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Introduction

This thesis is focused on the topological problems related to self-affine tiles,
crystallographic tiles and the construction of space-filling curves (SFCs) for self-
affine tiles and Rauzy fractals. In what follows, we will introduce these topics. We
start with the topological properties of self-affine tiles.

Subject 1: Self-affine tiles. (cf. Chapter 1)

Let {f1, f2, . . . , fn} be a family of contractions on Rm. Hutchinson [37] proved
that there exists a unique nonempty compact set K satisfying

K = f1(K) ∪ f2(K) ∪ · · · ∪ fn(K).

We callK the invariant set of the iterated function system (IFS for short) {f1, . . . , fn}.
We are interested in special cases of invariant sets. In particular, we will consider
IFS whose functions fi are affine and have the same linear part.

To be more precise recall first that a matrix is expanding if all its eigenvalues
are strictly greater than 1 in modulus. Let M be a m ×m real expanding matrix
and suppose that | det(M)| = n (det(M) is the determinant of M) for some integer
n > 1. Let D = {d1, . . . , dn} ⊂ Rm be a finite set of vectors which we will call a
digit set. Then by the above-mentioned result of Hutchinson there is a nonempty
compact set T = T (M,D) satisfying

(0.1) MT =
n⋃

i=1

(T + di).

This set equation we can simply write as MT = T +D. If T has positive Lebesgue
measure we call it a self-affine tile (see Lagarias and Wang [51, 52, 53]). Especially,
if the expanding matrix M is a similarity, i.e., M = λQ where λ > 1 and Q is an
orthogonal matrix, then a self-affine tile degenerates to a self-similar tile. (See for
instance [9, 31, 45, 65, 70]). If D ⊂ Zm and T + Zm = Rm with (T + a) and
(T + a′) are disjoint in the sense that the Lebesgue measure of the intersection is
zero for any a, a′ ∈ Zm with a ̸= a′, we call T a self-affine Zm-tile.

Self-affine tiles have been extensively studied in many papers and play a role in
many differemt contexts, for instance in the theory of radix expansions ([71, 66,
43, 39, 21]), in dynamics ([85, 17, 46, 73, 89]), in wavelets ([32, 31, 90, 97], and
in physics ([16]). The fractal structure of their boundary also attracts the attention
of many mathematicians ([94, 27, 3]). As objects giving interesting tilings of Rm,
self-affine tiles also have been investigated by [9, 11, 25, 33, 44, 92]. An and Lau
[5] worked on giving a characterization of digit sets of the planar self-affine sets. One
direction that we are particularly interested in and to which the thesis is devoted, is
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INTRODUCTION 2

the topology of self-affine tiles. Starting with the fundamental work of Hata [34] on
topological properties of invariant set of IFS the study of the topological properties
of self-affine tiles attracted many mathematicians. For instance, Kirat and Lau [47]
and Akiyama and Gjini [1] studied the connectedness property of tiles, Bandt and
Wang [12] and Lau and Leung [55] gave criteria for a planar self-affine tile to
be homeomorphic to a disk, the planar connected self-affine tiles with disconnected
interior were treated by Ngai and Tang [70]. Most of the previous topological results
of self-affine tiles are devoted to the 2-dimensional case. The study of topological
properties of 3-dimensional self-affine tiles just came to the fore a few years ago,
for instance in Bandt [10] (he studies the 3-dimensional twin dragons), Conner
and Thuswaldner [20] (they give criteria for a 3-dimensional self-affine tile to be
homeomorphic to a 3-ball), and Deng et al. [26] (they present a certain class of
3-dimensional self-affine tiles which is homeomorphic to a 3-ball).

Figure 1. An example of 3-dimensional self-affine tile.

A powerful tool in the study of topological properties is the neighbor graph:
it gives a precise description of the boundary of a given self-affine tile in terms
of a graph. This graph induces a graph directed iterated function system (GIFS)
describing the boundary ∂T . To find the neighbors of the Zm-tile, an algorithm was
set up in [81]. For any given tile, we can work out the neighbor graph with the
algorithm. But it is always difficult to deal with infinite classes of tiles.

In this thesis we study topological properties of 3-dimensional self-affine tiles
with collinear digit set. We say that D ⊂ Zm is a collinear digit set for the integral
expanding matrix M if there is a vector v ∈ Zm \ {0} such that

(0.2) D = {0, v, 2v, . . . , (| detM | − 1)v}.

If D has this form we call a self-affine tile T = T (M,D) a self-affine tile with collinear
digit set (see [55]). Figure 1 contains an example of a three dimensional self-affine
tile with collinear digit set. It turns out that each self-affine tile with collinear digits
set in R3 can be brought a normal for in the following way. For any integers A,B,C
with 1 ≤ A ≤ B < C, we consider a self-affine tile T ′ in R3 induced by an expanding
integer 3× 3 matrix with characteristic polynomial x3+Ax2+Bx+C and collinear
digit set (0.2). Akiyama and Loridant [3] observed that T ′ can be transformed to
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so-called ABC-tile by the discussion in (1.11) in Section 1.2.2. Hence, to study the
topological property of T ′ it suffices to study a related ABC-tile.

ABC-tiles are defined as follows. A self-affine tile T given by MT = T +D with

M =

⎛⎝0 0 −C
1 0 −B
0 1 −A

⎞⎠ and D =

⎧⎨⎩
⎛⎝0
0
0

⎞⎠ ,

⎛⎝1
0
0

⎞⎠ , . . . ,

⎛⎝C − 1
0
0

⎞⎠⎫⎬⎭ ,

where A,B,C ∈ Z satisfy 1 ≤ A ≤ B < C, is called ABC-tile.
We will show in Lemma 1.12 that an ABC-tile is a Z3-tile. And we also find

that the algorithm in [81] can work on the whole family of ABC-tiles. Then we
obtain that the ABC-tiles have 14-neighbors under certain conditions of A,B,C,
see Proposition 1.16 in Section 1.2.4 (for the general result see Theorem 1.4). More-
over, we also give a complete characterization of the directed graphs of multiple
intersections in Section 1.2.5 (see Lemma 1.26).

Roughly speaking, a tile has nice topological behavior if it has few neighbors.
For the two dimensional self-affine tiles this has been investigated by Bandt and
Wang [12] which proved that the planar self-affine tiles with 6 neighbors often are
homeomorphic to a closed disk (accordingly, a tiling of R2 by unit squares in gen-
eral position has 6 neighbors). Similarly, the 14 neighbors phenomena of T means
that T has the same number of neighbors as each tile in a lattice tiling of R3 by
unit cubes in general position (meaning that the cubes in this tiling are not aligned
whenever possible). We prove that the boundary of such a tile T is homeomor-
phic to a 2-sphere whenever its set of neighbors contains 14 elements. Moreover,
we give a characterization of 3-, 4-, 5-fold intersection of such kind of Z3-tiles (see
Theorem 1.1). In our proofs we use results of R. H. Bing on the topological char-
acterization of m-spheres for m ≤ 3, although in his paper Bing does not mention
self-affine sets, his characterization is very well suited for self-affine structures. We
even think that Bing’s result has the potential to be applied in many topological
questions around self-affine sets and attractors of iterated function systems in the
sense of Hutchinson [37]. Our approach can be turned into an algorithm that al-
lows to check if a given 3-dimensional self-affine tile with 14 neighbors has spherical
boundary and even has the potential to be generalized to higher dimensions.

Chapter 1 relies on the following submitted paper.

• Jörg Thuswaldner and Shu-Qin Zhang, On self-affine tiles whose bound-
ary is a sphere, 2018, submitted. (See [93].)

Subject 2: Cystallographic replication tiles. (cf. Chapter 2)

Let us start with the definition of a tiling of Rm by isometries. Assume T is a
non-empty compact set such that the closure of its interior T ◦ is equal to T . If there
exists a class Γ of isometries in Rm such that

(0.3) Rm =
⋃
γ∈Γ

γ(T ) with γ(T ◦) ∩ γ′(T ◦) = ∅ for γ ̸= γ′ ∈ Γ,
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then we call {γ(T ); γ ∈ Γ} a tiling of Rm with a single tile T . The special case as we
considered in previous Subject 1 is that Γ is isomorphic to Zm, i.e., Rm = T + Zm.
In this case the collection {γ(T ); γ ∈ Γ} is a lattice tiling of Rm. Here we are
interested in a more general case where Γ is a crystallographic group which is a
discrete cocompact subgroup of the group Isom(Rm) of isometries in Rm. In this
situation we call {γ(T ); γ ∈ Γ} a crystallographic tiling of Rm.

A crystallographic replication tile (crystile for short) with respect to a crystal-
lographic group Γ ⊂ Isom(Rm) is a nonempty compact set T ⊂ Rm such that
{γ(T ); γ ∈ Γ} is a crystallographic tiling of Rm and T satisfies the following prop-
erty.

• Self-affine property : There is an expanding affine mapping g : Rm → Rm

such that g ◦Γ ◦ g−1 ⊂ Γ, and a finite collection D ⊂ Γ called digit set such
that

(0.4) g(T ) =
⋃
δ∈D

δ(T ).

A crystile T means that the associated digit set D must be a complete set of
right coset representatives of the subgroup g ◦ Γ ◦ g−1. On the other side, Gelbrich
[30] proves that there is a subset Γ′ ⊂ Γ called tiling set such that the family
{γ(T ); γ ∈ Γ′} is a tiling of Rm when T ⊂ Rm is a nonempty compact set satisfying
(0.4) and D is a complete set of right coset representatives of the subgroup g◦Γ◦g−1.
However, unlike the lattice case (see [53]) it is not clear if the tiling set Γ′ is always a
subgroup of the crystallographic group Γ. Fortunately, the crystallographic number
systems which were created by Loridant [59] in similar way to the canonical number
systems from the lattice case (see [42]) gives a way to construct classes of crystiles
whose tiling set is the whole group Γ. An infinite class of examples given in [59]
reads as follows.

p2-crystallographic replication tiles. Let T be a crystile in R2. We call T
a p2-crystallographic replication tile (p2-cystile) if T tiles the plane by the p2-group
which is a group of isometries of R2 isomorphic to the subgroup of Isom(R2) gener-
ated by the translations a, b and the π-rotation c where a(x, y) = (x+1, y), b(x, y) =
(x, y + 1), c(x, y) = (−x,−y).

In this thesis (Chapter 2), we will study a special class of p2-cystiles. For A,B ∈
Z satisfying |A| ≤ B ≥ 2, let the expanding mapping g and the digit set D be
defined by

(0.5) g(x, y) =

(
0 −B
1 −A

)(
x
y

)
+

(
B−1
2
0

)
, D = {id, a, a2, . . . , aB−2, c}.

Then T determined by equation (0.4) with the above mapping g and digit set
D defines a crystile whose tiling set is the whole group p2. For A ≥ −1, the
crystallographic number system property gives the tiling property by [59], and we
will deduce it for all values of A by Proposition 2.6. However, the more interesting
part for us is about of the topological properties of the above tiles. For the lattice
tiling, there is a large literature (see the previous introduction for self-affine tiles).
Especially, we are interested in when the above p2-tiles are homeomorphic to a closed
disk which we call disk-likeness. Loridant [59] shows that the union of T and −T is
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(a) The lattice tile T ℓ (b) The crystallo-
graphic tile T

Figure 2. Lattice tile and Crystile for A = 1, B = 3.

a translation of the self-affine lattice tile T ℓ defined by the following equation. (See
Figure 2.)

(0.6)

(
0 −B
1 −A

)
T ℓ = T ℓ ∪

(
T ℓ +

(
1
0

))
∪ · · · ∪

(
T ℓ +

(
B − 1

0

))
.

Then we can obtain topological information on T by comparing it T l. Moreover,

(a) The lattice tile T ℓ (b) The crystallographic
tile T

Figure 3. Lattice tile and Crystile for A = 2, B = 3.

Leung and Lau [55] prove that T ℓ is disk-like if and only if 2|A| < B + 3. However,
it was noticed in [59] that it can happen that T ℓ is disk-like while T is not disk-like
(see Figure 3).

It is always necessary to study the neighbor graph when we study the topological
properties of a tile. The structure of the boundary of the tile can be descried
in detail by a GIFS. Scheicher and Thuswaldner [80] introduce an algorithm to
give the neighbor graph for any given tile T , while it is usually difficult to deal
with infinite classes of tiles. However, Akiyama and Thuswaldner computed the
neighbor graph for the class of planar self-affine lattice tiles (0.6) associated with
canonical number systems and used it to characterize the disk-like tiles among this
class [4]. Loridant et al. ([61, 62]) extend this method on neighbor graph to
crystiles. Then we will establish exactly for which parameters A,B this phenomenon
occurs. For 2|A| − B < 3, the associated lattice tile T ℓ is disk-like and a result of
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Akiyama and Thuswaldner [4] allow us to estimate the set of neighbors of T by
the relation of T and T ℓ. Finding out the disk-like tiles for parameters satisfying
2|A|−B < 3 will then rely on the construction of the associated neighbor graphs for
the whole class (see Section 2.3 and Section 2.4 for more details). For 2|A|−B ≥ 3,
a purely topological argument will enable us to prove that the associated tiles are
not disk-like (see Section 2.7). Our results easily generalize to a broader class of
crystallographic replication tiles, closely related to the class of self-affine tiles with
consecutive collinear digit set as studied by Leung and Lau in [55] (see the discussion
in Section 2.2.2). Therefore, we are able to show the classification Theorem 2.1. And
in fact, the theorem give all possible cases for B ≥ 2.

Chapter 2 relies on the following publication.

• B. Loridant and Shu-Qin Zhang, Topology of a class of p2-crystallographic
replication tiles, Indag. Math. (N.S.), 28 (2017), pp.805-823. (See [63].)

Subject 3: Space-filling curves for self-affine sets. (cf. Chapter 3.)

Space-filling curves have fascinated mathematicians for over a century after the
monumental construction of Peano in 1890 [72]. Here we mention the book of Sagan
[79] for a general reference to the early works on space-filling curves (SFCs). All the
known constructions of SFCs depend on certain ‘substitution rules’, for instance, the
L-system method by Lindenmayer [58] and the recurrent set method by Dekking
[24] provide exact meaning of ‘substitution rule’ and build a bridge from substitution
rules to SFCs, but they do not tell how to construct substitution rules. Recently,
Rao and Zhang [76], Dai, Rao and Zhang [22], Rao and Zhang [77] introduce a
systematic method to construct space-filling curves for connected self-similar sets.
In their work, they specify the meaning of SFC:

A space-filling curve is an almost one to one, measure preserving and Hölder con-
tinuous mapping from the unit interval [0, 1] to a compact set with positive Hausdorff
measure.
There are several significant parts contained in the series of papers [76][22][77].
The first one is that we introduce the new concept linear graph-directed IFS and
show that there exists SFC for the invariant sets of the linear GIFS with certain
conditions. Then, we introduce the definition of a skeleton of a self-similar set which
plays a key role in the whole theory. Using the skeleton, an edge-to-trail substitution
can be constructed and hence a linear structure followed the substitution will be
induced. Actually the self-similar set will be presented as a disjoint union of the
invariant sets of a linear GIFS.

Following this method for self-similar sets, we have a brief look at self-affine sets.
For one side, we can extend some of the definitions we did for self-similar sets, for
example the skeleton, the ordered GIFS, and the linear GIFS, to the self-affine sets
induced by contractions instead of similitudes. For the other side, the self-affine sets
have more complex structure than self-similar sets due to the different contraction
ratios in different directions. There are almost no systematic works on the space-
filling curves of self-affine sets except some examples provided by Dekking [24],
Sirvent’s study under some special conditions [86, 87], boundary parametrizations
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Figure 4. The approximating curves of AB- tile with A = 2, B = 2.

of self-affine tiles by Akiyama and Loridant [2, 3], and boundary parametrizations
of a class of cubic Rauzy fractals by Loridant [60]. The purpose of the Chapter
3 is to carry out first systematic studies in this direction. First, we generalize the
result of [76] to the invariant sets of a linear single-matrix GIFS (see Section 3.1.1)
which is Theorem 3.5 (see Section 3.1.3 for the statement of it and Section 3.2.3.2
for the proof). Then we will extend the definition of skeleton to the graph-directed
iterated function system as well as the construction of edge-to-trail substitution.
In terms of these, we can continue to study of the space-filling curves of self-affine
sets and Rauzy fractals. In Sections 3.4, 3.5, 3.6, we will show the constructions by
different examples, such as McMullen sets, self-affine lattice tiles given by equation
(0.6) (see Figure 4) and the classical Rauzy fractal (see Figure 5). On the whole
chapter we show more about the constructions of SFCs for exact examples other
than the theoretical part.

Chapter 3 is related to the following manuscript and publications.

• Shu-Qin Zhang, Optimal parametrizations of a class of self-affine sets,
2019, in preparing. (See [98].)

• Hui Rao and Shu-Qin Zhang, Space-filling curves of self-similar sets (I):
iterated function systems with ordered structures, Nonlinearity, 29(2016),
pp. 2112-2132. (See [76].)
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Figure 5. The approximating curves of the classical Rauzy fractal
in Chapter 3.6.1.

• Xin-rong Dai, Hui Rao and Shu-Qin Zhang, Space-filling curves of self-
similar sets (II): Edge-to-trail substitution rule, Nonlinearity, 32(2019), pp.
1772-1809. (See [22].)



CHAPTER 1

On self-affine tiles whose boundary is a sphere

This chapter contains the manuscript [93] with the same title. It is joint work
with Jörg Thuswaldner. This manuscript is currently submitted.

1.1. Introduction

Let m ∈ N and suppose that M is an m×m integer matrix which is expanding,
i.e., each of its eigenvalues is greater than 1 in modulus. Let D ⊂ Zm be a set of
cardinality | detM | which is called digit set. By a result of Hutchinson [37], there
exists a unique nonempty compact subset T = T (M,D) of Rm such that

(1.1) MT = T +D.
If T has positive Lebesgue measure we call it a self-affine tile. Images of two 3-
dimensional self-affine tiles with typical “fractal” boundary are shown in Figure 6

Figure 6. An example of 3-dimensional self-affine tile.

(all images of 3-dimensional tiles in this paper are created using IFStile [69]). Initi-
ated by the work of Thurston [92] and Kenyon [44] self-affine tiles have been studied
extensively in the literature. A systematic theory of self-affine tiles including the
lattice tilings they often induce has been established in the 1990ies by Gröchenig
and Haas [31] as well as Lagarias and Wang [51, 52, 53]. Since then, self-affine
tiles have been investigated in many contexts. One field of interest, the one to which
the present paper is devoted, is the topology of self-affine tiles. Based on the pio-
neering work of Hata [34] on topological properties of attractors of iterated function
systems many authors explored the topology of self-affine tiles. For instance, Kirat
and Lau [47] and Akiyama and Gjini [1] dealt with connectivity of tiles. Later,
finer topological properties of 2-dimensional self-affine tiles came into the focus of

9
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research. Bandt and Wang [12] gave criteria for a self-affine tile to be homeomor-
phic to a disk (see also Lau and Leung [55]), Ngai and Tang [70] dealt with planar
connected self-affine tiles with disconnected interior, and Akiyama and Loridant [3]
provided parametrizations of the boundary of planar tiles.

Only a few years ago first results on topological properties of 3-dimensional self-
affine tiles came to the fore. Bandt [10] studied the combinatorial topology of 3-
dimensional twin dragons. Very recently, Conner and Thuswaldner [20] gave criteria
for a 3-dimensional self-affine tile to be homeomorphic to a 3-ball by using upper
semi-continuous decompositions and a criterion of Cannon [19] on tame embeddings
of 2-spheres. Deng et al. [26] showed that a certain class of 3-dimensional self-affine
tiles is homeomorphic to a 3-ball.

LetM be an expanding m×m integer matrix. We say that D is a collinear digit
set for M if there is a vector v ∈ Zm \ {0} such that

(1.2) D = {0, v, 2v, . . . , (| detM | − 1)v}.

If D has this form we call a self-affine tile T = T (M,D) a self-affine tile with
collinear digit set (such tiles have been studied by many authors in recent years,
see for instance Lau and Leung [55]). In the present paper we establish a gen-
eral characterization of 3-dimensional self-affine tiles with collinear digit set whose
boundary is homeomorphic to a 2-sphere. In its proof we use a result of Bing [15]
that provides a topological characterization of m-spheres for m ≤ 3 (although in his
paper Bing does not mention self-affine sets, his characterization is very well suited
for self-affine structures). Our methods can also be turned into an algorithm that
allows to decide if a given 3-dimensional self-affine tile (with given arbitrary digit
set) has a boundary that is homeomorphic to a 2-sphere (see Remark 1.53).

Before we state our main results we introduce some notation. Let T = T (M,D)
be a self-affine tile in Rm with collinear digit set and define the set of neighbours of
T by

(1.3) S = {α ∈ Z[M,D] \ {0}; T ∩ (T + α) ̸= ∅},

where

Z[M,D] = Z[D,MD, . . . ,Mm−1D] ⊂ Zm

is the smallestM -invariant lattice containing D. This definition is motivated by the
fact that the collection {T +α; α ∈ Z[M,D]} often tiles the space Rm with overlaps
of Lebesgue measure 0 (see e.g. Lagarias and Wang [53]). The translated tiles T +α
with α ∈ S are then those tiles of this tiling which touch the “central tile” T . It is
clear that S is a finite set since T is compact by definition. Set

(1.4) Bα = T ∩ (T + α) (α ∈ Z[M,D] \ {0}).

More generally, for ℓ ≥ 1 and a subset α = {α1, . . . , αℓ} ⊂ Z[M,D] \ {0} we define
the (ℓ+ 1)-fold intersections by

Bα = Bα1,...,αℓ
= T ∩ (T + α1) ∩ · · · ∩ (T + αℓ) (α ⊂ Z[M,D] \ {0}).

Compactness of T again yields that there exist only finitely many sets α ⊂ Z[M,D]
with Bα ̸= ∅.
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Theorem 1.1. Let T = T (M,D) be a 3-dimensional self-affine tile with collinear
digit set and assume that the characteristic polynomial x3 + Ax2 + Bx + C of M
satisfies 1 ≤ A ≤ B < C. Then {T + α; α ∈ Z[M,D]} tiles the space R3 with
overlaps of Lebesgue measure 0. If T has 14 neighbors then the following assertions
hold.

(1) The boundary ∂T is homeomorphic to a 2-sphere.
(2) If α ∈ Z[M,D]\{0}, the 2-fold intersection Bα is homeomorphic to a closed

disk for each α ∈ S and empty otherwise.
(3) If α ⊂ Z[M,D] \ {0} contains two elements, the 3-fold intersection Bα is

either homeomorphic to an arc or empty. The 36 sets α with Bα ̸= ∅ can
be given explicitly.

(4) If α ⊂ Z[M,D] \ {0} contains three elements, the 4-fold intersection Bα

is either a single point or empty. The 24 sets α with Bα ̸= ∅ can be given
explicitly.

(5) If α ⊂ Z[M,D] \ {0} contains ℓ ≥ 4 elements, the (ℓ+ 1)-fold intersection
Bα is always empty.

Remark 1.2. Note that Theorem 1.1 (1) and (2) imply that for α ∈ S the
boundary ∂∂TBα is a simple closed curve. Here and in the sequel we denote by ∂X
the boundary taken w.r.t. the subspace topology on X ⊂ R3.

Remark 1.3. We posed the restriction 1 ≤ A ≤ B < C on the coefficients of the
characteristic polynomial of M because it makes the combinatorial preparations in
Section 1.2 a lot easier. Using the characterization of contracting (and, hence, also
of expanding) polynomials going back to Schur [83] it should be possible to treat
the remaining expanding characteristic polynomials and, hence, arbitrary expanding
3× 3 matrices. This will lead to several different cases of neighbor graphs, however,
the topological methods of Section 1.3 should go through without modification.

We see from the statement of Theorem 1.1 that the number of neighbors plays
an important role for the topological behavior of ∂T and the sets of intersections.
The fact that T has 14 neighbors means that T has the same number of neighbors
as each tile in a lattice tiling of R3 by unit cubes in general position (meaning that
the cubes in this tiling are not aligned whenever possible). Sloppily speaking, if
a tile has few neighbors then it tends to behave topologically nice. For the case
of 2-dimensional self-affine tiles this has been explored by Bandt and Wang [12].
In particular, they proved that in two dimensions, self-affine tiles with 6 neighbors
often are homeomorphic to a closed disk (accordingly, a tiling of R2 by unit squares
in general position has 6 neighbors).

Theorem 1.1 raises the question when 3-dimensional self-affine tiles with collinear
digit set have 14 neighbors. This question is answered as follows.

Theorem 1.4. Let T = T (M,D) be a 3-dimensional self-affine tile with collinear
digit set and assume that the characteristic polynomial x3 + Ax2 + Bx + C of M
satisfies 1 ≤ A ≤ B < C.

Then T has 14 neighbors if and only if A,B,C satisfy one of the following con-
ditions.

(1) 1 ≤ A < B < C, B ≥ 2A− 1, and C ≥ 2(B − A) + 2;
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(2) 1 ≤ A < B < C, B < 2A− 1, and C ≥ A+B − 2.

The paper is organized as follows. In Section 1.2 we prove Theorem 1.4. The
main ingredient of this proof are certain graphs that contain information on the
neighbors of T . These graphs also can be used to define so-called graph-directed
iterated function systems in the sense of Mauldin and Williams [67] whose attrac-
tor is the collection {Bα; α ∈ S}. We will also establish graphs that describe the
nonempty ℓ-fold intersections Bα. All these results will be needed in Section 1.3,
the core part of the present paper, where we will combine them with Bing’s re-
sults from [15] and other topological results including dimension theory to establish
Theorem 1.1. In Section 1.4 we discuss perspectives for further research.

1.2. Intersections and neighbors

In this section we set up graphs that describe the intersections of a self-affine tile
with its neighbors. The basic definitions are given in Section 1.2.1. In Section 1.2.2
we show that there exists a normal form for self-affine tiles with collinear digit set
that we can use in all what follows. Sections 1.2.3 and 1.2.4 deal with the calculation
of the so-called contact and neighbor graph for the class of tiles we are interested
in. In particular, in Proposition 1.16 the proof of Theorem 1.4 is finished. Finally,
Section 1.2.5 deals with ℓ-fold intersections of tiles.

1.2.1. Graphs related to the boundary of a tile. We start with collecting
some basic properties of self-affine tiles that will be used in Definition 1.5, where
particular self-affine tiles, so-called Zm-tiles, will be defined. These Zm-tiles are
important for us and allow the definition of certain graphs that are related to the
intersections Bα defined in (1.4).

Let M be an expanding m × m integer matrix and D ⊂ Zm. It is shown in
Bandt [9] that the fact that D ⊂ Zm is a complete set of coset representatives of
Zm/MZm implies that T = T (M,D) has positive Lebesgue measure and, hence,
is a self-affine tile. If T = T (M,D) is a self-affine tile, according to Lagarias and
Wang [51, Lemma 2.1] we may assume w.l.o.g. that the digit set D is primitive for
M in the sense that Z[M,D] = Zm. Moreover, Lagarias and Wang [53] proved that
for a self-affine tile with primitive digit set the collection {T +α; α ∈ Zm} often tiles
the space Rm, i.e., T + Zm = Rm with (µm denotes the m-dimensional Lebesgue
measure)

(1.5) µm((T + α1) ∩ (T + α2)) = 0 (α1, α2 ∈ Zm distinct).

Motivated by these results we follow Bandt and Wang [12] and give the following
definition.

Definition 1.5. LetM be an expanding m×m integer matrix and assume that
D ⊂ Zm is a complete set of coset representatives of Zm/MZm which is primitive
for M . If the self-affine tile T = T (M,D) tiles Rm w.r.t. the lattice Zm we call T a
Zm-tile.

If M and D are given in a way that T = T (M,D) is a Zm-tile we obviously have

(1.6) ∂T =
⋃
α∈S

Bα.
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Here S and Bα are defined as in (1.3) and (1.4), respectively; note that Z[M,D] =
Zm in these definitions because the Zm-tile T has primitive digit set. One of our
main concerns in this section will be the description of the boundary of a Zm-tile
T by studying the sets Bα with α ∈ S. By the definition of Bα in (1.4) and the
defining set equation for T in (1.1) we get

Bα = T ∩ (T + α)

=M−1(T +D) ∩M−1(T +D +Mα)

=M−1
⋃

d,d′∈D

(BMα+d′−d + d).
(1.7)

This subdivision of Bα has been noted for instance by Strichartz and Wang [91]
and Wang [96].

The graphs that we will be interested in will match the pattern of the following
definition.

Definition 1.6 (cf. [81, Definition 3.2]). LetM be an expanding integer matrix
and let D be a complete set of coset representatives of Zm/MZm. For a subset
Γ ⊂ Zm we define a labeled directed graph G(Γ) as follows. The states of G(Γ) are
the elements of Γ, and there is a labeled edge

α
d|d′−−→ α′ if and only if Mα + d′ − d = α′ with α, α′ ∈ Γ and d, d′ ∈ D.(1.8)

In this case α is called a predecessor of α′ and α′ is called a successor of α.

In (1.8) the vector d′ is determined by α, α′, d. Thus we sometimes just write

α
d−→ α′ instead of α

d|d′−−→ α′. We will write α ∈ G(Γ) to indicate that α is a vertex

of G(Γ) and α
d−→ α′ ∈ G(Γ) to indicate that α

d−→ α′ is an edge of G(Γ). For walks
we will use an analogous notation.

The graph G(Zm) is the largest graph related to the pair (M,D). All graphs we
consider later will be subgraphs of G(Zm). The following symmetry property follows
from Definition 1.6.

Lemma 1.7. Let Γ ⊂ Zm be given. If α, α′,−α,−α′ ∈ Γ then

α
d|d′−−→ α′ ∈ G(Γ) ⇐⇒ −α d′|d−−→ −α′ ∈ G(Γ).

We will now set up two important subgraphs of G(Zm) that will be related to
the boundary of a Zm-tile T = T (M,D). The first graph we are interested in is
the neighbor graph G(S), where S is the set of neighbors of T defined in (1.3)
(recall again that Z[M,D] = Zm by primitivity of D for M). From (1.7) we see
that {Bα; α ∈ S} is the attractor of a graph-directed iterated function system (in
the sense of Mauldin and Williams [67]) directed by the graph G(S), that is, the
nonempty compact sets Bα, α ∈ S, are uniquely determined by the set equations

(1.9) Bα =
⋃

d∈D,α′∈S

α
d−→α′∈G(S)

M−1(Bα′ + d) (α ∈ S).

The union in (1.9) is extended over all d, α′ such that α
d−→ α′ is an edge in the

graph G(S). Thus by (1.6) the boundary is determined by the graph G(S). This
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fact was used implicitly in Wang [96] in order to establish a formula for the Hausdorff
dimension of the boundary of a Zm-tile T .

The second graph is the contact graph G(R). This graph can be easily con-
structed and also determines the boundary of T . Scheicher and Thuswaldner [81]
proved that (save for stranding vertices and the vertex 0) G(R) is a subgraph of
G(S) and showed that G(S) can be algorithmically constructed from G(R). Also in
the present paper G(R) is used in order to construct G(S). We introduce some no-
tation. Let {e1, e2, . . . , em} be a basis of the lattice Zm, set R0 = {0,±e1, . . . ,±em}
and define Rn inductively by

(1.10) Rn := {k ∈ Zm; (Mk +D) ∩ (ℓ+D) ̸= ∅ for ℓ ∈ Rn−1} ∪Rn−1.

We know from Gröchenig and Haas [31, Section 4] (see also Duvall et al. [27]) that
Rn stabilizes after finitely many steps, that is Rn−1 = Rn holds for n large enough.
Therefore, R =

⋃
n≥0Rn is a finite set. By Definition 1.6 we get a finite directed

graph with set of states R, and call it the contact graph G(R). We say that R is
the set of contact neighbors of the Zm-tile. As for the set of neighbors S, also the
set R can be used to define the boundary of T . Indeed, we have

∂T =
⋃
α∈R

Bα

(see e.g. [81]). In [31, Section 4] as well as in [81] it is explained why the elements
of R are called “contact neighbors”. The elements of R turn out to be neighbors in
a tiling of certain approximations Tn of the self-affine tile T , which also form tilings
w.r.t. the lattice Zm for each n ≥ 0. However, we will not need this interpretation
in the sequel.

Note that in the graph G(S) there cannot occur any stranding vertices, i.e.,
vertices that have no successor. Indeed, if α ∈ S would be a stranding vertex this
would entail that for this α the right hand side of the set equation (1.9) would be
empty. However, this yields Bα = T ∩ (T + α) = ∅, a contradiction to α ∈ S.

On the contrary, depending on the chosen basis {e1, . . . , em} it may well happen
that the graph G(R) contains stranding vertices. Since these vertices are of no use
for our purposes, we want to get rid of them. Thus we give the following definition.

Definition 1.8. Let G be a directed graph. By Red(G) we denote the largest
subgraph of G that has no stranding vertex, i.e., Red(G) emerges from G by suc-
cessively removing all stranding vertices.

The following product allows to construct the graph G(S), and a fortiori the set
S, from R.

Definition 1.9 (cf. [81, Definition 3.5]). Let G1 and G
′
1 be subgraphs of G(Zm).

The product graph G2 := G1 ⊗ G′
1 is defined in the following way. Let r1, s1 be

vertices of G1 and r′1, s
′
1 be vertices of G′

1. Furthermore, let ℓ1, ℓ
′
1, ℓ2 ∈ D.

• r2 is a vertex of G2 if r2 = r1 + r′1.

• There exists an edge r2
ℓ1|ℓ2−−→ s2 in G2 if there exist the edges

r1
ℓ1|ℓ′1−−→ s1 ∈ G1 and r′1

ℓ′1|ℓ2−−→ s′1 ∈ G′
1
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with r1 + r′1 = r2 and s1 + s′1 = s2 or there exist the edges

r1
ℓ′1|ℓ2−−→ s1 ∈ G1 and r′1

ℓ1|ℓ′1−−→ s′1 ∈ G′
1

with r1 + r′1 = r2 and s1 + s′1 = s2.

Scheicher and Thuswaldner [81] proved that G(S) can be determined by the
following algorithm.

Algorithm 1.10 (cf. [81, Algorithm 3.6]). The following algorithm computes
G(S) starting from G(R).

p := 1
A[1] := Red(G(R))
repeat

p := p+ 1
A[p] := Red(A[p− 1]⊗ A[1])

until A[p] = A[p− 1]
G(S) := A[p] \ {0}

Since 0 ∈ R the sequence of graphs A[p] produced by this algorithm is nested,
i.e., A[1] ⊂ A[2] ⊂ · · · .

It is immediate from the definition of R and S that

α ∈ R ⇐⇒ −α ∈ R and α ∈ S ⇐⇒ −α ∈ S.
Thus the graphs G(R) and G(S) both enjoy the symmetry property stated in
Lemma 1.7 for all vertices. This fact will be often used in the sequel.

1.2.2. A normal form for self-affine tiles with collinear digit set. LetM ′

be an expanding 3×3 integer matrix with characteristic polynomial x3+Ax2+Bx+C
and D′ ⊂ Z3 a collinear digit set as in (1.2) for some v ∈ Z3. Assume that T ′ =
T ′(M ′,D′) has positive Lebesgue measure. Then T ′ is a self-affine tile with collinear
digit set. Akiyama and Loridant [2] observed that T ′ can be transformed in a normal
form as follows.

Note first that {v,M ′v,M ′2v} has to be a basis of R3 because otherwise T ′ would
have zero Lebesgue measure. Denote by E the matrix of the change of bases from
the standard basis {e1, e2, e3} of R3 to the basis {v,M ′v,M ′2v}. Then set
(1.11)

M = E−1M ′E =

⎛⎝0 0 −C
1 0 −B
0 1 −A

⎞⎠ and D = E−1D′ =

⎧⎨⎩
⎛⎝0
0
0

⎞⎠ ,

⎛⎝1
0
0

⎞⎠ , . . . ,

⎛⎝C − 1
0
0

⎞⎠⎫⎬⎭ .

Define T by MT = T +D. Then we have T = E−1T ′ and, because E is invertible,
this implies that T is a self-affine tile. The linear mapping induced by E−1 maps
Z[M ′,D′] to Z3. Moreover, ∂T = E−1∂T ′ and for {α1, . . . , αℓ} ⊂ Z[M ′,D′] we have

E−1(T ′ ∩ (T ′ + α1) ∩ · · · ∩ (T ′ + αℓ)) = T ∩ (T + E−1α1) ∩ · · · ∩ (T + E−1αℓ).

Thus it is sufficient to prove Theorem 1.1 and Theorem 1.4 for self-affine tiles of the
form T = T (M,D) and in all what follows we may focus on the following class of
Z3-tiles.
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Definition 1.11. A self-affine tile T given by MT = T + D with M and D as
in (1.11), where A,B,C ∈ Z satisfy 1 ≤ A ≤ B < C, is called ABC-tile.

The tiles in Figure 6 and Figure 1 are approximations of ABC-tiles for the
choice (A,B,C) = (1, 1, 2) and (A,B,C) = (1, 2, 4), respectively. The ABC-tile
corresponding to (A,B,C) = (2, 3, 5) is approximated in Figure 7.

Figure 7. The ABC-tile for the choice (A,B,C) = (2, 3, 5).

Everything we did in Section 1.2.1 was done for Zm-tiles. To apply these results
to ABC-tiles we need the following lemma.

Lemma 1.12. Each ABC-tile is a Z3-tile.1

Proof. Each ABC-tile T is defined as T = T (M,D) withM and D as in (1.11)
with 1 ≤ A ≤ B < C. It is straightforward to check that D is a complete set of
coset representatives of Z3/MZ3 and that it is a primitive digit set for M . Thus it
remains to show that {T + α; α ∈ Z3} tiles R3. Let

∆(M,D) =
⋃
ℓ≥0

((D −D) +M(D −D) + · · ·+M ℓ(D −D)).

We claim that ∆(M,D) = Z3. Obviously, ∆(M,D) ⊂ Z3. We have to prove the
reverse inclusion. Since 1 ≤ A ≤ B < C, Barat et al. [13, Theorem 3.3] implies that
x3 + Ax2 + Bx + C is the basis of a so-called canonical number system. In view of
Barat et al. [13, Definition 3.2 and the paragraph above it] this is equivalent to the
fact that (M,D) is a matrix numeration system. However, by definition this means
that each z ∈ Z3 can be represented in the form z = d0 +Md1 + · · · +M ℓdℓ with
some ℓ ≥ 0 and d0, . . . , dℓ ∈ D. Thus Z3 ⊂ ∆(M,D) and the claim is proved.

The result now follows from [52, Theorem 1.2 (ii)]. □

In view of the transformation in (1.11) this lemma proves the tiling assertion in
Theorem 1.1.

1.2.3. The contact graph. Let T be an ABC-tile which is a Z3-tile by Lemma
1.12 and recall the definition of Rn from (1.10). We know from Section 1.2.1 that Rn

stabilizes after finitely many steps to the set of contact neighbors R of the ABC-tile
T . In the following lemma we characterize this set.

1Another way to prove this would be via the general result [53, Theorem 6.2]. This would also
require several new notations. So we decided to do it this way.
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Lemma 1.13. Let T be an ABC-tile and let R0 = {0,±e1,±e2,±e3} with {e1, e2,
e3} being the standard basis of R3. Then R4 = R3, i.e., the set of contact neighbors
R is equal to R3. In particular, set

R∗ = {(B,A, 1)t, (B − 1, A, 1)t, (B − A,A− 1, 1)t, (B − A+ 1, A− 1, 1)t, (A, 1, 0)t,

(A− 1, 1, 0)t}.

Then the following assertions hold.

(1) If 1 ≤ A < B < C, then R = R0 ∪R∗ ∪ (−R∗).
(2) If 1 ≤ A = B < C, then R = (R0 ∪ R∗ ∪ (−R∗)) \ {(1, A− 1, 1)t,−(1, A−

1, 1)t}.

Proof. We know that R0 ⊂ R1 ⊂ R2 ⊂ R3 ⊂ R4 ⊂ · · · ⊂ R by definition. From
(1.10) it follows that s ∈ Rn if and only if s ∈ Z3 and Ms+ d′ − d ∈ Rn−1 for some
d, d′ ∈ D. Thus to calculate Rn it suffices to find all possible predecessors of elements
of Rn−1 in G(Z3). Since for s = (p, q, r)t ∈ Z3 we haveMs = (−Cr, p−Br, q−Ar)t,
and D−D = {(x, 0, 0)t; 1−C ≤ x ≤ C − 1} the vector s is a pedecessor of a given
vector s′ if and only if

(1.12) s′ ∈Ms+D −D = {(x− Cr, p−Br, q − Ar)t ; 1− C ≤ x ≤ C − 1}.

We now start our construction with the calculation of R1. The first coordinate
of the elements of R0 varies between −1 and 1. Let s = (p, q, r)t be the predecessor
of an element s′ ∈ R0 in G(Z3). By (1.12) the first coordinate of s′ = (x− Cr, p−
Br, q −Ar)t satisfies −1 ≤ x− Cr ≤ 1 with 1− C ≤ x ≤ C − 1 which implies that
r ∈ {0,±1}. We now inspect each of these cases.

• For r = 0, we have Ms = (0, p, q)t. As we need s′ = Ms + d′ − d ∈ R0

for some d, d′ ∈ D, the possible choices of (p, q) are (0, 0),±(1, 0),±(0, 1).
Hence (0, 0, 0)t,±(1, 0, 0)t,±(0, 1, 0)t are elements of R1 (since all of them
are already contained in R0 this does not contribute a new element to R1).

• For r = 1, we have Ms = (−C, p − B, q − A)t. Since the first coordinate
of Ms + D − D can be at most −1, the only choice of s′ ∈ Ms + D − D
being an element of R0 is that Ms+ d′ − d = (−1, 0, 0)t which corresponds
to the digits d = (0, 0, 0)t, d′ = (C − 1, 0, 0)t. This is possible only for
p−B = 0, q − A = 0. Thus s = (B,A, 1)t is a new element of R1.

• For r = −1 we get from the symmetry stated in Lemma 1.7 that s =
−(B,A, 1)t is an element of R1.

Denote s1 = (B,A, 1)t, then we have R1 = R0 ∪ {s1,−s1}.
To calculate R2 from R1 let s = (p, q, r)t be the predecessor of an element s′ ∈ R1

in G(Z3). Again we consider the first coordinate of s′ ∈Ms+D−D. By (1.12) this
first coordinate is of the form x − Cr with 1 − C ≤ x ≤ C − 1. But since s′ ∈ R1

its first coordinate also satisfies −C < −B ≤ x − Cr ≤ B < C. Combining these
two inequalities yields −2C + 1 < −Cr < 2C − 1 which forces −1 ≤ r ≤ 1. Hence,
again we have to deal with three cases.

• For r = 0, comparing with the discussion leading to R1, the new elements
±s1 ∈ R1 admit the two new choices (p, q) = ±(A, 1). Hence, ±(A, 1, 0)t ∈
R2.



1.2. INTERSECTIONS AND NEIGHBORS 18

• For r = 1, we have Ms = (−C, p − B, q − A)t. Since the first coordinate
of s′ ∈ Ms + D − D will be at most −1. The only possible values for s′

are (−1, 0, 0)t and (−B,−A,−1)t. This forces (p − B, q − A) = (0, 0) or
(p−B, q−A) = (−A,−1). Hence, we get the new element s = (B−A,A−
1, 1)t ∈ R2.

• For r = −1, Lemma 1.7 yields s = −(B − A,A− 1, 1)t ∈ R2.

Set s2 = (A, 1, 0)t and s3 = (B − A,A − 1, 1)t, then R2 = R1 ∪ {±s2,±s3}. In
particular, if B = A = 1, then s3 = (0, 0, 1) being already an element of R0.

The next step is to calculate R3 from R2. Let s = (p, q, r)t be the predecessor
of an element s′ ∈ R2 in G(Z3). Since the largest first coordinate of an element
of R2 is less than C in modulus the same reasoning as in the last paragraph yields
−1 ≤ r ≤ 1 and we have to deal with three cases again.

• For r = 0 we get that an element s′ ∈Ms+D−D is of the form s′ = (x, p, q)t

with 1− C ≤ x ≤ C − 1. We added ±s2,±s3 to R2 so these elements can
contribute new predecessors. Since the pairs of second and third coordinates
of ±s2 already occur in elements of R1, ±s2 contribute no new options for
(p, q). However, ±s3 gives the choices ±(p, q) = ±(A − 1, 1) which yields
to s = ±(A− 1, 1, 0)t, two new elements of R3 if A ≥ 2.

• For r = 1 we get that an element of s′ ∈ Ms + D − D is of the form
s′ = (x−C, p−B, q−A)t with 1−C ≤ x ≤ C−1, and, hence, the maximal
value of the first coordinate of such an element is −1. So if s is a predecessor
of an element of R2, the possible new values of (x− C, p−B, q −A)t are
−s2 = −(A, 1, 0)t and −s3 = −(B − A, A − 1, 1)t. For −s3 to be
possible we need the additional condition that B > A (which is the same as
A ̸= B), because otherwise B − A = 0 which is not allowed since the first
coordinate x − C can be at most −1. Thus (p − B, q − A) = −(1, 0) and
(p−B, q−A) = −(A−1, 1) (if A ̸= B) can occur. Thus (p, q) = (B−1, A)
or (p, q) = (B−A+1, A−1), hence, (B−1, A, 1)t and (B−A+1, A−1, 1)t

(if A ̸= B) are new elements of R3.
• For r = −1, Lemma 1.7 yields that −(B −A+ 1, A− 1, 1)t (if A ̸= B) and
−(B − 1, A, 1)t are new elements of R3.

Set s4 = (A − 1, 1, 0)t, s5 = (B − 1, A, 1)t, and s6 = (B − A + 1, A − 1, 1)t, then
R3 = R2 ∪ {±s4,±s5,±s6}, where s6 only occurs for A ̸= B.

We claim that R4 = R3 by the following facts. Indeed, if s = (p, q, r)t is the
predecessor of an element s′ ∈ R3 in G(Z3) then r should satisfy −1 ≤ r ≤ 1 by the
same reasoning as in the previous paragraphs. Moreover, the pairs of the second
and the third coordinates of the elements of R3 are the same as in R2. Thus we
conclude that there will be no new elements in R4. □

The reduced graph Red(G(R)) is now obtained by deleting the stranding vertices
of G(R).

Corollary 1.14.

(1) For 1 < A < B the vertex set of Red(G(R)) has the 15 elements

{(0, 0, 0)t,±(1, 0, 0)t,±(B,A, 1)t,± (B − 1, A, 1)t,±(B − A,A− 1, 1)t,

± (B − A+ 1, A− 1, 1)t,±(A, 1, 0)t, (A− 1, 1, 0)t}.
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(2) For 1 = A < B, the vertex set of Red(G(R)) has the 15 elements

{(0, 0, 0)t,±(1, 0, 0)t,±(B, 1, 1)t,±(B − 1, 1, 1)t,±(B − 1, 0, 1)t,±(B, 0, 1)t,

±(1, 1, 0)t,±(0, 1, 0)t}.
(3) For 1 < A = B the vertex set of Red(G(R)) has the 13 elements

{(0, 0, 0)t,±(1, 0, 0)t, (A− 1, 1, 0)t,±(0, A− 1, 1)t,±(A− 1, A, 1)t,

±(A, 1, 0)t,±(A,A, 1)t}.
(4) For 1 = A = B, the vertex set of Red(G(R)) has the 13 elements

{(0, 0, 0)t,±(1, 0, 0)t,±(0, 1, 0)t,±(0, 0, 1)t,±(1, 1, 0)t,±(0, 1, 1)t,±(1, 1, 1)t}.
Table 1 shows half of the edges of G(R) (plus the edges leading away from

(0, 0, 0)t). The remaining edges can easily be constructed by Lemma 1.7. In partic-

ular, since R = −R we have α
d|d′−−→ α′ ∈ G(R) if and only if −α d′|d−−→ −α′ ∈ G(R).

Proof. By the definition, we should delete the vertices which are stranding
from G(R). Table 1 shows the graph G(R) in detail. From this table one easily
obtains the statements of the corollary. □

Figure 8 shows the reduced graph Red(G(R) \ {(0, 0, 0)t}) under the condition
1 < A < B < C.

Remark 1.15. By [81, Lemma 4.4], we know that we can always choose the
basis {e1, e2, e3} in a way that Red(G(R)) = G(R), that means every state of R
is a starting state of an infinite walk. In our situation, we could have chosen for
instance {e1, e2, e3} = {(1, 0, 0)t, (B,A, 1)t, (A, 1, 0)t}.

The fact that 0 ∈ R is a natural consequence of the way this set is constructed.
However, it will often be more convenient for us to work with R\{0} and Red(G(R\
{0})) = Red(G(R))\{0} instead ofR and Red(G(R)), respectively (like for instance
in Figure 8).

1.2.4. The neighbor graph. In Section 1.2.3 we constructed the contact graph
G(R) of an ABC-tile and its reduced version Red(G(R)). For the sake of easier
notation we will always assume that G(R) = Red(G(R)) for ABC-tiles. Accord-
ing to Remark 1.15 this assumption does not mean any loss of generality and can
always be achieved by choosing the starting set R0 appropriately. According to
Corollary 1.14 we know the reduced contact graph Red(G(R)) explicitly. We now
turn to the construction of the neighbor graph G(S) using Algorithm 1.10.

Our goal is to characterize all triples A,B,C with 1 ≤ A ≤ B < C for which
S has 14 elements. This characterization is the content of Proposition 1.16. To
establish this result we will have to apply one step of Algorithm 1.10. If A = B
it will turn out that already after one step we produce a reduced graph that has
at least 17 vertices which entails that S has at least 16 vertices (since 0 is to be
removed and since the sequence of graphs produced by the algorithm is nested). If
A ̸= B, according to Figure 8 the reduced contact graph has 15 vertices. Thus there
will occur the following two cases. In the first case the first step of the algorithm will
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Edge Labels Exists under
condition

000 → 000 {0|0, 1|1, . . . , (C − 1)|(C − 1)} –

000 → 100 {0|1, 1|2, . . . , (C − 2)|(C − 1)} –

010 → 001 {0|0, 1|1, . . . , (C − 1)|(C − 1)} –

100 → A10 {0|A, 1|(A+ 1), . . . , (C −A− 1)|(C − 1)} –

100 → (A− 1)10 {0|(A− 1), 1|A, . . . , (C −A)|(C − 1)} –

BA1 → 100 0|C − 1 –

A10 → BA1 {0|B, 1|(B + 1), . . . , (C −B − 1)|(C − 1)} –

A10 → (B − 1)A1 {0|(B − 1), 1|B, . . . , (C −B)|(C − 1)} –

(B − 1)A1 → A 10 {0|(C −A), 1|(C −A+ 1), . . . , (A− 1)|(C − 1)} –

(B − 1)A1
↓

A− 1 10
{0|(C −A+ 1), 1|(C −A+ 2), . . . , (A− 2)|(C − 1)} A ≥ 2

(B −A)(A− 1)1
↓

B A 1
{0|(C −B), 1|(C −B + 1), . . . , (B − 1)|(C − 1)} –

(B −A)(A− 1)1
↓

B − 1 A 1
{0|(C −B + 1), 1|(C −B + 2), . . . , (B − 2)|(C − 1)} B ≥ 2

(A− 1)10
↓

(B −A)(A− 1)1
{0|(B −A), 1|(B −A+ 1), . . . , (C −B +A− 1)|(C − 1)} A ≥ 1

(B −A+ 1)(A− 1)1
↓

B −A A− 1 1
{0|(C −B +A), 1|(C −B +A+ 1), . . . , (B −A− 1)|(C − 1)} A ̸= B

(A− 1)10
↓

(B −A+ 1)(A− 1)1
{0|(B −A+ 1), 1|(B −A+ 2), . . . , (C −B +A− 2)|(C − 1)} A ̸= B

A ≥ 1

(B −A+ 1)(A− 1)1
↓

B −A+ 1 A− 1 1
{0|(C −B +A− 1), 1|(C −B +A), . . . , (B −A− 2)|(C − 1)} A ̸= B

Table 1. The contact graph G(R). The triple abc stands for the
node (a, b, c)t and a = −a. The last column of the table contains the

condition under which the respective edge exists. For each edge α
d|d′−−→

α′ in the table there exists the additional edge −α d′|d−−→ −α′ ∈ G(R).

produce a reduced graph with more than 15 vertices. This entails that S has more
than 14 elements. In the second case the first step of the algorithm will produce a
reduced graph with exactly 15 vertices which has to be G(R) again (since it has to
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P

A,A+ 1, ..., C − 1 →→
A−

1, A, ..., C −
1

↘↘

Q

B,B + 1, ..., C − 1 →→
B − 1, B, ..., C − 1

↓↓

N

C
−

1

↓↓

Q-P

B −A+ 1, .., C − 1→→

B
−

A
,...,C

−
1

↓↓

N-Q+P

C −B +A, ..., C − 1→→

C
−

B
+

A
−
1
,...,C

−
1

↓↓

N-Q

0,
1,
...
, B

− 1

↗↗

0, 1, ..., B −
2

↘↘
N-P

0, 1
, ...,

A− 1

→→

0,
1,
...
, A

− 2

↗↗

N-P

C
− 1,

...
, C

−A
+
1

↙↙

C − 1, ..
., C

−A

←←

N-Q

C −
1, ..., C −

B
+
1

↖↖

C
− 1,

...,
C
−B

↙↙

N-Q+P

B
−

A
,.
..
,0

↑↑

0, ..., B −A− 1
←← Q-P

0, ..., C −B +A− 2
←←

C
−

B
+

A
−
1
,.
..
,0

↑↑

N

0

↑↑

Q
C −B − 1, ..., 1, 0

←←

C −B, ..., 1, 0

↑↑

P
C −A− 1, ..., 1, 0

←←

C −
A, ..., 1, 0

↖↖

Figure 8. The reduced contact graph Red(G(R \ {0})) under the
condition 1 < A < B < C. Here we set P = (1, 0, 0)t, Q =
(A, 1, 0)t, N = (B,A, 1)t. To obtain Red(G(R \ {0})) under the
condition 1 = A < B < C from the graph in the figure we just remove
the edge from N − P to Q− P and the edge from N − P to Q − P .
If, in addition, the conditions of Proposition 1.16 are satisfied then
this graph coincides with the neighbor graph G(S). In this case each
vertex α of the depicted graph corresponds to the nonempty 2-fold
intersection Bα = T ∩ (T + α).

contain G(R)). In this case the algorithm stops after the first step and we conclude
that R \ {0} = S has 14 elements.

Our characterization result reads as follows.

Proposition 1.16. Let T be an ABC-tile. Then T has 14 neighbors if and only
if A,B,C satisfy one of the following conditions.

(1) 1 ≤ A < B < C, B ≥ 2A− 1, and C ≥ 2(B − A) + 2;
(2) 1 ≤ A < B < C, B < 2A− 1, and C ≥ A+B − 2.

In view of Section 1.2.2 Proposition 1.16 immediately implies Theorem 1.4.

Lemma 1.17. Let G(R) be the contact graph of the ABC-tile T = T (M,D).
The product graph G(2) = G(R)⊗G(R) has 65 vertices and satisfies the symmetry
property stated in Lemma 1.7 for all vertices. We classify the vertices of G(2) into
2× 10 groups according to their second and third coordinates (and the symmetry).
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(1) G1 := {(x, 2A, 2)t; 2B − 2 ≤ x ≤ 2B};
(2) G2 := {(x,A+ 1, 1)t; A+B − 2 ≤ x ≤ A+B};
(3) G3 := {(x, 2A− 1, 2)t; 2B − A− 1 ≤ x ≤ 2B − A+ 1};
(4) G4 := {(x, 2A− 2, 2)t; 2B − 2A ≤ x ≤ 2B − 2A+ 2};
(5) G5 := {(x, 2, 0)t; 2A− 2 ≤ x ≤ 2A};
(6) G6 := {(x,A− 2, 1)t; B − 2A ≤ x ≤ B − 2A+ 2};
(7) G7 := {(x, 0, 0)t; 0 ≤ x ≤ 2};
(8) G8 := {(x,A, 1)t; B − 2 ≤ x ≤ B + 1};
(9) G9 := {(x, 1, 0)t; A− 2 ≤ x ≤ A+ 1};
(10) G10 := {(x,A− 1, 1)t; B − A− 1 ≤ x ≤ B − A+ 2}.

Then the set of vertices of G(2) is the union of the 20 sets2 ±G1, . . . ,±G10. More-
over, the vertices of G(R) are a subset of the union of the sets ±G7, . . . ,±G10.

Proof. This is an immediate consequence of the definition of the product “⊗”
(see Definition 1.9). The assertion about the vertices of G(R) can be read off
Table 1. □

We recall that G(S) ⊃ Red(G(2)) \ {0}. In all what follows we suppose that
1 ≤ A ≤ B < C. We first deal with the cases A,B,C that satisfy none of the
conditions of Proposition 1.16. By taking the complement of the union of conditions
(1) and (2) we conclude that we have to deal with the following four cases.

(i) 1 ≤ A = B < C,
(ii) 1 ≤ A < B < C, B < 2A− 1, and C < A+B − 2,
(iii) 1 ≤ A < B < C, C < 2(B − A) + 2, and B ≥ 2A− 1,
(iv) 1 ≤ A < B < C, C < 2(B − A) + 2, and C < A+B − 2.

Indeed, for each of these cases we have to show that S has more than 14 elements.
For (i) this is done in Lemma 1.18 and for (ii) it follows from Lemma 1.19. Since for
A ≥ 2 and B < 2A− 1 we always have 2(B−A)+ 2 ≤ A+B− 2 the cases (iii) and
(iv) are covered by Lemma 1.20. Thus the following three lemmas imply that S has
more than 14 elements if none of the two conditions of Proposition 1.16 is satisfied.

Lemma 1.18. If 1 ≤ A = B < C, then Red(G(2)) has at least 17 vertices.

Proof. Let s1 = (A+B−1, A+1, 1)t = (2A−1, A+1, 1)t and s2 = (−1, A−1, 1)t.
We claim that G(2) contains the cycle

(1.13) s1
0|C−1−−−→ s2

A−1|C−A−−−−−−→ −s1
C−1|0−−−→ −s2

C−A|A−1−−−−−−→ s1.

The elements ±s1,±s2 are vertices of G(2) by Lemma 1.17 (note that B−A−1 = −1
in our case). Moreover, the edges claimed in (1.13) exist because each label occurring
in (1.13) is an element of D and

M · s1 + (C − 1, 0, 0)t = s2, M · s2 + (C − A, 0, 0)t − (A− 1, 0, 0)t = −s1.

Thus ±s1,±s2 ∈ Red(G(2)). From Corollary 1.14 we know that Red(G(R)) has 13
vertices and ±s1,±s2 ̸∈ Red(G(R)). Since Red(G(R)) ⊂ Red(G(2)) this implies
that Red(G(2)) has at least 17 elements. □

2Note that (0, 0, 0)t occurs in G7 and in −G7.
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Lemma 1.19. If 1 ≤ A < B < C, B < 2A − 1, and C < A + B − 2, then
Red(G(2)) has at least 18 vertices.

Proof. Denote t1 = (A + B − 2, A + 1, 1)t, t2 = (B − 2A + 1, A− 2, 1)t, t3 =
(−2B + A+ 1, 1− 2A,−2)t. We claim that G(2) contains the cycle

(1.14) t1
2A−B−2|C−1−−−−−−−−→ t2

B−A−1|C−B−−−−−−−−→ t3
C−1|A+B−C−3−−−−−−−−−→ t1.

From Lemma 1.17, we know that t1, t2, t3 ∈ G(2). All the labels occurring in the
cycle (1.14) are elements of D by the conditions of the lemma. The existence of
the cycle now follows from verifying (1.8) for each edge occurring in (1.14). This
implies the result as in the previous lemma because Red(G(R)) has 15 vertices by
Corollary 1.14 and we exhibited 3 more vertices that belong to Red(G(2)). □

Lemma 1.20. If 1 ≤ A < B < C and C < 2(B − A) + 2, then Red(G(2)) has at
least 17 vertices.

Proof. Let s = (2(B − A) + 2, 2(A − 1), 2)t. We claim that G(2) contains the
cycle

s
2(B−A)−C+1|C−1−−−−−−−−−−−→ −s C−1|2(B−A)−C+1−−−−−−−−−−−→ s.

The proof is done in the same way as the proof of Lemma 1.19. □

The following lemma deals with the case where condition (1) or (2) of Proposi-
tion 1.16 is satisfied.

Lemma 1.21. The elements of ±G1,±G2,±G3,±G4,±G5,±G6 are not in
Red(G(2)) if one of the following conditions holds.

(1) 1 ≤ A < B < C, B ≥ 2A− 1, and C ≥ 2(B − A) + 2.
(2) 1 ≤ A < B < C, B < 2A− 1, and C ≥ A+B − 2.

Proof. We first prove the lemma for A,B,C satisfying condition (1). We split
the set G6 into G6.1 = {(B − 2A,A − 2, 1)t}, G6.2 = {(B − 2A + 1, A − 2, 1)t},
and G6.3 = {(B − 2A + 2, A − 2, 1)t}. Now we look at the collection of eight sets
of vertices given by

G = {±G1,±G2,±G3,±G4,±G5,±G6.1,±G6.2,±G6.3}.
We prove the following claim. Suppose that γ is contained in some X ∈ G. Then
there exists an edge γ → γ′ ∈ G(2) only if γ′ is contained in a set Y ∈ G such that
there is an edge between the vertices X and Y in the graph depicted in Figure 9.
Since this graph contains no cycles this claim will imply the result.

The case ±G1: The elements in G1 have no successor in G(2) under condi-
tion (1). Indeed, let s = (x, 2A, 2)t ∈ G1, then Ms = (−2C, x − 2B, 0)t. Since
2B − 2 ≤ x ≤ 2B, the possible successors of s are of the form

s′ ∈Ms+D −D = {(−2C + d, x− 2B, 0)t; d ∈ D −D} (2B − 2 ≤ x ≤ 2B).

According to its second and third coordinates, in the cases x = 2B − 1 and x = 2B
the element s′ ∈ G(2) can only belong to −G9 and G7, respectively. However, as
the first coordinate of s′ varies between −3C + 1 and −C − 1, this is impossible for
both cases. Hence, for these choices of x the element s has no successor in G(2). For
the case x = 2B−2 the element s′ ∈ G(2) can only be an element of −G5. However,
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±G1 ±G6.1←← ±G2←←

±G5 →→

↓↓

←←

±G3

↑↑

±G6.3 →→ ±G4

↖↖

→→

±G6.2

↑↑

Figure 9. The possible edges leading away from the sets of vertices
±G1, ±G2, ±G3, ±G4, ±G5, ±G6.1, ±G6.2, and ±G6.3.

since C > B ≥ 2A− 1, we have −C − 1 < −2A this is impossible also in this case.
Thus this case is done since by symmetry of G(2) also the elements in −G1 have no
successor in G(2) under condition (1).

The case±G2: The elements inG2 can only have successors contained in±G6.1
under condition (1). To prove this let s = (x,A+1, 1)t, then a possible successor of
s is of the form

s′ =Ms+D−D = {(d−C, x−B, 1)t; d ∈ D−D} (A+B − 2 ≤ x ≤ A+B).

For the case x = A + B − 2, looking at the second and third coordinate, the
successor s′ can only be contained in G6. The first coordinate d− C of s′ satisfies
1 − 2C ≤ d − C ≤ −1. Since condition (1) is in force, B − 2A ≥ −1, thus s′ is in
G6 only if B = 2A − 1. In this case, d − C = −1 = B − 2A, hence, s′ ∈ G6.1.
For x = A + B − 1, the successor s′ can only fall into G10. This would imply
−1 = B − A − 1 and, hence, A = B which contradicts condition (1). Thus in this
case we have no successor. Finally, for x = A+B, the possible successor s′ can only
be contained in G8 by its second and third coordinate. But by its first coordinate
also this possibility is excluded. Again, this case is done by symmetry.

So far we proved the claim for the edges leading away from ±G1 and ±G2 in
Figure 9. The remaining cases are routine calculations of the same kind and we
omit them.

Condition (2) can be checked in the same way. In this case we have to subdivide
the relevant vertices into nine sets. The corresponding graph, which is acyclic again,
is depicted in Figure 10. □

We are now able to finish the proof of Proposition 1.16

Proof of Proposition 1.16. To prove the “only if” part, we have to show
that |S| > 14 if none of the two conditions of the theorem are in force. Because
G(S) ⊃ Red(G(2))\{0}, this follows immediately from Lemmas 1.18, 1.19, and 1.20.

To prove the “if” part, we apply the Algorithm 1.10, and the first step is to
calculate Red(G(2)) which is the reduced graph of the product graph G(R)⊗G(R).
From Lemma 1.17, we already know that G(2) has 65 vertices. Since Red(G(R))\{0}
has 14 vertices by Corollary 1.14 we have to show that Red(G(2)) = Red(G(R)).
For this it suffices to prove that no vertex of G(2) \G(R) is contained in Red(G(2)).
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±G5.1 →→ ± (G1 \ {G1.1}) ±G6

↓↓←←

←←

←←

±G2.1←←

±G1.1

↑↑

±G4

↑↑

←← →→ ±G3

→→
± (G5 \ {G5.1})

↑↑ →→

± (G2 \ {G2.1})

Figure 10. The graph corresponding to condition (2). Here we use
the additional notations G1.1 = {(2B − 2, 2A, 2)t}, G2.1 = {(A +
B − 2, A+ 1, 1)t}, G5.1 = {(2A, 2, 0)t}.

By Lemma 1.21, none of the vertices contained in ±G1 ∪ · · · ∪ ±G6 is a vertex
of Red(G(2)). Thus it remains to show that each vertex contained in ±(G7 ∪G8 ∪
G9∪G10) \R is not a vertex of Red(G(2)). By symmetry we can confine ourselves
to proving the claim that (G7 ∪G8 ∪G9 ∪G10) \ R does not contain a vertex of
Red(G(2)).

Assume that condition (1) of the theorem is in force. For condition (2), we can
prove the result in the same way.

We start with G7\R = {(2, 0, 0)t}. Let s = (2, 0, 0)t. Then a possible successor
s′ of s in G(2) must sartisfy

s′ ∈Ms+D −D = {(d, 2, 0)t; d ∈ D −D}.

By the second and third coordinate of Ms+D −D, we know that s′ has to belong
to G5. So it cannot be in Red(G(2)) by Lemma 1.21.

For the elements s ∈ {(B − 2, A, 1)t, (B + 1, A, 1)t} = G8 \ R the successor has
to be of the form

s′ =Ms+D −D = {(d− C, x−B, 0)t; d ∈ D −D} (x ∈ {B − 2, B + 1}).

For x = B − 2, we have s′ ∈ −G5, so (B − 2, A, 1)t ̸∈ Red(G(2)) by Lemma 1.21.
For x = B + 1, the successor of s can only be contained in G9. However, the first
coordinate of the elements of G9 varies between A − 2 and A + 1, thus s has no
successors if A ≥ 2 which is true by condition (1) of the theorem.

For the elements s ∈ {(A − 2, 1, 0)t, (A + 1, 1, 0)t} = G9 \ R, the successor has
to be of the form

s′ ∈Ms+D −D = {(d, x, 1)t; d ∈ D −D} (x ∈ {A− 2, A+ 1}).

This implies that s′ ∈ G2 ∪G6 and, hence, s ̸∈ Red(G(2)) by Lemma 1.21.
For the elements s ∈ {(B −A− 1, A− 1, 1)t, (B −A+2, A− 1, 1)t} = G10 \R

the successor has to be of the form

s′ ∈Ms+D−D = {(d−C, x−B,−1)t; d ∈ D−D} (x ∈ {B−A−1, B−A+2}).
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This implies that s′ ∈ (−G6) ∪ (−G2) and, hence, s ̸∈ Red(G(2)) by Lemma 1.21.
Summing up, we proved the claim. □

Remark 1.22. Figure 8 shows the neighbor graph G(S) of an ABC-tile under
the conditions of Proposition 1.16. We can see that each vertex except P and P has
two predecessors. Precisely, let α ∈ S \ {P, P}, and α1, α2 be the two predecessors
of α. Let Di denote the labels of edges from αi to α for i = 1, 2. Then we know that
D1, D2 are disjoint and they have the forms either

{
(0, 0, 0)t, (1, 0, 0)t, . . . , (d, 0, 0)t

}
or {(d+1, 0, 0)t, . . . , (C−1, 0, 0)t} from Figure 8. Also, each vertex except N and N
has two successors and the difference between the two successors is ±P .

1.2.5. The directed graphs of multiple intersections. Let T be a Zm-tile
and let S be the set of neighbors of T . For ℓ ≥ 1, the union of all (ℓ + 1)-fold
intersections with T is then given by

(1.15) Iℓ =
⋃

{α1,...,αℓ}⊂S

Bα1,...,αℓ
,

where the union is extended over all subsets of S containing ℓ pairwise disjoint
elements. We can subdivide Bα1,...,αℓ

by

Bα1,...,αℓ
=M−1

(
(T +D) ∩ (T +D +Mα1) ∩ · · · ∩ (T +D +Mαℓ)

)
=M−1

( ⋃
d,d1,...,dℓ∈D

(T ∩ (T +Mα1 + d1 − d) · · · ∩ (T +Mαℓ + dℓ − d)) + d
)

=M−1
( ⋃

d,d1,...,dℓ∈D
α′
i=Mαi+di−d
i=1,2,...,ℓ

(Bα′
1,α

′
2,...,α

′
ℓ
+ d)

)

(1.16)

and by Definition 1.6 we can rewrite this as

Bα1,...,αℓ
=

⋃
d∈D

⋃
d1,...,dℓ∈D

⋃
αi

d|di−−→α′
i

i=1,2,...,ℓ

M−1(Bα′
1,α

′
2,...,α

′
ℓ
+ d).

(1.17)

Of course, Bα1,...,αℓ
can be nonempty only if {α1, . . . , αℓ} ⊂ S. Thus the sets Iℓ can

be determined by a certain graph which is a product of the neighbor graph G(S)
with itself which is defined in the following way.

Definition 1.23. Let G(Γ) with Γ ⊂ Zm be a subgraph of G(Zm). The ℓ-fold
power Gℓ(Γ) := ×ℓ

j=1G(Γ) is defined as the reduction Red(G′
ℓ(Γ)) of the following

graph G′
ℓ(Γ):

• The states of G′
ℓ(Γ) are the sets {α1, . . . , αℓ} consisting of ℓ (pairwise dis-

tinct) states αi of G(Γ).
• There exists an edge

{α11, . . . , α1ℓ}
d−→ {α21, . . . , α2ℓ}

in G′
ℓ(Γ) if and only if there exist the edges

α1i
d|di−−→ α2i (1 ≤ i ≤ ℓ)
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in G(Γ) for certain d1, . . . , dℓ ∈ D.

Using this definition we can write (1.17) as

Bα1,...,αℓ
=

⋃
d∈D, {α′

1,...,α
′
ℓ}⊂S

{α1,...,αℓ}
d−→{α′

1,...,α
′
ℓ}∈×

ℓ
j=1G(S)

M−1(Bα′
1,α

′
2,...,α

′
ℓ
+ d)

(1.18)

which can be regarded as the defining equation for the collection of nonempty com-
pact sets {Bα; α ∈ ×ℓ

j=1G(S)} as attractor of a graph-directed iterated function

system (in the sense of Mauldin and Williams [67]) directed by the graph ×ℓ
j=1G(S).

We will often need the k-fold iteration of this set equation. To write this iteration
in a convenient way we define the functions

fd : Rm → Rm x ↦→M−1(x+ d) (d ∈ D),

which are contractions w.r.t. some suitable norm because M is an expanding ma-
trix. Since we will often deal with compositions of these functions, we will use the
abbreviation

fd1d2...dk =

{
fd1 ◦ · · · ◦ fdk , k > 0,

id, k = 0

for d1, . . . , dk ∈ D. With this notation we get

Bα1,...,αℓ
=

⋃
{α1,...,αℓ}

d−→{α′
1,...,α

′
ℓ}∈×

ℓ
j=1G(S)

fd(Bα′
1,α

′
2,...,α

′
ℓ
)

=
⋃

{α1,...,αℓ}
d1−→···

dk−→{α(k)
1 ,...,α

(k)
ℓ }∈×ℓ

j=1G(S)

fd1...dk(Bα
(k)
1 ,...,α

(k)
ℓ
),

(1.19)

where the latter union is extended over all walks of length k in ×ℓ
j=1G(S) starting

at {α1, . . . , αℓ}. We can now characterize Iℓ as follows (see [91, Appendix] or [81,
Proposition 6.2]).

Proposition 1.24. Let ℓ ≥ 1 and choose α01, . . . , α0ℓ ∈ Zm \ {0} pairwise
different. Then the following three assertions are equivalent.

(1)

x =
∑
j≥1

M−jdj ∈ Bα01,...,α0ℓ
.

(2) There exists an infinite walk

{α01, . . . , α0ℓ}
d1−→ {α11, . . . , α1ℓ}

d2−→ {α21, . . . , α2ℓ}
d3−→ · · ·

in ×ℓ
r=1G(S).

(3) There exist ℓ infinite walks

α0i
d1−→ α1i

d2−→ α2i
d3−→ · · · (1 ≤ i ≤ ℓ)

in G(S).
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The set equation (1.19) yields a sequence of collections of sets that coverBα1,...,αℓ
.

Namely, for α(0) ∈ ×ℓ
j=1G(S) we define

(1.20) Ck(α(0)) :=
{
fd1...dk−1

(Bα(k−1)); α(0) d1−→ · · · dk−1−−→ α(k−1) ∈ ×ℓ
j=1G(S)

}
and set

(1.21) C(ℓ)
k =

⋃
α∈×ℓ

j=1G(S)

Ck(α).

We will call Ck(α) the collection of (k − 1)-th subdivisions of Bα. If k = 2 we will
just call it the collection of subdivisions of α. The elements of these collections will
be called subtiles of Bα. The collection of subdivisions of Bα ∪ Bα′ is the union
of the collections of subdivisions of Bα and Bα′ . It should now be clear what we
mean by the collections of ((k− 1)-th) subdivisions of a set X =M−r(Bα+a) with
a ∈ Zm and r ∈ N.

We will need the following lemma.

Lemma 1.25.

(1) For α ∈ ×ℓ
j=1G(S) and k ≥ 1 the collection Ck(α) forms a covering of Bα.

(2) Let k ≥ 1 be given and let X1, X2 ∈ C(ℓ)
k be distinct. Then the intersection

X1 ∩X2 is either empty or there exist ℓ′ > ℓ, c ∈ Zm, and α ∈ ×ℓ′
j=1G(S)

with X1 ∩X2 =M−k+1(Bα + c).

Proof. Assertion (1) follows immediately from (1.19) and the definition of
Ck(α).

To prove assertion (2) we conclude from (1.19) that Xi =M−k+1(T +βi0)∩· · ·∩
M−k+1(T + βiℓ) holds with βij ∈ Zm for i ∈ {1, 2} and j ∈ {0, . . . , ℓ}. Here βij
are pairwise distinct for fixed i and j ∈ {0, . . . , ℓ}. Since X1 and X2 are distinct

elements of C(ℓ)
k there exists ℓ′ > ℓ and ℓ′ + 1 distinct elements

γ0, . . . , γℓ′ ∈ {β10, . . . β1ℓ, β20, . . . , β2ℓ}

such that X1 ∩X2 =M−k+1(T + γ0) ∩ · · · ∩M−k+1(T + γℓ′) and, hence, X1 ∩X2 is
either empty or an element of Ck(α) for some α ∈ ×ℓ′

j=1G(S) as claimed. □

The following lemma is derived by direct calculation.

Lemma 1.26. Let T be an ABC-tile with neighbor graph G(S). If T has 14
neighbors the following assertions hold.

• The 3-fold intersection graph G2(S) = ×2
j=1G(S) has 36 vertices and is

given by3 Table 2.
• The 4-fold intersection graph G3(S) = ×3

j=1G(S) has 24 vertices and is
given by Figure 11.

• The (ℓ+ 1)-fold intersection graph Gℓ(S) = ×ℓ
j=1G(S) is empty for ℓ ≥ 4.

By construction, all these graphs are symmetric in the sense that there exists an

edge α
d−→ α′ if and only if −α

C−1−d−−−−→ −α′.

3To save space, in this table and in what follows we will often write {XY } instead of {X,Y }.
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Vertex Successors Label Conditons

{
Q−P
N−P

} {
Q

N−Q

}
{0, 1, . . . , A− 1} -{

Q−P
N−Q

}
{0, 1, . . . , A− 2} A ≥ 2{

Q−P
N−Q+P

}
{0, 1, . . . , A− 2} A ≥ 2

{
P

Q−P

} {
Q

N−Q

}
{A,A+ 1, . . . , C −B +A− 1} -{

Q−P
N−Q

}
{A− 1, A, . . . , C −B +A− 1} -{

Q−P
N−Q+P

}
{A− 1, A, . . . , C −B +A− 2} -

{
N−Q+P

P

} {
Q

N−Q

}
{C −B +A, . . . , C − 1} -{

Q−P
N−Q

}
{C −B +A, . . . , C − 1} -{

Q−P
N−Q+P

}
{C −B +A− 1, . . . , C − 1} -

{
P
Q

} {
Q−P
N−P

}
{0, 1, . . . , C −B} -{

Q−P
N

}
{0, 1, . . . , C −B − 1} -{

Q
N

}
{0, 1, . . . , C −B − 1} -

{
N−Q

P

} {
Q−P
N−P

}
{C −B + 1, . . . , C −A} -{

Q−P
N

}
{C −B, . . . , C −A} -{

Q
N

}
{C −B, . . . , C −A− 1} -

{
N−P
N−Q

} {
Q−P
N−P

}
{C −A+ 1, . . . , C − 1} A ≥ 2{

Q−P
N

}
{C −A+ 1, . . . , C − 1} A ≥ 2{

Q
N

}
{C −A, . . . , C − 1} -

{
N−Q

N−Q+P

} {
N−Q+P

N

}
{0, 1, . . . , B −A} -{

N−Q

N

}
{0, 1, . . . , B −A− 1} -{

N−Q

N−P

}
{0, 1, . . . , B −A− 1} -

{
Q−P
N−Q

} {
N−Q+P

N

}
{B −A+ 1, . . . , B − 1} A ≥ 2{

N−Q

N

}
{B −A, . . . , B − 1} -{

N−Q

N−P

}
{B −A, . . . , B − 2} A ≥ 2

{
Q−P

Q

} {
N−Q+P

N

}
{B,B + 1, . . . , C − 1} -{

N−Q

N

}
{B,B + 1, . . . , C − 1} -{

N−P
N−Q

}
{B − 1, . . . , C − 1} -{

Q−P
N−Q+P

} {
N−Q+P

N−Q

}
B −A -{

Q
N−Q

} {
N

N−P

}
B − 1 -{

N
N−P

} {
P
Q

}
C − 1 -{

Q−P
N

} {
P

N−Q

}
0 -{

Q
N

} {
P

N−P

}
0 -
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Vertex Successors Label Conditons{
P

N−P

} {
Q

Q−P

}
A− 1 -{

N
N−Q+P

} {
P

N−Q+P

}
C − 1 -{

N
N−Q

}
{P
N} C − 1 -

{P
N}

{
P

Q−P

}
0 -

Table 2. The graph G2(S) of triple intersections. To each edge α
d−→

α′ in this table there exist another edge −α
C−1−d−−−−→ −α′ ∈ G2(S).

Here we set P = (1, 0, 0)t, Q = (A, 1, 0)t, N = (B,A, 1)t.

Q-P

N-Q+P

P

B−A →→
N-Q+P

N-Q

Q-P

C−B+A−1 →→
N-Q+P

N

N-Q

0 →→
N-Q+P

P̄

N̄

C−1
↑↑

Q-P

N-Q+P

N-Q

B−A →→
N-Q+P

N-Q

N̄

C−1 →→
N-Q+P

N

P

0 →→
N-Q+P

P̄

Q-P

C−B+A−1
↑↑

Q-P

N-Q

Q̄

B−1 →→
N̄

N-Q

N-P

C−1 →→
P

N

Q

0 →→
P̄

Q-P

N-P

A−1
↑↑

Q̄

N-Q

P̄

B−1 →→
N̄

N-P

Q-P

C−1 →→
P

Q

N-Q

C−B →→
Q-P

N-P

N

0
↑↑

Q-P

N

Q

0 →→
P̄

N-Q

N-P

A−1 →→
N̄

Q-P

Q̄

C−1 →→
N-Q

P

N-P

C−A
↑↑

N-Q

N

N-P

0 →→
N̄

P̄

Q̄

C−1 →→
Q-P

P

N-P

C−A →→
N-Q

Q-P

Q

C−B
↑↑

Figure 11. The graph G3(S) of 4-fold intersections of T under
the conditions of Proposition 1.16. Here we set P = (1, 0, 0)t, Q =
(A, 1, 0)t, N = (B,A, 1)t.
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Proof. By Proposition 1.16, we know that if G(S) has 14 vertices then it is
given by Figure 8. So the graphs G2(S) and G3(S) can be constructed from G(S)
by direct calculation using Definition 1.23. The fact that G4(S) (and, hence, Gℓ(S)
for ℓ ≥ 5) is empty can be seen easily from G3(S). The symmetry assertion is
immediate from the construction of these graphs. □

1.3. Topological results

In this section we establish Theorem 1.1. Since each 3-dimensional self-affine
tile with collinear digit set can be transformed to an ABC-tile in the way described
in Section 1.2.2, it suffices to prove this theorem for ABC-tiles T = T (M,D) with
M and D given as in (1.11). Since the tiling assertion of Theorem 1.1 has already
been established in Lemma 1.12, it remains to prove assertions (1) to (5) of Theo-
rem 1.1 for ABC-tiles with 14 neighbors. We will prove (5) in Lemma 1.27, (4) in
Lemma 1.28, (3) in Proposition 1.38, (1) in Proposition 1.51, and (2) in Proposi-
tion 1.52.

Throughout this section we assume that T = T (M,D) is an ABC-tile with 14
neighbors.

1.3.1. Proof of the easy cases: Theorem 1.1 (4) and (5). We prove three
simple lemmas. The first one concerns empty intersections.

Lemma 1.27. Let T = T (M,D) be an ABC-tile with 14 neighbors. Assume that
α ⊂ Z3 \ {0} contains at least 4 elements. Then Bα = ∅.

Proof. This follows immediately from Lemma 1.26 because the fact that Gℓ(S)
is empty for ℓ ≥ 4 implies in view of Proposition 1.24 that there are no points in
which 5 or more tiles of the tiling {T + β; β ∈ Z3} intersect. □

Lemma 1.27 establishes Theorem 1.1 (5) by the transformation described in
Section 1.2.2. For the same reason, Theorem 1.1 (4) is a consequence of the following
lemma.

Lemma 1.28. Let T = T (M,D) be an ABC-tile with 14 neighbors. Assume that
α ⊂ Z3\{0} contains 3 elements. Then the 4-fold intersection Bα is homeomorphic
to a single point if α ∈ G3(S). Otherwise, Bα = ∅.

Proof. If α ̸∈ G3(S), then Bα = ∅ by Proposition 1.24. If α ∈ G3(S), then
by Lemma 1.26 (see also Figure 11) there exists exactly one infinite walk in G3(S)
starting from the vertex α. By Proposition 1.24, we know that x =

∑
j≥1M

−jdj ∈
Bα if and only if there exists an infinite walk starting from vertex α ∈ G3(S) with
labeling d1d2 . . .. Thus Bα is a singleton. □

Later we will need the following result on 4-fold intersections.

Lemma 1.29. Let T be an ABC-tile with 14 neighbors and let α ∈ G2(S).
Then the 3-fold intersection Bα contains exactly two different points that are 4-fold
intersections. If α has more than one outgoing edge in G2(S) then these two points
are located in two different subtiles of the first subdivision of Bα.
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Proof. First note that for each α ∈ G2(S) there are exactly two elements
β ∈ G3(S) with α ⊂ β. Because Bβ is a single point for each β ∈ G3(S) by
Lemma 1.28, this proves the first assertion.

Let β1,β2 ∈ G3(S) be given with α ⊂ βi for i ∈ {1, 2}. Then the edge leading
away from β1 in G3(S) has a different labeling than the edge leading away from β2

in G3(S). Since there are no 5-fold intersections this means that the points Bβ1
and

Bβ2
are located in two different subtiles of Bα and the second assertion is proved

as well. □

1.3.2. Decreasing regular partitionings. Bing [15] developed a theory to
characterize an m-sphere for m ≤ 3 by using a sequence of “partitionings” Pk that
become finer and finer in a way that the maximal diameter of an atom of Pk tends
to zero for k → ∞. For our purposes we will need Bing’s characterizations of 1- and
2-spheres.

To be more precise, let X be a locally connected continuum. A partitioning of X
is a collection of mutually disjoint open sets whose union is dense in X . A sequence
P1,P2, . . . of partitionings is called a decreasing sequence of partitionings if Pk+1 is
a refinement of Pk and the maximum of the diameters of the atoms of Pk tends to
0 as k tends to infinity. A partitioning is called regular if each of its atoms is the
interior its closure.

In the sequel we will need two kinds of decreasing sequences of regular partition-
ings. One is for ∂T and another is one for

(1.22) Lα =
⋃
β∈S

{α,β}∈G2(S)

Bα,β (α ∈ S).

(We note already here that we will prove in Lemma 1.41 that Lα = ∂∂TBα.) For
the construction of these sequences of partitionings the set equation of the self-affine
ABC-tile T and its intersections given by (1.19) will be used.

1.3.3. Preparatory results on 3-fold intersections. In this subsection we
show that each nonempty 3-fold intersection as well as each Lα, α ∈ S, is a Peano
continuum. Moreover, we provide some combinatorial results on the subdivision
structure of Lα. All this will be needed in order to prove Theorem 1.1 (3).

We start with a definition.

Definition 1.30 (cf. e.g. [84, Definition 6.6]). Let K = {X1, . . . , Xν} ⊂ Rm be
a finite collection of sets.

• The collection K forms a regular chain if |Xi ∩ Xi+1| = 1 for each i ∈
{1, . . . , ν − 1} and Xi ∩Xj = ∅ if |i − j| ≥ 2. (Here we use |K| to denote
the cardinality of a set K.)

• The collection K forms a circular chain if |Xi ∩ Xi+1| = 1 for each i ∈
{1, . . . , ν − 1}, |X1 ∩Xν | = 1, and Xi ∩Xj = ∅ if 2 ≤ |i− j| ≤ ν − 2.

• The Hata graph of K is an undirected graph. Its vertices are the elements
of K and there is an edge between Xi and Xj if and only if i ̸= j and
Xi ∩Xj ̸= ∅.

We need the following result on connectedness of the attractor of a graph-directed
iterated function system in the sense of Mauldin and Williams [67].
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Lemma 1.31 (cf. [64, Theorem 4.1]). Let {S1, . . . , Sq} be the attractor of a
graph-directed iterated function system with (directed) graph G with set of vertices
{1, . . . , q}, set of edges E, and contractions Fe (e ∈ E) as edge labels, i.e., the
nonempty compact sets S1, . . . , Sq are uniquely defined by

Si =
⋃
i

e−→j

Fe(Sj),

where the union is taken over all edges in G starting from i. Then Si is a Peano
continuum or a single point for each i ∈ {1, . . . , q} if and only if for each i ∈
{1, . . . , q} the successor collection{

Fe(Sj); i
e−→ j is an edge in G starting from i

}
of i has a connected Hata graph.

Let ℓ ≥ 1 and assume that each edge label d ∈ D of Gℓ(S) is interpreted as the
contraction fd. Then by the set equation (1.19) the graph Gℓ(S) defines a graph-
directed iterated function system with attractor {Bα; α ∈ Gℓ(S)}. The following
lemma gives first topological information on the set of 3-fold intersections.

Lemma 1.32.

(1) For each vertex α ∈ G2(S), the set Bα is a Peano continuum.
(2) For each α ∈ S, the set Lα is a Peano continuum.

Proof. By the set equation (1.19) the collection {Bα; α ∈ G2(S)} is the at-
tractor of the graph-directed iterated function system directed by the graph G2(S).
To prove assertion (1), we want to apply Lemma 1.31. Thus we have to show that
the Hata graph of the successor collection of each vertex α ∈ G2(S) is connected.
We denote this Hata graph by H(α). (Note that Bα cannot be a singleton because
each vertex of G2(S) is the starting point of infinitely many walks.) For convenience,
we multiply each element of these successor collections by M . This has no effect on
the Hata graph.

From Table 2 we see that G2(S) has 36 vertices. If A ≥ 2, then 18 of them have
only one outgoing edge, if A = 1 this is the case for 24 vertices. For these “trivial”
vertices the graph H(α) is a single vertex and, hence, it is connected. Thus we have
to deal with the remaining “nontrivial” vertices of G2(S) (18 for A ≥ 2 and 12 for
A = 1).

Let X1, X2 be two elements of a (multiplied by M) successor collection of a
“nontrivial” vertex α ∈ G2(S). Then there are a1, a2 ∈ D and β1,β2 ∈ G2(S) such
that Xi = Bβi

+ ai for i ∈ {1, 2}. To check if there is an edge in H(α) connecting
X1 and X2, we note that by the definition of G3(S) and the fact that Gℓ(S) = ∅ for
ℓ ≥ 4 we have

X1 ∩X2 ̸= ∅ ⇐⇒ Bβ1
∩ (Bβ2

+ a2 − a1) ̸= ∅
⇐⇒ (β1 ∪ (β2 + a2 − a1) ∪ {a2 − a1}) \ {0} ∈ G3(S).

(1.23)

Thus the graph H(α) can be set up by checking the the graphs G2(S) and G3(S).
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It turns out that the Hata graphs H(α) for the nontrivial vertices of α ∈ G2(S)
all have the same structure. Indeed, let
(1.24)
ζ1 = {Q,N −Q}, η1 = {Q− P ,N −Q}, ϑ1 = {Q− P ,N −Q+ P},
ζ2 = {Q− P ,N − P}, η2 = {Q− P ,N}, ϑ2 = {Q,N},
ζ3 = {N,N −Q+ P}, η3 = {N,N −Q}, ϑ3 = {N − P ,N −Q}
be elements of G2(S) and set

(1.25) Vi = {ζi + d,ηi + d,ϑi + d; d ∈ D} (1 ≤ i ≤ 3).

Then using (1.23) and inspecting the graph G3(S) we gain that

(Bζi
+ d) ∩ (Bηi

+ d), (Bηi
+ d) ∩ (Bϑi

+ d), (Bϑi
+ d) ∩

(
Bζi

+ (d+ P )
)

contain a single element for (1 ≤ i ≤ 3, d ∈ D) and all the other intersections of
the form Bγ ∩Bγ′ with γ,γ′ ∈ Vi are empty. Thus we conclude that Vi is a regular
chain whose Hata graph is the path graph depicted in Figure 12.

Bϑi
Bϑi

+ P . . . Bϑi
+ (C − 1)P

Bηi
Bηi

+ P . . . Bηi
+ (C − 1)P

Bζi
Bζi

+ P . . . Bζi
+ (C − 1)P

Figure 12. The Hata graph of the regular chain Vi (1 ≤ i ≤ 3).

We can read off from the graph G2(S) in Table 2 that each nontrivial vertex α
has a Hata graph H(α) which is a path graph that is a subgraph of the Hata graph
of Vi for some i ∈ {1, 2, 3}. Thus H(α) is a connected graph and the proof of (1) is
finished.

To prove assertion (2), it suffices to show that it holds for α ∈ {P, Q, N, Q−
P, N −Q, N −P, N −Q+P} by the symmetry mentioned in Lemma 1.26. From
the definition of Lα we get

LP = B{Q−P
P
} ∪B{ P

N−Q+P} ∪B{P
N} ∪B{P

Q} ∪B{N−Q
P
} ∪B{N−P

P
},

LQ = B{
N−Q

Q

} ∪B{Q−P
Q } ∪B{Q

N} ∪B{P
Q},

LN = B{N−P
N } ∪B{N−Q

N } ∪B{N−Q+P
N } ∪B{P

N} ∪B{Q
N} ∪B{Q−P

N },

LQ−P = B{
N−Q+P

Q−P

} ∪B{
N−Q
Q−P

} ∪B{Q−P
Q } ∪B{Q−P

N } ∪B{Q−P
N−P} ∪B{

P
Q−P

},
LN−Q = B{

Q−P
N−Q

} ∪B{
Q

N−Q

} ∪B{
P

N−Q

} ∪B{N−Q
N−P} ∪B{N−Q

N } ∪B{ N−Q
N−Q+P},

LN−P = B{Q−P
N−P} ∪B{ P

N−P}
∪B{N−Q

N−P} ∪B{N−P
N },

LN−Q+P = B{ P
N−Q+P} ∪B{N−Q+P

N } ∪B{ N−Q
N−Q+P} ∪B{

Q−P
N−Q+P

}.

(1.26)
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Each union on the right hand side is ordered in a way that consecutive sets have
nonempty intersection (indeed, by using (1.23) and the graph G3(S) we see that
the collection of the elements of each union even forms a circular chain). Thus each
of the sets Lα in (1.26) is a connected union of finitely many Peano continua and,
hence, a Peano continuum. □

Next we prove a combinatorial result. The collection Lα,k defined in the following
lemma is the set of pieces of the (k − 1)-th subdivision of the set Lα. Thus this
result already hints at the fact that Lα is a simple closed curve. Recall that for
α ∈ ×ℓ

j=1G(S) the collection Ck(α) is defined in (1.20).

Lemma 1.33. For each α ∈ S the collection

(1.27) Lα,k =
⋃

α′: {α,α′}∈G2(S)

Ck({α, α′})

forms a circular chain for each k ≥ 1 (if the sets in this collection are ordered
properly).

Proof. Let α ∈ S be arbitrary but fixed throughout this proof. Let H(Lα,k)
be the Hata graph of Lα,k. Using induction on k we will prove first that H(Lα,k)
consists of a single cycle. In the proof of Lemma 1.32 (2) we showed that this is true
for k = 1. To perform the induction step we assume H(Lα,k) consists of a single
cycle for some k ∈ N. To prove that the same holds for H(Lα,k+1), we examine each
edge of H(Lα,k) carefully. Let

(1.28) X1—X2

be an arbitrary edge inH(Lα,k). This edge represents two setsXi =M−k+1(Bβi
+ai)

with a1, a2 ∈ D and β1,β2 ∈ G2(S) that have nonempty intersection. When we pass
from H(Lα,k) to H(Lα,k+1) each vertex Xi is replaced by a path •— · · ·—• (possibly
degenerated to a single vertex) whose vertices are the elements of the subdivision
of Xi. Indeed, from the proof of Lemma 1.32 (1) we know that Xi is subdivided
according to the graph G2(S) into a finite collection of sets that forms a regular
chain. Thus passing from H(Lα,k) to H(Lα,k+1) the edge (1.28) is transformed to a
subgraph consisting of two disjoint finite path graphs that are connected by at least
one edge.

We claim that this subgraph is itself a path graph. If we multiply each vertex of
H(Lα,k) by M

k−1 and shift it by an appropriate vector in Z3 then the structure of
the Hata graph as well as the way a given vertex subdivides into its subtiles is not
changed. Thus we may assume w.l.o.g. that the edge (1.28) has the form

(1.29) Bα1,α2—Bα1,α3

with {α1, α2, α3} ∈ G3(S). In order to prove the claim for each α ∈ G3(S) and each
distinct β1,β2 ⊂ α, we have to show that the subdivision of Bβ1

∪Bβ2
has a Hata

graph which is a path graph. We will denote this Hata graph by H(β1,β2). (Note
that β1,β2 are always vertices of G2(S).)

Inspecting the graphs G2(S) and G3(S) we see that we have the following three
cases to distinguish.

(i) Both, β1 and β2 have only one outgoing edge in G2(S).
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(ii) Exactly one of the two vertices, β1 and β2 have only one outgoing edge in
G2(S).

(iii) Both, β1 and β2 have more than one outgoing edge in G2(S).
We show that H(β1,β2) is a path graph for each of these cases separately.
Case (i) is trivial because the subdivision of both, Bβ1

and Bβ2
, consists of only

one element. Thus H(β1,β2) is of the form •—• and we are done.
Case (ii): Assume w.l.o.g. that β1 has more than one outgoing edge in G2(S)

(we call it the nontrivial vertex). Then β2 has only one outgoing edge in G2(S)
(we call it the trivial vertex). We know from the proof of Lemma 1.32 (1) that the
subdivision of Bβ1

has a Hata graph H(β1) which is a path graph Y1 — · · · — Yr
for some r ≥ 2. The Hata graph H(β2) is a single vertex Z by assumption. We have
to show that the Hata graph H(β1,β2) of the subdivision of Bβ1

∪Bβ2
is a path

graph. We know that H(β1,β2) consists of the path H(β1) and the vertex H(β2)
together with some edges connecting these two subgraphs. Thus we have to prove
that the only connection between these two subgraphs is a single edge of the form
Yi0 — Z for i0 ∈ {1, r}.

To do this, we have to show that Yj ∩ Z = ∅ for j ̸= i0 and Yi0 ∩ Z ̸= ∅. Since
all occurring vertices are triple intersections these intersections are nonempty if and
only if they correspond to vertices of G3(S).

We illustrate this for an example. Assume that A ≥ 2 and let β1 = {Q−P, N−
P} and β2 = {Q − P, N}. Then H(β1) (multiplied by M) is the subpath of the
graph in Figure 12 for the choice i0 = 1 given by

Y1 = {Q, N −Q} — · · · — {Q, N −Q+ (A− 1)P} = Yr.

The graph H(β2) is the vertex {P , N −Q}. Since
B{Q, N−Q} ∩B{P , N−Q} = B{P ,Q, N−Q}

with {P ,Q, N − Q} ∈ G3(S), we see that Y1 ∩ Z ̸= ∅ in this case. All the other
intersections are easily seen to be not in G3(S); most of them would even correspond
to 5-fold intersections which do not exist.

The calculation we have done corresponds to the first line of Table 3. (The
constellations of Case (ii) in the proof of Lemma 1.33 where we deal with the sub-
division of a pair {β1,β2} of vertices exactly one of which, say β1, is nontrivial.
This table contains all possible constellations of this type modulo symmetry (recall

that α
d−→ α′ ∈ G2(S) if and only if −α

C−1−d−−−−→ −α′ ∈ G2(S)). The first column
contains the possibilities for β1 that can occur in such a constellation. The sec-
ond column contains the first and the last element the subdivision of β1. The third
column contains β2, whose (trivial) subdivision is contained in the fourth column.
The fifth column describes if the first or the last element of the subdivision of β1

intersects β2. Finally, the sixth column gives the condition under which a given
constellation exists.) Each line in this table corresponds to a possible constellation.
In the fifth column of this table we indicate if the single vertex H(β2) has nonempty
intersection with the first4 vertex Y1 or the last vertex Yr of H(β1). The last column

4Since the path graph H(β1) is undirected, we are free which end of the path we regard as
“first” and “last” vertex. The choice which one is the first and which one is the last is indicated
in the second column of Table 3.
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shows under which conditions on A the constellation of the respective path can oc-
cur. All this can easily be verified by checking the intersections occurring in G3(S)
as we did above.

Nontrivial
vertex

First and Last
vertex of its
subdivision

Trivial
vertex

Its subdivision
First/
Last

Condition

{
Q−P
N−P

} {
Q

N−Q

}
,{

Q
N−Q

}
+ x1

{
Q−P
N

} {
P

N−Q

}
first

A ≥ 2{
P

N−P

} {
Q

Q−P

}
+ x1 last

{N−P
N }

{
Q

P

}
first

{
P

Q−P

} {
Q−P
N−Q

}
+ x1,{

Q−P
N−Q

}
+ x2

{
N−Q+P

Q−P

} {
N−Q

N−Q+P

}
+ x2 last

A ≥ 1{
P

N−P

} {
Q

Q−P

}
+ x1 first

{
N−Q+P

P

} {
Q−P

N−Q+P

}
+ x2,{

Q−P
N−Q+P

}
+ x7

{
P
N

} {
Q−P
P

}
+ x7 last

A ≥ 1{
N

N−Q+P

} {
P

N−Q+P

}
+ x7 last{

N−Q+P
Q−P

} {
N−Q

N−Q+P

}
+ x2 first

{
P
Q

} {
Q−P
N−P

}
,{

Q−P
N−P

}
+ x3

{
Q
N

} {
P

N−P

}
first

A ≥ 1{
Q

N−Q

}
{N−P

N }+ x3 last

{P
N}

{
P

Q−P

}
first

{
N−Q

P

} {
Q−P
N

}
+ x3,{

Q−P
N

}
+ x4

{
N−Q

Q

} {
N

N−P

}
+ x3 first

A ≥ 1{
P

N−P

} {
Q−P
Q

}
+ x4 last

{
N−Q

N−P

} {
Q
N

}
+ x4,{

Q
N

}
+ x7

{
N

N−P

} {
P
Q

}
+ x7 last

A ≥ 2{
N

N−Q

}
{P
N}+ x7 last{

N−P
P

} {
Q−P
Q

}
+ x4 first

{
N−Q

N−Q+P

} {
N

N−Q+P

}
,{

N
N−Q+P

}
+ x5

{
N−Q+P

Q−P

} {
N−Q+P

N−Q

}
+ x5 last

A ≥ 1{
N−Q
N

} {
P
N

}
first{

N−Q+P
N

} {
N−Q+P

P

}
first

{
N−Q

Q−P

} {
N

N−Q

}
+ x5,{

N
N−Q

}
+ x6

{
Q

N−Q

} {
N

N−P

}
+ x6 last

A ≥ 2{
N−Q+P

Q−P

} {
N−Q+P

N−Q

}
+ x5 first

{
Q

Q−P

} {
N−P
N−Q

}
+ x6,{

N−P
N−Q

}
+ x7

{
Q

N−Q

}
+ x6

{
N

N−P

}
+ x6 first

A ≥ 1{
N
Q

} {
N−P

P

}
+ x7 last{

Q−P

N

} {
N−Q

P

}
+ x7 last

Table 3. For abbreviation we set x1 = (A− 1)P, x2 = (C −B+A−
1)P, x3 = (C−B)P, x4 = (C−A)P, x5 = (B−A)P, x6 = (B−1)P, x7 =
(C − 1)P .

Case (iii): By inspecting the graph G2(S) we see that in this case both vertices,
β1 and β2, have the same three vertices as successors. These three vertices are of the
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form given in (1.24) for some i ∈ {1, 2, 3}. Moreover, by inspecting the labels of the
edges going out of β1 and β2 we see that the collection of successors of Bβ1

∪Bβ2
is

a (consecutive) subcollection of M−1Vi with Vi as in (1.25). Hence, the Hata graph
H(β1,β2) is a path graph which is a subgraph of the graph depicted in Figure 12.

Summing up this finishes the proof of the claim.
We now show that H(Lα,k+1) is a cycle. To this end, let Lα,k = {Y1, . . . , Yp} be

the set of vertices of H(Lα,k) and Yi — Yi+1 for 1 ≤ i ≤ p (whe always assume that
Y0 := Yp and Yp+1 := Y1; note that p ≥ 4 by (1.26)) its set of edges. Each vertex Yi of
H(Lα,k) becomes a path li in H(Lα,k+1). If li is a single vertex, then the above claim
(see Case (i) and Case (ii)) implies that this vertex is connected with a terminating
vertex of li−1 and with a terminating vertex of li+1. If li is a (nondegenerate)
path Z1 — · · · — Z2, then a terminating vertex of li−1 is connected to Zr for some
r ∈ {1, 2} and a terminating vertex of li+1 is connected to Zs for some s ∈ {1, 2}
(see Case (ii) and Case (iii)). We have to show that r ̸= s. Indeed, suppose on
the contrary that both paths are connected to the same vertex, say Z1. Then the
element Z1 of the subdivision of Yi contains two disjoint5 4-fold intersections (one
with an element of Yi−1 and one with an element of Yi+1) which would contradict
Lemma 1.29. Thus the paths li (1 ≤ i ≤ p) are arranged in a circular order and,
hence, H(Lα,k+1) is a cycle.

Since the edges in H(Lα,k+1) correspond to nonempty 4-fold intersections they
represent single points by Lemma 1.28. This implies that Lα,k+1 is a circular chain
and the induction proof is finished. □

1.3.4. Topological characterization of 3-fold intersections. This section
is devoted to the proof of Theorem 1.1 (3). Our first task is the construction of a
sequence of collections of sets that will turn out to be the appropriate partitionings
suitable to apply the theory of Bing [15] to it.

Fix α ∈ S. In order to construct the partitionings for Lα, for each β(0) ∈ G2(S)
with α ∈ β(0) set

Pα,k(β
(0)) = {fd1d2...dk−1

(Bβ(k−1))◦; β(0) d1−→ β(1) d2−→ · · · dk−1−−→ β(k−1) ∈ G2(S)} (k ≥ 1).

(1.30)

Here the interior K◦ of a set K is taken w.r.t. the subspace topology on Lα; this is
why Pα,k(β

(0)) depends on α. Now the sequence (Pα,k)k≥1 is defined by

(1.31) Pα,k =
⋃

{β1,β2}∈G2(S)
β1=α

Pα,k({β1, β2}) (k ≥ 1).

We want to prove that (Pα,k)k≥1 is a decreasing sequence of regular partitionings
of Lα for each α ∈ S. To this end we need a result on the boundary and the
interior of a 3-fold intersection. Before we state it we emphasize that throughout
the remaining part of the proof of Theorem 1.1 the ambient space will change and
we always have to keep in mind with respect to which ambient space we will take
boundaries or interiors. For this reason we will always make clear in which space
we are working. As mentioned before, the boundary w.r.t. a given space X will

5Note that Yi−1 and Yi+1 are disjoint for any i ∈ {1, . . . , p} because p ≥ 4.



1.3. TOPOLOGICAL RESULTS 39

be denoted by ∂X (for the closure and the interior we do not use any notation to
emphasize on the space; this space should always be clear from the context or will
be mentioned explicitly). In the following lemma recall the notations Lα and Lα,k

introduced in (1.22) and (1.27), respectively.

Lemma 1.34. Let α ∈ S be given. For each vertex α = {α, α′} ∈ G2(S) we have

B◦
α = Bα, w.r.t. the subspace topology on Lα. More generally, we have X◦ = X for

each X ∈ Lα,k and each k ≥ 1.

Proof. The ambient space in this proof is Lα. First observe that (1.22) implies
that the collection {Bα,γ; {α, γ} ∈ G2(S)} is a finite collection of compact sets
which covers Lα. Thus for each α = {α, α′} ∈ G2(S) we have

∂LαBα,α′ ⊂
⋃

γ ̸∈{α,α′}
{α,γ}∈G2(S)

Bα,γ

which implies that (since Bα,α′ is closed in R3 and, hence, also closed in Lα)

(1.32) ∂LαBα,α′ ⊂
⋃
γ∈S

{α,α′,γ}∈G3(S)

Bα,α′,γ.

Thus, since the sets Bα,α′,γ contain at most one point by Lemma 1.28, ∂LαBα is a
finite set. Now choose ε > 0 and x ∈ Bα arbitrary. Subdivide Bα according to the
set equation (1.19) for r ∈ N large enough to obtain a subtile Z =M−r+1(Bβ+a) ∈
Cr(α) (with β ∈ G2(S) and a ∈ Z3) of Bα with diameter less than ε with x ∈ Z.
Since Z is a Peano continuum by Lemma 1.32 it contains infinitely many points
and, hence, there is a point y ∈ Z with y ∈ B◦

α. Since ε was arbitrary, y can be
chosen arbitrarily close to x. This proves the result for Bα.

The assertion for the elements of the subdivisions Lα,k, k ≥ 1, is proved in an
analogous way. Indeed, the finite collection Lα,k covers Lα which entails that for
each X ∈ Lα,k we have

(1.33) ∂LαX ⊂
⋃

Y ∈Lα,k\{X}

(X ∩ Y ).

By Lemma 1.33 the sets X ∩Y contain at most one element, hence, ∂LαX is a finite
set. Since X = M−k+1(Bβ + a) for some β ∈ G2(S) and some a ∈ Z3 we may now
subdivide Bβ according to the set equation (1.19) and argue as in the paragraph
before. □

We are now in a position to prove that (Pα,k)k≥1 has the desired properties.

Lemma 1.35. The sequence (Pα,k)k≥1 in (1.31) is a decreasing sequence of regular
partitionings of Lα for each α ∈ S.

Proof. The ambient space in this proof is Lα. We first claim that Pα,k is a
partitioning of Lα for each k ≥ 1. To prove this we have to show that two distinct
elements of Pα,k are disjoint and

(1.34) Lα =
⋃

X∈Pα,k

X.
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For given distinct X1, X2 ∈ Pα,k we have X1, X2 ∈ C(2)
k by Lemma 1.34. Lemma 1.25

thus implies that X1∩X2 is either empty or an affine copy ofBβ for some β ∈ G3(S)
and, hence, by Lemma 1.28 the intersection X1 ∩X2 contains at most one point p.
Since X1 and X1 are Peano continua by Lemma 1.32 they do not contain isolated
points which implies that the point p cannot be contained in the open set X1 ∩X2.
Thus we conclude that X1 ∩X2 = ∅. Since (1.34) follows from the definition of Pα,k

together with Lemma 1.34 and the set equation (1.19) we proved the claim.
Now we will show that (Pα,k)k≥1 is a decreasing sequence of partitionings. First

we prove that Pα,k+1 is a refinement of Pα,k for each k ≥ 1. Indeed, by the set
equation (1.18) the closure fd1···dk−1dk(Bβ(k)) of each element of Pα,k+1 is contained
in the closure fd1···dk−1

(Bβ(k−1)) of some element of Pα,k. Taking interiors we get
the refinement assertion. The maximum of the diameters of the elements of Pα,k

approaches zero because fd is a contraction for each d ∈ D. Finally, Pα,k is regular
for each k ∈ N by Lemma 1.34. □

The basis of our proof of Theorem 1.1 (3) is given by the following characteriza-
tion of a simple closed curve due to Bing [15].

Proposition 1.36 (cf. [15, Theorem 8]). Let X be a locally connected contin-
uum. A necessary and sufficient condition that X be a simple closed curve is that
one of its decreasing sequences of regular partitionings P1,P2, . . . have the following
properties:

(1) The boundary of each element of Pi is a pair of distinct points.
(2) No three elements of Pi have a boundary point in common.

In our proof of Theorem 1.1 (3) we will need the fact that Lα is homeomorphic to
a simple closed curve for every α ∈ G(S). To this end we have to show that (Pα,k)k≥1

satisfy (1) and (2) of Proposition 1.36. We start with the following lemma.

Lemma 1.37. For α, β ∈ S with {α, β} ∈ G2(S) we have

(1.35) ∂LαBα,β =
⋃
γ∈S

{α,β,γ}∈G3(S)

Bα,β,γ.

More generally, for each k ≥ 1 and each X ∈ Lα,k (which is defined in (1.27)) we
have

(1.36) ∂LαX =
⋃

Y ∈Lα,k\{X}

(X ∩ Y ).

Proof. The ambient space in this proof is Lα. Let B(x, δ) = {y ∈ Lα; |x−y| <
δ}. The fact that the left hand side of (1.35) is contained in the right hand side
follows from (1.32). To prove the reverse inclusion, suppose that for some γ ∈ S
with {α, β, γ} ∈ G3(S) there exists x ∈ Bα,β,γ \ ∂LαBα,β. Since Bα,β,γ ⊂ Bα,β,
this implies that x ∈ B◦

α,β and, hence, there exists δ > 0 with B(x, δ) ⊂ Bα,β.
Since Bα,β,γ ⊂ Bα,γ, we also have x ∈ Bα,γ and by Lemma 1.34 there exists
y ∈ B◦

α,γ ∩ B(x, δ). Thus there exists δ′ > 0 such that B(y, δ′) ⊂ Bα,γ ∩ B(x, δ).
This implies B(y, δ′) ⊂ Bα,β ∩Bα,γ = Bα,β,γ. By Lemma 1.28, Bα,β,γ is single point
for each vertex {α, β, γ} in G3(S). However, a single point cannot contain a ball
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in Lα because this set is a Peano continuum by Lemma 1.32. This contradiction
finishes the proof for ∂LαBα,β.

The second assertion is proved along the same lines. Indeed, by (1.33) the left
hand side of (1.36) is contained in the right hand side. For the reverse inclusion
assume that for some Y ∈ Lα,k \ {X} there exists x ∈ (X ∩ Y ) \ ∂LαX. Thus
x ∈ X◦ and, hence, there exists δ > 0 with B(x, δ) ⊂ X. Since we also have x ∈ Y ,
by Lemma 1.34 there exists y ∈ Y ◦ ∩ B(x, δ). Thus there exists δ′ > 0 such that
B(y, δ′) ⊂ Y ∩B(x, δ) ⊂ X∩Y . By Lemma 1.33, this set is a singleton which cannot
contain a ball in the Peano continuum Lα, a contradiction. □

By the transformation described in Section 1.2.2 the following proposition implies
Theorem 1.1 (3).

Proposition 1.38. Let T = T (M,D) be an ABC-tile with 14 neighbors. As-
sume that α ⊂ Z3 \ {0} contains 2 elements. Then the 3-fold intersection Bα is
homeomorphic to an arc if α ∈ G2(S). Otherwise, Bα = ∅.

Proof. In this proof we work in the ambient space Lα for an arbitrary but fixed
α ∈ S. We first show that Lα is a simple closed curve. This is done with help of
Proposition 1.36. To apply this result, let (Pα,k)k≥1 be the sequence given in (1.31).
This sequence is a decreasing sequence of regular partitionings of Lα by Lemma 1.35.
We now have to prove that (1.31) satisfies the two conditions of Proposition 1.36.
First we claim that the boundary of each X ∈ Pα,k is a pair of distinct points for
each k ∈ N. By Lemmas 1.34 and 1.33, we know that X intersects the elements in
the union ⋃

Y ∈Pα,k\{X}

(X ∩ Y ) =
⋃

Y ∈Lα,k\{X}

(X ∩ Y )

in exactly two points. Thus (1.36) implies the claim and, hence, Proposition1.36(1).
The fact that there are no three elements of Pα,k having a common boundary point
is an immediate consequence of Lemma 1.33 yielding Proposition 1.36 (2). Now we
can apply Proposition 1.36 which yields that Lα is a simple closed curve for every
α ∈ S.

Since for each {α, β} ∈ G2(S), the set Bα,β is a Peano continuum which is a
proper subset of the simple closed curve Lα, it is an arc. As α ∈ S was arbitrary,
this implies that Bα is homeomorphic to an arc if α ∈ G2(S). If α ̸∈ G2(S) then
Bα = ∅ by Proposition 1.24. □

In the sequel we need some results on dimension theory. A good reference for
this topic is Kuratowski [48, §§25–28]. In particular, we will often need the following
basic results.

Lemma 1.39. For a set X ⊂ R3, denote its topological dimension by dim(X).

(1) If X ⊂ Y ⊂ R3, then dim(X) ≤ dim(Y ).
(2) Let Y ⊂ R3. If X1, . . . , Xn are closed in Y with Y = X1 ∪ · · · ∪ Xn, then

dim(Y ) ≤ max1≤i≤n dim(Xi).

Proof. Assertion (1) is a special case of Kuratowski [48, §25, II, Theorem 1],
while (2) follows from Kuratowski [48, §27, I, Corollary 2f]. □



1.3. TOPOLOGICAL RESULTS 42

Lemma 1.40. For each α ∈ S, we have B◦
α = Bα w.r.t. the subspace topology on

∂T . More generally, the same holds for each element of the subdivision C(1)
k defined

in (1.21) for k ≥ 1.

Proof. The ambient space in this proof is ∂T . Recall first that by (1.6) the
collection {Bγ; γ ∈ S} is a finite collection of compact sets which covers ∂T . Thus
for each α ∈ S the boundary ∂∂TBα is covered by

⋃
γ ̸=α Bγ which implies that

(1.37) ∂∂TBα ⊂ Lα.

By Proposition 1.38, Lα is a finite union of arcs (having topological dimension 1).
Thus Lemma 1.39 implies that dim(∂∂TBα) ≤ 1. On the other hand, since ∂T
forms a cut of R3, we have dim(∂T ) ≥ 2 by [49, §59, II, Theorem 1]. Therefore, by
Lemma 1.39 (2) there exists β ∈ S such that dim(Bβ) ≥ 2. Since G(S) is strongly
connected, the same is true for each β ∈ S by Lemma 1.39 (1). Now choose ε > 0
and x ∈ Bα arbitrary. Subdivide Bα according to the set equation (1.19) for k
large enough to yield the existence of X = M−k+1(Bβ + a) ∈ Ck(α) with β ∈ S
and a ∈ Z3 such that X is a subtile of Bα with diameter less than ε and x ∈ X.
As X ⊂ Bα with dim(X) ≥ 2 and dim(∂∂TBα) ≤ 1 there is a point y ∈ X with
y ∈ B◦

α. Since ε was arbitrary, y can be chosen arbitrarily close to x. This proves
the result for Bα.

The assertion for the elements of the subdivisions Ck(α), k ≥ 1, follows by the

same argument. Just note that C(1)
k is a finite collection of compact sets covering

∂T . Thus for each X ∈ C(1)
k we have

(1.38) ∂∂TX ⊂
⋃

Y ∈C(1)
k \{X}

X ∩ Y

and we may continue in the same way as in the special case. □

Lemma 1.41. For α ∈ S, we have ∂∂TBα = Lα.

Proof. The ambient space in this proof is ∂T . Let B(x, δ) = {y ∈ ∂T ; |x−y| <
δ}. The fact that ∂∂TBα ⊂ Lα follows from (1.37). To prove the reverse inclusion,
suppose that for some β ∈ S with {α, β} ∈ G2(S) there exists x ∈ Bα,β \ ∂∂TBα.
Since Bα,β ⊂ Bα this implies that x ∈ B◦

α and, hence, there exists δ > 0 with
B(x, δ) ⊂ Bα. Since Bα,β ⊂ Bβ, we also have x ∈ Bβ and by Lemma 1.40 there
exists y ∈ B◦

β ∩ B(x, δ). Thus there exists δ′ > 0 such that B(y, δ′) ⊂ Bβ ∩
B(x, δ). This implies B(y, δ′) ⊂ Bα ∩ Bβ = Bα,β. By Proposition 1.38, Bα,β is a
simple arc for each vertex {α, β} in G2(S) which cannot contain a ball in ∂T by a
dimension theoretical argument analogous to the one in the proof of Lemma 1.40.
This contradiction finishes the proof. □

Together with the proof of Proposition 1.38, Lemma 1.41 immediately yields the
following result.

Proposition 1.42. Let T = T (M,D) be an ABC-tile with 14 neighbors. For
each α ∈ S the boundary ∂∂TBα is a simple closed curve.
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1.3.5. Topological characterization of 2-fold intersections and of the
boundary of T . We start with a sequence of partitionings for ∂T . To construct
this sequence, for α(0) ∈ G(S), let
(1.39)

Qk(α
(0)) = {fd1d2...dk−1

(Bα(k−1))◦; α(0) d1−→ α(1) d2−→ · · · dk−1−−→ α(k−1) ∈ G(S)} (k ≥ 1),

where the interior K◦ of a set K is taken w.r.t. the subspace topology on ∂T . Using
(1.39) we define the sequence of collections (Qk)k≥0 by

Q0 = {∂T},

Qk =
⋃

α∈G(S)

Qk(α) (k ≥ 1).(1.40)

Lemma 1.43. The sequence (Qk)k≥1 in (1.40) is a decreasing sequence of regular
partitionings of ∂T .

Proof. Throughout this proof ∂T is our ambient space. We claim that Qk is
a partitioning of ∂T for every k ≥ 1. To prove this claim fix k ≥ 1. Firstly, the
closure of the union of all elements in Qk is ∂T by Lemma 1.40, (1.6), and the
set equation (1.18). Secondly, each element of Qk has the form fd1...dk−1

(Bα(k−1))◦,
and, hence, is open. Thirdly we have to show that the elements of Qk are mutu-
ally disjoint. Suppose that this is wrong. Then there exist fd1...dk−1

(Bα(k−1)) and
fd′1...d′k−1

(Bα
′(k−1)) whose intersection X has nonempty interior. By arguing as in the

proof of Lemma 1.40 this implies that dim(X) ≥ 2. However, by definition, X is a
shrinked copy of an ℓ-fold intersection for some ℓ ≥ 2. More precisely, multiplying
X by Mk−1 and shifting it appropriately we see that X is homeomorphic to Bβ

for some β ∈ Gℓ(S) with ℓ ≥ 2. Thus X is homeomorphic to an arc or to a point
by Proposition 1.38 and Lemma 1.28 and, hence, dim(X) ≤ 1. This contradic-
tion proves mutual disjointness of the elements of Qk. Summing up, the claim is
established.

Next we will check that (Qk)k≥1 is a decreasing sequence. First, we show that
Qk+1 is a refinement of Qk for each k ≥ 1. Indeed, by the set equation (1.18)
the closure fd1...dk−1dk(Bα(k)) of each element of Qk+1 is contained in the closure
fd1...dk−1

(Bα(k−1)) of some element of Qk. Taking interiors we get the refinement
assertion. The maximum of the diameters of the elements of Qk approaches zero
because fd is a contraction for each d ∈ D.

Finally, since the elements of Qk are open sets, Qk is regular for all k ≥ 1 by
Lemma 1.40. □

We now prove Theorem 1.1 (1) and (2). An important ingredient of this proof
is the following characterization of a simple surface which is also due to Bing [15].

Proposition 1.44 (see [15, Theorem 9]). A necessary and sufficient condition
that a locally connected continuum X be a 2-sphere is that one of its decreasing
sequences of regular partitionings Q1,Q2, . . . have the following properties:

(1) The boundary of each element of Qk is a simple closed curve.
(2) The intersection of the boundaries of 3 elements of Qk contains no arc.
(3) If U is an element of Qk−1 (take U = X if k = 1) the elements of Qk

in U may be ordered as U1, U2, . . . , Un so that the boundary of Uj, which
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we denote by ∂Uj, intersects ∂U ∪ ∂U1 ∪ · · · ∪ ∂Uj−1 in a nondegenerate
connected set.

The following result shows that the boundary operator ∂∂T commutes with cer-
tain affine maps.

Lemma 1.45. Let fd1...dk−1
(Bα)

◦ ∈ Qk for some k ≥ 1. Then in the ambient
space ∂T we have

(1.41) fd1...dk−1
(∂∂T (Bα)) = ∂∂T (fd1...dk−1

(Bα)) = ∂∂T (fd1...dk−1
(Bα)

◦).

Proof. Since different spaces play a role in this proof we will always emphasize
w.r.t. which space closures, interiors, and boundaries will be taken.

In (1.41) closures and interiors are taken in ∂T . Thus the second identity in
(1.41) is a consequence of Lemma 1.40.

To prove the first identity, let f = fd1...dk−1
and Y = f(Bα)

◦ (interior is taken in
∂T ) for convenience. As Y ∈ Qk, there is α

′ ∈ S such that Y ⊂ Bα′ ⊂ ∂T (boundary
is taken in R3). Thus there are β, β′ ∈ Z3 such that Y = (U ∩ V )◦ (interior is taken

in ∂T ) with U := M−k+1(T + β) ⊂ T and V := M−k+1(T + β′) ⊂ R3 \ T (closure
is taken in R3). Then U = f(T ) and Y ⊂ ∂U (boundary is taken in R3). Since f
is a homeomorphism satisfying f(∂T ) = ∂U (boundaries are taken in R3), we have
f(∂∂T (Bα)) = ∂∂U(f(Bα)) = ∂∂UY (closure of Y is taken in ∂T ). Thus it remains
to prove

(1.42) ∂∂UY = ∂∂TY

in order to establish the first identity in (1.41). Suppose first that x ∈ ∂∂UY .

T

UW

V

x

Y

Figure 13. If we take a small neighborhood N of x we see that
N ∩ ∂T is different from N ∩ ∂U . This is what causes the difficul-
ties in the proof. Note that T, U, V,W are 3-dimensional objects, Y
is 2-dimensional and x is an arc. So this figure is just a schematic
illustration of what is going on in a “slice” of T .

Then in each R3-neighborhood of x there is a point x′ with x′ ∈ Y ⊂ ∂T . On
the other hand, by Lemma 1.41 (shifted by β and multiply by M−k+1) there is
γ ∈ Z3\{β, β′} such that x ∈ W :=M−k+1(T+γ) (see Figure 13 for an illustration).
Summing up, we have x ∈ U ∩ V ∩ W = M−k+1(Bβ′−β,γ−β + β). Assume that
W = M−k+1(T + γ) ⊂ T (the contrary case is treated in the same way), then
V ∩W =M−k+1(Bγ−β′ + β′) ⊂ ∂T . Each element of any subdivision of V ∩W has
topological dimension at least 2 (see the proof of Lemma 1.40), while U ∩ V ∩W is
an arc by Proposition 1.38 and, hence, has topological dimension 1. Thus we can
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find an element x′′ ∈ V ∩ W \ U ∩ V ∩ W = U ∩ W \ U ∩ V ⊂ ∂T \ Y in each
R3-neighborhood of x and, hence, x ∈ ∂∂TY .

Suppose now that x ∈ ∂∂TY . Then each R3-neighborhood of x there is a point
x′ with x′ ∈ Y ⊂ ∂U . On the other hand, by (1.38) there is γ ∈ Z3 \ {β, β′} such
that x ∈ U ∩ V ∩W = M−k+1(Bβ′−β,γ−β + β) with W := M−k+1(T + γ). Since
U ∩W = M−k+1(Bγ−β + β) ⊂ ∂U and each element of any subdivision of U ∩W
has topological dimension at least 2, while U ∩ V ∩W has topological dimension 1,
as before we can find an element x′′ ∈ ∂U \ Y in each R3-neighborhood of x. Thus
x ∈ ∂∂UY .

Summing up we proved (1.42) and the result is established.
□

We can now establish the first two conditions of Proposition 1.44.

Lemma 1.46.

(1) The boundary ∂∂TX is a simple closed curve for each X ∈ Qk and each
k ≥ 1.

(2) The intersection of the boundary of three elements of Qk contains no arc
for each k ≥ 1.

Proof. We start with proving assertion (1). Let X ∈ Qk. Then ∂∂TX is an
affine copy of ∂∂TBα for some α ∈ S by Lemma 1.45. The assertion follows because
∂∂TBα is a simple closed curve by Proposition 1.42.

To prove assertion (2) we note that

∂∂TB
◦
α ∩ ∂∂TB◦

β ∩ ∂∂TB◦
γ ⊂ Bα ∩Bβ ∩Bγ = Bα,β,γ,

so the intersection of the boundary of three elements of Q1 is either a single point
or the empty set since Bα,β,γ contains at most one point. The same is true for Qk

because triple intersections of boundaries of elements in Qk are just affine images of
triple intersections of boundaries of elements in Q1. □

By the above lemma, we know that the sequence of partitionings (Qk)k≥1 satisfies
the first two conditions of Proposition 1.44. It remains to check the third condition.

For a fixed Bα, α ∈ S, it is easy to determine the neighbors of Bα in ∂T ,
i.e., the elements Bβ with Bα,β ̸= ∅. Indeed, in view of Lemma 1.41 we know the
neighbors of Bα in ∂T immediately from the right side of the identities in (1.26).
This information allows to construct the Hata graph of {Bα; α ∈ S} which we
denote by H(S). This graph is depicted in Figure 14. We give an order to the 2-fold
intersections Bα by setting Oi := Bαi

(1 ≤ i ≤ 14) according to the right side of
Figure 14. We have the following lemma.

Lemma 1.47. Let ∂T be our ambient space. Then

∂Oi ∩ (∂O1 ∪ ∂O2 ∪ · · · ∪ ∂Oi−1)

is a nondegenerate connected set for each i ∈ {2, . . . , 14}.

Proof. Let Oj,k := Oj ∩Ok (1 ≤ j, k ≤ 14). First, by Lemma 1.41 the set

Ai := ∂Oi ∩ (∂O1 ∪ ∂O2 ∪ · · · ∪ ∂Oi−1) = Oi,1 ∪Oi,2 ∪ · · · ∪Oi,i−1.
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Vertex Odered name
B{Q−P} O1

B{N−Q+P} O2

B{N−Q} O3

BQ O4

BN O5

B{N−P} O6

BP O7

BP O8

B{N−P} O9

BN O10

BQ O11

B{N−Q} O12

B{N−Q+P} O13

B{Q−P} O14

Figure 14. The left hand side figure is the Hata graph H(S) and the
table on the right hand side lists the order of the vertices {Bα; α ∈ S}.

From the Hata graph H(S), we can read off which of the sets Oj,k is nonempty.
Together with the table in Figure 14 this information leads to the following identities.

A2 = O2,1 = B{
Q−P

N−Q+P

},
A3 = O3,1 ∪O3,2 = B{

Q−P
N−Q

} ∪B{ N−Q
N−Q+P},

A4 = O4,1 ∪O4,2 ∪O4,3 = O4,1 ∪O4,3 = B{
Q

N−Q

} ∪B{
Q

Q−P

},
A5 = O5,1 ∪ · · · ∪O5,4 = O5,4 ∪O5,1 = B{

N
Q

} ∪B{
N

Q−P

},
A6 = O6,1 ∪ · · · ∪O6,5 = O6,1 ∪O6,5 = B{

N−P
Q−P

} ∪B{ N
N−P}

,

A7 = O7,1 ∪ · · · ∪O7,6 = O7,6 ∪O7,1 ∪O7,2 = B{N−P
P
} ∪B{Q−P

P
} ∪B{ P

N−Q+P},

A8 = O8,1 ∪ · · · ∪O8,7 = O8,3 ∪O8,4 ∪O8,5 = B{
P

N−Q

} ∪B{
P
Q

} ∪B{P
N
},

A9 = O9,1 ∪ · · · ∪O9,8 = O9,3 ∪O9,8 = B{N−P
N−Q} ∪B{N−P

P },

A10 = O10,1 ∪ · · · ∪O10,9 = O10,7 ∪O10,2 ∪O10,3 ∪O10,9

= B{N
P} ∪B{ N

N−Q+P} ∪B{ N
N−Q} ∪B{ N

N−P},

A11 = O11,1 ∪ · · · ∪O11,10 = O11,7 ∪O11,10 = B{Q
P} ∪B{Q

N},

A12 = O12,1 ∪ · · · ∪O12,11 = O12,5 ∪O12,6 ∪O12,7 ∪O12,11

= B{
N−Q

N

} ∪B{
N−Q

N−P

} ∪B{N−Q
P
} ∪B{

N−Q
Q

},
A13 = O13,1 ∪ · · · ∪O13,12 = O13,8 ∪O13,5 ∪O13,12

= B{
N−Q+P

P

} ∪B{
N−Q+P

N

} ∪B{
N−Q+P

N−Q

},
A14 = O14,1 ∪ · · · ∪O14,13 = ∂O14.
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We can now read off the graph G3(S) that Ai is connected for each 2 ≤ i ≤ 14.
The fact that it is nondegenerate follows because each 3-fold intersection is an arc
by Proposition 1.38. □

Note that ∂∂TO
◦
j = ∂∂TOj for j ∈ {1, . . . , 14} by Lemma 1.40 and ∂∂T∂T = ∅.

Thus Lemma 1.47 implies that (Qk)k≥1 satisfies condition (3) of Proposition 1.44
for the case k = 1 (by setting Q0 = ∂T ).

To show that Proposition 1.44 (3) is true for k ≥ 2, we need the following results
on intersections.

Lemma 1.48. Let α ∈ S, 1 ≤ j ≤ C − 1, and j ≤ i ≤ C − 1, then

(1)
(
Bα + (i− j)P )

)
∩
(
Bα + iP

)
= ∅ and

(2)
(
Bα + (i− j)P )

)
∩
(
Bα+P + iP

)
= ∅.

Proof. Shifting by −(i − j)P , we see that
(
Bα + (i − j)P

)
∩
(
Bα + iP

)
is

homeomorphic to Bα,jP,jP+α. Looking at Figure 11, we see that {α, jP, jP + α} is
not a vertex of G3(S). Thus Lemma 1.28 yields (1). The second assertion follows
in a similar way. □

Lemma 1.49. If α ∈ {Q, N, N −Q+ P, N −Q, Q− P , N − P}, then

(1) Bα ∩
(
Bα−P + P

)
̸= ∅ and

(2) Bα ∩Bα−P ̸= ∅.

Proof. Since Bα ∩
(
Bα−P + P

)
= Bα,P and {α, P} is a vertex of G2(S) for

each α ∈ {Q, N, N −Q+ P, N −Q, Q− P , N − P} (see Table 2), assertion (1)
follows from Proposition 1.38. Assertion (2) is proved in the same way. □

With help of these lemmas we can prove that the subdivisions of Bα have a
linear order.

Corollary 1.50. Each 2-fold intersection Bα, α ∈ S, can be generated by the
following ordered set equations (we only need to give the equations for the following
7 elements of S by symmetry).

Figure 15. Order of the intersections on the right hand side of the
identities in (1.43).
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MBP ⊜
( C−A−1⋃

i=0

(BQ−P ∪BQ) + iP
)
∪
(
BQ−P + (C − A)P

)
,

MBQ ⊜
( C−B−1⋃

i=0

(BN−P ∪BN) + iP
)
∪
(
BN−P + (C −B)P

)
,

MBN ⊜ BP ,

MBQ−P ⊜
( C−B+A−2⋃

i=0

(BN−Q ∪BN−Q+P ) + iP
)
∪ (BN−Q + (C −B + A− 1)P ),

MBN−Q+P ⊜
( B−A−1⋃

i=0

(BN−Q+P ∪BN−Q) + iP
)
∪ (BN−Q+P + (B − A)P ),

MBN−P ⊜
( A−2⋃

i=0

(BQ ∪BQ−P ) + iP
)
∪ (BQ + (A− 1)P ),

MBN−Q ⊜
( B−2⋃

i=0

(BN ∪BN−P ) + iP
)
∪ (BN + (B − 1)P ).

(1.43)

Here we use “⊜” to amphasize that the union on the right hand side is given by the
order indicated in Figure 15 and that only the sets being adjacent in this order have
nonempty intersection. Each of these intersections is an arc.

Proof. By Lemma 1.48 and Lemma 1.49, we conclude that the sets belonging
to the union on the right hand side intersect if and only if they are adjacent in the
order illustrated in Figure 15. □

Proposition 1.51. Let T = T (M,D) be an ABC-tile with 14 neighbors. The
decreasing sequence of regular partitionings (Qk)k≥1 of ∂T defined in (1.40) satisfies
the conditions in Proposition 1.44. Hence, ∂T is a 2-sphere.

Proof. Throughout this proof, ∂T is our ambient space. Conditions (1) and
(2) of Proposition 1.44 are satisfied by Lemma 1.46. Lemma 1.47 and the remark
after it shows that condition (3) of Proposition 1.44 is true for k = 1.

By Corollary 1.50, Qk satisfies condition (3) of Proposition 1.44 for k = 2.
Indeed, for each α ∈ S we have B◦

α ∈ Q1 and Bα is the union of {Uj}ℓαj=1, where
MUj is given by the right side of (1.43). By the linear ordering of the sets Uj proved
in Corollary 1.50

∂Uj ∩ (∂Bα ∪ ∂U1 ∪ · · · ∪ ∂Uj−1) =

{
∂Uj \ (Uj ∩ Uj+1), j < ℓα,

∂Uj, j = ℓα.

Since ∂Uj is a simple closed curve by Proposition 1.38 and Uj ∩ Uj+1 is a subarc of
this curve by Corollary 1.50, we conclude that ∂Uj ∩ (∂Bα ∪ ∂U1 ∪ · · · ∪ ∂Uj−1) is
an arc or a simple closed curve, and, hence, nondegenerate and connected.

By definition, each U = (M−k+1(Bα+a))
◦ ∈ Qk for k ≥ 2 andM−k+1(Bα+a) is

a contracted copy of Bα for some α ∈ S which is subdivided in the same way as Bα.
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Moreover, the boundary each (M−k+1(Bα + a))◦ ∈ Qk satisfies ∂M−k+1(Bα + a) =
M−k+1(∂Bα + a) by Lemma 1.45.

Thus the subdivision of U also satisfies condition (3), because the subdivision of
B◦

α satisfies it. This implies that Qk satisfies condition (3) of Proposition 1.44 for
k > 2 as well. □

In view of the transformation introduced in Section 1.2.2, Proposition 1.51 proves
Theorem 1.1 (1). Finally, Theorem 1.1 (2) is a consequence of the following propo-
sition (again by Section 1.2.2).

Proposition 1.52. Let T = T (M,D) be an ABC-tile with 14 neighbors. As-
sume that α ∈ Z3 \ {0}. Then Bα is homeomorphic to a closed disk if α ∈ S and
empty otherwise.

Proof. For α ∈ S, the intersection Bα is a subset of the 2-sphere ∂T (by
Proposition 1.51) whose boundary ∂∂TBα is homeomorphic to a simple closed curve
(see Proposition 1.42). Thus Bα is homeomorphic to a closed disk by the Schönflies
Theorem. If α ̸∈ S, then Bα = ∅ by the definition of S in (1.3). □

Remark 1.53. The topological results of the present section go through as soon
as the graphs Gℓ(S) as well as some Hata graphs have certain properties. Verifying
these properties for ABC-tiles was a nontrivial issue. However, all these properties
can be checked for a given 3-dimensional self-affine tile T = T (M,D) in finite time
(regardless of the structure of the digit set). For instance, one has to check that
the graphs Gℓ(S) have 14, 36, and 24 vertices for ℓ = 1, 2, 3, respectively, and that
they are empty for ℓ ≥ 4. Moreover, the Hata graphs of the subdivision of 3-
fold intersections should be path graphs and the Hata graphs of 2-fold intersections
should have a structure that is suitable for applying Proposition 1.44. We will work
this out in detail in a forthcoming paper.

1.4. Perspectives

We conclude the Chapter by mentioning some topics for further research. A
first natural question is whether each self-affine tile satisfying the conditions of
Theorem 1.1 is homeomorphic to a 3-ball. For a single example this can be checked
by an algorithm given by Conner and Thuswaldner [20, Section 7]. However, we
currently do not know how to do this for a whole class of tiles. Although Conner
and Thuswaldner [20, Section 8.2] exhibited a self-affine tile whose boundary is a
2-sphere but which is itself not a 3-ball (a self-affine Alexander horned sphere), we
conjecture the following to be true.

Conjecture 1.54. A self-affine tile that satisfies the conditions of Theorem 1.1
is homeomorphic to a 3-ball.

Besides that we think that using the results of Bing [15] and Kwun [50] one
could prove more topological results for self-affine tiles (and attractors of iterated
function systems in the sense of Hutchinson [37] in general). In particular, getting
information on the topology of 3-dimensional Rauzy fractals (see e.g. [28, 40, 84])
would be interesting. Even topological results for higher dimensional self-affine tiles
should be tractable by using modifications of our theory. However, particularly for
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manifolds of dimension 4 and higher, according to Kwun’s result, one has to deal
with more complicated conditions which lead to new challenges.

Let T be a 2-dimensional self-affine tile. Recently, Akiyama and Loridant [3]
provided Hölder continuous surjective mappings h : S1 → ∂T whose Hölder expo-
nent, which is defined in terms of the Hausdorff dimension of ∂T , is optimal. This
has been considered in a more general framework in Rao and Zhang [76]. We for-
mulate the following problem for mappings from the 2-sphere to the boundary of a
3-dimensional self-affine tile.

Problem 1.55. For a 3-dimensional self-affine tile whose boundary is a 2-sphere
find a homeomorphism h : S2 → ∂T which is Hölder continuous. What is the optimal
Hölder exponent for such a homeomorphism?



CHAPTER 2

Topology of a class of p2-crystallographic replication tiles

This chapter contains the article [63] with the same title. It is joint work with
Benoit Loridant.

2.1. Introduction

A crystallographic replication tile with respect to a crystallographic group Γ ⊂
Isom(Rn) is a nonempty compact set T ⊂ Rn that is the closure of its interior
(T o = T ) and satisfies the following properties.

(i) There is an expanding affine mapping g : Rn → Rn such that g◦Γ◦g−1 ⊂ Γ,
and a finite collection D ⊂ Γ called digit set such that

(2.1) g(T ) =
⋃
δ∈D

δ(T ).

(ii) The family {γ(T ); γ ∈ Γ} is a tiling of Rn. In other words, Rn =
⋃

γ∈Γ γ(T )

and γ(T o) ∩ γ′(T o) = ∅ for distinct elements γ, γ′ ∈ Γ.

There is a vast literature dealing with the lattice case, i.e., when Γ is isomorphic
to Zn: criteria exist to check basic properties, such as the tiling property [52],
connectedness [47] or, in the planar case (n = 2), homeomorphy to a closed disk
(disk-likeness). For instance, Bandt and Wang recognize disk-like self-affine lattice
tiles by the number and location of the neighbors in the tiling [12], and Lau and
Leung characterize all the disk-like tiles among the class of self-affine lattice tiles
with collinear digit set [55]. A powerful tool in the study of topological properties
is the neighbor graph: it gives a precise description of the boundary of the tile in
terms of a graph directed iterated function system (GIFS ). Akiyama and the first
author elaborated a boundary parametrization method by making extensive use of
the neighbor graph [3]. Algorithms allow to determine the neighbor graph for any
given tile T [80], while it is usually difficult to deal with infinite classes of tiles.
However, Akiyama and Thuswaldner computed the neighbor graph for an infinite
class of planar self-affine lattice tiles associated with canonical number systems and
used it to characterize the disk-like tiles among this class [4]. Methods relying on
the neighbor graph were extended to crystallographic replication tiles in [61, 62].

If T is a crystallographic replication tile, the associated digit set D must be a
complete set of right coset representatives of the subgroup g ◦Γ ◦ g−1. On the other
hand, if T ⊂ Rn is a nonempty compact set satisfying (2.1) and D is a complete
set of right coset representatives of the subgroup g ◦ Γ ◦ g−1, Gelbrich proves that
there is a subset Γ′ ⊂ Γ called tiling set such that the family {γ(T ); γ ∈ Γ′} is a
tiling of Rn. Under these conditions, it is not known in general whether the tiling
set Γ′ is a subgroup of the crystallographic group Γ, contrary to the lattice case
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(see [51]). However, the first author defined in [59] the crystallographic number
systems, in analogy to the canonical number systems from the lattice case (see
e.g. [42]). This gives a way to produce classes of crystallographic replication tiles
whose tiling set is the whole group Γ. An infinite class of examples given in [59] reads
as follows. Let p2 be the planar crystallographic group generated by the translations
a(x, y) = (x + 1, y), b(x, y) = (x, y + 1) and the π-rotation c(x, y) = (−x,−y).
Moreover, for A,B ∈ Z satisfying |A| ≤ B ≥ 2, let g be the expanding mapping
defined on R2 by

(2.2) g(x, y) =

(
0 −B
1 −A

)(
x
y

)
+

(
B−1
2
0

)
.

Then the equation

(2.3) g(T ) = T ∪
(
T +

(
1
0

))
∪ · · · ∪

(
T +

(
B − 2

0

))
∪ (−T )

defines a crystallographic replication tile whose tiling set is the whole group p2. This
tiling property follows from the crystallographic number system property only for
A ≥ −1, as stated in [59], but we will deduce it for all values of A (see Proposi-
tion 2.6). Moreover, we will obtain topological information on T by comparing it
with the self-affine lattice tile T l defined by

(2.4)

(
0 −B
1 −A

)
T ℓ = T ℓ ∪

(
T ℓ +

(
1
0

))
∪ · · · ∪

(
T ℓ +

(
B − 1

0

))
.

In fact, for fixed A and B, the tile T ℓ is a translation of T ∪ (−T ), as shown in [59].
It follows from Leung and Lau’s result [55] on self-affine tiles with collinear digit set
that T l is disk-like if and only if 2|A|−B < 3. However, it was noticed in [59] that it
can happen that T ℓ is disk-like while T is not disk-like (see Figure 3 and Figure 24).
The current paper will establish exactly for which parameters A,B this phenomenon
occurs. For 2|A| − B < 3, the associated lattice tile T ℓ is disk-like and a result of
Akiyama and Thuswaldner [4] on canonical number system tiles will allow us to
estimate the set of neighbors of T . Finding out the disk-like tiles for parameters
satisfying 2|A|−B < 3 will then rely on the construction of the associated neighbor
graphs for the whole class. For 2|A| − B ≥ 3, a purely topological argument will
enable us to prove that the associated tiles are not disk-like.

Our results easily generalize to a broader class of crystallographic replication
tiles, closely related to the class of self-affine tiles with consecutive collinear digit set
as studied by Leung and Lau in [55]. Therefore, we are able to show the following
classification theorem.

Theorem 2.1. Let A,B ∈ Z satisfying |A| ≤ B and B ≥ 2, M ∈ Z2×2 a matrix
with characteristic polynomial x2 + Ax + B and let v ∈ Z2 such that (v,Mv) are
linearly independent. Let T be the crystallographic replication tile defined by

(2.5) MT +
B − 1

2
v = T ∪ (T + v) ∪ (T + 2v) ∪ · · · ∪ (T + (B − 2)v) ∪ (−T ).

Then T is disk-like if and only if −2 ≤ A ≤ 1 and B ≥ 2 or A = B = 2.

This class is obtained from Leung and Lau’s class by replacing the last translation
digit (B−1)v by the π-rotation around the origin. In this way, the digit set remains
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“almost consecutive” and the digit tiles −T, T, T + v, . . . , T + (B − 2)v form a
connected chain, so that T itself is still connected. The original expanding mapping
(x, y)t ↦→ M(x, y)t of Leung and Lau is adjusted by a translation vector B−1

2
v in

order for the digit set to be a complete set of right coset representatives of g◦p2◦g−1.
Note that there might be other choices for the digit set, but they may not preserve
the connectedness of the tiles (see [56]).

The result tells us that only a few tiles of the class are disk-like. For larger values
of A, the tiles become thiner, so that adjacent neighbors from both sides of the tile
happen to meet, creating cut points (local or global).

We will see in Lemma 2.4 that, to prove Theorem 2.1, it suffices to prove the
result for T given by (2.3). Then the proof of the theorem will be completed by
Theorem 2.18 and 2.21.

The paper is organized as follows. In Section 2.2, we give basic definitions on
crystallographic groups and general properties of the class of crystallographic repli-
cation tiles under consideration. Sections 2.3 and 2.4 are devoted to the construction
of the neighbor graphs for part of this class. They will be the main tool for our topo-
logical study. In Section 2.5 and Section 2.6, we characterize the disk-like tiles among
our class for the range of parameters A,B satisfying 2|A| − B < 3. In Section 2.7,
we show that T is not disk-like for all parameters satisfying 2|A| − B ≥ 3. Finally,
Section 2.8 illustrates the theorem by examples.

2.2. Preliminaries

2.2.1. Basic definitions. Let us recall some definitions and facts about planar
tilings and crystallographic replication tiles (crystiles for short).

A tiling of R2 is a cover of the space by nonoverlapping sets, i.e., such that the
interiors of two distinct sets of the cover are disjoint. We consider tilings using a
single tile T with T ◦ = T and a family Γ of isometries of R2 such that

R2 =
⋃
γ∈Γ

γ(T ).

Assume that Γ contains id, the identity map of R2. Then T = id(T ) is called the
central tile of the tiling. Given two isometries γ, γ′ ∈ Γ with γ ̸= γ′, we say that
γ(T ), γ′(T ) (or simply γ, γ′) are neighbors if γ′(T ) ∩ γ(T ) ̸= ∅. The neighbor set of
T is the set of neighbors of id, i.e.,

S = {γ ∈ Γ \ {id}; γ(T ) ∩ T ̸= ∅}.
It is symmetric and it generates Γ. The tiles considered in this paper will be compact
and the tilings locally finite, i.e., every compact set intersects finitely many tiles of
the tiling. Therefore, S will always be a finite set. The neighbor set of a tile
γ(T ) (γ ∈ Γ) is equal to γS.

We will deal with families Γ of isometries that are crystallographic groups in
dimension 2, i.e., discrete cocompact subgroups Γ of the group Isom(R2) of all
isometries on R2 with respect to some metric. By a theorem of Bieberbach (see
[18]), a crystallographic group Γ in dimension 2 contains a group Λ of translations
isomorphic to the lattice Z2, and the quotient group Γ/Λ, called point group, is
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finite. There are 17 nonisomorphic such groups. However, in this paper, we will
mainly consider the following crystallographic p2-groups.

Definition 2.2. Let a(x, y) = (x+1, y), b(x, y) = (x, y+1), c(x, y) = (−x,−y).
Then a crystallographic p2-group is a group of isometries of R2 isomorphic to the
subgroup of Isom(R2) generated by the translations a, b and the π-rotation c.

In particular, the standard p2-group Γ has the form

(2.6) Γ = {apbqcr; p, q ∈ Z, r ∈ {0, 1}}.
We will call a tiling with respect to a p2-group a p2-tiling, and a tiling with respect
to a lattice group (i.e., for which the point group only contains the class of the
identity map of R2) a lattice tiling.

We will be concerned with self-replicating tiles constructed in the following way.
We refer the reader to [30, 62] for further information about these tiles.

Definition 2.3. A planar crystallographic replication tile with respect to a crys-
tallographic group Γ is a compact nonempty set T ⊂ R2 with the following proper-
ties:

• The family {γ(T ); γ ∈ Γ} is a tiling of R2.
• There is an expanding affine map g : R2 −→ R2 such that g ◦ Γ ◦ g−1 ⊂ Γ
and there exists a finite collection D ⊂ Γ called digit set such that (2.1) is
satisfied.

2.2.2. Lattice tiling and p2-tiling. Let Γ be the standard p2-group defined
in (2.6). We recall that an expanding affine map g in Rn has the form g(x) =Mx+t,
where t ∈ Rn and M is an n × n expanding matrix, i.e., all its eigenvalues have
modulus greater than 1.

We consider a special class of p2-crystallographic replication tiles, closely related
to the class of self-affine tiles with collinear digit set studied by Leung and Lau
in [55]. For A,B ∈ Z, B ≥ 2, let M ∈ Z2×2 be a matrix with characteristic
polynomial x2 + Ax + B. Then M is expanding if and only if |A| ≤ B. Moreover,
let v ∈ Z2 such that (v,Mv) are linearly independent. The purpose of this paper
is to study the topology of the crystallographic replication tiles defined by (2.5). A
change of coordinate system will simplify the proof of Theorem 2.1, as stated in the
following lemma.

Lemma 2.4. Let A,B ∈ Z with |A| ≤ B and B ≥ 2. Then the crystallographic
replication tile defined by (2.5) is homeomorphic to the tile defined by (2.3).

Proof. The expanding matrices used in (2.5) and (2.3) are similar via the
transfer matrix C = (v,Mv). It follows that the tiles defined by these equations
only differ from the linear transformation associated with C. □

From now on, given A,B ∈ Z satisfying |A| ≤ B and B ≥ 2, we denote by g the
expanding affine map (2.2), by D the digit set

(2.7) D = {id, a, . . . , aB−2, c}
where a, c are defined in Definition 2.2, and by T = T (A,B) the associated tile
satisfying (2.3), i.e., g(T ) =

⋃
δ∈D δ(T ).
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The relation to self-affine tiles with collinear digit set reads as follows. Let

(2.8) N =

{(
0
0

)
,

(
1
0

)
, . . . ,

(
B − 1

0

)}
and M =

(
0 −B
1 −A

)
.

We denote by T ℓ(A,B) = T ℓ the associated lattice tile satisfying (2.4), i.e,
MT ℓ =

⋃
d∈N (T ℓ + d).

Lemma 2.5 ([59]). We have

(2.9) T ℓ = T ∪ (−T ) + (M − I2)
−1

(
B−1
2
0

)
,

where I2 is the 2× 2 identity matrix.

In the rest of the Chapter, we denote the crystallographic tile and lattice tile
associated with the above data (p2, g,D) and (Z2,M,N ) by T and T ℓ, respectively.

Proposition 2.6. T is a p2-crystallographic replication tile.

Proof. By a result of Gelbrich [30], since D is a complete set of right coset
representatives of g ◦Γ ◦ g−1, we know that T has nonempty interior and the family
{γ(T ); γ ∈ Γ} is a cover of R2. Thus we only need to prove that this cover is in
fact a tiling of R2. For A ≥ −1, the family {T ℓ + z; z ∈ Z2} is a tiling of R2, since
the tile T ℓ is associated to a quadratic canonical number system (see e.g. [4]). This
also holds for the tiles T ℓ with A ≤ 0, as it is mentioned in [2] that changing A to
−A, for a fixed B, results in an isometric transformation for the associated tiles T ℓ

(see Equation (2.16)). Therefore, by Lemma 2.5, we just need to show that T and
c(T ) = −T do not overlap. This follows from the fact that T has nonempty interior
and satisfies the set equation (2.3). Indeed, each of the B sets on the right side
of this equation has two-dimensional Lebesgue measure α/B, where α > 0 is the
two-dimensional Lebesgue measure of T . The total measure of the right side being
equal to α, the sets can not overlap. □

Note that for −1 ≤ A ≤ B, the above proposition is also a consequence of the
crystallographic number system property [59].
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Figure 16. B = 3. For A = 2 on the left, T is not disk-like and for
A = −2 on the right, T is disk-like
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Remark 2.7. In the above proof, we mentioned the simple relation (2.16) be-
tween the lattice tiles T ℓ associated to A and −A. It turns out that no such easy
relation can be found for the corresponding tiles T , and the topology may become
different when changing A to −A (see Figure 16, Section 2.6 for detail).

For the lattice data (Z2,M,N ), the following proposition is proved by Leung
and Lau [55].

Proposition 2.8. Let A and B satisfy |A| ≤ B and B ≥ 2. Then T ℓ is home-
omorphic to a closed disk if and only if 2|A| < B + 3.

2.2.3. Neighbor graph. Finally, we introduce an important tool for our study,
namely, the neighbor graph.

Definition 2.9. ([62]) For Ω ⊂ Γ we define the graph G(Ω) as follows. The
states of G(Ω) are the elements of Ω, and there is an edge

γ
δ|δ′−−→ γ′ iff δ−1gγg−1δ′ = γ′ with γ, γ′ ∈ Ω and δ, δ′ ∈ D.

The neighbor graph G(S) is very important in the proof of the main result.
Recall that the neighbor set of T is defined by S = {γ ∈ Γ\{id}; T ∩γ(T ) ̸= ∅}.

Set Bγ = T ∩ γ(T ) for γ ∈ Γ. The nonoverlapping property yields for the boundary
of T that ∂T =

⋃
γ∈S Bγ. Moreover using the above notation, the sets Bγ satisfy

the set equation ([62])

Bγ =
⋃{

g−1δ(Bγ′); δ ∈ D, γ′ ∈ S,∃ δ′ ∈ D, γ δ|δ′−−→ γ′ ∈ G(S)
}
.

The following characterization is from [62].

Characterization 2.10. Let t be a point in R2, (δj)j∈N ∈ DN and γ ∈ S.
Then the following assertions are equivalent.

• x = limn→∞ g−1δ1 . . . g
−1δn(t) ∈ Bγ.

• There is an infinite walk in G(S) of the shape

γ
δ1|δ′1−−→ γ1

δ2|δ′2−−→ γ2
δ3|δ′3−−→ . . .

for some γi ∈ S and δ′i ∈ D.

This means that for each γ ∈ S, there is at least one infinite walk in G(S)
starting from the state γ. This will provide a method to construct the neighbor
graph.

2.3. The neighbor set of T for A ≥ −1 and 2A < B + 3

For the sake of simplicity, in Sections 2.3, 2.4 and 2.5 we will restrict to the case
A ≥ −1 and 2A < B + 3 and indicate in Section 2.6 the method to get the results
for A ≤ −2. Let T be the crystile and T ℓ be the lattice tile defined by (2.3) and
(2.4), and let S,Sℓ be the neighbor sets of T, T ℓ, respectively. G(S) is the neighbor
graph of T .

In this section, we will derive an “approximation” of the neighbor set S for
A ≥ −1, 2A < B + 3 from the relationship between the neighbor set of T and the
neighbor set of T ℓ. Akiyama and Thuswaldner prove the following characterization
of the neighbors of T ℓ in [4].
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Proposition 2.11. If 2A < B + 3 and A ̸= 0, then ♯Sℓ = 6. In particular,

(1) If A > 0, then Sℓ = {aAb, aA−1b, a, a−1, a−Ab−1, a−A+1b−1};
(2) If A = −1, we have Sℓ = {a−1b, b, a, a−1, ab−1, b−1};
(3) If A = 0, we have Sℓ = {a, a−1, ab, a−1b, ab−1, a−1b−1, b, b−1}.

The following lemma gives a first coarse estimate of the neighbor set of T in
terms of the neighbor set of T ℓ.

Lemma 2.12. S is a subset of Sℓ ∪ {c} ∪ Sℓc, where Sℓc = {s ◦ c; s ∈ Sℓ}.

Proof. Using Lemma 2.5, we know that the lattice tile is a translation of the
union T ∪ c(T ). Then it is easy to see that all possible neighbors of T are included
in the union of the neighbor set of T ℓ, the π-rotation of the neighbor set of T ℓ and
the π-rotation itself. □

From the above lemma, we know an upper bound for the number of neighbors
of the p2-tile T . We deduce from [61] a lower bound for this number.

Lemma 2.13. In a lattice tiling or a p2-tiling of the plane, each tile has at least
six neighbors. This implies ♯S ≥ 6 and ♯Sℓ ≥ 6.

We use Characterization 2.10 to refine the estimate of the neighbor set of T
(compare with Lemma 2.12).

Lemma 2.14. Let S ′ = Sℓ ∪ {c} ∪ Sℓc. Then the following statements hold.

(1) For A > 0, S ⊂ S ′ \ {aAb, a−Ab−1, a−Ab−1c};
(2) For A = −1, S ⊂ S ′ \ {a−1b, b, ab−1, b−1, ab−1c, b−1c};
(3) For A = 0, S ⊂ S ′ \{ab, a−1b−1, ab−1, a−1b, b, b−1, a−1b−1c, ab−1c, b−1c}.

In particular, S has at least 6 but not more than 10 elements.

Proof. We know that G(S) is a subgraph of G(S ′) by Lemma 2.12. The def-
inition of the edges requires to calculate gS ′g−1 = {gγg−1; γ ∈ S ′} at first. Let
p and q be arbitrary elements in Z. Recall that g has the form (2.2). Then

(2.10) gapbqg−1

(
x
y

)
=

(
x
y

)
+

(
−qB
p− qA

)
,

(2.11) gapbqcg−1

(
x
y

)
= −

(
x
y

)
+

(
(1− q)B − 1
p− qA

)
.

Thus the following relations hold:

gaAbg−1 = a−B, ga−Ab−1g−1 = aB, ga−Ab−1cg−1 = a2B−1c.

We claim that there are no edges starting from the states aAb, a−Ab−1, and a−Ab−1c
for A > 0.

Indeed, for δ, δ′ ∈ D,

δ−1gaAbg−1δ′ = δ−1a−Bδ′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a−B , δ = δ′ = id;
aB , δ = δ′ = c;
a−Bc , δ = id, δ′ = c;
aBc , δ = c, δ′ = id;
aB−p+q, δ = ap, δ′ = aq, 1 ≤ p, q ≤ B − 2.
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Therefore, δ−1gaAbg−1δ′ is not an element of S ′, which means that there is no edge
starting from aAb. The computation is similar for a−Ab−1, a−Ab−1c. Hence, we
obtain that aAb, a−Ab−1, a−Ab−1c are not elements of S by Characterization 2.10,
which proves Item (1).

For A = −1 and A = 0, similar computations as above show that there is no
edge starting from the states removed from S ′ in Item (2) and Item (3).

Finally, by Lemma 2.13 and the above discussion, we obtain that the neighbor
set of the crystile has at least 6 but not more than 10 elements because ♯S ′ = 13 by
Lemma 2.12. □

Figure 17. The graph G(S ′′) for A ≥ 3 and B ≥ 5 and 2A < B + 3.

2.4. The neighbor graph of T for A ≥ −1 and 2A < B + 3

In this section, we explicitly construct the neighbor graph. Throughout the whole
section, we restrict to the case A ≥ −1 and 2A < B+3. In Lemma 2.14, we denoted
by S ′ the set S ′ = Sℓ∪{c}∪Sℓc. Now for A > 0, let S ′′ = S ′\{aAb, a−Ab−1, a−Ab−1c},
that is,

(2.12) S ′′ = {aA−1b, a, a−1, b−1, a1−Ab−1, c, aAbc, aA−1bc, ac, a−1c, a1−Ab−1c}.

For A = 0, we set

(2.13) S ′′ = {a, a−1, c, ac, a−1c, a−1bc, bc, abc},

and for A = −1,

(2.14) S ′′ = {a, a−1, c, ac, a−1c, a−1bc, bc}.

By Lemma 2.14, we know that S ⊂ S ′′. We call the graph G(S ′′) the pseudo-neighbor
graph. Tables 1 and 2 show all information on G(S ′′). The last column indicates
the parameters A,B for which these edges exist. Furthermore, the pseudo-neighbor
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graphs for the cases A ≥ 3, B ≥ 5 are depicted in Figure 17. The edges named by
(1), . . . , (13) are listed in Tables 1 and 2.

Edge Labels (δ|δ′) Name Condition

c→ ac aB−2|id, aB−3|a, . . . , id|aB−2 (1) B ≥ 2 and A ≥ −1

c→ a−1c aB−2|a2, aB−3|a3, . . . , a2|aB−2 (13) B ≥ 4 and A ≥ −1

c→ c aB−2|a, aB−3|a2, . . . , a|aB−2 (2) B ≥ 3 and A ≥ −1

c→ a−1 c|aB−2 B ≥ 2, A ≥ −1

c→ a aB−2|c B ≥ 2, A ≥ −1

a→ aA−1b id|aA−1, a|aA, . . . , aB−A−1|aB−2 (3)
B ≥ 2, A ≥ 1

and (A,B) ̸= (2, 2)

a−1 → bc c|id B ≥ 3, |A| ≤ 1

a→ a1−Ab−1c c|aA−1 B ≥ 2, A ≥ 1
and (A,B) ̸= (2, 2)

a→ bc id|c B ≥ 2, |A| ≤ 1

aA−1bc→ abc c|c B ≥ 2, |A| ≤ 1

a→ a−1bc a|c B ≥ 3, A ∈ {0,−1}

a−1 → a−1bc c|a B ≥ 3, A ∈ {0,−1}

a−1 → a1−Ab−1 aA−1|id, aA|a, . . . , aB−2|aB−A+1 (4)
B ≥ 2, A ≥ 1

and (A,B) ̸= (2, 2)

a−1 → a1−Ab−1c aA−1|c B ≥ 2, A ≥ 1
and (A,B) ̸= (2, 2)

abc→ a−1bc id|id B ≥ 2, A = 0

aA−1bc→ a1−Ab−1c aA−2|id, aA−3|a, . . . , id|aA−2 (5) B ≥ 2 and A ≥ 2

aA−1bc→ aA−1b c|aA−2 B ≥ 2, A ≥ 2

aA−1bc→ a1−Ab−1 aA−2|c B ≥ 2, A ≥ 2

ac→ aAbc
aB−A−1|id, aB−A−2|a,

. . . , id|aB−A+1 (6)
B ≥ 2, A ≥ 1

and (A,B) ̸= (2, 2)

ac→ a−1bc aB−2|a2, aB−3|a3, . . . , id|aB−2 (6)′ B ≥ 4, A ∈ {0,−1}

ac→ abc aB−2|id, aB−3|a, . . . , id|aB−2 (14) B ≥ 2, A = 0

ac→ aA−1bc aB−A|id, aB−A−1|a, . . . , id|aB−A (7) B ≥ 2 and A ≥ 2

Table 1. Edges of G(S ′′) (Case A ≥ −1 and 2A < B + 3)
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Edge Labels (δ|δ′) Name Condition

ac→ bc aB−2|a, aB−3|a2, . . . , a|aB−2 (7)′ B ≥ 3, |A| ≤ 1

ac→ aA−1b aB−A|c B ≥ 2, A ≥ 2

ac→ a1−Ab−1 c|aB−A B ≥ 2, A ≥ 2

aAbc→ a−1c id|id B ≥ 2, A ≥ −1

aAbc→ a c|id B ≥ 2, A ≥ −1

aAbc→ a−1 id|c B ≥ 2, A ≥ −1

aAbc→ ac c|c B ≥ 2, A ≥ −1

bc→ a−1bc id|id B ≥ 2, A = −1

a−1c→ a1−Ab−1c aB−2|aA, aB−3|aA+1, . . . , aA|aB−2 (8) B ≥ A+ 2, A > 0

a−1c→ a−1bc c|c B = 2, A = −1

a1−Ab−1c→ aAbc
aB−2|aB−A+1, aB−3|aB−A+2,

. . . , aB−A+1|aB−2 (9) B ≥ 4 and A ≥ 3

a1−Ab−1c→ aA−1bc
aB−2|aB−A+2, aB−3|aB−A+3,

. . . , aB−A+2|aB−2 (10) B ≥ 6 and A ≥ 4

aA−1b→ a1−Ab−1 id|aB−A+1, a|aB−A+2, . . . , aA−3|aB−2 (11) B ≥ 4 and A ≥ 3

aA−1b→ aAbc c|aB−A B ≥ 2 and A ≥ 2

aA−1b→ aA−1bc c|aB−A+1 B ≥ 4 and A ≥ 3

a1−Ab−1 → aA−1b aB−A+1|id, aB−A+2|a, . . . , aB−2|aA−3 (12) B ≥ 4 and A ≥ 3

a1−Ab−1 → aAbc aB−A|c B ≥ 2 and A ≥ 2

a1−Ab−1 → aA−1bc aB−A+1|c B ≥ 4 and A ≥ 3

Table 2. Edges of G(S ′′) (Case A ≥ −1 and 2A < B + 3)

Since S ⊂ S ′′, it is clear that the neighbor graph G(S) is a subgraph of the
pseudo-neighbor graph. We will see that Characterization 2.10 will play an im-
portant role in the relationship between the neighbor graph G(S) and the pseudo-
neighbor graph G(S ′′).

Theorem 2.15. Let S be the neighbor set of T and S ′′ be defined as in (2.12),
(2.13) and (2.14). The following results hold for A,B satisfying −1 ≤ A ≤ B, B ≥ 2
and 2A < B + 3.

(1) For A ≥ 3 and B ≥ 5, S = S ′′.
(2) For A = 3 and B = 4, S = S ′′ \ {a−1c}.
(3) For A = 2 and B = 2, S = S ′′ \ {a−1c, a1−Ab−1c, a, a−1}.
(4) For A = 2 and B ≥ 3, S = S ′′ \ {a−1c, a1−Ab−1c}.



2.4. THE NEIGHBOR GRAPH OF T FOR A ≥ −1 AND 2A < B + 3 61

(5) For A = 1 and B ≥ 2, S = S ′′ \ {a−1c, a1−Ab−1c, aA−1b, a1−Ab−1}.
(6) For A = 0 and B ≥ 2, S = {a, a−1, c, ac, a−1bc, bc, abc}.
(7) For A = −1 and B = 2, S = {a, a−1, c, a−1c, a−1bc, bc};

For A = −1 and B ≥ 3, S = {a, a−1, c, ac, a−1bc, bc}.

(a) Theorem 2.15, Case A = 2, B = 2

(b) Theorem 2.15, Case A = 2, B ≥ 3

Figure 18. The neighbor graph G(S) of T

Proof. By Characterization 2.10, the neighbor graph G(S) is obtained from
the pseudo-neighbor graph G(S ′′) by deleting the states that are not the starting
state of an infinite walk. For A ≥ 3, B ≥ 5, from Figure 17, it is clear that there
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is an infinite walk starting from each state of G(S ′′). For A = 3, B = 4, from
Table 1 and Table 2, we know that there is exactly one state a−1c from which there
is no outgoing edge. For Item (3),(4),(5), and (6), see Figure 18(a), Figure 18(b),
Figure 19 and Figure 21, respectively. For Item (7), it is easy to check that a−1c
is the starting state of an infinite walk if and only if B = 2 and ac is the starting
state of an infinite walk if and only if B ≥ 3. Since the neighbor set has at least
six elements by Lemma 2.13, we get the results of Item (7) (see Figure 20 for more
details). □

Figure 19. Theorem 2.15, Case A = 1, B ≥ 2. We refer to Tables 1
and Table 2 for the conditions on the edges.

2.5. Characterization of the disk-like tiles for A ≥ −1 and 2A < B + 3

We are now in a position to study the topological properties of our family of p2-
tiles under the conditions A ≥ −1, 2A < B + 3. We will characterize the disk-like
tiles of the family under this condition. Loridant and Luo in [61] provided necessary
and sufficient conditions for a p2-tile to be disk-like. Before stating the theorem, we
need a definition.

Definition 2.16. ([61]) If P and F are two sets of isometries in R2, we say
that P is F -connected iff for every disjoint pair (d, d′) of elements in P , there exist
n ≥ 1 and elements d =: d0, d1, . . . , dn−1, dn := d′ of P such that d−1

i di+1 ∈ F for
i = 0, 1, . . . , n− 1.

The following statement is from [61]. In fact, the necessary part is due to the
classification of Grünbaum and Shephard [33].

Proposition 2.17. Let K be a crystile that tiles the plane by a p2-group. Let
F be the corresponding digit set. Let a, b be translations, and c be a π-rotation.

(1) Suppose that the neighbor set S of K has six elements. Then K is disk-like
iff F is S-connected.
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Figure 20. Theorem 2.15, case A = −1, B ≥ 3. For the case B = 2,
we only need to replace ac by a−1c and change the incoming and
outgoing edges according to Tables 1 and Table 2.

Figure 21. Theorem 2.15, the case A = 0, B ≥ 2. We refer to Tables
1 and Table 2 for the conditions on the edges.

(2) Suppose that the neighbor set S of K has seven elements

{b±1, c, bc, a−1c, a−1bc, a−1b−1c}.
Then K is disk-like iff F is {b±1, c, bc, a−1c}-connected.

(3) Suppose that the neighbor set S of K has eight elements

{b±1, (a−1b)±1, c, bc, ac, ab−1c}
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(resp. {b±1, c, bc, a−1c, b−1c, a−1bc, a−1b−1c}),
Then K is disk-like iff F is {c, bc, ac, ab−1c}-(resp.{b±1, c, a−1c}−) con-
nected.

(4) Suppose that the neighbor set S of K has twelve elements

{a±1, b±1, (ab)±1, c, a−1c, bc, abc, a−1bc, a−1b−1c},
Then K is disk-like iff F is {c, a−1c, bc}-connected.

Applying this result, we obtain the following theorem.

Theorem 2.18. Let A,B ∈ Z satisfy −1 ≤ A ≤ B, B ≥ 2 and 2A < B+3, and
let T be the crystallographic replication tile defined by the data (g,D) given in (2.2)
and (2.3). Then the following statements hold.

(1) If A ∈ {−1, 0, 1}, B ≥ 2 or A = 2, B = 2, then T is disk-like.
(2) If A ≥ 2, B ≥ 3, then T is non-disk-like.

Proof. Let S be the neighbor set of T . By Theorem 2.15, we know that in the
assumption of A ∈ {−1, 1}, B ≥ 2 and A = 2, B = 2, the neighbor sets of T all have
six elements. Let us check the case A = 1, B ≥ 2 by showing that D is S-connected
and applying Proposition 2.17 (1). Then A = −1, B ≥ 2 and A = 2, B = 2 can be
checked in the same way.

For A = 1, B ≥ 2, the digit set is D = {id, a, . . . , aB−2, c} and the neighbor set
is S = {a, a−1, c, abc, bc, ac}. It is easy to find that the disjoint pairs (d, d′) in D×D
are the following ones:

(2.15) (id, aℓ), (aℓ, id), (id, c), (c, id), (ak, ak
′
)(aj, c), or (c, aj),

where ℓ, k, k′, j ∈ {1, 2, . . . , B − 2}.
We will check the pair (ak, ak

′
) at first. If k < k′, then let n = k′ − k, and

d0 = ak, d1 = ak+1, . . . , dn−1 = ak
′−1, dn = ak

′
.

hence d−1
i di+1 = a is in S for 0 ≤ i ≤ n − 1. If k > k′, d−1

i di−1 = a−1 is also in S
for 0 ≤ i ≤ n− 1. To check (id, aℓ) and (aj, c), it suffices to check (id, a) and (a, c).
It is clear for (id, a). For (a, c), let n = 2, and d0 = a, d1 = id, d2 = c. Hence, we
have proved that D is S- connected. By Proposition 2.17 (1), T is disk-like.

For A = 0 and B ≥ 2 and the neighbor set

S = {a, a−1, c, a−1bc, bc, ac, abc}
has seven elements. By Proposition 2.17 (2), we need to prove that D is {a, a−1, c,
ac, bc}-connected. This is achieved in the same way as above.

We now prove Item (2). For A = 2, B ≥ 3 and by Theorem 2.15, we know that

S = {a, a−1, ab, a−1b−1, c, abc, a2bc, ac}.
Let a′ = a2b, b′ = ab, then S has the form

Υ := {b′, b′−1, a′−1b′, a′b′−1, c, b′c, a′c, a′b′−1c}
of Proposition 2.17 (3). However, it is easily checked that D is not {c, abc, ab2c, ac}-
connected. By Proposition 2.17 (3), T is not disk-like.

For A ≥ 3, B ≥ 4, we have ♯S = 9 if A = 3, B = 4, and ♯S = 10 if A ≥ 3, B ≥ 5
by Theorem 2.15. According to Grünbaum and Shephard’s classification of isohedral
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tillings (see [33, Sect. 6.2, p.285]), the cases in Proposition 2.17 are the only ones
leading to disk-like p2-tiles in the plane. So T is non-disk-like for A ≥ 3, B ≥ 4. □

2.6. Characterization of the disk-like tiles for A ≤ −2 and 2|A| < B + 3

We now deal with the case A ≤ −2 and 2|A| < B + 3. Let us recall a statement
in [2, Equation (2.11), p. 2177]. Let T ℓ be the lattice tile associated with M and

the digit set N (see (2.8)) and T̄ ℓ the lattice tile associated with M̄ =

(
0 −B
1 A

)
and N . Then we have

(2.16) T̄ ℓ =

(
−1 0
0 1

)
T ℓ +

∞∑
k=1

M̄−2k

(
B − 1

0

)
.

It follows that T ℓ and T̄ ℓ have the same topology. It is remarkable that this does
not hold for the associated crystiles T and T̄ , as is illustrated below.

By [4], we know all the information on the neighbor set of the lattice tile T ℓ for
A ≥ −1, hence we can derive the neighbor set of T̄ ℓ immediately.

Lemma 2.19. If 2A < B + 3 and A > 0, then the neighbor set of T̄ ℓ is

(2.17) {(−A, 1), (−A+ 1, 1), (−1, 0), (1, 0), (A,−1), (A− 1,−1)},
or, using translation mappings rather than vectors,

(2.18) {a−Ab, a−A+1b, a−1, a, aAb−1, aA−1b−1}.

Proof. γ = apbq ∈ Γ (p, q ∈ Z) is a neighbor of T ℓ iff T ℓ ∩ γ(T ℓ) ̸= ∅. Let
γ′ = a−pbq, then this is equivalent to T̄ ℓ ∩ γ′(T̄ ℓ) ̸= ∅ by (2.16). Thus, using
Proposition 2.11, we get the neighbor set (2.17) of T̄ ℓ. □

For −1 ≤ A ≤ B ≥ 2, the data (g,D, p2) is a crystallographic number system,
hence, the tiling group is the whole crystallographic group p2 [59]. It follows from
Proposition 2.6 that this property still holds for A ≤ −2. Now, by Lemma 2.19,
to obtain the neighbor set of p2-crystiles for A ≤ −2, we only need to repeat the
methods in Section 2.3 and 2.4, dealing with similar estimates and computations. We
come to the following theorem for A ≤ −2 (we do not reproduce the computations).

Theorem 2.20. Let A,B ∈ Z satisfy 2 ≤ −A ≤ B and 2|A| < B + 3, and let T
be the crystallographic replication tile defined by the data (g,D) given in (2.2) and
(2.3). Then the following statements hold.

(1) For A = −2 and B = 2 or 3, the neighbor set of the crystile T is

S = {a, a−1, c, a−1c, a−2bc, a−1bc};
(2) For A = −2, B ≥ 4, the neighbor set of the crystile T is

S = {a, a−1, c, ac, a−2bc, a−1bc}.
(3) For A = −3, B = 4, the neighbor set of the crystile T is

S = {a, a−1, a−2b, a2b−1, c, a−1c, a−2bc, a−3bc}.
(4) For A = −3, B ≥ 5, the neighbor set of the crystile T is

S = {a, a−1, aA+1b, a−1−Ab−1, c, ac, aA+1bc, aAbc, a−1c}.
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(5) For A ≤ −4, B ≥ 6, the neighbor set of the crystile T is

S = {a, a−1, aA+1b, a−1−Ab−1, c, a−1c, ac, aA+1bc, aA bc, a−A−1b−1c}.

Consequently, we can infer from Lemma 2.17 the following theorem.

Theorem 2.21. Let A,B ∈ Z satisfy 2 ≤ −A ≤ B and 2|A| < B + 3, and let T
be the crystallographic replication tile defined by the data (g,D) given by (2.2) and
(2.3) . Then the following statements hold.

(1) If A = −2, B ≥ 2, then T is disk-like.
(2) If A ≤ −3, B ≥ 4, then T is not disk-like.

Proof. For Item (1), we know from Theorem 2.20 that the neighbor set of T
has six neighbors. Thus, by Proposition 2.17 Item (1), T is disk-like.

For A = −3, B = 4, the neighbor set is

S = {a, a−1, a−2b, a2b−1, c, a−2bc, a−3bc, a−1c}.
Let a′ = a−3b, b′ = a−1, then S has the form

Υ := {b′, b′−1, a′−1b′, a′b′−1, c, b′c, a′c, a′b′−1c}
of Proposition 2.17 (3). However, it is easily checked that D is not {c, a−2bc, ab−3c,
a−1c}-connected. By Proposition 2.17 Item (3), T is not disk-like.

For the cases A = −3, B ≥ 5 and A ≤ −4, B ≥ 6, T has 9 and 10 neighbours,
respectively. Thus T is not disk-like as we have discussed in Theorem 2.18. □

2.7. Non-disk-likeness of tiles for 2|A| ≥ B + 3

So far, we have dealt with the case 2|A| < B + 3 and characterized the disk-like
p2-tiles in Theorem 2.18 and Theorem 2.21. If 2|A| ≥ B + 3, it was proved in [55]
that the lattice tiles T ℓ are not disk-like. We prove that this also holds for the
corresponding p2-tiles T .

Recall that the p2-tile T satisfies the equation

(2.19) T =
B⋃
i=1

fi(T ),

where

f1 = g−1 ◦ id, fi = g−1 ◦ ai−1 (2 ≤ i ≤ B − 1), fB = g−1 ◦ c,
g is the expanding map given by (2.2) , and D is the digit set defined as (2.7). We
denote the fixed point of a mapping f by Fix(f) and the linear part of g by M .
Then we have the following facts:

(2.20) Fix(fi) = (M − I2)
−1

(
i− 1− B−1

2
0

)
for 1 ≤ i ≤ B − 1,

(2.21) Fix(fB) = (M + I2)
−1

(
B−1
2
0

)
.

By (2.19), the fixed points given by (2.20) and (2.21) all belong to T . First of
all, we give a key lemma for the main result.
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Lemma 2.22. Let A,B ∈ Z satisfying |A| ≤ B and 2|A| ≥ B + 3, and let T be
the p2-crystile defined by the data (g,D) given in (2.2) and (2.3) and c(T ) be the
π-rotation of T . Then ♯

(
T ∩ c(T )

)
≥ 2.

Proof. By (2.20), we notice that for 2 ≤ p, q ≤ B − 2

Fix(fp) = −Fix(fq) if p+ q = B − 1.

This means that Fix(fp) and Fix(fq) are both in T and c(T ). If B > 3, these
points are different and we are done. If B ≤ 3, we only need to consider the case
|A| = 3, B = 3 since we assume that 2|A| ≥ B + 3. Since B = 3, by (2.20),

Fix(f2) =

(
0
0

)
which is in T ∩ c(T ). And for the case A = 3, B = 3, there exists an

eventually periodic sequence of edges (see Figure 22).

c
a|id
→→ ac

id|id
→→ a2bc

c|a
↓↓

a3bc

c|c

↑↑

a2b
c|id
←←

Figure 22. An eventually periodic sequence of edges for A = 3, B = 3.

The edges of this figure are defined in the same way as in Definition 2.9 and it follows
that

x0 = lim
n→∞

g−1a ◦ (g−1 ◦ g−1c ◦ g−1c ◦ g−1c)n(t) ∈ T ∩ c(T, )

(see also Characterization 2.10). Here, t ∈ R2 is arbitrary. Note that

x0 = g−1a
(
Fix(g−1 ◦ g−1c ◦ g−1c ◦ g−1c)

)
,

and it is easy to compute that x0 =

(
−13

73
16
219

)
̸=

(
0
0

)
.

For the case A = −3, B = 3, we find the eventually periodic sequence of edges

c
a|c
→→ a

a|id
→→ a−1b

a|c
→→ a−4b2c

id|id
←←

So we have

x′0 = lim
n→∞

g−1a ◦ g−1a ◦ g−1a ◦ (g−1)n(t) ∈ T ∩ c(T ),

and it is easy to verify that x′0 =

(
0
1

)
̸=

(
0
0

)
. □

Theorem 2.23. Let A,B ∈ Z satisfying |A| ≤ B and 2|A| ≥ B + 3, and let T
be the crystallographic replication tile defined by the data (g,D) given in (2.2) and
(2.3). Then T is not disk-like.
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Proof. By a result of [55], we know that if 2|A| ≥ B + 3, then T ℓ is not
disk-like. Suppose that T is disk-like. By Lemma 2.22, we have ♯(T ∩ c(T )) ≥ 2.
By [62, Proposition 4.1 item (2), p. 127], this implies that T ∩ c(T ) is a simple
arc. Therefore T ∪ c(T ) is disk-like, as the union of two topological disks whose
intersection is a simple arc is again a topological disk. However, by Lemma 2.5, T ℓ

is a translation of T ∪ c(T ), therefore T ℓ must be disk-like. This contradicts the
assumption 2|A| ≥ B + 3. □

(a) The lattice tile (b) The crystallographic tile

Figure 23. A = 1, B = 4.

(a) The lattice tile T ℓ ≃ T ∪ c(T ) (b) The crystallographic tile T

(c) The crystallographic tile T =
g−1(T )∪g−1◦a(T )∪g−1◦a2(T )∪
g−1 ◦ c(T )

Figure 24. Lattice tile and Crystile for A = −3, B = 4.

2.8. Examples

Now we provide some examples. For fixed A and B, even though the lattice tile
T ℓ is a translate of T ∪ (−T ), T and T ℓ may have completely different topological
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(a) The lattice tile T ℓ ≃ T ∪ c(T ) (b) The crystallographic tile T

(c) The crystallographic tile T =
g−1(T ) ∪ g−1 ◦ a(T ) ∪ g−1 ◦ c(T )

Figure 25. Lattice tile and Crystile for A = 3, B = 3.

behaviour. We give the following examples to illustrate this phenomenon. In Figure
23, A = 1, B = 4, T and T ℓ are both disk-like. For Figure 3 and Figure 24, T ℓ is
disk-like while T is not. In Figure 25, T and T ℓ are both not disk-like. To see that
T of Figures 24 (b) and 25 (b) are not disk-like, we depicted T = ∪δ∈Dg

−1 ◦ δ(T ) in
Figures 24 (c) and 25 (c) with a better resolution, using the IFStile package of [38].





CHAPTER 3

Space-filling curves of self-affine sets and Rauzy fractal

This chapter contains the preprint [98] with the title “Optimal parametrizations
of a class of self-affine sets”. It is also based on the articles [22] which is joint work
with Xin-Rong Dai and Hui Rao and [76] which is the joint work with Hui Rao.

3.1. Introduction

The topic of space-filling curves (SFCs) has a very long history. Recently, Rao
and Zhang [76] as well as Dai, Rao, and Zhang [22] found a systematic method
to construct space-filling curves for connected self-similar sets satisfying the open
set condition. This method generalizes almost all known results in this field. To
generalize their result to self-affine sets, we first need to show that [76, Theorem
1.1] is also true if we change the similitudes associated with edges to the affine
contractions. Due to the different contraction ratios in different directions, the
related invariant sets have more complex structures than in the self-similar case.

3.1.1. Single-matrix GIFS. Let (V,Γ) be a directed graph with vertex set V
and edge set Γ. Let

G = {Se : Rd → Rd; e ∈ Γ}
be a collection of contractions. The triple (V,Γ,G), or simply G, is called a graph-
directed iterated function system (GIFS). Usually, we set V = {1, 2, . . . , N} and
denote Γij to be the set of edges from vertex i to j. Then there exist unique non-
empty compact sets {Ei}Ni=1 satisfying

(3.1) Ei =
N⋃
j=1

⋃
e∈Γij

Se(Ej), 1 ≤ i ≤ N.

The family {Ei}Ni=1 is called the invariant sets of the GIFS (cf. [67]). By [41], G
is called a single-matrix GIFS if there is a d× d expanding matrix M such that all
functions related to e ∈ Γ have the form

(3.2) Se(x) =M−1(x+ de),

where de ∈ Rd . We say that the system G satisfies the open set condition (OSC) if
there exist non-empty open sets U1, . . . , UN such that

Ui ⊂
N⋃
j=1

⋃
e∈Γij

Se(Uj), 1 ≤ i ≤ N,

and the right hand sets union are disjoint (see [37, 67]). In addition, if Ui ∩Ei ̸= ∅
for all 1 ≤ i ≤ N , then we say the GIFS satisfies the strong open set condition

71
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(SOSC) ([82]). When the graph (V,Γ) has only one vertex with self-edges, then
the GIFS will degenerate into an iterated function system (IFS). In this case the
invariant set is called self-affine set, and it is called self-similar set when G is a
collection of similitudes.

Denote A = (mij)1≤i,j≤N the associated matrix of the directed graph (A,Γ), that
is, mij = ♯Γji counts the number of edges from j to i. We say a directed graph (V,Γ)
is primitive, if the associated matrix is primitive, i.e., An is a positive matrix for
some n. (See [67, 29].) Through the whole chapter, we always assume that (V,Γ)
is primitive.

3.1.2. Optimal parametrization. Let E ⊂ Rd be a compact set and Hs(E)
denote the Hausdorff measure with respect to Euclidean norm of E. Basically, if
ψ : [0, 1] → E is a continuous onto mapping, then ψ is a parametrization of E. If E
is a self-similar set satisfying the open set condition, then 0 < Hs(E) < ∞, where
s is the Hausdorff dimension of E. In this case, we may expect that E has a better
parametrization. The following concept is first given by Dai and Wang [23]:

Definition 3.1 ([23]). A surjective mapping ψ : [0, 1] → E is called an optimal
parametrization of E if the following conditions are fulfilled.

(i) ψ is a measure isomorphism between ([0, 1],B([0, 1]),L) and (E,B(E),Hs),
that is, there exist E ′ ⊂ E and I ′ ⊂ [0, 1] with full measure such that
ψ : I ′ → E ′ is a bijection and it is measure-preserving in the sense that

Hs(ψ(F )) = cL(F ) and L(ψ−1(B)) = c−1Hs(B),

for any Borel set F ⊂ [0, 1] and any Borel set B ⊂ E, where c = Hs(E).
(See for instance, Walters [95].)

(ii) ψ is 1/s-Hölder continuous, that is, there is a constant c′ > 0 such that

∥ψ(x)− ψ(y)∥ ≤ c′∥x− y∥
1
s for all x, y ∈ [0, 1].

We call 1/s the Hölder exponent.

For a self-affine set K, the Hausdorff measure may be 0 or ∞, and hence we
cannot require an optimal parametrization satisfying (i) of the above. Also, the 1/s-
Hölder continuity may fail. So we are forced to define the optimal parametrization
in some other way.

To this end, we choose a pseudo-norm ∥ · ∥ω instead of the Euclidean norm on
K. This pseudo-norm was first introduced by Lemarié-Rieusset [54] to deal with
problems in the theory of wavelets. Then He and Lau [35] developed the Hausdorff
dimension (denoted by dimω) and Hausdorff measure (denoted by Hs

ω) with respect
to pseudo-norm (see Section 3.2.2 for details). The advantage of the pseudo-norm
is that we can regard the expanding matrix M as a ‘similitude’. By replacing the
norm, dimension and measure by their counterpart w.r.t. the pseudo-norm, we can
define an optimal parametrization similar to Definition 3.1; details will be given in
Theorem 3.5.

The following idea of linear GIFS was designed for self-simiar set to construct
the SFC by Rao and Zhang [76].
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3.1.2.1. Linear GIFS. Let (V,Γ,G) be a GIFS with vertex set V , edge set Γ
and mapping set G. Let Γi = Γ1

i be the set of outgoing edges from the state i. For
i ∈ V , let

Γk
i and Γ∞

i

be the set of all walks of length k and the set of all infinite walks, starting at state
i, respectively. If there exists a partial order ≺ on Γ such that

(i) ≺ is a linear order when restricted on Γj for every j ∈ V ,
(ii) elements in Γi and Γj are not comparable if i ̸= j,

we call (V,Γ,G,≺) an ordered GIFS. (See [76] for detail.)
The order ≺ induces a lexicographical order on each Γk

i . Observe that (Γk
i ,≺)

is a linear order; two paths γ,ω ∈ Γk
i are said to be adjacent if there is no walk

between them with respect to the order ≺.

Definition 3.2. (see [76]) An ordered GIFS (V,Γ,G,≺) with invariant sets
{Ei}Ni=1 is called a linear GIFS, if for all i ∈ V and k ≥ 1,

Eγ ∩ Eω ̸= ∅
for adjacent walks γ,ω in Γk

i .

For i ∈ V , a walk ω ∈ Γ∞
i is called the lowest walk, if ω|n is the lowest walk in

Γn
i for all n; in this case, we call a = πi(ω) the head of Ei. Similarly, we define the

highest walk ω′ of Γ∞
i , and we call b = πi(ω

′) the the tail of Ei.

Definition 3.3. (see [76, Definition 4.1] )An ordered GIFS is said to satisfy the
chain condition, if for any i ∈ V , and any two adjacent edges ω, γ ∈ Γi with ω ≺ γ,

gω(tail of Et(ω)) = gγ( head of Et(γ)).

Lemma 3.4. An ordered GIFS is a linear GIFS if and only if it satisfies the
chain condition.

Remark. Definition 3.2, Definition 3.3 and Lemma 3.4 still make sense when G
is a family of contractions.

3.1.3. Main result. Rao and Zhang [76] proved that as soon as we find a linear
GIFS structure of a self-similar set, then a space-filling curve can be constructed ac-
cordingly. Dai, Rao, and Zhang [22] develop a very general method to explore linear
GIFS structures of a given self-similar set. To obtain the optimal parametrizations
for self-affine sets, we have the following statement.

Theorem 3.5. Let (V,Γ,G,≺) be a linear single-matrix GIFS with expanding
matrix M satisfying the open set condition and assume that the associated matrix
A of the graph is primitive. Then there exists a parametrization ψj of the invariant
Ej for all j ∈ V such that

(i) ψj is a measure isomorphism between

([0, 1],B([0, 1]),L) and (Ej,B(Ej),Hs
ω).

(ii) There is a constant c > 0 such that

∥ψj(x)− ψj(y)∥ω ≤ c∥x− y∥
1
α for all x, y ∈ [0, 1],

where α = dimω Ej.
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To prove the above theorem, we will not go in detail and only show the crucial
difference with the proof of [76, Theorem 1.1].(see Section 3.2.3.)

According to the relation between Euclidean norm and pseudo-norm (See Propo-
sition 3.11), we have the following result for the Hölder continuity of the parametriza-
tion ψj obtained by the above theorem.

Corollary 3.6. Let λM be the maximal eigenvalue of M . Let λmax and λmin

be the maximal modulus and minimal modulus of the eigenvalues of A, respectively.
For any 0 < ϵ < λmin − 1,

• ψj is ln(λmax+ϵ)
lnλM

-Hölder continuous if ∥ψj(x)− ψj(y)∥ ≥ 1;

• ψj is ln(λmin−ϵ)
lnλM

-Hölder continuous if ∥ψj(x)− ψj(y)∥ ≤ 1.

The matrices M and A have the same meaning as in the above theorem.

(a) Unit square Q = ∪6
i=1Si(Q). (b) Initial cycle. (c) First generation.

(d) Second generation. (e) Third generation. (f) Parametrized square.

Figure 26. The space-filling curve of unit square given by IFS {Si}6i=1.

Inspired by [22], we shall do some further study on construting SFCs of self-affine
sets, such as McMullen sets, self-affine tiles and Rauzy fractals. To this matter, we
try to find a suitable method as we did for self-similar sets. Here we want to
emphasis that to do the parametrization of a Rauzy fractal is based on invariant
sets of a graph-directed iterated system, that is to say, we construct a linear GIFS
from a given GIFS. ([22] focused on constructing a linear GIFS from a given IFS.)
Thus here we need a modified definition for the skeleton for the GIFS which is first
prepared for self-similar sets by [23, 77].

3.1.4. Skeleton of a GIFS. Recall that {Ei}i∈V are the invariant sets of the
GIFS (V,Γ,G) given by the set equation (3.1). The vertex set is V = {1, 2, . . . , N}
and Γij is the set of edges from vertex i to j.
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For fixed i ∈ V , let Ai be a subset of Ei, we define a graph H(Ai) as follows.

• The vertex set is {Se; e ∈ Γij, j ∈ V }.
• There is an edge between two vertices Sω and Sγ if and only if Sω(At(ω)) ∩
Sγ(At(γ)) ̸= ∅ where t(e) denotes the terminate state of the edge e ∈ Γ.

We call H(Ai) the Hata graph induced by Ai.
We say a graph is connected if any two vertices in the graph can be reached by

a path.

Remark 3.7. For V is a single point set, the GIFS degenerates to an IFS and
Hata [34] intoduced the above graph H(E) (E = E1 = · · · = EN) to study the
connectedness of self-similar set. It proved that a self-similar set E is connected if
and only if the graph H(E) is connected.

Later, Luo, Akiyama and Thuswaldner [64] generalized this result and proved
the connectedness for GIFS by the following statement.

Lemma 3.8 ([64]). Let {E}j∈V be the invariant set of the GIFS (V,Γ,G) given
by (3.1). Then Ej is connected for all j ∈ V iff H(Ej) is connected.

Definition 3.9. Let {Ej}j∈V be the invariant sets of the GIFS (V,Γ,G), and let
Aj be a finite subset of Ej. We call {Aj}j∈V a skeleton of the GIFS G (or {Ej}j∈V ),
if {Aj}j∈V satisfies the following two conditions.

• Aj is stable under iteration, i.e.

Aj ⊂
⋃
i∈V

⋃
e∈Γji

Se(Ai).

• The Hata graph H(Aj) are connected for all j ∈ V .

To continue our construction, we need the substitution rule as we did for self-
similar sets. The edge-to-trail substitution is introduced by [22] for self-similar IFS
case. Here we general this concept for the GIFS.

3.1.5. Edge-to-trail substitution. When we have a skeleton Ai = {ai1, ai2,
. . . , aimi

} of the GIFS G, we denote the cycle passing ai1, . . . , aimi
one by one by Λi.

Let Gi be the union of the affine images of Λj under Se for e ∈ Γij, that is

Gi =
N⋃
j=1

⋃
e∈Γij

Se(Λj).

which we call refined graph.
For i ∈ V , let τi be the mapping from Λi to trails of Gi; We call τi an edge-to-trail

substitution , if for all u ∈ Λi, τi(u) has the same origin and terminus as u. (See
more details in Section 3.3.)

After we have an edge-to-trail substitution rule, we will show in Section 3.3.3
that we can construct an ordered GIFS according. Then we show that this ordered
GIFS is actually linear (See Theorem 3.17). To apply Theorem 3.5, we have to check
this linear GIFS satisfying more conditions.

Instead of discussing these conditions, we will do more efforts on the examples
of constructing SFCs for different sets. In Section 3.4, we will show the examples
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for constructing SFCs for unit square for Dekking’s plane filling curve and for a
McMullen set. Section 3.5 will contribute to create the SFCs for a class of self-affine
disk-like tiles. And in the last Section, the SFC for the classical Rauzy fractal will
be presented.

3.2. Pseudo norm and Proof of Theorem 3.5

3.2.1. The symbolic space related to a graph G. First, we recall some
terminologies of graph theory, see for instance, [8]. Let G = (V,Γ) be a directed
graph. A sequence of edges in G, denoted by ω = ω1+ω2+ · · ·+ωn, is called a walk,
if the terminal state of ωi coincides with the initial state of ωi+1 for 1 ≤ i ≤ n− 1.
The walk is closed if the origin of ω1 and the terminus of ωn coincide. A walk is
called a trail, if all the edges appearing in the walk are distinct. A trail is called a
path if all the vertices are distinct. A closed path is called a cycle. A subgraph H
of G is called spanning, if H contains all the vertices of G. An Euler trail in G is a
spanning trail in G that contains all the edges of G. An Euler tour of G is a closed
Euler trail of G.

For i ∈ V , let Γ∗
i be the set all walks of finite length starting at state i. Note

that Γ∗
i =

⋃
k≥1 Γ

k
i .

For ω = (ωk)
∞
k=1, define by ω|n = ω1 + ω2 + · · ·+ ωn the prefix of ω of length n.

Moreover, call [ω1 . . . ωn] := {γ ∈ Γ∞
i ; γ|n = ω1 + · · ·+ ωn} the cylinder associated

with a walk ω1 + · · ·+ ωn.
For a walk γ = γ1 + · · ·+ γn ∈ Γn

i , set gγ := gγ1 ◦ gγ2 · · · ◦ gγn , then we denote

Eγ := gγ(Et(γ)),

where t(γ) denotes the terminal state of the path γ (which equalsγn here). Iterating
(3.1) k-times, we obtain

(3.3) Ei =
⋃
γ∈Γk

i

Eγ .

We define the projection π : Γ∞
1 × · · · × Γ∞

N → Rd × · · · ×Rd, where πi := π|Γ∞
i
:

Γ∞
i → Rd is given by

(3.4) {πi(ω)} :=
⋂
n≥1

Eω|n .

For x ∈ Ei, we call ω a coding of x if πi(ω) = x. It is easy to see that πi(Γ
∞
i ) = Ei.

3.2.2. Pseudo-norm and Hausdorff measure in pseudo-norm. The no-
tion of pseudo-norm was first introduced by [54]. And He and Lau [35] use this
concept to study the dimension and the separation properties of the invariant sets
of single-matrix IFS’s.

Denote by B(x, r) the open ball with center x and radius r. Recall that A is the
expanding matrix with | detA| = q, then V = A(B(0, 1)) \B(0, 1) is homeomorphic
to an annulus. For δ ∈ (0, 1

2
), choose a positive C∞-function ϕδ(x) with support in

B(0, δ) such that ϕδ(x) = ϕδ(−x) and
∫
ϕδ(x)dx = 1, and then define a pseudo-norm
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∥ · ∥ω in Rd by

∥x∥ω =
∑
n∈Z

q−n/dh(Anx),

where h(x) = χV ∗ ϕδ(x) =
∫
Rd χV (x− y) · ϕδ(y)dy.

We list some basic properties of ∥ · ∥ω.

Proposition 3.10. (See [35, Proposition 2.1]) The function ∥ · ∥ω has the prop-
erties as follows.

(i) ∥x∥ω ≥ 0; ∥x∥ω = 0 if and only if x = 0.
(ii) ∥x∥ω = ∥ − x∥ω;
(iii) ∥Ax∥ω = q1/d∥x∥ω ≥ ∥x∥ω for all x ∈ Rd.
(iv) There exists a constant β > 0 such that ∥x+ y∥ω ≤ βmax{∥x∥ω, ∥y∥ω} for

any x, y ∈ Rd.

The pseudo-norm ∥ · ∥ω is comparable with the Euclidean norm ∥x∥ .

Proposition 3.11. (See [35, Proposition 2.4]) Let λmax and λmin be the maximal
modulus and minimal modulus of the eigenvalues of A, respectively. For any 0 <
ε < λmin − 1, there exists C > 0(depends on ε) such that

C−1∥x∥ln q/d ln(λmax+ε) ≤ ∥x∥ω ≤ C∥x∥ln q/d ln(λmin−ε), if ∥x∥ > 1;

C−1∥x∥ln q/d ln(λmin−ε) ≤ ∥x∥ω ≤ C∥x∥ln q/d ln(λmax+ε), if ∥x∥ ≤ 1.

The Hausdorff measure with respect to the pseudo-norm ∥ · ∥ω was given by He
and Lau [35] as follows. For E ⊂ Rd, set diamωE = sup{∥x− y∥ω; x, y ∈ E} to be
the ω-diameter of E. For s ≥ 0, δ > 0, set

Hs
ω,δ(E) = inf

{ ∞∑
i=1

(diamωEi)
s; E ⊂

⋃
i

Ei, diamωEi ≤ δ
}
,

Hs
ω(E) = lim

δ→0
Hs

ω,δ(E).

Hs
ω has the translation invariance property and the scaling property [35], that is,

Hs
ω(E + x) = Hs

ω(E) and Hs
ω(A

−1E) = q−s/dHs
ω(E).

Thus the Hausdorff dimension with respect to ∥ · ∥ω can be defined by

dimω E = inf{s; Hs
ω(E) = 0} = sup{s; Hs

ω(E) = ∞}.

3.2.3. Proof of Theorem 3.5. In this section, we prove Theorem 3.5 by con-
structing an auxiliary GIFS (which we call measuring-recording GIFS), which is very
similar to the proof in [76]. However, the theorem related to the open set condition
of Mauldin and Williams [67] does not hold when A is not a similitude. So we need
to use the result of Luo and Yang [41] to modify the proof.
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3.2.3.1. Markov measure induced by GIFS. Let (V,Γ,G) be single-matrix
GIFS with expanding matrix M and {Ei}Ni=1 be the invariant sets. Denote q =
|det(M)|. And A = (mij)1≤i, j≤N is the associated matrix of the directed graph
(V,Γ). Due to the following lemma from [41], we can construct the Markov measure.

Lemma 3.12. ([41, Theorem 1.2]) For a single matrix GIFS (V,Γ,G), let λ be
the maximal eigenvalue of A. If A is primitive and the OSC holds, then for any
1 ≤ i ≤ N ,

(i) α = dimω Ei = d log λ
log q

;

(ii) 0 < Hα
ω(Ei) <∞.

(iii) The right hand side of (3.1) is a disjoint union in sense of the measure of
Hα

ω.

Remark (1). By item (iii) of the above lemma, we immediately have

Hα
ω(Eω ∩ Eγ) = 0

for any incomparable ω,γ ∈ Γ∗
i . (Two walks are said to be comparable if one of

them is a prefix of the other.)

Remark (2). Since Ei =
⋃N

j=1

⋃
e∈Γij

Se(Ej), using Remark (1), we get

Hα
ω(Ei) =

N∑
j=1

∑
e∈Γij

Hα
ω(Se(Ej)) = λ−1

N∑
j=1

♯ΓijHα
ω(Ej).

This shows that (Hα
ω(E1), . . . ,Hα

ω(EN)) is an eigenvector with respect to λ of A.
In the rest of the section, we will always assume that G satisfies the conditions

of Lemma 3.12. Then 0 < Hα
ω(Ei) < ∞ for all 1 ≤ i ≤ N . Now, we define Markov

measures on the symbolic spaces Γ∞
i , i ∈ V . For arbitrary edge e ∈ Γ such that

e ∈ Γij, set

(3.5) pe =
Hα

ω(Ej)

Hα
ω(Ei)

λ−1.

Using Remark (2) of Lemma 3.12, it is easy to verify that (pe)e∈Γ satisfies

(3.6)
∑
j∈V

∑
e∈Γij

pe = 1, for all i ∈ V.

We call (pe)e∈Γ a probability weight vector. Let Pi be a Borel measure on Γ∞
i satis-

fying the relations

(3.7) Pi([ω1 . . . ωn]) = Hα
ω(Ei)pω1 . . . pωn

for all cylinder [ω1 . . . ωn]. The existence of such measures is guaranteed by (3.6).
We call {Pi}Ni=1 the Markov measures induced by the GIFS G.

Denote the restriction ofHα
ω on Ei by µi = Hα

ω|Ei
, for i = 1, . . . , N. The following

Lemma gives the relation between the Markov measure and the restricted Hausdorff
measure.

Lemma 3.13. (see [67, 41]) Suppose the single-matrix graph IFS (V,Γ,G) sat-
isfies the OSC and the associated matrix M is primitive. Let πi : Γ

∞
i → Ei be the

projections defined by (3.4). Then

µi = Pi ◦ π−1
i .
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3.2.3.2. The construction of measure-recording GIFS. Let (V,Γ,G,≺ ) be
a linear GIFS such that the open set condition is fulfilled and the associated matrix
is primitive, then 0 < Hα

ω(Ei) <∞ for all i, where α = d log λ
log q

by Lemma 3.12.

For i ∈ V , we list the edges in Γi in the ascendent order with respect to ≺, i.e.,

γ1 ≺ γ2 ≺ · · · ≺ γℓi .

Recall that t(γ) denotes the terminate vertex of an edge γ. Then by (3.1), we can
rewrite Ei as

Ei ⊜ gγ1(Et(γ1)) ∪ · · · ∪ gγℓi (Et(γℓi )
).

Here we use ‘⊜’ to emphasize the order of the union of the right side.
Denote by Fi = [0,Hα

ω(Ei)] an interval on R, then by equation (3.6), we have

(3.8) Fi =
[
0, Hα

ω(gγ1(Et(γ1)))
]
∪ · · · ∪

[ ℓi−1∑
j=1

Hα
ω(gγj(Et(γj))),

ℓi∑
j=1

Hα
ω(gγj(Et(γj)))

]
.

We define the mappings,

fγk(x) = q−α/dx+ bk : R −→ R, 1 ≤ k ≤ ℓi,

where bk =
∑k−1

j=1 Hα
ω(Et(γj))q

−α/d. Then Fi satisfies the following equation by (3.8)

(3.9) Fi ⊜ fγ1(Ft(γ1)) ∪ · · · ∪ fγℓi (Ft(γℓi )
).

Repeating these procedures for all i ∈ V , equation (3.9) gives us an ordered GIFS
on R. Set F = {fγ : R −→ R; γ ∈ Γ}, and denote this GIFS by

(V,Γ,F ,≺),

and call it the measure-recording GIFS of (V,Γ,G,≺). And the invariant sets of the
measure-recording GIFS are {Fi}Ni=1. (See [76].)

Obviously, the measure-recording GIFS has the same graph and the same order
as the original GIFS; also keeps the Hausdorff measure information of the original
GIFS. And it is easy to check F satisfies the open set condition. In fact, the open
intervals {Ui = (0,Hα

ω(Ei))}Ni=1 are the according open sets.
For an edge e ∈ Γ, the contraction ratio of fe is q−α/d = λ−1, then it is easy

to check (L(F1), . . . ,L(FN)) is an eigenvector of A with respect the eigenvalue λ−1.
Thus the Markov measure induced by the measure-recording GIFS coincides with
{Pi}Ni=1 induced by the original GIFS.

Let

πi : Γ
∞
i → Ei and ρi : Γ

∞
i → Fi, i = 1, . . . , N,

be projections w.r.t. the GIFS (G) and (F), respectively, (see (3.4)). Define

(3.10) ψi := πi ◦ ρ−1
i .

In [76], it is shown that ψi is a well-defined mapping from Fi to Ei since we consider
a linear GIFS.

Now, we prove Theorem 3.5 by showing that the mapping ψi is an optimal
parametrization of Ei.
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Proof. We use the same notations as before, let F be the measure-recording
GIFS of G. Through the discussion before, we denote the common Markov measure
induced by G and F by Pi. ψi = πi ◦ ρ−1

i is the well-defined mapping from Fi to Ei.
Let νi = L|Fi

be the restriction of the Lebesgue measure on Fi and µi = Hα
ω|Ei

be
the restriction of the weak Hausdorff measure on Ei, then νi = Pi◦ρ−1

i , µi = Pi◦π−1
i

by Lemma 3.13.
The fact that ψi is almost one to one and measure preserving follows by the same

arguments as in the self-similar case and we refer to the proof of [76, Theorem 1.1].
We have to prove the 1/α-Hölder continuity of ψi. From the previous construc-

tion, we know that Fi = [0,Hα
ω(Ei)]. Now we choose two different points x1, x2

from Fi which are determined by ω = (ωi)
∞
i=1 and γ = (γi)

∞
i=1, respectively, that is,

x1 = ρi(ω), x2 = ρi(γ). Then there is a smallest integer which we denote by k such
that x1, x2 belongs to two different cylinders. Set ω|k = ω1+ · · ·+ωk, we know that
γ|k is only different from ω|k at last edge, i.e., γ|k = ω1 + · · ·+ ωk−1 + γk. Accord-
ing to whether ω|k and γ|k are adjacent or not, we consider two cases. First, we
consider that ωk and γk are not adjacent. (See Figure 27.) Then there is a cylinder

Figure 27. ω and γ are not adjacent.

η = ω1 + · · ·+ ωk−1 + ηk between ω|k and γ|k, so

∥x1 − x2∥ ≥ diam Fη ≥ h · (q−α/d)k,

where h = min{Hα
ω(Ei); i = 1, . . . , N}. Since x1 and x2 belong to ρ([ω1ω2 . . . ωk−1])

and denote ω∗ = ω1 + · · · + ωk−1, the images of x1 and x2 under πi ◦ ρ−1
i , which

denote by y1 and y2, respectively, belong to πi([ω∗]) = Eω∗ . Then we have

∥y1 − y2∥ω ≤ diamωEω∗ ≤
(
max1≤m≤N diamωEi

)
· q−

k−1
d

= D · q1/d · (q−1/d)k ≤ D · q1/d · (1/h)
d
α∥x1 − x2∥

1
α ,

(3.11)

where D = max1≤i≤N diamωEi.
Now, we consider the case that ωk and γk are adjacent. (See Figure 28 (left).)

Let x3 be the intersection of Fω|k and Fγ|k . Let k
′ be the smallest integer such that

x1 and x3 belong to different cylinders of rank k′, say, x1 ∈ ρi([ω
′]) and x3 ∈ ρi([ω

′′])
(see Figure 28 (right)), then ∥x1 − x3∥ ≥ diam Fω′′ since x3 is an endpoint. Let
y3 = ψi(x3). Similar to Case 1, we have

∥y1 − y3∥ω ≤ D · q1/d · (1/h)
d
α∥x1 − x3∥

1
α .

By the same argument, we have

∥y2 − y3∥ω ≤ D · q1/d · (1/h)
d
α∥x2 − x3∥

1
α .
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Figure 28. ω and γ are adjacent.

Hence, by the fact x3 is located between x1 and x2,

∥y1 − y2∥ω ≤ β · max{∥y1 − y3∥ω, ∥y3 − y2∥ω}

≤ β ·D · q1/d · (1/h)
d
α ·max {∥x1 − x3∥

1
α , ∥x2 − x3∥

1
s}

≤ β ·D · q1/d · (1/h)
d
α · ∥x1 − x2∥

1
α ,

(3.12)

where the first inequality is from Proposition 3.10 (iv).
Therefore, (3.11) and (3.12) verify the 1/α- Hölder continuity of ψi. □

3.3. From skeleton to linear GIFS

Let (V,Γ,G) be an GIFS possessing a skeleton {Ai}i∈V with invariant sets {Ei}i∈V
and satisfying the OSC. Denote the vertex set V = {1, 2, . . . , N} for simplicity. And
we denote the skeleton by

Ai = {ai1, ai2, . . . , aimi
},

where mi is greater than 2 and i ∈ V .
Define

(3.13) Λi = ΛAi
:= −−−→ai1ai2 + · · ·+−−−−−−→aimi−1aimi

+−−−−→aimi
ai1

to be the cycle passing ai1, . . . , aimi
in turn. We denote the edge set of Λi by

V +
i = {−−−→ai1ai2, . . . ,

−−−−−−→aimi−1aimi
,−−−−→aimi

ai1}.
We call Λi the initial graph. We note that the edges −−−−−−→aikai(k+1) are abstract edges
rather than oriented line segments.

To continue our construction, we need to define the affine copy of a directed
graph which you can also find in [22].

Definition 3.14. [22] Let G be a directed graph with edge set Γ such that the
vertex set A ⊂ Rd. Let S : Rd → Rd be a affine mapping. We define a directed
graph GS = (S(A),ΓS) as follows: there is an edge in ΓS from S(x) to S(y), if and
only if there is an edge e ∈ Γ from vertex x to y. Moreover, we denote this edge by
(e, S). For simplicity, we shall denote GS,ΓS, and (e, S) by S(G), S(Γ) and S(e),
respectively.

Remark 3.15. (i) If (A1,Γ1) and (A2,Γ2) are two graphs without common edges,
then we define their union to be the graph (A1 ∪ A2,Γ1 ∪ Γ2).

(ii) Even if Sj(ek) coincides with Sj′(ek′) as oriented line segment, they should
regarded as different edges, since (ek, Sj) ̸= (ek′ , Sj′).
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3.3.1. Refined graph and edge-to-trail substitution. Let Gi be the union
of affine images of Λj under Se for e ∈ Γij, that is,

(3.14) Gi =
N⋃
j=1

⋃
e∈Γij

Se(Λj),

and we call it the refined graph induced by {Λi}Ni=1.
For 1 ≤ i ≤ N , let τi be a mapping from Λi to trails of Gi; we shall denote τi(u)

by P i
u to emphasize that τi(u) is a trail in Gi. We call τi an edge-to-trail substitution,

if for all u ∈ Λi, P
i
u has the same origin and terminus as u.

An edge-to-trail substitution τi can be thought as replacing each big edge u
by a trail P i

u consisting of small edges. Our goal is to show that the edge-to-trail
substitution can produce a linear GIFS.

Lemma 3.16. The refine graph Gi admits Euler tours for all 1 ≤ i ≤ N .

Proof. The Lemma can be proved in the same way as [22, Lemma 5.1]. In
fact, we apply the idea for each i. □

3.3.2. Iteration of edge-to-trail substitutions. We use the following two
rules to iterate τi:

(i) For I ∈ Γ∗
i and u ∈ Λi, if τi(u) = γ1 + · · ·+ γℓ, we set

(3.15) τi(SI(u)) = SI(γ1) + · · ·+ SI(γℓ);

(ii) Let

L = T1(γ1) + T2(γ2) · · ·+ Tk(γk)

be a trail in Gi where Tj ∈ G,γj ∈
⋃N

i=1 Λi. We define τi(L) to be the trail

τi(L) = T1(τh(γ1)(γ1)) + T2(τh(γ2)(γ2)) + · · ·+ Tk(τh(γk)(γk)),

where h(γ) denotes the initial vertex of an edge γ.
Hence, we can define τni (u) recurrently, which is a trail consisting of small edges.

Geometrically, we can explain τni (u) as an oriented broken line which provides an
approximation of the corresponding SFC of Ei.

3.3.3. The edge-to-trail substitution induces linear GIFS. In this part,
we will define the induced GIFS from the edge-to-trail substitution and we shall
prove that this is a linear GIFS. Actually, the method using here is the same as we
did for constructing SFC for self-similar sets [22]. Here we repeat the procedure for
each refined graph Gi, that is to say, for each i, we can find a partition

Gi = P i
1 + · · ·+ P i

mi

such that P i
j is a trail from aij to ai(j+1). (Here we consider Gi as a union of all

edges in Gi.)
For i ∈ V , let τi : u ↦→ P i

u, u ∈ Λi be an edge-to-trail substitution defined in
Section 3.3.1. By the construction, the trail P i

u can be written as

(3.16) P i
u = Su,1(vu,1) + · · ·+ Su,ℓu(vu,ℓu),

where Su,j ∈ {Se; e ∈ Γi} and vu,j ∈ {Λt(e); e ∈ Γi} for j = 1, . . . , ℓu.
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According to τi we can construct an ordered GIFS as follows. Replacing P i
u by

Eu on the left hand side, and replacing v by Ev on the right hand side of (3.16), we
obtain an ordered GIFS:

(3.17) Eu ⊜ Su,1(Evu,1) + · · ·+ Su,ℓu(Evu,ℓu
), u ∈ Λi,

which we call the induced GIFS of τi. In an ordered GIFS, we use “ + ” to replace
the “∪ ” in the set equation to emphasis the order structure. And ⊜ is to show the
order of the right hand side.

For i ∈ V , we use a new notation

(3.18) (Λi, Ei,Gi,≺)

to denote the ordered GIFS given by equation (3.17). Here we use Λi to denote
the state set which is the edges of the initial graph and the edge set Ei consists of
quadruples (u, Se, v, k), i.e. , if Se(v) is the k-th edge in the trail P i

u, then it is an
edge of Ei and we mark this edge by

(3.19) (u, Se, v, k) ∈ Ei.
The contraction associated with this edge is Se.

Theorem 3.17. The induced GIFS (3.17) is a linear GIFS for every i.

Proof. Let u ∈ Λi. We denote by au and bu the origin and the terminus of u
as an edge in the initial graph Λi. We claim that the lowest and highest elements
in Γ∞

u are codings of au and bu, respectively.
Let S(v) be the first edge in P i

u, then ω = (u, S, v, 1) is the lowest edge emanating
from u in Γu. It follows that

(3.20) au = S(av).

Therefore, if (ωn)
∞
n=1 is a coding of av, then

ω(ωn)
∞
n−1

is a coding of au. Applying the same argument to v, we obtain a coding of au, such
that the first two edges of this coding is the lowest walk in Γ2

u. Continuing this
argument, we conclude the lowest element in Γ∞

u is a coding of au.
Similarly, the highest element in Γ∞

u is a coding of bu.
Now, let ω = (u, S, v, k) and γ = (u, T, v′, k+1) be two consecutive edges in Γu.

This means that S(v) and T (v′) are two adjacent edges in P i
u, so S(bv) = T (av′).

On the other hand, since ω(ωn)n≥1 is highest coding in Γ∞
u , (ωn)n≥1 is the highest

coding in Γv. So πv((ωn)n≥1) = bv by the claim above, and

πu(ω(ωn)n≥1) = S ◦ πv((ωn)n≥1) = S(bv).

Similarly, we have πu(γ(γn)n≥1) = T (av′) if γ(γn)n≥1 is the lowest coding of Γ∞
u .

This verifies the chain condition. Therefore, the ordered GIFS in consideration is
linear. □

Remark 3.18. The construction in this Section is designed for a GIFS, but we
can apply the theory for a self-affine set if we regard an IFS as a GIFS with only one
vertex and several self-edges. Later in Section 3.4, we will apply the construction
for the unit square and the McMullen set.
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3.4. Some simple examples for constructing SFCs

In this part, we will start to construct some examples to show how the theoretical
parts introduced previous sections come true. In the following examples, we always
use e1, e2 to denote the standard basis of R2. Denote the maximal eigenvalue of the
associated matrix A by λA. And denote by the Hölder exponent (in the sense of
Corollary 3.6)with respect to Euclidean norm HölderE .

(a) Initial cycle. (b) First generation. (c) Second generation.

Figure 29. The edge-to-trail substitution for unit square.

Example 1 (A unit square ). Let Q be the unit square generated by the IFS
Si(x) = M−1(x + di), di ∈ D, where D = {0, e2, e1 + e2, e1, 2e1, 2e1 + e2}, and the

expanding matrix is M =

(
3 0
0 2

)
, (see Figure 26 (a)). Let a1, a2, a3 be the three

vertice of the unit square, then it is easy to check that A = {a1, a2, a3} is a skeleton
of Q. Let Λ be the cycle passing by a1, a2, a3 in turn (see Figure 29(a)). Denote
by vi the edge from ai to ai+1, i = 1, 2, 3 (assume a4 = a1). We have the refined
graph G = S1(Λ)∪· · ·∪S6(Λ). Clearly, we can find an Euler tour P with a partition
P = P1 + P2 + P3 in G such that Pi has the same origin and terminus as vi for
i = 1, 2, 3 (see Figure 29(b)). Then we have the following edge-to-trial substitution
τ .

v1 −→ S1(v1) + S1(v2) + S3(v1) + S4(v3) + S4(v1) + S5(v1),

v2 −→ S5(v2) + S5(v3) + S4(v2) + S6(v1) + S6(v2),

v3 −→ S6(v3) + S3(v2) + S3(v3) + S2(v2) + S2(v3) + S2(v1) + S1(v3),

(3.21)

where we use the symbol ′+′ to connect the consecutive edges or sub-trails. Then
the induced GIFS obtained the above substitution can be showed in the following
set equation form.

E1 ⊜ S1(E1) + S1(E2) + S3(E1) + S4(E3) + S4(E1) + S5(E1),

E2 ⊜ S5(E2) + S5(E3) + S4(E2) + S6(E1) + S6(E2),

E3 ⊜ S6(E3) + S3(E2) + S3(E3) + S2(E2) + S2(E3) + S2(E1) + S1(E3).

By Theorem 3.17, the above induced GIFS is a linear GIFS, or we can check it
by Lemma 3.3 directly. Figure 30 shows us the induced GIFS with three vertice
{v1, v2, v3} and the edges.
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The associated matrix of the substitution which is defined as the associated
matrix of the directed graph G obtained by the substitution is

A =

⎛⎝4 1 1
1 3 2
1 1 4

⎞⎠ , λA = 6, HölderE = log6 2.

Compared with the unit square parametrized using the method as Hilbert or Peano
which have the Hölder exponent 1

2
, the parametrization obtained here doesn’t have

a better smoothness.

Figure 30. The directed graph G with vertex set {v1, v2, v3} and
labelled edges obtained by the substitution rule (3.21). The label
(S, i) with S ∈ {Si}6i=1 and i ∈ N means that S is the contraction for
the i-th edge starting from this vertex. The graph here determins a
GIFS.

Example 2 (Dekking’s plane filling curve [24] ). It is induced by the fol-
lowing substitution:

σ : a ↦→ abadadab; b ↦→ cbcbadab; c ↦→ cbcbcdadcbcd; d ↦→ adcd.

Denote M =

(
4 0
0 2

)
to be an expanding matrix. Through the substitution σ, we

obtain an ordered GIFS by the set equation as follows.

MEa ⊜ Ea + (Eb + e1) + (Ea + e1 + e2) ∪ (Ed + 2e1 + e2) + (Ea + 2e1)+

(Ed + 3e1) + (Ea + 3e1 − e2) + (Eb + 4e1 − e2),

MEb ⊜ Ec + (Eb − e1) + (Ec − e1 + e2) + (Eb − 2e1 + e2) + (Ea − 2e1 + 2e2)+

(Ed − e1 + 2e2) + (Ea − e1 + e2) + (Eb + e2),

MEc ⊜ Ec + (Eb − e1) + (Ec − e1 + e2) + (Eb − 2e1 + e2) + (Ec − 2e1 + 2e2)+

(Ed − 3e1 + 2e2) + (Ea − 3e1 + e2) + (Ed − 2e1 + e2) + (Ec − 2e1)+

(Eb − 3e1) + (Ec − 3e1 + e2) + (Ed − 4e1 + e2),

MEd ⊜ Ea + (Ed + e1) + (Ec + e1 − e2) + (Ed − e2).
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(a) (b) (c)

(d) (e)

Figure 31. The figures (b), (c),(d),(e) show the first four approxi-
mation of Ea.

Moreover, the associated matrix of the substitution is

A =

⎛⎜⎜⎝
4 2 1 1
2 3 3 0
0 2 5 1
2 1 3 2

⎞⎟⎟⎠ , λA = 8, HölderE =
1

3
.

Then we can check that HölderE is between the two Hölder exponents obtained by
Corollary 3.6.

We can check the ordered GIFS induced by the substitution σ is linear by the
chain condition. To check the chain condition, we need to calculate the heads and
tails of Ea, Eb, Ec, Ed. We denote the head of a set K by h(E) and tail of a set t(E).
Then we have

h(Ea) = 0, t(Ea) = e1, h(Eb) = 0, t(Eb) = e2,

h(Ec) = 0, t(Ec) = −e1, h(Ed) = 0, t(Ed) = −e2.

Thus it is easy to check that it satisfies the chain condition. Figure 31 shows the
proceeding of filling curve of Ea.
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Figure 32. The left figure is E = Ea ∪ Eb ∪ Ec ∪ Ed, and the right
one is Ed. Example 2.

Figure 33. The left is Mcmullen set T and the right is ∪5
i=1Ei.

(a) (b)

Figure 34. Substitution rule of the Mcmullen set

Example 3 (AMcMullen set [68] ). DenoteM =

(
3 0
0 2

)
to be the expanding

matrix. The McMullen set T (see Figure 33, left) is given by T =
⋃5

i=1 Si(T ) with{
Si(x) =M−1(x+ di)

}5

i=1
, d1 = 0, d2 = e1, d3 = 2e1, d4 = e2, d5 = e1 + e2.

Denote the four vertices of the unit square by a1, a2, a3, a4. Then A = {a1, . . . , a4}
is a skeleton of T . Let Λ be a cycle passing by a1, . . . , a4 one by one (Figure 34 (a)).
Denote vi =

−−−→aiai+1, i = 1, 2, 3, 4 ( assume a5 = a1). Then we have the refined graph
G = S1(Λ) ∪ S2(Λ) ∪ S3(Λ) ∪ S4(Λ), and an Euler tour P = P1 + P2 + P3 + P4 of G
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and Pi is the trial sharing the same origin and terminus with vi (see Figure 34 (b)).
Then we have the following edge-to-trail substitution τ .

v1 −→ S1(v1) + S1(v2) + S4(v4) + S4(v1),

v2 −→ S4(v2) + S4(v3) + S2(v2) + S5(v1) + S5(v2),

v3 −→ S5(v3) + S5(v4) + S3(v2) + S3(v3),

v4 −→ S3(v4) + S3(v1) + S2(v3) + S2(v4) + S2(v1) + S1(v3) + S1(v4).

Then we obtain the following set equation form of an ordered GIFS.

E1 ⊜ S1(E1) + S1(E2) + S4(E4) + S4(E1),

E2 ⊜ S4(E2) + S4(E3) + S2(E2) + S5(E1) + S5(E2),

E3 ⊜ S5(E3) + S5(E4) + S3(E2) + S3(E3),

E4 ⊜ S3(E4) + S3(E1) + S2(E3) + S2(E4) + S2(E1) + S1(E3) + S1(E4).

In the same way as Example 2, we check that the above GIFS satisfied the chain
condition. Then it is a linear GIFS and clearly the open set condition is satisfied.
Actually the union of the invariant sets

⋃4
i=1Ei is the McMullen set T .

Moreover, the associated matrix of the substitution τ is

A =

⎛⎜⎜⎝
2 1 0 2
1 3 1 0
0 1 2 2
1 0 1 3

⎞⎟⎟⎠ , λA = 5, HölderE = log5 2.

Figure 35 shows the visualization of the filling curve of the Mcmullen set T . To give
a self-avoiding visualization, we round off the corners of the approximating curves.

Figure 35. The first three approximations to the filling curve of
Mcmullen set.

3.5. Construct SFCs for a class of self-affine tiles

In this section, we are interested in playing with the construction of the SFC
for a class of self-affine tiles. There is a lot of work in the literature concentrated
on tilings of Rn whose tiles are given by a finite collection of contractions. Among
these, the self-affine tile is one of the most prevalent example. (For instance, the
famous work by Thurston [92], Kenyon [44], Lagarias and Wang [52, 51, 53]. etc.,
and reference therein.)

Assume that M is a 2 × 2 integer matrix which is expanding, i.e., all of the
eigenvalues are greater than 1 in modulus. Let D ∈ Z2 be a set of cardinality
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| detM | which is called digit set. By a result of Hutchinson [37], there is a unique
nonempty compact subset T = T (M,D) of R2 such that

MT = T +D.

If T has positive Lebesgue measure we call it a self-affine tile.
In this part, we focus on a class of self-affine tiles on R2 which we fix the ex-

panding matrix M and digit set D as follows. For 0 < A ≤ B and B ≥ 2, let

(3.22) M =

(
0 −B
1 −A

)
and D = {0, e, 2e, . . . , (B − 1)e},

where v is the vector e = (1, 0)t. Then T = T (M,D) is a self-affine tile (see [55, 4])
and tiles R2 by Z2, i.e.,

T + Z2 = R2 and (T + γ)◦ ∩ (T + ω)◦ = ∅ for γ, ω ∈ Z2.

We call it the AB-tile.
For the AB-tile, [55] also proved that the AB-tile is disklike if 2A < B + 3;

Moreover, [4] showed that for 2A < B + 3 there exists exactly six points where T
coincides with two other tiles. We will show later that these six points will play
a crucial role in constructing the SFCs for the disklike AB-tiles. Actually, we will
prove that the six points consist the skeleton of the AB-tile.

To continue our discussion, we shall introduce some new notations. Let Si(x) =
M−1(x+ di) with di = (i− 1, 0)t ∈ D be the contractions. Then the AB-tile can be
written by

T =
B⋃
i=1

Si(T ).

3.5.1. Neighbor of a self-affine tile. Let T = T (M,D) be an AB-tile given
by (3.22) and define the set of neighbors of T by

S = {α ∈ Z2 \ {0}; T ∩ (T + α) ̸= ∅}.

By a result of [4], we know that ♯S = 6 if 2A < B + 3; precisely,

S = {(A, 1)t, (A− 1, 1)t, (−1, 0)t, (1, 0)t, (−A,−1)t, (1− A,−1)t}.

Furthermore, it also introduced the notion 2-vertex (or simply vertex) of T . A point
v ∈ T is called a vertex if v is contained in at least 2 other disjoint tiles differ from
T . Precisely, the 2-vertex set of T is then defined by

V2 =
⋃

s1 ̸=s2∈S

{v; v ∈ T ∩ (T + s1) ∩ (T + s2)}.

Then it shows the following statement.

Lemma 3.19. [4, Theorem 6.6] Let T be an AB-tile with 2A < B+3, then vertex
set V2 consists of exactly six points. Moreover, let

(3.23)
ω1 = (1AB)∞, ω2 = ((B − A+ 1)1B)∞,
ω3 = (B1A)∞, ω4 = (B(B − A+ 1)1)∞,
ω5 = (AB1)∞, ω6 = (1B(B − A+ 1))∞,
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be the infinite words in {1, 2, . . . , B}∞, then

V2 = {π(ω1), π(ω2), π(ω3), π(ω4), π(ω5), π(ω6)},
where π is the projection from {1, 2, . . . , B}∞ to T given by (3.4).

So far, we have given a simple description of neighbor and vertex of an AB-tile.
Then we will show that the vertex set V2 will build a bridge from the boundary
to the curves filling an AB-tile. It is known that the concept skeleton plays an
important role in constructing SFCs. Here we recommend [77] for the definition
of the skeleton which is specially designed for a self-similar set; also, if we regard
the AB-tile as an invariant set induced by a special GIFS with the directed graph
having only one vertex, then the definition of skeleton is referenced to Section 3.1.4,
Definition 3.9.

Theorem 3.20. Let T be an AB-tile with 2A < B+3. Then V2 is a skeleton of
T .

Proof. By the definition of V2, it is clear that V2 is a finite subset of T when
A,B satisfy 2A < B + 3. And by Lemma 3.19, we know that

V2 ⊂
B⋃
i=1

Si(V2).

Indeed, it can be explained by the following relations.

SB(π(ω1)) = π(B(ω1)) = π(ω3), SB(π(ω2)) = π(B(ω2)) = π(ω4),

SA(π(ω3)) = π(A(ω3)) = π(ω5), S1(π(ω4)) = π(1(ω4)) = π(ω6),

S1(π(ω5)) = π(1(ω5)) = π(ω1), SB−A+1(π(ω6)) = π((B − A+ 1)(ω6)) = ω2.

The connectedness of the Hata graph H(V2) can be done by

Si(V2) ∩ Si+1(V2) ̸= ∅ for i = 1, 2, . . . , B − 1.

□

3.5.2. Constructions of SFCs for AB-tiles. Recall that V2 is the vertex set
and by Theorem 3.20 and Lemma 3.19 we know that V2 has six element and is a
skeleton of the AB-tile. In this part, we will construct the SFC using the skeleton
V2 by edeg-to-trail substitution in Section 3.3. To illustrate the the procedure, we
will start with an example.

Example 4 (The SFC of AB-tile with A = 1, B = 3 ). In this example
we consider the case for A = 1, B = 3. And we denote the vertex set by V2 =
{a1, a2, . . . , a6} (see Figure 36 (a)). Let vi =

−−−→aiai+1, i = 1, . . . 6 (assume a7 = a1).
Then the initial graph is

Λ = {v1, . . . , v6},
which is the cycle passing the a1, . . . , a6 one by one. (See Figure 36 (a)). Thus the
union of affine copy of Λ which we call refined graph is

G =
3⋃

i=1

Si(Λ).
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(a) Skeleton A and the initial
graph Λ

(b) Refined graph and the parti-
tion

Figure 36. The AB-tile with A = 1, B = 3.

Figure 37. The approximating curves of AB-tile with A = 1, B = 3.

(See Figure 36 (b)). In Figure 36 (b) we use different color for the trails. Comparing
the initial graph and the refined graph in Figure 36 (a) and (b), we get the edge-to-
trail substitution

v1 −→ S1(v5) + S1(v6) + S2(v5) + S2(v6) + S3(v5),

v2 −→ S3(v6),

v3 −→ S3(v1),

v4 −→ S3(v2) + S3(v3) + S3(v4) + S2(v1) + S2(v2) + S2(v3) + S2(v4)+

S1(v1) + S1(v2),

v5 −→ S1(v3),

v6 −→ S1(v4).

(3.24)

Through the edge-to-trail substitution, we get the following induced GIFS.

E1 ⊜ S1(E5) + S1(E6) + S2(E5) + S2(E6) + S3(E5),

E2 ⊜ S3(E6),

E3 ⊜ S3(E1),

E4 ⊜ S3(E2) + S3(E3) + S3(E4) + S2(E1) + S2(E2) + S2(E3)

+ S2(E4) + S1(E1) + S1(E2),

E5 ⊜ S1(E3),

E6 ⊜ S1(E4).

(3.25)
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We can check that the ordered GIFS above is a linear GIFS by Lemma 3.4 checking
the chain condition. In fact, by the set equation, we only need to calculate the
heads and the trails of E1 and E4 and others can be obtained accordingly. Then by
Theorem 3.5 the AB-tile admits an optimal parametrizaition. See Figure 37 for the
approximating curves of it.

3.5.3. The general case. Our aim is to construct the SFCs of AB-tiles for all
parameters A,B satisfying 2A < B + 3. We know that every AB-tile in the family
has a skeleton V2 which we denote by V2 = {a1, a2, . . . , a6}. Let Λ be the cycle

passing a1, . . . , a6 in turn. Let G =
⋃B

i=1 Si(Λ) be the refined graph. We observe
that there always exists an Euler tour P with a partition P = P1 + P2 + · · ·+ P6 of
the refined graph G as follows.

(3.26)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 =
B−A∑
i=1

(
Si(v5) + Si(v6)

)
+ SB−A+1(v5),

P2 = SB−A+1(v6) +
A∑
i=2

(
SB−A+i(v5) + SB−A+i(v6)

)
,

P3 = SB(v1),

P4 =
B−A∑
i=1

(
SB+1−i(v2) + SB+1−i(v3) + SB+1−i(v4) + SB−i(v1)

)
+ SA(v2),

P5 = SA(v3) +
A−1∑
i=1

(
SA−i+1(v4) + SA−i+1(v1) + SA−i+1(v2) + SA−i(v3)

)
,

P6 = S1(v4).

It is clear that the above equation is determined by A,B. Then we have the related
edge-to-trail substitution

(3.27) τ : vi −→ Pi for i = 1, 2, . . . , 6.

Thus we can obtain the following induced ordered GIFS.

E1 ⊜
B−A∑
i=1

(
Si(E5) + Si(E6)

)
+ SB−A+1(E5),

E2 ⊜ SB−A+1(E6) +
A∑
i=2

(
SB−A+i(E5) + SB−A+i(E6)

)
,

E3 ⊜ SB(E1),

E4 ⊜
B−A∑
i=1

(
SB+1−i(E2) + SB+1−i(E3) + SB+1−i(E4) + SB−i(E1)

)
+ SA(E2),

E5 ⊜ SA(E3) +
A−1∑
i=1

(
SA−i+1(E4) + SA−i+1(E1) + SA−i+1(E2) + SA−i(E3)

)
,

E6 ⊜ S1(E4).

(3.28)
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And it is easy to check that the ordered GIFS above is a linear GIFS. Indeed, the
head and the trail of Ei are as follows.

h(E1) = Fix(S1 ◦ SA ◦ SB), t(E1) = Fix(SB−A+1 ◦ S1 ◦ SB),

h(E2) = Fix(SB−A+1 ◦ S1 ◦ SB), t(E2) = Fix(SB ◦ S1 ◦ SA),

h(E3) = Fix(SB ◦ S1 ◦ SA), t(E3) = Fix(SB ◦ SB−A+1 ◦ S1),

h(E4) = Fix(SB ◦ SB−A+1 ◦ S1), t(E4) = Fix(SA ◦ SB ◦ S1),

h(E5) = Fix(SA ◦ SB ◦ S1), t(E5) = Fix(S1 ◦ SB ◦ SB−A+1),

h(E6) = Fix(S1 ◦ SB ◦ SB−A+1), t(E6) = Fix(S1 ◦ SA ◦ SB).

(3.29)

Apparently, it satisfies the chain condition.

Figure 38. The approximating curves of AB tile with A = 2, B = 4.

From the induced GIFS (3.28), we have

T = ∪6
i=1Ei,

by the uniqueness of T = ∪B
i=1Si(T ), and the right hand side is disjoint union.

Moreover, it is easy to check the associated matrix of the induced GIFS is primitive.
According the partition (3.26) of the refined graph and the edge-to-trail sub-

stitution (3.27) we can construct the approximating curves of AB-tiles. To get a
beautiful visualization and construct self-avoiding curves we can always choose suit-
able initial pattern. There are many example to show. Here we list some of them.
See Figure 37, Figure 4, Figure 38 and Figure 39.
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Figure 39. The approximating curves of AB tile with A = 3, B = 5.

3.6. Construct SFCs for a Rauzy fractal

Rauzy fractals play a major role in many branches of mathematics including
number theory, dynamical systems, combinatorics and the theory of quasicrystals
(See for instance[78, 92, 36, 6]). In this section, we will focus us on constructing
the SFCs of the Rauzy fractal with an example.

By the study of Rauzy fractal, for instance [84, 74, 75], we know that the Rauzy
fractal can be generated by a graph-directed GIFS. Then we can use the method
which we introduce in Section 3.3 to construct the SFCs. To do this, the most
important task is to find the skeleton of the Rauzy fractal and then we construct
an edge-to-trail substitution producing a linear GIFS. In the rest of the Section, we
will focus on the following example.

3.6.1. The classical Rauzy fractal. The classical example of Rauzy fractal
is given by the so-called Tribonacci substitution defined as

σ1 : 1 −→ 12
2 −→ 13
3 −→ 1,

associated matrix: Mσ1 =

⎛⎝1 1 1
1 0 0
0 1 0

⎞⎠ ,

which is first studied by Rauzy [78]. After that there are many generalizations of
the construction such as [7, 88, 14, 75]. The characteristic polynomial of Mσ1 is
x3 − x2 − x− 1. Let β be the Pisot number satisfying β3 = β2 + β + 1. And denote
the algebraic conjugates of β by β′, β̄′, where ā is the conjugate of a complex number
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Figure 40. Classical Rauzy fractal (left) and the parametrized
Rauzy fractal (right).

a. Denote

B =

(
Re β′ −Im β′

Im β′ Re β′

)
.

By the idea of [75], Rauzy fracatal can be regard as the invariant sets of the following
GIFS

X1 =BX1 ∪BX2 ∪BX3,

X2 =BX1 + e1,

X3 =BX2 + e1,

(3.30)

where e1 = (1, 0)t.

(a) (b)

Figure 41. (a): we only show part of the skeleton {a11, . . . , a16} of
X1. (b): show the edge-to-trail substitution σ1 for X1. It obtains by
replacing the line segment by the same color broken lines. For X2 and
X3, we can do in the same way.
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3.6.1.1. Skeleton. To find a skeleton of a self-similar set, Rao and Zhang [77]
introduce an algorithm which use the neighbor graph of self-similar sets satisfying
the finite type condition to get the skeleton. For a graph-directed IFS, it is rather
difficult to give such an algorithm. We will only focus on this example and give a
set of points which can be proved being a skeleton.

For simplicity, we set

f11(x) = f12(x) = f13(x) = Bx, f21(x) = f32(x) = Bx+ e1.

Then the set equation (3.30) has the following form.

X1 =f11(X1) ∪ f12(X2) ∪ f13(X3),

X2 =f21(X1),

X3 =f32(X2),

(3.31)

Denote

a11 = (I −B3)−1 · (Be1), a12 = (I −B3)−1 · (B2e1 +Be1),

a13 = (I −B3)−1 · (B2e1), a14 = (I −B3)−1 · (B3e1 +B2e1),

a15 = (I −B3)−1 · (B3e1), a16 = (I −B3)−1 · (B3e1 +Be1 −B4e1),

where we use I for the 2 × 2 identity matrix, and P−1 is the inverse of the matrix
P . Let

(3.32) A1 = {a11, a12, a13, a14, a15, a16}, A2 = f21(A1) and A3 = f32(A2).

Then we will check that A1, A2, A3 is a skeleton of the invariant X1, X2, X3. First
we show that Ai ∈ Xi for i ∈ {1, 2, 3}. It is easy to check that A1 is in X1 since

a11 = Fix(f12 ◦ f21 ◦ f11), a12 = Fix(f13 ◦ f32 ◦ f21),
a13 = f11(a11), a14 = f11(a12),

a15 = f11(a13), a16 = f12 ◦ f21(a11),
(3.33)

where we use Fix(f) to denote the fixed point of contractible mapping f . Then we
have a11, a12 as well as a13, a14, a15 and a16 are elements of X1. Second, we check
that

A1 ⊂ f11(A1) ∪ f12(A2) ∪ f13(A3).

This follows from

a11 ∈ f12(A2), a12 ∈ f13(A3), a13, a14, a15 ∈ f11(A1) and a16 ∈ f12(A2).

Finally, we should check the connectedness of the Hata graph H(Aj). Actually,
f11(A1), f12(A2) and f13(A3) have a comment point (see Figure 41 (b)). Then it is
clear that H(A1) is connected. The Hata graphs H(Ai) for i = 2, 3 share the same
connected property with H(A1).

Remark 3.21. From the skeleton obtained here, we know that it belongs to the
boundary of the subdivision X1, X2, and X3.
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3.6.1.2. Edge-to-trail substitution and linear GIFS. In this part, we will
construct the edge-to-trail substitution from the skeleton which we obtain in the
previous subsection.

Let A1, A2, A3 be the skeleton of X1, X2, X3 which we get from (3.32). We denote
by

A1 := {a11, a12, . . . , a16}, A2 := {a21, a22, . . . , a26}, A3 := {a31, a32, . . . , a36}.

For i ∈ {1, 2, 3}, let Λi be the cycle passing ai1, ai2, . . . , ai6 one by one. Denote the
edge from aij to aij+1 by uij = −−−−→aijaij+1 for j ∈ {1, 2, . . . 6}. Here ai7 = ai1. Then
we construct the refined graph Gi induced by (3.31). Here we only need to consider
the case for i = 1. By (3.14), we have

G1 = f11(Λ1) ∪ f12(Λ2) ∪ f13(Λ3).

Hence there exists an Euler tour P1 of G1 with a partition P1 = P 1
1 + P 1

2 + · · ·+ P 1
6

such that P 1
i has the same origin and terminus as u1i. (See Figure 41 (b).) Then

we obtain the following edge-to-trail substitution τ1.

u11 −→f12(u23) + f12(u24) + f13(u35) + f13(u36) + f13(u31),

u12 −→f13(u32) + f13(u33) + f13(u34) + f11(u15) + f11(u16),

u13 −→f11(u11),

u14 −→f11(u12),

u15 −→f11(u13) + f11(u14) + f12(u25) + f12(u26),

u16 −→f12(u21) + f12(u22).

(3.34)

The ordered GIFS given by the substitution τ1 is

Eu11 =f12(Eu23) + f12(Eu24) + f13(Eu35) + f13(Eu36) + f13(Eu31),

Eu12 =f13(Eu32) + f13(Eu33) + f13(Eu34) + f11(Eu15) + f11(Eu16),

Eu13 =f11(Eu11),

Eu14 =f11(Eu12),

Eu15 =f11(Eu13) + f11(Eu14) + f12(Eu25) + f12(Eu26),

Eu16 =f12(Eu21) + f12(Eu22).

(3.35)

Then we can use the Lemma 3.3 to check that the ordered GIFS (3.35) is actually
a linear GIFS. Moreover, by the construction and the uniqueness of the solution of
(3.31), we have

X1 = ∪6
i=1Eu1i

and the right hand union is disjoint.

Remark 3.22. For the constructions of linear GIFS on Xi (i = 2, 3), it is clear
from the construction of X1 by the relations X2 = f21(X1) and X3 = f32(X2).
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Figure 42. The first four approximations to the filling curve of clas-
sical Rauzy fractal of Example 3.6.1.

3.6.1.3. Visualization. The concept of visualization of space-filling curves is in-
troduced by Rao and Zhang [76]. According to Theorem 3.5 we can construct the
optimal parametrization ψi of Xi(i = 1, 2, 3). To visualize the limit curve ψi, we
choose an initial pattern which can be any curves, but a suitable choice will make
the visualization beautiful (What we mean beautiful is a self-avoiding curve. But
we can not always get the self-avoiding curves.). For the example of Rauzy fractal
X1, X2, X3, we choose a initial pattern as it shows in Figure 42 (a). Then (b), (c), (d)
show the approximating curves.

Example 5. The example of self-affine Rauzy fractal. Figure 43 shows
another example of the approximating curves of Rauzy fractal obtained by the sub-
stitution

σ2 :1 −→ 12321

2 −→ 321

3 −→ 2.
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To get the optimal parametrizaition of this example, it follows the same idea of the
classical Rauzy fractal case. We will not repeat the procedure and only give the
figures we need here.
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Figure 43. The first figure is the Rauzy fractal given by the substi-
tion σ2. The following three Figures show the first three approxima-
tions of the filling curve of this Rauzy fractal.

Appendix: The open set condition

To apply Theorem 3.5, we also need the constructed linear GIFS satisfying the
open set condition. In this supplement, we try to give the associated statements of
the OSC. Recall that (V,Γ,G) is a GIFS with

G={fe : Rd −→ Rd; fe is a contraction, e ∈ Γ}.
If the directed graph (V,Γ) has only one vertex with more than 2 self-edges

and fe is a similitude contraction mapping in Rd with similitude ratio 0 < ri < 1.
Denote the invariant set byK and it satisfiesK = ∪e∈Γfe(K). Let s be the similarity
dimension, i.e., s satisfies

∑
e∈Γ r

s
e = 1. A. Schief [82] has proved the following chain

of implications

SOSC ⇐⇒ OSC ⇐⇒ 0 < Hs(K) <∞.

Then, Li, W. X. [57] generalized this to the GIFS case with G being a family
of similitudes. Denote the vertex set by V = {1, 2, . . . , N}. Let Ei be the invariant
sets of the GIFS G. Assume that s is the similarity dimension, that is, s is the value
such that the spectral radius of matrix (

∑
e∈Γij

rsij)N×N is 1. Then by [57] we have

the following equivalent relation.

OSC ⇐⇒ SOSC ⇐⇒ 0 < Hs(Ei) <∞ for some i.
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We investigate the single-matrix GIFS G = {fe; e ∈ Γ} with the form

(3.36) fe(x) =M−1(x+ de),

where M is a d × d expanding matrix and dj ∈ Rd. We want to study whether we
have the similar results with [82, 57] when M is not a similitude.

Motivated by the study of A. Schief [82] and using the result of Luo, J. and
Yang, Y. M. [41], we give a positive answer. To state the questions, we introduce
some notations at first.

Denote by Γn
ij the paths from vertex i to j with length n. For I = i1 . . . in ∈ Γn

ij,
set fI := fi1 ◦ fi2 ◦ · · · ◦ fin(x) and define

dI =Mn−1di1 +Mn−2di2 + · · ·+Mdin−1 + din ,

then fI(x) has the form: fI(x) =M−n(x+ dI). Set

Dn
ij := {dI ; I ∈ Γn

ij}.

We say a set G is r-uniformly discrete if |x − y| > r for any x, y ∈ G. [41] has
proved the following theorem.

Theorem 3.23. For the single-matrix GIFS (3.36), the following are equivalent:

(1) OSC.
(2) ♯ Dn

ij = ♯ Γn
ij and there is an r > 0 such that Dn

ij is r-uniformly discrete for
all 1 ≤ i, j ≤ N and n ≥ 1.

(3) SOSC.

In [41], they use the pseudo norm ω(x) which was first defined in [35] to study the
Hausdorff measure and the Hausdorff dimension. Denote A by the associated matrix
of the directed graph (V,Γ). Let α = d log λ/ log q, where λ is the maximal eigenvalue
of A and q = | detM |. We call a set E ⊂ Rd is an α-set, if 0 < Hα

ω(E) < ∞. The
open set condition satisfied means that

(i) dimω Ei = α ;
(ii) Ei is α-set for all i;
(iii) The right-hand side of (3.1) is a disjoint union in the sense of the measure

Hα
ω.
On the other hand, we want to show

(3.37) Ei is α-set for some 1 ≤ i ≤ N =⇒ OSC.

Then Theorem 3.23 together with (3.37) imply the following chain of implications:

OSC ⇐⇒ SOSC ⇐⇒ Ei is α-set for some i.

Lemma 3.24. Let P = (mij)N×N be a nonnegative primitive matrix. Let ρ(P )
denote the maximal eigenvalue of P . If there exists x > 0 satisfies Px ≥ ρ(P )x,
then Px = ρ(P )x.

Lemma 3.25. If Ei is an α-set for some 1 ≤ i ≤ N , then all Ei are α-set, and

(mij)N×N

⎛⎝ Hα
ω(E1)
...

Hα
ω(EN)

⎞⎠ = λ

⎛⎝ Hα
ω(E1)
...

Hα
ω(EN)

⎞⎠
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Proof. Suppose 0 < Hα
ω(Ei0) < ∞. Since (mij)N×N is primitive, ∀ 1 ≤ i ≤ N ,

∃ n(i) such that ♯ Γ
n(i)
ii0

> 0. Using

Ei =
N⋃
j=1

⋃
I∈Γn(i)

ij

fI(Ej),

we have

Hα
ω(Ei) ≥ Hα

ω(fI(Ei0)) = (
1

q
)α·n(i)/d Hα

ω(Ei0) > 0.

And we also have

Hα
ω(Ei) = Hα

ω

( N⋃
j=1

⋃
e∈Γij

fe(Ej)
)
≤

N∑
j=1

∑
e∈Γij

(
1

q
)α/d Hα

ω(Ej)

i.e. λHα
ω(Ei) ≤

N∑
j=1

mijHα
ω(Ej)

Then by the Lemma 3.24, the lemma is completed. □

Before giving the main result, we give some notations at first. For I = i1i2 . . . in ∈
Γn
ij, denote EI = fI(Ej).

Let E be a compact subset in Rd. We set Eω,ε = {x ∈ Rd; ω(x − y) ≤
ε for some y ∈ E}. Let E, F be two compact sets in Rd, we define the Hausdorff
metric by

dω(E,F ) = inf{ε; E ⊂ Fω,ε, F ⊂ Eω,ε}.
We remark that if M is an expanding d× d matrix with | detM | = q, we have

(3.38) dω(ME,MF ) = q
1
ddω(E,F ).

Here ME = {Mx; x ∈ E}.

Theorem 3.26. If Ei is α-set for some 1 ≤ i ≤ N , then the open set condition
is fulfilled.

Proof. By the Lemma 3.25, we know all the Ei are α-set. For any fixed 1 ≤
i ≤ N , by the definition of the Hausdorff dimension, we have ∀ 0 < ε < 1, there

exists open cover {U (i)
j }j∈Λ (Λ is a infinity index set) such that∑

j∈Λ

(diam ωU
(i)
j )α ≤ (1 + ε)Hα

ω,δ(Ei),

Since Ei is compact, there exist n(i) such that

Ei ⊂
n(i)⋃
j=1

Uj.

Denote U(i) =
⋃n(i)

j=1 U
(i)
j . Hence, we have

n(i)∑
j=1

(diamωU
(i)
j )α ≤ (1 + ε)Hα

ω(Ei).
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Let δi = Dω(Ei, U(i)
C) := inf{ω(x− y); x ∈ Ei, y ∈ U(i)C}. We prove that

∀1 ≤ p ≤ N, k ≥ 1, I, J ∈ Γk
ip, dω(EI , EJ) ≥ δp(

1

q
)
k
d .

Otherwise, there exist p, k, and I, J ∈ Γk
ip, such that dω(EI , EJ) ≤ δp(

1
q
)
k
d .

Denote ζ = δp(
1
q
)
k
d . Since EI ⊂ fI(U(p)) and Dω(EI , fI(U(p))

C) = ζ, we have

(EI)ω,ζ ⊂ fI(U(p)). Hence EJ ⊂ (EI)ω,ζ ⊂ fI(U(p)). So EI ∪ EJ ⊂ fI(U(p)). Since
α = d log λ/ log q and EI = fI(Ep), we have

Hα
ω(EI) = (

1

q
)
kα
d Hα

ω(Ep) = (
1

λ
)kHα

ω(Ep).

These implies

Hα
ω(Ep)

1

λk
(1 + ε) < Hα

ω(Ep)(
1

λk
+

1

λk
) = Hα

ω(EI) +Hα
ω(EJ)

= Hα
ω(EI ∪ EJ) ≤

n(p)∑
j=1

(diamωfI(U
p
j ))

α

=

n(p)∑
j=1

1

λk
(diamωfI(U

p
j ))

α ≤ 1

λk
(1 + ε)Hα

ω(Ep),

which is a contradiction. The second equality follows from Lemma 3.25. We have
the following equality

Hα
ω(Ei) =

N∑
j=1

∑
e∈Γk

ij

Hα
ω(fe(Ej))

implies that the intersection of two of these atoms is an Hα
ω-null set.

Let δ = min1≤i≤N δi, then we have

dω(EI , EJ) ≥ δ(
1

q
)
k
d , ∀ I, J ∈ Γk

ip, ∀ 1 ≤ i, p ≤ N, k ≥ 1.

Besides, EI =M−k(Ej + dI), these mean that dI ̸= dJ . That is, ♯Dk
ip = ♯Γk

ip.
Next, we can obtain the following equation from (3.38)

dω(EI , EJ) = (
1

q
)
k
ddω(Ej + dI , Ej + dJ).

Then we have (1
q
)
k
dω(dI−dJ) ≥ δ(1

q
)
k
d . Hence ω(dI−dJ) ≥ δ. So by the Proposition

3.11, we have ∥dI − dJ∥ ≥ δ′, δ′ is with respect to the expanding matrix M . Thus
by the Theorem 3.23, we obtain the open set condition.

□
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[13] G. Barat, V. Berthé, P. Liardet, and J. Thuswaldner, Dynamical
directions in numeration, Ann. Inst. Fourier (Grenoble), 56 (2006), pp. 1987–
2092. Numération, pavages, substitutions.

[14] M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitu-
tions, Amer. J. Math., 128 (2006), pp. 1219–1282.

[15] R. H. Bing, A characterization of 3-space by partitionings, Trans. Amer. Math.
Soc., 70 (1951), pp. 15–27.

[16] E. Bombieri and J. E. Taylor, Quasicrystals, tilings, and algebraic number
theory: some preliminary connections, in The legacy of Sonya Kovalevskaya
(Cambridge, Mass., and Amherst, Mass., 1985), vol. 64 of Contemp. Math.,
Amer. Math. Soc., Providence, RI, 1987, pp. 241–264.

[17] R. Bowen, Markov partitions are not smooth, Proc. Amer. Math. Soc., 71
(1978), pp. 130–132.

[18] J. J. Burckhardt, Die Bewegungsgruppen der Kristallographie, vol. 13 of
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