90◦C) is investigated in [134]. NA after this PA resulted in an increase in number density and

a decrease in average Mg/Si ratio of clusters. The number density of low Mg/Si ratio is seen

to increase and cause the shift in average Mg/Si ratio. Larger Clusters are seen to have a

higher Si content after PA+NA compared to PA only. It is believed that Si aggregates to the

43

3.3 Direct characterization of clusters - atom probe tomography

clusters formed during PA rather than the independent formation of Si-based clusters. [134]

Cao et al. [137] investigated AA 6181A and an AA 6022-type alloy. Natural aging of 24 h

resulted in a high number density of small clusters in AA 6181A. PA (20 s at 200◦C) plus

NA 24 h yielded lower number density of small aggregates. Interestingly a strong correlation

between the amount of large aggregates and yield strength was obtained, but the overall

number density did correlate less with the yield strength. The alloy AA 6022 showed similar

trends, but generally the fraction of solutes in the aggregates was lower and yielded lower

mechanical properties. [137] In [41], it was shown that PA at 160 ◦C for 2 min (examined

via interrupted quenching) can strongly suppress subsequent cluster formation during NA

in a lean AlMgSi alloy. This was explained by a reduction of quenched-in vacancies rather

than a formation of clusters upon this short term PA. Zandbergen et al. also confirmed that

for approximately equal time spans of NA and PA, PA resulted in larger-sized clusters of

higher Mg/Si ratio and the Mg/Si ratio distribution is narrower with a peak at unity. These

clusters continue to grow upon further PA. Also it is reported that smaller clusters are fewer

in the PA than in NA condition. For 10 hours of PA at 80 ◦C the number density stagnates

for Nmin = 5 in comparison to two hours PA at 80 ◦C, while for Nmin = 10 the number

density increases – which is interpreted as growth of clusters. Applying a spike (10 s 180◦C)

heat treatment after quenching prior to PA, the number density of larger clusters after PA

is increased. Clusters formed upon PA are suggested to be similar in Mg/Si ratio like β
′′

precipitates and the average Mg/Si ratio is reported to be substantially lower for clusters

formed during NA, which confirmed prior findings. [129, 130] Latest research compares the

findings on NA and PA between the newly available high detection efficiency atom probe

(LEAP 5000 XS) and atom probe data generated by lower detection efficiency (LEAP 3000

HR) for an excess Si alloy (see 3.3) [101]. Generally, a shift to larger cluster sizes, in the

plot number density over Guinier radius, is obtained for a high detection efficiency atom

probe. Also the average Mg/(Mg+Si) ratio is found slightly increased with higher detection

efficiency. The atomic density of clusters is further investigated in detail. For clusters with

a Mg/(Mg+Si) ≤ 0.4 an almost constant, significantly lower than average density is found.

Therefore a ratio Mg/(Mg+Si) ≤ 0.4 is used to define Si-rich clusters. The volume fractions

for short time NA, long term NA and PA for the so defined classes of clusters are analyzed.

A significant lower volume fraction of Si-rich clusters for PA treated material is found in

comparison to the NA treatments. Long term NA leads to higher volume fraction of Si-

rich clusters, which are concluded to be the critical constituent for the occurrence of the

negative effect. [101] We conclude: Clusters formed during NA and clusters formed during

PA are possibly two different kinds of clusters PA forms Mg, Si co-clusters which act as

nucleation site or can transform into β
′′
during AA PA clusters often show a Mg/Si-ratio

of unity, while NA clusters show various Mg/Si-ratios, PA plus NA increases the number

density of Si-rich clusters and decreases the average Mg/Si-ratio of the clusters NA leads to

a significant amount of Si-rich clusters, whereas PA leads to larger volume fractions of Mg,

44

3.3 Direct characterization of clusters - atom probe tomography

Figure 3.25: Relationship between size (NMg+ NSi – number of solutes)
and Mg/Si ratio of clusters and the β

′′
phase for specimens (a) direct bake

hardening treatment and (b) naturally aging for 604.8 ks and bake hard-
ening. Reproduced with permission from [73], c⃝2018 Springer Nature.

Si co-clusters with a lower amount of Si-rich clusters In general, clusters formed upon PA

are better understood than those formed by NA and can be clearly distinguished. The work

of the last 20 years made clear that PA leads to clusters, which represent a pre-state of the

precipitates formed upon AA. This is well resembled by the found composition spectrum.

3.3.6.3 Artificial aging

In this section APT results on short AA (called bake hardening (BH)) and AA to T6 il-

lustrate the effect of clusters from NA and PA. A sample NA and a sample PA+NA are

additionally artificially aged at 185 ◦C for 2 h and investigated in [138]. The PA sample

showed higher number densities of aggregates and besides needle shaped β
′′
precipitates

also spheroidal shaped ones in AA condition [138]. It is proposed that Mg-Si co-clusters

act as nucleation sites for hardening phases [138]. Two hours of PA (80◦C) was seen to

not fully restore the BH response in comparison to direct AA, but increases it compared

to naturally aged material [129]. The difference in short AA (20 min 170 ◦C) with and

without NA is quantitatively shown for the identified clusters/precipitates in FIG. 3.25 [73].

A narrow Mg/Si-ratio distribution with lots of large precipitates is found for the direct BH

in comparison to the NA+BH state, where a high number of small clusters is found with

a large spread in Mg/Si-ratio and a second fraction of larger size but few in number. It

is suggested that clusters from NA remains after BH. [73] This is confirmed in [12] where

a decreasing density of clusters remaining from NA was observed upon AA. Already after

10 min of NA, the inhibiting nature of NA on BH is reported in [129]. The incompatibil-

ity of average Mg/Si ratio of NA clusters and precipitates is suggested as a mechanism of

inhibition [129]. The difference in the T6 state upon longer AA with and without NA is

illustrated in FIG. 3.26 for the alloy AA 6061 [143]. Artificial aging without NA resulted

45

3.3 Direct characterization of clusters - atom probe tomography

Figure 3.26: 3D reconstructions of atom positions for Mg, Si and Cu and
isoconcentration surfaces of Mg embedded in the Al matrix with corre-
sponding proximity histograms for Al, Mg, Si and Cu based on short
needles and long needles for (a) direct artificial aging and (b) artificial
aging after long-term natural aging (all in T6 condition). Adapted with
permission from [143], c⃝2018 Elsevier.

in spheroidal precipitates and short needle-like β
′′
precipitates with high number density.

For NA + AA clusters, spheroidal precipitates and long needle-like β
′′
precipitates with low

number density are found. No significant compositional difference in between precipitates

for NA+AA in comparison to direct AA was found. However a bimodal size distribution

for β
′′
precipitates is obtained for the NA+AA heat treatment. [143] For NA+AA (170 ◦C

30 min), still a relatively high number of small solute aggregates is apparent, whereas the

number of large aggregates decreases with increasing NA before AA (FIG. 3.10 b) [62]). The

average size of clusters for NA+AA reaches a plateau after 3 h of NA. For NA only, average

size increases slightly within the first few hours, but then remains constant (FIG. 3.10 a)).

Comparing NA and NA+ AA, for longer NA times, average cluster sizes are the same, only

the maximum cluster size is larger for NA+AA. [62] Aruga et al. [131] also found that the

impact of increased NA after three hours of NA on the T6 state upon AA investigated via

APT is low for an excess Si alloy, though with longer NA, a larger drop in hardness during

short AA times is obtained. Poznak et. al. [145] conclude that the negative effect on AA is a

46

3.3 Direct characterization of clusters - atom probe tomography

function of bulk Mg/Si ratio as stated by [152]. Further, they analyze cluster evolution dur-

ing AA at 175◦C for Si- and Mg-rich alloys. They conclude that NA clusters of the Mg-excess

alloy are thermally stable at this low aging temperature and an irrecoverable negative effect

is introduced as compared to the Si-rich alloy [145]. Similar findings are made by Aruga et.

al. [146], where also a better recoverable (but not full in comparison to direct aging) for a

Si-rich alloy in comparison to Mg-rich alloy for longer AA times is seen. Though, here for

long NA plus BH a small increase in Si-rich clusters and a decrease for Mg-richer clusters

is seen [146]. With higher Cu content Zandbergen et al. [133] reported that the direct BH

response increases and a larger number density of short length precipitates is found. The

(Mg+Cu)/Si ratio increases from the low- to high-Cu content alloy, while the Mg/Si ratio

decreases. In increased Cu content alloys all precipitates contain Cu. It is concluded that Cu

partly substitutes Mg in the precipitates. Cu additions showed greatly enhanced formation

of elongated precipitates for NA (one week) + BH. The hardening phases for the high-Cu

alloy corresponds broadly to Q’ precursors, the hardening precipitates of Cu-free alloy to

β
′′
. For short time AA (5 min 180 ◦C) Cu additions lead to increased number densities of

clusters. The AA response after NA is concluded to be dominated by residual solutes in

the matrix, for a Mg-rich alloy, without Cu additions, the lower Si residual is suggested to

cause the lower AA response. [133] Recently, Jia et al. [132] reported for Cu added alloys a

low influence of the Mg/Si ratio on the negative effect of NA on the AA response. [132] We

conclude: Direct BH results in a high density of precipitates with a narrow Mg/Si ratio. In

the T6 state a uniform distribution of needle like precipitates is observed. Prior NA causes

a high number of small clusters with large Mg/Si-ratio spread after BH. For T6 a bimodal

size distribution of few large elongated needle precipitates and short needle like precipitates

is found. The impact of NA to further AA on APT results stagnates for NA ≥ 3 h. Cu

incorporates into precipitates. Cu reduces the influence of the Mg/Si ratio on the NA +

AA Summary and conclusion The occurrence of clusters can have important technological

influence on the material properties of aluminum alloys. Ranging from natural aging in gen-

eral, the rapid hardening reaction at artificial aging for AlCuMg alloys, over an increase in

artificial aging response with prior natural aging for low alloyed AlMgSi alloys, to strongly

decreased artificial hardening kinetics of high alloyed AlMgSi due to prior natural aging. In

general the evolution of clusters at RT is well characterized by indirect methods as resistivity

measurements, differential scanning calorimetry, positron annihilation lifetime spectroscopy,

hardness and tensile testing. Hardness measurements are seen to be an easy way to follow

the strength evolution of the material due to clustering. The strength to cluster relationship

is often interpreted by means of a monotonous function, i.e. increasing strength contribution

corresponds to more clusters. The increase of hardness is either proportional to the square

root of the volume fraction of clusters (shearable obstacles), or direct proportional to the

volume fraction of clusters (short range ordering contribution). Further, effects of clusters

are seen from tensile testing, such as differences in the Portevin Le-Chatelier effect for as-

47

3.3 Direct characterization of clusters - atom probe tomography

quenched and naturally aged alloys. Resistivity measurements can be used to study the

evolution of clusters at the early stages due to high sensitivity and time-resolution. Resistiv-

ity is sensitive to cluster number density / inter-cluster distance. Although, the resistivity /

hardness relationship for natural aging is seen to be alloy dependent. Hence, the drawback of

the method is the weak connection between signal, cluster properties and mechanical prop-

erties. Positron annihilation spectroscopy is especially a sensitive tool in vacancy related

processes, which play an important role for clustering. The positron lifetime signal over

natural aging time can be interpreted as an overlaying decrease due to vacancy annihilation

and an increase due to cluster formation. The increase in lifetime signal can be correlated

to the hardness increase and thus the impact of additional alloying elements or substitut-

ing alloying elements can be studied. The effect of clusters on the following precipitation

sequence is best revealed via differential scanning calorimetry. The peak corresponding to

β
′′
is shifted to higher temperatures and endothermic traces in this region arise and increase

with natural aging time. Also storage periods of short time pre-aged material for longer

times at RT arise and increase endothermic traces. The most important technique for di-

rect visualizing and measuring of clusters with near atomic resolution and gaining precise

information of the compositions of clusters is atom probe tomography. Clustering in AlMgSi

alloys is studied by numerous authors in detail. It is seen that effects caused by clusters,

formed during RT, undergo a transient change during storage. Therefore, the evolution of

clusters during RT is suggested to be grouped into distinct stages. A practical viewpoint is

to treat the clusters formed at room temperature as their own ”metastable state”. Strong

evidence exists that natural aging clusters revert upon elevated artificial aging temperatures.

Their effect on artificial aging in AlMgSi alloys is attributed to solutes depletion, a concur-

rent cluster solution and precipitate forming reaction, and their interaction with vacancies.

Most authors find that cluster formed during natural aging are difficult to transform to

the major hardening phase upon artificial aging, while clusters formed during pre-aging at

moderate temperature can transform to subsequent phases at artificial aging temperatures.

From atom probe tomography results natural aging clusters are seen to stagnate in size

early and increase further in number density in long term RT storage. Pre-aging clusters

are seen to grow significantly with increasing pre-aging time. Often a narrow distribution

(approx. unity) in the Mg/Si ratio is observed for pre-aging clusters, whereas for natural

aging clusters a large Mg/Si ratio spread over the population is obtained. This is suggested

to be the origin of non-transformable clusters, since later precipitates in AlMgSi alloys show

often a ratio around unity. Other authors blame specifically the Si-rich clusters. Moreover,

it is stated that the matrix Mg/Si-ratio influences the stability of NA clusters at artificial

aging temperatures. For early cluster forming upon natural aging, Si is often suggested to

have a leading role. Separate Si (Si-rich) and Mg (or at least Mg-rich) clusters are suggested

to form, followed by transforming into Mg, Si co-clusters. Solute additions can influence the

clustering (e.g. Cu is suggested to aggregate to clusters and to change the cluster chemistry

48

3.3 Direct characterization of clusters - atom probe tomography

and their transformation upon artificial aging; Sn retards the formation of clusters due to

vacancy trapping). With advanced analysis algorithms and improved methods new in use

today, i.e. the latest developments in atom probe tomography detectors and cryo-atom-

transfer probe equipment, further and more detailed insights into the nature of clusters will

be possible in the near future.

49

Chapter 4

Experimental approach and applied

methods

To access the time-range of natural aging below 100 min, it is necessary to produce the

specimen under cooled conditions, and further use a cryo transfer system to the APT anal-

ysis chamber. Sample production maintaining a cold-chain is desribed in section 4.1. The

approach for data analysis is described in section 4.2. Several data analyzing methods were

applied and developed on a python script basis, as an independent analyzing tool. Main

focus of the analyzing methods is to assess the spatial distribution of solutes in the sample

and make a statement about the amount of clustered solutes.

4.1 Sample production & Atom probe tomography

Starting point for sample production is a EN-AW 6016 sheet material with a thickness of

1.25 mm provided by AMAG rolling GmbH. As a first step a so-called ”blank” is produced

from the sheet material.

The usual sequence: ”blank” production→ first step electro-polishing→ second step electro-

polishing; for APT sample production is used [95, 98]. Depending on the applied solution

heat treatment strategy the sequence is modified. Starting from a blank, with the bulk aging

strategy the sequence: blank → solution heat treatment → first step electro-polishing →
first step electro-polishing; is used. Otherwise, if a nano scaled sample aging strategy is

applied the sequence: blank → first step electro-polishing → second step electro-polishing

→ solution heat treatment → second step electro-polishing; is applied.

4.1.1 ”Blank” production

Rough cutting of rectangular to quadratic pieces (to fit into the cutting machine) is done via a

sheet shear or hand saw, maintaining the edge orientiations of the prior rolling product. Fine

50

4.1 Sample production & Atom probe tomography

Figure 4.1: Solution heat treatment holder with a blank. Vertical srews
are used as place holders, worm srews are used to mount the blanks in the
holes.

cutting of pieces 20x20 mm is done via a Struers secotom cutting machine. The quadratic

pieces are glued with a double-sided adhesive tape to a brass stamp, with a metric threat,

and two nuts, made from tooling steel, which are used to adjust the height taken-off from the

sheet thickness and ensure a preferably planar surface. The pieces are in this way grinded

from both sides to the final dimension of 1 or 0.7 mm. Stripes with the same width as

thickness are cut from the thinned pieces, with a horizontally adjustable mounting (smallest

stepsize 0.05 mm), in the cutting machine. The stripes are, if needed, grinded manually,

with or without the use of tweezers, to a final dimension difference of width to thickness

of approximately ±5% in the middle of the blank, e.g. below a difference of 0.05 mm for

a 1x1x20 mm blank. The blank is deburred along the length axes, and finally cleaned

with iso-propanol in an ultrasonic bath. In Figure 4.1 a blank is shown in the holder for

solution heat treatment. The produced blank is electro-polished to the final APT sample

within a two-step method, except for samples reported in chapter 5. There another sample

production strategy via focused ion beam (FIB) cutting was applied, but was concluded to

be un-economical due to low yield (high fraction of fractured samples and if not fractured

low measured amount of data).

The following sequence describes the production sequence used for maintaining a cold chain.

4.1.2 First-step electro-polishing

Initially intended to produce the final sample shape already within one electro-polishing

setup, which is cooled, the developed first-step electro-polishing setup consists of the follwing

51

4.1 Sample production & Atom probe tomography

parts:

• sample holder (Figure 4.2 a))

• beaker with a Pt wire loop attached (Figure 4.2 b))

• isolated pot for LN2 quenching (Figure 4.2 c))

• laboratory power supply (1.5-15 V, max. 1.5 A) (Figure 4.2 d))

• LN2 transport dewar (Figure 4.2 e))

• power supply for a stepper motor

• microcontroller (Arduino Uno) and H-bridge (L293D)

• breadboard, with prototype electronic circuit

• connection cables

• power supply for the microcontroller

• double-wall vessel

• simple linear motion generator (Figure 4.3)

• stepper motor (SC2018S0604-A) with driving gear wheel (Figure 4.3 e))

The used circuit, for operating the electro-polishing setup, is shown in Figure 4.4. The used

circuit for measuring the current during electro-polishing is shown in Figure 4.5. Without

measurement of the current, the electrolyis (load) circuit is disconnected from the microcon-

troller and manually stopped, by turning-off the laboratory power supply. The used Arduino

sketch is shown in section 8.13, based on Ref. [153–155]. The microcontroller is utilized to

switch the H-bridge (L293D), which controls the current circuit with motor power supply

and stepper motor. The other current circuit is used for sample production (load / electrol-

ysis circuit). The circuit is switched by the microcontroller with a solid state relais (SSR)

and the current is measured via voltage drop of a shunt resistor. The blank is connected as

anode in a two-layer electrolysis, the bottom layer is electrical isolating (GALDEN HT-80)

and the second layer, above the first, is conducting (25 % HNO3 in methanol). The sec-

ond electrolyte layer contains the cathode (Pt wire loop). The blank is submerged through

the second layer and Pt wire loop into the first layer, see Figure 4.7. A few millimeters

of the blank are in contact with the first layer. Only the region of the blank which is in

contact with the conducting electrolyte is electrochemically dissolved in the electrolyte. At

the cathode gas bubbles are created due to electrochemical decomposition of the electrolyte.

52

4.1 Sample production & Atom probe tomography

Figure 4.2: a) sample holder, b) beaker with Pt wire loop, c) isolated pot
for LN2 quenching, d) laboratory power supply, e) LN2 transport dewar.

Figure 4.3: Linear motion generator: a) groundplate, b) beaker mounting,
c) cylinder with driven gear rack, d) horizontal rod as mounting for the
sample holder, e) stepper motor with driving gear wheel, and f) bushing.

53

4.1 Sample production & Atom probe tomography

Figure 4.4: Circuit scheme (drawn with [156]) for stepper motor control.
The microcontroller is utilized to switch the H-bridge (L293D), which
controls the current circuit with motor power supply and stepper motor.
The three switches are used as input for the movement and direction of
the stepper motor (section 8.13, S1 up and S3 down).

Figure 4.5: Circuit scheme (drawn with [156]) for current measurement
and switching the electrolyis curcuit (load), which is powered by the labo-
ratory power supply (V1). The circuit is controlled by the microcontroller
with a solid state relais (IC) and the current is measured via voltage drop
of a shunt resistor.

54

4.1 Sample production & Atom probe tomography

0 100 200 300 400 500 600

time [a.u.]
0

50

100

150

200

250

cu
rr

en
t [

a.
u.

]

a)

0 200 400 600 800 1000 1200 1400

time [a.u.]
0

100

200

300

400

500

600

cu
rr

en
t [

a.
u.

]

b)
sample 1
sample 2
sample 3

220 222 224 226 228 230
0

20
40
60
80

100
120
140

Figure 4.6: Measured current curves: a) electro-polishing with up-/down-
movement which can be obtained in the current curve (insert) , b) electro-
polishing without movement of the sample, additionally a software low
pass filter is applied to the signal [153].

Sometimes also Cu is deposited on the Pt wire (dissolved Cu from the sample alloy), but if

the eletrolysis is stopped, the Cu is resolved in the eletrolyte due to chemical etching of the

acid. Additional gas production is obtained with higher currents. Higher currents heat the

eletrolyte, due to faster solving of the sample and higher resistance heating, which leads to

accelerated evaporation of the two electrolytes. Larger gas bubbles are obtained from the

isolating layer, which start to expand and collapse at the blank surface, inducing perturbance

to the electrolyte surface.

For the first electro-polishing experiments, which were conducted at room temperature, the

blank was periodically moved down- and up-wards, to form a larger lateral thinned region.

Solving of the material is not uniform in the conducting electrolyte, regions of increased

removal are electrolyte/electrolyte interface, electrolyte/air interface and regions where the

distance from cathode to anode is small. This movement approach was neglected in the fur-

ther experiments, to investigate solely the current time curve from the electrolysis, otherwise

the signal is overlaid with the change of metal/electrolyte interface area, due to the up and

down movement (see Figure 4.6 a)). A stopping criteria for the electrolysis circuit would

have been needed to use the first-step electro-polishing setup as the sole preparation setup

at low temperatures, but from the gained current-time curves it could not be determined

55

4.1 Sample production & Atom probe tomography

b)

a)

c)

d)
-+

Figure 4.7: First-step electro-polishing: a) electrolyte, b) inert layer, c)
blank, d) Pt wire loop.

when the blank intersected (see Figure 4.6 b)) and no criteria could be deduced. Prob-

lems are the low resolution of the measurement system, gas bubbles, which cause spikes in

the current-time curve, and evaporation of too much electrolyte during electro-polishing of

”thick” 1x1x20 blanks. Additionally, it could not be ensured that the produced samples

are sharp enough for the use as APT tips. Therefore the first-step electro-polishing is only

used as pre-step for final sample production and the solely use of the first-step setup for

final sample production would need further development. After first-step electro-polishing

the blank is cleaned either via rinsing topside down with iso-propanol or submerging the tip

with tweezers into iso-propanol in an ultrasonic bath.

4.1.3 Second-step electro-polishing

Due to the unknown needed development time to solve the stopping criteria and tip size

issue, it was decided to follow another heat treatment strategy (nano aging) as already

mentioned: Blanks are first-step electro-polished (Figure 4.7) with manual stopping of the

eletrolysis. A neck is electro-polished in a second step (micro-polishing with 2% HClO4 in

2-butoxyethanol), with a diameter in the order of 5 to 20 µm (Figure 4.10) near the apex

and then the sample is solution treated and quenched.

As ”second step electro-polishing”, horizontal electro-polishing under a modified optical light

microscope (micro-polishing) is done in a cooling chamber at -40 ◦C. The microscope was

modified by adding a mounting cylinder for the sample holder (same sample holder as for

first-step electro-polishing) at the xy-table and a stationary Pt wire loop, so that a relative

movement of the sample is possible, see Figure 4.8. For the use at -40 ◦C the xy-table was

dissassembled, the lubrication grease removed and re-assembled again. The height of the Pt

loop is chosen so that the ideal sample position is at the height of the center of the loop,

56

4.1 Sample production & Atom probe tomography

Figure 4.8: Micro-polishing setup: a) xy-table, b) mounting for sample
holder (free to move, anode), c) connection to Pt wire loop d) (static,
cathode).

+ +

--

a) b)

+

-

c)

Figure 4.9: Micro-polishing procedure: a) a neck is formed on the blank,
b) the neck is further thinned, c) pulsing and final separation.

due the fact that every blank is not exactly at the ideal position in the sample holder hole,

the z position of the sample tip is changed with slight tilting of the sample holder on the

mounting cylinder. The mounting cylinder and the Pt wire loop mounting can be connected

via crocodile clip cables to the power supply. At the anode connecting cable a self resetting

push-button is installed.

A droplet of electrolyte is pippeted into the wire loop and hold in the loop due to the

surface tension of the electrolyte. For micro-polishing at -40 ◦C 3% HClO4 (72%), 16%

2-Ethoxyethanol, 22% 1,2 Dimethoxyethan in methanol is used as electrolyte (at room tem-

perature 2% HClO4 in 2-butoxyethanol). 2% HClO4 in 2-butoxyethanol was also tested at

low temperature, but showed too high viscosity, 25 % HNO3 in methanol was shown to be

too highly concentrated for the use as second step electrolyte. The applied voltage ranges

from 5 to 7 V. The blank is moved through the elecrolyte so that a bit of the blank is outside

on the other side of the droplet (Figure 4.9 a)). A neck is formed through slight back and

forward movement of the blank with a xy-table, while the push-button is pressed to close the

electric circuit. If the neck is sufficiently shaped and thinned, the blank is moved backward

57

4.1 Sample production & Atom probe tomography

Figure 4.10: Optical light microscope picture of the sample after micro-
polishing a neck into the sample. The necked region is used as starting
point for final APT sample production in a cooling chamber.

so that the apex and neck is in the elecrolyte, further the neck is thinned by continous closing

of the circuit and back and forward movement (Figure 4.9 b)), the process is interrupted to

optical controll the thickness of the necked region by partly moving out of the electrolyte.

When the neck is almost invisble, or invisble in the optical microscope, the blank is moved

back into the electrolyte and only single impulses are used, accompanied by moving out of

the electrolyte (Figure 4.9 c)), the APT sample is finished when the front part of the necked

region is in this way separated. The finished tip is finally cleaned by topside-down rinsing

with iso-propanol and is put back into the sample holder and the liquid nitrogen transport

dewar. The electrolyte droplet is removed with the angle of laboratory paper tissue.

4.1.4 Solution heat treatment and quenching

Solution heat treatment of blanks or various types of APT-tips is carried out in an air furnace

with N2 purging at 545 ◦C for 15 min. The air-furnace is pre-heated for two to three hours

and the N2 purging started 30 min before the first solution heat treatment cycle. The sample

holder is put onto a steel sheet in the air furnace, the furnace closed, waited for 15 min, the

sample holder taken from the furnace and plunged into LN2 (in an isolated pot, Figure 4.2

c)). The isolated pot is positioned elevated under the furnace to reduce movement time at

room temperature air. The sample holder is put, under LN2 in the pot, into a one-side open

cylindrical plastic container with an attached wire. The plastic container is put into the

pre-filled LN2 transport dewar (Figure 4.2 e)).

4.1.5 Artefacts of sample production

Sometimes artefacts of sample production cannot be prevented completely. Some artefacts

from sample production can make the measurement of the sample impossible, others create

artefacts in the gained dataset which can be addressed by data analysis.

58

4.1 Sample production & Atom probe tomography

The measurement is impossible if the sample is bent or the tip is not sharp enough. Several

reasons for bent samples are imaginable. Most of them conserne handling issues, some of

them are listed in the following:

• accidential mechanical touch of the tip (holder or tweezers)

• tipping the finished specimen top-side forward into cooled iso-propanol

• re-filling the transport dewar with liquid nitrogen from above

• if the front part of the necked region is pulled towards the surface of the droplet during

the final pulsing during micro-polishing

Too blunt sampled are sometimes obtained when the sample is thick, or only a small thinned

region exists after first-step electro-polishing. Sometimes a semi-transparent film forms at

the tip, which generally hinders electro-polishing, or shades the electro-polishing of the metal

and leads to blunted APT tips.

A typical artefact from electro-polishing, often obtained, is a Cu cap at the apex of the APT

tip. Cu is present in the alloy EN-AW 6016 and gets dissolved during electro-polishing and

is accumulated in the elecrolyte. Additionally to the electrochemical dissolution of Al into

the elecrolyte (Al → Al3+ + 3e−), Cu in solution near the apex, Cu2+ or Cu+, can oxidize

Al via cementation: 3 Cu2+ + 2 Al → 3 Cu + 2 Al3+. An extrem example for a Cu cap is

seen in Figure 4.11.

4.1.6 APT experimental parameters

Most experiments are run in voltage mode with a pulse fraction of 20 %, 200 kHz and a

detection rate of 1% at a temperature of 30 K. The sample is approximately positioned to

the typical sample position centered in front the local electrode, further the run is started

and fine positioned. The tip is aligned so that the hitmap slightly underfills the detector

space concentric.

Laser measurements were tested (250 kHz, 30 K, 532 nm wavelength and 1 nJ Laser energy

based on conclusions from [157]), but lead to unsatisfying results concerning chemical posi-

tion (see Table 4.1) and additionally, increased Si migration effects were suspected [113]. The

difference in composition for the laser measurements are speculated to be due to different

charge state distributions. Increasing the amount of monovalent charged ions, leading to the

loss of the major Si+ ions in the AlH+, AlH+
2 peaks and a shift from detected 24Mg2+ to

24Mg+.

59

4.2 APT data analysis

Figure 4.11: Cu cap and oxide shell at the tip apex of a pre-aged material,
obtained with laser measurement. Iso-surface colors: Cu in orange, O in
cyan and H3 rose, Mg in magenta.

Table 4.1: Compositions generated by two laser measurements compared to a voltage mea-
surement of the same material. Compositions measured for different heat treatment states
for the same material can be obtained in Table 6.1.

comp. [at.%] Laser 1 (R21 09112) Laser 2 (R21 09114) voltage (R21 09042)

Mg 0.37 0.39 0.34

Si 0.60 0.49 0.88
24Mg+/24Mg2+ 0.165 0.177 0.016

4.2 APT data analysis

Basis for data analysis is the reconstruction in form of the position file of the atoms in the

sample. As a first step, after a successful measurement, for data analysis the gained .RHIT

file needs to be processed to a reconstruction (.pos file, .epos file). This is done with the

commercial software IVASTM (3.6.12) and desribed in the following section 4.2.1.

Starting from the generated .pos or .epos file further customized data analysis is applied

(section 4.2.1).

4.2.1 From .RHIT to .pos and .epos

The steps from .RHIT to .pos file are already well described in [96, 158], but hence every

change in one of the steps can possibly change the pos file, the usually applied options within

this thesis are shortly described in the following sections with the purpose of each step.

60

4.2 APT data analysis

4.2.1.1 Selection of a ion sequence range

At the beginning of an experiment the aluminum alloy APT tip is not in a field equilibrated

shape, additionally often a oxide layer and/or a Cu cap is present. With increasing experi-

ment time the tip shape equilibrates itself. Therefore the start of the experiment, the first

few 100000th counts, are often neglected. [96]

In the background signal there is often a significant drop after a given number of field-

evaporated atoms visible, this drop is often near the suggested starting sequence number. If

a Cu cap is present, it can often be cut away by simply choosing a higher sequence starting

number. In some cases the end sequence number needs to be adjusted if a tip fracture was

not detected or a hot-spot on the detector hit map occured. Another exception occures, if

a part of the tip breaks off, but the tip recovers. Best approach is to generate two recon-

structions, before and after the fracture. If the two parts are reconstructed at once in one

.pos file, unreal neighborhood relations are created. Although, the latter approach should

not make a large difference for small feature sizes as for clustering.

4.2.1.2 Selection of a detector region of interest

From the detector hitmap an automatic fit of an ellipse, as chosen detector space, is suggested

by IVASTM, hits outside this ellipse are neglected. The detector space area is calculated from

this ellipse, which is later used in the reconstruction process.

The automatic fit is accepted if the sample is sufficiently circular. [96, 158]

4.2.1.3 Time-of-flight to mass-to-charge ratio (m/n)

Different voltages at departure of the ion lead to different start accelerations, therefore the

time-of-flight (tof) spectrum is calibrated for voltage. The spectrum is calibrated by the

flight-time of a known calibration material (Al). Due to the changed flight paths for a 2D

detector, compared to a linear one-dimensional case, also a flight path calibration, depending

on the position of the hit on the 2D detector, is done (bowl correction).

The standard time-of-flight conversion is usually leading to sharp enough peaks (mass reso-

lution for full-width at half maximum (FWHM) >1000) and accepted. [96, 158]

4.2.1.4 Correction of the mass-to-charge ratio

In this step a piecewise linear interpolation function is applied to the gained mass-to-charge

ratio histogram, shifting the known peaks to the exact positions. All the known elemental

(m/n) peaks are chosen and mapped to their ion species. The spectrum in-between smallest

and largest m/n is fitted piecewise with the chosen peaks as nodes. Only known elemental

peaks should be assigned at this step, in general only low changes of the histogram on the

m/n axis are expected (<∼ 0.2 Da).

61

4.2 APT data analysis

Table 4.2: Assigned ion species to peaks for m/n calibration.

ion species approximate m/n [Da]

1H+ 1
2H+ 2

24Mg2+ 12
25Mg2+ 12.5
26Mg2+ 13
27Al2+ 13.5
28Si2+ 14
29Si2+ 14.5
30Si2+ 15
27Al+ 27
63Cu+ 63
65Cu+ 65

The ion species as shown in Table 4.2 are assigned at this stage for correction of the mass-

to-charge ratio. [96, 158]

4.2.1.5 Ranging

Usually in atom probe tomography a known material, in terms of chemical compositions, is

investigated. During the ranging step a map from mass-to-charge ratio to the ion species

is constructed, m/n → [element/complex]n+. Often the natural abundance of elements

is used to identify considered peaks. The problem of peak identification for complex ion

peaks is strongly related to the Knapsack problem [159]. For atom probe tomography the

combinations of a given set of possible elements is mapped to the unknown given m/n of a

peak via application of a charge number (e.g. +,2+ ...) for possible solutions, here especially

the uncertainty of the m/n histogram needs to be considered [159].

In some special cases methods use additional information, besides the mass-to-charge ratio,

for the mapping. For example (x, y, z,m/n) → [element/complex]n+ [160] or multiple hit

information → [element/complex]n+ [161] is used.

Additionally, a special side-effect of atom probe measurements is the occurence of H in every

sample measured. This is due to the presence of H in the UHV analysis chamber. Hydrogen

out-diffuses from the steel of the chamber.

The range file used by default is shown below.

[Ions]

Number=8

62

4.2 APT data analysis

Ion1=Al

Ion2=H

Ion3=Mg

Ion4=Si

Ion5=Cu

Ion6=V

Ion7=Ga

Ion8=O

Ion9=Mn

[Ranges]

Number=24

Range1=13.4500 13.6000 Vol:0.01661 Al:1 Color:33FFFF

Range2=26.9210 27.0990 Vol:0.01661 Al:1 Color:33FFFF

Range3=0.9850 1.0950 Vol:0.00000 H:1 Color:CCCC00

Range4=1.9790 2.1090 Vol:0.00000 H:2 Color:FF0000

Range5=11.9550 12.0500 Vol:0.02325 Mg:1 Color:CC00CC

Range6=12.4560 12.5750 Vol:0.02325 Mg:1 Color:CC00CC

Range7=12.9430 13.1070 Vol:0.02325 Mg:1 Color:CC00CC

Range8=23.8970 24.0490 Vol:0.02325 Mg:1 Color:CC00CC

Range9=25.9310 26.0350 Vol:0.02325 Mg:1 Color:CC00CC

Range10=13.9530 14.0790 Vol:0.02003 Si:1 Color:CCCCCC

Range11=14.4490 14.5490 Vol:0.02003 Si:1 Color:CCCCCC

Range12=14.9530 15.0440 Vol:0.02003 Si:1 Color:CCCCCC

Range13=62.8120 63.1100 Vol:0.01181 Cu:1 Color:FF6600

Range14=64.8100 65.1500 Vol:0.01181 Cu:1 Color:FF6600

Range15=25.4170 25.5330 Vol:0.01382 V:1 Color:CC00CC

Range16=68.7850 69.0580 Vol:0.01960 Ga:1 Color:FFFF00

Range17=70.8660 70.9820 Vol:0.01960 Ga:1 Color:FFFF00

Range18=27.9400 28.1760 Vol:0.01661 Al:1 H:1 Color:00FF00

Range19=28.9280 29.2410 Vol:0.01661 Al:1 H:2 Color:0000FF

Range20=17.9490 18.3500 Vol:0.02883 H:2 O:1 Color:CCCC00

Range21=24.9310 25.0350 Vol:0.01767 Mg:1 Color:CC00CC

Range22=27.4900 27.6500 Vol:0.01201 Mn:1 Color:CCCC00

Range23=16.9000 17.200 Vol:0.01382 V:1 Color:CC00CC

Range24=43.9000 44.2000 Vol:0.05636 Al:1 O:1 H:1 Color:35A9BD

This range file corresponds to the: 1H+, 2H+, 24Mg2+, 25Mg2+, 26Mg2+, 24Mg+, 25Mg+,
26Mg+, 27Al2+, 27Al+, 28Si2+, 29Si2+, 30Si2+, 63Cu+, 65Cu+, 69Ga+, 71Ga+, 51V2+, 51V3+,
55Mn2+ species, and further to the complex ions: AlH+, AlH+

2 , AlOH+
2 , H2O

+.

63

4.2 APT data analysis

The 24Mg+, 25Mg+, 26Mg+, 51V2+, 51V3+, peaks are often close to the background limit and

the identity is not fully verified and also possible overlaps of Ti and V and Mg are possible.

Possible overlays from Si+ with 27Al+, AlH+, AlH+
2 cannot be accounted for, but no peak is

obtained at 30 Da, which implicates that there is only very low amount of Si+ possible. This

is also true for eventual Fe2+ overlays. Here no significant peak at 28.5 Da is seen, which

also implicates that there is only very low or no Fe in the matrix. Often no peak is seen at

27.5 Da, because the signal is lost in the tail of the 27Al+ peak. If the peak is obtained, it

is ranged as 55Mn2+, but sometimes a slight left-shift of the ideal position is seen. When a

large Cu cap is obtained, often also the Cu2+ and CuH+ peaks can be obtained. The 69Ga+,
71Ga+ peaks are mainly obtained if the sample is produced by focused ion beam, but also

present in technical alloys as residual from primary Al production. AlOH+, H2O
+ appear

and dissapear from measurement to measurement.

For spatial analysis the 27Al+, 27Al2+, 28Si2+, 29Si2+, 30Si2+, 63Cu+, 65Cu+, 24Mg2+, 25Mg2+,
26Mg2+ peaks are of major interest, therefore the peaks are corrected to their exact positions

(as described in the previous step) and always the same ranges for them are used. Still

the ”unsure” Mg+ peaks are used, but their relative amount in comparison to the whole

identified Mg is irrelevant.

4.2.1.6 Reconstruction

The reconstruction protocol builds the 3D coordinates from the voltage at evaporation, 2D

detector coordinates, the ranged species and the sequence of evaporation (X, Y, V ,ranging,

sequence→ x, y, z). In this thesis the reconstruction protocol via voltage curve is applied. [95,

111, 162]

The current radius of the specimen is deduced from the field evaporation value Fe, field

factor kf and voltage V . For the ith atom the equation 4.1 is valid. A similar approach is to

use a voltage curve, fitted to the experimental curve, to ensure monotony in the evolution

of R.

Ri =
Vi
Fekf

(4.1)

From the detector coordinates Xi, Yi the distance from the detector origin Di is calculated,

Equation 4.2.

Di =
√︂
X2

i + Y 2
i (4.2)

The compressed angle is calculated via θ
′
i as in Equation 4.3, with L as flight path length

and ξ as image compression factor (ICF). (Figure 4.12)

θ
′

i = arctan

(︃
Di

L+ ξRi

)︃
(4.3)

64

4.2 APT data analysis

θ
θ‘

D

R

LmR

𝑥2 + 𝑦2

Figure 4.12: Sketch of the applied projection law. [95, 162]

With θi (Equation 4.4) , Ri and Di the x and y coordinates in the sample of the ion can be

computed (Equation 4.5 and Equation 4.6).

θi = θ
′
i + arcsin

(︁
(ξ − 1) sin θ

′
i

)︁
(4.4)

xi =
Xi

Di
Ri sin θi (4.5)

yi =
Yi

Di
Ri sin θi (4.6)

The zi coordinates are computed with Equation 4.7 with the use of Equation 4.8 and 4.9,

Ωj is the specific atomic volume of the species, SD the detector area and η the detection

efficiency.

zi =
i∑︁

j=0

(dzj) + ∆zi (4.7)

dzj =
Ωj

V 2
j

Lk2fF
2
e

ηSDξ2
(4.8)

∆zi = Ri

(︂
1−

√︂
1− x2

i+y2i
R2

i

)︂
(4.9)

The above mentioned equations are only valid if the APT tip axis lies along with the detector

space origin at X=0,Y=0.

As user input variables kf and ξ needs to be chosen. Therefore the values are calibrated as

described by [109]. For this purpose the ”expert reconstruction explorer” within IVASTM is

used.

An evaporation field fixed with 19 V/nm (for Al at 60 K) is used, this is possible because

always the product Fekf appears together in all equations and so effectively the product is

calibrated [109]. The calibration process was developed for the straight flight path version

of the local atom probe tomography (LEAPTM), but within this thesis only the LEAPTM

versions equipped with a reflectron are used. Therefore the standard L input variable of 382

mm in the IVASTM is used for the reconstruction, but a virtual flight-path Lvirt. of ∼44-50

mm (see section 4.2.2.2) for the calibration of the image compression factor ξ is utilized.

At least three poles (hikili) are chosen and the observed angles between them are calcu-

lated [163] via Equations 4.10 and 4.11. This approach is only possible for crystal systems

65

4.2 APT data analysis

where the vector [hkl] is perpendicular to the plane (hkl), this is full-filled for the cubic

systems. Further a mean from theoretical/observed angle is calculated and used as image

compression factor, Equations 4.12 and 4.13.

Dij =
√︁

(Xi −Xj)2 + (Yi − Yj)2, i ̸= j (4.10)

θobs.,ij = arctan
(︂

Dij

Lvirt.

)︂
(4.11)

θtheoret.,ij = arccos

(︃
hihj+kikj+lilj√

(h2
i+k2i+l2i)(h

2
j+k2j+l2j)

)︃
(4.12)

ξ ∼ Mean
(︂

θtheoret.,ij
θobs.,ij

)︂
(4.13)

A large standard deviation Std
(︂

θtheoret.,ij
θobs.,ij

)︂
indicates a wrongly identified pole.

For pole identification a manual comparison of the gained detector hitmap to a known

indicated detector hitmap, e.g. the hitmaps in Ref. [111], is done. In general only (hkl) for

the conventional fcc crystal are valid for the calculation of the smallest interplane distance

for the correlated direction, if h, k and l are all either even or odd. Usually a subset of the

major poles {(002), (111), (022), (113)} is visible on the detector hitmap. For identification

typical patterns are used: the (002) pole shows a typical 4-fold symmetry, (111) a 3-fold

symmetry and the (022) pole is always accompanied by the two (133) minor poles in the

direction of the (111) poles. Further (002), (022) (with the two minor (133) poles) and (111)

usually build-up an easy identifiable triangle. Additionally, a Si surface migration artefact

(Si is accumulated at this detector hitmap positions) is seen at the (111) pole and the (111)-

(022) zone lines, which form a star-like shape. In cases of uncertainty, also a measurement of

the volume (V) (MATLABTM scripts discussed in section 4.2.2) of the final reconstruction

for a correctly obtained volume in comparison to Equation 4.14 is reasonable.

V =

∑︁
i

Ωi

η
(4.14)

The correct identification of the poles is the crucial part in the calibration of the reconstruc-

tion.

The so-gained ξ is used as input for the reconstruction. A start value for kf is chosen, for

the used alloy and temperature, a starting value of 5.0 is used. In the ”expert reconstruction

explorer” a subset of the reconstruction is chosen, based on two detector coordinates and an

inner and outer radius of a circle. The inner radius is set to 0.0 mm and the outer radius

to 2 mm, for the detector coordinates. The respective pole detector coordinates are used.

Further the relative position of the center of the sub-sequence and the boundary length in

percent can be set, here the standard values are used. The projection centers are also changed

to the respective pole detector coordinates. Thus the z-coordinate of the reconstruction is

build perpendicular to the lattice planes of the chosen pole and the inter-plane separation

can be measured via the z spatial distribution map (z-SDM). The theoretical inter-plane

66

4.2 APT data analysis

distance dhkl, with the conventional lattice parameter a, is calculated with Equation 4.15.

dhkl =
a√

h2 + k2 + l2
, a = 0.405 nm (4.15)

It should be noted that the used a is actually the lattice parameter for room temperature,

and is expected to be lower at 30 K. Also the APT tip, which is a single crystal at this scale,

is under high tension due to the high applied field, leading to direction dependent elastic

strains. But this considerations are neglectable, because the error made by the measurement

of the interplane distance via z-SDM is larger than the further mentioned assumptions.

The inter-plane distance is measured as the x-distance from the peak at the origin (x-axis

= 0) to the first peak. The measured inter-plane distance for the chosen poles are compared

to the theoretical values and a corrected kf,i+1 can be calculated based on the prior used

value, see Equation 4.16. The mean from the different poles is calculated for the kf,i+1

and as new starting value used. This procedure is repeated until the dhkl,obs. are acceptable

accurate.

Also possible is simply adjusting the R0 (initial radius of the reconstruction) scrollbar so

that the first peak of the z-SDM for a pole is at the theoretical postition. The R0 value

is equivalent to a kf value, which is automatically calculated when a kf is set. The mean

of the kf gained in this way can be used for the final reconstruction (only small deviations

are expected for different poles). When poles are far from the detector origin, the kf of the

pole nearest to the detector origin can be used: Usually a differing position from the pole

position as reconstruction center in the final reconstruction (close to the detector center) is

used, and the adjusted dhkl in the ”expert reconstruction explorer”, will match better to the

obtained in the final reconstruction.

kf,i+1 =

√︄
k2f,i

dhkl,obs.
dhkl,theoret.

(4.16)

With kf and ξ the final reconstruction is built. From the .pos file an .epos file can be

generated, which contains extra information from the .RHIT file, besides x, y, z, m/n, and

can also be used by customized data analysis.

4.2.2 Customized data analysis

Data analysis methods based on the scripts of [164] were developed to be able to further

refine existing methods, simplify applying the same data analysis for different pos files, to

have a independent data analysis method besides the commercial IVASTM and to create

in-depth knowledge of the applied algorithms. The programming language python is used.

The script apt importers.py (see section 8.2) is intended to contain static methods, which

are imported by other scripts for data analysis. Original methods from [164], are the

read pos(), read epos(), read rrng(), label ions(), deconvolve() in apt importers.py and

67

4.2 APT data analysis

volvis() from Vis.py (described in section 8.8). They depend on the pandas, numpy and

VisPy python libraries.

The principle application sequence for a typical analysis is starting from rang-

ing kryo proto.py (section 8.5) for checking the range file and possible additional

peak identification. The next step is to create the detector hitmap plots and cutting,

based on the detector hitmaps, with plot multiple hits Si.py, section 8.3. For assessment

of the spatial distribution of the solute atoms proto function RDF data.py (section 8.7) is

used, which creates radial distribution functions (RDF) in cumulative form and k-nearest

neighbor distributions (kNN), for specified interactions, pos and range files.

For multiple ion analysis multiple ion analysis.py (section 8.6) can be used, but it was

rarely applied in this work. In this thesis measurements are carried out in voltage mode

and multi ion analysis has a more greater application potential for laser measurements.

Also the current implementation is slow. The script analyse recon.py (section 8.4 is used

for determining the virtual flight path length Lvirt.. In the script largeSDM.py (section 8.9)

analyses and tests for the application of a SDM-like method are done. Further with

C14 art.py (section 8.10) precipitates can be analyzed, regarding ordering, and compared to

an artificially generated C14 crystal structure. Feature identifiction (precipitates, cluster)

is usually done with the MATLABTM [165] scripts clusteranalyse AlMgSi.m (section 8.12),

which are based on the cluster identification and analysis methods from Peter Felfer [124].

4.2.2.1 Spatial analysis

The heart of the spatial analysis methods is the python binding, pyflann, to the FLANN

(Fast Library for Approximate Nearest Neighbors) [166], which allows to query the

neighboring points, of a given point, in a point cloud (based on a kdtree [140]) (see e.g.

proto function RDF data.py section 8.7). An important detail is that the flann object is

always created with the algorithm=4 parameter, which uses the exact kdtree and not a

”approximate” variant. Also the flann object is always created with the euclidian metric.

It should be noted that FLANN works with squared distances. Computing the root of the

squared distances is unnecessary for identification of the k-nearest neighbor (monotony)

and computationally expensive.

Radial distribution functions (RDF) and k-nearest neighbor (kNN) distri-

butions

For the generation of RDFs and kNN distributions the proto function RDF data.py

(section 8.7)) script is used. It calls the methods calcRDF() and createNNHist() from

apt importers.py (section 8.2). The equations regarding the radial distribution function

are described in section 6.6.2, a mathematical representation of the k-nearest neighbor

68

4.2 APT data analysis

0 1 2 3 4 5 6 7
r [nm]

0

500

1000

1500

2000

2500

3000

3500

4000

co
un

ts
 [1

]

experiment
random comparator

0 1 2 3 4 5
r [nm]

0

10000

20000

30000

40000

50000

60000

co
un

ts
 [1

]

experiment
random comparator

Figure 4.13: 5th nearest neighbor distribution (k=5 NN) and radial dis-
tribution function (RDF) for a given reconstruction (Mg-Mg), with the
respective random comparators.

distribution is shown in Equation 4.17.

kNN = Hist
(︂⃓⃓⃓⃓⃓⃓
P⃗k-th neighbor − P⃗i

⃓⃓⃓⃓⃓⃓
2

)︂
(4.17)

The generation of random comparators is executed via random labellig, i.e. choosing ran-

domly from existing 3D positions, it should be noted that only ranged atoms are used for

possible sites and the background positions are neglected in proto function RDF data.py.

For the estimation of the breadth of drawn possible random distributions, 40 random dis-

tributions are drawn. The mean curve of the curves is used as the ”random distribution”

and the standard deviation of the curves as boundaries for the breadth of possible random

distributions. The results of the RDFs and kNNs are saved as .txt files. Figure 4.13 shows

kNN and RDF distributions with the respective random comparators.

An interesting observation regarding the random distribution of the kNN is seen with

IVASTM. When a .pos file analysis is opened and a nearest neighbor analysis is gener-

ated and saved, the program closed and the procedure repeated, then the two saved random

curves of the kNN analyses match exactly. If the random comparator is built with random

labeling, this would be rather an unlikely event, and would only occur if the random number

generator is seeded with a constant.

SDM-like functions

SDM [107] -like functions, getRotateXYSDM() and getRotateZSDM() (apt importers.py,

section 8.2) are used by largeSDM.py (section 8.9) and C14 art.py (section 8.10). The two

methods rely on the output of getDeltasSDMLarge() (apt importers.py, section 8.2). The

original approach of subdivision of the volume in [107] of the point cloud is not used. A

point set and a maximum nearest neighbor number is passed to getDeltasSDMLarge(), and

with FLANN, the interatomic difference vectors (Equation 4.18 and 4.19) up to the given

maximum nearest neighbor are calculated for each point of the set (Equation 4.20), self-

correlation (seeing itself) is neglected. This leads a npointsNmax.NN long list of interatomic

69

4.2 APT data analysis

Figure 4.14: Obtained z-SDM from a selected precipitate for given ψ, θ.

difference vectors, re-written in Equation 4.21.

d⃗(P⃗i, P⃗j) = P⃗i − P⃗j (4.18)

d⃗(P⃗i, P⃗j) = [xi − xj, yi − yj, zi − zj] (4.19)

i = 1...npoints, j = n1stNN...nNmax.NN
(4.20)

[∆xk,∆yk,∆zk] , k = 1...npointsNmax.NN (4.21)

The method getRotateZSDM() transforms the difference vectors according to a rotation with

ψ and θ around the origin, see Equation 4.22. [105, 167]

∆z
′′

k = − sin(θ)∆xk + cos(θ) sin(ψ)∆yk + cos(θ) cos(ψ)∆zk (4.22)

The transformed ∆z
′′

k are counted into a one-dimensional histogram within the range of

±∆zmax, the ”z-SDM” (Equation 4.23). An example for a z-SDM from a selected precipitate

with given ψ, θ can be seen in Figure 4.14.

z-SDM = Hist
(︂
∆z

′′

k

)︂
|∆zmax
−∆zmax

(4.23)

The method getRotateXYSDM(), additionally computes the transformed ∆x
′′

k (Equa-

tion 4.24) and ∆y
′′

k (Equation 4.25) difference vectors similar to Ref. [168]. The first rotation

rotates ψ around the x-axis and the second rotation θ around the prior-gained y
′
-axis (Fig-

ure 4.15), it should be noted that ψ and θ, so-defined, rotate in the mathematical ”negative”

sense. The method getRotateXYSDM() further takes a subset around a input ∆z
′′

k position

±∆∆z and counts the difference vectors into a two-dimensional histogram, the ”xy-SDM”

(Equation 4.26). An example for the xy-SDM is shown in Figure 4.16 for an artificially

created C14 crystal structure.

∆x
′′

k = cos(θ)∆xk + sin(θ) sin(ψ)∆yk + sin(θ) cos(ψ)∆zk (4.24)

∆y
′′

k = cos(ψ)∆yk − sin(ψ)∆zk (4.25)

xy-SDM = 2D Hist
(︁
∆x

′′

k,∆y
′′

k

)︁
|∆xmax
−∆xmax

|∆ymax

−∆ymax
(4.26)

70

4.2 APT data analysis

x/x‘

y‘

z‘

ψ
ψ

z y

x‘‘

y‘/y‘‘

z‘‘

z‘
θ

x‘

θ

a) b)

Figure 4.15: Defined rotations ψ in a) and θ in b).

Figure 4.16: xy-SDM of an artificial C14 crystal (MgZn2) for Zn-Zn and
Mg-Mg. The z coordinate is parallel to c⃗ of the C14 crystal structure,
∆z = 0 and ±∆∆z = 0.01 nm.

With getRasterwinkel() a given set of atoms positions can be searched for a maximum of

the z-SDM, scanning in a given (ψ, θ) space. In Figure 4.17 getRasterwinkel() was applied

three consecutive times to find the (ψ, θ) for the maximum of the z-SDM of the selected

subset containing the (002) pole.

Cluster search

A cluster search algorithm is implemented with the getClusterAtomsL() method

(apt importers.py, section 8.2). It is intended to represent the core-linkage method [119],

but was implemented slightly different. As input the parameters dmax, dlink, derode, K, the

atom positions and possible ”core” atoms are needed. The method identifies the possible

core atoms with dmax and K as can be seen in Equation 4.27 [119].

d(A,AK) ≤ dmax (4.27)

Meaning that if the distance of an possible core atom A, to the Kth nearest possible core

atom AK is ≤ than dmax, the possible core atom A is accepted as core atom and vice versa.

Further all atoms (regardless if solute or not), within a range of dlink to the before identifed

71

4.2 APT data analysis

Figure 4.17: Selected subset of reconstruction, (002) pole, and maximum
of z-SDM over ψ, θ, calculated with three consecutive runs of getRaster-
winkel().

core atoms, are added to the ”clustered atoms” set. In the core-linkage method now the

cluster identity is assigned, all connected atoms (atoms within dlink, of the ”clustered atoms”

set) are assigned the same cluster identity. I.e. atoms which are farther from a identified

cluster than dlink and belong to the ”clustered atoms” set, will be assigned a different cluster

identity.

However, the implemented method uses a different sequence: it erases previously all atoms

from the set which are within derode from the matrix and then assigns the cluster identities.

This can lead to different results from the core-linkage method if derode > 0. A cluster can be

split up into several clusters this way by the erosion step, wheras in the core-linkage method

only the number of the atoms in the cluster will be lowered. Therefore, if the method is

used, it is used with derode = 0. Besides from this, there is also a difference between the core-

linkage method and the maximum separation method (used by IVASTM). In the maximum

separation method the assignment of the cluster identities seems to be done based only on

the dmax and K parameter, and dlink and derode only adds or subtracts non-core (non-solute)

atoms from the assigned clusters. Due to the de-facto only used method from IVASTM for

APT in literature, if comparisons to literature are needed the cluster-search analysis is done

with the IVASTM maximum separation method.

In general the linking/erosion approach is an unsatisfactory solution approach and seem to

be arisen early, only due to the lack of a computationally effective method, for identifying

points within a volume, which is only defined by other points. Therefore the cluster-search of

Ref. [124] as used in clusteranalyse AlMgSi.m (section 8.12) seems to be a more up-to-date

approach for this issue.

For visual assessment of 3D data the volvis() method has proven to be an effective tool.

72

4.2 APT data analysis

4.2.2.2 Analyses regarding the reconstruction protocol

Due to the use of reflectron-fitted atom probes in this thesis the flight path of L 382 mm

cannot be used for the calibration of the ξ (ICF) value. We calculate a virtual flight path

Lvirt. which can be used for ICF calibration as described in the following (analyse recon.py,

section 8.4).

A reconstruction is build with arbitrary kf and ξ. The .epos file is exported from IVASTM

and the reconstruction is applied in a reverse manner with re-formulated Equations from

section 4.2.1.6. The X
′
i , Y

′
i coordinates are calculated with L = 382 mm, Fe = 19 V/nm,

known kf and ξ from the xi, yi coordinates of the reconstruction (Equation 4.28, 4.29, 4.30

and 4.31).

m = ξ − 1 (4.28)

Ri =
Vi
Fekf

(4.29)

X
′

i =
xi
Ri

L

m+ cos

(︃
arcsin

(︃√
x2
i+y2i
Ri

)︃)︃ (4.30)

Y
′

i =
yi
Ri

L

m+ cos

(︃
arcsin

(︃√
x2
i+y2i
Ri

)︃)︃ (4.31)

The X
′
i , Y

′
i are compared to the Xi, Yi coordinates of the .epos file and ”magnification”

values c are calculated thereof, for different detector positions of the reconstruction (Equa-

tion 4.32, 4.33, 4.34 and 4.35).

c1,3 =
Xi

X
′
i

|max.Xi,min.Xi
(4.32)

c4,5 =
Yi

Y
′
i

|max.Xi,min.Xi
(4.33)

c2 = Mean
(︂

Xi

X
′
i

)︂
(4.34)

c6 =
√︂

A
A′ ≃

√︂
(Xmax−Xmin)(Ymax−Ymin)

(X′
max−X

′
min)(Y

′
max−Y

′
min)

(4.35)

The virtual flight path is calculated via Equation 4.36.

Lvirt. = cL (4.36)

It should be noted that detector coordinates for reflectron-fitted instruments are first fitted

with fitting functions, to correspond to straight flight path machines detector hitmaps, before

the reconstruction protocol is applied [94], but in the .epos only the real detector hitmap

locations are given and the tranformation functions are unknown. That is the reason why

there is a difference for the magnification values over the detector area and the application

of Equation 4.36 in computing a virtual flight path can only be seen as an approximation.

73

4.2 APT data analysis

Figure 4.18: Ion correlation diagram for a voltage mode measurement.

However, using Equation 4.35 leads to consistent Lvirt. values of ∼ 44± 0.5 mm for different

reconstructions. The usual good consistency of the measured, calibrated inter-plane spacings

for three poles, supports the approach of a ”virtual flight path” for the ICF calibration.

4.2.2.3 Other data analysis methods

For muliple ion analyis multiple ion analysis.py (section 8.6) is used. The aim is to plot a

”Saxey plot [161]”, also known as ion correlation diagram. Here all possible two-combinations

of the mass-to-charge state (m1,m2) for all multiple events (ions per multiple event ≥ 2) are

computed andm2 overm1 is plotted, due to symmetry only the two-permutations of (m1,m2)

need to be calculated. A typical ion correlation diagram for a voltage mode run is seen in

Figure 4.18. The number of permutations (i is the ith multiple hit) to be calculated are

shown in Equation 4.37.

n(m1,m2) =
∑︂
i

(︃
nions,i

2

)︃
(4.37)

Specific patterns for in-flight dissociation of complex ions and the occurence of standing

voltage evaporation can be obtained from this plot. [161] Element-specific detector hitmaps

are generated in plot multiple hits Si.py (section 8.3) starting from the epos file. Two-

dimensional histograms are calculated from the detector coordinates (Xi, Yj) for the respec-

tive subsets. The element-specifc detector hitmaps are used for artefact identification and

as basis for cutting parts of the reconstruction. The detector hitmap in general is used for

the calibration via identification of poles. If no poles are visible at the hitmap, the pulses

74

4.2 APT data analysis

since last event pulse (”pslep”) information can additionally be used to help make poles vis-

ible [169], but for Al alloys (generally they are low in alloying content, and poles are easily

seen) this is usually not needed.

75

Chapter 5

Atom probe tomography study of

as-quenched Al-Mg-Si alloys∗,∗∗

This study deploys a new method to gain insight into the as-quenched microstructure of

Al-Mg-Si alloys using atom probe tomography (APT) as an imaging method. Here dif-

fusion of solutes during sample preparation and handling is suppressed via application of

cryogenic temperatures beginning from quenching in liquid nitrogen (LN2) through to APT

experiments at 33 K. The solute distribution is studied via customized nearest-neighbor dis-

tribution and radial distribution function analysis. The influence of energy input on the

solute distribution via cryogenic focused ion beam (FIB) preparation is also shown.

∗Chapter 5 was already published in [144].
∗∗This research is supported by the Austrian FFG Bridge project, number 853208. The authors want to
thank Francisca Mendez Martin and Katharina Babinsky, Department of Physical Metallurgy and Mate-
rials Testing, Montanuniversitaet Leoben, for the introduction to the reconstruction process with software
IVASTM. Peter Felfer, FAU Erlangen, is kindly acknowledgedthanked for permission to use his MATLAB
analyzing scripts and the online tutorial on how to use them.

76

5.1 Introduction

5.1 Introduction

Al-Mg-Si-(Cu) alloys are a widely used material in various products which are manufactured

in rolling, extrusion, forging and drawing processes. [1] The main strengthening mechanism

used to enhance the mechanical properties in this alloy class is precipitation strengthening.

The heat-treatment pathway is crucial for the in-application properties of these alloys. [38]

The amount of time the material is held or stored at room temperature (RT) after solution

heat-treatment and quenching can have a negative influence on its mechanical properties if

the material is artificially aged (AA) afterwards at temperatures of typically 453 K. This

”negative effect” due to natural aging (NA) lowers the hardness and yield stress of the mate-

rial and reduces artificial aging kinetics. Nowadays it is generally accepted that the ”negative

effect” is linked to solute clusters formed at room temperature. [44] It has also been deduced

that quenched-in vacancies play an important role in nucleation of the clustering process dur-

ing NA. However, targeted alloying and processing can be deployed to delay NA response

and to improve the AA response. [12, 41, 44, 45] Indirect methods such as positron annihila-

tion spectroscopy (PAS), differential scanning calorimetry (DSC) [170], electrical resistivity

measurements [64] and hardness measurements are frequently applied to gain insight into

clustering kinetics. [1] For NA different stages have been determined, ranging from I to IV,

where different mechanisms are assumed to predominate. [88] Note that the kinetic details

depend on the exact alloy composition and not all stages can be observed clearly in every

alloy experimentally. In the first stage vacancy annihilation, vacancy-solute pair formation,

vacancy-cluster -formation and build-up of Frank loops are thought to be the dominating

processes. Stage II may be dominated by Si cluster formation. It has been proposed that Mg

starts to contribute to NA during stage III. In stage IV cluster growth takes place. [45, 53]

The latest results on time-dependent magnetization also indicate Si clustering in early stage

II due to the Si-dependent activation energy of the stage II/III transition. [91] Nevertheless,

the role of Si before Mg gets involved is still under debate, because this stage is difficult

to access experimentally in Al-Mg-Si-(Cu) alloys. Diffraction methods such as small-angle

X-ray scattering (SAXS), small-angle neutron scattering (SANS), and diffraction patterns

in transmission electron microscopy (TEM) suffer from a low signal-to-noise ratio caused by

the similar scattering factors (or electron densities) of the periodic table neighboring ele-

ments Mg, Al, and Si. [4] As a direct imaging method, atom probe tomography is used to

study the influence of different heat-treatment states on clustering and the role of additional

alloying elements. [129, 133, 138] The characterization of clusters and their linking of their

properties to mechanical properties can also be realized. [171] However, measuring within

the first hours after quenching has not been possible, because the APT method suffers from

the amount of time needed for sample preparation and sample transfer times in the anal-

ysis chamber at ultra-high vacuum conditions. [88] In this study we demonstrate that by

applying a new sample preparation and manipulation method, direct APT observation of

77

5.2 Experimental

Al-Mg-Si-(Cu) alloys after quenching is possible. We also present preliminary results on very

early-stage decomposition.

5.2 Experimental

APT samples were prepared from alloy AA6016. The composition of the material was

measured with a spark optical emission spectrometer and determined to be (in at.%): 1.0

% Si, 0.4 % Mg, 0.03 % Cu, and 0.005 % Ga. Typical APT sample blanks of 1×1 mm

alloy were electropolished to a pre-tip radius of approximately 20 µm. The large radius of

the pre-tip was designed taking into account Einstein’s diffusion distance for Mg at 803 K

to hinder preferential loss of Mg in our final APT tip, which was then prepared via FIB in

the center of the needle. The pre-tips and Mg, which served as getter material, were placed

in capsuled quartz tubes (∼150 mm in length and ∼10 mm in diameter) which had been

repeatedly evacuated and purged with high-purity argon (5N) to a pressure of ∼300 mbar.

The encapsulated pre-tips were solution heat-treated at 803 K for 5 min in a furnace and

quenched to the temperature of LN2 by plunging the capsules into LN2. The plunged quartz

capsules were cracked and opened under LN2 to access the samples. The samples stored

at LN2 were then dipped into ethanol at RT for handling purposes and to remove moisture

contamination, before inserting them into a Leica vacuum cryo specimen transfer shuttle,

which was rapidly pumped down to 10−5 mbar usingvia a Bal-Tec BAF060 freeze-etching

chamber. The sample was subsequently vacuum-cryo-transferred to a pre-cooled FEI FIB-

SEM Helios 600i stage at 123 K. Note that the handling procedure involved approximately

1 min at RT. Even this short time at RT may be omitted in the near future via total

handling under LN2. Final cryo-FIB sample preparation involved cutting back the pre-tip

by approx. 20 µm (to reach a region where no Mg is lost due to solution annealing). The

APT tip was produced via standard initial 30 kV annular milling and a final 5 kV cleaning.

A schematic overview of the whole procedure is illustratedcan be seen in FIG. 5.1. The

APT tip was then vacuum-cryo-transferred via the VCT shuttle to a modified LEAPTM

4000X-HR atom probe system; the VCT shuttle which enables cryogenic sample transfers

into the atom probe analysis chamber [149, 172], where the specimen then resides at 33

K. The samples were analyzed in voltage pulse mode with a pulse fraction of 0.2, a pulse

frequency of 200 kHz and a detection rate of 0.5 % at a specimen temperature of 33 K. The

reconstruction of APT datasets was performed wiusingthin IVASTM 3.6.10. To calibrate

the reconstruction an advanced method was used, which is briefly explained as follows [109].

During an APT experiment, faceting of the tip can occur for stable planes of the crystal,

which can be observed as low relative hit density regions on the detector hit map. These are

called crystallographic poles because the specific planes are normal to this direction. Here

spatial distribution maps (SDMs) [107] are used to quantify the atomic plane distance for

78

5.2 Experimental

Figure 5.1: a) Solution heat-treating of the pre-polished samples. b) Leica
vacuum cryo specimen transfer shuttle (VCT100). c) FEI FIB-SEM He-
lios 600i, Cryo-FIB. d) Specimen (vacuum/cryo) transfer to atom probe.
e) Evolution of the tip during cryo-FIB operation. Cryo-sample prepa-
ration and transfer procedure:. Pre-polished samples are solution heat-
treated and quenched in LN2. Subsequently they are inserted into the
cryo-transfer shuttle and the APT specimen is cut in the cryo-FIB. Due
to Mg loss during heat treatment severe cutting of the pre-electropolished
tip is required. The transfer from the cryo-FIB is implemented again via
VCT shuttle to the atom probe. The parts framed in blue in b), c), d)
are the transfer shuttle and the corresponding docking parts.

different orientations to optimize input parameters, i.e. the field factor (kf) and the image

compression factor (ICF), to ultimately calibrate the reconstruction. The (200), (220) and

(311) poles were used to calibrate the reconstruction to their respective interplanar spacings,

according to the fcc lattice parameter of Al (unit cell, 0.405 nm). Further, data treatment was

realized using customized scripts within python [173], numpy [174], the python binding to

the FLANN library [166], matplotlib [175], MATLAB [165], and scripts from [164] and [124]

in interaction with blender [176] and VisPy [177]. In the vicinity of poles artifacts are known

to occur. [113, 115] This is especially critical in the case of Al-Mg-Si alloys, where Si has

been shown to migrate towards or away from specific poles during APT measurements. [114]

To account for this in a reproducible manner, a customized pole and surface identification

routine was applied. [119] Based on the respective 100th nearest-neighbor distance, a local

density value wais computed for all given atoms. [119] A density of 14 atoms nm−3 was

applied as a threshold value, and the low density artifacts (indicating crystallographic poles)

were thereby removed. Atoms located within a distance of 2 nm from such identified atoms

were also removed. [119]

79

5.3 Results

5.3 Results

To characterize the solute distributions we used the 10th nearest-neighbor distance distribu-

tions and a measure as defined in Equation 5.1 and Equation 5.2, where (Ri) is the position

vector of a specified solute atom. This defined measure is comparable to a radial distribution

function, or pair correlation function (Equation 5.1) as used in [138, 140]. Random com-

parator curves are generated through random labeling of the existing atom positions. The

random samplings of the specified number of atoms are drawn 40 times from the set and the

nearest-neighbor distribution and the so defined ”RDF” are calculated and averaged. The

standard deviation is calculated from the various random distributions drawn.

RDF = Hist
(︂⃓⃓⃓⃓⃓⃓
P⃗i − P⃗j

⃓⃓⃓⃓⃓⃓
2

)︂
⇔ i ̸= j (5.1)

ratio(r) =
∑︁

RDF∑︁
RDF rand

(5.2)

In the following we discuss two different cases, a successfully measured as-quenched (AQ)

condition and an as-quenched specimen which was prepared under FIB conditions, resulting

in Ga implantation (0.6 % Ga on average) denoted here as “Ga implanted”. All runs showed a

yield of around 3 × 106 collected ions. For the AQ sample the Si-Si spatial distribution shows

no significant difference from a random solid-solution case, as can be seen in FIG. 5.2 a) and

b). A slight trend towards Si-Si aggregation may be deduced from FIG. 5.2 b), but the error

bars partially overlap unity. Note that a value >1 indicates a non-random solute distribution

and that the position of the drop-off to unity is always larger than the expected cluster radius,

if we assume that clusters are surrounded by regions of lower solute concentration, which is

inherent in the definition of clustering. For the Mg-Mg spatial distribution in FIG. 5.2 c)

and d) clearly no significant difference from a random solid solution is observed. Finally, a

cross Si-Mg spatial distribution as presentedseen in FIG. 5.2 e), f) also shows no significant

aggregation of Mg to Si atoms. For this case the comparator was built by fixing the Si atom

positions and randomly labeling the Mg positions on the remaining non-Si positions. Note

that qualitatively the results are the same if the Mg atoms are fixed.

FIG. 5.3 a) shows the results for the distribution of the solute Si in a freshly quenched state

in the “Ga implanted” sample. Obviously the distribution of Si atoms is now discernibly

different from that in the random sampling. Even better visibility is provided by the ratio

plot in FIG. 5.3 b). The Mg-Mg spatial distribution as shown in FIG. 5.3 c), d), however,

shows no significant differences from a random solid-solution distribution: FIG. 5.3 c), d). In

addition, no cross Si-Mg aggregation wascould be obtained; see: FIG. 5.3 e), f). Note that

the Ga concentration was, as expected for FIB-prepared APT samples, not uniform over

the specimen and more Ga atoms are located near the surface of the specimen. Excluding

this region near the surface from APT data, would, however, not influence the analysis in

FIG. 5.3 in a relevant manner. Applying a cluster search algorithm similar to that described

80

5.4 Discussion and conclusion

Figure 5.2: As-quenched sample: a), c), e) 10th nearest-neighbor distance
distribution of Si-Si, Mg-Mg, and Si-Mg. Results for the nearest -neighbor
distribution are normalized. b), d), e). The ratio as defined in Equa-
tion 5.1 and Equation 5.2. Error bars show the standard deviation of the
random labeling results. To calculate the ”ratio” error bars the limiting
curves from the standard deviation of RDFrand were used and processed
as in Equation 5.2. Si-Mg spatial distributions are calculated for fixed Si
positions. The dashed blue line indicates the reference for a random dis-
tribution. No significant Si-Mg or Mg-Mg aggregation can be determined.

in [119] and [124] showed that the Si clusters identified are located within the bulk of the

sample. Here the results for the ”Core-Linkage” algorithm for Si, Mg and Cu as possible

core atoms with the parameters dmax = 0.74 = dlink = derode , and K=5 are discussed. If we

only consider the Si, Mg and Cu atom coordinates we calculate a mean Guinier radius [94] of

0.7± 0.1 nm. The inter-cluster distance is 6.8±1.9 nm. It is important to note that Ga-free

APT tips can certainly be produced via FIB. However, one needs to be careful and take into

account the energy transfer into the system when early clustering is studied in as-quenched

alloys.

5.4 Discussion and conclusion

The as-quenched state of Al-Mg-Si-(Cu) alloys shows no clustering of Si-Si, Mg-Mg, and

Si-Mg solutes, even though Si-Si clustering is at the significance level (FIG. 5.2). Unfor-

tunately, only a low number of atoms could be obtained during these proof-of-principle

experiments, and this number is reduced further due to the removal of artifact-filled data

in the vicinity of poles. This and low solute concentrations generate large error bars in

the resulting solute characterization measures, which we will try to improve in future mea-

81

5.4 Discussion and conclusion

Figure 5.3: Ga-implanted as-quenched sample: a), c), e) 10th nearest-
neighbor distance distribution. Results for the nearest-neighbor distribu-
tion are normalized. b), d), e) The ratio for Si-Si, Mg-Mg, and Si-Mg,
respectively. Error bars show the standard deviation of the random la-
beling results. For the calculation of the ”ratio” error bars the limiting
curves from the standard deviation of RDFrand were used and processed
as in Equation 5.2. Si-Mg spatial distributions are calculated for fixed Si
positions. The dashed blue line indicates the reference for a random dis-
tribution. Only significant Si-Si aggregation can bewas obtained from a)
and b), and neither Mg-Mg aggregation ((c), d)) nor Mg to Si aggregation
can be obtained ((e), f)).

surements. However, the Ga-implanted sample clearly shows Si aggregation (FIG. 5.3).

In this sample the energy input due to Ga-implantation is expected to induce clustering,

even at 123 K. As a rule of thumb, Ref. [95] states that for 0.1 % Ga in a Fe sample,

0.75 displacements per atom are calculated using Ref. via [178]. Due to the fact that we

have a higher Ga-implantationementation in Al, with a lower molar mass and Young’s mod-

ulus compared to Fe, we expect a much greater number of displacements per atom and

many non-equilibrium vacancies [179], which accelerates diffusion. [44] Currently no APT

measurements for the as-quenched state are available in the literature, due to the experi-

mental limitations described in the introduction. Nevertheless, samples naturally aged for a

short time (due to sample preparation and handling limitations) are sometimes inaccurately

termed “as-quenched”. The earliest of such measurements, after approximately one hour

of natural aging, reveal Mg-Mg and Si-Si, but no Si-Mg correlations. [138] Comparing our

results of the freshly quenched specimens to the indirect measurements via positron anni-

hilation lifetime spectroscopy in [48], we are investigating samples at stage II of natural

aging. Stage II is characterized by a drop in the average positron lifetime over natural aging

82

5.4 Discussion and conclusion

time, which is attributed to vacancy annihilation and the commencement of Si cluster for-

mation [45, 48, 53]. For the as-quenched state, this study found no significant Mg-Mg, Si-Si

or Si-Mg aggregation. However, Si-Si clustering is at the significance level, which fits stage II

of RT clustering in Al-Mg-Si alloys. Further insight into the early stage of low-temperature

clustering is possible from our results on the significant Si-Si aggregation in Ga-implanted

samples. We propose the clustering of Si to be caused by the vacancies introduced during

FIB preparation. Because the vacancy concentration directly effects clustering kinetics [44],

high mobility is possible even at 123 K. The fact that only Si starts to form clusters and Mg

is not involved in this process is the first direct evidence that Si, as long suggested, is the

most mobile species during the early-stage decomposition of quenched Al-Mg-Si-(Cu) alloys.

In summary we show here that it is possible to study the as-quenched super saturated solid-

solution state in Al-Mg-Si-(Cu) alloys via cryo-transfer enabled atom probe tomography, and

that Si is likely to be the first solute involved in low-temperature clustering.

83

Chapter 6

Size Dependent Diffusion: Material

Dimensions Determine Solid State

Reactions∗,∗∗

The key question in material sciences is how fast properties evolve, which implies kinetics

of phase transformations. In metals, kinetics is primarily connected to diffusion via

atomic lattice vacancies and often non-equilibrium vacancies are required for structural

changes. For example, rapid quenching of various important alloys results in natural

aging, i.e. slight movements of solute atoms in the material, which significantly alter the

materials properties. In this study we demonstrate that all solid state reactions based on

non-equilibrium substitutional diffusion are size dependent. We illustrate the size effect on

clustering in an aluminum alloy via an imaging method with near atomic resolution, i.e.

atom probe tomography. We show that the diffusional process is effectively stopped when

the sample size reaches the nanometer scale, a fact which (beside its technological and

academic importance) also has huge implications for the study of non-equilibrium diffusion

and microstructural changes via microscopic techniques.

∗Chapter 6 is in revision for publication in [180].
∗∗This research was supported by the Austrian FFG Bridge project, number 853208. AMAG Rolling GmbH
is thanked for financial support and discussions. This project also received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant No. 757961).
The authors want to thank Mr. Camenzind, Mr. Rechsteiner and Mr. Eisenhut from EMPA, and Mr. Jaggi
and Mr. Schneebeli from SLF Davos for organization and help in using their arctic chambers. We also kindly
thank Mr. Kollender from JKU for his recommendation of an electrolyte suitable for electro-polishing at low
temperatures; Mr. Bartelme of Montanuniversitaet Leoben for his help with the sample production in the
arctic chamber; and Ms. Mendez Martin, Montanuniversitaet Leoben, for organizing APT measurements.

84

6.1 Introduction

6.1 Introduction

The kinetics of phase transformations is a central topic in material science. Frequently,

non-equilibrium vacancies which are induced via rapid cooling, irradiation, sputtering or

plastic deformation [41, 181–183] are required to activate structural changes. Already in 1911

hardening during room temperature storage of Al alloys was accidentally discovered by Wilm

when trying to harden an Al alloy like steel by quenching. Later this effect was given the name

natural aging (NA) [14]. The hardness increase during room temperature is attributed to

the formation of a nanometer-sized unordered accumulation of solute atoms in the material,

so-called clusters. Kinetics of NA strongly depends on non-equilibrium vacancies. Today

the effect has huge importance for all classes of novel high strength aluminum alloys [3].

Lately it has attracted more and more interest, also for magnesium alloys [184–186] due

to the improvement of characterization methods, i. e. microscopic techniques with atomic

resolution [36, 106, 187, 188]. An aluminum alloy in which natural aging has been studied

intensively over the past 20 years [7] is type AlMgSi, where a detrimental effect of NA

on mechanical properties [2] is observed and limits its extended use in various areas of

lightweight applications [44]. (Note that NA can be also beneficial for gaining high strength

in other alloys [11].) In Fig. 6.1 we illustrate the complex effect of natural aging in an AlMgSi

150 200 250 300 350
-0,02

-0,01

0,00

0,01

0,02

0,03

0,04

0,05

Q
 [W

/g
]

'

''

NA time
 2'
 15'
 30'
 60'
 180'
 360'
 24h

T [°C]

cluster dissolution

ex
o

Figure 6.1: Excess heat flow per sample mass (DSC heating curves) with
varying natural aging time after quenching of an AlMgSi alloy. Even for
short NA the cluster dissolution increases and the formation of the main
hardening precipitate (β ′′) is hindered upon heating.

alloy (EN AW 6016) via differential scanning calorimetry (DSC). Even for short times after

quenching, the AlMgSi alloy shows a pronounced change in DSC traces. With increasing NA

time enhanced cluster formation (see supplementary material Fig. 6.5) results in increasing

endothermic cluster dissolution upon heating. The formation of the main hardening phase

(β′′) is retarded [70], indicating the negative effect of NA in this AlMgSi alloy.

Since the emergence of atom probe tomography (APT) a number of studies involving the

direct observation of clusters in Al alloys have been conducted [6, 7, 73, 129, 131, 135, 138].

However, they have generated contradictory results with regard to the sequence of cluster

formation, especially concerning the early stages of clustering [7, 73, 131, 135, 138]. [3] In

85

6.2 Results

the following we show that the disagreement may be caused by an incorrect assessment of

the NA time.

Usually the NA time is determined by the total time samples or components experienced

at room temperature after quenching, ∆tNA. Often an explicit distinction between the NA

of finished APT samples or bulk material is lacking. Here we demonstrate that the above

definition of ∆tNA is not generally valid and that the amount of clustering is governed only

by the time during which the material is exposed at bulk dimensions. This is seen as a

universal effect and is not limited to the example alloy.

We illustrate this ”problem” by means of two differently designed experiments. The first

uses ”nano tip aging” where the NA is performed in-situ in the atom probe on finished

nano-sized APT tips. In the second experiment we perform ”bulk aging” where the NA time

at bulk dimensions is varied, but the ”total NA time” (the sum of ”bulk aging” and ”nano

tip aging”) is kept constant.

6.2 Results

6.2.1 Nano tip aging

For ”nano tip aging” sample preparation and transfer took place under arctic conditions

and a special atom probe equipped with a novel cryo-transfer system [144, 188, 189] is used

to suppress any diffusion during preparation and manipulation (see Methods section for

details). Fig. 6.2a provides an overview of the in-situ sample ”nano tip aged 01”. To our

surprise and excitement, spatial analyses (observed distribution in comparison to a random

solid solution; see Methods section for details) of the solute species Mg and Si, shown in

Fig. 6.2b, reveal no significant effect of in-situ aging for the Mg-Mg, Si-Mg, Mg-Si or Si-Si

(see supplementary material Fig. 6.6 and ”Si migration/surface relaxation and regions of

interests” for details). Obviously the solute distribution stays completely random over the

applied NA time, ∆tNA, up to three weeks. This result is contrary to all expectations and

literature results on NA, also to those from DSC in Fig. 6.1, where microstructural changes

were already obvious after several minutes of ∆tNA. An explanation for this unexpected

result follows. Because clustering upon NA is in general a substitutional diffusion process at

room temperature, it only happens due to the availability of non-equilibrium vacancies from

quenching [41].

6.2.2 Vacancy annihilation

In Fig. 6.3 we show the results of thermo-kinetic calculations which we conducted for a

thermal route similar to the applied in-situ sample processing in order to quantify the non-

equilibrium vacancy fraction. The diameter of a sphere, synonymous to the maximum dis-

86

6.2 Results

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

r ∑ R
=
0R
D
F
/

r ∑ R
=
0R
D
F
ra
n
d

Mg-Mg Si-Si

1 2 3 4 5
r [nm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

r ∑ R
=
0R
D
F
/

r ∑ R
=
0
R
D
F
ra
n
d

Si-Mg

1 2 3 4 5
r [nm]

Mg-Si

1 2 3 4 5

1.0

1.1

1.2

b)

Figure 6.2: In-situ nano-tip natural aging of atom probe samples of
quenched AlMgSi alloy. a) Mg atom positions of the concatenated runs
of the sample ”nano tip aged 01” (always shifted by 5 nm in z direction
from the max(z) of the previous run). b) Analysis of the spatial positions
of solute atoms: Shown is the ratio of the cumulative sums of the radial
distribution function (Equation 6.1 in the Methods section) for the given
interactions (Mg-Mg, Si-Si (insert magnified view), Si-Mg and Mg-Si) for
the ”nano tip aged” samples. Values > 1 for the ratio indicate cluster-
ing (for details see Methods section and supplementary Table 6.1). No
deviation from random can be observed for all natural aging times ∆tNA,
a result which was completely unexpected and contradicts literature on
natural aging.

87

6.2 Results

10-2 10-1 100 101 102 103 104 105
10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

b)
30'

va
ca

nc
y

fra
ct

io
n

time [s]

1'

tip diameter
 100 µm
 10 µm
 1 µm
 100 nm

0

100

200

300

400

500

te
m

pe
ra

tu
re

 [°
C

]

Figure 6.3: Simulation of the non-equilibrium vacancy evolution.
a) Inverted scanning electron microscopy image of the APT sample
”nano tip aged 01” before measurement. b) Calculated non-equilibrium
vacancy fraction over time and temperature upon quenching and natural
aging for pure Al (FSAK model [42]). A sphere diameter is used as a
simplified model for the nano tip. The non-equilibrium vacancy fraction
formed upon quenching and its preservation at RT decays rapidly with
decreasing dimensions. Additional lines for 1’ and 30’ are added as visual
guidelines.

tance to the next vacancy sink, serves as a model for the APT tip, which is shown in

Fig. 6.3a. The vacancy fraction calculated for pure Al is shown in Fig. 6.3b. Changes in the

tip diameter largely influence the evolution of the non-equilibrium vacancy fraction: The

frozen-in non-equilibrium vacancy fraction upon quenching is orders of magnitude lower if

the tip diameter is decreased by an order, which means that the creation of a vacancy super-

saturation is even difficult at small scales. Further, the decline to the equilibrium vacancy

fraction is much earlier, and for a diameter of 100 nm, a size in the range of the APT tip

radius, it is already reached in less than a minute. This suggests that the non-equilibrium

vacancy driven process of clustering must be strongly size dependent and is suppressed at

small dimensions.

6.2.3 Bulk aging

To further prove that clustering and NA are really stopped in nano-sized APT samples, we

conducted the second APT experiment. Here the sum of ”bulk aging” and ”nano tip aging”

was kept constant. The time during bulk NA (”bulk-aging”) was varied, but the total NA

88

6.2 Results

time ∆tNA of the APT samples was preserved (illustrated in Fig. 6.4a). The APT sample

”bulk aged 01” was prepared 9 minutes after quenching the bulk (rods of 0.7 mm thickness)

and then stored at RT as nano-tip for 3 weeks. The ”bulk aged 02” sample was prepared

after 1 week of bulk-aging of the quenched rods and the nano-tips then further stored for 2

weeks. Fig. 6.4b shows the data obtained. If the definition of ∆tNA would be applied, no

significant difference between the two measurements would be discernible because the time

at RT after quenching is 3 weeks for both runs. However, the two states differ very clearly in

the signal for clustering, in fact for all interactions Mg-Mg, Si-Si, Si-Mg and Mg-Si. Replicate

measurements for the same bulk NA time, but other nano-tip NA time (in supplementary

Fig. 6.12) show results almost identical to those presented in Fig. 6.4.

89

6.2 Results

LN
2

qu
en

ch
in

g

bulk RT aging
1w nano-tip RT aging 2w

nano-tip RT aging 3w

R
T

ag
in

g
9’

bulk_aged_01 (9 minutes + 3 weeks nano)

bulk_aged_02 (1 week + 2 weeks nano)

APT tip preparation

so
lu

tio
n

he
at

 tr
ea

tm
en

t

a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

r ∑ R
=
0R
D
F
/

r ∑ R
=
0R
D
F
ra
n
d

Mg-Mg
9' + 3 weeks
1 week + 2 weeks

Si-Si

1 2 3 4 5
r [nm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

r ∑ R
=
0R
D
F
/

r ∑ R
=
0R
D
F
ra
n
d

Si-Mg

1 2 3 4 5
r [nm]

Mg-Si

b)

Figure 6.4: Bulk natural aging of quenched AlMgSi alloy. a) The
schematic overview of the heat treatment and sample preparation pro-
cedure illustrates that a the total time after quenching is kept constant at
three weeks, while only the point of preparation of the nano-sized atom
probe tip is varied (9 minutes and 1 week). b) Analysis of the spatial posi-
tions of solute atoms (for details see Methods section and supplementary
Table 6.1). Blue lines correspond to the sample ”bulk aged 01”, green
lines correspond to the sample ”bulk aged 02”. A very pronounced dif-
ference can be observed although the total time after quenching ∆tNA is
similar, but only the time at bulk dimensions has been varied. For the long
natural aging the expected strong solute clustering upon natural aging is
obvious.

90

6.3 Conclusion

6.3 Conclusion

We have shown that clustering of solutes after quenching in metals, as a diffusional process,

not only depends on the storage time at room temperature, as is known in natural aging

for more than 110 years, but also shows a pronounced size effect. The non-equilibrium

diffusion effectively stops very quickly when the sample size approaches the nanometer range.

Moreover, for small dimensions it is also impossible to reach a significant fraction of non-

equilibrium vacancies upon rapid quenching, because vacancies, as the main carriers of non-

equilibrium substitutional diffusion in metals are annihilated at the free surface of nano-sized

samples during quenching and storage at room temperature. This is demonstrated clearly

in simulations and experimentally. Our findings permit several general statements regarding

metal alloys.

• All non-equilibrium substitutional diffusion-controlled processes are size dependent.

They are strongly suppressed at small dimensions, regardless of how non-equilibrium

vacancies are created, by thermal quenching or other means.

• The size dependency has to be considered when in-situ high resolution microscopy

techniques such as transmission electron microscopy or atom probe tomography are

utilised to study non-equilibrium kinetics in bulk materials.

Our findings also have specific implications for results in literature concerning the observation

of early stages of clustering upon natural aging, especially in the field of aluminum alloys.

• All results of prior applied characterization methods which use small sample sizes may

have been influenced by ill definition of the applied natural aging time.

• This applies particularly to atom probe tomography results over the last 20 years, and

may explain differing results on short natural aging. For larger time spans the results

are likely to hold, because such samples are usually processed contemporaneous with

measurement in atom probe tomography.

6.4 Methods

Experimental parameters, data analysis and calculation parameters are briefly described in

the following:

• Material: A commercial 6016 Al alloy with a nominal composition [at.%]: Mg

0.35%, Si 1.04%, Cu 0.04% and Al balance; measured via a spark optical emission

91

6.4 Methods

spectrometer, was used for all investigations.

• DSC (Fig. 6.1): The material was cut into samples and ground to a final mass of

approximately 42 mg. The samples were heat treated at 545◦ C and quenched into

LN2. For each NA time three samples were measured against a high purity Al reference

of the same mass, using Al crucibles and a heating rate of 10 K/min. The three curves

obtained were shifted to zero at the solution heat treatment regime and the mean

computed. Measurements were carried out on a Netzsch DSC 204 F1.

• APT sample preparation (Fig. 6.2, 6.4). ”Nano tip aging” (see also supplementary

Table 6.1): The cut blanks (1× 1× 20 mm) were first-step electro-polished (first-step,

25 % HNO3 in methanol). Then a neck was micro-polished (second-step, 2% HClO4

in 2-butoxyethanol) near the apex, with a diameter in the order of 5 to 20 µm. The

necked samples were then solution heat treated at 545◦ C with N2 purging and quenched

into LN2 and transported to the arctic chamber, where the micro-polishing was com-

pleted at -40◦ C (3% HClO4 (72%), 16% 2-Ethoxyethanol, 22% 1,2 Dimethoxyethan

in methanol). LN2-cooled samples were dipped into room temperature ethanol begin-

ning the natural aging for the respective time (10’ and 30’ for nano tip aged 01 and

nano tip aged 02). Samples were then put into the cryo specimen transfer shuttle. The

shuttle was fast pumped down to 10−5 mbar and the samples cooled to -120◦ C using

a Bal-Tec BAF060 freeze-etching chamber. Subsequently, samples were vacuum-cryo

transferred [189] to a pre-cooled FEI FIB-SEM Helios 600i and then to the analysis

chamber of the APT. Additional NA times for the same sample were realized by stop-

ping the run and transferring the sample to the buffer chamber (RT) and holding it.

The respective time was added to the previous NA time.

”Bulk aging” samples (see also supplementary Table 6.1): The cut blanks (0.7×0.7×20

mm) were solution heat treated at 545◦ C in an air furnace with N2 purging and

quenched into LN2. ”Bulk aged 01” (Fig. 6.4a) was taken out of LN2 and rapidly

first- and second-step electro-polished within 9’ at RT. ”Bulk aged 02” (Fig. 6.4a) and

”bulk aged 03” were taken from LN2 and plunged into iso-propanol, stored for 1 week

at room temperature, and first- and second-step electro-polished. Finished samples

were again stored at room temperature for 2 weeks / 1 day respectively until APT

measurement.

• APT measurement parameters (Fig. 6.2, 6.4): Samples were run in voltage mode

with a pulse fraction of 20 %, 200 kHz and a detection rate of 1% at a temperature

of 30 K. ”Nano tip aging” samples and the sample ”bulk aged 01” were run on

a LEAP 4000 X HR equipped with self-constructed cryo-transfer capabilities, and

92

6.5 Contribution

”bulk aged 02” and ”bulk aged 03” on LEAP 3000 X HR.

• APT Data analysis (Fig. 6.2, 6.4): For APT solute analysis the 24Mg2+, 25Mg2+,
26Mg2+; 28Si2+, 29Si2+, 30Si2+; and 24Mg+, 25Mg+, 26Mg+ peaks were used. The re-

construction was built by calibrating the kf and the ICF value as described in [109]

within the commercial program IVAS 3.6.12. Artefacts due to pole migration [114, 190]

were minimized by choosing regions of interest, neglecting data of (111) poles and the

zone line (111)-(022). The defined regions of interest based on the detector hitmaps

can be seen in supplementary Figs. 6.7, 6.8, 6.9 and 6.10. We use the ratio of the

cumulative sums of the radial distribution function as depicted in symbolic form in

Equation 6.1 [144] as a measure for clustering. The exact used definitions are dis-

cussed in the supplementary material section 6.6.2. Values > 1 for the ratio indicate

clustering. This formalism has the advantage of being parameter-free [191], in com-

parison to a cluster finding algorithm, and still compresses the information from the

whole spatial distribution of chosen solutes within a given radius r.

f(r) =

∑︁
RDFAB∑︁

RDFAB, rand

(6.1)

• Vacancy kinetics calulation (Fig. 6.3): A thermokinetic calculation based on the

FSAK model [42] which takes excess vacancies into account was computed via MatCalc

6. Pure Al was used as material and the sphere diameter was varied, as a model for

the tip diameter and vacancy sink. A temperature history of: 545◦ C cooled with 1000

K/s to 25◦ C, and further natural aging at 25◦ C were applied. The other parameters

were chosen as: dislocation density 1011 1/m2, jog fraction 0.02, Frank loop nucleation

constant 0.0, jog fraction on Frank loops 0.2, Frank loop intf. energy 1.0, effective loop

line energy 1/2Gb2 and excess vacancy efficiency 1.0 as used in Pogatscher et al. [41].

6.5 Contribution

P.D., S.P. and P.J.U. conceived the study. P.D. and P.J.U. produced samples. P.D. and

S.S.A.G. did the measurements. P.D. and S.P. did the calculations. P.D. did the data

analyis. S.P., P.J.U. and J.F.L. supervised the work. All authors contributed extensively to

discussion. P.D. wrote the paper with the support and correction of all other authors. The

authors declare no competing interests.

93

6.6 Supplementary Material

6.6 Supplementary Material

6.6.1 Hardness evolution

In Fig. 6.5 the hardness evolution of the alloy 6016 for natural aging is given.

102 103 104 105 106 107
30

35

40

45

50

55

60

65

70 1 week

ha
rd

ne
ss

 H
BW

 2
.5

/6
2.

5

time [s]

NA

Figure 6.5: Hardness evolution over natural aging time, after solution
heat treatment and quenching. An additional line for one week is added
as visual guideline.

6.6.2 Pair Correlation and Radial Distribution Functions

The pair correlation function can be defined as g(R)AA as in Equation 6.2 [138].

g (R)AA =
RDF (R)AA

ρ4πR2dR
(6.2)

RDF (R)AA is the radial distribution function defined for atom probe data (disrcete spatial

points) for one atomic species, auto-correlation, the equation enhanced for cross-correlation

(AB), as also used in this paper, is given in Equation 6.3. Sometimes the left hand side

of Equation 6.2 is called RDF [140], wich can lead to confusion. However, we stick to the

defined names as in Equation 6.2 and 6.3. The denominator in Equation 6.2 can itself

be seen as the RDF of randomly distributed positions of atoms, in an explicit form for

an infinitly expanded medium. In atom probe tomography, comparators for randomly

distributed solute atoms are built with radom labeling. This means random sampling

without replacement on the existing (x,y,z) coordinates, for the given number of solutes.

Therefore Equation 6.2 can be re-written to Equation 6.4. For cross-correlation we define

RDF (R)AB,rand as in Equation 6.5, meaning the positions of one species is fixed (B) and

the other species (A) is randomly distributed on the remaining possible positions. Pair

correlation values (Equation 6.4) > 1 can already indicate clustering of solute atoms,

but we use it in a modified way: the ratio of cumulative summed RDFs (Equation 6.7).

More than one random drawing is used to characterize the random distribution of solutes

94

6.6 Supplementary Material

(Equation 6.6). For the calculation of the measure f(r) the mean curve of the h(r)i random

comparators are used (Equation 6.7). The upper boundary for the transformed standard

deviation (Std) of h(r)i is calculated via Equation 6.8 and the lower via Equation 6.9.

RDF (R)AB =

nA∑︂
k=1

⎛⎜⎜⎝ nB∑︂
l=1,

l ̸=k if A=B

(︂
Hist

(︂⃓⃓⃓⃓⃓⃓
P⃗A,k − P⃗B,l

⃓⃓⃓⃓⃓⃓
2

)︂)︂⎞⎟⎟⎠ (6.3)

g (R)AA =
RDF (R)AA

RDF (R)AA,rand

(6.4)

RDF (R)AB,rand =

nA∑︂
k=1

⎛⎜⎜⎝ nB∑︂
l=1,

l ̸=k if A=B

(︂
Hist

(︂⃓⃓⃓⃓⃓⃓
P⃗Arand,k − P⃗B,l

⃓⃓⃓⃓⃓⃓
2

)︂)︂⎞⎟⎟⎠ (6.5)

h(r)i =
r∑︂

R=0

(︂
RDF (R)AB,rand,i

)︂
(6.6)

f(r) =

∑︁r
R=0 (RDF (R)AB)

Mean (h (r)i)
, i = 1...40 (6.7)

err up (f(r)) =

∑︁r
R=0 (RDF (R)AB)

Mean (h(r)i)− Std (h(r)i)
(6.8)

err low (f(r)) =

∑︁r
R=0 (RDF (R)AB)

Mean (h(r)i) + Std (h(r)i)
(6.9)

6.6.3 Si migration/surface relaxation and regions of interests

In Fig. 6.6 low Si-Si ratios for the whole datasets can be seen, and the signals are getting

less over the natural aging time for both samples. This is attributed to Si migration/surface

relaxation [190] during the APT experiment, caused by prefered retention due to the higher

evaporation field. We suggest that the distance which Si can travel stays constant, but the

overall sample surface area increases, which in overall decreases the signal from migrating Si

atoms with increasing sample radius. The amount of Si migration is especially large if the

(111) pole [114] (Fig. 6.8, 6.10) or the zone line (111)-(022) (Fig. 6.9) is visible on the detector

hitmap, which explains the general higher Si-Si signal for ”nano tip aged 02”. Artefacts of

this kind can be minimized with choosing regions of interests (Fig. 6.7, 6.8, 6.9, 6.10, 6.11),

but cannot be ruled out completly (compare Fig. 6.6 a) and b) and also Fig. 6.12 a) and b)).

In Fig. 6.12 the results for the replicant measurements for the whole datasets a) and region

of interests b) are shown. The already obtained results do confirm themselves. For Si-Si

ratios again the influence of the Si migration can be seen when analyzing the whole dataset.

95

6.6 Supplementary Material

0.6

0.8

1.0

1.2

1.4

r ∑ R
=
0R
D
F
/

r ∑ R
=
0R
D
F
ra
n
d

a)
Mg-Mg Si-Si

1 2 3 4 5
r [nm]

0.6

0.8

1.0

1.2

1.4

r ∑ R
=
0R
D
F
/

r ∑ R
=
0R
D
F
ra
n
d

Si-Mg

1 2 3 4 5
r [nm]

Mg-Si

nano_tip_aged_01
10' 30' 60' 180' 360' 23h 1 week 3 weeks

nano_tip_aged_02
30' 130'

0.6

0.8

1.0

1.2

1.4

r ∑ R
=
0R
D
F
/

r ∑ R
=
0R
D
F
ra
n
d

b)
Mg-Mg Si-Si

1 2 3 4 5
r [nm]

0.6

0.8

1.0

1.2

1.4

r ∑ R
=
0R
D
F
/

r ∑ R
=
0R
D
F
ra
n
d

Si-Mg

1 2 3 4 5
r [nm]

Mg-Si

nano_tip_aged_01
10' 30' 60' 180' 360' 23h 1 week 3 weeks

nano_tip_aged_02
30' 130'

Figure 6.6: In-tip natural aging after solution heat treatment and prepa-
ration of samples at -40◦ C. Analysis of the spatial positions of solute
atoms: Shown is the ratio of Equation 6.1 for the given interactions (Mg-
Mg, Si-Si, Si-Mg and Mg-Si) for ”nano tip aged” samples, see Table 6.1.
Values > 1 for the ratio indicate clustering. Results shown in a) corre-
spond to the whole dataset, in comparison to b) (same data as in main)
where regions of interest are shown.

Figure 6.7: ”nano tip aged 01” detector hitmaps for all atoms ”detector
hitmap”, Si atoms and Mg atoms respectively. Regions of interest: Ne-
glected data is darkened in the detector hitmap and the borderline used
is drawn. The used borderlines are also drawn in the Si and Mg detector
hitmaps. The region of interest is centered around the (002) pole.

96

6.6 Supplementary Material

Table 6.1: Overview of examined experiments and samples.

Sample name Time bulk RT Prep. T tip-aging t at RT Mg[%] Si[%] Size

nano tip aged 01 0 -40◦ C 10’ 0.27 0.97 5.2

30’ 0.27 0.96 5.6

60’ 0.27 0.95 5.6

180’ 0.26 0.94 6.3

360’ 0.26 0.94 6.3

23h 0.26 0.93 7.6

1 week 0.26 0.95 8.9

3 weeks 0.25 0.92 11.5

nano tip aged 02 0 -40◦ C 30’ 0.27 1.05 9

130’ 0.26 1.00 6.9

bulk aged 01 9’ RT 3 weeks 0.36 1.02 21.4

6 weeks 0.35 1.01 10.2

bulk aged 02 1 week RT 2 weeks 0.40 1.20 6.3

bulk aged 03 1 week RT 1 day 0.38 0.97 2.8

1 Time at room temperature after quenching at bulk dimensions (rods 0.7×0.7×20 mm).
2 Ambient temperature of the sample preparation location.
3 Time during natural aging in the tip dimensions.
4 Mg, molar percent of the used reconstruction, no un-ranged ions counted.
5 Si, molar percent of the used reconstruction, no un-ranged ions counted.
6 Number of atoms, in millions, for the used .pos file (whole dataset).

Figure 6.8: ”nano tip aged 02” detector hitmaps for all atoms ”detector
hitmap”, Si atoms and Mg atoms respectively. Regions of interest: Ne-
glected data is darkened in the detector hitmap and the borderline used
is drawn. The used borderlines are also drawn in the Si and Mg detector
hitmaps. The region of interest is centered around the (111) pole.

97

6.6 Supplementary Material

Figure 6.9: ”bulk aged 01” detector hitmaps for all atoms ”detector
hitmap”, Si atoms and Mg atoms respectively. Regions of interest: Ne-
glected data is darkened in the detector hitmap and the borderline used
is drawn. The used borderlines are also drawn in the Si and Mg detector
hitmaps. The neglected data is near the (111)-(022) zone line, the region
of interest is the supplementary area.

Figure 6.10: ”bulk aged 02” detector hitmaps for all atoms ”detector
hitmap”, Si atoms and Mg atoms respectively. Regions of interest: Ne-
glected data is darkened in the detector hitmap and the borderline used
is drawn. The used borderlines are also drawn in the Si and Mg detector
hitmaps. The (002) pole is seen at the edge of the detector hitmap in the
fourth quadrant.

98

6.6 Supplementary Material

Figure 6.11: ”bulk aged 03” detector hitmaps for all atoms ”detector
hitmap”, Si atoms and Mg atoms respectively. Regions of interest: Ne-
glected data is darkened in the detector hitmap and the borderline used
is drawn. The used borderlines are also drawn in the Si and Mg detector
hitmaps. The region of interest is centered around the (002) pole.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

r ∑ R
=
0R
D
F
/

r ∑ R
=
0R
D
F
ra
n
d

Mg-Mg
9' + 3 weeks
1 week + 2 weeks
9' + 6 weeks rerun
1 week + 1 day

Si-Si

1 2 3 4 5
r [nm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

r ∑ R
=
0R
D
F
/

r ∑ R
=
0R
D
F
ra
n
d

Si-Mg

1 2 3 4 5
r [nm]

Mg-Si

a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

r ∑ R
=
0R
D
F
/

r ∑ R
=
0R
D
F
ra
n
d

Mg-Mg
9' + 3 weeks
1 week + 2 weeks
9' + 6 weeks rerun
1 week + 1 day

Si-Si

1 2 3 4 5
r [nm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

r ∑ R
=
0R
D
F
/

r ∑ R
=
0R
D
F
ra
n
d

Si-Mg

1 2 3 4 5
r [nm]

Mg-Si

b)

Figure 6.12: Bulk-aging after solution heat treatment and further in-tip
aging, shown are the ratio of Equation 6.1 for the given interactions (Mg-
Mg, Si-Si, Mg-Si, Si-Mg). Values> 1 for the ratio indicate clustering. Blue
lines correspond to the sample ”bulk aged 01”, green lines correspond to
the sample ”bulk aged 02” as in Fig. 6.4. Additionally in red is the rerun
of (9’ + 3 weeks) after further 3 weeks of in-tip natural aging (9’ + 6
weeks). A reference sample, ”bulk aged 03”, is shown in cyan, with a
bulk aging time of 1 week and a further in-tip aging time of 1 day (1 week
+ 1 day). Shown are the results for the whole dataset in a) and the results
for the region of interests in b). The already obtained results do confirm
themselves: The (1 week + 1 day) shows ratios corresponding to (1 week
+ 2 weeks) and the rerun of (9’ + 3 weeks), (9’+ 6 weeks), shows again
for in-tip aging almost no change.

99

6.6 Supplementary Material

Table 6.2: Cluster search parameters for the used ”create cluster analysis”
method with IVAS 3.6.12 and resulting number densities. References are
given from which the used cluster search parameters are gained.

dmax Order Nmin L derode Nr. den-
sity ×1022

1/m3

Ref. ref. Nr.
density×1022

1/m3

0.700 1 10 0.700 0.00 58 [129, 130,
133]

122

0.750 1 10 0.750 0.00 108 [131] 130

1 1 week NA, LAR3DAP (∼ detection efficiency as reflectron fitted LEAP),
0.51%Mg, 0.94%Si atomic, maximum separation cluster search [118],
(dmax, Nmin), Data in Brief Table 6

2 300 h (12 days) NA , LEAP 3000 HR [40], 0.62%Mg, 0.93%Si mass, max-
imum separation cluster search [192], (dmax, Nmin), datapoint from Fig.
6

6.6.4 Clustersearch

For comparison to literature data, additionally a cluster search with the commercial program

IVAS 3.6.12 (”create cluster analysis”) was carried out for ”bulk aged 02”. The differently

used cluster search parameters and resulting number densities are given in Table 6.2. The

number density is not a very robust measure and can strongly depent on input parameters

as can be seen. However, our measurements do correspond to the values of the literature

for 1 week NA. Although several limitations should be considered: maximum seperation

cluster search could depent on which software version is used for analysis [62]. Different

compositions are used in different literature studies. It is visually obtained that parameters

as in Ref. [129, 130, 133] for this dataset lead to an underestimation of the amount of clusters,

possibly due to difference in solute content.

6.6.5 Non-equilibrium vacancy evolution

For completeness additionally in Fig. 6.13 the vacancy evolution is simulated for the used

alloy with vacancy trapping for Mg and Si in comparison to the results of main Fig. 6.3.

100

6.6 Supplementary Material

10-2 10-1 100 101 102 103 104 105
10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3
30'

va
ca

nc
y

fra
ct

io
n

time [s]

1'

pure Al alloy tip diameter
 100 µm
 10 µm
 1 µm
 100 nm

0

100

200

300

400

500

te
m

pe
ra

tu
re

 [°
C

]

Figure 6.13: Simulation of the non-equilibrium vacancy evolution. Cal-
culated non-equilibrium vacancy fraction over time and temperature upon
quenching and natural aging for pure Al and the used alloy (dashed lines)
with solutes as trapping sites. Vacancy binding energies of 5000, 1000 and
0 J/mol for respectively Si, Mg and Cu are used. [193] Additional lines for
1’ and 30’ are added as visual guidelines.

101

Chapter 7

Summary & Outlook

An extensive literature survey on existing information of clustering in aluminum alloys was

realized within a review paper included in the introduction of the thesis. Characterization

methods were discussed in general and results for the important AlMgSi alloys were presented

in detail. Results of indirect methods and especially, results of atom probe tomography, as

direct method, were investigated and summarized.

In-depth understanding of existing analysis methods in atom probe tomography was estab-

lished and an independent data analysis approach, on a script basis, was formulated. Starting

from considerations regarding the reconstruction algorithm, over the ranging process, to the

spatial analysis as major part, several methods were implemented. Thereof a parameter free

analysis method, based on the radial distribution function formalism, is chosen to be used

as best measure for clustering.

A special sample production strategy was developed and applied to access the time-region

below 60-100 min of natural aging via atom probe tomography: including quenching samples

into LN2, micro-polishing at arctic temperatures and a cryo-transfer to an atom probe.

With the first results of the realized experiments it could be shown that, no significant clus-

ter amount can be detected after quenching AlMgSi alloys, and the as-quenched state can

be accessed, with atom probe tomography.

Moreover, experiments with in-situ natural aging of atom probe tomography tips did not

show an increasing amount of the clustering measure with increasing time. Samples natural

aged at bulk material in comparison showed significant amount of clustering. It is concluded

that natural aging not only depends on the storage time at room temperature, as is known

in natural aging for more than 110 years, but also shows a pronounced size effect.

It was reasoned that the sample surface acts as vacancy sink. With simulations it was

demonstrated clearly that non-equilibrium diffusion effectively stops very quickly, when the

sample size approaches the nanometer range. Moreover it was shown that, for small dimen-

sions it is also impossible to reach a significant fraction of non-equilibrium vacancies upon

rapid quenching.

102

This findings not only affect clustering in Al alloys, but all substitutional diffusion processes

in metals based on non-equilibrium vacancies.

In general the size dependency has to be considered when in-situ high resolution microscopy

techniques, such as transmission electron microscopy or atom probe tomography, are utilised

to study non-equilibrium kinetics in bulk materials. We conclude that atom probe tomog-

raphy results for clustering over the last 20 years may have been influenced by ill definition

of the applied natural aging time, this could explain differing results on short natural aging.

With this thesis a basis was created for the critical assessment of published literature regard-

ing clustering in aluminum alloys. Based on our investigations of the relationship of hitmap

to region-of-interest choice, future APT investigations will be able to estimate the effect of

field-evaporation artefacts on the spatial analysis for clustering. Further, additional exper-

iments with the applied approach will give consistent information on the evolution of clus-

tering in AlMgSi and other Al alloys. A wrong linkage between kinetics of non-equilibrium

vacancy driven reactions at bulk dimensions and the kinetics at nanometer dimensions can

now be avoided.

“God made the bulk; surfaces were invented by the devil.” – Wolfgang Pauli

103

Bibliography

[1] F. Ostermann, Anwendungstechnologie Aluminium, Vol. 3 (Springer Vieweg, Berlin,

Heidelberg, 2015).

[2] P. Brenner and H. Kostron, Zeitschrift für Metallkunde 31. Jahrgang, 89 (1939).

[3] P. Dumitraschkewitz, S. S. A. Gerstl, L. T. Stephenson, P. J. Uggowitzer, and

S. Pogatscher, Advanced Engineering Materials 2012, 1800255 (2018).

[4] J. Banhart, C. S. T. Chang, Z. Liang, N. Wanderka, M. D. H. Lay, and A. J. Hill,

Advanced engineering materials 12, 559 (2010).

[5] Gesamtverband der Aluminiumindustrie (GDA) e.V., (2012).

[6] M. Murayama and K. Hono, Acta Materialia 47, 1537 (1999).

[7] G. A. Edwards, K. Stiller, G. L. Dunlop, and M. J. Couper, Acta Materialia 46, 3893

(1998).

[8] Simon P. Ringer, Kazuhiro Hono, Toshio Sakurai, and Ian J. Polmear, Scripta Mate-

rialia 36 (1997).

[9] S. Kim, J. Kim, H. Tezuka, E. Kobayashi, and T. Sato, Materials Transactions 54,

297 (2013).

[10] Y. Birol, Materials Science and Engineering: A 391, 175 (2005).

[11] C. S. T. Chang, I. Wieler, N. Wanderka, and J. Banhart, Ultramicroscopy 109, 585

(2009).

[12] S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, and P. J. Uggowitzer, Acta

Materialia 59, 3352 (2011).

[13] R. Marceau, G. Sha, R. Ferragut, A. Dupasquier, and S. P. Ringer, Acta Materialia

58, 4923 (2010).

104

http://dx.doi.org/10.1002/adem.201800255
http://dx.doi.org/10.1016/j.msea.2004.08.069
http://dx.doi.org/10.1016/j.ultramic.2008.12.002
http://dx.doi.org/10.1016/j.ultramic.2008.12.002
http://dx.doi.org/10.1016/j.actamat.2011.02.010
http://dx.doi.org/10.1016/j.actamat.2011.02.010
http://dx.doi.org/ 10.1016/j.actamat.2010.05.020
http://dx.doi.org/ 10.1016/j.actamat.2010.05.020

BIBLIOGRAPHY

[14] A. Wilm, Metallurgie: Zeitschrift für die gesamte Hüttenkunde 8, 225 (1911).

[15] N. E. Prasad and R. J. Wanhill, Aerospace Materials and Material Technologies

(Springer, 2017).

[16] S. P. Ringer, Materials Science Forum 519-521, 25 (2006).

[17] C. D. Marioara, H. Nordmark, S. J. Andersen, and R. Holmestad, Journal of Materials

Science 41, 471 (2006).

[18] E. A. Mørtsell, C. D. Marioara, S. J. Andersen, J. Røyset, O. Reiso, and R. Holmestad,

Metallurgical and Materials Transactions A 46, 4369 (2015).

[19] C. D. Marioara, S. J. Andersen, J. Jansen, and H. W. Zandbergen, Acta Materialia

49, 321 (2001).

[20] P. M. Derlet, S. J. Andersen, C. D. Marioara, and A. Frøseth, Journal of Physics:

Condensed Matter 14, 4011 (2002).

[21] S. J. Andersen, H. W. Zandbergen, J. Jansen, C. Traeholt, U. Tundal, and O. Reiso,

Acta Materialia 46, 3283 (1998).

[22] R. Vissers, M. A. van Huis, J. Jansen, H. W. Zandbergen, C. D. Marioara, and S. J.

Andersen, Acta Materialia 55, 3815 (2007).

[23] S. J. Andersen, C. D. Marioara, R. Vissers, A. Frøseth, and H. W. Zandbergen,

Materials Science and Engineering: A 444, 157 (2007).

[24] S. J. Andersen, C. D. Marioara, A. Frøseth, R. Vissers, and H. W. Zandbergen,

Materials Science and Engineering: A 390, 127 (2005).

[25] R. Vissers, C. D. Marioara, S. J. Andersen, and R. Holmestad, Aluminium Alloys.

Their Physical and Mechanical Properties , 1263 (2008).

[26] J. Banhart, ASM Handbook 4E (2016).

[27] M. H. Jacobs, The Philosophical Magazine: A Journal of Theoretical Experimental

and Applied Physics 26, 1 (1972).

[28] S. D. Dumolt, D. E. Laughlin, and J. C. Williams, Scripta Metallurgica 18, 1347

(1984).

[29] D. Chakrabarti and D. E. Laughlin, Progress in Materials Science 49, 389 (2004).

[30] C. D. Marioara, S. J. Andersen, T. N. Stene, H. Hasting, J. Walmsley, Van Helvoort,

A. T. J., and R. Holmestad, Philosophical Magazine 87, 3385 (2007).

105

http://dx.doi.org/10.4028/0-87849-408-1.25
http://dx.doi.org/10.1007/s10853-005-2470-1
http://dx.doi.org/10.1007/s10853-005-2470-1
http://dx.doi.org/ 10.1007/s11661-015-3039-5
http://stacks.iop.org/0953-8984/14/i=15/a=315
http://stacks.iop.org/0953-8984/14/i=15/a=315
http://dx.doi.org/10.1016/j.actamat.2007.02.032
http://dx.doi.org/10.1016/j.msea.2006.08.084
http://dx.doi.org/10.1016/j.msea.2004.09.019
http://dx.doi.org/10.1080/14786437208221015
http://dx.doi.org/10.1080/14786437208221015
http://dx.doi.org/10.1016/S0079-6425(03)00031-8
http://dx.doi.org/ 10.1080/14786430701287377

BIBLIOGRAPHY

[31] J. M. Silcock, Journal of the Institute of Metals 89, 203 (1961).

[32] A. Deschamps, T. J. Bastow, F. de Geuser, A. J. Hill, and C. R. Hutchinson, Acta

Materialia 59, 2918 (2011).

[33] S. C. Wang, M. J. Starink, and N. Gao, Scripta Materialia 54, 287 (2006).

[34] S. C. Wang and M. J. Starink, Materials Science and Engineering: A 386, 156 (2004).

[35] G. Bergman, J. Waugh, and L. Pauling, Acta Cryst. 10, 254 (1957).

[36] J. H. Chen, E. Costan, M. A. van Huis, Q. Xu, and H. W. Zandbergen, Science (New

York, N.Y.) 312, 416 (2006).

[37] S. J. Andersen, C. D. Marioara, J. Friis, R. Bjørge, Q. Du, I. G. Ringdalen, S. Wenner,

E. A. Mørtsell, R. Holmestad, T. Saito, J. Røyset, and O. Reiso, in Materials Science

Forum, Vol. 877 (2017) pp. 461–470.

[38] S. Pogatscher, H. Antrekowitsch, H. Leitner, D. Pöschmann, Z. L. Zhang, and P. J.

Uggowitzer, Acta Materialia 60, 4496 (2012).

[39] S. Pogatscher, H. Antrekowitsch, T. Ebner, and P. Uggowitzer, Light Metals 2012 ,

415 (2012).

[40] Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Metallurgical and Materials Transac-

tions A 45, 5906 (2014).

[41] S. Pogatscher, E. Kozeschnik, H. Antrekowitsch, M. Werinos, S. Gerstl, J. F. Löffler,

and P. J. Uggowitzer, Scripta Materialia 89, 53 (2014).

[42] F. D. Fischer, J. Svoboda, F. Appel, and E. Kozeschnik, Acta Materialia 59, 3463

(2011).

[43] K. Takata, K. Ushioda, R. Akiyoshi, K.-i. Ikeda, J. Takahashi, S. Hata, and K. Kaneko,

Materials Transactions 58, 728 (2017).

[44] S. Pogatscher, H. Antrekowitsch, M. Werinos, F. Moszner, S. S. A. Gerstl, M. F.

Francis, W. A. Curtin, J. F. Löffler, and P. J. Uggowitzer, Physical Review Letters

112, 225701 (2014).

[45] M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, P. J. Uggowitzer, and

S. Pogatscher, Materials & Design 107, 257 (2016).

[46] S. Pogatscher, H. Antrekowitsch, M. Werinos, G. Rank, A. Kaiß, R. Prillhofer, Löffler,

Jörg, F., and P. Uggowitzer, Light Metals 2015 , 265 (2015).

106

http://dx.doi.org/10.1016/j.actamat.2011.01.027
http://dx.doi.org/10.1016/j.actamat.2011.01.027
http://dx.doi.org/10.1016/j.scriptamat.2005.09.010
http://dx.doi.org/10.1016/j.msea.2004.07.006
http://dx.doi.org/10.1016/j.actamat.2012.04.026
http://dx.doi.org/ 10.1007/s11661-014-2548-y
http://dx.doi.org/ 10.1007/s11661-014-2548-y
http://dx.doi.org/10.1016/j.scriptamat.2014.06.025
http://dx.doi.org/ 10.1016/j.actamat.2011.02.020
http://dx.doi.org/ 10.1016/j.actamat.2011.02.020
http://dx.doi.org/ 10.2320/matertrans.M2016258
http://dx.doi.org/ 10.1103/PhysRevLett.112.225701
http://dx.doi.org/ 10.1103/PhysRevLett.112.225701
http://dx.doi.org/10.1016/j.matdes.2016.06.014
http://dx.doi.org/ 10.1002/9781119093435

BIBLIOGRAPHY

[47] M. Werinos, H. Antrekowitsch, E. Kozeschnik, T. Ebner, F. Moszner, J. F. Löffler,

P. J. Uggowitzer, and S. Pogatscher, Scripta Materialia 112, 148 (2016).

[48] M. Liu and J. Banhart, Materials Science and Engineering: A 658, 238 (2016).

[49] M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, W. A. Curtin, P. J. Uggowitzer,

and S. Pogatscher, Acta Materialia 118, 296 (2016).

[50] H. K. Hardy, Journal of the Institute of Metals 78, 169 (1950).

[51] C. Wolverton, Acta Materialia 55, 5867 (2007).

[52] R. Marceau, G. Sha, R. N. Lumley, and S. P. Ringer, Acta Materialia 58, 1795 (2010).

[53] K. Strobel, M. D. Lay, M. A. Easton, L. Sweet, S. Zhu, N. C. Parson, and A. J. Hill,

Materials Characterization 111, 43 (2016).

[54] G. Gottstein, Physikalische Grundlagen der Materialkunde, 3rd ed., Springer-Lehrbuch

(Springer, Berlin, Heidelberg, 2007).

[55] F. R. Fickett, Cryogenics 11, 349 (1971).

[56] Stefan Pogatscher, Phase transitions in quenched nonferrous metallic systems, Habili-

tationsschrift, Montanuniversität Leoben, Leoben (2017).

[57] C. Panseri and T. Federighi, J. Inst. Metals 94, 99 (1966).

[58] A. J. Hillel and P. L. Rossiter, Philosophical Magazine B 44, 383 (1981).

[59] I. Kovacs, J. Lendvai, and E. Nagy, Acta Metallurgica 20, 975 (1972).

[60] Shoichi Hirosawa, Tatsuo Sato, Junichi Yokota, and Akihiko Kamio, Materials Trans-

actions, JIM 39, 139 (1998).

[61] H. S. Zurob and H. Seyedrezai, Scripta Materialia 61, 141 (2009).

[62] L. Cao, P. A. Rometsch, and M. J. Couper, Materials Science and Engineering: A

559, 257 (2013).

[63] H. Seyedrezai, D. Grebennikov, P. Mascher, and H. S. Zurob, Materials Science and

Engineering: A 525, 186 (2009).

[64] S. Esmaeili, D. Vaumousse, M. W. Zandbergen, W. J. Poole, A. Cerezo, and D. J.

Lloyd, Philosophical Magazine 87, 3797 (2007).

[65] Mittemeijer, Journal of Materials Science 27, 3977 (1992).

[66] B. Milkereit, O. Kessler, and C. Schick, Thermochimica Acta 492, 73 (2009).

107

http://dx.doi.org/ 10.1016/j.scriptamat.2015.09.037
http://dx.doi.org/10.1016/j.msea.2016.01.095
http://dx.doi.org/ 10.1016/j.actamat.2016.07.048
http://dx.doi.org/10.1016/j.actamat.2007.06.039
http://dx.doi.org/10.1016/j.actamat.2009.11.021
http://dx.doi.org/ 10.1016/j.matchar.2015.11.009
http://dx.doi.org/10.1016/j.scriptamat.2009.03.025
http://dx.doi.org/10.1016/j.msea.2012.08.093
http://dx.doi.org/10.1016/j.msea.2012.08.093
http://dx.doi.org/10.1016/j.msea.2009.06.054
http://dx.doi.org/10.1016/j.msea.2009.06.054
http://dx.doi.org/ 10.1080/14786430701408312
http://dx.doi.org/10.1016/j.tca.2009.01.027

BIBLIOGRAPHY

[67] B. Milkereit, N. Wanderka, C. Schick, and O. Kessler, Materials Science and Engi-

neering: A 550, 87 (2012).

[68] M. Luckabauer, E. Hengge, G. Klinser, W. Sprengel, and R. Würschum, in Mag-

nesium Technology 2017, edited by K. N. Solanki, D. Orlov, A. Singh, and N. R.

Neelameggham (Springer International Publishing, Cham, 2017) pp. 669–674.

[69] J. Osten, B. Milkereit, C. Schick, and O. Kessler, Materials 8, 2830 (2015).

[70] I. Dutta and S. M. Allen, Journal of Materials Science Letters 10, 323 (1991).

[71] A. K. Gupta, D. J. Lloyd, and S. A. Court, Materials Science and Engineering: A

301, 140 (2001).

[72] A. K. Gupta, D. J. Lloyd, and S. A. Court, Materials Science and Engineering: A

316, 11 (2001).

[73] A. Serizawa, S. Hirosawa, and T. Sato, Metallurgical and Materials Transactions A

39, 243 (2008).

[74] S. Esmaeili, D. J. Lloyd, and W. J. Poole, Acta Materialia 51, 3467 (2003).

[75] C. S. T. Chang and J. Banhart, Metallurgical and Materials Transactions A 42, 1960

(2011).

[76] Y. Birol and M. Karlik, Scripta Materialia 55, 625 (2006).

[77] Y. Yan, Investigation of the negative and positive effects of natural aging on artificial

aging response in Al-Mg-Si alloys, Phd. thesis, Technischen Universität Berlin, Berlin

(2014).

[78] H. E. Kissinger, Analytical chemistry 29, 1702 (1957).

[79] S. Pogatscher, H. Antrekowitsch, and P. J. Uggowitzer, Materials Letters 100, 163

(2013).

[80] S. Pogatscher, H. Antrekowitsch, and P. J. Uggowitzer, Acta Materialia 60, 5545

(2012).

[81] O. R. Mhyr, O. Grong, and S. J. Andersen, Acta Materialia 49 (2001).

[82] M. J. Starink, L. F. Cao, and P. A. Rometsch, Acta Materialia 60, 4194 (2012).

[83] M. J. Starink and S. C. Wang, Acta Materialia 57, 2376 (2009).

[84] Q. Zhao, Scripta Materialia 84-85, 43 (2014).

108

http://dx.doi.org/ 10.1016/j.msea.2012.04.033
http://dx.doi.org/ 10.1016/j.msea.2012.04.033
http://dx.doi.org/ 10.3390/ma8052830
http://dx.doi.org/10.1016/S0921-5093(00)01814-1
http://dx.doi.org/10.1016/S0921-5093(00)01814-1
http://dx.doi.org/10.1016/S0921-5093(01)01247-3
http://dx.doi.org/10.1016/S0921-5093(01)01247-3
http://dx.doi.org/10.1007/s11661-007-9438-5
http://dx.doi.org/10.1007/s11661-007-9438-5
http://dx.doi.org/10.1016/S1359-6454(03)00167-8
http://dx.doi.org/10.1007/s11661-010-0596-5
http://dx.doi.org/10.1007/s11661-010-0596-5
http://dx.doi.org/10.1016/j.scriptamat.2006.06.009
http://dx.doi.org/10.1016/j.matlet.2013.03.003
http://dx.doi.org/10.1016/j.matlet.2013.03.003
http://dx.doi.org/10.1016/j.actamat.2012.06.061
http://dx.doi.org/10.1016/j.actamat.2012.06.061
http://dx.doi.org/10.1016/j.actamat.2012.04.032
http://dx.doi.org/10.1016/j.actamat.2009.01.021
http://dx.doi.org/10.1016/j.scriptamat.2014.04.018

BIBLIOGRAPHY

[85] Y. Birol, Scripta Materialia 54, 2003 (2006).

[86] H. Zhong, P. A. Rometsch, Q. Zhu, L. Cao, and Y. Estrin, Materials Science and

Engineering: A 687, 323 (2017).

[87] J. Banhart, M. D. H. Lay, C. S. T. Chang, and A. J. Hill, Physical Review B 83, 89

(2011).

[88] M. Liu, J. Čı́žek, C. S. Chang, and J. Banhart, Acta Materialia 91, 355 (2015).

[89] P. Schloth, A. Menzel, J. L. Fife, J. N. Wagner, H. van Swygenhoven, and J.-M.

Drezet, Scripta Materialia 108, 56 (2015).

[90] P. Schloth, J. N. Wagner, J. L. Fife, A. Menzel, and J.-M. Drezet, Applied Physics

Letters 105 (2014).

[91] K. Nishimura, K. Matsuda, Q. Lei, T. Namiki, S. Lee, N. Nunomra, T. Matsuzaki,

and W. D. Hutchison, Materials Transactions (2016).

[92] S. Wenner, R. Holmestad, K. Matsuda, K. Nishimura, T. Matsuzaki, D. Tomono, F. L.

Pratt, and C. D. Marioara, Physical Review B 86, 126 (2012).

[93] S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F. L. Pratt, C. D.

Marioara, and R. Holmestad, Acta Materialia 61, 6082 (2013).

[94] M. K. Miller and R. Forbes, Atom probe tomography: The local electrode atom probe

(Springer, New York, 2014).

[95] B. Gault, M. P. Moody, J. M. Cairney, and S. P. Ringer, eds., Atom probe microscopy ,

Springer Series in Materials Science, Vol. 160 (Springer, New York, 2012).

[96] D. J. Larson, T. J. Prosa, Ulfig, Robert, M., B. P. Geiser, and T. F. Kelly, Local

electrode atom probe tomography: A User’s Guide (Springer, New York, 2013).

[97] J. Buha, R. N. Lumley, A. G. Crosky, and K. Hono, Acta Materialia 55, 3015 (2007).

[98] M. K. Miller, A. Cerezo, M. G. Hetherington, and G. D. W. Smith, Atom probe field

ion microscopy (Oxford Science Publications - Clarendon Press, Oxford, 1996).

[99] P. Bas, A. Bostel, B. Deconihout, and D. Blavette, Applied Surface Science 87-88,

298 (1995).

[100] F. Vurpillot, B. Gault, B. P. Geiser, and D. J. Larson, Ultramicroscopy 132, 19 (2013).

[101] Y. Aruga, M. Kozuka, and T. Sato, Journal of Alloys and Compounds , 1115 (2018).

109

http://dx.doi.org/10.1016/j.scriptamat.2006.03.022
http://dx.doi.org/ 10.1016/j.msea.2017.01.051
http://dx.doi.org/ 10.1016/j.msea.2017.01.051
http://dx.doi.org/10.1103/PhysRevB.83.014101
http://dx.doi.org/10.1103/PhysRevB.83.014101
http://dx.doi.org/ 10.1016/j.actamat.2015.02.019
http://dx.doi.org/ 10.1016/j.scriptamat.2015.06.015
http://dx.doi.org/ 10.1103/PhysRevB.86.104201
http://dx.doi.org/ 10.1016/j.actamat.2013.06.050
http://dx.doi.org/ 10.1007/978-1-4614-3436-8
http://dx.doi.org/ 10.1016/j.actamat.2007.01.006
http://dx.doi.org/10.1016/0169-4332(94)00561-3
http://dx.doi.org/10.1016/0169-4332(94)00561-3
http://dx.doi.org/10.1016/j.ultramic.2013.03.010
http://dx.doi.org/10.1016/j.jallcom.2017.10.220

BIBLIOGRAPHY

[102] L. T. Stephenson, M. P. Moody, B. Gault, and S. P. Ringer, Microscopy research and

technique 74, 799 (2011).

[103] B. Gault, X. Y. Cui, M. P. Moody, F. de Geuser, C. Sigli, S. P. Ringer, and A. De-

schamps, Scripta Materialia 66, 903 (2012).

[104] T. Boll, T. Al-Kassab, Y. Yuan, and Z. G. Liu, Ultramicroscopy 107, 796 (2007).

[105] M. P. Moody, B. Gault, L. T. Stephenson, R. K. W. Marceau, R. C. Powles, A. V.

Ceguerra, A. J. Breen, and S. P. Ringer, Microscopy and microanalysis 17, 226 (2011).

[106] M. P. Moody, A. V. Ceguerra, A. J. Breen, X. Y. Cui, B. Gault, L. T. Stephenson,

R. K. W. Marceau, R. C. Powles, and S. P. Ringer, Nature communications 5, 5501

(2014).

[107] B. P. Geiser, T. F. Kelly, D. J. Larson, J. Schneir, and J. P. Roberts, Microscopy and

microanalysis 13, 437 (2007).

[108] B. P. Geiser, D. J. Larson, E. Oltman, S. Gerstl, D. Reinhard, T. F. Kelly, and T. J.

Prosa, Microscopy and Microanalysis 15, 292 (2009).

[109] B. Gault, M. P. Moody, F. de Geuser, G. Tsafnat, A. La Fontaine, L. T. Stephenson,

D. Haley, and S. P. Ringer, Journal of Applied Physics 105, 034913 (2009).

[110] S. K. Suram and K. Rajan, Ultramicroscopy 132, 136 (2013).

[111] F. de Geuser and B. Gault, Microscopy and Microanalysis 23, 238 (2017).

[112] Daniel Beinke, Christian Oberdorfer, and Guido Schmitz, Ultramicroscopy 165, 34

(2016).

[113] B. Gault, F. Danoix, K. Hoummada, D. Mangelinck, and H. Leitner, Ultramicroscopy

113, 182 (2012).

[114] S. Pogatscher, S. Gerstl, J. F. Löffler, and P. J. Uggowitzer, Acta Physica Polonica A

128, 643 (2015).

[115] E. A. Marquis and F. Vurpillot, Microscopy and microanalysis 14, 561 (2008).

[116] J. M. Hyde and C. A. English, MRS Proceedings 650, R6.6 (2000).

[117] L. Ertöz, M. Steinbach, and V. Kumar, in Proceedings of the 2003 SIAM International

Conference on Data Mining (2003) pp. 47–58.

[118] D. Vaumousse, A. Cerezo, and P. J. Warren, Ultramicroscopy 95, 215 (2003).

110

http://dx.doi.org/10.1002/jemt.20958
http://dx.doi.org/10.1002/jemt.20958
http://dx.doi.org/ 10.1016/j.scriptamat.2012.02.021
http://dx.doi.org/ 10.1016/j.ultramic.2007.02.011
http://dx.doi.org/ 10.1017/S1431927610094535
http://dx.doi.org/10.1038/ncomms6501
http://dx.doi.org/10.1038/ncomms6501
http://dx.doi.org/ 10.1017/S1431927607070948
http://dx.doi.org/ 10.1017/S1431927607070948
http://dx.doi.org/ 10.1017/S1431927609098249
http://dx.doi.org/ 10.1063/1.3068197
http://dx.doi.org/10.1016/j.ultramic.2013.02.013
http://dx.doi.org/10.1017/S1431927616012721
http://dx.doi.org/ 10.1016/j.ultramic.2016.03.008
http://dx.doi.org/ 10.1016/j.ultramic.2016.03.008
http://dx.doi.org/ 10.1016/j.ultramic.2011.06.005
http://dx.doi.org/ 10.1016/j.ultramic.2011.06.005
http://dx.doi.org/10.12693/APhysPolA.128.643
http://dx.doi.org/10.12693/APhysPolA.128.643
http://dx.doi.org/10.1017/S1431927608080793
http://dx.doi.org/10.1557/PROC-650-R6.6
http://dx.doi.org/10.1016/S0304-3991(02)00319-4

BIBLIOGRAPHY

[119] L. T. Stephenson, M. P. Moody, P. V. Liddicoat, and S. P. Ringer, Microscopy and

microanalysis 13, 448 (2007).

[120] A. V. Ceguerra, M. P. Moody, L. T. Stephenson, R. K. Marceau, and S. P. Ringer,

Philosophical Magazine 90, 1657 (2010).

[121] S. Samudrala, O. Wodo, S. K. Suram, S. Broderick, K. Rajan, and B. Ganapathysub-

ramanian, Computational Materials Science 77, 335 (2013).

[122] J. Zelenty, A. Dahl, J. Hyde, G. D. W. Smith, and M. P. Moody, Microscopy and

Microanalysis 23, 269 (2017).

[123] W. Lefebvre, T. Philippe, and F. Vurpillot, Ultramicroscopy 111, 200 (2011).

[124] P. Felfer, A. V. Ceguerra, S. P. Ringer, and J. M. Cairney, Ultramicroscopy 150, 30

(2015).

[125] S. Srinivasan, K. Kaluskar, S. Dumpala, S. Broderick, and K. Rajan, Ultramicroscopy

159 Pt 2, 381 (2015).

[126] J. M. Hyde, E. A. Marquis, K. B. Wilford, and T. J. Williams, Ultramicroscopy 111,

440 (2011).

[127] C. A. Williams, D. Haley, E. A. Marquis, G. D. W. Smith, and M. P. Moody, Ultra-

microscopy 132, 271 (2013).

[128] E. A. Jägle, P.-P. Choi, and D. Raabe, Microscopy and Microanalysis 20, 1662 (2014).

[129] M. W. Zandbergen, Q. Xu, A. Cerezo, and G. Smith, Acta Materialia 101, 136 (2015).

[130] M. W. Zandbergen, Q. Xu, A. Cerezo, and G. Smith, Data in Brief 5, 626 (2015).

[131] Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Materials Science and Engineering: A

631, 86 (2015).

[132] Z. Jia, L. Ding, L. Cao, R. Sanders, S. Li, and Q. Liu, Metallurgical and Materials

Transactions A 48, 459 (2017).

[133] M. W. Zandbergen, A. Cerezo, and G. Smith, Acta Materialia 101, 149 (2015).

[134] Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Scripta Materialia 116, 82 (2016).

[135] R. Marceau, A. de Vaucorbeil, G. Sha, S. P. Ringer, and W. J. Poole, Acta Materialia

61, 7285 (2013).

[136] M. Torsæter, H. S. Hasting, W. Lefebvre, C. D. Marioara, J. C. Walmsley, S. J.

Andersen, and R. Holmestad, Journal of applied physics 108, 073527 (2010).

111

http://dx.doi.org/10.1017/S1431927607070900
http://dx.doi.org/10.1017/S1431927607070900
http://dx.doi.org/10.1080/14786430903441475
http://dx.doi.org/ 10.1016/j.commatsci.2013.04.038
http://dx.doi.org/ 10.1017/S1431927617000320
http://dx.doi.org/ 10.1017/S1431927617000320
http://dx.doi.org/10.1016/j.ultramic.2010.11.034
http://dx.doi.org/10.1016/j.ultramic.2014.11.015
http://dx.doi.org/10.1016/j.ultramic.2014.11.015
http://dx.doi.org/10.1016/j.ultramic.2015.03.012
http://dx.doi.org/10.1016/j.ultramic.2015.03.012
http://dx.doi.org/10.1016/j.ultramic.2010.12.015
http://dx.doi.org/10.1016/j.ultramic.2010.12.015
http://dx.doi.org/ 10.1016/j.ultramic.2012.12.011
http://dx.doi.org/ 10.1016/j.ultramic.2012.12.011
http://dx.doi.org/10.1017/S1431927614013294
http://dx.doi.org/ 10.1016/j.actamat.2015.08.017
http://dx.doi.org/ 10.1016/j.dib.2015.09.045
http://dx.doi.org/ 10.1016/j.msea.2015.02.035
http://dx.doi.org/ 10.1016/j.msea.2015.02.035
http://dx.doi.org/10.1007/s11661-016-3850-7
http://dx.doi.org/10.1007/s11661-016-3850-7
http://dx.doi.org/10.1016/j.actamat.2015.08.018
http://dx.doi.org/ 10.1016/j.scriptamat.2016.01.019
http://dx.doi.org/10.1016/j.actamat.2013.08.033
http://dx.doi.org/10.1016/j.actamat.2013.08.033
http://dx.doi.org/ 10.1063/1.3481090

BIBLIOGRAPHY

[137] L. Cao, P. A. Rometsch, and M. J. Couper, Materials Science and Engineering: A

571, 77 (2013).

[138] F. de Geuser, W. Lefebvre, and D. Blavette, Philosophical Magazine Letters 86, 227

(2006).

[139] T. Philippe, S. Duguay, and D. Blavette, Ultramicroscopy 110, 862 (2010).

[140] D. Haley, T. Petersen, G. Barton, and S. P. Ringer, Philosophical Magazine 89, 925

(2009).

[141] A. V. Ceguerra, M. P. Moody, R. C. Powles, T. C. Petersen, R. K. W. Marceau, and

S. P. Ringer, Acta crystallographica. Section A, Foundations of crystallography 68,

547 (2012).

[142] A. Serizawa, T. Sato, and W. J. Poole, Philosophical Magazine Letters 90, 279 (2010).

[143] S. Pogatscher, H. Antrekowitsch, H. Leitner, A. S. Sologubenko, and P. J. Uggowitzer,

Scripta Materialia 68, 158 (2013).

[144] P. Dumitraschkewitz, S. S. A. Gerstl, P. J. Uggowitzer, J. F. Löffler, and S. Pogatscher,

Advanced Engineering Materials 19, 1600668 (2017).

[145] A. Poznak, R. Marceau, and P. G. Sanders, Materials Science and Engineering: A

721, 47 (2018).

[146] Y. Aruga, S. Kim, M. Kozuka, E. Kobayashi, and T. Sato, Materials Science and

Engineering: A 718, 371 (2018).

[147] E. A. Marquis and J. M. Hyde, Materials Science and Engineering: R: Reports 69, 37

(2010).

[148] A. Mottura, N. Warnken, M. K. Miller, M. W. Finnis, and R. C. Reed, Acta Materialia

58, 931 (2010).

[149] S. S. Gerstl and R. Wepf, Microscopy and Microanalysis 21, 517 (2015).

[150] D. E. Perea, S. S. A. Gerstl, J. Chin, B. Hirschi, and J. E. Evans, Advanced structural

and chemical imaging 3, 12 (2017).

[151] P. A. Rometsch and L. Cao, in Proceedings of the 12th International Conference on

Aluminium Alloys (2010) pp. 389–394.

[152] G. H. Tao, C. H. Liu, J. H. Chen, Y. X. Lai, P. P. Ma, and L. M. Liu, Materials

Science and Engineering: A 642, 241 (2015).

112

http://dx.doi.org/10.1016/j.msea.2013.01.065
http://dx.doi.org/10.1016/j.msea.2013.01.065
http://dx.doi.org/10.1080/09500830600643270
http://dx.doi.org/10.1080/09500830600643270
http://dx.doi.org/10.1016/j.ultramic.2010.03.004
http://dx.doi.org/ 10.1080/14786430902821610
http://dx.doi.org/ 10.1080/14786430902821610
http://dx.doi.org/ 10.1107/S0108767312025706
http://dx.doi.org/ 10.1107/S0108767312025706
http://dx.doi.org/10.1080/09500831003633231
http://dx.doi.org/10.1016/j.scriptamat.2012.10.006
http://dx.doi.org/10.1002/adem.201600668
http://dx.doi.org/10.1016/j.msea.2018.02.074
http://dx.doi.org/10.1016/j.msea.2018.02.074
http://dx.doi.org/ 10.1016/j.msea.2018.01.086
http://dx.doi.org/ 10.1016/j.msea.2018.01.086
http://dx.doi.org/10.1016/j.mser.2010.05.001
http://dx.doi.org/10.1016/j.mser.2010.05.001
http://dx.doi.org/ 10.1016/j.actamat.2009.10.008
http://dx.doi.org/ 10.1016/j.actamat.2009.10.008
http://dx.doi.org/10.1186/s40679-017-0045-2
http://dx.doi.org/10.1186/s40679-017-0045-2
http://dx.doi.org/ 10.1016/j.msea.2015.06.090
http://dx.doi.org/ 10.1016/j.msea.2015.06.090

BIBLIOGRAPHY

[153] B. L. Dorr, Electrical design news 51, 77 (2006).

[154] M. McCauley, https://github.com/waspinator/AccelStepper (2018).

[155] M. Margolis, Arduino Cookbook: Recipes to Begin, Expand, and Enhance Your Projects

(O’Reilly Media, Inc., 2012).

[156] A. Knörig, R. Wettach, and J. Cohen, in Proceedings of the 3rd International Confer-

ence on Tangible and Embedded Interaction (ACM, 2009) pp. 351–358.

[157] G. Sha and S. Ringer, Ultramicroscopy 109, 580 (2009).

[158] IVAS, IVAS User Guide 3.6.8 (Cameca Instruments Inc., 2014).

[159] D. Haley, P. Choi, and D. Raabe, Ultramicroscopy 159, 338 (2015).

[160] A. J. London, D. Haley, and M. P. Moody, Microscopy and Microanalysis 23, 300

(2017).

[161] D. Saxey, Ultramicroscopy 111, 473 (2011).

[162] B. Gault, D. Haley, F. de Geuser, M. P. Moody, E. A. Marquis, D. J. Larson, and

B. P. Geiser, Ultramicroscopy 111, 448 (2011).

[163] B. Gault, F. de Geuser, L. T. Stephenson, M. P. Moody, B. C. Muddle, and S. P.

Ringer, Microscopy and Microanalysis 14, 296 (2008).

[164] https://github.com/oscarbranson/apt-tools.

[165] MATLAB, 8.6.0.267246 (R2015b) (The MathWorks Inc, Natick, Massachusetts, 2015).

[166] M. Muja and D. G. Lowe, IEEE transactions on pattern analysis and machine intelli-

gence 36, 2227 (2014).

[167] M. P. Moody, B. Gault, L. T. Stephenson, D. Haley, and S. P. Ringer, Ultramicroscopy

109, 815 (2009).

[168] M. P. Moody, F. Tang, B. Gault, S. P. Ringer, and J. M. Cairney, Ultramicroscopy

111, 493 (2011).

[169] L. Yao, MethodsX 3, 268 (2016).

[170] S. Kim, J. Kim, H. Tezuka, E. Kobayashi, and T. Sato, Materials Transactions 54,

297 (2013).

[171] R. Marceau, R. Ferragut, A. Dupasquier, M. M. Iglesias, and S. P. Ringer, Materials

Science Forum 519-521, 197 (2006).

113

http://dx.doi.org/10.1016/j.ultramic.2015.03.005
http://dx.doi.org/ 10.1016/j.ultramic.2010.11.016
http://dx.doi.org/ 10.1017/S1431927608080690
http://dx.doi.org/10.1109/TPAMI.2014.2321376
http://dx.doi.org/10.1109/TPAMI.2014.2321376
http://dx.doi.org/ 10.1016/j.ultramic.2009.03.016
http://dx.doi.org/ 10.1016/j.ultramic.2009.03.016
http://dx.doi.org/10.1016/j.mex.2016.03.012
http://dx.doi.org/ 10.4028/www.scientific.net/MSF.519-521.197
http://dx.doi.org/ 10.4028/www.scientific.net/MSF.519-521.197

BIBLIOGRAPHY

[172] M. P. Moody, A. Vella, S. S. Gerstl, and P. A. Bagot, MRS Bulletin 41, 40 (2016).

[173] G. van Rossum and F. L. Drake Jr, Python reference manual (Centrum voor Wiskunde

en Informatica Amsterdam, 1995).

[174] S. van der Walt, S. C. Colbert, and G. Varoquaux, Computing in Science & Engineer-

ing 13, 22 (2011).

[175] J. D. Hunter et al., Computing in science and engineering 9, 90 (2007).

[176] Blender Online Community, “Blender 2.71 - a 3d modelling and rendering package,”

(2014).

[177] L. Campagnola, A. Klein, E. Larson, C. Rossant, and N. P. Rougier, in Proceedings

of the 14th Python in Science Conference (2015).

[178] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nuclear Instruments and Methods in

Physics Research Section B: Beam Interactions with Materials and Atoms 268, 1818

(2010).

[179] S. Rubanov and P. Munroe, Journal of microscopy 214, 213 (2004).

[180] P. Dumitraschkewitz, S. S. A. Gerstl, P. J. Uggowitzer, J. F. Löffler, and S. Pogatscher,

as submitted to Nature communications (April 2019).

[181] F. Appel, D. Herrmann, F. Fischer, J. Svoboda, and E. Kozeschnik, International

Journal of Plasticity 42, 83 (2013).

[182] M. J. Aliaga, R. Schäublin, J. F. Löffler, and M. J. Caturla, Acta Materialia 101, 22

(2015).

[183] S. Li, Y. Li, Y.-C. Lo, T. Neeraj, R. Srinivasan, X. Ding, J. Sun, L. Qi, P. Gumbsch,

and J. Li, International Journal of Plasticity 74, 175 (2015).

[184] J. Buha, Materials Science and Engineering: A 492, 11 (2008).

[185] W. Xu, N. Birbilis, G. Sha, Y. Wang, J. E. Daniels, Y. Xiao, and M. Ferry, Nature

materials 14, 1229 (2015).

[186] J. Buha, Materials Science and Engineering: A 489, 127 (2008).

[187] Z. Mao, C. K. Sudbrack, K. E. Yoon, G. Martin, and D. N. Seidman, Nature materials

6, 210 (2007).

[188] Y.-S. Chen, D. Haley, S. S. A. Gerstl, A. J. London, F. Sweeney, R. A. Wepf, W. M.

Rainforth, P. A. J. Bagot, and M. P. Moody, Science 355, 1196 (2017).

114

http://dx.doi.org/10.1557/mrs.2015.311
http://www.blender.org
http://dx.doi.org/10.1111/j.0022-2720.2004.01327.x
http://dx.doi.org/10.1126/science.aal2418

BIBLIOGRAPHY

[189] M. P. Moody, A. Vella, S. S. A. Gerstl, and P. A. J. Bagot, MRS Bulletin 41, 40

(2016).

[190] C. Oberdorfer, T. Withrow, L.-J. Yu, K. Fisher, E. A. Marquis, and W. Windl,

Materials Characterization 146, 324 (2018).

[191] H. Zhao, B. Gault, D. Ponge, D. Raabe, and F. de Geuser, Scripta Materialia 154,

106 (2018).

[192] J. M. Hyde and C. A. English, MRS Proceedings 650, R6.6 (2000).

[193] D. Simonovic and M. H. F. Sluiter, Physical Review B 79, 054304 (2009).

[194] P. Dumitraschkewitz, H. Clemens, S. Mayer, and D. Holec, Applied Sciences 7, 1193

(2017).

[195] A.B. Spierings, K. Dawson, P. Dumitraschkewitz, S. Pogatscher, and K. Wegener,

Additive Manufacturing 20, 173 (2018).

115

http://dx.doi.org/ 10.1016/j.matchar.2018.05.014
http://dx.doi.org/ 10.1016/j.scriptamat.2018.05.024
http://dx.doi.org/ 10.1016/j.scriptamat.2018.05.024
http://dx.doi.org/10.1557/PROC-650-R6.6
http://dx.doi.org/10.1103/PhysRevB.79.054304
http://dx.doi.org/10.1016/j.addma.2017.12.011

Chapter 8

Appendix

8.1 Further publications

Additionally, during the time period of the dissertation the papers (author or co-author):

Impact of Alloying on Stacking Fault Energies in γ-TiAl [194] and

Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat

treated and HIPed condition [195] were published.

8.2 apt importers.py

1 """

2 several import statements to import libraries

3 """

4 import pandas as pd

5 #pandas library for special data structures

6 import struct

7 #library for handling byte data

8 import numpy as np

9 #library specialized on numerical computations

10 from pyflann import *

11 #kd-tree libary

12 import matplotlib.pyplot as plt

13 #library for plotting

14 from matplotlib import cm

15 from scipy.optimize import curve_fit

16 #curve fitting

17 from scipy import stats

18 #statistics

19 import scipy.linalg

20 #linear algebra operations

21 def read_pos(f):

116

8.2 apt importers.py

22 """ Loads an APT .pos file as a pandas dataframe.

23

24 Columns:

25 x: Reconstructed x position

26 y: Reconstructed y position

27 z: Reconstructed z position

28 Da: mass/charge ratio of ion"""

29 # read in the data

30 n = len(file(f).read())/4

31 d = struct.unpack('>'+'f'*n,file(f).read(4*n))

32 # '>' denotes 'big-endian' byte order

33 # unpack data

34 pos = pd.DataFrame({'x': d[0::4],

35 'y': d[1::4],

36 'z': d[2::4],

37 'Da': d[3::4]})

38 return pos

39 def writePos(name,data):

40 """

41 writes binary to name as big-endian float values,

42 is called by writeLpos()

43 """

44 f = open(name,'w')

45 #opens file with write permission, path = name

46 n = len(data)

47 #length of data

48 print([n,type(data)])

49 #output to console

50 d = struct.pack('>'+'f'*n, *data)

51 #packs content of data to byte format (n times big-endian float)

52 f.write(d)

53 #writes data from buffer to disc

54 f.close()

55 #closes file

56 def writeLpos(name, lpos):

57 #saves lpos which is in pandas DataFrame format to the binary .pos

file format↪→

58 writePos(name,np.array([lpos.x.get_values(),lpos.y.get_values(),lpos.z. ⌋

get_values(),lpos.Da.get_values()]).transpose().flatten())↪→

59 #.get_values() ... returns converted pandas file structure to

np.array()↪→

60 #.transpose() ... transponses the array

61 #.flatten() ... changes the array to one dimensional array

62 def save_as_epos(name,epos):

63 #saves epos which is in pandas DataFrame format to the binary .epos

file format↪→

117

8.2 apt importers.py

64 f = open(name,'w')

65 #opens file with write permission, path = name

66 d = struct.pack('>'+'fffffffffII'*epos.x.size,

*epos[['x','y','z','Da','ns','DC_kV','pulse_kV','det_x','det_y','ps ⌋

lep','ipp']].get_values().flatten())

↪→

↪→

67 #packs content of *epos to byte format (*epos.x.size times 9 float

values followed by two unsigned integers), big-endian↪→

68 f.write(d)

69 #writes data from buffer to disc

70 f.close()

71 #closes file

72 def read_epos(f):

73 """Loads an APT .epos file as a pandas dataframe.

74

75 Columns:

76 x: Reconstructed x position

77 y: Reconstructed y position

78 z: Reconstructed z position

79 Da: Mass/charge ratio of ion

80 ns: Ion Time Of Flight

81 DC_kV: Potential

82 pulse_kV: Size of voltage pulse (voltage pulsing mode only)

83 det_x: Detector x position

84 det_y: Detector y position

85 pslep: Pulses since last event pulse (i.e. ionisation rate)

86 ipp: Ions per pulse (multihits)

87

88 [x,y,z,Da,ns,DC_kV,pulse_kV,det_x,det_y,pslep,ipp].

89 pslep = pulses since last event pulse

90 ipp = ions per pulse

91

92 When more than one ion is recorded for a given pulse, only the

93 first event will have an entry in the "Pulses since last evenT

94 pulse" column. Each subsequent event for that pulse will have

95 an entry of zero because no additional pulser firings occurred

96 before that event was recorded. Likewise, the "Ions Per Pulse"

97 column will contain the total number of recorded ion events for

98 a given pulse. This is normally one, but for a sequence of records

99 a pulse with multiply recorded ions, the first ion record will

100 have the total number of ions measured in that pulse, while the

101 remaining records for that pulse will have 0 for the Ions Per

102 Pulse value.

103 ~ Appendix A of 'Atom Probe tomography: A Users Guide',

104 notes on ePOS format."""

105 # read in the data

106 n = len(file(f).read())/4

118

8.2 apt importers.py

107 #number of numbers in file

108 rs = n / 11

109 #number of rows

110 d = struct.unpack('>'+'fffffffffII'*rs,file(f).read(4*n))

111 # '>' denotes 'big-endian' byte order

112 # unpack data

113 pos = pd.DataFrame({'x': d[0::11],

114 # beginning with index 0 every 11th element

115 'y': d[1::11],

116 'z': d[2::11],

117 'Da': d[3::11],

118 'ns': d[4::11],

119 'DC_kV': d[5::11],

120 'pulse_kV': d[6::11],

121 'det_x': d[7::11],

122 'det_y': d[8::11],

123 'pslep': d[9::11], # pulses since last event pulse

124 'ipp': d[10::11]}) # ions per pulse

125 return pos

126 #return DataFrame Object

127 def read_rrng(f):

128 """Loads a .rrng file produced by IVAS. Returns two dataframes of

'ions'↪→

129 and 'ranges'."""

130 import re

131 # regular expression library

132

133 rf = open(f,'r').readlines()

134 #file open with 'r' read permission

135 #.readlines() ... creates list of lines

136

137 patterns =

re.compile(r'Ion([0-9]+)=([A-Za-z0-9]+).*|Range([0-9]+)=(\d+.\d+)

+(\d+.\d+) +Vol:(\d+.\d+) +([A-Za-z:0-9]+) +Color:([A-Z0-9]{6})')

↪→

↪→

138 # regular expression pattern for reading rrange file

139

140 ions = []

141 #create empty list

142 rrngs = []

143 for line in rf:

144 m = patterns.search(line)

145 if m:

146 if m.groups()[0] is not None:

147 ions.append(m.groups()[:2])

148 #append to ion list

149 else:

119

8.2 apt importers.py

150 rrngs.append(m.groups()[2:])

151 #append to ranges list

152

153 ions = pd.DataFrame(ions, columns=['number','name'])

154 #create pandas DataFrame of ions list

155 ions.set_index('number',inplace=True)

156 #sets the number index (wich is called with .ix or .iloc) as from the

range file read↪→

157 rrngs = pd.DataFrame(rrngs,

columns=['number','lower','upper','vol','comp','colour'])↪→

158 rrngs.set_index('number',inplace=True)

159

160 rrngs[['lower','upper','vol']] =

rrngs[['lower','upper','vol']].astype(float)↪→

161 #float cast for the strings

162 rrngs[['comp','colour']] = rrngs[['comp','colour']].astype(str)

163

164 return ions,rrngs

165 def label_ions(pos,rrngs):

166 """labels ions in a .pos or .epos dataframe (anything with a 'Da'

column)↪→

167 with composition and colour, based on an imported .rrng file."""

168

169 pos['comp'] = ''

170 #adding a empty string coloumn as composition coloumn

171 pos['colour'] = '#FFFFFF'

172 #adding a colour coloumn, default #FFFFFF hex colour

173

174 for n,r in rrngs.iterrows():

175 pos.loc[(pos.Da >= r.lower) & (pos.Da <=

r.upper),['comp','colour']] = [r['comp'],'#' + r['colour']]↪→

176 # ranging the atoms, and adding colour information from the range

file↪→

177 return pos

178 def deconvolve(lpos):

179 """Takes a composition-labelled pos file, and deconvolves

180 the complex ions. Produces a dataframe of the same input format

181 with the extra columns:

182 'element': element name

183 'n': stoichiometry

184 For complex ions, the location of the different components is not

185 altered - i.e. xyz position will be the same for several elements."""

186 #usually not used function

187

188 import re

189

120

8.2 apt importers.py

190 out = []

191 pattern = re.compile(r'([A-Za-z]+):([0-9]+)')

192

193 for g,d in lpos.groupby('comp'):

194 if g is not '':

195 for i in range(len(g.split(' '))):

196 tmp = d.copy()

197 cn = pattern.search(g.split(' ')[i]).groups()

198 tmp['element'] = cn[0]

199 tmp['n'] = cn[1]

200 out.append(tmp.copy())

201 return pd.concat(out)

202 def getLattice(orig0, vecA, vecB, vecC, posAtoms, nA, nB, nC):

203 """ create a artificial lattice based on three translational symmetry

vectors and↪→

204 the so defines positions of the atoms within these three vectors vecA,

205 vecB, vecC. oring0 ... origin of the lattice in cartesian space. nA,

nB, nC,↪→

206 ... number of unit cells along corresponding cell vector, whole

number of↪→

207 unitcells nA*nB*nC. posAtoms ... positions relative to vecA, vecB and

vecC↪→

208 in the unitcell.

209 """

210 i = 0

211 j = 0

212 k = 0

213 #counting integers

214 numAtoms = np.size(posAtoms,0)

215 #number of atoms in cell

216

217 # print(numAtoms,'numAtoms')

218 AtomsList = np.zeros((nA*nB*nC*numAtoms,3))

219 #initializing atom positions as numpy array as zeros

220 # print(posAtoms, 'posAtoms')

221

222 while i < nA:

223 j=0

224 while j < nB:

225 k=0

226 while k < nC:

227 l=0

228 while l < numAtoms:

229 orig = orig0 + i*vecA+j*vecB+k*vecC

230 #current origin of unitcell

121

8.2 apt importers.py

231 AtomsList[i*nC*nB*numAtoms+j*nC*numAtoms+k*numAtoms+l,: ⌋

] = orig +

posAtoms[l,0]*vecA+posAtoms[l,1]*vecB+posAtoms[l,2] ⌋

*vecC

↪→

↪→

↪→

232 #calculating absolut position in cartesian coordinates

233 l+=1

234

235 k+=1

236

237 j+=1

238

239 i+=1

240 return AtomsList

241 #def getLatticeNumpy(orig0, vecA, vecB, vecC, posAtoms, nA, nB, nC):

242 # numAtoms = np.size(posAtoms,0)

243 # print(numAtoms,'numAtoms')

244 # AtomsList = np.zeros((nA*nB*nC*numAtoms,3))

245 # mal = np.arange(0,nA)

246 # print(mal*vecA)

247 # print(mal)

248 # AtomsList[i*nC*nB*numAtoms+j*nC*numAtoms+k*numAtoms+l,:] = orig +

posAtoms[l,0]*vecA+posAtoms[l,1]*vecB+posAtoms[l,2]*vecC↪→

249 #

250 # return AtomsList

251 def isinKugel(x,y,z,punkt,r):

252 """ boolean function if x,y,z is in sphere around punkt with radius r.

253 """

254 if (x-punkt[0])**2+(y-punkt[1])**2 + (z-punkt[2])**2 <= r**2:

255 return True

256 else:

257 return False

258 def calcRDF(flannObj, params, FCC, rRDF, nBinRDF, target, stepSize = 1000):

259 """

260 calculates radia distribution function (RDF)

261 flannObj ... FLANN Oject (KD-Tree)

262 params ... params of FLANN Object

263 FCC ... source point set of the search for neighbors

264 rRDF ... radius within RDF is calculated

265 nBinRDF ... number of bins for histogram

266 target ... target point set

267 stepSize ... number of queries points which are sent to the

pre-compiled↪→

268 FLANN library

269 """

270 rRDFSq = rRDF**2

271 #calculating the squared distance, FLANN uses squared distances

122

8.2 apt importers.py

272 rHist = np.zeros(nBinRDF)

273 #initialize histogram array

274 rvalues = np.linspace(0,rRDF,nBinRDF+1)

275 #create linear increasing radius values

276 rvaluesSq = np.power(rvalues,2)

277 #calculation of squared values of these r values

278 eps = 10**-10

279 #error limit, used to find exlude self-counting

280

281 if np.size(FCC,0)% stepSize ==0:

282 folge = np.linspace(stepSize,np.size(FCC,0),(np.size(FCC,0)-stepSiz ⌋

e)//stepSize+1)↪→

283 elif np.size(FCC,0)<=stepSize:

284 folge = np.array([np.size(FCC,0)])

285 else:

286 folge = np.zeros((np.size(FCC,0)-stepSize)//stepSize+2)

287 folge = np.linspace(stepSize,((np.size(FCC,0)-stepSize)//stepSize+1 ⌋

)*stepSize,(np.size(FCC,0)-stepSize)//stepSize+1)↪→

288 folge[-1] = np.size(FCC,0)

289 #Initializing folge which subdivides the query points depending on

290 #np.size(FCC,0)% stepSize ... number of query point modulo stepSize

291

292 #now3 = time.time()

293 #timing for testing

294 targetSize =np.size(target,0)

295 #create targetSize, number of points in target point set

296

297 # targetSize = 10000

298 last = 0

299 #Initialize iteration integer for folge

300

301 numberNN = 100

302 #initial number of nearest neighbor for query in FLANN

303 if numberNN > targetSize:

304 numberNN = targetSize

305 #change numberNN if targetSize is smalle than numberNN

306 for i in folge:

307 block = FCC[last:i,:]

308 #actual block of points in folge for query

309 countNumber = 1

310 #count integer for following queries

311 while np.size(block)>0:

312 # as long as number of query point in block > 0

313 numberNN*=countNumber

314 #adjust number of NN for query

315 if numberNN > targetSize:

123

8.2 apt importers.py

316 numberNN = targetSize

317 #change numberNN if targetSize is smaller than numberNN

318 #if numberNN > targetsize and is queried the library

crashes↪→

319 results, dists = flannObj.nn_index(block, numberNN,

checks=params['checks'])↪→

320 #query the numberNN nearest neighbors for the points in

block↪→

321 #usually stepSize*numberNN data points are returned for

results and dists↪→

322 #results is the index number in target, dists is the

calculated squared distance↪→

323

324 counts, histIndex = np.histogram(dists[dists>eps],

bins=rvaluesSq)↪→

325 #create histogram count of distances

326

327 rHist += counts

328 #add counts to final histogram

329 break

330 #breaks current while loop

331

332 results, dists = flannObj.nn_index(block, numberNN,

checks=params['checks'])↪→

333 #query the numberNN nearest neighbors for the points in block

334

335 block = block[dists[:,-1]<rRDFSq,:]

336 #take points which queried nearest neighbor is smaller than

rRDFSq↪→

337 #more NN are needed

338 countable = dists[dists[:,-1]>=rRDFSq,:]

339 #take points which last queried nearest neighbor is larger or

equal than rRDFSq↪→

340

341 counts, histIndex = np.histogram(countable[countable>eps],

bins=rvaluesSq)↪→

342 #create histogram count for already countable points

343 countNumber +=1

344 #increase loop counter

345

346 # assert numberNN < targetSize, 'max targetsize'

347 #DEBUGGING info

348

349 rHist += counts

350 #add counts to final histogram

351

124

8.2 apt importers.py

352 last = i

353 #last is current index for folge

354 return (rvalues[:-1]+rvalues[1:])/2, rHist

355 #return histogram values, r and final histogram counts

356 def getSDM(deltaXMax, deltaYMax, deltaZMax, bereich, binSDM=80):

357 """

358 Old SDM calculation function

359 deltaXMax ... x interval value for -deltaXMax to deltaXMax

360 deltaYMax ... y interval value

361 deltaZMax ... z interval value

362 binSDM ... number of bins for interval

363 """

364 edges0 = np.linspace(-deltaXMax,deltaXMax,binSDM)

365 edges1 = np.linspace(-deltaYMax,deltaYMax,binSDM)

366 edges2 = np.linspace(-deltaZMax,deltaZMax,binSDM)

367

368 H, edges = np.histogramdd(2*deltaYMax*np.ones((1,3)), bins=(edges0,

edges1, edges2))↪→

369 #create threedimensional histogram

370 #usually assumed deltaYMax == deltaZMax == deltaXMax

371

372 nx = np.int((np.max(bereich.x)-np.min(bereich.x))/deltaXMax)+1

373 ny = np.int((np.max(bereich.y)-np.min(bereich.y))/deltaYMax)+1

374 nz = np.int((np.max(bereich.z)-np.min(bereich.z))/deltaZMax)+1

375 #space is subdivides in blocks

376 #number of blocks in x,y,z direction

377

378 origin0 = np.array([deltaXMax/2., deltaYMax/2., deltaZMax/2.])

379 #center of thirst block

380

381 for i in range(nx):

382 for j in range(ny):

383 for k in range(nz):

384 origin = origin0 + k*deltaXMax + j*deltaYMax + i*deltaXMax

385 #current center of block

386 H+= getSDMCubePd(deltaXMax, deltaYMax, deltaZMax,

bereich[cubePd(bereich, origin, deltaXMax, deltaYMax,

deltaZMax)].iloc[:,1:4], binSDM)[1]

↪→

↪→

387 #calls getSDMCubePd for each block, and counts the

certain histogram counts into H↪→

388 #based on .read_epos(), .iloc[:,1:4] are the x,y,z

coordinates↪→

389 #cubePd returns datapoints within current block

390

125

8.2 apt importers.py

391 # H+= getSDMCube(deltaXMax, deltaYMax, deltaZMax,

bereich[cubePd(bereich, origin, deltaXMax, deltaYMax,

deltaZMax)].iloc[:,1:4].get_values(), binSDM)[1]

↪→

↪→

392

393 return edges, H

394 def getSDMCube(deltaXMax, deltaYMax, deltaZMax, bereich, binSDM=80):

395 """

396 Old version of getSDMCubePd() ?.

397 """

398 # binSDM = 80

399 # has to be even

400 #OLD

401

402 deltas = np.zeros((np.size(bereich,0)*(np.size(bereich,0)-1)/2,3))

403

404 n = np.size(bereich,0)

405

406 counter = 0

407 edges0 = np.linspace(-deltaXMax,deltaXMax,binSDM)

408 edges1 = np.linspace(-deltaYMax,deltaYMax,binSDM)

409 edges2 = np.linspace(-deltaZMax,deltaZMax,binSDM)

410

411 for i,wert in enumerate(bereich.iloc[:,1:4]):

412 deltas[counter:counter+n-i-1,:] = wert - bereich[i+1:,:]

413 counter += n-i-1

414 #-- ⌋

----------↪→

415

416 H, edges = np.histogramdd(deltas, bins=(edges0, edges1, edges2))

417 H += np.histogramdd(-deltas, bins=(edges0, edges1, edges2))[0]

418

419 return edges, H

420 def getSDMCubePd(deltaXMax, deltaYMax, deltaZMax, bereich, binSDM=80,

binSizeZ = 80):↪→

421 """

422 calculates three dimensional histogram of inter-atomic distances for

each↪→

423 combination of a pointset bereich.

424 Is called by getSDM().

425 """

426

427 deltas = np.zeros((np.size(bereich,0)*(np.size(bereich,0)-1)/2,3))

428 #create empy distance array

429 n = np.size(bereich,0)

430 #number of points

431

126

8.2 apt importers.py

432 counter = 0

433 for i in xrange(n):

434 # print(bereich.iloc[i,1:4])

435 # print(bereich.iloc[i+1:,1:4])

436 #DEBUGGING info

437

438 deltas[counter:counter+n-i-1,:] =bereich.iloc[i,:] -

bereich.iloc[i+1:,:]↪→

439 #calculates inter-atomic vectors for current to all following in

the list↪→

440 #Broadcasting Rule!

441

442 counter += n-i-1

443 #update delta interating integer

444 #-- ⌋

----------↪→

445

446 edges0 = np.linspace(-deltaXMax,deltaXMax,binSDM)

447 edges1 = np.linspace(-deltaYMax,deltaYMax,binSDM)

448 edges2 = np.linspace(-deltaZMax,deltaZMax,binSizeZ)

449 #edges for histogram

450

451 H, edges = np.histogramdd(deltas, bins=(edges0, edges1, edges2))

452 #calculate three dimensional histogram for deltas

453 H += np.histogramdd(-deltas, bins=(edges0, edges1, edges2))[0]

454 #add counts for exchanged source and target (-deltas)

455

456 return edges, H

457 def getRotateZSDM(deltaZMax, deltas, phi, theta, binSDM=80):

458 # binSDM = 80

459 #needs to be even

460 #-- ⌋

------↪→

461 # phi rotate around x axis, theta around y axis

462 # z is into the detector plane

463 #-- ⌋

------↪→

464 #psi311 = np.arctan(-pol311.det_y.mean()/flightPath)

465 #theta311 = np.arctan(pol311.det_x.mean()/flightPath)

466 #flightPath = 40. [mm]

467 #-- ⌋

------↪→

468 #informations of tests

469 """

470 calulate z-SDM for the rotation angles phi, theta, and inter-atomic

127

8.2 apt importers.py

471 vectors deltas within -deltaZMax, deltaZMax with binSDM number of

bins.↪→

472 """

473

474 deltaZ = np.zeros(np.size(deltas,0))

475 edges2 = np.linspace(-deltaZMax,deltaZMax,binSDM)

476 stutz = (edges2[1:]+edges2[:-1])/2.

477

478 deltaZ = -np.sin(theta)*deltas[:,0] + np.cos(theta)*np.sin(phi)*deltas[⌋

:,1]+np.cos(theta)*np.cos(phi)*deltas[:,2]↪→

479 #array of transformed delta z coordinates

480

481 z = np.histogram(deltaZ, bins = (edges2))[0]

482 #create histogram of delta z coordinates

483

484 return stutz, z

485 def getRotateXYSDM(deltaXMax, deltaYMax, deltas, phi, theta, deltaZ=0.,

deltaDeltaZ=0.01, binSDM=100):↪→

486 # binSDM = 80

487 #needs to be even

488 #-- ⌋

------↪→

489

490 """

491 calculate XY SDM for given phi, theta rotation deltaZ position in

three↪→

492 dimensional histogram space for delta z values and deltaDeltaZ width

around↪→

493 it.

494 """

495

496 deltaXY = np.zeros((np.size(deltas,0),2))

497 deltasZ = np.zeros(np.size(deltas,0))

498 #initializing empty difference vectors "delta" arrays

499

500 edges0 = np.linspace(-deltaXMax,deltaXMax,binSDM)

501 edges1 = np.linspace(-deltaYMax,deltaYMax,binSDM)

502 # stutz = (edges2[1:]+edges2[:-1])/2.

503

504 deltaXY[:,0] = np.cos(theta)*deltas[:,0] + np.sin(theta)*np.sin(phi)*de ⌋

ltas[:,1]+np.sin(theta)*np.cos(phi)*deltas[:,2]↪→

505 #tranformed delta x coordinates

506

507 deltaXY[:,1] = np.cos(phi)*deltas[:,1] -np.sin(phi)*deltas[:,2]

508 #tranformed delta y coordinates

128

8.2 apt importers.py

509 deltasZ = -np.sin(theta)*deltas[:,0] + np.cos(theta)*np.sin(phi)*deltas ⌋

[:,1]+np.cos(theta)*np.cos(phi)*deltas[:,2]↪→

510 #tranformed delta z coordinates

511

512 xySDM = np.logical_and(deltasZ <= deltaZ+deltaDeltaZ, deltasZ >=

deltaZ-deltaDeltaZ)↪→

513 #selecting subset via logical array

514

515 H, edges = np.histogramdd(deltaXY[xySDM,:], bins=(edges0, edges1))

516 #creating two-dimensional histogram for chosen inter-atomic vectors

517

518 stutz =

[(edges[0][:-1]+edges[0][1:])/2.,(edges[1][:-1]+edges[1][1:])/2.]↪→

519 #edges in x and y direction

520

521 return stutz, H

522 def getRotateVec(deltas, phi, theta, gamma):

523 # phi rotating around x axis, theta around y axis

524 # z into the detector plane

525 """

526 calculates rotated vectors from deltas vectors, gamma not used anymore

527 phi, theta as rotation angles

528 """

529

530 deltaXYZ = np.zeros((np.size(deltas,0),3))

531 #Initialize array to return

532

533

534 deltaXYZ[:,0] = np.cos(theta)*deltas[:,0] + np.sin(theta)*np.sin(phi)*d ⌋

eltas[:,1]+np.sin(theta)*np.cos(phi)*deltas[:,2]↪→

535 #calculate x coordinates

536 deltaXYZ[:,1] = np.cos(phi)*deltas[:,1] -np.sin(phi)*deltas[:,2]

537 #calculate y coordinates

538 deltaXYZ[:,2] = -np.sin(theta)*deltas[:,0] + np.cos(theta)*np.sin(phi)* ⌋

deltas[:,1]+np.cos(theta)*np.cos(phi)*deltas[:,2]↪→

539 #calculate z coordinates

540

541 return deltaXYZ

542 def getRotateXYSDMAll(deltaXMax, deltaYMax, deltas, phi, theta, binSDM=100):

543 # binSDM = 80

544 #needs to be even

545 #-- ⌋

------↪→

546 """

547 calculates the XY SDM for all difference vectors deltas, without

choosing↪→

129

8.2 apt importers.py

548 a subset (usually a peak in the z SDM) as in getRotateXYSDM().

549 """

550

551 deltaXY = np.zeros((np.size(deltas,0),2))

552 #Initialize vector for difference vectors in XY

553

554 edges0 = np.linspace(-deltaXMax,deltaXMax,binSDM)

555 edges1 = np.linspace(-deltaYMax,deltaYMax,binSDM)

556 #edges for histogram

557

558 deltaXY[:,0] = np.cos(theta)*deltas[:,0] + np.sin(theta)*np.sin(phi)*de ⌋

ltas[:,1]+np.sin(theta)*np.cos(phi)*deltas[:,2]↪→

559 deltaXY[:,1] = np.cos(phi)*deltas[:,1] -np.sin(phi)*deltas[:,2]

560 #calculate rotated x and y coordinates

561

562 H, edges = np.histogramdd(deltaXY, bins=(edges0, edges1))

563 #create 2D histogram

564

565 stutz =

[(edges[0][:-1]+edges[0][1:])/2.,(edges[1][:-1]+edges[1][1:])/2.]↪→

566

567

568 return stutz, H

569 def getRotateXYSDMhex(deltaXMax, deltaYMax, deltas, phi, theta, deltaZ=0.,

deltaDeltaZ=0.01):↪→

570 # binSDM = 80

571 #needs to be even

572 #-- ⌋

------↪→

573 """

574 calulates XY SDM for chosen subset as in getRotateXYSDM(), returns

values↪→

575 as needed or the hex plot in matploblib.pyplot.

576 """

577

578 deltaXY = np.zeros((np.size(deltas,0),2))

579 deltasZ = np.zeros(np.size(deltas,0))

580

581 deltaXY[:,0] = np.cos(theta)*deltas[:,0] + np.sin(theta)*np.sin(phi)*de ⌋

ltas[:,1]+np.sin(theta)*np.cos(phi)*deltas[:,2]↪→

582 deltaXY[:,1] = np.cos(phi)*deltas[:,1] -np.sin(phi)*deltas[:,2]

583 deltasZ = -np.sin(theta)*deltas[:,0] + np.cos(theta)*np.sin(phi)*deltas ⌋

[:,1]+np.cos(theta)*np.cos(phi)*deltas[:,2]↪→

584

585 xySDM = np.logical_and(deltasZ <= deltaZ+deltaDeltaZ, deltasZ >=

deltaZ-deltaDeltaZ)↪→

130

8.2 apt importers.py

586

587 return deltaXY[xySDM,:]

588 def getDeltasSDM(bereich):

589 """

590 calculates difference vectors

591 including the so generated inverted difference vectors will give all

592 inter-atomic difference vectors

593 """

594 deltas = np.zeros((np.size(bereich,0)*(np.size(bereich,0)-1)/2,3))

595 #Initializing array for difference vectors

596 n = np.size(bereich,0)

597 #number of points

598

599 counter = 0

600 for i in xrange(n):

601 # print(bereich.iloc[i,1:4])

602 # print(bereich.iloc[i+1:,1:4])

603 #DEBUGGING Info

604 deltas[counter:counter+n-i-1,:] = bereich.iloc[i,:] -

bereich.iloc[i+1:,:]↪→

605 #calculate difference vectors from ith point to all following in

the list↪→

606 #broadcasting

607 counter += n-i-1

608 #update counter

609

610 return deltas

611 def getDeltasSDMLarge(bereich, NN):

612 """

613 currently used

614 calculates the difference vectors for a given number of nearest

neighbors↪→

615 NN, for given point set bereich.

616 """

617 last = 0

618 #initialize a counting integer

619 stepSize = 10000

620 #number of points to query into FLANN

621 deltas = np.zeros((np.size(bereich,0)*NN,3))

622 #Initialization of difference vector array

623

624 flannObj = FLANN()

625 #create a FLANN object

626 params = flannObj.build_index(bereich, algorithm=4,

target_precision=1., log_level = "info") #algorithm=4 selects

kdtree single

↪→

↪→

131

8.2 apt importers.py

627 #set the parameters for FLANN object kdtree single means an exact

kdtree↪→

628

629 if np.size(bereich,0)% stepSize ==0:

630 folge = np.linspace(stepSize,np.size(bereich,0),(np.size(bereich,0) ⌋

-stepSize)//stepSize+1)↪→

631 elif np.size(bereich,0)<=stepSize:

632 folge = np.array([np.size(bereich,0)])

633 else:

634 folge = np.zeros((np.size(bereich,0)-stepSize)//stepSize+2)

635 folge = np.linspace(stepSize,((np.size(bereich,0)-stepSize)//stepSi ⌋

ze+1)*stepSize,(np.size(bereich,0)-stepSize)//stepSize+1)↪→

636 folge[-1] = np.size(bereich,0)

637 #subdividing the points into block of points (stepSize) to query FLANN

638

639 for i in folge:

640 block = bereich[last:i,:]

641 #take a block of points

642 results, dists = flannObj.nn_index(block, NN+1,

checks=params['checks'])↪→

643 #query distances for NN neares neighbors (NN+1) due to the fact

that↪→

644 #points "see" themselves

645

646 # print(i,last,NN)

647 # print(np.size(bereich[results[1:,:]],0))

648 #DEBUGGING Info

649

650 arr = bereich[results[:,0]]

651 #take points from bereich which are found results[:,0]

652 arr = arr[:,np.newaxis]

653 #needed for right size of numpy array

654 deltas[last*NN:i*NN,:] =

np.reshape(bereich[results[:,1:]]-arr,((i-last)*(NN),3))↪→

655 #calculating the difference vectors and putting it into the

difference↪→

656 #vector array, broadcasting!

657 last = i

658 #update counter

659 flannObj.delete_index()

660 #delete flann object to free memory

661 return deltas

662 def getZSDM(edges, H):

663 """

664 should calculate the z SDM based on a 3 dimensional histogram

665 """

132

8.2 apt importers.py

666 stutz = (edges[2][1:]+edges[2][:-1])/2.

667 z = np.sum(np.sum(H,axis=0),axis=0)

668 #sums over x and then y axes

669 return stutz, z

670 def plotSDM(edges, H, deltaZ = 0., deltaDeltaZ = 0.05, text =''):

671 """

672 returns a figure with z SDM and XY SDM plotted (for chosen subset of

points),↪→

673 based on three dimensional histogram of difference vectors.

674 """

675 stutz = (edges[2][1:]+edges[2][:-1])/2.

676 xySDM = np.logical_and(edges[2][:] <= deltaZ+deltaDeltaZ,edges[2][:] >=

deltaZ-deltaDeltaZ)↪→

677 #choosing the subset of points

678 # print(xySDM)

679 #DEBUGGING Info

680

681 X,Y = np.meshgrid((edges[0][:-1]+edges[0][1:])/2.,(edges[1][:-1]+edges[⌋

1][1:])/2.)↪→

682 #create a meshgrid based on x,y edges of the histogram

683

684 fig = plt.figure()

685 #create figure object

686 fig.set_size_inches(10,10.)

687

688 ax = fig.add_subplot(221)

689 #adding a subplot to figure object

690

691 ax.axvline(deltaZ-deltaDeltaZ,color='r',linewidth=2.)

692 #vertical line plotting in red for the chosen subset in the z SDM

693 ax.axvline(deltaZ+deltaDeltaZ,color='r',linewidth=2.)

694 #vertical line plotting in red for the chosen subset in the z SDM

695 ax.plot(stutz, np.sum(np.sum(H,axis=0),axis=0))

696 #plot z SDM

697 ax.grid(True)

698 ax.set_title(text)

699

700 ax2= fig.add_subplot(222)

701 #adding another subplot to figure object

702 ax2.contourf(X,Y,np.sum(H[:,:,xySDM],axis=2),cmap=cm.gray)

703 #contourplot of XY SDM, with chosen colormap

704 ax2.set_title('XY-SDM')

705 return fig

706 def createNNHist(numberNN, data, flannO, paramFl, ranges, binsize):

707 """

708 return neares neighbor histogram

133

8.2 apt importers.py

709 numberNN ... number of nearest neighbor

710 data ... point set

711 flann0 ... FLANN object

712 paramFl --- corresponding parameters for FLANN object

713 """

714 eps = 10**-5

715 #epsilon value which is used to avoid selfcounting

716

717 resultN, distsN = flannO.nn_index(data, numberNN+1,

checks=paramFl['checks'])↪→

718 #FLANN query for number of nearest neigbors (numberNN), numberNN+1

used↪→

719 #to later avoid selfcounting

720 distsN = np.sqrt(distsN)

721 #calculate sqare root of distances, FLANN uses squared distances

722

723 # d = distsN[:,-1]

724 #DEBUGGING Info

725

726 dists = np.zeros(np.size(distsN,0))

727

728 # print(distsN.shape)

729 #DEBUGGING Info

730

731 groesser = distsN[:,0] > eps

732 kleiner = distsN[:,0] <= eps

733 #splitset into within epsilon value kleiner, and outside groesser

734 #split is needed if flann Object is not built on the point set from

data↪→

735

736 dists[kleiner] = distsN[kleiner,-1]

737 #takes last coloumn if smallest distance is in epsilon value for

example if Si-Si↪→

738 dists[groesser] = distsN[groesser,-2]

739 #takes second last coloumn if smallest distance outside the epsilon

value,↪→

740 #last value would be numberNN+1'th nearest neighbor, for example if

Si-Mg↪→

741

742 # assert np.size(dists[dists<eps]) == 0, str(dists[dists<eps]) + " " +

str(distsN[dists==0.])↪→

743 #DEBUGGING Info

744 assert np.size(dists[dists<eps]) == 0, str(dists[dists<eps]) + " " +

str(distsN[dists<eps])↪→

745 #raises error if assertion is not fullfilled

746 return np.histogram(dists, bins=binsize, range=ranges)

134

8.2 apt importers.py

747 def createNNHistAllTill(numberNN, data, flannO, paramFl):

748 """

749 return neares neighbor histogram

750 numberNN ... number of nearest neighbor

751 data ... point set

752 flann0 ... FLANN object

753 paramFl --- corresponding parameters for FLANN object

754 """

755 eps = 10**-5

756 #epsilon value which is used to avoid selfcounting

757

758 resultN, distsN = flannO.nn_index(data, numberNN+1,

checks=paramFl['checks'])↪→

759 #FLANN query for number of nearest neigbors (numberNN), numberNN+1

used↪→

760 #to later avoid selfcounting

761 distsN = np.sqrt(distsN)

762 #calculate sqare root of distances, FLANN uses squared distances

763

764 # d = distsN[:,-1]

765 #DEBUGGING Info

766

767 dists = np.zeros((np.shape(distsN)[0],np.shape(distsN)[1]-1))

768 # print(np.shape(distsN))

769 # print(np.shape(distsN))

770

771 groesser = distsN[:,0] > eps

772 kleiner = distsN[:,0] <= eps

773 #splitset into within epsilon value kleiner, and outside groesser

774 #split is needed if flann Object is not built on the point set from

data↪→

775

776 dists[kleiner] = distsN[kleiner,1:]

777 #takes last coloumn if smallest distance is in epsilon value for

example if Si-Si↪→

778 dists[groesser] = distsN[groesser,:-1]

779 #takes second last coloumn if smallest distance outside the epsilon

value,↪→

780 #last value would be numberNN+1'th nearest neighbor, for example if

Si-Mg↪→

781 # assert np.size(dists[dists<eps]) == 0, str(dists[dists<eps]) + " " +

str(distsN[dists<eps])↪→

782 #raises error if assertion is not fullfilled

783 return dists

784 def getMean(a):

785 """

135

8.2 apt importers.py

786 searches the index of half greater equal half the sum of the array

787 """

788 summe = np.sum(a)

789 #returns sum of all elements of a

790 index = 0

791 erg = 0

792 counter =0

793 for i in a:

794 if erg>=summe/2.:

795 index = counter

796 break

797 erg +=i

798 counter+=1

799 return index

800 def getComp(lpos):

801 """

802 prints composition

803 """

804 comp = []

805 name = []

806 for g,d in lpos.groupby('comp'):

807 #.groupby('comp') returns iterateable object, grouped by equal

'comp'↪→

808 #labeling

809 comp.append(len(d))

810 #number of labeled composition in lpos DataFrame appended to a

list↪→

811 name.append(g)

812 #name of species appended to name list

813 comp = np.array(comp)

814 #overwrites list with numpy array created from comp list

815 comp = comp/np.float(np.sum(comp))

816 #norming, float cast needed otherwise integer division executed

817 print('ion %')

818 for i, wert in enumerate(name):

819 print(wert+" " + str(100.*comp[i]))

820 #print composition in percentage

821 return name, comp

822 def saveComp(lpos, path):

823 """

824 prints composition and saves .txt file to path, see getComp()

825 """

826 comp = []

827 name = []

828 output = ""

829 for g,d in lpos.groupby('comp'):

136

8.2 apt importers.py

830 comp.append(len(d))

831 name.append(g)

832 comp = np.array(comp)

833 comp = comp/np.float(np.sum(comp))

834 output += 'ion %\n'

835 print('ion %')

836 for i, wert in enumerate(name):

837 print(wert+" " + str(100.*comp[i]))

838 output += wert + " " + str(100.*comp[i]) + "\n"

839 f = open(path,'w')

840 f.write(output)

841 f.close()

842 return

843 def getCompEl(name, comp, such):

844 """

845 function to sum over composition values where the name is a subset of

such,↪→

846 for example: should sum compositions of 'Al:1' and 'Al:1 H:1' if 'Al'

is such↪→

847 """

848 sum0=0

849 for i, wert in enumerate(name):

850 if wert.find(such) > -1:

851 sum0 += comp[i]

852 print(such, sum0)

853 return sum0

854 def cube(FCC, origin, deltaXMax, deltaYMax, deltaZMax):

855 """

856 function to select datapoint within a block defined by

857 plusminus deltaXMax, deltaYMax and deltaZMax

858 """

859 bereich = FCC[FCC[:,0]<=origin[0] + deltaXMax,:]

860 bereich = bereich[bereich[:,0]>=origin[0] - deltaXMax,:]

861

862 bereich = bereich[bereich[:,1]<=origin[1] + deltaYMax,:]

863 bereich = bereich[bereich[:,1]>=origin[1] - deltaYMax,:]

864

865 bereich = bereich[bereich[:,2]<=origin[2] + deltaZMax,:]

866 bereich = bereich[bereich[:,2]>=origin[2] - deltaZMax,:]

867

868 return bereich

869 def cubePd(FCC, origin, deltaXMax, deltaYMax, deltaZMax):

870 """

871 function to select datapoint within a block defined by

872 plusminus deltaXMax, deltaYMax and deltaZMax for the pandas DataFrame

pos↪→

137

8.2 apt importers.py

873 format

874 """

875 bereich = FCC.x<=origin[0] + deltaXMax

876 bereich = np.logical_and(FCC.x>=origin[0] - deltaXMax,bereich)

877

878 bereich = np.logical_and(FCC.y<=origin[1] + deltaYMax, bereich)

879 bereich = np.logical_and(FCC.y>=origin[1] - deltaYMax, bereich)

880

881 bereich = np.logical_and(FCC.z<=origin[2] + deltaZMax, bereich)

882 bereich = np.logical_and(FCC.z>=origin[2] - deltaZMax, bereich)

883

884 return bereich

885 def coordToView(bereich):

886 """

887 creates DataFrame object which can be viewed with volvis(), if only

x,y,z↪→

888 data is available (bereich), for example for an artificial lattice.

889 """

890 pos = pd.DataFrame({'x': bereich[:,0],

891 'y': bereich[:,1],

892 'z': bereich[:,2],

893 'Da': np.ones(np.size(bereich[:,0]))})

894 ions, rrngs = read_rrng('example-data/rangefile.rrng')

895 lpos = label_ions(pos,rrngs)

896

897 return lpos

898 def getFCC(origin = np.array([0., 0., 0.]), n=50, aAl = 0.404):

899 """

900 return a artificial fcc lattice with primitive lattice constant aAl

and↪→

901 n unit cells

902 """

903 vectorA = aAl * np.array([1, 0., 0.])

904 vectorB = aAl * np.array([0., 1., 0.])

905 vectorC = aAl * np.array([0., 0., 1.])

906 #translational vectors of unitcell

907

908 point = np.zeros((4,3))

909 #initial point array

910

911 point[0,:]=[0., 0., 0.]

912 point[1,:]=[0.5, 0.5, 0.]

913 point[2,:]=[0., 0.5, 0.5]

914 point[3,:]=[0.5, 0., 0.5]

915 #atom positions within chosen vector set

916

138

8.2 apt importers.py

917 FCC = getLattice(origin, vectorA, vectorB, vectorC, point, n, n, n)

918 #call getLattice with chosen parameters

919 return FCC

920 #def getMean(a):

921 # summe = np.sum(a)

922 # index = 0

923 # erg = 0

924 # counter =0

925 # for i in a:

926 # if erg>=summe/2.:

927 # index = counter

928 # break

929 # erg +=i

930 # counter+=1

931 # return index

932 #Outcommented overrode former getMean() ?

933 def getDrehMatrix(psi, theta, phi):

934 """

935 should create a rotation matrix

936 seems unfinished, see dreheCordPd(),dreheCordPd2()

937 """

938 rueck = np.matrix([[np.cos(psi)*np.cos(phi)-np.sin(psi)*np.cos(theta)*n ⌋

p.sin(phi),

-np.cos(psi)*np.sin(phi)-np.sin(psi)*np.cos(theta)*np.cos(phi),

np.sin(psi)*np.sin(theta)],

↪→

↪→

↪→

939 [np.sin(psi)*np.cos(phi)+

np.cos(psi)*np.cos(theta)*np.sin(phi),

-np.sin(psi)*np.sin(phi)+np.cos(psi)*np.cos(thet ⌋

a)*np.cos(phi),

-np.cos(psi)*np.sin(theta)],

↪→

↪→

↪→

↪→

940 [np.sin(theta)*np.sin(phi),

np.sin(theta)*np.cos(phi), np.cos(theta)]])↪→

941 #rotation matrix

942 rueck = rueck.transpose()

943 #transposes it and overwrites former

944 return(rueck)

945 def getDrehMatrixCardan(alpha, beta, gamma):

946 """

947 should create a Cardan rotation matrix

948 seems unfinished, see dreheCordPd(),dreheCordPd2()

949 """

950 D1 = np.matrix([[1., 0., 0.,],

951 [0., np.cos(alpha), -np.sin(alpha)],

952 [0., np.sin(alpha), np.cos(alpha)]])

953 D2 = np.matrix([[np.cos(beta), 0., np.sin(beta)],

954 [0., 1., 0.],

139

8.2 apt importers.py

955 [-np.sin(beta), 0., np.cos(beta)]])

956 D3 = np.matrix([[np.cos(gamma), -np.sin(gamma), 0.],

957 [np.sin(gamma), np.cos(gamma), 0.],

958 [0.,0.,1.]])

959 D = D1*D2*D3

960 #should be the matrix product of the three matrices

961 D = D.transpose()

962 #transposes and overwrites it

963 return(D)

964 def dreheCordPd(lpos, psi, theta, phi):

965 #something is wrong here

966 rueck = lpos.copy()

967 rueck.iloc[:,1:4]=

np.array(lpos.iloc[:,1:4].get_values()*getDrehMatrix(psi,theta,phi))↪→

968 return rueck

969 def dreheCordPd2(lpos, psi, theta, phi):

970 #something is wrong here

971 rueck = lpos.copy()

972 rueck.iloc[:,1:4]= np.array(lpos.iloc[:,1:4].get_values()*getDrehMatrix ⌋

Cardan(psi,theta,phi))↪→

973 #should transform the coordinates,

974 return rueck

975 def getRasterwinkel(deltas, startPsi, startTheta, binSize, deltaBereich=1.,

maxAnglePsi = np.pi/4., maxAngleTheta = np.pi/4., teilungPsi = 200.,

teilungTheta = 200.):

↪→

↪→

976 """

977 scanning the maximum height of the z SDMs for various psi and theta

angles↪→

978 around center angled startPsi, startTheta

979 maxAnglePsi ... maximum scanned plusminus psi angle range

980 maxAngleTheta ... maximum scanned plusminus theta angle range

981 teilungPsi ... number of subdivisions in psi

982 teilungTheta ... number of subdivisions in theta

983 startPsi ... center psi angle

984 startTheta ... center theta angle

985 binSize ... bin size for z SDM

986 deltas ... array of difference vectors

987 """

988 deltaPsi = np.arange(-maxAnglePsi+startPsi, maxAnglePsi+startPsi,

2*maxAnglePsi/teilungPsi)↪→

989 deltaTheta = np.arange(-maxAngleTheta+startTheta,

maxAngleTheta+startTheta, 2*maxAngleTheta/teilungTheta)↪→

990 #creates points in psi and theta angle space

991

992 fig2 = plt.figure()

993 conv = 2.54

140

8.2 apt importers.py

994 #1 inch = 2.54cm

995 breite=15/conv

996 hoehe=24/conv

997 fig2.set_size_inches(breite,hoehe)

998 #creates and sets size of figure

999

1000 ax3 = fig2.add_subplot(211)

1001 ax2 = fig2.add_subplot(212)

1002 #adds subplots to figure

1003

1004 psi = 0.

1005 theta = 0.

1006 #initialize variables for later holding the coordinates of the

maximum found↪→

1007 maxZSDM = 0

1008 #height of the maximum z SDM

1009 rasterWinkel = np.zeros((np.size(deltaPsi), np.size(deltaTheta)))

1010 #initialize 2d array for holding found max z SDM

1011 #-- ⌋

----------------------↪→

1012 for i,wert in enumerate(deltaPsi):

1013 for j, wert2 in enumerate(deltaTheta):

1014 stutz, z = getRotateZSDM(deltaBereich, deltas, wert, wert2,

binSDM = binSize)↪→

1015 #calculates z SDM

1016 rasterWinkel[i,j] = np.max(z)

1017 #saves maximum into 2d array

1018 if np.max(z)>maxZSDM:

1019 maxZSDM = np.max(z)

1020 psi = wert

1021 theta = wert2

1022 #updates coordinates if greater than previous maximum in

scanned z SDMs↪→

1023 X,Y = np.meshgrid(deltaPsi,deltaTheta)

1024 #creates meshgrid for contour plotting

1025

1026 CS = ax3.contourf(X, Y, rasterWinkel.transpose())

1027 #plots contour plot

1028 plt.colorbar(CS)

1029 #adds a colorbar

1030 #-- ⌋

----------------------↪→

1031 ax2.plot(*getRotateZSDM(2*deltaBereich, deltas, psi, theta, binSDM =

binSize))↪→

1032 #plots the z SDM of the maximum z SDM found in the psi theta range

1033 return psi, theta, deltaPsi, X,Y, rasterWinkel, fig2

141

8.2 apt importers.py

1034 def smoothingZSDM(z, maxIter):

1035 """

1036 smooths a function intended to be used for z SDM smoothing, see paper

from Moody↪→

1037 """

1038 z = z.copy()

1039 #needed,du to that i-1 old indices are needed

1040 for j in xrange(maxIter):

1041 z0 = z.copy()

1042 for i in xrange(1, np.size(z)-1):

1043 # print(i)

1044 #DEBUGGING Info

1045 z[i] = min(z0[i], (z0[i+1]+z0[i-1])/2.)

1046 return z

1047 def smoothingXYSDM(z, maxIter):

1048 """

1049 smooths a XY SDM, see paper from Moody

1050 unfinished?

1051 """

1052 z = z.copy()

1053 for j in xrange(maxIter):

1054 z0 = z.copy()

1055 for i in xrange(1,np.size(z,0)-1):

1056 for k in xrange(1,np.size(z,1)-1):

1057 z[i,k] = min(z[i,k],(z[i-1,k] + z[i+1,k] + z[i,k-1]

+z[i,k+1])/4.)↪→

1058 #should it be z0?

1059 return z

1060 def getPeaks(xs, zInter, minDistance = 0.02):

1061 """

1062 should search for local maxima and lists them into peaks list if it

is↪→

1063 larger away than minDistance from the minimum of xs entry.

1064 xs ... delta z values of the z SDM (abscissa in plot)

1065 zInter ... counts of z SDM (ordinate in plot)

1066 """

1067 peaks = []

1068 peaksDist0 = np.min(xs)

1069

1070 for i in range(1, np.size(zInter)-1):

1071 if zInter[i] > zInter[i-1] and zInter[i]>zInter[i+1] and

(xs[i]-peaksDist0)> minDistance:↪→

1072 peaks.append(i)

1073 peaksDist0 = xs[i]

1074 return peaks

1075 def getLayerDistance(xs, zInter, peaks, maxNullAbw = -0.1):

142

8.2 apt importers.py

1076 posPeaks =xs[peaks][xs[peaks]>maxNullAbw]

1077 #get positive delta z values of identified peaks, see getPeaks()

1078

1079 summe = 0

1080 for i in range(np.size(posPeaks)):

1081 if i>0:

1082 summe += (posPeaks[i]-posPeaks[0])/i

1083 # print((posPeaks[i]-posPeaks[0])/i)

1084 #DEBUGGING Info

1085 #calculates the difference in delta z values for neighboring peaks,

1086 #which should be the inter planar distance

1087

1088 averageLayerDistToOrigin = summe /(np.size(posPeaks)-1)

1089 #means the distances

1090

1091 summe = 0

1092 count = 0

1093 for i in xrange(1,np.size(posPeaks)):

1094 summe += (posPeaks[i]-posPeaks[i-1])

1095 count+=1

1096

1097 averageLayerDistDiff = summe /(np.size(posPeaks)-1)

1098 print(averageLayerDistDiff)

1099 averageLayerDistDiff = summe /(count)

1100 print(averageLayerDistDiff)

1101 #DEBUGGING

1102

1103 return averageLayerDistToOrigin, averageLayerDistDiff

1104 def getLatticeConstant(dhkl, hkl):

1105 """

1106 should calculate the lattice constant of a cubic lattice by

parameters interplanar↪→

1107 distance dhkl and miller index of the plane

1108 """

1109 a = dhkl*np.sqrt(np.dot(hkl,hkl))

1110 return a

1111 def getCoresBool(lpos, elementCore):

1112 """

1113 returns atoms of defined list of species (elementCore),

1114 lpos ... pandas DataFrame of atom probe data

1115 there is a more elegant way to do this alread for the DataFrame

object...↪→

1116 compare for example lpos.loc[:,[('comp' == 'species1:1')|('comp' ==

'species2:1')]]↪→

1117 """

1118 rueck = np.zeros(np.size(lpos,0), dtype = bool)

143

8.2 apt importers.py

1119 for i in elementCore:

1120 rueck = np.logical_or(rueck, lpos.comp == i)

1121

1122 return rueck

1123 def getClusterAtomsL(dmax, dlink, derode, K, lpos, elementCore):

1124 """

1125 should reproduce core-linkage or maximum separation cluster

identification method (if both have derode = 0)↪→

1126 dmax, dlink, derode, K ... parameters for cluster identification,

squared distances (for dmax, dlink, derode) must↪→

1127 be given for example if dmax should be 0.74, 0.74**2 must be put as

parameter when calling↪→

1128 getClusterAtomsL().

1129 """

1130 #-- ⌋

----------↪→

1131 print([dmax,dlink,derode,K],['dmax','dlink','derode','K'])

1132 #DEBUGGING Info

1133

1134 coreBool = getCoresBool(lpos, elementCore)

1135 #get specified logical array

1136 dataCluster = lpos.loc[coreBool,['x','y','z']].get_values() # .ix

replaced↪→

1137 #take subset of DataFrame Object, x,y,z coordinates of chosen core

atoms↪→

1138

1139 print(dataCluster.shape)

1140 #DEBUGGING Info

1141

1142 set_distance_type('euclidean')

1143 flannCluster = FLANN()

1144 #creates FLANN object

1145

1146 NN = 100

1147 #starting nearest neighbor number

1148

1149 paramsCluster = flannCluster.build_index(dataCluster,algorithm=4,

target_precision=1., log_level = "info"); #algorithm=4 selects

kdtree single

↪→

↪→

1150 #builds kd tree

1151 #-------------------------------------- core step

1152 results, dists = flannCluster.nn_index(dataCluster, K+1,

checks=paramsCluster['checks'])↪→

1153 #queries K+1 nearest neighbor distances, K+1 , due to that atoms see

theirself↪→

1154 resultsCore = results[:,0][dists[:,-1]<=dmax]

144

8.2 apt importers.py

1155 #identify core atoms, take the atoms which Kth nearest neighbor is

smaller or equal dmax↪→

1156

1157 print('resultsCore ',resultsCore.shape)

1158 #DEBUGGING Info

1159 assert np.size(resultsCore) > 1, 'no core atoms identified'

1160 #raises error if no core atoms are found

1161 resultsCore = np.unique(resultsCore.flatten())

1162 #returns a uniqe set

1163

1164 flannCluster.delete_index()

1165 #deletes built index

1166 print('cores ',resultsCore.shape)

1167 #DEBUGGING Info

1168 #-- ⌋

---------- linkage

distance

↪→

↪→

1169 positionen = lpos.loc[:,['x','y','z']].get_values()

1170 #take positions of all atoms

1171 stepSize = 10000

1172 results0 = np.array([], dtype = np.int32)

1173

1174 paramsCluster = flannCluster.build_index(positionen, algorithm=4,

target_precision=1., log_level = "info"); #algorithm=4 selects

kdtree single

↪→

↪→

1175 #builts kdtree

1176

1177 FCC = np.array(lpos.loc[coreBool,['x','y','z']].get_values()[resultsCor ⌋

e,:], order='C') # ix

replaced

↪→

↪→

1178 #creates array to use as query points

1179 print('FCC ',FCC.shape)

1180 #DEBUGGING Info

1181

1182 if np.size(FCC,0)% stepSize ==0:

1183 folge = np.linspace(stepSize,np.size(FCC,0),(np.size(FCC,0)-stepSiz ⌋

e)//stepSize+1)↪→

1184 print('if')

1185 #DEBGUGGING Info

1186 elif np.size(FCC,0)<=stepSize:

1187 folge = np.array([np.size(FCC,0)])

1188 print('elif')

1189 #DEBUGGING Info

1190 else:

1191 folge = np.zeros((np.size(FCC,0)-stepSize)//stepSize+2)

145

8.2 apt importers.py

1192 folge = np.linspace(stepSize,((np.size(FCC,0)-stepSize)//stepSize+1 ⌋

)*stepSize,(np.size(FCC,0)-stepSize)//stepSize+1)↪→

1193 folge[-1] = np.size(FCC,0)

1194 print('else')

1195 #DEBUGGING Info

1196 #subdividing point set for query

1197

1198 print(folge)

1199 #DEBUGGING Info

1200 targetSize =np.size(positionen,0)

1201 last = 0

1202 if NN > targetSize:

1203 NN = targetSize

1204 for i in folge:

1205 block = FCC[last:i,:]

1206 #take a block of the point set to query

1207 print('block',block.shape)

1208 #DEBUGGING Info

1209 dists = np.zeros((2,2))

1210 while np.min(dists[:,-1]) <= dlink:

1211 results, dists = flannCluster.nn_index(block, NN,

checks=paramsCluster['checks'])↪→

1212 #query points around block while their maximum distance is

smaller than dlink↪→

1213 if np.min(dists[:,-1]) > dlink:

1214 break

1215 NN+=10

1216 if NN > targetSize:

1217 NN = targetSize

1218 results0=np.union1d(results0, results[dists<=dlink].flatten())

1219 #create unique set, avoids doubled indices

1220 last = i

1221 print('linking', results0.shape)

1222 #DEBUGGING Info

1223 #-- ⌋

----------↪→

1224 #for the core linkage method here would it be necessary to identify

the cluster numbers↪→

1225 #for reasons of speed this is here done after the eroding step

1226 #only for derode = 0 therefore the same results are expected

1227 resultsErode = results0

1228

1229 del results0

1230 del dists

1231 del results

1232 #free memory

146

8.2 apt importers.py

1233

1234 mask = np.zeros(np.size(lpos,0), dtype = bool)

1235 mask[resultsErode] = True

1236 #creates a logical array, sets indices True for identified core and

linked atoms↪→

1237

1238 flannCluster.delete_index()

1239 #delete kdtree

1240

1241 stepSize = 10000

1242 results0 = np.array([], dtype =np.int32)

1243

1244 paramsCluster = flannCluster.build_index(positionen[mask,:],

algorithm=4, target_precision=1., log_level = "info");

#algorithm=4 selects kdtree single

↪→

↪→

1245 #create kd tree on those atoms

1246 FCC2 = np.array(positionen[np.logical_not(mask),:], order='C')

1247 #take the other positions of the DataFrame, to query those points for

erosion process↪→

1248

1249 if np.size(FCC2,0)% stepSize ==0:

1250 folge = np.linspace(stepSize,np.size(FCC2,0),(np.size(FCC2,0)-stepS ⌋

ize)//stepSize+1)↪→

1251 elif np.size(FCC2,0)<=stepSize:

1252 folge = np.array([np.size(FCC2,0)])

1253 else:

1254 folge = np.zeros((np.size(FCC2,0)-stepSize)//stepSize+2)

1255 folge = np.linspace(stepSize,((np.size(FCC2,0)-stepSize)//stepSize+ ⌋

1)*stepSize,(np.size(FCC2,0)-stepSize)//stepSize+1)↪→

1256 folge[-1] = np.size(FCC2,0)

1257 #subdividing the data point set

1258

1259 targetSize =np.size(positionen[mask,:],0)

1260

1261 del positionen

1262 #free memory

1263 if derode > 0.:

1264 #start of erosion process, derode == 0 skips this step

1265 last = 0

1266 if NN > targetSize:

1267 NN = targetSize

1268 for i in folge:

1269 block = FCC2[last:i,:]

1270 dists = np.zeros((2,2))

1271 while np.min(dists[:,-1]) < derode:

147

8.2 apt importers.py

1272 #query points as long as last neighbor is smaller than

derode↪→

1273 results, dists = flannCluster.nn_index(block, NN,

checks=paramsCluster['checks'])↪→

1274 if np.min(dists[:,-1]) > derode:

1275 break

1276 NN+=10

1277 if NN > targetSize:

1278 NN = targetSize

1279 results0=np.union1d(results0, results[dists<=derode])

1280 #take unique indices of points which have a distance smaller

than derode↪→

1281 last = i

1282 print(targetSize)

1283 mask2 = np.ones(targetSize,dtype = bool)

1284 mask2[results0] = False

1285 #create logical array, set to False for found atoms

1286 lClusters = lpos.iloc[mask,:].iloc[mask2,:].copy() #ix replaced

1287 #take only non eroded atoms

1288 else:

1289 lClusters = lpos.iloc[mask,:].copy() #ix replaced

1290 #create lCluster Dataframe of core atoms and linked atoms

1291

1292 flannCluster.delete_index()

1293 #delete kd tree

1294 print('erosion', results0.shape)

1295 #DEBUGGING Info

1296 #-- ⌋

---------- linking together

clusters

↪→

↪→

1297 set_distance_type('euclidean')

1298 flannCluster = FLANN()

1299 #create FLANN Object

1300

1301 clusternumber = np.zeros(np.size(lClusters,0), dtype = np.int32)

1302 #Initializing a array for the cluster number with zero

1303

1304 counterCluster = 1

1305 #initizialize counter for cluster number with 1

1306 paramsCluster = flannCluster.build_index(lClusters.iloc[:,1:4].get_valu ⌋

es(),algorithm=4, target_precision=1., log_level = "info");

#algorithm=4 selects kdtree single #ix ersetzt

↪→

↪→

1307 #create kdtree of clustered atoms

1308 #-- ⌋

------↪→

↪→

148

8.2 apt importers.py

1309 FCC =np.array(lClusters.iloc[:,1:4].get_values(), order='C') #ix

replaced, FLANN needs the 'C' representation (?)↪→

1310 #create query points

1311 #-- ⌋

------↪→

1312 results0 = np.array([], dtype=np.int32)

1313 for j in FCC:

1314 result = flannCluster.nn_radius(j, dlink,

checks=paramsCluster['checks'])[0]↪→

1315 #query points within radius for one point

1316 #TODO unecessary result and result0

1317 results0 = result

1318 if np.max(clusternumber[results0]) == 0:

1319 clusternumber[results0] = counterCluster

1320 counterCluster += 1

1321 #if maximum cluster number of found point is 0, set

counterumber↪→

1322 #as cluster number and increase counter

1323 else:

1324 clusterN = np.min(clusternumber[results0][clusternumber[res ⌋

ults0]>0])↪→

1325 assert clusterN != 0, 'FEHLER'

1326 #raises error if clusternumber minimum is zero

1327 for i in np.unique(clusternumber[results0]):

1328 if i != 0:

1329 clusternumber[clusternumber == i] = clusterN

1330 #set every linked together cluster number to the

minimum cluster number↪→

1331 clusternumber[results0] = clusterN

1332 #set the minimum cluster number for found within radius

1333 #-- ⌋

----------↪→

1334 print('clusterID')

1335 #DEBUGGING Info

1336 flannCluster.delete_index()

1337 #delete kd tree

1338

1339 tmp = pd.DataFrame({'clN': clusternumber}, index =

lClusters.index.get_values())↪→

1340 #create cluster number coloumn pandas DataFrame

1341 lClusters = pd.concat([lClusters,tmp], axis = 1, join_axes=[tmp.index])

1342 #add cluster number to existing DataFrame object for atom probe data

1343

1344 del flannCluster

1345 for i,wert in enumerate(lClusters.clN.unique()):

1346 lClusters.clN.get_values()[lClusters.clN.get_values()==wert]=i+1

149

8.2 apt importers.py

1347 #delete flann Object

1348 return lClusters

1349 def getClusterStat(lClusters, elementCore):

1350 """

1351 creates cluster statistic of core atoms,

1352 histogram of number of atoms of clusters (as size measure)

1353 additional a second histogram is calculated as seen below.

1354 """

1355 # groessterCluster = lClusters.groupby('clN').clN.count().argmax()

1356 # kleinsterCluster =

lClusters.ix[coreBool].groupby('clN').clN.count().argmin()↪→

1357 #How to find smallest and largest cluster

1358

1359 coreBool = getCoresBool(lClusters, elementCore)

1360 #creates logical array for selected species of clusters (for example

Mg, Si atoms)↪→

1361 test = lClusters.ix[coreBool].groupby('clN').clN.count()

1362 #counts the number of entries with same cluster number

1363 H, edges = np.histogram(test, bins=np.arange(np.min(test)-1,

np.max(test)+1, 1))↪→

1364 #histograms this information

1365

1366 H2 = np.zeros(np.size(H))

1367 #initializes a second histogram

1368 for i in xrange(np.size(H)):

1369 H2[i] = np.sum(H[i:])

1370 #how many counts are greater than this cluster

1371 return H, H2, edges[:-1]

1372 #returns the histograms, and the left edges (until without last entry

[-1])↪→

1373 def plotClusterStat(H, H2, stutz):

1374 """

1375 creates a figure based on the information created in getClusterStat().

1376 """

1377 fig2 = plt.figure()

1378 conv = 2.54

1379 #1 inch = 2.54cm

1380 breite=15/conv

1381 hoehe=10/conv

1382 fig2.set_size_inches(breite,hoehe)

1383 ax2 = fig2.add_subplot(111)

1384

1385 ax2.plot(stutz, H,'-o', label='histogram cluster size')

1386 ax2.plot(stutz, H2, '-x', label='NMin-val')

1387 ax2.set_yscale("log")

1388 #logarithmic (10) y-scale

150

8.2 apt importers.py

1389 ax2.grid(True)

1390 ax2.legend(loc='best')

1391 #adds legend for the labels of the curve, loc=best ... choses best

aligment of the legend↪→

1392 return

1393 def summenKurve(a):

1394 rueck = np.zeros(np.size(a))

1395 summe = 0

1396

1397 for i in xrange(np.size(a)):

1398 summe +=a[i]

1399 rueck[i] = summe

1400 #there is a faster way to do this, use np.cumsum()

1401 return rueck

1402 def centerMass0(lposgroup):

1403 """

1404 point center of "mass"

1405 lposgroup ... is a grouped pandas DataFrame (used to calculate center

of mass↪→

1406 for a cluster)

1407 """

1408

1409 xmean = lposgroup.x.mean()

1410 ymean = lposgroup.y.mean()

1411 zmean = lposgroup.z.mean()

1412

1413 return np.array([xmean, ymean, zmean])

1414 def radiusGyration(lposgroup):

1415 """

1416 calculates GUINIER radius for grouped pandas DataFrame (used for

clusters),↪→

1417 called by getRadiusGyrHist()

1418 """

1419 n = lposgroup.x.count()

1420 #number of atoms used

1421 n = float(n)

1422 #float cast

1423 s = np.array([lposgroup.x.mean(), lposgroup.y.mean(),

lposgroup.z.mean()])↪→

1424 #point center of "mass"

1425 rG = np.sqrt(5/3.) * np.sqrt(np.sum(np.power(lposgroup.x-s[0],2)+np.pow ⌋

er(lposgroup.y-s[1],2)+np.power(lposgroup.z-s[2],2))/n)↪→

1426 #calculated GUINIER radius for grouped values

1427 # print(rG)

1428 #DEBUGGING Info

1429

151

8.2 apt importers.py

1430 return rG

1431 def getRadiusGyrHist(lpos):

1432 """

1433 GUINIER radius of clusters

1434 """

1435 lposgrouped = lpos.groupby('clN')

1436 #group by cluster number

1437 vals = lposgrouped.apply(radiusGyration)

1438 #applies a function to grouped values

1439 H, edges = np.histogram(vals, bins = 100)

1440 #histograms values

1441 radGyr_mean = np.mean(vals)

1442 #mean GUINIER radius value

1443 stutz = (edges[1:]+edges[:-1])/2.

1444

1445 return H, stutz, radGyr_mean

1446 def getCompCluster(lClusters, listElement):

1447 """

1448 should calculate compositions of clusters,

1449 is called by plotClusterComp()

1450 """

1451

1452 binsComp = np.linspace(0,1,200)

1453 #create bin array

1454 clusterAnzahl = lClusters.clN.max()

1455 #assumes that cluster number is equal to count of clusters,

1456 #better would be lpos.groupby('clN').comp.count().count(), fixed:

1457 #getClusterAtomsL() is modified

1458 list0 = []

1459 #Initialize list to return

1460

1461 index1 = (lClusters.groupby(['clN', 'comp']).comp.count()/lClusters.gro ⌋

upby(['clN']).comp.count()).index.get_level_values(1)↪→

1462 #gets index for species of elements of the grouped

lClusters.groupby(['clN', 'comp'])↪→

1463 for i in listElement:

1464 index2 = index1 == i

1465 H, edges = np.histogram((lClusters.groupby(['clN',

'comp']).comp.count()/lClusters.groupby(['clN']).comp.count())[⌋

index2].get_values(),

bins=binsComp)

↪→

↪→

↪→

1466 #histograms the fraction for entry in listElement

1467 anzahlClusterEnt = (lClusters.groupby(['clN', 'comp']).comp.count() ⌋

/lClusters.groupby(['clN']).comp.count())[index2].count()↪→

1468 #counts the number of clusters which do contain the entry

in listElement↪→

152

8.2 apt importers.py

1469 H[0] += clusterAnzahl - anzahlClusterEnt

1470

1471 #sets the zero entry, which is otherwise not counted due

to the way the pandas arithmentics work↪→

1472 stutz = (edges[1:]+edges[:-1])/2.

1473

1474 mean = (lClusters.groupby(['clN', 'comp']).comp.count()/lClusters.g ⌋

roupby(['clN']).comp.count())[index2].sum() /

anzahlClusterEnt

↪→

↪→

1475 #mean without zero content

1476 list0.append([H, stutz, i, mean])

1477

1478 return list0

1479 def plotClusterComp(lClusters, listElement, titel, max0 = 0.15,):

1480 fig = plt.figure()

1481 conv = 2.54

1482 # fig.set_size_inches(15/conv, 7.5/conv)

1483 fig.set_size_inches(10, 10)

1484 ax = fig.add_subplot(111)

1485 #create figure and add subplot

1486

1487 # listElement = lClusters.groupby('comp').count().index

1488 # listElement = ['Si:1', 'Mg:1', 'Mn:1', 'Cu:1', 'Sn:1', 'Ga:1']

1489

1490 listClusterComp = getCompCluster(lClusters, listElement)

1491 #get statistics of Clusters

1492

1493 max0 = 0.

1494 map0 = cm.nipy_spectral

1495 #choose a colourmap

1496 counter = 0

1497 n = float(len(listClusterComp))

1498 #number of entries listClusterComp as float

1499

1500 for i in listClusterComp:

1501 ax.plot(i[1], i[0], label=i[2], lw=1.5, c = map0(counter/n))

1502 #plots the histograms for each element, with a differing

colour↪→

1503 ax.axvline(i[3], c = map0(counter/n), lw = 1.5)

1504 #adds vertical lines for the mean (without zero values)

1505 if i[1][i[0]>0][-1] > max0:

1506 #maximum x value for y values which are > 0

1507 max0 = i[1][i[0]>0][-1]

1508 #sets new max0 for x axis adjustment

1509 ax.set_xbound(0., max0)

1510 counter += 1

153

8.2 apt importers.py

1511 ax.set_xbound(0., max0)

1512 #adjusts x axis

1513

1514 ax.legend(fontsize = 6)

1515 ax.grid(True)

1516 ax.set_ylabel('number clusters')

1517 ax.set_xlabel('concentration')

1518 ax.set_title(titel)

1519 #sets legend, grid, x,y axis labeling and title

1520 return fig, ax

1521 def plotClusterSize(lClusters, titel):

1522 fig2 = plt.figure()

1523 fig2.set_size_inches(15.,10.)

1524 ax = fig2.add_subplot(111)

1525 #creates figure and adds subplot

1526

1527 H, stutz, radGyr = getRadiusGyrHist(lClusters)

1528 #gets Guinier radius statistics

1529

1530 ax.plot(stutz, H, '-o')

1531 ax.legend()

1532 ax.grid(True)

1533 ax.set_ylabel('counts')

1534 ax.set_xlabel('radius')

1535 ax.set_title(titel)

1536 #plots statistics, sets grid, labels x,y, title

1537 return fig2

1538 def getCompPos(pos, rrngs, path, deltaDalton = 0.02, nrUpperboundFit =

1000, startVal0 = 1., startVal1 = 10.):↪→

1539 """

1540 creates figure of mass-to-charge ratio spectrum of pos file, fits

background and plots↪→

1541 resiudal spectrum, saves calculated composition to path

1542 """

1543 print(path)

1544 #DEBUGGING Info

1545

1546 fig = plt.figure()

1547 conv = 2.54

1548 #1 inch = 2.54cm

1549 breite=15/conv

1550 hoehe=2*10/conv

1551 fig.set_size_inches(breite,hoehe)

1552 ax = fig.add_subplot(211)

1553 ax2 = fig.add_subplot(212)

1554 ax.grid(True)

154

8.2 apt importers.py

1555 #creates a figure and adds two subplots

1556

1557 lpos = label_ions(pos, rrngs)

1558 nBins = np.int32((np.max(pos.Da)-np.min(pos.Da))/deltaDalton)

1559 # print(nBins)

1560 #DEBUGGING Info

1561

1562 H, edges = np.histogram(pos.Da, nBins)

1563 #histogram of the mass-to-charge ratio of atoms in pos file

1564 H2 , edges2 = np.histogram(lpos.ix[lpos.comp == ''].Da, nBins)

1565 #histogram of the mass-to-charge ratio for unranged ions

1566

1567 stutz = (edges[1:] + edges[:-1])/2.

1568 stutz2 = (edges2[1:] + edges2[:-1])/2.

1569

1570 comp = []

1571 name = []

1572

1573 popt, pcov = curve_fit(func1, stutz2[H2>0] , H2[H2>0], p0=(startVal0,

startVal1))↪→

1574 #curve fitting of func1 to the unranged points in the histograms

1575 cut = np.ceil(func1(stutz, *popt))

1576 #rounds function values, to avoid non-integer counts for a histogram

1577

1578 ax.plot(stutz, H,'-', lw = 0.5)

1579 ax.plot(stutz, cut,'-')

1580 #plots mass-to-charge state and background fit

1581

1582 ax.set_title(path.split('/')[5] + ' background fit')

1583 ax.set_xlabel('mass-to-charge [Da]')

1584 ax.set_ylabel('counts')

1585 ax.set_yscale('log')

1586 #labeling, log scale setting for first subplot

1587

1588 ax2.set_title('residual spectrum')

1589 ax2.set_xlabel('mass-to-charge [Da]')

1590 ax2.set_ylabel('counts')

1591 ax2.set_yscale('log')

1592 #labeling, log scale setting for second subplot

1593

1594 rrngs = rrngs.sort('lower')

1595 for i, wert in enumerate(rrngs.lower):

1596 ax2.axvline(wert, color='black', lw = 0.1)

1597 ax2.axvline(rrngs.upper[i], color='r', lw = 0.1)

1598 #draw vertical lines for upper and lower bound of range

155

8.2 apt importers.py

1599 ax2.annotate(rrngs.comp[i].replace('Name:',''), xy=(wert, 100. +

(i%4)*10**(i%4+1)), fontsize = 4)↪→

1600 #draw name of ion at x = lower range, y = 100, 2000, 30000 ...

(logscale)↪→

1601

1602 H = H - cut

1603 #residual histogram

1604 H[H<0] = 0

1605 #filters zero counts

1606

1607 ax2.plot(stutz[H>0], H[H>0],'-', lw = 0.5)

1608 ax2.set_xbound(0,75)

1609 ax2.grid(True)

1610 #plots residual histogram

1611

1612 df2 = pd.DataFrame({'counts' : H,

1613 'edges' : stutz})

1614

1615 for g,d in rrngs.groupby('comp'):

1616 count = 0

1617 for i in d.iterrows():

1618 count += df2.ix[(df2.edges >= i[1].lower) & (df2.edges <=

i[1].upper)].counts.sum()↪→

1619

1620 comp.append(count)

1621 name.append(g)

1622 #count composition of residuals

1623

1624 comp = np.array(comp)/np.float(np.sum(comp))

1625 output = ""

1626 output += 'ion %\n'

1627 print('ion %')

1628 for i in range(len(name)):

1629 print(name[i] +" "+ str(100.*comp[i]))

1630 output += name[i] + " " + str(100.*comp[i]) + "\n"

1631 #creates string for txt output

1632

1633 fig.tight_layout()

1634 f = open(path,'w')

1635 f.write(output)

1636 f.close()

1637 #saves txt file to path

1638 return fig

1639 def func1(m, a, b):

1640 """fitting function for background fitting, called by getCompPos()"""

1641 y = a/(np.sqrt(m)+b)

156

8.2 apt importers.py

1642 return y

1643 def hitlabel(d):

1644 """

1645 adds a coloumn which contains the .count() of epos.id

1646 """

1647 d.loc[:,'hn'] = d.id.count()

1648 return d

1649 def getStandardFig():

1650 """

1651 returns a figure in a size which is often used in apt_importers

1652 """

1653 fig2 = plt.figure()

1654 conv = 2.54

1655 #1 inch = 2.54cm

1656 breite=15/conv

1657 hoehe=7.5/conv

1658 fig2.set_size_inches(breite,hoehe)

1659 ax2 = fig2.add_subplot(111)

1660 return fig2, ax2

1661 def deleteBG(z):

1662 """

1663 used to delete the background from a z SDM, used should be the value

of↪→

1664 the first minimum of the z SDM as a stopping criteria for smoothing

1665 """

1666 firstMin = findFirstMin(z)

1667 z = z.copy()

1668 z00 = z.copy()

1669 #create two copies of the z array

1670 while(firstMin < np.max(z)):

1671 z0 = z.copy()

1672 for i in xrange(1, np.size(z)-1):

1673 z[i] = min(z0[i], (z0[i+1]+z0[i-1])/2.)

1674 #smooth function until maximum is smaller than original first

minium↪→

1675 z = z00 - z

1676 #delete background (smoothed function)

1677 z = z / np.float(np.sum(z))

1678 #norm to all counts

1679 return z

1680 def findFirstMin(z):

1681 """is called by deleteBG(), w_zSDM_Al_Cluster has to be in the memory

known,↪→

1682 to work with this function"""

1683 i0 = z.argmax()

1684 #index of z maximum

157

8.2 apt importers.py

1685 i1 = i0+1

1686 i2 = i0+2

1687 isearch = i0

1688 while i0 < np.size(z)-3:

1689 #avoid index errors

1690 if z[i0] < z[i1] and z[i0] < z[i2]:

1691 isearch = i0

1692 break

1693 else:

1694 i0 += 1

1695 i1 += 1

1696 i2 += 1

1697 #increment counting integers

1698 #searches a local minimum in the z array, and returns the first

minimum value↪→

1699 return z[isearch]

1700 def norm(z):

1701 """norms to the sum of counts"""

1702 z = z / np.float(np.sum(z))

1703 return z

1704 def normsmooth(z, N):

1705 """returns difference to the smoothed function, norms it to the sum

of all counts"""↪→

1706 z = z-smoothingZSDM(z,N)

1707 z = z / np.float(np.sum(z))

1708 return z

1709 def richtungsWinkel(v1,v2):

1710 """returns angle between vectors for normed vectors v1, v2"""

1711 phi = np.arccos(np.dot(v1,v2))*180./np.pi

1712 return phi

1713 def findMaxAll(z):

1714 """

1715 should find all positive maxima of z SDM

1716 """

1717 listMax = []

1718 i1 = z.argmax()

1719 i0 = i1-2

1720 i2 = i1+2

1721

1722 while i0 < np.size(z)-4:

1723 if (z[i1] > z[i2] and z[i1] > z[i0] and z[i1] > z[i2-1] and z[i1] >

z[i0+1]):↪→

1724 listMax.append(i1)

1725 # print(i0,i1,i2,z[i1] < z[i2],z[i1] > z[i0])

1726 # DEBGUGGING Info

1727 i0 += 1

158

8.2 apt importers.py

1728 i1 += 1

1729 i2 += 1

1730 return listMax

1731 def angleMiller(a,b):

1732 """calculates the angle in between two vectors in degree"""

1733 a=a/scipy.linalg.norm(a)

1734 b=b/scipy.linalg.norm(b)

1735 phi=np.arccos(np.dot(a,b))*180./np.pi

1736 return phi

1737 def zoneMiller(a,b):

1738 """calculates the zone axis of given directions, returns a normed

vector"""↪→

1739 a=a/scipy.linalg.norm(a)

1740 b=b/scipy.linalg.norm(b)

1741 c = np.cross(a,b)

1742 return c

1743 def colorClusters(lClusters):

1744 """colours clusters for better visualization"""

1745 colorList = []

1746 colorList.append('#FF00FF')

1747 colorList.append('#FFFF00')

1748 colorList.append('#FFC800')

1749 colorList.append('#FFAFAF')

1750 colorList.append('#FF0000')

1751 colorList.append('#00FF00')

1752 colorList.append('#0000FF')

1753 colorList.append('#00FFFF')

1754 #creates a list of hex colour values

1755 i = 0

1756 for x in lClusters.clN.unique():

1757 #for every cluster

1758 lClusters.loc[lClusters.clN == x, ['colour']] = colorList[i]

1759 #colours a cluster

1760 i +=1

1761 #increases counting integer

1762 if i > np.size(colorList)-1:

1763 #sets counting integer to zero if counter is through

colorList↪→

1764 i=0

1765 return

1766 def rrngsToRng(rrngs, ions):

1767 """converts the info read by a .rrng range file to a rng file format

1768 and prints it to the output"""

1769 print(str(ions.shape[0])+" "+str(rrngs.shape[0]))

1770 #number of ions and number of ranges

1771 for i in ions.name:

159

8.2 apt importers.py

1772 print(i)

1773 #names of ions

1774 if rrngs[np.logical_not(rrngs.comp.str.contains(' ')) &

rrngs.comp.str.contains(i)].size >0:↪→

1775 values = hex2rgb(rrngs[np.logical_not(rrngs.comp.str.contains('

')) & rrngs.comp.str.contains(i)].colour.unique()[0])↪→

1776 #saves colourvalues for the not complex ion

1777 else:

1778 values = hex2rgb(rrngs[rrngs.comp.str.contains(i)].colour.uniqu ⌋

e()[0])↪→

1779 print(", ".join(['%.2f' %j for j in values]))

1780 #prints rgb color with 2 digit precision separated by ", "

1781

1782 print('----------------- ' + " ".join(ions.name))

1783 #prints '----------------- ' and ion names separated by spaces

1784 for n,r in rrngs.iterrows():

1785 # print(n)

1786 # DEBUGGING Info

1787 listCount = np.zeros(ions.shape[0],dtype=int)

1788 #Initialize integer array for every loop

1789 for i in r.comp.split(" "):

1790 # print(i.split(':')[0])

1791 # DEBUGGING Info

1792 if(i.split(':')[0] != 'Name'):

1793 #if entry is not a non-identified ion

1794 listCount[(ions.name == i.split(':')[0]).get_values()] =

int(i.split(':')[1])↪→

1795 #set number of element to the entry, e.g.

Al:2 H:1,↪→

1796 #sets at the index of Al in ions, 2; at

the position of H, 1.↪→

1797 else:

1798 #if entry is a non-identified ion, starting with

identifier 'Name:' (IVAS default)↪→

1799 listCount[(ions.name == i.split(':')[1]).get_values()] = 1

1800 #set the certain array entry to one

1801 print('. ' + '%.4f' %r.lower +" "+'%.4f' %r.upper+" "+"

".join(['%i' %j for j in listCount]))↪→

1802 #prints '. ' and with 4 digit precision the upper and

1803 #lower bound of the range for the given ion.

1804 print("\n")

1805 print('--- polyatomic extension')

1806 return

1807 def hex2rgb(hex_str):

1808 """

1809 hex value (as string) to rgb value conversion,

160

8.2 apt importers.py

1810 called by rrngsToRng()

1811 """

1812 r, g, b = hex_str[:2], hex_str[2:4], hex_str[4:]

1813 rgb = [int(n, base=16)/255. for n in (r, g, b)]

1814 return rgb

1815 def searchMax(data, psibereich, thetabereich):

1816 """

1817 searches psi and theta (rotation angles) for maximum z SDM value

1818 data ... array of difference vectors

1819 psibereich ... array for psi search space

1820 thetabereich ... array for psi search space

1821 """

1822 zmaxbereich = 2. #plus minus delta z space

1823 aufl = 0.005 #resolution for the histogram in nm

1824 zmax = 0 #variable for the z SDM maximum value

1825 psi0 = 0. #value to hold psi position of maximum

1826 theta0 = 0. #value to hold theta position of maximum

1827 raster = np.zeros((np.size(psibereich),np.size(thetabereich)))

1828 #two dimensional array for holding the z SDM maximum values

1829 for i,wert in enumerate(psibereich):

1830 for j,wert2 in enumerate(thetabereich):

1831 x,z = getRotateZSDM(zmaxbereich,data,wert,wert2,2*zmaxbereich/a ⌋

ufl)↪→

1832 raster[i,j] = np.max(z)

1833 #saves max z SDM value to 2D array

1834 if np.max(z) > zmax:

1835 psi0 = wert

1836 theta0 = wert2

1837 zmax = np.max(z)

1838 #if z SDM max is greater than current max

1839 #save current psi and theta value

1840

1841 return raster, psi0, theta

1842 def calculateMginClusters(group, Nmin=0):

1843 countMg = group[group.comp == 'Mg:1'].comp.count()

1844 countSi = group[group.comp == 'Si:1'].comp.count()

1845 # print(countMg)

1846 # print(countSi)

1847 summeMgSi = countMg+countSi

1848 if summeMgSi < Nmin:

1849 return np.NaN

1850 else:

1851 return np.float(countMg)/summeMgSi

1852 def calculateMginClustersall(group, Nmin=0):

1853 countMg = group[group.comp == 'Mg:1'].comp.count()

1854 countSi = group[group.comp == 'Si:1'].comp.count()

161

8.3 plot multiple hits Si.py

1855 summeMgSi = countMg+countSi

1856 if summeMgSi < Nmin:

1857 return np.NaN

1858 else:

1859 return countMg

8.3 plot multiple hits Si.py

1860 from pyflann import *

1861 #from numpy import *

1862 import time

1863 from apt_importers import *

1864 #import scipy.linalg as lin

1865 from Vis import volvis

1866 from matplotlib import cm

1867 from scipy.special import gamma

1868 from scipy.misc import factorial

1869 import itertools as it

1870 from numpy import linalg as LA

1871 #imports several libraries also the self-written/enhanced apt_importers

1872 """

1873 this script is used to create detectorhitmaps for artifact detection, and

visual↪→

1874 inspection. Also code for multiple hits analysis contained

1875 """

1876 def getSiSi(d):

1877 """returns Si doubles"""

1878 if d.loc[d.comp =='Si:1'].comp.count() == 2:

1879 r = d.loc[d.comp =='Si:1']

1880 return r

1881 return

1882 def printrows(d):

1883 """

1884 creates entries True if more than two atoms are in grouped

1885 """

1886 if d.comp.count() >= 2:

1887 d.loc[:,'in'] = True

1888 else:

1889 d.loc[:,'in'] = False

1890 return d

1891 def getDist(d):

1892 """

1893 calculates distances for every combination to first multiple hit ion

1894 """

1895 det_x, det_y = d.det_x.get_values(), d.det_y.get_values()

1896 a = np.array([det_x[0], det_y[0]])

162

8.3 plot multiple hits Si.py

1897 minDist = 15.

1898 for i in it.combinations(np.arange(0,np.size(det_x),1),2):

1899 b = np.array([det_x[i[0]], det_y[i[0]]])

1900 a = np.array([det_x[i[1]], det_y[i[1]]])

1901 dist = LA.norm(b-a,2)

1902 if LA.norm(b-a,2) < minDist:

1903 minDist = dist

1904

1905 d.loc[:,'dist'] = minDist

1906 return d

1907 #definition of analysis/test functions

1908

1909 numberPlots = 4

1910 fig, axes = plt.subplots(1,numberPlots, figsize = (20,5))

1911 axes = axes.flatten()

1912 #create figure and subplotts and flattens array to adress it as one

dimensional↪→

1913 #array

1914

1915 workingDir = '/media/phillip/Volume1/DatenIVAS/'

1916

1917

1918

1919 path = '/media/phillip/Volume1/Messungen_Zuerich_Sep_2018/R34_05976/recons/ ⌋

recon-v01/default/R34_05976-v01.epos'↪→

1920 pathRange = '/media/phillip/Volume1/13_rangeFiles/R34_05935_AlOH_V.rrng'

1921

1922 epos = read_epos(path)

1923 #loads epos file

1924

1925 ions,rrngs = read_rrng(pathRange)

1926 #loads rrng file

1927 epos = label_ions(epos, rrngs)

1928 #creates ranged epos file

1929

1930 elementCore = []

1931 elementCore.append('Mg:1')

1932 elementCore.append('Si:1')

1933 #creates a list and entries 'Mg:1' and 'Si:1'

1934 coreBool = getCoresBool(epos, elementCore)

1935 #creates logical array of positions core Elements

1936

1937 #---

1938 #multiples = epos[epos.ipp !=1]

1939 #gets ions for which ions per pulse is not 1, i.e. all multiple hit ions

1940 #

163

8.3 plot multiple hits Si.py

1941 #multiples.loc[:,'id'] = multiples.ipp.cumsum()

1942 #gives multiple ions same "id"

1943 ##multiples = multiples.loc[:,['x','y','z', 'comp', 'det_x', 'det_y',

'id']]↪→

1944 #multipleSi = multiples.ix[multiples.comp == 'Si:1',:]

1945 #multiple Si hits

1946 #

1947 #rueck = multipleSi.groupby('id').apply(printrows).loc[:,'in']

1948 #multipleSi = multipleSi.loc[rueck,:]

1949 #multipleSi = multipleSi.groupby('id').apply(getDist)

1950 #multipleSi = multipleSi.ix[multipleSi.dist < 1.]

1951 #selects Si multiple ions which are separated by less than 1 mm

1952 #

1953 #ax.clear()

1954 #ax.hist2d(epos.det_x.get_values(), epos.det_y.get_values(), bins = 100)

1955 #ax.scatter(multipleSi.det_x.get_values(),

multipleSi.det_y.get_values(),s = 2, c = 'black')↪→

1956 #ax.set_title('Si-Si hits, detector position')

1957 #fig.savefig(workingDir+'SiSi_multipleHits_detectorSpace.png', dpi = 300)

1958 #plots the positions on the detector as scatter and saves the figure

1959

1960 #multipleSi = multiples.loc[(multiples.comp == 'Ga:1')]

1961 #ax.clear()

1962 #ax.hist2d(epos.det_x.get_values(), epos.det_y.get_values(), bins = 100)

1963 #ax.scatter(multipleSi.det_x.get_values(),

multipleSi.det_y.get_values(),s = 2, c = 'gray')↪→

1964 #ax.set_title('Ga-multiple hits, detector position')

1965 #fig.savefig(workingDir+'Ga_multipleHits_detectorSpace.png', dpi = 300)

1966 #plots Ga multiple hits

1967

1968 #multipleSi = multiples.loc[(multiples.comp == 'Si:1')]

1969 #ax.clear()

1970 #ax.hist2d(epos.det_x.get_values(), epos.det_y.get_values(), bins = 100)

1971 #ax.scatter(multipleSi.det_x.get_values(),

multipleSi.det_y.get_values(),s = 2, c = 'gray')↪→

1972 #ax.set_title('Si-multiple hits, detector position')

1973 #plots Si multiple hits

1974 #---

1975 #multiple hits analysis

1976

1977 axes[0].hist2d(epos.det_x.get_values(), epos.det_y.get_values(), bins = 150)

1978 #plots 2d histogram of detector coordinates of all detected atoms

1979 axes[0].set_title('detector hitmap', fontsize = 20)

1980 axes[1].hist2d(epos.ix[epos.comp == 'Si:1'].det_x.get_values(),

epos.ix[epos.comp == 'Si:1'].det_y.get_values(), bins = 80)↪→

164

8.3 plot multiple hits Si.py

1981 #axes[1].hist2d(epos.ix[epos.comp == 'Zn:1'].det_x.get_values(),

epos.ix[epos.comp == 'Zn:1'].det_y.get_values(), bins = 80)↪→

1982 axes[1].set_title('Si', fontsize = 20)

1983 #axes[1].set_title('Zn', fontsize = 20)

1984 #axes[1].hist2d(epos.loc[epos.comp == 'Sc:1'].det_x.get_values(),

epos.loc[epos.comp == 'Sc:1'].det_y.get_values(), bins = 80)↪→

1985 #axes[1].set_title('Si', fontsize = 20)

1986 axes[2].hist2d(epos.loc[epos.comp == 'Cu:1'].det_x.get_values(),

epos.loc[epos.comp == 'Cu:1'].det_y.get_values(), bins = 80)↪→

1987 axes[2].set_title('Cu', fontsize = 20)

1988 #axes[2].hist2d(epos.loc[epos.comp == 'Ga:1'].det_x.get_values(),

epos.loc[epos.comp == 'Ga:1'].det_y.get_values(), bins = 80)↪→

1989 #axes[2].set_title('Ga', fontsize = 20)

1990 #axes[2].hist2d(epos.loc[epos.comp == 'Mn:1'].det_x.get_values(),

epos.loc[epos.comp == 'Mn:1'].det_y.get_values(), bins = 80)↪→

1991 #axes[2].set_title('Mn', fontsize = 20)

1992 axes[3].hist2d(epos.loc[epos.comp == 'Mg:1'].det_x.get_values(),

epos.loc[epos.comp == 'Mg:1'].det_y.get_values(), bins = 80)↪→

1993 axes[3].set_title('Mg', fontsize = 20)

1994 #plots 2d histogram of detector coordinates of specific species

1995

1996 #coreShow = getCoresBool(epos, ['Si:1', 'Ga:1'])

1997 #volvis(epos[coreShow])

1998 #to look at the Si and Ga atoms in 3D

1999

2000 #saveDir = '/media/phillip/Volume1/Daten_PA/R21_08675/auswertung/'

2001 #

2002 [ax.set_xlabel('det x / mm', fontsize = 20) for ax in axes]

2003 [ax.set_ylabel('det y / mm', fontsize = 20) for ax in axes]

2004 #labels alle axes in figure

2005

2006 ##ax.set_title('Si', fontsize = 20)

2007 ##fig.savefig('/media/phillip/Volume1/Dropbox/poster_MSE/figure_new/AQ_hi ⌋

tmap.tiff', bbox_inches = 'tight', dpi =

300)

↪→

↪→

2008 ##fig.savefig(saveDir + 'Si_detHitmap', bbox_inches = 'tight', dpi = 300)

2009 #fig.savefig(saveDir + 'Cu_detHitmap', bbox_inches = 'tight', dpi = 300)

2010 #fig.savefig('/media/phillip/Volume1/DatenIVAS/R34_04367/auswertung/detHi ⌋

tmap_04367.png', bbox_inches = 'tight', dpi =

300)

↪→

↪→

2011

2012 fig.tight_layout()

2013 #hinders that axis text overwrites lines of diagram

2014

165

8.3 plot multiple hits Si.py

2015 fig.savefig('/'.join(path.split('/')[:-4])+ '/auswertung/'+

path.split('/')[-1][:-5] + '_detectorHitmaps.png', bbox_inches =

'tight', dpi = 300)

↪→

↪→

2016 #used to save the created figure into analysis directory

2017

2018 #deltaDalton = 0.02

2019 #nBins = np.int((np.max(epos.Da)-np.min(epos.Da))/deltaDalton)

2020 #H, edges = np.histogram(epos.Da, nBins)

2021 #constCutoff = 0

2022 #xax = (edges[1:]+edges[:-1])/2.

2023 #axes[2].plot(xax[H>constCutoff],H[H>constCutoff],'.-')

2024 #axes[2].set_yscale("log")

2025 #for i, wert in enumerate(rrngs.lower):

2026 # axes[2].axvline(wert, color='black')

2027 # axes[2].axvline(rrngs.upper[i], color='r')

2028 #axes[2].axhline(100)

2029 #axes[2].set_xbound(0,70)

2030 #plots mass-to-charge ratio and the ranges of elements in rrng

2031

2032 #[ax.set_xbound(-15,15) for ax in axes]

2033 #[ax.set_ybound(-15,15) for ax in axes]

2034

2035 #p1=np.array([0.87,0.85])

2036 #p2=np.array([6,-5.])

2037 #k = (p2[1]-p1[1])/(p2[0]-p1[0])

2038 #x = np.linspace(-15,15,100)

2039 ##p2new = [3,3]

2040 #p2new = [-2,-2]

2041 #y= k*(x-p2new[0])+p2new[1]

2042 #axes[1].plot(x,y,c='k',lw=1.5)

2043 #axes[0].plot(x,y,c='k',lw=1.5)

2044 #p2new = [3,3]

2045 #p2new = [-2,-2]

2046 #y= k*(x-p2new[0])+p2new[1]

2047 #axes[1].plot(x,y,c='k',lw=1.5)

2048 #axes[0].plot(x,y,c='k',lw=1.5)

2049 #fig.savefig('/'.join(path.split('/')[:-4])+ '/auswertung/'+

path.split('/')[-1][:-5] + '_detectorHitmaps_cut.png', bbox_inches =

'tight', dpi = 300)

↪→

↪→

2050

2051 #cut1 = epos[epos.det_y > k*(epos.det_x-3)+3]

2052 #cut2 = epos[epos.det_y < k*(epos.det_x+2)-2]

2053 #

2054 #cut = cut1.append(cut2)

166

8.4 analyse recon.py

8.4 analyse recon.py

2055 from pyflann import *

2056 #from numpy import *

2057 import time

2058 from apt_importers import *

2059 #import scipy.linalg as lin

2060 from Vis import volvis

2061 from matplotlib import cm

2062 from scipy.special import gamma

2063 from scipy.misc import factorial

2064 import itertools as it

2065 from numpy import linalg as LA

2066 from scipy.optimize import curve_fit

2067 from scipy import interpolate

2068

2069 def fitX((x,y),*a):

2070 p = a[0]+a[1]*y+a[2]*x+a[3]*np.power(x,2)+a[4]*np.power(y,2)+a[5]*np.po ⌋

wer(x,3)+a[6]*x*np.power(y,2)+a[7]*np.power(x,4)+a[8]*np.power(x,3) ⌋

*y+a[9]*np.power(x,2)*np.power(y,2)+a[10]*x*np.power(y,3)+a[11]*np. ⌋

power(y,4)

↪→

↪→

↪→

2071 return p

2072 def fitX2((x,y),*a):

2073 p = a[0]+a[1]*np.power(x,2)+a[2]*np.power(y,2)+a[3]*np.power(x,4)+a[4]* ⌋

np.power(x,2)*np.power(y,2)+a[5]*np.power(y,4)↪→

2074 return p

2075 def fitX3((x,y),*a):

2076 p = a[0]+a[1]*x+a[3]*np.power(y,2)+a[4]*np.power(x,3)+a[5]*x*np.power(y ⌋

,2)+a[6]*np.power(x,2)*np.power(y,2)↪→

2077 return p

2078 def fitY((x,y),*a):

2079 p = a[0]+a[1]*y+a[2]*x+a[3]*x*y+a[4]*np.power(y,2)+a[5]*np.power(x,2)*y ⌋

+a[6]*np.power(y,3)+a[7]*np.power(x,3)*y+a[8]*x*np.power(y,3)↪→

2080 return p

2081 def FitEntlangY(x,*a):

2082 p = a[0]+a[1]*x+a[2]*np.power(x,2)

2083 return p

2084 def FitEntlangY2(x,*a):

2085 p = a[0]+a[1]*np.power(x,2)+a[2]*np.power(x,4)

2086 #looks good, fit along Y für die det_x-det_x2

2087 return p

2088 def FitEntlangY3(x,*a):

2089 p = a[0]+a[1]*x+a[2]*np.power(x,2)+a[3]*np.power(x,3)+a[4]*np.power(x,4 ⌋

)+a[5]*np.power(x,5)↪→

2090 #looks good, fit along X für die det_x-det_x2

2091 return p

167

8.4 analyse recon.py

2092 def FitXYlin((x,y),*a):

2093 # x = x-a[11]

2094 # y = y-a[12]

2095 p = a[0]+a[1]*np.power(y,2)+a[2]*np.power(y,4)+a[3]*x+a[4]*np.power(x,2 ⌋

)+a[5]*np.power(x,3)\↪→

2096 +a[6]*np.power(x,4)+a[7]*np.power(x,5)+a[8]*x*np.power(y,2)+a[9]*x*np.p ⌋

ower(y,4)\↪→

2097 +a[10]*np.power(x,2)*np.power(y,2)+a[11]*np.power(x,3)*np.power(y,2)

2098

2099 return p

2100 def FitXYlin_test((x,y),*a):

2101 # x = x-a[11]

2102 # y = y-a[12]

2103 p = a[0]+a[1]*np.power(y,2)+a[2]*np.power(y,4)+a[3]*x+a[4]*np.power(x,2 ⌋

)+a[5]*np.power(x,3)\↪→

2104 +a[6]*np.power(x,4)+a[7]*np.power(x,5)+a[8]*x*np.power(y,2)+a[9]*x*np.p ⌋

ower(y,4)\↪→

2105 +a[10]*np.power(x,2)*np.power(y,2)

2106

2107 return p

2108 def fit_y2(x,*a):

2109 p = a[0]+a[1]*x+a[2]*np.power(x,2)+a[3]*np.power(x,3)

2110 return p

2111 def fit_y2_2(x,*a):

2112 p = a[0]+a[1]*x+a[2]*np.power(x,2)

2113 return p

2114 def FitXYlin2((x,y),*a):

2115 x = x-a[0]

2116 y = y-a[1]

2117 p = a[2]+a[3]*x+a[5]*y+a[6]*np.power(y,2)+a[7]*np.power(y,3)+a[4]*np.po ⌋

wer(x,2)\↪→

2118 +a[9]*y*np.power(x,2)+a[8]*y*x

2119 return p

2120 def fitVoltage(x,*a):

2121 p = a[0]+a[1]*np.sqrt(x)+a[2]*x

2122 return p

2123 def calcDetkorr(x2, poptX, poptY):

2124 x2_new = (x2[0]-FitXYlin(x2,*poptX), x2[1]-FitXYlin2(x2,*poptY))

2125 return x2_new

2126 #functions which were tried to find a connection between recalculated

detector↪→

2127 #coordinates and original detector coordinates

2128

2129 """

2130 script calculates some approximate virtual flight path for reconstruction

2131 calibration, builds new reconstruction upon an existing one.

168

8.4 analyse recon.py

2132 """

2133

2134 numberPlots = 4

2135 fig, axes = plt.subplots(1,numberPlots, figsize = (20,5))

2136 axes = axes.flatten()

2137 #create figure and make array of subplots one dimensional

2138 path = '/media/phillip/Volume1/Daten7050/R21_09743/recons/recon-v01/default ⌋

/R21_09743-v01.epos'↪→

2139 ICF = 1.225

2140 kf = 4.54

2141 #paths and corresponding used kf and ICF values

2142

2143 epos = read_epos(path)

2144 #load epos file

2145

2146 pathRange = '/media/phillip/Volume1/13_rangeFiles/R21_09743_v01.rrng'

2147 #path for range file

2148

2149 ions,rrngs = read_rrng(pathRange)

2150 #load range(rrng) file

2151 #epos = epos.loc[:,['x', 'y', 'z', 'Da', 'det_x', 'det_y', 'comp', 'ipp']]

2152 epos = label_ions(epos, rrngs)

2153 #label ranged ions

2154

2155 epos = epos.loc[:,['x','y','z','det_x','det_y','det_x2','det_y2','DC_kV','R ⌋

','Da']]↪→

2156 #reduce epos file and add det_x2, det_y2 and R coloumn

2157 #kf = 4.4

2158 #ICF = 1.201

2159

2160 #kf = 4.6

2161 #ICF = 1.2

2162

2163 #kf = 3.6

2164 #ICF = 1.32

2165

2166

2167 FevAl = 19.

2168 #evaporation field in V/nm

2169 initial = np.ones((12))

2170 #start values for a fit

2171

2172 #epos = epos[:8*10**6]

2173 #epos = epos.loc[epos.det_x**2 + epos.det_y**2 <15.**2]

2174 #cuts of the whole datasets

2175

169

8.4 analyse recon.py

2176 epos.R = 1.2*epos.DC_kV/(FevAl*kf)

2177 #calculation of radius via using the voltage, 1.2 due to 20% pulse

fraction↪→

2178 #epos.R = epos.DC_kV/(FevAl*kf)

2179

2180 #poptV, pcovV = curve_fit(fitVoltage, epos[::1000].index.get_values(),

epos[::1000].R, p0 = initial)↪→

2181 #fitting

2182 epos = epos.loc[:,['x','y','z', 'det_x','det_y','det_x2','det_y2','R','Da'

]]↪→

2183 #delete DC_kV coloumn

2184

2185 #epos.R = fitVoltage(epos.index.get_values(), *poptV)

2186 #epos.iloc[(epos.det_y/epos.y).argmin()]

2187

2188 dety0 = epos.ix[(epos.det_y/epos.y).argmin()].det_y

2189 detx0 = epos.ix[(epos.det_x/epos.x).argmin()].det_x

2190 m = ICF-1.

2191 L = 382.

2192 #standard flight distance printed in IVAS

2193

2194 epos.det_x2 = epos.x/np.sqrt(np.power(epos.x,2)+np.power(epos.y,2))*L/(m+np ⌋

.cos(np.arcsin(np.sqrt(np.power(epos.x,2)+np.power(epos.y,2))/epos.R))) ⌋

*np.sqrt(np.power(epos.x,2)+np.power(epos.y,2))/epos.R

↪→

↪→

2195 #recalculated detector coordinates, x

2196

2197 #x/(x^2+y^2)^(1/2)*L/(m+cos(arcsin((x^2+y^2)^(1/2)/R))*(x^2+y^2)^(1/2)/R

2198 epos.det_y2 = epos.y/np.sqrt(np.power(epos.x,2)+np.power(epos.y,2))*L/(m+np ⌋

.cos(np.arcsin(np.sqrt(np.power(epos.x,2)+np.power(epos.y,2))/epos.R))) ⌋

*np.sqrt(np.power(epos.x,2)+np.power(epos.y,2))/epos.R

↪→

↪→

2199 #recalculated detector coordinates, y

2200

2201 #y/(x^2+y^2)^(1/2)*L/(m+cos(arcsin((x^2+y^2)^(1/2)/R))*(x^2+y^2)^(1/2)/R

2202 #Geiser

2203 #Gault

2204

2205 #epos.det_x2 = epos.x*(1+L*10**6/(ICF*epos.R))/10**6

2206 #epos.det_y2 = epos.y*(1+L*10**6/(ICF*epos.R))/10**6

2207 #Bas et. al.

2208

2209 axes[0].hist2d(epos.det_x.get_values(), epos.det_y.get_values(), bins = 150)

2210 axes[1].hist2d(epos.det_x2.get_values(), epos.det_y2.get_values(), bins =

150)↪→

2211

2212 #---

2213 #vergroe = epos.det_x.max()/epos.det_x2.max()

170

8.4 analyse recon.py

2214 vergroe =

epos.ix[epos.det_x.argmax()].det_x/epos.ix[epos.det_x.argmax()].det_x2↪→

2215 vergroe3 =

epos.ix[epos.det_x.argmin()].det_x/epos.ix[epos.det_x.argmin()].det_x2↪→

2216 #calculate magnification constants, for special positions of atoms

2217

2218 #---

fits good↪→

2219 vergroe4 =

epos.ix[epos.det_y.argmin()].det_y/epos.ix[epos.det_y.argmin()].det_y2↪→

2220 vergroe5 =

epos.ix[epos.det_y.argmax()].det_y/epos.ix[epos.det_y.argmax()].det_y2↪→

2221 #calculate magnification constants, for special positions of atoms

2222 #---

fits good↪→

2223 vergroe2 = (epos.det_x/epos.det_x2).mean()

2224 #calculate a mean magnification constant

2225 print(vergroe*L)

2226 print(vergroe2*L)

2227 print(vergroe3*L)

2228 print(vergroe4*L)

2229 print(vergroe5*L)

2230 #print calculated "virtual" flight lengths, used for reconstruction

calibration↪→

2231 #---

2232 #statisticx, xedge, yedge,binnummer = stats.binned_statistic_2d(

2233 #epos.det_x.get_values().flatten(),

2234 #epos.det_y.get_values().flatten(),

2235 #(epos.det_x-epos.det_x2).get_values().flatten(), statistic='mean', bins

= [150,150])↪→

2236 #calculate difference of det_x amd det_x2 and mean it space-resolved

(binned statistics)↪→

2237 #statisticx = np.nan_to_num(statisticx)

2238 #convert nan to zero

2239 #X,Y = np.meshgrid((xedge[:-1]+xedge[1:])/2,(yedge[:-1]+yedge[1:])/2)

2240 #create meshgrid for contour plot

2241 #axes[2].contourf(X.T,Y.T, statisticx,50)

2242 #creates contourplot

2243 #

2244 #statisticy, xedge, yedge,binnummer = stats.binned_statistic_2d(

2245 #epos.det_x.get_values().flatten(),

2246 #epos.det_y.get_values().flatten(),

2247 #(epos.det_y-epos.det_y2).get_values().flatten(), statistic='mean', bins

= [150,150])↪→

2248 #statisticy = np.nan_to_num(statisticy)

2249 #X,Y = np.meshgrid((xedge[:-1]+xedge[1:])/2,(yedge[:-1]+yedge[1:])/2)

171

8.4 analyse recon.py

2250 #axes[3].contourf(X.T,Y.T, statisticy,50)

2251 #calculate difference of det_y amd det_y2 and mean it space-resolved and

contour plot it↪→

2252 #---

2253 axes[0].set_title('det coord hit epos')

2254 axes[1].set_title('coor aus x y hit epos')

2255 axes[2].set_title(r'Δx_{det} v. angepassten L')

2256 axes[3].set_title(r'Δy_{det} v. angepassten L')

2257 [ax.set_xlabel(r'Δx') for ax in axes]

2258 [ax.set_ylabel(r'Δy') for ax in axes]

2259 #label axes of plots

2260

2261 #---

2262 #initial = np.ones((14))

2263 #popt, pcov = curve_fit(fitX, (epos.det_x, epos.det_y), epos.det_x2, p0 =

initial)↪→

2264 #popt, pcov = curve_fit(fitX, (epos.det_x[:1000], epos.det_y[:1000]),

epos.det_x2[:1000], p0 = initial)↪→

2265 #

2266 #popt, pcov = curve_fit(fitX3, (epos.det_x[:1000], epos.det_y[:1000]),

epos.det_x2[:1000], p0 = initial)↪→

2267 #

2268 #popt, pcov = curve_fit(FitXYlin, (epos.det_x[:1000], epos.det_y[:1000]),

epos.det_x[:1000]-epos.det_x2[:1000], p0 = initial)↪→

2269 #popt, pcov = curve_fit(FitXYlin, (epos.det_x, epos.det_y),

epos.det_x-epos.det_x2, p0 = initial)↪→

2270 #several fits to functions

2271 #

2272 ##test = fitX3((epos.det_x, epos.det_y),*popt)-epos.det_x2

2273 #test = FitXYlin((epos.det_x, epos.det_y),*popt)-(epos.det_x-epos.det_x2)

2274 #calculate residua

2275 #

2276 #statisticTest, xedge, yedge,binnummer = stats.binned_statistic_2d(

2277 #epos.det_x.get_values().flatten(),

2278 #epos.det_y.get_values().flatten(),

2279 #test.get_values().flatten(), statistic='mean', bins = [150,150])

2280 #statisticTest = np.nan_to_num(statisticTest)

2281 #X,Y = np.meshgrid((xedge[:-1]+xedge[1:])/2,(yedge[:-1]+yedge[1:])/2)

2282 #axes[0].contourf(X.T,Y.T, statisticTest,50)

2283 #mean and plot residua

2284 #

2285 #test = FitXYlin((epos.det_x, epos.det_y),*popt)

2286 #

2287 #statisticTest, xedge, yedge,binnummer = stats.binned_statistic_2d(

2288 #epos.det_x.get_values().flatten(),

2289 #epos.det_y.get_values().flatten(),

172

8.4 analyse recon.py

2290 #test.get_values().flatten(), statistic='mean', bins = [150,150])

2291 #statisticTest = np.nan_to_num(statisticTest)

2292 #X,Y = np.meshgrid((xedge[:-1]+xedge[1:])/2,(yedge[:-1]+yedge[1:])/2)

2293 #axes[1].contourf(X.T,Y.T, statisticTest,50)

2294 #mean and plot function values on binned values

2295 #

2296 #popt, pcov = curve_fit(FitXYlin2, (epos.det_x[:1000],

epos.det_y[:1000]), epos.det_y[:1000]-epos.det_y2[:1000], p0 =

initial)

↪→

↪→

2297 #popt, pcov = curve_fit(FitXYlin2, (epos.det_x, epos.det_y),

epos.det_y-epos.det_y2, p0 = initial)↪→

2298 #test = FitXYlin2((epos.det_x, epos.det_y),*popt)-(epos.det_y-epos.det_y2)

2299 #calculate difference of residua in x and y

2300 ##test = FitXYlin2((epos.det_x, epos.det_y),*popt)

2301 #

2302 #statisticTest, xedge, yedge,binnummer = stats.binned_statistic_2d(

2303 #epos.det_x.get_values().flatten(),

2304 #epos.det_y.get_values().flatten(),

2305 #test.get_values().flatten(), statistic='mean', bins = [150,150])

2306 #statisticTest = np.nan_to_num(statisticTest)

2307 #X,Y = np.meshgrid((xedge[:-1]+xedge[1:])/2,(yedge[:-1]+yedge[1:])/2)

2308 #axes[0].contourf(X.T,Y.T, statisticTest,50),

2309 #mean and plot difference of residua in x and y

2310 #---

2311 #poptX, pcovX = curve_fit(FitXYlin, (epos.det_x, epos.det_y),

epos.det_x-epos.det_x2, p0 = initial)↪→

2312 #poptY, pcovY = curve_fit(FitXYlin2, (epos.det_x, epos.det_y),

epos.det_y-epos.det_y2, p0 = initial)↪→

2313 #

2314 #poptX2, pcovX2 = curve_fit(FitXYlin, (epos.det_x, epos.det_y),

epos.det_x2, p0 = initial)↪→

2315 ##poptY, pcovY = curve_fit(FitXYlin2, (epos.det_x, epos.det_y),

epos.det_y2, p0 = initial)↪→

2316 ##

2317 #test = FitXYlin((epos.det_x, epos.det_y),*poptX2)-epos.det_x2

2318 #

2319 #statisticTest, xedge, yedge,binnummer = stats.binned_statistic_2d(

2320 #epos.det_x.get_values().flatten(),

2321 #epos.det_y.get_values().flatten(),

2322 #test.get_values().flatten(), statistic='mean', bins = [150,150])

2323 #statisticTest = np.nan_to_num(statisticTest)

2324 #X,Y = np.meshgrid((xedge[:-1]+xedge[1:])/2,(yedge[:-1]+yedge[1:])/2)

2325 #axes[0].contourf(X.T,Y.T, statisticTest,50)

2326 #mean and plot residua

2327 #---

2328 fig.tight_layout()

173

8.4 analyse recon.py

2329

2330 #ICF = 1.225

2331 #ICF = 1.4

2332 ICF = 1.225

2333 kf = 4.54

2334 kf0 = 4.54

2335

2336 ICF = 1.0178*ICF

2337 kf = 1.0178*kf

2338 #several used kf and ICF values, for new reconstructions based on

recalculated↪→

2339 #detector coordinates

2340

2341 FevAl = 19.

2342 eta = 0.37

2343 #detection efficiency

2344

2345 m = ICF-1.

2346 L = 382.

2347 #standard flight path IVAS

2348 epos = label_ions(epos,rrngs)

2349

2350 epos2 = epos.loc[:,['x','y','z','det_x2','det_y2','R','comp','dz','Da']]

2351 #create epos2 from epos values

2352

2353 for n,r in rrngs.iterrows():

2354 epos2.loc[(epos2.comp == r.comp),['dz']] = [r['vol']]

2355 #fill dz coloumn with atomic volumes dependent on species

2356 epos2.dz = epos2.dz.fillna(0.)

2357 #change nan entries to zero

2358

2359 SD = ((epos2.det_x2.max()-epos2.det_x2.min()))**2*np.pi/4.

2360 #calculated an approximate detector area

2361 SD = SD*0.807098

2362 #correct detector are so that reconstructions are identical,

2363 #value works for R21_09743-v01.epos

2364 epos2.dz =

epos2.dz*L**2*kf**2*FevAl**2/(eta*ICF**2*(epos2.R*FevAl*kf0)**2*SD)↪→

2365 #calculate z increments due to atomic volume

2366

2367 #epos2.x = epos2.det_x2/((1+L*10**6/(ICF*epos2.R))/10**6)

2368 #epos2.y = epos2.det_y2/((1+L*10**6/(ICF*epos2.R))/10**6)

2369 #Bas

2370

2371 theta_prime = np.arctan(np.sqrt(epos2.det_x2.pow(2)+epos2.det_y2.pow(2))/(L ⌋

+ICF*epos2.R/10.**6))↪→

174

8.4 analyse recon.py

2372 #calculate compressed angle

2373 epos2.x = epos2.det_x2/np.sqrt(epos2.det_x2.pow(2)+epos2.det_y2.pow(2))*epo ⌋

s2.R*np.sin(theta_prime+np.arcsin(m*sin(theta_prime)))↪→

2374 epos2.y = epos2.det_y2/np.sqrt(epos2.det_x2.pow(2)+epos2.det_y2.pow(2))*epo ⌋

s2.R*np.sin(theta_prime+np.arcsin(m*sin(theta_prime)))↪→

2375 #calculate x and y from recalculated detector coordinates

2376

2377 dzprime =

epos2.R*(1-np.sqrt(1-(epos2.y.pow(2)+epos2.x.pow(2))/epos2.R.pow(2)))↪→

2378 #calculate z changes due to radius

2379

2380 epos2.z = epos2.dz.cumsum()+dzprime

2381 #calculate z position

2382

2383 #epos2['Da'] = epos['Da']

2384 epos2 = label_ions(epos2,rrngs)

2385 #label ions

2386

2387 #epos.x = epos.x+epos2.x.max()-epos2.x.min()

2388 #epos2 = epos2.append(epos)

2389 #used to look at both reconstruction in 3D

2390

2391 #axes[2].clear()

2392 #axes[2].plot(np.linspace(0,np.pi),np.linspace(0,np.pi)+np.arcsin(m*np.si ⌋

n(np.linspace(0,np.pi))),label='Gault -

relation')

↪→

↪→

2393 #axes[2].set_xlabel('theta_prime')

2394 #axes[2].set_ylabel('theta')

2395 ##axes[2].plot(np.linspace(0,np.pi),np.linspace(0,np.pi)/ICF,label='theta ⌋

_prime/ICF')↪→

2396 #axes[2].plot(np.linspace(0,np.pi),np.linspace(0,np.pi)*ICF,label='theta_ ⌋

prime*ICF')↪→

2397 #axes[2].legend()

2398 #plotting relations for comparison

2399

2400 volvis(epos2[epos2.comp =='Zn:1'])

2401 #3D view of Zn atoms of the new reconstruction

2402

2403 #---

2404 #axes[2].clear()

2405 #ICF0 = 1.225

2406 #kf0 = 4.54

2407 #

2408 #for i in np.linspace(0.5,2.5,10):

2409 # ICF = i*ICF0

2410 # kf = i*kf0

175

8.5 ranging kryo proto.py

2411 # theta_test =

np.arctan(np.linspace(0,150,100)/(L+ICF*(6000./(kf*FevAl))/10.**6))↪→

2412 # dz_test =

6000./(kf*FevAl)*(1.-np.cos(theta_test+np.arcsin((ICF-1)*theta_test)))↪→

2413 ## print(kf/ICF)

2414 # axes[2].plot(np.linspace(0,150,100),dz_test,label='ICF '+

"{:.2f}".format(ICF) + ' kf '+ "{:.2f}".format(kf))↪→

2415 #axes[2].legend(loc='best')

2416 #tests for the impact of changed absolute kf and ICF for a constant ratio

2417

2418 #axes[3].clear()

2419 #ICF = ICF0

2420 #for i in np.linspace(0.5,2.5,10):

2421 ## ICF = i*ICF0

2422 # kf = i*kf0

2423 # theta_test =

np.arctan(np.linspace(0,150,100)/(L+ICF*(6000./(kf*FevAl))/10.**6))↪→

2424 # dz_test =

6000./(kf*FevAl)*(1.-np.cos(theta_test+np.arcsin((ICF-1)*theta_test)))↪→

2425 ## print(kf/ICF)

2426 # axes[3].plot(np.linspace(0,150,100),dz_test,label='kf '+

"{:.2f}".format(kf))↪→

2427 #axes[3].legend(loc='best')

2428 #tests for the impact of changed absolute kf and ICF for a constant ratio

8.5 ranging kryo proto.py

2429 from pyflann import *

2430 #from numpy import *

2431 import time

2432 from apt_importers import *

2433 #import scipy.linalg as lin

2434 from Vis import volvis

2435 from matplotlib import cm

2436 #from scipy import signal

2437 import ranging

2438 import itertools as it

2439 """

2440 used to plot mass-to-charge ratio (m/n) histogram and get possible

2441 combinations of elements for a specific m/n

2442 """

2443 pos = read_pos('/media/phillip/Volume1/Daten_PA/R21_09042/recons/korrICF/de ⌋

fault/R21_09042-v02.pos')↪→

2444

2445 deltaDalton = 0.02

2446 nBins = np.int((np.max(pos.Da)-np.min(pos.Da))/deltaDalton)

176

8.5 ranging kryo proto.py

2447 fig = plt.figure()

2448 fig.set_size_inches(15.,10.)

2449 ax = fig.add_subplot(111)

2450 ax.set_title('mass-to-charge')

2451 H, edges = np.histogram(pos.Da, nBins)

2452 constCutoff = 0

2453 #H[H<constCutoff] = 0.

2454 xax = (edges[1:]+edges[:-1])/2.

2455 ax.plot(xax[H>constCutoff],H[H>constCutoff],'.-')

2456 #ax.plot(edges[:-1],H)

2457 #plots mass-to-charge ratio

2458 ax.set_xlabel('m/n [Da]')

2459 ax.set_ylabel('counts [1]')

2460

2461 #ax.set_xbound(17, 58)

2462 #ax.axvline(56.,label=r'£^{56}£Fe£^{+1}£',c='b',lw=1.5)

2463 #ax.axvline(56./2,label=r'£^{56}£Fe£^{+2}£',c='b',lw=1.5)

2464 #ax.axvline(56./3,label=r'£^{56}£Fe£^{+3}£',c='b',lw=1.5)

2465 #

2466 #ax.axvline(54.,label=r'£^{54}£Fe£^{+1}£',c='k',lw=1.5)

2467 #ax.axvline(54./2,label=r'£^{54}£Fe£^{+2}£',c='k',lw=1.5)

2468 #ax.axvline(54./3,label=r'£^{54}£Fe£^{+3}£',c='k',lw=1.5)

2469 #

2470 #ax.axvline(57.,label=r'£^{57}£Fe£^{+1}£',c='g',lw=1.5)

2471 #ax.axvline(57./2,label=r'£^{57}£Fe£^{+2}£',c='g',lw=1.5)

2472 #ax.axvline(57./3,label=r'£^{57}£Fe£^{+3}£',c='g',lw=1.5)

2473 #ax.legend(loc='best')

2474

2475 ax.set_yscale("log")

2476

2477 pathRange = '/media/phillip/Volume1/13_rangeFiles/R34_05935_AlOH_V.rrng'

2478

2479 ions,rrngs = read_rrng(pathRange)

2480 rrngs = rrngs.sort('lower')

2481 #labels ranged ions

2482

2483 for i, wert in enumerate(rrngs.lower):

2484 ax.axvline(wert, color='black')

2485 ax.axvline(rrngs.upper[i], color='r')

2486 ax.annotate(rrngs.comp[i].replace('Name:',''), xy=(wert, 100. +

(i%4)*10**(i%4+1)))↪→

2487 #marks labeled ranges

2488

2489 pos = label_ions(pos, rrngs)

2490 #lpos=lpos[lpos.comp != '']

2491 #name, comp = getComp(lpos)

177

8.6 multiple ion analysis.py

2492 #calculates composition

2493 #---

2494

2495 #Atoms = [1., 16., 24., 27., 28., 51., 52., 63., 69.]

2496 #Atoms = [1., 16., 24., 27., 28., 63.]

2497 #Atoms = [1., 16., 24., 27., 28., 51., 63.]

2498 #

2499 #eps = 0.01

2500 ##molarTarget = 33

2501 #molarTarget = 17

2502 #

2503 #for j in range(1,5):

2504 # iteratorAtoms = it.combinations_with_replacement(Atoms,j)

2505 #

2506 # for i in iteratorAtoms:

2507 # summe = np.sum(i)

2508 # for z in range(1,4):

2509 # if summe/z < molarTarget+eps and summe/z > molarTarget-eps:

2510 # print(i, z)

2511 #used to calculate possible combinations of elements (Atoms) to fit to a

specific↪→

2512 #mass-to-charge ratio, molarTarged

8.6 multiple ion analysis.py

2513 # -*- coding: utf-8 -*-

2514 """

2515 Created on Thu Apr 21 11:40:09 2016

2516

2517 @author: phillip

2518 """

2519 from pyflann import *

2520 #from numpy import *

2521 import time

2522 from apt_importers import *

2523 #import scipy.linalg as lin

2524 #from Vis import volvis

2525 from matplotlib import cm

2526 from scipy.special import gamma

2527 from scipy.misc import factorial

2528 import itertools as it

2529 #import ranging

2530 #from Vis import volvis

2531 def getCorrComp(path,pathRange):

2532 for i in range(len(path)):

178

8.6 multiple ion analysis.py

2533 pfad = '/'.join(path[i].split('/')[:-4])+ '/auswertung/'+

path[i].split('/')[-1][:-4] + "_comp_corr.txt"↪→

2534 ions, rrngs = read_rrng(pathRange[i])

2535 pos = read_pos(path[i])

2536 fig = getCompPos(pos, rrngs, pfad)

2537 # fig.savefig('/'.join(path[i].split('/')[:-4])+ '/auswertung/'+

path[i].split('/')[-1][:-4] + "_bg_fit.pdf")↪→

2538 return

2539 def getAlRelList(path, pathRange):

2540 AlRel = np.zeros((len(path),2))

2541 for i in range(len(path)):

2542 ions, rrngs = read_rrng(pathRange[i])

2543 pos = read_pos(path[i])

2544 lpos = label_ions(pos, rrngs)

2545 AlRel[i] = getAlRel(lpos)

2546

2547 return AlRel

2548 def getAlRel(lpos):

2549 nrAlRanges = rrngs[rrngs.comp == 'Al:1'].comp.count()

2550 if nrAlRanges == 3:

2551 Al1 = lpos.ix[(lpos.Da > rrngs[rrngs.comp == 'Al:1'].ix[2].lower) &

(lpos.Da < rrngs[rrngs.comp ==

'Al:1'].ix[2].upper)].comp.count()

↪→

↪→

2552 Al2 = lpos.ix[(lpos.Da > rrngs[rrngs.comp == 'Al:1'].ix[1].lower) &

(lpos.Da < rrngs[rrngs.comp ==

'Al:1'].ix[1].upper)].comp.count()

↪→

↪→

2553 Al3 = lpos.ix[(lpos.Da > rrngs[rrngs.comp == 'Al:1'].ix[0].lower) &

(lpos.Da < rrngs[rrngs.comp ==

'Al:1'].ix[0].upper)].comp.count()

↪→

↪→

2554

2555 elif nrAlRanges == 2:

2556 Al1 = lpos.ix[(lpos.Da > rrngs[rrngs.comp == 'Al:1'].ix[1].lower) &

(lpos.Da < rrngs[rrngs.comp ==

'Al:1'].ix[1].upper)].comp.count()

↪→

↪→

2557 Al2 = lpos.ix[(lpos.Da > rrngs[rrngs.comp == 'Al:1'].ix[0].lower) &

(lpos.Da < rrngs[rrngs.comp ==

'Al:1'].ix[0].upper)].comp.count()

↪→

↪→

2558 Al3 = 0

2559 else:

2560 Al2=0.

2561 Al1=1.

2562 Al3=0.

2563

2564 summe = Al1 + Al2 + Al3

2565 print(float(Al2)/summe)

2566 print(float(Al3)/summe)

179

8.6 multiple ion analysis.py

2567 print("\n")

2568 #DEBUGGING Info

2569 return float(Al2)/summe, float(Al3)/summe

2570 def countIons(d):

2571 lower = 58.8

2572 upper = 59.2

2573 d.loc[:,'in'] = d.loc[(d.Da < upper) & (d.Da > lower)].Da.count() > 0

2574 return d

2575 """

2576 saves compositions of path list and pathRange list to analysis folders,

2577 compares kNN of IVAS to script data,

2578 creates a saxey plot and lot mass-to-charge state ratios for multiples,

2579 prints possible combinations of ions for unknown peak,

2580 prints positions of multiple hits for specific element onto detector

hitmap↪→

2581 """

2582

2583 path = []

2584 path.append('/media/phillip/Volume1/DatenIVAS/R34_04231/recons/recon-v01/de ⌋

fault/R34_04231-v02.pos')↪→

2585 pathRange = []

2586 pathRange.append('/media/phillip/Volume1/13_rangeFiles/R34_04231root.RRNG')

2587

2588

2589 getCorrComp(path,pathRange)

2590 #writes compositions to analysis directories

2591

2592 #AlRel = getAlRelList(path, pathRange)

2593

2594 fig = plt.figure()

2595 conv = 2.54

2596 #1 inch = 2.54cm

2597 breite=15

2598 hoehe=25

2599 fig.set_size_inches(breite,hoehe)

2600 ax = fig.add_subplot(211)

2601 ax2 = fig.add_subplot(212)

2602 #creates figure and adds subplots

2603

2604 #ax = fig.add_subplot(211)

2605 #ax2 = fig.add_subplot(212)

2606

2607 #ax.plot(AlRel[:,0])

2608 #ax2.plot(AlRel[:,1])

2609 #---

180

8.6 multiple ion analysis.py

2610 IVAS = '/media/phillip/Volume1/DatenIVAS/R34_04231/auswertung/R34_04231-v02 ⌋

_NN10IVAS.csv'↪→

2611 #IVAS exported data

2612

2613 pythonNN = '/media/phillip/Volume1/DatenIVAS/R34_04231/auswertung/R34_04231 ⌋

-v02Sitarget_Si_kNN_Data.txt'↪→

2614 #NN data via script

2615

2616 A = np.loadtxt(IVAS, delimiter=',', skiprows=8)

2617 stutz = A[:,0]+A[:,1]/100.

2618 vals = A[:,2]

2619 rand = A[:,3]

2620

2621 [stutz2, a, a3, comp0std] = np.loadtxt(pythonNN, delimiter=',')

2622

2623 ax.plot(stutz, vals, label = 'vals IVAS')

2624 ax.plot(stutz, rand, label = 'rand IVAS')

2625

2626 ax.plot(stutz2, a3, label = 'vals python')

2627 ax.plot(stutz2, a, label = 'rand python')

2628

2629 ax.legend(loc = 'best')

2630 #plots comparison of IVAS and script k nearest neighbor distances

2631

2632 print(np.sum(a3)-np.sum(vals), 'difference in counts for values')

2633 print(np.sum(a)-np.sum(rand), 'difference in counts for random values')

2634 #DEBUGGING Info

2635 #---

2636 ax.clear()

2637 epos = read_epos('/media/phillip/Volume1/PD_august_2018_GallenN/R34_05935/r ⌋

econs/recon-v02/default/R34_05935-v02.epos')↪→

2638 pathRange = '/media/phillip/Volume1/13_rangeFiles/R34_05935_AlOH_V.rrng'

2639

2640 multiples = epos[epos.ipp !=1]

2641 #selects multiple hits

2642

2643 #multiples = epos[epos.ipp ==2]

2644 #doubles

2645 #multiples = epos[epos.ipp ==1]

2646 #singles

2647

2648 ions,rrngs = read_rrng(pathRange)

2649

2650 deltaDalton = 0.02

2651 nBins = np.int32((multiples.Da.max() - multiples.Da.min()) / deltaDalton)

2652 H, edges = np.histogram(multiples.Da, bins = nBins)

181

8.6 multiple ion analysis.py

2653 rrngs = rrngs.sort('lower')

2654 ax.plot((edges[1:]+edges[:-1])/2., H)

2655 ax.set_yscale('log')

2656

2657 for i, wert in enumerate(rrngs.lower):

2658 ax.axvline(wert, color='black')

2659 ax.axvline(rrngs.upper[i], color='r')

2660 ax.annotate(rrngs.comp[i].replace('Name:',''), xy=(wert, 100. +

(i%4)*10**(i%4+1)))↪→

2661 #creates mass-to-charge ratio histogram and plots it

2662 #---

2663 #ax.clear()

2664 upperDa = 100.

2665 numberBins = np.ceil(upperDa/deltaDalton)

2666 edges = np.linspace(0, upperDa, numberBins)

2667

2668 #c, d = np.histogramdd(array([[np.nan ,np.nan]]), bins = (edges, edges))

2669 entryLang = 0

2670 for i in range(1,multiples.ipp.max()+1):

2671 n = multiples.ipp[multiples.ipp == i].count()

2672 entryLang += n * i*(i-1)/2.

2673 #number of combinations of 2 atoms in all multiples

2674 pairs = np.zeros((entryLang, 2))

2675 #creates empty array

2676

2677 counter = 0

2678 counterOld = counter

2679 counterPair = 0

2680

2681 while counter < multiples.ipp.count():

2682 counterOld = counter

2683 n = multiples.ipp.iloc[counter]

2684 counter = counter + n

2685 # c += np.histogramdd(np.asarray(list(it.combinations(multiples.Da.ilo ⌋

c[counterOld:counter],2))), bins = (edges,

edges))[0]

↪→

↪→

2686 pairs[counterPair:counterPair+n*(n-1)/2,:] = np.asarray(list(it.combin ⌋

ations(multiples.Da.iloc[counterOld:counter],2)))↪→

2687 counterPair = counterPair + n*(n-1)/2

2688 #calculate pair combinations for all multiples

2689

2690 #H, E = np.histogramdd(pairs, bins = (edges, edges))

2691 #X, Y = np.meshgrid((E[0][:-1]+E[0][1:])/2.,(E[1][:-1]+E[1][1:])/2.)

2692 #ax.contourf(X, Y, H, 100)

2693

2694 ax2.scatter(pairs[:,0],pairs[:,1], alpha=0.3, s=5, lw=0, cmap=cm.gray)

182

8.6 multiple ion analysis.py

2695 ax2.scatter(pairs[:,1],pairs[:,0], alpha=0.3, s=5, lw=0, cmap=cm.gray)

2696 #ax2.set_xbound(26,30)

2697 ax2.set_xbound(0, 75)

2698 ax2.set_ybound(0.,75)

2699 ax2.grid(True)

2700

2701 ax2.set_xlabel('m$_1$ [Da]', fontsize = 22)

2702 ax2.set_ylabel('m$_2$ [Da]', fontsize = 22)

2703 ax2.set_title('ion correlation diagram', fontsize = 22)

2704 #plots and labels saxey plot

2705

2706 #HDa, edgesDa = np.histogram(multiples.Da,

bins=np.ceil(multiples.Da.max()/deltaDalton))↪→

2707 #ax2.plot((edgesDa[:-1]+edgesDa[1:])/2., HDa)

2708 #ax2.set_yscale('log')

2709 #ax.set_xbound(26,30)

2710 ax.set_xbound(0.,75)

2711

2712 #numberlines = 50

2713 #X,Y = np.meshgrid((edges[:-1]+edges[1:])/2., (edges[:-1]+edges[1:])/2.)

2714 #Z = np.histogramdd(pairs, bins = (edges, edges))[0]

2715 #cnt = ax2.contourf(X,Y,Z,numberlines, cmap=cm.gray_r)

2716

2717 #---

2718 ax.clear()

2719 multiples.loc[:,'id'] = multiples.ipp.cumsum()

2720 mg = multiples.groupby('id')

2721 multiples = mg.apply(hitlabel)

2722

2723 #for i in range(2,multiples.ipp.max()+1):

2724 for i in range(2,6):

2725 auswahl = multiples.ix[multiples.hn == i]

2726 H, edges = np.histogram(auswahl.Da, bins = nBins)

2727 ax.plot((edges[1:]+edges[:-1])/2., H, label = str(i))

2728 ax.set_yscale('log')

2729 ax.legend(loc='best')

2730

2731

2732 auswahl = multiples.ix[multiples.hn == 3]

2733 multiNeu = auswahl.groupby('id').apply(countIons)

2734 HNeu, edgesNeu = np.histogram(multiNeu.ix[multiNeu['in']].Da, bins = nBins)

2735 ax.plot((edgesNeu[1:]+edgesNeu[:-1])/2., HNeu)

2736 ax.set_xbound(0.,75)

2737

2738 ax.set_xlabel('mass-to-charge [Da]', fontsize = 22)

2739 ax.set_title('multiple ion events', fontsize = 22)

183

8.7 proto function RDF data.py

2740 ax.set_ylabel('counts', fontsize = 22)

2741 #plots a specified multple mass-to-charge state

2742 ##---

2743 ##Atoms = [9., 13.5, 27., 16., 18., 21.5, 23.33, 34.5, 35, 35.33, 43.,

44., 59., 52., 69.,]↪→

2744 #Atoms = [1., 16., 18., 24., 27., 28., 63., 69.]

2745 #eps = 0.01

2746 #molarTarget = 43.

2747 #

2748 #for j in range(1,5):

2749 # iteratorAtoms = it.combinations_with_replacement(Atoms,j)

2750 # for i in iteratorAtoms:

2751 # summe = np.sum(i)

2752 # for z in range(1,4):

2753 # if summe/z < molarTarget+eps and summe/z > molarTarget-eps:

2754 # print(i, z)

2755 ##prints possible combinations for molarTarges

2756 ##---

2757 #multiples = label_ions(multiples, rrngs)

2758 #multipleSi = multiples.loc[(multiples.comp == 'Si:1') & (multiples.ipp

== 2)]↪→

2759 #ax2.clear()

2760 ##ax.clear()

2761 #multipleGa = multiples.loc[multiples.comp == 'Ga:1']

2762 #ax2.hist2d(epos.det_x.get_values(), epos.det_y.get_values(), bins = 100)

2763 #ax2.scatter(multipleSi.det_x.get_values(),

multipleSi.det_y.get_values(),lw=0.,c = 'black')↪→

2764 #ax2.scatter(multipleGa.det_x.get_values(),

multipleGa.det_y.get_values(),lw=0.,c = 'gray')↪→

2765 ##plots multiple Si hits and multiple Ga hits to detector hitmap

8.7 proto function RDF data.py

2766 from pyflann import *

2767 #from numpy import *

2768 import time

2769 from apt_importers import *

2770 #import scipy.linalg as lin

2771 #from Vis import volvis

2772 from matplotlib import cm

2773 #from scipy import signal

2774 import ranging

2775 from scipy.stats import ks_2samp

2776 from scipy import stats

2777 """

184

8.7 proto function RDF data.py

2778 function to print the RDF and cumulative RDF to txt and create pdf

figures,↪→

2779 pos files are chosen via adding to path list and rrrng via adding to

pathRange↪→

2780 """

2781 def writeRDFkNN_data(lpos, path, kNN = 10):

2782 set_distance_type('euclidean')

2783 flannObj = FLANN()

2784 #creates FLANN object

2785

2786 dataset = []

2787 element = []

2788 dataset.append(lpos.ix[lpos.comp == 'Mg:1',1:4].get_values())

2789 element.append('Mg')

2790 dataset.append(lpos.ix[lpos.comp == 'Si:1',1:4].get_values())

2791 element.append('Si')

2792 # select atoms for analysis

2793 #--

2794 fig2 = plt.figure()

2795 conv = 2.54

2796 #1 inch = 2.54cm

2797 breite=15/conv

2798 hoehe=24/conv

2799 fig2.set_size_inches(breite,hoehe)

2800 #--

2801 #creates figure to plot

2802

2803 #kNN0 = 5S

2804 # kNN = 10

2805 # kNN = 5

2806 # binSize = 200

2807 binSize = 100

2808 nBinRDF = 100

2809 # nBinRDF = 250

2810

2811 #binning

2812

2813 #ranges = (0.,10)

2814 ranges = (0.,7)

2815 #ranges of binning for RDF

2816

2817 ax2 = fig2.add_subplot(411)

2818 ax3 = fig2.add_subplot(412)

2819 ax4 = fig2.add_subplot(413)

2820 ax5 = fig2.add_subplot(414)

2821 #adds subplots

185

8.7 proto function RDF data.py

2822 compwiederh =40

2823 #number of drawings for the random comparator

2824 rRDF = 2.

2825 rRDF = 5.

2826 #maximum for RDF radius

2827

2828 deltaBin = rRDF / nBinRDF

2829 #stutz = (b[1:]+b[:-1])/2.

2830

2831 colors = np.linspace(0,1,len(dataset)**2)

2832 lang= len(dataset)

2833 map0 = cm.nipy_spectral

2834

2835 threshcounts = 0

2836

2837 a0 = np.zeros(nBinRDF)

2838 comp0 = np.zeros(binSize)

2839

2840 a0List = np.zeros((compwiederh, nBinRDF))

2841 comp0List = np.zeros((compwiederh, binSize))

2842 #initialize lists to hold RDF values for random distributions

2843 output = ""

2844 #empty string

2845

2846 for j, target in enumerate(dataset):

2847 for i,wert in enumerate(dataset):

2848 # if j != i:

2849 # continue

2850 # try:

2851 #calculate for every Me_i x Me_j ... e.g. Mg, Si: Mg-Mg,

Mg-Si, Si-Mg, Si-Si↪→

2852 ax2.clear()

2853 ax3.clear()

2854 ax4.clear()

2855 ax5.clear()

2856 #clears the subplots

2857 if i == j:

2858 linest = '--'

2859 else:

2860 linest = '-'

2861 #selects linestyle for cross and auto correlation

2862 params = flannObj.build_index(target, algorithm=4,

target_precision=1., log_level = "info") #algorithm=4

selects kdtree single

↪→

↪→

2863 #builds kd tree, where neares points are searched (target)

2864

186

8.7 proto function RDF data.py

2865 a0 = np.zeros(nBinRDF)

2866 #RDF values

2867 comp0 = np.zeros(binSize)

2868 #k NN values

2869

2870 comp0List = np.zeros((compwiederh, binSize))

2871 #k NN values list, for random comparator

2872 a0List = np.zeros((compwiederh, nBinRDF))

2873 #list for RDF values, for random comparator

2874 cumsumList = np.zeros((compwiederh, nBinRDF))

2875 #list for cumulative RDF, for random comparator

2876

2877 b1, a1 = calcRDF(flannObj, params, wert, rRDF, nBinRDF,

target, stepSize=10)↪→

2878 #calculate existing RDF

2879 a3, b = createNNHist(kNN, wert, flannObj, params, ranges,

binSize)↪→

2880 #calculate existing kNN distribution

2881 cumRDF_meas = np.cumsum(a1)

2882 #cumulative sum of existing data

2883 counterWiederh = 0

2884 #counter for repetitions of random drawings

2885

2886 # ax2.plot(b, a/np.float(np.sum(a)),linest,

label=element[j]+ " - "+ element[i],c = map0(colors[j*lang+

i]), lw = 2.)

↪→

↪→

2887 for k in range(0,compwiederh):

2888 if i!= j:

2889 # comparator = lpos.ix[lpos.comp !=

element[j]+':1'].sample(np.size(wert,0)).ix[:,1:4].get_values()↪→

2890 #OLD

2891 comparator = lpos.ix[lpos.comp !=

element[j]+':1'].sample(np.size(wert,0)).loc[:, ⌋

['x','y','z']].get_values()

↪→

↪→

2892 else:

2893 # comparator =

lpos.sample(np.size(wert,0)).ix[:,1:4].get_values()↪→

2894 #OLD

2895 comparator = lpos.sample(np.size(wert,0)).loc[:,['x ⌋

','y','z']].get_values()↪→

2896 flannObj.delete_index()

2897 #delete old target

2898 params = flannObj.build_index(comparator,

algorithm=4, target_precision=1., log_level =

"info") #algorithm=4 selects kdtree single

↪→

↪→

187

8.7 proto function RDF data.py

2899 #everytime i==j is True a new target is built

↪→

2900

2901 a0List[counterWiederh,:] = calcRDF(flannObj, params,

comparator , rRDF, nBinRDF, target, stepSize=10)[1]↪→

2902 #adds RDF into list

2903

2904 comp0List[counterWiederh,:] = createNNHist(kNN,

comparator, flannObj, params, ranges, binSize)[0]↪→

2905 #adds kNN into list

2906 cumsumList[counterWiederh,:] =

np.cumsum(a0List[counterWiederh,:])↪→

2907 #calculate cumulative RDF of current one and add into

list↪→

2908

2909 counterWiederh += 1

2910 #increase counter

2911

2912 a0 = np.mean(a0List, axis = 0, dtype = float64)

2913 a0std= np.std(a0List, axis = 0, dtype = float64)

2914 #mean and calculate standard deviation for random

comparator, RDF↪→

2915

2916 cumRDF = np.mean(cumsumList, axis = 0, dtype = float64)

2917 cumRDF_std = np.std(cumsumList, axis = 0, dtype = float64)

2918 #mean and calculate standard deviation for random

comparator, cumulative RDF↪→

2919

2920 comp0 = np.mean(comp0List, axis = 0, dtype = float64)

2921 comp0std = np.std(comp0List, axis = 0, dtype = float64)

2922 #mean and calculate standard deviation for random

comparator, kNN↪→

2923

2924 a = comp0

2925 #adds alias for kNN distribution

2926

2927 ax2.errorbar(b1, a1/a0, a1/np.power(a0,2)*a0std,

label=element[j]+ " rel. RDF - "+ element[i],c =

map0(colors[j*lang+ i]), lw = 1.5)

↪→

↪→

2928 #plots existing RDF divided by random comparator to

subplot↪→

2929 ax2.axhline(1., linestyle = '-', c = map0(colors[j*lang+

i]), lw=1.5)↪→

2930

2931 delta = a1-a0

188

8.7 proto function RDF data.py

2932 delta[np.logical_and(delta<=threshcounts, -delta <=

threshcounts)] = 0.↪→

2933 ax4.plot(b1, delta,'-x', label=element[j]+ " counts - comp

"+ element[i],c = map0(colors[j*lang+ i]), lw = 1.5)↪→

2934 #plots difference of existing RDF to random comparator

2935

2936 ax5.plot(b1, a1, c = map0(colors[j*lang+ i]),label =

'data', lw = 1.5)↪→

2937 ax5.plot(b1, a0, c = map0(colors[j*lang+ i]), label =

'comp', lw = 0.5)↪→

2938 #plots existing and random to subplot

2939

2940 ax5.set_title('RDF')

2941 testVar = np.sqrt(np.sum(np.power(a1-a0,2)))/np.sum(a0)

2942 output += str(testVar) + "\n"

2943 print(testVar)

2944 #prints some testing information

2945

2946 stutz = (b[1:]+b[:-1])/2.

2947 ax3.plot(stutz, a3/np.float(np.sum(a3)),linest,

label=element[j]+ " - " + element[i] +" kNN "

+str(kNN),c = map0(colors[j*lang+ i]), lw = 1.5)

↪→

↪→

2948 ax3.axvline(stutz[getMean(a3)], linestyle = linest, c =

map0(colors[j*lang+ i]), lw=1.5)↪→

2949 #plots existing kNN distribution, normed

2950

2951 print(stutz[getMean(a3)], element[j], 'kNN', element[i])

2952

2953 output += str([stutz[getMean(a3)], element[j], 'kNN',

element[i]]) + "\n"↪→

2954 #output is currently not used anymore

2955

2956 ax3.errorbar(stutz, a/np.float(np.sum(a)), yerr =

comp0std/np.sum(a), label=element[j]+ " - " +

element[i] +" kNN comp " +str(kNN),c =

map0(colors[j*lang+ i]), lw = 0.5)

↪→

↪→

↪→

2957 ax3.axvline(stutz[getMean(a)], linestyle = '-.', c =

map0(colors[j*lang+ i]), lw=0.5)↪→

2958 print(stutz[getMean(a)], element[j], 'kNN', element[i],

'comp')↪→

2959

2960 output += str([stutz[getMean(a)], element[j], 'kNN',

element[i], 'comp']) + "\n"↪→

2961 # print(j)

2962 #DEBUGGING Info

2963

189

8.7 proto function RDF data.py

2964 ax2.legend(loc='best',fontsize = 8)

2965 ax3.legend(loc='best',fontsize = 8)

2966 ax4.legend(loc='best',fontsize = 8)

2967 ax5.legend(loc='best',fontsize = 8)

2968

2969 ax2.set_title('RDF')

2970 ax3.set_title('kNN-distribution')

2971 ax4.set_title(r'(RDF-comp)')

2972 #labeling

2973

2974 fig2.savefig('/'.join(path.split('/')[:-4])+

'/auswertung/'+ path.split('/')[-1][:-4] +element[j] +

'target_' + element[i] + '_notNorm_'+str(kNN)+'.eps')

↪→

↪→

2975 np.savetxt('/'.join(path.split('/')[:-4])+ '/auswertung/'+

path.split('/')[-1][:-4] +element[j] + 'target_' +

element[i] + '_RDF_Data.txt', np.array([b1, a0, a1,

a0std]).T, delimiter = ',')

↪→

↪→

↪→

2976 np.savetxt('/'.join(path.split('/')[:-4])+ '/auswertung/'+

path.split('/')[-1][:-4] +element[j] + 'target_' +

element[i] + '_kNN_Data_'+str(kNN)+'.txt',

np.array([stutz, a, a3, comp0std]).T, delimiter = ',')

↪→

↪→

↪→

2977 np.savetxt('/'.join(path.split('/')[:-4])+ '/auswertung/'+

path.split('/')[-1][:-4] +element[j] + 'target_' +

element[i] + '_cumRDF.txt', np.array([b1, cumRDF,

cumRDF_meas, cumRDF_std]).T, delimiter = ',')

↪→

↪→

↪→

2978 #normally used

2979

2980 # fig2.savefig('/'.join(path.split('/')[:-4])+

'/auswertung/'+ path.split('/')[-1][:-4] +element[j] + 'targetTest2_'

+ element[i] + '_notNorm_'+str(kNN)+'.eps')

↪→

↪→

2981 # np.savetxt('/'.join(path.split('/')[:-4])+

'/auswertung/'+ path.split('/')[-1][:-4] +element[j] + 'targetTest2_'

+ element[i] + '_RDF_Data.txt', np.array([b1, a0, a1, a0std]).T,

delimiter = ',')

↪→

↪→

↪→

2982 # np.savetxt('/'.join(path.split('/')[:-4])+

'/auswertung/'+ path.split('/')[-1][:-4] +element[j] + 'targetTest2_'

+ element[i] + '_kNN_Data_'+str(kNN)+'.txt', np.array([stutz, a, a3,

comp0std]).T, delimiter = ',')

↪→

↪→

↪→

2983 # np.savetxt('/'.join(path.split('/')[:-4])+

'/auswertung/'+ path.split('/')[-1][:-4] +element[j] + 'targetTest2_'

+ element[i] + '_cumRDF.txt', np.array([b1, cumRDF, cumRDF_meas,

cumRDF_std]).T, delimiter = ',')

↪→

↪→

↪→

2984 #for testing purposes

2985

2986 flannObj.delete_index()

2987 #delete FLANN object

190

8.8 Vis.py

2988

2989 # f = open('/'.join(path.split('/')[:-4])+ '/auswertung/'+

path.split('/')[-1][:-4]+

'output_KS'+time.strftime("%Y_%m_%d_%H_%M_%S")+'.txt', 'w')

↪→

↪→

2990 # f.write(output)

2991 # f.close()

2992 #OLD

2993

2994 saveComp(lpos, '/'.join(path.split('/')[:-4])+ '/auswertung/'+

path.split('/')[-1][:-4] + "_comp.txt")↪→

2995 #save composition to analysis folder of pos file

2996 return

2997

2998

2999 path = []

3000 path.append('/media/phillip/Volume1/Alice_Messungen/R21_10253/recons/recon- ⌋

v02/default/R21_10253-v02_cut.pos')↪→

3001 #---

3002 #analyzed pos paths

3003

3004 pathRange = []

3005 pathRange.append('/media/phillip/Volume1/13_rangeFiles/R34_05935_AlOH_V.rrn ⌋

g')↪→

3006 #---

3007 #used range files

3008

3009 for i in range(len(path)):

3010 pos = read_pos(path[i])

3011 ions,rrngs = read_rrng(pathRange[i])

3012

3013 lpos = label_ions(pos, rrngs)

3014 lpos = lpos[lpos.comp != '']

3015 writeRDFkNN_data(lpos, path[i], kNN = 5)

3016 #calculate RDF and plots figure for every pos file in list

8.8 Vis.py

3017 from apt_importers import *

3018 import numpy as np

3019 import matplotlib.pyplot as plt

3020

3021 import pandas as pd

3022 import math

3023 import ranging

3024 from matplotlib import cm

3025

191

8.8 Vis.py

3026 def volvis(pos, size=2, alpha=1):

3027 """Displays a 3D point cloud in an OpenGL viewer window.

3028 If points are not labelled with colours, point brightness

3029 is determined by Da values (higher = whiter)"""

3030 from vispy import app,scene, mpl_plot

3031 import numpy as np

3032 import sys

3033 import matplotlib

3034 import re

3035

3036 canvas = scene.SceneCanvas('APT Volume',keys='interactive',

bgcolor='#ffffff')↪→

3037 # canvas = scene.SceneCanvas('APT Volume',keys='interactive')

3038 view = canvas.central_widget.add_view()

3039 view.camera = scene.TurntableCamera(up='z')

3040

3041 cpos = pos.loc[:,['x','y','z']].values

3042

3043 if 'colour' in pos.columns:

3044 colours =

np.asarray(list(pos.colour.apply(matplotlib.colors.hex2color)))↪→

3045 else:

3046 Dapc = pos.Da / np.max(pos.Da)

3047 colours = np.array(zip(Dapc,Dapc,Dapc))

3048

3049 # colval = np.linspace(0,1.,len(pos.groupby('comp')))

3050 # counter = 0

3051 # for name, group in pos.groupby('comp'):

3052 # group.color = matplotlib.colors.rgb2hex(cm.jet(colval[counter]))

3053 # colours =

np.asarray(list(pos.colour.apply(matplotlib.colors.hex2color)))↪→

3054 # Dapc = np.zeros(np.size(lpos,0))

3055 # colours = cm.jet(Dapc)[:,:-1]

3056

3057

3058 if alpha is not 1:

3059 np.hstack([colours, np.array([0.5] * len(colours))[...,None]])

3060

3061 p1 = scene.visuals.Markers()

3062 p1.set_data(cpos, face_color=colours, edge_width=0, size=size)

3063

3064 view.add(p1)

3065

3066 # make legend

3067 ions = []

3068 cs = []

192

8.9 largeSDM.py

3069 for g,d in pos.groupby('comp'):

3070 ions.append(re.sub(r':1?|\s?','',d.comp.iloc[0]))

3071 cs.append(matplotlib.colors.hex2color(d.colour.iloc[0]))

3072 ions = np.array(ions)

3073 cs = np.asarray(cs)

3074

3075 pts = np.array([[20] * len(ions), np.linspace(20,20*len(ions),

len(ions))]).T↪→

3076 tpts = np.array([[30] * len(ions), np.linspace(20,20*len(ions),

len(ions))]).T↪→

3077

3078 legb = scene.widgets.ViewBox(parent=view, border_color='red',

bgcolor='k')↪→

3079 # legb = scene.widgets.ViewBox(parent=view, border_color='red',

bgcolor='#ffffff')↪→

3080 legb.pos = 0,0

3081 legb.size = 100,20*len(ions)+20

3082

3083 leg = scene.visuals.Markers()

3084 leg.set_data(pts, face_color=cs)

3085 legb.add(leg)

3086

3087 legt = scene.visuals.Text(text=ions,pos=tpts,color='#ffffff',

anchor_x='left', anchor_y='center', font_size=10)↪→

3088

3089 legb.add(legt)

3090

3091 # show viewer

3092 canvas.show()

3093

3094 if sys.flags.interactive == 0:

3095 app.run()

8.9 largeSDM.py

3096 from pyflann import *

3097 import time

3098 from apt_importers import *

3099 from Vis import volvis

3100 from mpl_toolkits.mplot3d import Axes3D

3101

3102 numberPlots = 6

3103 fig, axes = plt.subplots(numberPlots/2,2, figsize = (10,15))

3104

3105 pos = read_pos('/media/phillip/Volume1/Daten_PA/R21_08675/auswertung/older_ ⌋

Evaluation/R21_08675-v02.pos')↪→

193

8.9 largeSDM.py

3106 pathRange = '/media/phillip/Volume1/13_rangeFiles/R21_08675root.RRNG'

3107 ions,rrngs = read_rrng(pathRange)

3108 pos = label_ions(pos, rrngs)

3109 pos2 = read_pos('/media/phillip/Volume1/Daten_PA/R21_08675/auswertung/older ⌋

_Evaluation/pole311_08675_v02_OLD.pos')↪→

3110 pos2 = label_ions(pos2, rrngs)

3111 axes = axes.flatten()

3112

3113 cluster = pd.read_pickle('/media/phillip/Volume1/Daten_PA/R21_08675/auswert ⌋

ung/older_Evaluation/R21_08675-v02_cluster2.pkl')↪→

3114

3115 #deltasAl = getDeltasSDMLarge(pos.loc[pos.comp ==

'Al:1',['x','y','z']].get_values(),20)↪→

3116 deltasAl = getDeltasSDMLarge(pos2.loc[pos2.comp ==

'Al:1',['x','y','z']].get_values(),20)↪→

3117

3118 deltasMg = getDeltasSDMLarge(pos.loc[pos.comp ==

'Mg:1',['x','y','z']].get_values(),20)↪→

3119 deltasSi = getDeltasSDMLarge(pos.loc[pos.comp ==

'Si:1',['x','y','z']].get_values(),20)↪→

3120

3121 deltaZMax = 2.

3122 #---DIRECTIONS

3123 psi = -0.076666666666663941

3124 theta = 0.19666666666667121

3125 #002 Pole dhkl = 0.186 gemessen an Kugel ROI

3126 #---DIRECTIONS END

3127 maxAnglePsi = np.pi/2.

3128 maxAngleTheta = np.pi/2.

3129 teilung1 = 300

3130 teilung2 = 300

3131

3132 deltaPsi = np.arange(-maxAnglePsi, maxAnglePsi, 2*maxAnglePsi/teilung1)

3133 deltaTheta = np.arange(-maxAngleTheta, maxAngleTheta,

2*maxAngleTheta/teilung2)↪→

3134

3135 R = 5

3136 roiX = pos2[100000:200000].x.max()-R

3137 roiY = pos2.iloc[pos2[100000:200000].x.argmax()].y-R

3138 roiZ = pos2[100000:200000].z.min() + R

3139 ROI = pos2.loc[(pos2.x-roiX)**2+(pos2.y-roiY)**2 + (pos2.z-roiZ)**2< R**2]

3140 ROI_deltas = getDeltasSDMLarge(ROI.loc[:,['x','y','z']].get_values(),100)

3141

3142 #raster, psi, theta = searchMax(getDeltasSDMLarge(ROI.loc[:,['x','y','z'] ⌋

].get_values(),100),deltaPsi,deltaTheta)↪→

3143 print('psi theta ', psi, " ", theta)

194

8.9 largeSDM.py

3144 X,Y = np.meshgrid(deltaPsi,deltaTheta)

3145

3146

3147 aufl = 0.005

3148 binSize = 2.*deltaZMax/aufl

3149

3150 deltasAl = getDeltasSDMLarge(pos2.loc[pos2.comp ==

'Al:1',['x','y','z']].get_values(), 500)↪→

3151 zSDM_Al, w_zSDM_Al = getRotateZSDM(deltaZMax,deltasAl,psi,theta,binSize)

3152 zSDM_Mg, w_zSDM_Mg = getRotateZSDM(deltaZMax,deltasMg,psi,theta,binSize)

3153 zSDM_Si, w_zSDM_Si = getRotateZSDM(deltaZMax,deltasSi,psi,theta,binSize)

3154 zSDM_Cu, w_zSDM_Cu = getRotateZSDM(deltaZMax,deltasCu,psi,theta,binSize)

3155

3156 zSDM_ROI, w_zSDM_ROI = getRotateZSDM(deltaZMax,ROI_deltas,psi,theta,binSize)

3157

3158 [ax.clear() for ax in axes]

3159 CS = axes[5].contourf(X.T,Y.T, raster)

3160 axes[5].plot(psi,theta,'x')

3161 N0 = 70

3162 N0 = 200

3163

3164 axes[0].plot(zSDM_Al,normsmooth(w_zSDM_Al,N0), label='Al')

3165 N1 = 5

3166 axes[0].plot(zSDM_Al,normsmooth(w_zSDM_Mg,N1), label='Mg')

3167 axes[0].plot(zSDM_Al,normsmooth(w_zSDM_Si,N1), label='Si')

3168 #axes[0].plot(zSDM_Al,normsmooth(w_zSDM_Cu,N1), label='Cu')

3169

3170 axes[1].plot(zSDM_Al,norm(w_zSDM_Al))

3171 axes[1].plot(zSDM_Al,norm(w_zSDM_Mg))

3172 axes[1].plot(zSDM_Al,norm(w_zSDM_Si))

3173 #axes[1].plot(zSDM_Al,norm(w_zSDM_Cu))

3174

3175 axes[3].plot(zSDM_Al,normsmooth(w_zSDM_ROI,N0), label='Al')

3176

3177 deltasMgCluster = getDeltasSDMLarge(cluster.loc[cluster.comp ==

'Mg:1',['x','y','z']].get_values(),2500)↪→

3178 deltasSiCluster = getDeltasSDMLarge(cluster.loc[cluster.comp ==

'Si:1',['x','y','z']].get_values(),2500)↪→

3179 deltasAlCluster = getDeltasSDMLarge(cluster.loc[cluster.comp ==

'Al:1',['x','y','z']].get_values(),100)↪→

3180

3181 zSDM_Mg_Cluster, w_zSDM_Mg_Cluster =

getRotateZSDM(deltaZMax,deltasMgCluster,psi,theta,binSize)↪→

3182 zSDM_Si_Cluster, w_zSDM_Si_Cluster =

getRotateZSDM(deltaZMax,deltasSiCluster,psi,theta,binSize)↪→

195

8.10 C14 art.py

3183 zSDM_Al_Cluster, w_zSDM_Al_Cluster =

getRotateZSDM(deltaZMax,deltasAlCluster,psi,theta,binSize)↪→

3184

3185 axes[4].clear()

3186 N1 = 6

3187 axes[4].plot(zSDM_Mg_Cluster,normsmooth(w_zSDM_Mg_Cluster,N1))

3188 axes[4].plot(zSDM_Si_Cluster,normsmooth(w_zSDM_Si_Cluster,N1))

3189

3190 [ax.legend(loc='best') for ax in axes]

8.10 C14 art.py

3191 from pyflann import *

3192 from apt_importers import *

3193 from Vis import volvis

3194

3195 vectors = np.loadtxt('/media/phillip/Volume1/Daten7050/C14_POSCAR_py2')

3196

3197 vectorA = vectors[0,:]/10.

3198 vectorB = vectors[1,:]/10.

3199 vectorC = vectors[2,:]/10.

3200

3201 #AB2_hP12_194_f_ah params=5.223,1.64005360904,0.06286,0.83048 SG#=194

[ANRL doi: arXiv:1607.02532]↪→

3202 #1.000000

3203 # 2.61150000000000 -4.52325068396612 0.00000000000000

3204 # 2.61150000000000 4.52325068396612 0.00000000000000

3205 # 0.00000000000000 0.00000000000000 8.56600000001592

3206 #

3207 #4 8

3208 #Direct(12) [A4B8]

3209 # 0.33333333333333 0.66666666666667 0.06286000000000

3210 # 0.66666666666667 0.33333333333333 0.56286000000000

3211 # 0.66666666666667 0.33333333333333 -0.06286000000000

3212 # 0.33333333333333 0.66666666666667 0.43714000000000

3213 # 0.00000000000000 0.00000000000000 0.00000000000000

3214 # 0.00000000000000 0.00000000000000 0.50000000000000

3215 # 0.83048000000000 0.66096000000000 0.25000000000000

3216 # 0.33904 0.16952 0.25000000000000

3217 # 0.83048000000000 0.16952 0.25000000000000

3218 # 0.16952 0.33904 0.75000000000000

3219 # 0.66096000000000 0.83048000000000 0.75000000000000

3220 # 0.16952 0.83048000000000 0.75000000000000

3221

3222

3223 point = vectors[3:,:]

196

8.10 C14 art.py

3224

3225 origin = np.array([0., 0., 0.])

3226 n=10

3227

3228 C14 = getLattice(origin, vectorA, vectorB, vectorC, point, n, n, n)

3229 pos = pd.DataFrame({'x': C14[:,0],

3230 'y': C14[:,1],

3231 'z': C14[:,2],

3232 'Da': 32.*np.ones(C14[:,0].size)})

3233 pos[0::12].Da = 24.

3234 pos[1::12].Da = 24.

3235 pos[2::12].Da = 24.

3236 pos[3::12].Da = 24.

3237

3238

3239 pathRange='/media/phillip/Volume1/13_rangeFiles/R21_09743_v01.rrng'

3240 ions,rrngs = read_rrng(pathRange)

3241 pos = label_ions(pos, rrngs)

3242 volvis(pos,size=7)

3243

3244 numberPlots = 4

3245 fig, axes = plt.subplots(1,numberPlots, figsize = (20,5))

3246 axes = axes.flatten()

3247

3248 psi = 0.

3249 theta = 0.

3250

3251 axes[0].clear()

3252 axes[1].clear()

3253 axes[2].clear()

3254 axes[3].clear()

3255

3256 deltas_Al = getDeltasSDMLarge(pos.loc[pos.comp ==

'Zn:1',['x','y','z']].get_values(),500)↪→

3257 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3258 axes[0].plot(z_SDM_Al,norm(w_zSDM_Al),label='Zn')

3259 axes[0].legend(loc='best')

3260 deltas_Al = getDeltasSDMLarge(pos.loc[pos.comp ==

'Mg:1',['x','y','z']].get_values(),500)↪→

3261 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3262 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Mg',c='g')

3263 axes[1].legend(loc='best')

3264

3265 deltas_Al = getDeltasSDMLarge(pos.loc[pos.comp ==

'Zn:1',['x','y','z']].get_values(),500)↪→

3266 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

197

8.10 C14 art.py

3267 axes[2].plot(z_SDM_Al,norm(w_zSDM_Al),label='Zn',c='b')

3268

3269 deltas_Al = getDeltasSDMLarge(pos.loc[pos.comp ==

'Mg:1',['x','y','z']].get_values(),500)↪→

3270 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3271 axes[2].plot(z_SDM_Al,norm(w_zSDM_Al),label='Mg',c='g')

3272 axes[2].legend(loc='best')

3273

3274 temp = read_epos('/media/phillip/Volume1/Daten7050/R21_09743/auswertung/pol ⌋

e111_cluster_screen.epos')↪→

3275 temp = label_ions(temp,rrngs)

3276

3277 psi = -0.27396263401595444

3278 theta = -0.34999999999999976

3279

3280 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Zn:1',['x','y','z']].get_values(),500)↪→

3281 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3282 axes[0].plot(z_SDM_Al,10*norm(w_zSDM_Al),label='Zncluster_screen', c='r')

3283 axes[0].legend(loc='best')

3284

3285 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Mg:1',['x','y','z']].get_values(),300)↪→

3286 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3287 axes[1].plot(z_SDM_Al,10*norm(w_zSDM_Al),label='Mgcluster_screen', c='r')

3288 axes[1].legend(loc='best')

3289

3290 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Zn:1',['x','y','z']].get_values(),500)↪→

3291 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3292 axes[3].plot(z_SDM_Al, norm(w_zSDM_Al),label='Zncluster_screen')

3293 axes[3].legend(loc='best')

3294

3295 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Mg:1',['x','y','z']].get_values(),300)↪→

3296 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3297 axes[3].plot(z_SDM_Al,norm(w_zSDM_Al),label='Mgcluster_screen')

3298 axes[3].legend(loc='best')

3299

3300 [ax.set_xlabel(r'Δ z [nm]')for ax in axes]

3301 [ax.set_ylabel(r'fraction')for ax in axes]

3302 fig

3303

3304 numberPlots = 2

3305 fig, axes = plt.subplots(1,numberPlots, figsize = (10,5))

3306 axes = axes.flatten()

198

8.11 script SDM auswertung.py

3307 #[ax.set_xlabel(r'£\Delta£ x [nm]')for ax in axes]

3308 #[ax.set_ylabel(r'£\Delta£ y [nm]')for ax in axes]

3309

3310 psi = 0.

3311 theta = 0.

3312 axes[2].clear()

3313 deltas_Al = getDeltasSDMLarge(pos.loc[pos.comp ==

'Zn:1',['x','y','z']].get_values(),500)↪→

3314 stutz2D, H2D = getRotateXYSDM(2, 2, deltas_Al, psi, theta, deltaZ=0.,

deltaDeltaZ=0.01, binSDM=100)↪→

3315 X,Y = np.meshgrid(*stutz2D)

3316 axes[2].contourf(X,Y,H2D,50)

3317 axes[2].set_title('XY Zn')

3318

3319 axes[3].clear()

3320 deltas_Al = getDeltasSDMLarge(pos.loc[pos.comp ==

'Mg:1',['x','y','z']].get_values(),500)↪→

3321 stutz2D, H2D = getRotateXYSDM(2, 2, deltas_Al, psi, theta, deltaZ=0.,

deltaDeltaZ=0.01, binSDM=100)↪→

3322 X,Y = np.meshgrid(*stutz2D)

3323 axes[3].contourf(X,Y,H2D,50)

3324 axes[3].set_title('XY Mg')

8.11 script SDM auswertung.py

3325 maxAnglePsi = np.pi/180.*8

3326 maxAngleTheta = np.pi/180.*8

3327 teilung1 = 20

3328 teilung2 = 20

3329

3330

3331 deltaPsi = np.arange(-maxAnglePsi, maxAnglePsi, 2*maxAnglePsi/teilung1)

3332 deltaTheta = np.arange(-maxAngleTheta, maxAngleTheta,

2*maxAngleTheta/teilung2)↪→

3333 delta_temp =

getDeltasSDMLarge(pole002.loc[:,['x','y','z']].get_values(),100)↪→

3334

3335 raster, psi, theta = searchMax(delta_temp,deltaPsi,deltaTheta)

3336 X,Y = np.meshgrid(deltaPsi,deltaTheta)

3337 axes[0].contourf(X.T,Y.T, raster)

3338

3339 deltaPsi = np.arange(-maxAnglePsi+psi, maxAnglePsi+psi,

2*maxAnglePsi/teilung1)↪→

3340 deltaTheta = np.arange(-maxAngleTheta+theta, maxAngleTheta+theta,

2*maxAngleTheta/teilung2)↪→

3341 raster, psi, theta = searchMax(delta_temp,deltaPsi,deltaTheta)

199

8.11 script SDM auswertung.py

3342 X,Y = np.meshgrid(deltaPsi,deltaTheta)

3343 axes[0].contourf(X.T,Y.T, raster)

3344

3345 deltas_Al = getDeltasSDMLarge(pole002.loc[pole002.comp ==

'Al:1',['x','y','z']].get_values(),100)↪→

3346 # 100 -> NN

3347 z_SDM_Al, w_zSDM_Al = getRotateZSDM(1.,deltas_Al,psi,theta,4./0.005)

3348 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Al')

3349

3350 deltas_Zn = getDeltasSDMLarge(pole002.loc[pole002.comp ==

'Zn:1',['x','y','z']].get_values(),100)↪→

3351 z_SDM_Zn, w_zSDM_Zn = getRotateZSDM(1.,deltas_Zn,psi,theta,4./0.005)

3352 axes[1].plot(z_SDM_Al,norm(w_zSDM_Zn),label='Zn')

3353

3354 deltas_Mg = getDeltasSDMLarge(pole002.loc[pole002.comp ==

'Mg:1',['x','y','z']].get_values(),100)↪→

3355 z_SDM_Mg, w_zSDM_Mg = getRotateZSDM(1.,deltas_Mg,psi,theta,4./0.005)

3356 axes[1].plot(z_SDM_Mg,norm(w_zSDM_Mg),label='Mg')

3357

3358 deltas_Cu = getDeltasSDMLarge(pole002.loc[pole002.comp ==

'Cu:1',['x','y','z']].get_values(),100)↪→

3359 z_SDM_Cu, w_zSDM_Cu = getRotateZSDM(1.,deltas_Cu,psi,theta,4./0.005)

3360 axes[1].plot(z_SDM_Cu,norm(w_zSDM_Cu),label='Cu')

3361 #---

3362

3363 deltas_Al = getDeltasSDMLarge(cluster_pole002.loc[cluster_pole002.comp ==

'Al:1',['x','y','z']].get_values(),100)↪→

3364 # 100 -> NN

3365 z_SDM_Al, w_zSDM_Al = getRotateZSDM(1.,deltas_Al,psi,theta,4./0.005)

3366 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Al')

3367

3368 deltas_Zn = getDeltasSDMLarge(cluster_pole002.loc[cluster_pole002.comp ==

'Zn:1',['x','y','z']].get_values(),100)↪→

3369 z_SDM_Zn, w_zSDM_Zn = getRotateZSDM(1.,deltas_Zn,psi,theta,4./0.005)

3370 axes[1].plot(z_SDM_Al,norm(w_zSDM_Zn),label='Zn')

3371

3372 deltas_Mg = getDeltasSDMLarge(cluster_pole002.loc[cluster_pole002.comp ==

'Mg:1',['x','y','z']].get_values(),100)↪→

3373 z_SDM_Mg, w_zSDM_Mg = getRotateZSDM(1.,deltas_Mg,psi,theta,4./0.005)

3374 axes[1].plot(z_SDM_Mg,norm(w_zSDM_Mg),label='Mg')

3375

3376 #---

3377 maxAnglePsi = np.pi/180.*8

3378 maxAngleTheta = np.pi/180.*8

3379 teilung1 = 20

3380 teilung2 = 20

200

8.11 script SDM auswertung.py

3381

3382

3383 deltaPsi = np.arange(-maxAnglePsi, maxAnglePsi, 2*maxAnglePsi/teilung1)

3384 deltaTheta = np.arange(-maxAngleTheta, maxAngleTheta,

2*maxAngleTheta/teilung2)↪→

3385 delta_temp =

getDeltasSDMLarge(pole111.loc[:,['x','y','z']].get_values(),100)↪→

3386 raster, psi, theta = searchMax(delta_temp,deltaPsi,deltaTheta)

3387 X,Y = np.meshgrid(deltaPsi,deltaTheta)

3388 axes[0].contourf(X.T,Y.T, raster)

3389

3390 deltaPsi = np.arange(-maxAnglePsi+psi, maxAnglePsi+psi,

2*maxAnglePsi/teilung1)↪→

3391 deltaTheta = np.arange(-maxAngleTheta+theta, maxAngleTheta+theta,

2*maxAngleTheta/teilung2)↪→

3392 raster, psi, theta = searchMax(delta_temp,deltaPsi,deltaTheta)

3393 X,Y = np.meshgrid(deltaPsi,deltaTheta)

3394 axes[0].contourf(X.T,Y.T, raster)

3395

3396 deltas_Al = getDeltasSDMLarge(pole111.loc[pole111.comp ==

'Al:1',['x','y','z']].get_values(),100)↪→

3397 # 100 -> NN

3398 z_SDM_Al, w_zSDM_Al = getRotateZSDM(1.,deltas_Al,psi,theta,4./0.005)

3399 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Al')

3400

3401 deltas_Zn = getDeltasSDMLarge(pole111.loc[pole111.comp ==

'Zn:1',['x','y','z']].get_values(),100)↪→

3402 z_SDM_Zn, w_zSDM_Zn = getRotateZSDM(1.,deltas_Zn,psi,theta,4./0.005)

3403 axes[1].plot(z_SDM_Al,norm(w_zSDM_Zn),label='Zn')

3404

3405 deltas_Mg = getDeltasSDMLarge(pole111.loc[pole111.comp ==

'Mg:1',['x','y','z']].get_values(),100)↪→

3406 z_SDM_Mg, w_zSDM_Mg = getRotateZSDM(1.,deltas_Mg,psi,theta,4./0.005)

3407 axes[1].plot(z_SDM_Mg,norm(w_zSDM_Mg),label='Mg')

3408

3409 #---

3410 axes[1].clear()

3411 cluster_pole111 = read_epos('/media/phillip/Volume1/Daten7050/R21_09743/aus ⌋

wertung/cluster_pole111.epos')↪→

3412 cluster_pole111 = label_ions(cluster_pole111,rrngs)

3413

3414 deltas_Al = getDeltasSDMLarge(cluster_pole111.loc[cluster_pole111.comp ==

'Al:1',['x','y','z']].get_values(),100)↪→

3415 # 100 -> NN

3416 z_SDM_Al, w_zSDM_Al = getRotateZSDM(1.,deltas_Al,psi,theta,4./0.005)

3417 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Al')

201

8.11 script SDM auswertung.py

3418

3419 deltas_Zn = getDeltasSDMLarge(cluster_pole111.loc[cluster_pole111.comp ==

'Zn:1',['x','y','z']].get_values(),100)↪→

3420 z_SDM_Zn, w_zSDM_Zn = getRotateZSDM(1.,deltas_Zn,psi,theta,4./0.005)

3421 axes[1].plot(z_SDM_Al,norm(w_zSDM_Zn),label='Zn')

3422

3423 deltas_Mg = getDeltasSDMLarge(cluster_pole111.loc[cluster_pole111.comp ==

'Mg:1',['x','y','z']].get_values(),100)↪→

3424 z_SDM_Mg, w_zSDM_Mg = getRotateZSDM(1.,deltas_Mg,psi,theta,4./0.005)

3425 axes[1].plot(z_SDM_Mg,norm(w_zSDM_Mg),label='Mg')

3426

3427 temp = cluster_pole111[(cluster_pole111.z<60)&(cluster_pole111.z>50)]

3428 temp = temp[temp.y>19]

3429

3430 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Al:1',['x','y','z']].get_values(),100)↪→

3431 # 100 -> NN

3432 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3433 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Al')

3434

3435 deltas_Zn = getDeltasSDMLarge(temp.loc[temp.comp ==

'Zn:1',['x','y','z']].get_values(),100)↪→

3436 z_SDM_Zn, w_zSDM_Zn = getRotateZSDM(2.,deltas_Zn,psi,theta,4./0.005)

3437 axes[1].plot(z_SDM_Al,norm(w_zSDM_Zn),label='Zn')

3438

3439 deltas_Mg = getDeltasSDMLarge(temp.loc[temp.comp ==

'Mg:1',['x','y','z']].get_values(),100)↪→

3440 z_SDM_Mg, w_zSDM_Mg = getRotateZSDM(2.,deltas_Mg,psi,theta,4./0.005)

3441 axes[1].plot(z_SDM_Mg,norm(w_zSDM_Mg),label='Mg')

3442

3443 axes[1].axvline(z_SDM_Al[z_SDM_Al>0.1][w_zSDM_Al[z_SDM_Al>0.1].argmax()],c= ⌋

'r',label='0.34')↪→

3444 axes[1].legend()

3445

3446 #---

3447

3448 axes[1].clear()

3449 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Al:1',['x','y','z']].get_values(),100)↪→

3450 # 100 -> NN

3451 z_SDM_Al, w_zSDM_Al = getRotateZSDM(1.,deltas_Al,psi,theta,4./0.005)

3452 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Alcluster_screen')

3453

3454 deltas_Al = getDeltasSDMLarge(pole111.loc[pole111.comp ==

'Al:1',['x','y','z']].get_values(),100)↪→

3455 # 100 -> NN

202

8.11 script SDM auswertung.py

3456 z_SDM_Al, w_zSDM_Al = getRotateZSDM(1.,deltas_Al,psi,theta,4./0.005)

3457 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Alpole')

3458 axes[1].legend()

3459

3460 #---

3461

3462 axes[1].clear()

3463 pole111 = read_epos('/media/phillip/Volume1/Daten7050/R21_09743/auswertung/ ⌋

pole111.epos')↪→

3464 pole111 = label_ions(pole111,rrngs)

3465

3466 maxAnglePsi = np.pi/180.*8

3467 maxAngleTheta = np.pi/180.*8

3468 teilung1 = 20

3469 teilung2 = 20

3470

3471 psi = -0.26

3472 theta = -0.35

3473 delta_temp =

getDeltasSDMLarge(pole111.loc[:,['x','y','z']].get_values(),100)↪→

3474

3475 deltaPsi = np.arange(-maxAnglePsi+psi, maxAnglePsi+psi,

2*maxAnglePsi/teilung1)↪→

3476 deltaTheta = np.arange(-maxAngleTheta+theta, maxAngleTheta+theta,

2*maxAngleTheta/teilung2)↪→

3477 raster, psi, theta = searchMax(delta_temp,deltaPsi,deltaTheta)

3478 X,Y = np.meshgrid(deltaPsi,deltaTheta)

3479 axes[0].contourf(X.T,Y.T, raster)

3480

3481 # pole 111

3482 # psi = -0.27396263401595444

3483 # theta = -0.34999999999999976

3484

3485 deltas_Al = getDeltasSDMLarge(pole111_matrix.loc[pole111_matrix.comp ==

'Al:1',['x','y','z']].get_values(),100)↪→

3486 # 100 -> NN

3487 z_SDM_Al, w_zSDM_Al = getRotateZSDM(1.,deltas_Al,psi,theta,4./0.005)

3488 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Al')

3489

3490 axes[1].axvline(z_SDM_Al[z_SDM_Al>0.1][w_zSDM_Al[z_SDM_Al>0.1].argmax()],c= ⌋

'r',label='0.3')↪→

3491

3492 temp = read_epos('/media/phillip/Volume1/Daten7050/R21_09743/auswertung/pol ⌋

e111_cluster_screen.epos')↪→

3493 temp = label_ions(temp,rrngs)

3494

203

8.11 script SDM auswertung.py

3495 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Al:1',['x','y','z']].get_values(),100)↪→

3496 z_SDM_Al, w_zSDM_Al = getRotateZSDM(1.,deltas_Al,psi,theta,4./0.005)

3497 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Alcluster_screen')

3498

3499 #---

3500

3501 deltas_Al = getDeltasSDMLarge(pole002_cl.loc[pole002_cl.comp ==

'Al:1',['x','y','z']].get_values(),100)↪→

3502 # 100 -> NN

3503 z_SDM_Al, w_zSDM_Al = getRotateZSDM(1.,deltas_Al,psi,theta,4./0.005)

3504 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Al')

3505

3506 deltas_Zn = getDeltasSDMLarge(pole002_cl.loc[pole002_cl.comp ==

'Zn:1',['x','y','z']].get_values(),100)↪→

3507 z_SDM_Zn, w_zSDM_Zn = getRotateZSDM(1.,deltas_Zn,psi,theta,4./0.005)

3508 axes[1].plot(z_SDM_Al,norm(w_zSDM_Zn),label='Zn')

3509

3510 deltas_Mg = getDeltasSDMLarge(pole002_cl.loc[pole002_cl.comp ==

'Mg:1',['x','y','z']].get_values(),100)↪→

3511 z_SDM_Mg, w_zSDM_Mg = getRotateZSDM(1.,deltas_Mg,psi,theta,4./0.005)

3512 axes[1].plot(z_SDM_Mg,norm(w_zSDM_Mg),label='Mg')

3513

3514 axes[1].legend(loc='best')

3515

3516 #---

3517

3518 axes[1].clear()

3519 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Al:1',['x','y','z']].get_values(),100)↪→

3520 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3521 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Al')

3522

3523 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Zn:1',['x','y','z']].get_values(),100)↪→

3524 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3525 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Zn')

3526

3527 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Mg:1',['x','y','z']].get_values(),100)↪→

3528 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3529 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Mg')

3530 axes[1].set_title('cluster_screen')

3531 axes[1].legend(loc='best')

3532

3533 #---

204

8.11 script SDM auswertung.py

3534

3535 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Al:1',['x','y','z']].get_values(),500)↪→

3536 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3537 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Al')

3538

3539 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Zn:1',['x','y','z']].get_values(),500)↪→

3540 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3541 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Zn')

3542

3543 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Mg:1',['x','y','z']].get_values(),300)↪→

3544 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3545 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Mg')

3546

3547 axes[0].clear()

3548 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Al:1',['x','y','z']].get_values(),500)↪→

3549 stutz2D, H2D = getRotateXYSDM(1, 1, deltas_Al, psi, theta, deltaZ=0.,

deltaDeltaZ=0.1, binSDM=100)↪→

3550 X,Y = np.meshgrid(*stutz2D)

3551 axes[0].contourf(X,Y,H2D,50)

3552 fig

3553 #---

3554

3555 psi = 0.

3556 theta = 0.

3557

3558 axes[0].clear()

3559 axes[1].clear()

3560 axes[2].clear()

3561 axes[3].clear()

3562

3563 deltas_Al = getDeltasSDMLarge(pos.loc[pos.comp ==

'Zn:1',['x','y','z']].get_values(),500)↪→

3564 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3565 axes[0].plot(z_SDM_Al,norm(w_zSDM_Al),label='Zn')

3566 axes[0].legend(loc='best')

3567 deltas_Al = getDeltasSDMLarge(pos.loc[pos.comp ==

'Mg:1',['x','y','z']].get_values(),500)↪→

3568 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3569 axes[1].plot(z_SDM_Al,norm(w_zSDM_Al),label='Mg',c='g')

3570 axes[1].legend(loc='best')

3571

205

8.11 script SDM auswertung.py

3572 deltas_Al = getDeltasSDMLarge(pos.loc[pos.comp ==

'Zn:1',['x','y','z']].get_values(),500)↪→

3573 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3574 axes[2].plot(z_SDM_Al,norm(w_zSDM_Al),label='Zn',c='b')

3575

3576 deltas_Al = getDeltasSDMLarge(pos.loc[pos.comp ==

'Mg:1',['x','y','z']].get_values(),500)↪→

3577 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3578 axes[2].plot(z_SDM_Al,norm(w_zSDM_Al),label='Mg',c='g')

3579 axes[2].legend(loc='best')

3580

3581 temp = read_epos('/media/phillip/Volume1/Daten7050/R21_09743/auswertung/pol ⌋

e111_cluster_screen.epos')↪→

3582 temp = label_ions(temp,rrngs)

3583

3584 psi = -0.27396263401595444

3585 theta = -0.34999999999999976

3586

3587 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Zn:1',['x','y','z']].get_values(),500)↪→

3588 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3589 axes[0].plot(z_SDM_Al,10*norm(w_zSDM_Al),label='Zncluster_screen', c='r')

3590 axes[0].legend(loc='best')

3591

3592 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Mg:1',['x','y','z']].get_values(),300)↪→

3593 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3594 axes[1].plot(z_SDM_Al,10*norm(w_zSDM_Al),label='Mgcluster_screen', c='r')

3595 axes[1].legend(loc='best')

3596

3597 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Zn:1',['x','y','z']].get_values(),500)↪→

3598 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3599 axes[3].plot(z_SDM_Al, norm(w_zSDM_Al),label='Zncluster_screen')

3600 axes[3].legend(loc='best')

3601

3602 deltas_Al = getDeltasSDMLarge(temp.loc[temp.comp ==

'Mg:1',['x','y','z']].get_values(),300)↪→

3603 z_SDM_Al, w_zSDM_Al = getRotateZSDM(2.,deltas_Al,psi,theta,4./0.005)

3604 axes[3].plot(z_SDM_Al,norm(w_zSDM_Al),label='Mgcluster_screen')

3605 axes[3].legend(loc='best')

3606

3607 [ax.set_xlabel(r'Δ z [nm]')for ax in axes]

3608 [ax.set_ylabel(r'fraction')for ax in axes]

3609 fig

3610

206

8.12 clusteranalyse AlMgSi.m

3611 psi = 0.

3612 theta = 0.

3613 axes[2].clear()

3614 deltas_Al = getDeltasSDMLarge(pos.loc[pos.comp ==

'Zn:1',['x','y','z']].get_values(),500)↪→

3615 stutz2D, H2D = getRotateXYSDM(2, 2, deltas_Al, psi, theta, deltaZ=0.,

deltaDeltaZ=0.01, binSDM=100)↪→

3616 X,Y = np.meshgrid(*stutz2D)

3617 axes[2].contourf(X,Y,H2D,50)

3618 axes[2].set_title('XY Zn')

3619

3620 axes[3].clear()

3621 deltas_Al = getDeltasSDMLarge(pos.loc[pos.comp ==

'Mg:1',['x','y','z']].get_values(),500)↪→

3622 stutz2D, H2D = getRotateXYSDM(2, 2, deltas_Al, psi, theta, deltaZ=0.,

deltaDeltaZ=0.01, binSDM=100)↪→

3623 X,Y = np.meshgrid(*stutz2D)

3624 axes[3].contourf(X,Y,H2D,50)

3625 axes[3].set_title('XY Mg')

8.12 clusteranalyse AlMgSi.m

3626 pos = readpos;

3627 rng = {};

3628 %copy Excel rng data

3629

3630 readXLSRanges(rng,pos,'ionic');

3631 [pass, Nmin, clusterCutoff, clusteredAtoms] =

clusterDetermination([Mgpos;Sipos],pos);↪→

3632 clusterNumbers = unique(clusteredAtoms(:,5));

3633 %delete ranged Atoms

3634

3635

3636 figure()

3637 hold on

3638 shapes = cell([length(clusterNumbers),1]);

3639 for i = 1:length(clusterNumbers)

3640 shapes{i} = alphaShape(clusteredAtoms(clusteredAtoms(:,5) ==

clusterNumbers(i),1:3));↪→

3641 plot(alphaShape(clusteredAtoms(clusteredAtoms(:,5) ==

clusterNumbers(i),1:3)));↪→

3642 end

3643

3644 atomsFound = [];

3645 for i = 1:length(clusterNumbers)

3646 positionen = pos(inShape(shapes{i},pos(:,1), pos(:,2), pos(:,3)),:);

207

8.13 motorsteuerung v09.ino

3647 atomsFound = [atomsFound;[positionen,i*ones([length(positionen),1])]];

3648 end

3649

3650 scatter3(atomsFound(:,1),atomsFound(:,2),atomsFound(:,3),'.');axis equal;

3651

3652 % readXLSRanges(rng,atomsFound,'ionic');

3653

3654 % ----------------- Al H Mg Si Cu Ga

3655 % . 13.4500 13.6000 1 0 0 0 0 0

3656 % . 26.9210 27.0990 1 0 0 0 0 0

3657 % . 0.9850 1.0950 0 1 0 0 0 0

3658 % . 1.9790 2.1090 0 2 0 0 0 0

3659 % . 11.9550 12.0500 0 0 1 0 0 0

3660 % . 12.4560 12.5750 0 0 1 0 0 0

3661 % . 12.9430 13.1070 0 0 1 0 0 0

3662 % . 13.9530 14.0790 0 0 0 1 0 0

3663 % . 14.4490 14.5490 0 0 0 1 0 0

3664 % . 14.9530 15.0440 0 0 0 1 0 0

3665 % . 62.8120 63.1100 0 0 0 0 1 0

3666 % . 64.8100 65.1500 0 0 0 0 1 0

3667 % . 27.9400 28.1760 1 1 0 0 0 0

3668 % . 28.9280 29.2410 1 2 0 0 0 0

3669 % . 23.2550 23.4340 0 1 0 0 0 1

3670

3671 max = 0;

3672 idC = 0;

3673 for i = 1 : length(unique(atomsFound(:,5)))

3674 if max < length(atomsFound(atomsFound(:,5) == i))

3675 max = length(atomsFound(atomsFound(:,5) == i));

3676 idC = i;

3677 end

3678 end

3679

3680 readXLSRanges(rng,atomsFound(atomsFound(:,5)~=idC,1:5),'ionic');

3681

3682 % summe =

length([Alpos;AlH2pos;AlHpos;Cupos;H2pos;Hpos;Mgpos;Sipos,HGapos]);↪→

3683 summe = length([Alpos;AlH2pos;AlHpos;Cupos;Mgpos;Sipos]);

3684 [(length(Alpos)+length(AlH2pos)+length(AlHpos))/summe, length(Cupos)/summe,

length(Mgpos)/summe, length(Sipos)/summe]↪→

8.13 motorsteuerung v09.ino

3685 // init constants

3686 #include <AccelStepper.h>

208

8.13 motorsteuerung v09.ino

3687 const int onOffSwitchStateSwitchPin = 5; // connected to the switch for

turning the motor on and off↪→

3688 const int raufPin = 11; // connected to the switch for moving upwards

3689 const int runterPin = 10; // connected to the switch for moving downwards

3690 const int sekStromPin = 7; // switch for electrolysis circuit

3691 const int inVoltage = A0; // analog measurement of voltage drop at shunt

resistor↪→

3692 const int LED_pin = 4; // pin zur LED verbunden

3693 const char HEADER = 'H';

3694

3695 const int FILTER_SHIFT = 4;

3696

3697 // init variables

3698

3699 int onOffSwitchState = 0; // current state of the On/Off switch

3700 int previousOnOffSwitchState = 0; // previous position of the on/off

switch↪→

3701

3702 int raufSwitch = 0;

3703 int runterSwitch = 0;

3704

3705 int current = 0.;

3706

3707 float mean = 0;

3708 float diff = 0.;

3709 float voltageDiv = 5.7;

3710 float R = 2.2;

3711 float convmA = 1000.;

3712 float maxcurrent = 0.;

3713 const float currentlim = 2.3;

3714 const float maxVoltage = 5.;

3715 float data[4];

3716

3717 unsigned long timepreviousData = 0;

3718 unsigned long timecurrentData = 0;

3719

3720 long filter_reg = 0;

3721 int filter_out = 0;

3722 unsigned long timepreviousDataAnalog = 0;

3723

3724

3725 int abtastintervall = 25;

3726 int abtastintervallAnalog = 3;

3727 int values;

3728

3729 int counter = 0;

209

8.13 motorsteuerung v09.ino

3730 int countVal = 0;

3731

3732 //--

3733 unsigned long t1;

3734 unsigned long t;

3735 unsigned long dt;

3736 unsigned long maxdt;

3737

3738 float i;

3739

3740 float iUp;

3741 float iDown;

3742 float iUp0;

3743 float iDown0;

3744 float iHard;

3745

3746 float f;

3747 float k;

3748 float const cKrit = 0.5;

3749 float konstante = -1.;

3750 float iCoeff = 0.;

3751

3752 float maximumSpeed = 1000.;

3753 float maxAcc = 200.;

3754 float speed0 = 266.;

3755

3756 long positionSteps = 15;

3757

3758 unsigned long start;

3759

3760 AccelStepper stepper(AccelStepper::FULL4WIRE, 8, 9,3,2,true);

3761

3762 boolean initial = true;

3763 boolean richtung = true;

3764

3765 boolean iDownSet = false;

3766 boolean iUpSet = false;

3767 boolean state0 = false;

3768 boolean sendenBool = true;

3769 boolean stromAktiv = false;

3770 //--

3771 void setup() {

3772 // intialize the inputs and outputs

3773 // Serial.begin(115200);

3774 Serial.begin(115200);

3775 pinMode(onOffSwitchStateSwitchPin, INPUT);

210

8.13 motorsteuerung v09.ino

3776 pinMode(raufPin, INPUT);

3777 pinMode(runterPin, INPUT);

3778 pinMode(sekStromPin, OUTPUT);

3779 pinMode(LED_pin,OUTPUT);

3780

3781 // pull the enable pin LOW to start

3782 // digitalWrite(enablePin, LOW);

3783 // digitalWrite(sekStromPin,LOW);

3784 digitalWrite(sekStromPin,LOW);

3785 digitalWrite(LED_pin,LOW);

3786

3787 dt = 0;

3788 maxdt = 0.;

3789 iHard = 0.;

3790

3791 // t1 = 2*sqrt(2.*positionSteps/maxAcc);

3792 // t1 = 1900;

3793 t1 = 2*positionSteps;

3794

3795 iCoeff = 5./1024.*convmA/R;

3796

3797 iDown = 10.;

3798 iUp = 5.;

3799 f = 3.;

3800 i = 7.;

3801

3802 stepper.setMaxSpeed(maximumSpeed); // steps per second

3803 stepper.setAcceleration(maxAcc); // steps per second squared

3804 stepper.moveTo(positionSteps);

3805

3806 richtung = true;

3807

3808 }

3809 //--

3810 void loop() {

3811 // read the value of the on/off switch

3812 onOffSwitchState = digitalRead(onOffSwitchStateSwitchPin);

3813

3814 timecurrentData = millis();

3815 if ((unsigned long)(timecurrentData - timepreviousDataAnalog) >=

abtastintervallAnalog){↪→

3816 filter_reg = filter_reg - (filter_reg >> FILTER_SHIFT) +

analogRead(inVoltage);↪→

3817 filter_out = filter_reg >> FILTER_SHIFT;

3818 timepreviousDataAnalog = timecurrentData;

3819 }

211

8.13 motorsteuerung v09.ino

3820 //--D ⌋

EBUGGING↪→

3821 if (((unsigned long)(timecurrentData - timepreviousData) >=

abtastintervall) && sendenBool){↪→

3822 Serial.write(HEADER);

3823

3824 values = (int)(timecurrentData-timepreviousData);

3825 sendBinary(values);

3826 sendBinary(filter_out);

3827 timepreviousData = timecurrentData;

3828 counter+=1;

3829 if (counter > 27){

3830 counter = 0;

3831 if (filter_out < countVal){

3832 if (countVal - filter_out > countVal/2){

3833 // stopp

3834 // sendenBool = false;

3835 }

3836

3837 }

3838 countVal = filter_out;

3839 }

3840 }

3841 // delay(1);

3842 //delayMicroseconds(100);

3843 //--D ⌋

EBUGGING↪→

3844

3845 // if the on/off button changed state since the last loop()

3846 if (onOffSwitchState != previousOnOffSwitchState) {

3847 // change the value of motorEnabled if pressed

3848 if (onOffSwitchState == HIGH) {

3849 //--s ⌋

tart old

controll

↪→

↪→

3850 /**state0 = !state0;

3851

3852 stepper.setCurrentPosition(0);

3853 stepper.setMaxSpeed(speed0); // steps per second

3854 stepper.setAcceleration(maxAcc); // steps per second squared

3855 stepper.moveTo(positionSteps);

3856

3857 start = timecurrentData;

3858 /**

3859 initial = true;

3860 richtung = true;

212

8.13 motorsteuerung v09.ino

3861 iDownSet = false;

3862 iUpSet = false;

3863 **/

3864 //--e ⌋

nd old

controll

↪→

↪→

3865 stromAktiv = !stromAktiv;

3866 if(stromAktiv){

3867 digitalWrite(sekStromPin,HIGH);

3868 }

3869 else{

3870 digitalWrite(sekStromPin,LOW);

3871 }

3872 }

3873 }

3874

3875 if (state0){

3876 stage3();

3877 stepper.run();

3878 if (stepper.distanceToGo() == 0)

3879 {

3880 stepper.moveTo(-stepper.currentPosition());

3881 start = timecurrentData;

3882 changeCurrentBounds();

3883 richtung = !richtung;

3884 }

3885 }

3886 else{

3887 // digitalWrite(sekStromPin,LOW);

3888 // digitalWrite(sekStromPin,HIGH);

3889

3890 raufSwitch = digitalRead(raufPin);

3891 runterSwitch = digitalRead(runterPin);

3892 if(raufSwitch == HIGH){

3893 stepper.setSpeed(speed0/4.);

3894 while(!stepper.runSpeed()){

3895 }

3896 }

3897 else{

3898 if(runterSwitch == HIGH){

3899 stepper.setSpeed((-1)*speed0/4.);

3900 while(!stepper.runSpeed()){

3901 }

3902 }

3903 }

3904 }

213

8.13 motorsteuerung v09.ino

3905 // save the current switch state as the previous

3906 previousOnOffSwitchState = onOffSwitchState;

3907 }

3908 void stage3(){

3909 if(initial)

3910 {

3911 // einschalten des Elektrolysestromes

3912 digitalWrite(sekStromPin,HIGH);

3913 initial = false;

3914 }

3915 // t = timecurrentData;

3916 // dt = t - start;

3917 // if(dt>maxdt){

3918 // maxdt = dt;

3919 // }

3920 // previousCurrent = i;

3921 i = readCurrent();

3922 // // UEBERWACHUNG Kriterium Elektropolieren

3923 f = fAbbr(i);

3924 // if ((i<cKrit*fAbbr(i)) || (i < iHard)) {

3925 // state0 = false;

3926 // stepper.stop();

3927 // // ENDE Elektropolieren

3928 // }

3929 }

3930 float readCurrent(){

3931 current = analogRead(inVoltage);

3932 return current;

3933 }

3934 float fAbbr(float i){

3935 f = i;

3936

3937 if(iDownSet && iUpSet){

3938 t = stepper.currentPosition();

3939 if (richtung){

3940 t = t+positionSteps;

3941 if (iUp < iUp0){

3942 k = iUp/iUp0;

3943 f = (iUp*k-iDown)/ t1*t+ iDown;

3944 }

3945 else{

3946 f = (iUp-iDown)/t1*t+ iDown;

3947 }

3948 }

3949 else{

3950 t = positionSteps-t;

214

8.13 motorsteuerung v09.ino

3951 if (iDown < iDown0){

3952 k = iDown/iDown0;

3953 f = iUp - (iUp-iDown*k)/t1*t;

3954 }

3955 else{

3956 f = iUp -(iUp-iDown)/t1*t;

3957 }

3958 }

3959 }

3960 return f;

3961 }

3962 void changeCurrentBounds(){

3963 if (stepper.currentPosition() < 0)

3964 {

3965 iDown0 = iDown;

3966 iDown = i;

3967 iDownSet = true;

3968 }

3969 else

3970 {

3971 iUp0 = iUp;

3972 iUp = i;

3973 iUpSet = true;

3974 }

3975 }

3976 void sendBinary(int value)

3977 {

3978 // send the two bytes that comprise an integer

3979 Serial.write(lowByte(value)); // send the low byte

3980 Serial.write(highByte(value)); // send the high byte

3981 }

215

	Titelblatt Dumi
	Dumitraschkewitz

