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Abstract 
Performance enhancement is the main wish in any industry. In the drilling 

process, the challenge lies in finding the right conditions to reach a desired 

depth faster, while balancing the operational complexities with the 

associated risks.  In this regard, drilling operations generate enormous 

quantities of data and metadata with the main goal of providing detailed 

visualization of operations accessible remotely and in real time. This aligns 

with the existent big-data time, where data mining techniques appear as 

means to drive proficiencies in data processing to generate new and 

valuable information. From this perspective, the ultimate goal of this thesis 

is to assess the application of data mining software to transform commonly 

acquired drilling data into actionable data with possible impact in well 

planning and during later operations. In order to achieve the prime goal of 

the thesis the Rate of Penetration (ROP) was selected to be the focus of the 

study.   

The ROP, known as one of the contributors in time estimation for 

operations, is the variable of interest for the analysis and prediction. This 

work applies data mining techniques to examine pre-existing data sets of 

previously drilled wells looking for meaningful information about the 

measured ROP. Then Machine-learning models are used for its predictions 

to serve as a reference to evaluate any deviation and its possible causes, by 

testing the prediction in a new data set.  

This thesis is divided into four main parts. Starting by exploring data 

mining functionalities and its applications, including specific examples 

related to the Oil & Gas (O&G) industry. The following part involves 

understanding drilling data, its origins in measurements, its data type, and 

some of the challenges faced during its acquisition process. The ROP 

measurement is discussed in detail during this stage as well. With a general 

overview of the resources, the third part is dedicated to the methodology by 

developing a workflow including Pre-processing and Processing of the data 

using a commercial data mining software to implement a model for ROP 

prediction. In the last part, the Data Analysis and Model Evaluation are 

performed using different visualization tools, reinforced by descriptive 

statistics. A discussion of the model implementation and testing process is 

presented as well, based on the obtained results.  

The outcome of this work, drawn a road for further research on ROP 

deviation causes. It offers an insight for data mining applications for 

practical analysis and prediction derived from drilling data. It endorses its 

application when objectives are clearly defined and with no resources 

constraints. 
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Zusammenfassung 
Effizienzsteigerung ist eines der Hauptziele in allen Industriezweigen. Während 

des Bohrprozesses besteht die Herausforderung darin, die Bohrparameter so 

anzupassen, dass die geplante Teufe möglichst schnell erreicht wird und die mit 

dem Bohrprozess verbundenen Risiken und operativen Schwierigkeiten gleichzeitig 

geringgehalten werden. Im Zusammenhang mit der Bohrtätigkeit werden enorme 

Mengen an Daten und Metadaten generiert, mit dem Hauptziel, eine detaillierte 

Visualisierung der Vorgänge zu ermöglichen, auf die von überall aus und in 

Echtzeit zugegriffen werden kann. Diese Entwicklung geht Hand in Hand mit dem 

vorherrschenden Trend zu Big Data, in dem Data Mining-Methoden eingesetzt 

werden um die Effizienz in der Datenverarbeitung zu steigern und neue und 

wertvolle Informationen zu gewinnen. Davon ausgehend ist es das Ziel dieser 

Arbeit, die Anwendung von Data Mining-Software auf standardmäßig 

aufgezeichnete Bohrdaten zu bewerten, um aus ihnen verwertbare Informationen 

zu erhalten, die möglicherweise Einfluss in der Planungsphase und dem späteren 

operativen Verlauf von Bohrungen haben können. Dazu wurde in dieser Arbeit die 

Bohrfortschrittsrate (ROP) als Studienschwerpunkt ausgewählt.  

Die Bohrfortschrittsrate stellt bekannterweise einen Faktor in der Zeitplanung von 

Bohrungen dar und dient hier also zu untersuchende Variable für die Analyse und 

Vorhersage. Die Arbeit wendet Data-Mining Methoden auf bereits existierende 

Datensätze von abgeteuften Bohrungen an um diese auf aussagekräftigen 

Informationen über die gemessene Bohrfortschrittsrate zu prüfen. Anschießend 

werden maschinelle Lernmethoden genutzt um die Bohrfortschrittsrate 

vorherzusagen. Diese dienen als Referenz um Abweichungen und deren mögliche 

Gründe zu evaluieren, indem die Vorhersagen auf neue Datensätze angewandt 

werden. 

Die Arbeit gliedert sich in vier Hauptteile, beginnend mit Funktionsweisen des 

Data Mining und deren Anwendung, einschließlich spezifischer Beispiele für die 

Öl- und Gasindustrie. Darauffolgend werden Bohrdaten und die Ursprünge ihrer 

Aufzeichnung, ihr Datenformat sowie die Schwierigkeiten im Zusammenhang mit 

ihrer Aufzeichnung behandelt. Dies beinhaltet eine detaillierte Diskussion der 

Messung der Bohrfortschrittsrate. Der dritte Teil behandelt die Methodik, mit einer 

allgemeinen Übersicht über die Ressourcen in dem ein Workflow erarbeitet wird 

der die Vorverarbeitung und Verarbeitung der Daten mit einer kommerziellen Data 

Mining-Software umfasst, um ein Modell für die Vorhersage der 

Bohrfortschrittsrate zu implementieren. Im letzten Teil werden die Datenanalyse 

und die Modellbewertung mit verschiedenen Visualisierungswerkzeugen 

durchgeführt und durch beschreibende Statistk gestützt. Anhand der erzielten 

Ergebnisse werden Modellimplementierungs- und Testprozesse diskutiert. 

Das Ergebnis der Arbeit zeigt einen Weg für die weitere Erforschung der Ursachen 

von Abweichungen der Bohrfortschrittsrate auf. Es bietet einen Einblick in Data 

Mining-Anwendungen zur praktischen Analyse und Vorhersagen die von 

Bohrdaten abgeleitet werden. Die Anwendung von Data Mining ist aufgrund der 

Ergebnisse zu befürworten, wenn die Ziele klar definiert sind und keine 

Ressourcenbeschränkungen bestehen. 
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Chapter 1 Introduction 

1.1 Overview  
There is no doubt that it is a data–driven time, where scientific data, medical data, 

financial data, and practically every daily interaction inside a system is being 

registered and stored in some kind of format as data. Only understanding what to do 

or how to use this vast amount of data can open the possibilities to knowledge.   

In this regard, data mining appears to provide the resources to handle this big amount 

of data. It brings promising solutions as a dynamic, breadth, and multidisciplinary 

field founded in statistics, data visualization, artificial intelligence, and machine 

learning along with database technology and high-performance computing. In brief, its 

focus is on finding insights, regardless of the methods, yet it commonly uses machine-

learning algorithms to build models, but its focus is knowledge discovery.  

Drilling data is not exempted, with a trend of growing constantly accelerating in 

volume and type, but still in the process of being explored to its theoretical potential.  

Knowing that ROP is one of the parameters of concern during drilling operations, its 

proper understanding and prediction have become of great interest for optimization, 

where data mining and machine learning techniques, directly related with data 

analysis and prediction, appear as a positive alternative for this purpose. Particularly 

when so much theoretical research has been done regarding ROP, usually under 

limited conditions that ends preventing its applicability. Data mining, on the other 

hand, opens the possibility of insights and predictions based on real drilling data 

generated under operations with tangible and, in many cases, repetitive conditions.  

1.2 Motivation and Objectives 
With the increase of automatic processes during drilling operations, an increment of 

data sources is expected with more and different type of sensors installed to 

accomplish all kind of tasks.  

In addition to this increment, Figure 1 shows the number of wells drilled until 2018 in 

the US shale sector, with a projection to drill and complete more than 20,000 wells for 

2019. A tendency of growing is estimated until 2022 reflecting how drilling data is 

expected to continue growing tremendously in the upcoming years. Handling such a 

big amount of data demands the application of data mining, covering all the aspects 

from data preparation to analysis, particularly when it has been already successfully 

applied in several fields. 

Thus, the challenge consists in boosting data mining functionalities in the direction of 

drilling performance. Therefore, this work represents an opportunity to combine 

drilling engineering with data mining by applying some of its techniques to a set of 

drilling data. 



Introduction 

2 

 

 

Figure 1 Wells drilled, completed, and drilled-but-uncompleted per year until 2018. 

Projection until 2022  (Jacobs, Journal of Petroleum Technology 2019) 

The main objective is to improve the understanding of ROP behaviour, and when 

possible identify the factors affecting its expected performance, with the creation of a 

model to predict its response. The mean for this purpose are sensor data collected 

constantly during normal drilling operations, along with geographical well position 

data in one specific field. 

In order to achieve the intended goal, a comprehensive workflow was created, and its 

main phases are showed in Figure 2.  

 

Figure 2  Workflow divided in four specific phases 

The two initial phases, involved literature review, and research associated with the 

topic to support the proposal for methodology, by studying existing data mining 

applications along with more detailed examples directly related to the O&G industry. 

In addition, the second phase includes the use of a commercial data mining software to 

process and analyse drilling data. Then, the last two phases evoke for the 

implementation of a predictive model for ROP using data mining techniques, to finally 

evaluate the model and its applicability for drilling performance. 

 

#1 TO EXPLORE

existing data 
mining 
applications in the 
industry and its 

benefits.

#2 TO ANALYSE

real drilling data 
using a 
commercial data 
mining software.

#3 TO CREATE

a model to predict 
ROP using data 
mining techniques.

#4 TO EVALUATE

the model. To 
assess the 
performance of a 
well while drilling 
and when possible 
assist in the 
detection of 
potential problems.
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Chapter 2 Data Mining 

2.1 Overview 
Data mining emerged during the late 1980s, with important advances through the next 

decade and until today. It refers to the application of science to extract useful 

information from large data sets or databases, focusing on issues relating to their 

feasibility, usefulness, effectiveness, and scalability. In other words, a person, under a 

particular situation, working with specific data sets and pursuing well-defined 

objectives, executes it. (Gung 2016) 

There is a lot of discussion around the proper definition of data mining and how it 

differs from machine-learning. Many authors and researchers in the area are still in 

some level of disagree. However, data mining researchers Jiawei Han and Micheline 

Kamber, in their book Data Mining: Concepts and Techniques, provide a formal 

definition:  

“Data mining also popularly referred to as knowledge discovery from data (KDD), is the 

automated or convenient extraction of patterns representing knowledge implicitly stored or 

captured in large databases, data warehouses, the Web, other massive information repositories, 

or data streams.” (Han and Kamber 2006) 

 

Figure 3 Data Mining system (Abou-Sayed 2012) 

 

Considering that every time vast amounts of data are being created, transmitted and 

stored on more frequent time basis, data mining serves the purpose of providing a 

description of the observed data regardless its volume or type. Research and 

commercial interest align with this demand with the development of software 

solutions designed and dedicated exclusively to handle massive amount of data, 

including algorithms and tools to simplifier its process.  
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The term is not yet commonly used in the O&G industry; for that reason, some of its 

functionalities and common applications should be shallow discussed to recognize its 

value for the industry. There are two main tasks that can be performed using data 

mining: descriptive and predictive. Descriptive tasks characterize the main features or 

general properties of the data in a convenient way. The objective is to derive patterns, 

which summarize the relationships in the data. On the other hand, predictive tasks 

interpret the current data to model a future behaviour for some variables based on 

values of other known variables.  

To perform any of the tasks, a suite of techniques are employed. The selected approach 

is highly depended on the nature of the task and the availability of the data. Some of 

the techniques include Statistics, Artificial Intelligence (AI), Pattern Recognition, 

Machine Learning, and Data Systems analysis. 

2.2 Functionalities 
In order to be familiar with the terminology used in the framework of data mining, it is 

important to properly segregate some common terms like model and pattern. A model 

is a global concept that provides a full description of the data and can be apply to all 

points in the database. On the other hand, a pattern corresponds to a local description 

of some subset of the data that can hold for some variables, but not for all of them.  

Patterns are used to extract unusual structures within the data and are valuable for 

both main mining tasks. Then data mining techniques can be classified based on 

different criteria like: the type of database to be mined, the type of knowledge to be 

discovered, and the types of methods to be used. (Platon and Amazouz 2007)   

Because it is a field in constant change, there are sort of best algorithms for certain 

problems, and with pragmatic rules of thumb about when to apply each technique to 

make it highly effective. Usually, a data mining system consists of a set of elements for 

tasks such as characterization, association and correlation analysis, classification, 

prediction, cluster analysis, outlier analysis, and evolution analysis. In addition, there 

are a several variations of those tasks, resulting in new algorithms, considered in some 

cases as “new techniques.” For the purpose of this thesis, only the broad classes of data 

mining algorithms will be discussed. (Pinki, Prinima and Indu 2017) 

2.2.1 Concept/Class Description: Characterization and 

Discrimination 
Class/Concept description refers to the advantage of associating data with classes or 

concepts for summaries of individual descriptions based on these precise terms.  

There are three techniques used to derive this description:  

 Data Characterization: the class of interest, also referred as target class, is 

summarized in general terms or, based on its features. 

 Data Discrimination: the general features of the class under study are compared 

with the general features of one or more comparative classes, to obtain a 

contrast between them. 

 Combination of both data characterization and discrimination. 
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The methods used for characterization and discrimination include summaries and 

output presentations based on statistical measures, generalized relations, in rule forms  

and descriptive plots like: bar charts, curves, pie charts, multidimensional tables, and 

so on. 

2.2.2 Frequent Patterns, Associations, and Correlations 
Frequent Patterns corresponds to one of the most basic techniques and is about 

learning to recognize frequent patterns in data sets. It is usually based on 

distinguishing aberrations in data happening at regular intervals over time. Different 

kinds of frequent patterns include: 

 Frequent item-sets: denote a set of items that recurrently appear together in a 

transactional data set.   

 Frequent sequential pattern: refer to a pattern occurring in a sub-sequential 

trend, one after another, repeatedly.    

 Frequent sub-structured pattern: occur when different structural arrangements 

take place on a regular basis. The form of those arrangements can be graphs, 

trees or lattices, and may be combined with sub-sequences or item-sets.  

Associations and correlations occur when frequent patterns within the data are tracked 

in a more specific way to dependently link variables. In the association analysis, two 

groups can be distinguished related to the number of attributes/dimensions: 

 Single-dimensional association rule: Involves a single attribute or predicate 

that repeats (i.e., buy) 

 Multidimensional association rule: Consists of more than one attribute or 

predicate (i.e., age, income, and buy). 

When certain association rules are considered interesting, statistical correlations can be 

applied to show whether and, how strongly associated attribute–values pairs relate.   

2.2.3 Classification and Prediction 
A more complex and commonly applied mining technique is classification, where a 

model is created to describe and differentiate data classes/concepts and then collect 

them together into discernable categories. The final aim is to use the model, derived 

from the known data, also known as ‘training data’, to make predictions of the data 

labelled as unknown. 

There are a number of forms to represent the model, for example using: 

 Classification rules: with the function IF – THEN. 

 Decision trees: creating a flow chart via an algorithm based on the “information 

gain” of the attributes. Basically, each node is tested on an attribute value, 

where the tree brands represent the outcome and the leaves denote the class 

distribution. 

 k-nearest neighbour (k-NN) classification: uses the data to determine the model 

structure by not making assumptions on the original data distribution (non-

parametric) but learning based on feature similarity. Hence, it does not do 
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generalization based on the training data rather it utilizes the training data for 

the testing phase. 

 Neural networks: structurally consist of many small units called neurones, and 

it is a powerful mathematical tool for solving problems. The neurons are linked 

to each other into layers, and cooperate to propagate the inputs using weighted 

connections through ‘activation functions’. Then the Bias values are converted 

mathematically to continue the transformation of the inputs into outputs in the 

best possible manner. (Solesa 2017) 

 Support Vector Machine: combines linear modelling and instance-based 

learning to overcome the limitations of linear boundaries. It relies in selecting a 

small number of critical boundary instances, called support vectors from each 

class, and build a linear discriminant function that separates them as widely as 

possible. The result permits the inclusion of extra nonlinear terms in the 

function, in order to form higher-order decision boundaries. (Witten and Frank 

2005) 

 Naïve Bayesian: it’s based on the Bayes’s rule (named after Rev. Thomas Bayes 

1702-1761) and is mainly appropriate when the dimensionality of the inputs is 

high, i.e., in a simplistic way, it assumes independency between attributes. This 

technique works well when combined with procedures to eliminate 

redundancy (non-independent attributes). The algorithm output will be a 

function of the prior probability, based on previous experience, and the 

likelihood for a new object to be classified in a certain class. Naïve Bayes 

miscarries if a particular attribute value does not occur in the training set along 

with every class value. (Witten and Frank 2005) 

Though conventionally the term prediction is used in reference to numeric prediction 

as class label prediction, more precisely, classification is used for categorical 

predictions labels (discrete, unordered), and prediction to emphasize models 

describing continuous-valued functions. In this context, regression analysis appears as 

a statistical methodology, commonly used for numeric prediction. However, other 

methods exist and could also provide a good performance. 

2.2.4 Outlier Detection 
In many cases, data sets may include anomalies, or outliers, i.e., data that do not 

comply with the general behaviour or model of the data, data that need to be identified 

and demand investigation to get a clear understanding of the data set. In general, data 

mining offers algorithms to discard outliers as noise or exceptions. This type of data 

could affect data analysis and therefore, needs to be excluded.  

This functionality can also serve other purpose, when anomalies can provide 

information of interest, like for example, in cases of fraud detection using credit cards 

to purchase extremely large amounts compare to regular transactions.  

Outlier detection is possible conventionally through statistical tests, where a certain 

type of distribution is assumed, or by using probability models to discard anomalies. 

Other methods include the use of distance or density measures, where examples 

substantially far or with less data density from any other cluster are identified as 
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outliers. On the other hand, deviation-based methods, compare the main 

characteristics between examples and by examining the differences set apart outliers.  

2.2.5 Cluster Analysis  
Clustering seems similar to classification, but involves grouping amounts of data 

without a specific known class label, using only their similarities. Clustering, can in 

fact, be used to generate the necessary labels.  

The principle used to group the data search for examples to maximize their intraclass 

similarities within the group, and at the same time, to minimize the intraclass 

similarities with other groups. The final result is different groups (clusters) in a way 

that examples in the same group are similar to each other but different from examples 

in other groups. Groups are clearly distinguished and can be used to derive rules. (Han 

and Kamber 2006) 

Different techniques are used for clustering, where the most common examples are 

hierarchical clustering and k-means clustering. (Abou-Sayed 2012) 

 

Figure 4 Plot of customer data in relation to its location in a city. Three data clusters are 

clearly identified (Han and Kamber 2006)   

2.2.6 Regression  
It is a statistical method used to approximate the given data primarily as a form of 

planning and modelling continues values. There are different types of regression 

analysis, but the principle consist in evaluating the influence of one or more 

independent variables on a dependent variable. It allows examining the likelihood of a 

certain variable, in the presence of other variables, providing a way to uncover the 

exact relationship between two or more variables in a certain data set. 

The simplest form is called linear regression, where the response variable can be 

modelled as a linear function of another variable. In the event when two or more 

variables have a linear relationship with the dependent variable, the regression is then 

known as multiple linear regression. Linear regression is very sensitive to outliers, 

which can distort the calculation.  

Multiple regression is an extension of the simple form, used to predict a relationship 

between multiple variables, which increases the complexity of the prediction.  
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Some of the most popular types of Regression are Logistic Regression, Polynomial 

Regression, Stepwise Regression, Ridge Regression, Lasso Regression, among others. 

Each one following specific conditions to better suits problems (Ray 2015).  

2.3 Common Applications 
Data mining is widely popular in credit risk applications and in cases of fraud 

detection. The common technique applied is Classification, where a model is 

developed employing pre-classified examples and then categorize the records through 

decision tree or neural network-based classification algorithms. Outlier detection is 

also used for fraud detection, where the outliers become the data of interest. In general, 

during the process, it is necessary to include records of valid and fraudulent activities 

to properly train the model on how to determine the required parameters to do the 

discrimination. (Pinki, Prinima and Indu 2017) 

Data mining is also being used successfully in industrial process applications, in areas 

that include process monitoring, fault detection and diagnosis, process-related 

decision-making support to improve process understanding, soft sensors, process 

parameter inference, and many others. Each application demands different techniques 

along with different types of data bases. However, one of the most popular techniques 

for prediction modelling is based on neural network approaches due to its well-known 

predictive capabilities. In some cases, a combination of various methods can also be 

used to create hybrid models and overcome individual limitations to achieve the 

proposed objective. (Platon and Amazouz 2007) 

Retailer analysis of buying patterns is another classical application of data mining, 

where its solving problems proficiency of analysing long time stored databases full of 

data of customer actions and loyalty represents an open door for the marketplaces. In 

every transaction, customers expose their choices, along with some of their profile 

data, that when properly processed results in patterns of customer behaviour. This 

information allows to identify distinguishing characteristics related to their loyalty and 

churn likelihood to certain products. The results provide client’s profile identification 

and clients preferences that can be worked as inputs for marketing strategies, market 

predictions, to serve a customer oriented economy where increasing sales is the final 

aim. As an example, the giant Wal-Mart can be cited, which transfers all its relevant 

daily transactions to a data warehouse collecting terabytes of data, that is also 

accessible to its suppliers enabling them to extract the information regarding customer 

buying patterns and shopping habits, as well as most shopped days, most sought for 

products, and so on.  

There are many other specific applications. Like screening images with a hazard 

detection system to identify oil slicks from satellite images and give an earlier warning 

of ecological disasters. For the forecast of the load for the electricity supply industry 

based on historical records of consumption. In the medicine field, for best treatment 

selection and in human in vitro fertilization where over 60 recorded features of the 

embryos need to be analysed simultaneously; and countless more applications. (Witten 

and Frank 2005) 
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2.4 Applications in the Industry 
It has been estimated that a large offshore field delivers more than 0.75 terabytes of 

data weekly, and a large refinery 1 terabyte of raw data per day. References have been 

made to input/output points somewhere between 4000 and 10000 per second. (Abou-

Sayed 2012)  With this amount of data flowing constantly, the key lies in ensuring that 

the right information reaches the right people at the right time.  

The industry’s emphasis has been normally on monitoring and assurance of 

production; therefore, some Operators and Service Companies recognizing the 

potential of data mining have started to make important investments in that direction. 

Some examples of the potential of data mining that are already applied to optimize 

solutions are related to: 

 Predict well productivity, reservoir recovery factors, and decline rate. 

 Identify key drivers for performance of producers and water injectors subjected to 

multiple factors like high pressures and temperature.  

 Defining best practices in completion. 

 Minimizing production downtime and well intervention costs. 

 Extend production life of wells. 

Data Mining scope is still uncertain. Therefore some interesting advances are further 

discussed showing it application in three different disciplines. The first example refers 

to Reservoir Management and how supported on seismic data it is possible to identify 

and advice regarding sweet spots. The second example is related to Wellbore stability, 

and how data can be used to prevent some of the causes and the associated risks. In the 

last case, an application for Formation Evaluation predictions is presented as an 

alternative to reduce completion costs.  

2.4.1 Example 1 - Reservoir Management 
British Petroleum (BP) along with Beyond Limits are working on a project to absorb the 

learnings of petrotechnical experts, like geologists and petroleum engineers, using 

cognitive computing to imitate their decision-making processes as they work on 

subsurface challenges.  

The first joint program is already running since July-2018 with a group of BP’s 

upstream engineering team aiming that their expertise train the system and remain 

longer digitally. It was meant to be used on the job, in a way that a number of Artificial 

Intelligent (AI)-agents constantly interact with members of the team to start building 

experience, learn the art of solving problems and store knowledge further. It starts as a 

design tool, with a process of learning to become a recommendation tool that with 

experience can build trust, to later be used as a control system. In a glimpse of the early 

stage of the project, BP is expecting from the system answers on how to mitigate the 

impact of sand production with prediction and advice with asphaltene buildups in a 

well.   

A cognitive computing system involves self-learning technologies that use basic 

analytics, deep learning, data mining, pattern recognition, and natural language 
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processing to solve problems the way humans solve problems, by thinking, reasoning 

and remembering. It can combine data from different information sources, weigh its 

context, and solve conflicts using the evidence to propose the best possible answers. 

Through deep learning, the information is processed in layers where the output from 

one layer becomes the input for the next one, improving the result.  (Jacobs, Journal of 

Petroleum Technology 2018) 

BP’s interest on Beyond Limits arose due to its work with Jet Propulsion Laboratory 

(JPL) on the real Mars rovers Curiosity. One of their principals was the author of a 

distinctive AI program in charge of managing one of the rover’s battery. The 

outstanding was that when the program detected that the solar panels were suffering 

from dust storms, it autonomously accessed data from pressure and temperature 

sensors with the purpose of building a weather model in order to understand how to 

properly orient its solar panels to prevent dust from storms. This aligns with the 

definition of AI as “the science of making computers do things that require intelligence 

when done by humans” (Evans 2017).  In the Curiosity mission, the program was 

capable to execute a task that was not designed in its model.    

Beyond Limits is relatively new and not exclusive to the Oil & Gas industry, therefore 

unknown. However, it is developing a system, referred as Reservoir Management 

advisor, that will learn from geologists and reservoir engineers as they search for sweet 

spots in offshore seismic data to recommend probable well locations, and the more 

suitable well designs to maximize the recovery of hydrocarbons. It is supported on 

another software called Sherlock IQ, born from the experience on the rover program 

and based on machine cognition to autonomously shift through different paths of data 

to discover specific details and scenarios that ultimately will allow it to assess risks. It 

is expected to become reliable, faster, and capable to appraise more data in a period of 

just few hours, to complement the work of real experts, which usually can take months.  

 

Figure 5 Beyond Limits Reservoir Management advisor (Jacobs, Journal of Petroleum 

Technology 2018) 
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2.4.2 Example 2 – Data Mining to Understand Drilling 

Conditions.  
Lately terminologies like “intelligent wells” or “digital oilfields” are becoming more 

and more oft used, according to how data use is changing in the industry. The usual 

approach of established workflows using only specific set of relationships between 

variables, like linking core data to well logs, has become obsolete.  

Data mining functionality along with the proper technology allow to work with 

disparate data types structured and unstructured, and with different degrees of 

accuracy and granularity. The combination enables rapid associations between data 

that normally would be assumed not linked. This perspective was tested by the UK 

Department of Energy & Climate Change, with a project together with CGG as the 

official UK Continental Shelf data release agent. The study purpose  was to improve 

drilling results using data mining main tasks: descriptive modelling and predictive 

relationships. More specifically the project’s aim was to find out the optimum 

conditions for drilling efficiency and identify the high-risk situations. 

A total of 350 wells located in the UK North Sea were used for the study in the form of 

20000 files with different formats but including data from Well logs, well geographical 

locations, drilling parameters, geological reports, and well deviations. All data was 

thoroughly loaded, quality controlled and finally used for the analysis. The caliper 

reading was determined as the main reference, to identify poor hole conditions, by 

normalizing it with the bit size. Other drilling parameters in detail used were: Torque, 

Weight on Bit (WOB), and ROP.  The visualization tool allowed to combine and 

contrast the inputs/variables  in order to understand how its variations affect borehole 

quality. (Johnston and Aurelien 2015) 

 

Figure 6  Anomaly Detection: A high risk situation was identified (Johnston and 

Aurelien 2015) 



Data Mining 

12 

 

Data mining revealed its functionality working with big amount of data and 

performing better than the usual approach and in very short period. Figure 6, is an 

example of how anomaly detection was possible using one of the visualization tools. It 

showed the case of a single well well where an increase of WOB, ended in poor hole 

conditions and affecting the reading of the caliper measurement. Subsequently, it was 

found that the well faced logging stuck issues and forced an extra wiper trip. In 

conclusion, a high risk situation was identified.   

There were more discoveries as result of the study, which included some predictive 

statistics meant to provide valuable information to drill future wells in the same area 

hopefully with less problems.  

2.4.3 Example 3 – Predictions of Formation Evaluation 

Measurements to Replace Logging Tools used in Lateral 

Sections.  
The shale revolution growth over the past two decades positioned United States in the 

top of oil producers worldwide, competing with Saudi Arabia and Russia (Donnelly 

2019). However, the threat of the low oil price market after the crisis at the end of 2014, 

forced producers to become extremely efficient, to cut costs, and to look for innovation. 

In this regard, in the Eagle Ford Shale in Texas, the EOG Resources reported a decrease 

of 70% in the average drilling days from 14.2 during 2012 to 4.3 in 2015. The curios side 

of this improvement in efficiency relates to the overall cost per well, which only 

decreased a 20%, from USD 7.2 million to USD 5.7 million. The discrepancy is due to 

the completion cost, being the major contributor and independent of any possible 

improvement in efficiency during operations (Parshall 2015). Innovation was on 

demand.  

It is important to bear in mind that to provide smart completions, the location of stages 

and perforation clusters is essential and currently engineering designed using 

formation evaluation technology. This technology, known by being costly, must be add 

to the already considerable cost per stage, where experience has shown that between 

30% and 50% of the perforation clusters do not even produce. This situation caught the 

attention of Quantico Energy Solutions, a data driven company, understanding the 

need of more and better information about the reservoirs and its geological complexity 

without the investment required by conventional logs.  

The necessity of innovation became stronger due to the way shale fields are developed 

where operators can afford to log few appraisal wells but not all the subsequent wells, 

which ideally should be smartly completed too. Therefore, data mining became an 

alternative, considering a scenario where already thousands of wells in the area have 

been drilled, collecting not just important geological data from logging tools and 

cutting samples, but also a huge amount of data regarding drilling parameters, 

completion and production. 

After a two years research, Quantico Energy Solutions, supported by several major 

shale operators, along with industry specialist in neural networks and openhole 

logging tool designers, developed a source of formation evaluation characteristics, 
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called QLog. It is a commercial logging system based on machine-learning software 

that trained neural networks models using the drilling and logging data from 

horizontal wells collected for years by operators. It is capable to simulate 

compressional, shear, and density logs on horizontal wells to prevent the use of 

expensive logging tools. With the results, it is possible to derive elastic properties such 

as Young’s modulus, Poisson’s ratio, horizontal stress, and brittleness, fundamental to 

engineer the completions. Actually, later on, the company developed QFrac software, 

which using the simulated results, is able to recommend engineered stage locations.     

The success of the system, requiring less investment compared to the actual design and 

test of physical logging tools, created a network effect where more operators decided 

to step in, providing more data. In consequence, a real time simulator service was 

developed, QDrill, to assist drillers with well placement operations too. It is a software 

based on artificial intelligence, that provides petrophysical properties of a reservoir. 

The algorithm was developed using several hundred wells for many basins that have 

the measured well logs along with the drilling data. It was designed to use as input, 

gamma ray logs and drilling dynamics parameters, like ROP, WOB, torque, and so on. 

There are several advantages in using data mining to simulate formation evaluation 

logs. Starting with the reduction of capital expenses, with savings up to 80% of 

conventional logging costs. Other benefits include no nuclear or acoustic sources in the 

well (Quantico Energy 2019). In fact, models for specific fields can be generated in few 

days. However, the main advantage is the elimination of the risks of running expensive 

logging tools with the latent possibility of being stuck, or in the worse scenario lost-in-

hole. Specially, when the results of simulations have shown repeatable accuracy 

consistent with the one obtained by logging tools in both deep-water and land wells.   

 

Figure 7 Differences were less than the precision of the logging tools, where Real 

Time measuremets are highly depended of the hole conditions and largely affected 

by hole washouts (Zhang 2018) 



Data Mining 

14 

 

Figure 7, refers to a case study in the Midcontinent region of the U.S., where the target 

was a formation with a clastic laminated/layered sandstone reservoir. The AI model 

was prepared and the client drilled two laterals sections using Quantico logs for real 

time geosteering interpretations to place completion stages in areas with higher 

porosity intervals and equalizing minimum horizontal stress across stages. To compare 

predicative accuracy and repeatability of the model with the real time measurements, 

two models were used: one static, based on information from proprietary database, 

and one adaptive, constantly incorporating in the training set the data acquired from 

logging tools. The results showed negligible differences between the bulk densities 

from both models in relation to the one measured by logging tools (Zhang 2018). 
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Chapter 3 Measurements and Data 

The first step in data mining consist in gathering all relevant data for the study, which 

might not be an obvious task. This is why it is important to state a clear objective to 

identify the necessary data. In this regard and, as earlier mentioned, the aim for this 

work looks for a better understanding of the ROP measurement, which in operations is 

the reflection of the drilling conditions, and include among others, the drilling 

parameters set while drilling. Thus, prior to mining the data, it is key to understand 

which are the main measurements and sensors involved during drilling operations and 

providing the data, as well as some relevant concepts and considerations regarding the 

data itself.  

3.1 Sensors and Rate of Penetration 

3.1.1 Sensors Measurements 
There are different number and type of sensors involved during normal drilling 

operations. This is highly related to the nature of the rig, the sort of operation, and the 

available budget. Sensors are used in the process to measure parameters, and their 

outputs are the values that provide these parameters’ descriptions.  

It is important to distinguish how some measurements are originated with sensors 

installed on surface while others come from downhole sensors included in the tools 

used in the Bottom Hole Assembly (BHA). In addition, there are different types of 

measurements, some are direct and others indirect. Finally, two domains are working 

in parallel, so data measurements are acquired in Time and Depth.  

In general, there are more less 10 key measurements obtained from surface sensors. 

However, due to the scope of the present work, only some of the main and most 

common measurements will be discussed, as they provide input for further analysis 

and modelling. Table 1 summarizes the surface sensor measurements, normally 

acquired by the mud logging service provider during daily drilling operations, with a 

brief description for each attribute (Nguyen 1996). 

As previously mentioned, data is acquired in two domains, being DEPTH one of them; 

for that reason, this attribute is by far the most important one regarding measurements. 

Nevertheless, concerning rig operations, there are three measurements that are 

indispensable for operations: hook load, rotation and pump discharge pressure. 

Besides, the majority of these measurements are indirect, demanding a certain level of 

interpretation along with regular on site calibration and thus more susceptible to 

human error.  

 

 

 



Measurements and Data 

 

16 

 

Attributes Description 

Hole Depth [DEPTH] Permits depth tracking and refers to the most recent 

position of the Bit while drilling along the trajectory.  

Hook load [WOH] Correspond to the average value of the weight/load on the 

Hook. 

Rate of Penetration 

[ROPins] 

Calculate the rate of movement of the Bit while drilling in a 

certain interval.  

Rotation per Minute [RPM] Provides the average revolutions transmitted to the drill-

string by the Top Drive. 

Standpipe Pressure [SPP] Indicates the average Pressure delivered by the pumps. 

Usually measured at the Standpipe.  

Weight on Bit [WOB] Calculated as the difference between the weight on the hook 

while off bottom and on bottom.  

Torque [TRQ] Average torque in the drill-string. 

Flow Rate [FLOW] Average flow rate delivered by mud pumps, usually 

referred as Flow in. 

Table 1 Summary of Attributes coming from surface sensors 

Downhole measurements are also indirect, but in most of the cases, its calibration 

process is more rigorous and normally performed only in the workshop and under 

specific conditions, i.e., yearly, once per job, etc. Downhole measurements are mainly 

used for wellbore positioning, directional work, and formation evaluation. Table 2 

shows the attributes related to the directional work and obtained from downhole 

sensors. It includes DEPTH, which is measured on surface and adjusted to the offset of 

the downhole sensors position in the BHA. It is necessary as point of reference.     

  Attributes Description 

Depth [DEPTH] Corresponds to the depth position of the sensor in the 

borehole while taking the measurement.  

Inclination [Inclination] Provides the deviation of the borehole in relation to the 

vertical. 

Azimuth [Aimuth]  Gives the position of the borehole regarding the North and 

projected onto a horizontal plane. 

Build Rate [BR] Refer to the incremental increase or decrease in inclination 

angle from vertical, specified in degrees per 100 ft. or per 30 

m. (Azar and Samuel 2007) 

Turn Rate [TR] Provides a measurement of the incremental change in 

azimuth per 100 ft. or per 30 m (Azar and Samuel 2007). 

Dogleg Severity [DLS] Describe the amount of change in the inclination and/or 

direction of a wellbore. Also expressed in degrees per 100 ft. 

or per 30 m (Carden 2007) 

Table 2 Attribute related to the directional work 
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With a first glimpse of the measurements involved in this study, it is important to 

discuss one in further detail: ROP. During normal drilling operations, this parameter is 

of main concern due to its influence in drilling performance and efficiency, and 

therefore in drilling costs. 

3.1.2 Rate of Penetration (ROP) 
The ROP is defined as the “advancement in unit time, while the drill bit is on bottom 

and drilling ahead” and the factors affecting it are categorized in three main groups 

(Mensa-Wilmot, et al. 2010):  

1. Planning. 

2. Environment. 

3. Execution. 

The first group, is defined during the planning stage and includes: Hole size and 

casing depths, well profile, drive mechanism selected to drill (Motor, RSS, etc.), BHA 

configuration, bit selection (aggressiveness of the design), bit hydraulic horse power 

per square inch (HSI), flow rate, drilling fluid type and rheology properties and hole 

cleaning. From the listed factors, it is important to notice that hole size, bit selection, 

HSI, drive mechanism, and BHA are constant for a run, i.e., since the BHA is running 

in hole until it is pulled out of hole again.   

The environment category refers to the lithology of the area, the formation drillability 

(rock strength, abrasiveness, etc.), the pressure conditions (differential and hydrostatic) 

and the deviation tendencies, among others. The differential pressure and deviation 

tendencies are in constant change during well construction. However, the formation 

related factors could be considered constant for a specific area or field.  

Last, but not least, are the execution factors: Weight-on-bit (WOB), RPM, drilling 

dynamics, etc. (IADC 2014).  These factors also change constantly and are an essential 

part of the drilling parameters set on surface to construct a well in order to follow a 

trajectory previously planned. It is important to consider that some technical 

limitations exist in this regard. For example, the bit selection usually determined the 

maximum WOB applicable. In the same way, the maximum RPM are limited by rig 

capability; also in relation to the BHA configuration, the motor bent housing in case of 

its use as deflection tool, the resulted torque, the well profile, vibrations, and many 

others.     

For instances, it is necessary to differentiate between the two main types of ROP, the 

average and the instantaneous. The average is used as a description of the 

measurement over a certain interval or in relation to a particular BHA. The concept of 

instantaneous ROP, on the other hand, refers to the measurement over a finite time or 

distance and offers a reference in real time (Mensa-Wilmot, et al. 2010).  

3.2 Data Type 
Working with data usually represents a challenge because the majority of the data is 

collected in an unstructured way, which means it does not involve a pre-defined data 

model or it is simply not organized in a pre-defined manner. Therefore, it becomes 
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important to understand how to work with different data sets based on the final aim. 

By definition “an attribute is a property or characteristic of an object, that may vary, 

either from one object to another or from one time to another” (Tan, Steinbach and 

Kumar 2006). The description of data is done by using different attributes, which not 

only differ in its values but might also vary in its type.  

At the most basic level, the physical value for different attributes are mapped as 

numbers or symbols, where the values used to represent an attribute may have 

properties that are not  properties of the attribute itself, and vice versa. A way to 

differentiate the types of attributes is to recognise the properties of numbers associated 

to the properties of the attribute. Four main operations are used to distinguish between 

attributes: 

1. Distinctness. 

2. Order. 

3. Addition. 

4. Multiplication. 

Resulting in four types of attributes, with specific properties and operations clearly 

defined and valid for each type (Tan, Steinbach and Kumar 2006): 

1. Nominal: Provide enough information to distinguish one object from another 

(=, ≠). For example, gender, ID numbers, etc.  

2. Ordinal: Based on the information objects can be ordered with a logic criteria (<, 

>). For example, grades, costs, quality, etc.  

3. Interval: The differences between values are meaningful (+, -). For example, 

temperature in Celsius or Fahrenheit, where a unit of measurement exists.   

4. Ratio: The differences and ratios between values are meaningful. For example, 

monetary quantities, age, length, etc.   

The first and second type of attribute are commonly denoted as categorical or 

qualitative, and cannot be treated as numbers, even if represented by numbers, because 

of its absence of the properties of numbers. In contrast, the last two types of attributes 

are usually referred to as quantitative or numeric, and are not only represented by 

numbers but actually, those numbers have direct meaning as measurement and have 

most of the properties of numbers.  

In addition, attributes can also be classified based on their numeric values, which can 

be discrete or continuous. Discrete attributes are usually represented using integer 

variables and have a finite set of values, i.e., can only take certain values. A special 

subgroup of discrete attributes is binary attributes, where only two values are possible 

(0 or 1, True or False, etc.) and often represented as Boolean variables. Continuous 

attributes are essentially real numbers, can occupy any value over a continuous range 

and are represented as floating-point variables. Normally, categorical attributes are 

discrete, while numeric attributes are continuous.      
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3.3   Data Issues, Limitations and Resource 

Constraints 
The most time consuming stage during any application of data mining corresponds to 

the preparation of the data for processing. This includes collecting and cleaning the 

data. Surveys show that between 60 to 80% of the time is designated to this purpose.  

 

Figure 8 Results of survey between data scientists showing the time needed to 

massage the data prior its use (Press 2016)  

 

There are several measurements and data collection issues. Mainly, related to human 

error, limitation of measuring devices, or defects in the data collection process, which 

includes inappropriate sensor installation or poor understanding of the physics 

involved behind the measurement (Maidla, et al. 2018). Therefore, it is very common to 

find missing data, duplicate objects, outliers, and inconsistent values. 

Typical errors during the measurement process result in differences between the 

recorded value and the true value, which is known as discrepancy. This can happen 

due to several reasons like a sensor defect, the used of wrong calibrations or an 

inadequate installation. Other common problems involve facing noise in the signal or 

simply lack of maintenance, allowing debris or humidity to affect the measurement. 

Signal noise is normally associated with spatial or temporal components that result in 

spiking signals distorting the measurement (Tan, Steinbach and Kumar 2006). 

Errors concerning the data collection process include omitting relevant data or the 

inappropriate inclusion of data, which is not suitable for the analysis. Moreover, lack of 

availability of data. Finally, yet importantly, data frequency and range must as well be 

considered, because it can affect the granularity of the data, having an impact on the 

results.  

Some illustrations in this regard can be found in Figure 9, where the standpipe 

pressure measurement correspond to the reading of a pressure transducer installed in 

the manifold. When the sensor is wrong placed, with a plausible closed valve in the 

fluid path, the reading could suggest a false pumps off. Figure 10, on the other hand, 

shows the mounting of a Hookload sensor (Clamp Line Tensor - CLT Type) on the drill 
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line about 6-8 ft. above the dead line anchor. It’s reading could be affected by drill line 

vibrations when not properly adjusted or when installed too far from the anchor. 

Finally, debris and humidity are a concern in all sensor connections, which are 

constantly exposed to the environmental conditions.  

 

 

Figure 9 Pressure Transducer installed in manifold on the rig floor 

 

 

Figure 10 Hookload sensor installed in the drill line 



Methodology 

 

21 

 

Chapter 4 Methodology 

With the clear objective of modelling the ROP response based on drilling data and 

considering all the factors influencing it, along with the data available for the project, 

the following general structure was developed:  

   

Figure 11 General structure for the methodology 

It was clear that the starting point was to gather data from the same field. Wells drilled 

in the same field, normally share the same geology, lithology, formation drillability 

and even face similar issues while drilling. The second important point relates the well 

schematic. Yet again, wells drilled in the same field are prone to share similar well 

schematics, i.e., hole sizes, CSG depths, fluid type, bit selection, well profiles, etc. 

Then, the last point refers to the drilling parameters. Ideally, in this context, the same 

rig would be used to drill all the wells in the field. Therefore the technical limitations 

would be the same. In addition, a relation between the directional work and the 

drilling parameters is posed, as they are linked and usually defined between the 

Directional Driller, the Bit engineer and the Company Man. By gathering enough data, 

data mining techniques can be used to train the model that allows predicting the ROP, 

providing a point of reference to assess the performance of a new well, hoping for 

insights of potential factors affecting its result. 

Based on the general structure, Figure 12 shows the specific phases defined to cover all 

aspects involved in the methodology workflow.  

 

Figure 12 Phases for the workflow 

Field • Same Formations - Lithology

Sections • Bit ~BHA  CSG Points

Parameters ↔ Directional work

• Building

• Dropping

• Turning

• Maintaining

1. Data Gathering

2. Data Pre-processing

3. Data Processing

4. Data Analysis

5. Model Evaluation

6. Results



Methodology 

 

22 

 

In the following sections, only the first four phases of the workflow will be explained 

in detail, and the other ones will be covered in the next chapter. 

4.1 Data Gathering 
Data confidentiality is the most important clause in any company, especially when 

there is so much in gamble with high monetary investments and considerable 

environmental associated risks. Therefore, obtaining data is the first challenge.   

In this regard, drilling operations are described using different means in the form of 

reports. For this project, it was possible to collect a limited amount of data to work 

with. The data set consisted of different files, with different formats and granularity, 

from four wells drilled onshore, and in the same field with the same rig. 

Parameter Well_1 Well_2 Well_3 Well_4 

TD MD/TVD  11250 / 10838 12330 / 10600 11660 / 10800 11455 / 10823 

VS  2794 3188 3553 3204 

Section1 MD/TVD 6490 / 6267.4 6280 / 6247.15 6502 / 6225.1 6520 / 6253.18 

Section2 MD/TVD 10387 / 9988.02 10493 / 10010.93 10820 / 10001.53 10627 / 10011.60 

Section3 MD/TVD 11250 / 10838.22 11950 / 10587.33 11660 / 10800.66 11455 / 10823.34 

Section4 MD/TVD   12330 / 10600.12     

Max. Inc/VSA [°] 18.476 / 136.087 88.794 / 98.375 30.993 / 35.682 25.66 / 158.608 

Well Type S / 2D Horizontal / 3D S / 2D S / 2D 

Table 3 Well candidates’ basic details. All units related to distances are in feet [ft] 

Following the main objective of this work along with the general structure described in 

Figure 11 for the methodology, only the reports available for this thesis and with 

potential impact on the ROP are further explained: 

- Survey Listing: refers to the well profile, which is the result of the drilling 

parameters used to build the trajectory, and therefore influencing the ROP.  

- BHA Report: includes information about the Bit size (i.e. hole size), its type 

(cutting mechanism), position of the stabilizers and the deflection tool used. 

Component affecting the resulted ROP. 

- LAS Files: presents a list of all sensors measurements taken on surface, 

including the ROP, in other words, summarizing with different granularities 

and domains, the parameters used during operations. The number of sensors 

installed varies according to the mud logging company contract.  

- Geological Topes List: provides a simple description of the different formations 

from the surface to the target. It usually states the names used to identify each 

formation tope in relation to its MD and TVD. Formation names vary according 

to the geographical location. This document differs from the Geological Report, 

which is a much more detailed description of the cuttings and its composition. 

In this case, the geological topes list was included with the Survey Listing. 
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In relation to the well candidates, the following files were shared for this project: 

Files Well_1 Well_2 Well_3 Well_4 

Survey Listing    

No. BHA's 5 11 4 6 

BHA Template    

Depth LAS File    

Time LAS File    

Geological Topes    

Table 4 () Available file, () Unavailable file 

4.1.1 LAS Files 
A Log ASCII Standard (LAS) file is an industry standard, used for storing wellbore log 

information. The Canadian Well Logging Society was its creator in an effort to 

standardize well log data storage (Optima 2017). The format is divided into two main 

parts:  

1. Header Sections: provides metadata, i.e., company name, drilling location, date, 

column names, units, etc. 

2. ASCII log data: contains all data points in a tubular form and in the 

corresponding sequence following the column names. 

The emblematic value used to represent null values is -999.25, i.e., data is not available. 

Furthermore, LAS files are usually generated in two domains depending on the 

necessity:  

1. Time base: provides information of drilling progress as a reference for 

optimization. Particularly important to register events off bottom, for example, 

tight spots while tripping, increments in pressure while circulating, etc. The 

granularity in this domain is restricted to the frequency of acquisition. In other 

words, data can be acquired every 1 second or every 10 seconds, which is 

equivalent to 1 Hz or 0.1 Hz respectively. Naturally, the ideal scenario would 

use the highest frequency possible to detect every single event.   

2. Depth base: Storage data only on bottom and while drilling. The granularity of 

the data can be customized. Some typical values used for sampling are every 

0.5 ft. or every 1 ft. of data. Nevertheless, for logging, it is usually 

recommended to have at least two data points per foot.  

The difference between these two domains is representative in terms of quantity, and 

therefore in the demand of databanks and data processors (computers). Considering as 

an example, a well with a TD of 20,000 ft. If data sets have a granularity per foot, there 

would be 20,000 data points, just talking about data, called also examples (rows). This 

need to be multiplied by the number of sensors transmitting, as well known as 

properties or attributes (columns) available. As a general number, there would be at 

least 10 sensors providing the data in a rig, and then in total, there would be 200,000 

data points to work with for one single well. 

When the data has a time domain, like a 5 seconds sampling, which is a conventional 

acquisition rate of 0.2 Hz. Just in one day, the amount of data collected would be 17,280 
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data points for one single property. Like in the previous example, assuming 10 

measurements, the amount of data for one day would be 172,800 examples. Then the 

duration of a well needs to be included in the final calculation and using a conservative 

value of 15 days, the final amount of data per well would be approximately 2’592,000 

data points. To sum up, when the file domain is time, data points are roughly 

estimated as 10 times higher than when using a depth domain.  

For this project, it was possible to gather data sets for 4 wells from a mud logging 

service company. The files are depth based LAS files with a granularity of 1 foot and 

include data for 20 properties between drilling parameters, Natural Gas Liquid (NGL) 

components, etc. Table 1, earlier presented, provides a description of the main 

parameters considered for this thesis. 

 

Figure 13 The majority of the Header Section was not provided due to confidentiality 

reasons 

4.1.2 Survey Data 
The survey report is the formal document describing the actual trajectory of a well 

station by station (Knezevic 2017). It is a list that specifies the positioning of the well 

through several measurements and for different views (2D - vertical view and plan 

view, 3D), and it is normally provided by the surveying or directional drilling 

company.  

 

Figure 14 Example of a Survey Report 

Surveys are downhole measurements, typically taken when drilling stops to make a 

connection. The result of a survey measurement will basically include, Inclination and 

Azimuth, for the measured depth where the station was taken. This data then serves as 
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input to calculate additional properties relevant for trajectory construction. Table 2, 

presented in chapter 3, provides a brief description for the parameters considered in 

this work. The format of a Survey Report might vary from client to client, but it usually 

includes at least those three measurements. For this assignment, the survey reports for 

the candidate wells included the geological tops information along with the casing 

points’ depths. 

4.1.3 Bottom Hole Assembly (BHA) Configuration 
The BHA is an essential document in the rig during drilling operations. It provides a 

sketch of the components in the lowest part of the drill string. In other words, the 

components that will be ran in the wellbore with a detailed description regarding its 

dimensions, weights, technical specifications, etc. starting from the bit until the drill 

pipe (Economides M. J. 1997). 

Its design, under normal conditions, must ensure proper weight transfer to the bit as 

well as directional control in balance with sufficient Rate of Penetration (ROP). 

 

Figure 15  Example of a BHA Configuration Report. 
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4.2 Data Pre-processing 
Pre-processing is the immediate and an essential step after collecting the data, where 

data is ultimately prepared for processing and it involves three main steps: 

 

Figure 16 Steps of the Pre-processing stage 

To continue describing the stages followed, it is necessary to become familiar with the 

data mining software used to prepare the data.  

4.2.1 Rapidminer Studio Software 
In order to decide which data mining software to use, there were three primary 

criteria, which resulted in the selection of Rapidminer Studio Software, because of its: 

 

Figure 17 Software selection criteria 

Rapidminer (RM) is a data science platform with a user-friendly visual design that 

provides an integrated environment for data preparation, machine learning, deep 

learning, text mining, and predictive analytics workflows. Compatible with other 

alternatives in the market like R and Python code, it also provides pre-built extensions 

to assist in any possible task. 

In the last version release, additional emphasis has been taken to provide users with 

tools to facilitate the data cleanse process and its analysis. The efforts are gambling for 

a less specific design to a more familiar interaction, with tables of data somehow 

evoking excel experience but with much more powerful tools and capabilities. 

Data 
Transformation

Data Selection 
and Integration

Data Cleaning

• Ranked in the top five of its field of expertise (I. 
2018)

User rating

• Free license for data sets up to 10,000 examples.

• Special free research license with unlimited 
number of examples for a year.

Feasibility

• Suitable for business and industrial applications.
Applicability for the 

topic
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Nevertheless, RM working principal consist in a succession of individual work steps to 

define analysis processes. Some important terminology regarding the software needs 

to be mention at this stage:  

 Operators: Are basically process components in the shape of blocks. In general, 

operators are defined by a description of the expected input, a description of 

the delivered output, the action performed through the operator and the 

parameters that control the previous mentioned action. The software counts 

with an extended library composes of hundreds of operators, ready-to-use as 

well as operators that can be modified, combined, personalized or build by the 

user. In an upper level operators can be classified in two groups, the normal 

ones and the super operators, where the last ones contain one or more sub 

processes.      

 Input / Output: Input refers to the data used to feed an operator and output is 

the result after the data has passed through the operator process.  

 

  

 

Figure 18  Rapidminer Studio Operators Library classification. Example of an 

Operator along with the Input/Output descriptions 

 

 Examples: It denote the rows of a data set, i.e., the data itself.  

 Attributes: Also known as parameters, properties or characteristics, i.e., the 

columns of a data set. In RM the attributes can be distinguish as special or 

regular. Regular attributes are the default status; special notation is used for 

attributes with specific roles.   

 Roles: Attributes can be distinct based on their role as ID, Label or Weight. ID 

is the short name for an attribute that serves as an identifier. Label is used for 

the attributes of interest, which characterize the examples in a certain manner 

and which want to be known/ predicted for new examples. Finally, Weight is 

the name for the attributes with a designated weight regarding the Label 

(Rapidminer 2014) 
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Figure 19  Data view through Examples, regular and special attributes 

 

 Data type: also known as Value Type, because it is an indication of the value of 

the attribute. There are different value types, and they can also be transformed 

into other type when necessary. Still, the main groups are text in the case of 

free text, numerical when numbers are involved and nominal when only few 

values are possible (Rapidminer 2014). Regarding this work, the following 

table summarize the values types used and automatically selected by RM when 

reading the data: 

Integer A positive or negative number which no fractional part. 

Real A number that represent any quantity along a number line. Can be positive or 

negative. (Page 2011) 

Polynominal Special case of nominal type. Attributes can have more than two different 

non-numerical values. 

Table 5 Summarize of the value types used in the data sets.  

 

With a general overview of the software chosen, it is important to mention that 

basically all the data analysis and simulations were done using it. Nevertheless, part of 

the data preparation was done using Excel in combination with Visual Basic Script 

(VBS) and can be reviewed in detail in the Appendix A.1. 

4.2.2 Data Transformation 
As previously described, two files are the main source of data: the depth based LAS 

files and the survey listings. It is necessary to consider that both files have different 

granularities; the LAS files provide data every 1 foot while the survey report provide 

data at different fixed depths. In addition, the BHA Reports are per drilling run. 

To follow the proposed methodology and asses the functionality of data mining, all 

data must be imported in the RM software and be comparable too. The LAS files are 

already with the appropriate base, but the survey listing demands additional attention 

as well as the BHA reports, which need to be transform to the same base.  

As the Survey Report is commonly exported in Excel, it was decided to use VBS to 

develop a tool to make the calculation and the coding process automatically, based on 
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the necessary inputs, allowing for the transformation of the data given at specific 

depths to data per foot including hole sizes and drilling tool used. 

 

Figure 20 Example of the content of the Survey Report, showing only the attributes of 

interest at specific depths 

The first step was to calculate the variation between stations for the main directional 

attributes:  

- Depth 

- Inclination 

- Azimuth 

 Knowing the variation delta (Δ) in Inclination and Azimuth for a certain distance (Δ 

depth) the increments could be obtained per foot. 

Besides, a depth range was entered in order to include data regarding the Hole Size 

and the drilling Tool used to deviate the wells, which later could be distributed per 

foot as well. Figure 21, shows the Workflow followed for this purpose.   

 

Figure 21 Workflow implemented in VBS to transform the data into the desired 

granularity 

Input: Directional Data 

- Inclination

- Azimuth

-Depth

Input: Data per BHA run 

- Depth range

- Hole Size/Section

- Deflection Tool used

Input: Geological Topes & 
Bases

Distribute Geological 
Input per survey station

Calculate Data variation 
between survey stations

Calculate Data per foot
Add Input regarding 

Section and Tool per foot

Generate files to be 
imported in RM
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The result is showed in Directional and Geological Data per foot.Figure 22 providing 

Directional Data, Geological topes, Hole Size and Drilling Tool used per foot. 

Furthermore, other directional attributes were calculated as well: 

- Dogleg Severity (DLS): It is a measure of the amount of change in the 

inclination and azimuth of a borehole, expressed in degrees per 100 feet 

or per 30 meters course length. It’s calculation is based on the Minimum 

Curvature Method as it is the standard method used in the Industry 

(Asad 2016). 

 

𝐷𝐿𝑆 =
100

𝑑𝑠
𝑐𝑜𝑠−1{𝑠𝑖𝑛𝐼1𝑠𝑖𝑛𝐼2 cos(𝐴2 − 𝐴1) + 𝑐𝑜𝑠𝐼1𝑐𝑜𝑠𝐼2} 

 

(1) 

Where ds is the course length between survey stations 1 and 2 

             I1, I2 are the Inclinations in survey stations respectively 

             A1, A2 are the Azimuths in survey stations respectively. 

 

 

- Build-rate angle (BR): refers to the increase or decrease in Inclination 

from vertical per 100 ft. or 30 m. 

 

𝐵𝑅 =  
𝑑𝐼(𝑠)

𝑑𝑠
= ∆𝐼 

(2) 

 

- Turn-rate angle (TR): is the degree of change in the Azimuth per 100 ft. 

or 30 m.    

 

𝑇𝑅 =  
𝑑𝐴(𝑠)

𝑑𝑠
= ∆𝐴 

(3) 

 

 

Figure 22  Directional and Geological Data per foot. 

4.2.3 Project creation and Data Loading  
With the files ready to be imported into RM, it was necessary to create the project and 

get familiar with the kind of operators suitable for the task. Appendix A.2 contains a 

list of the main operators used to create the different processes which are also detailed 

in the Appendix A.3. During the following steps, all RM processes will be referenced 

by their process’ names in parenthesis for its further reference in the mentioned 

appendix.  
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The first step was to create the Repository with the desire folders to keep a clean and 

clear structure of the work: 

 

 

Figure 23  Project structure in RM 

 

With the project created, the next step is to load the data as showed in Figure 24.  

 

 

Figure 24 Flowchart to load Drilling, Directional and Geological parameters 

During this stage (Process: 001DataLoadDP), the LAS files are read using the CSV read 

operator. Then only the relevant attributes related to common drilling parameters were 

selected and stored in the Data Folder with the corresponding nomenclature per well 

(DrillingParametersW#). A similar procedure (Process: 001DataLoadDG) was followed 

to import the transformed survey listing file but using a XLS read operator. In addition, 

the first example was removed as it corresponded to Depth = 0. Then data is stored in 

the Data Folder with the corresponding nomenclature per well 

(DirectionalGeologyW#). 

Data:
• Storage all files that serve as input for the processes. 

i.e.: Directional and Drilling data. 

Process: 

• Contains all the sequential steps to execute each task in 
the form of independent processes conformed by a 
series of different operators structured to achieve a 
desired result. 

Results: • It is the final destination for the processes’ outputs.

• Reduce attributes from 20 to 9

• Store DrillingParametersW#
Read LAS depth-based Files 

• Remove first Data Point (Depth = 0)

• Store Directional GeologyW#
Read xls Survey Listing per 

Foot Files 
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4.2.4 Data Integration 
Data Integration is the corresponding next step to handle the data per well. For the 

Data Integration (Process: 002DataPerWell), the previous generated Drilling 

Parameters files along with the Directional Geology files are restored from the Data 

repository and combined using a Join operator in a sub process based on the common 

attribute: Depth. 

In addition, a well identification (Well ID) is generated, along with an attribute called 

Section# corresponding to the Hole Size data, both as a polinominal attribute to finally 

store the data in the Result folder with the corresponding nomenclature (AllDataW#). 

The generation of those two additional attributes, Well ID and Section#, was possible 

using the Generate Attribute operator, which allows for different entries, to transform 

or generate new ones. It offers too “function expressions” with a pre-defined selection 

that includes but are not limited to logical functions, comparison functions, 

mathematical and statistical functions, etc. Functions that can be used to define 

Expressions/user-defined codes to achieve specific tasks. In this case, it was mainly 

used to improve the work with the data by coding it differently.  

 

 

Figure 25 Attribute Generator operator applications 

 

The final set of the selected attributes includes all examples per foot per well with 20 

regular attributes: 

 

 

 

 



Methodology 

 

33 

 

 

Attribute Unit Type 

Depth Ft Real 

TVD Ft Real 

WOH Klbm Real 

WOB Klbm Real 

ROPins Ft/hr Real 

RPM 1/min Integer 

TRQ Klbf.ft Real 

SPP Psi Real 

FLOW Gpm Real 

Inclination Degrees [°] Real 

Azimuth Degrees Real 

Comments N.A. Polynominal 

DLS °/100ft. Real 

BR °/100ft. Real 

TR °/100ft. Real 

Section In. Real 

Tool N.A. Polynominal 

Well# N.A. Integer 

Section# N.A. Nominal 

Tool# N.A. Integer 

Table 6  Summarize of Attributes including unit of measurement and data type 

 

The last three attributes were added to improve the work and visualization of the data. 

Regarding the section, it was necessary to change it to Nominal, because in its original 

state as real, it creates confusion to the model by considering it as a numerical value. 

The attribute “Comment” refers to the Geological Formation name. 

4.2.5 Data Cleaning 
As mentioned earlier, it corresponds to the more time consuming step, where data 

needs to be carefully examined to filter out those examples that potentially could 

deteriorate the analysis and prediction. It involves reducing the data size by removing 

examples or attributes with missing data or redundancy. Furthermore, it is a step 

where Data Visualization plays an essential role, to improve the identification of 

unbeneficial data. 
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Therefore, one of the characteristics of data mining software is its visualizations tools, 

and RM is not the exception, offering several ways to visualize the data: 

 

Figure 26 RM Data visualization options 

 

The visualization options are interchangeable between each other, which increase the 

effectiveness of the process. 

4.2.5.1 Data Cleaning and Filling 

Using the statistical view, it was possible to identify in a first glimpse missing values 

(marked in yellow), null values (in red) and some data inconsistency (in green) that 

needed to be cleaned. 

 

Figure 27 Statistical Visualization of the data 

 

•Detailed view where examples can be organized from minimum to maximum 
and viceversa.

Data View

•Attributes can easily be assesed per missing values, data distribution and basic 
statistical descriptive values.

Statistical View

•Provides several and different chart styles, which can be personalized as 
required along with some already formated and ready-to-use, like: Scatter, 
Scatter 3D, Bubbel, Series, Density, Histogram, Bars, among many others.

Graphical View
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One key part of the cleaning process includes removing the missing values (Process: 

003RemovingMissingValues). This is possible by retrieving the data per well 

(AllDataW#) and using the Filter Examples operator. 

In this case, the software can detect only “real” missing values, i.e., when no data is 

available for a particular attribute. However, the O&G industry uses its own standard 

value for “null data”, known as -999.25, which can also be straightforwardly removed 

per attribute once identified. Then the results can be properly stored (DataW#). 

 

 

Figure 28 Part of the process to remove the null values -999.25. Description of the 

content inside the Filter Example operator, where conditions can be set as required 

and per attribute 

 

In this particular case, Figure 28, shows how WOB and ROP attributes were restricted 

to filter only > 0 values, to remove some inconsistent values like negative WOB or 0 

values for ROP. 

Moving forward with the cleaning process (Process: 004CleaningData), additional 

steps can be taken to treat other inconsistencies found related to the values for RPM 

and TRQ. During this step two approaches were followed:  

1. Examples were directly excluded from the data based on depth and using the 

Filter Example operator. 

2. Examples were adjusted to be usable through a sub-process.  

 

Figure 29 Inconsistency in TRQ values in relation to RPM values  
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The Scatter chart was used to identify erratic negative values for RPM while sliding 

(orange highlighted). For example, in case of Well #4, those values if removed would 

lead to the wrong perception that the well was drilled only rotating. Unfortunately, 

slidings sheets where not available, however drilling parameters and survey data is 

sufficient to determine the sliding times. 

 

Figure 30 Depth vs. RPM based on the tool used. 

 

Considering that the drill-string rotation produce a corresponding torque value. The 

TRQ attribute is added to the graph to help identifying inconsistencies. 

 

Figure 31 Depth vs. RPM & TRQ 
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Because a Motor was used as tool to deviate the well, which is only possible while 

sliding, the Inclination is another attribute useful to interpret the mismatch values. 

 

Figure 32 Depth vs. RPM in contrast with the Inclination in colos scale 

Parallel analysis were performed for each well, to implement the cleanse process for 

erratic RPM and TRQ. In brief, the corrections were done in independent sub-processes 

specific per situation: 

- Well #1: TRQ values were adjusted to correspond with RPM values equal to 0. 

- Well #2: did not need corrections, as it was drilled mainly using Rotary Steerable 

System (RSS). 

- Wells #3 & #4: negative RPM values were adjusted to match with sliding events. 

4.2.5.2 Data Quality Control (QC) 

With the data stored as DataCleanW#, a process for a technical review was 

implemented (Process: 004CleaningData_QC) to remove data of poor or questionable 

quality.  

The first step was to expand the information earlier presented in Table 3, showing the 

similarities and differences between wells, including the deflection tool used per run. 
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W1 W2 W3 W4 

 

MD 
[ft] 

BHA 
# 

Tool 
MD 
[ft] 

BHA 
# 

Tool 
MD 
[ft] 

BHA 
# 

Tool 
MD 
[ft] 

BHA 
# 

Tool 

16" 
6490 2 Motor 3354 2 RSS 6502 2 RSS 6520 2 Motor 

      6280 3 RSS             

12.25" 

9513 3 RSS 9355 4 RSS 10820 3 Motor 6606 3 Motor 

10387 4 Motor 10493 7 RSS       9417 4 Motor 

                  10627 5 Motor 

8.5" 
11250 5 Motor 10629 8 RSS 11660 4 Motor 11455 6 Motor 

      11950 9 RSS             

6.125" 
      11955 10 Motor             

      12330 11 RSS             

Inc/VSA 
[°]: 

18.476 / 136.087 88.794 / 98.375 30.993 / 35.682 25.66 / 158.608 

 Table 7 Well data set including deflection tool per run 

It was then clear that only the data gathered in Wells #1 and #3 would serve the 

purpose to train a model to predict the ROP of Well #4. Well #2 was left out due to its 

profile differences, reaching horizontal and aggregating an additional section to the 

design. 

Thus, the data from both wells was combined to create and store the final training set 

after the proper QC sub-process, specific per section, as the hole diameter differs and 

the drilling conditions change and based on the following main criteria:  

1. WOB Operational Limits. 

2. WOH Expected Behaviour. 

3. RPM Outliers. 

The sub-process for the 16” sample is presented in Figure 33. The first filter applied is 

based on WOB operational limits (green square), considering that the technical 

specifications for the bit type used in this section cannot overcome 50 Klbm, and that 

any value below 2.5 Klbm would not be representative. 

 

Figure 33 QC sub-process to prepare the 16” training set 
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The next filter was based on WOH behaviour (blue square), which theoretically should 

increase gradually with the increase of depth and in relation with the inclination as 

well.  

  

Figure 34 The left chart shows data for WOH before the QC process. The right chart 

show the data once removing the unreliable values (59 Examples were removed) 

 

To continue with this process, one data mining technique was considered to clean the 

data in a more automatic way. The Outlier Detection operator (inside the red square) 

based on distance between data points is a functional algorithm that combined with 

the proper inputs can facilitate the QC process.   

Figure 35, shows the applied RPM in relation to the directional tool used, with several 

clear spots of erratic RPM values. After applying the Outlier Detection and 

understanding the results, it is possible to filter away all TRUE outliers, keeping in 

mind that still some values need to be carefully evaluated, and manually removed in 

the following step with the support of a sub-process for this purpose only (yellow 

square). 

  

Figure 35  The first chart shows the RPM values in relation to the tool used. The second 

chart shows in red the values calculated as outliers 

 

The result is the required training data set including Well #1 & #3, ready to be used and 

stored as QCDataW13_16in. Similar procedure was followed for sections 12.25” and 
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8.5”, to obtain the inputs for the models for each section. Table 8 summed up the 

results:  

Data_set Examples Attributes 

QCDataW13_16in 11583 20 

QCDataW13_12.25in 8025 20 

QCDataW13_8.5in 1639 20 

Table 8 Training sets per section after QC 

4.3 Data Processing 
Once the Pre-processing of the data was completed, the training data sets are finally 

ready to be processed to create the model. To recapitulate, this phase looks for the 

implementation of a model to predict the ROP response based on the 20 attributes 

preselected and prepared for the task.    

The most important step during this phase is to identify in which main task group the 

problem lays. Data mining functionalities were discussed in Chapter 2 (2.1), however, 

to facilitate the task selection, Table 9 provides a simple rather basic guideline 

established with some simple questions to answer.  

Question: Task: 

Is this A or B? Will this be A or B? Classification 

How much or how many?  Regression 

How is this organized? What belongs to each other? Clustering 

What happens together? What changes together? Associations and Correlations 

Is this weird? Anomaly Detection 

Table 9 Basic guideline to select the task.  

 

To fulfil the goal of the thesis, the question should be “How much would be the ROP 

value?” Therefore, it is a Regression task. Then the next step consists in selecting the 

algorithm to use, which might be challenging depending on the task and the data. 

In this regard, it is important to mention the “No Free Lunch Theorems for 

Optimization” (Wolpert and Macready 1997), which have proved that there is nothing 

like a perfect model to fit all data sets and that consequently, the effort should be on 

understanding which model perform better for a specific problem. Considering the 

theorem statement that when an algorithm performs well for a particular task. As a 

result, it will degrade its performance on all remaining tasks.  

Then, the focal point should be in aligning the algorithm as precise as possible with the 

features of the actual goal, and then construct it knowing that the same algorithm 

cannot serve under different conditions. For that reason, each section should have its 

own model for ROP prediction, and based on the specific inputs discussed during the 

Pre-processing phases.  
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RM offers two main alternatives to process the data. The conventional one, where users 

build the processes block-by-block, analysing the data and testing the results, and a 

more automatic one with the Auto Model extension available with RM version 9.0. It is 

an option intended to accelerate the process of building and validating models. It 

includes well defined steps to optimize parameters with software assistance 

recommendations based on the data, the task and the variable to predict.  

4.3.1 Manual Model Implementation  
For the first alternative (Process: 007Model), the QC training set per section is retrieved 

to create the model. Attributes like Well# and Section# were removed as unnecessary. 

The ROP attribute role was set as label and a Cross Validation operator was used to 

train and test the model.  

The error was calculated and generated per example as an additional attribute. The 

model selected for the task was k-Nearest Neighbours (k-NN) due to its working 

principals and popularity for classification and regression tasks. Neural Networks was 

also considered and tested (block disable in grey); however, the results presented 

higher performance errors than k-NN results.  

 

Figure 36  k-NN model using a Cross Validation operator for optimization. Sub-

process inside the Cross Validation operator: the left side is the training part for the 

model, and the right side is the testing part and performance evaluation 

 

The Cross Validation (blue square) is a model validation technique for assessing how 

the results of a statistical analysis will generalize to an independent data set. A number 

of validations must be entered, n, which will indicate the time of iterations.  The 

number would define in how many parts a data set will be break into, and there are 

three types of sampling to build the subsets. Then, n-1 subsets of data will serve to 

train the model, to later test it in the excluded subset.  

The process repeats for n-iterations and the final accuracy is calculated based on the 

average of the results of the n-iterations.  For this project, the number of folds, n, was 

determined as 50, and the shuffled sampling was selected to build random subsets of 

the training data set. 
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k-NN can be used for regression predictive problems, and as previously described in 

chapter 2, it works based on similarities, which aligns with the fundamental criteria  

for data selection and preparation for the training sets.  

The “k” is the nearest neighbours considered to take votes from, and it is as crucial 

parameter for the functionality of this algorithm. Based on trial and error method, the 

selected value for k was 8, which means that the algorithm creates a circle with the new 

sample as centre just as big as to enclosure only 8 data points on the plane.  Then 

predictions are calculated by the majority votes of its neighbours, by assigning the 

average value of the values of its k-NN. In conclusion, the model stores the entire 

training data set as part of the model and uses it for its prediction. 

4.3.1.1 Model Evaluation  

To discuss the model results, there are different methods to analyse how well the 

model performs using some of the tools available for its conception: 

- Performance Error  

- Graphical View  

- Statistical Description  

 

Performance Error: 

Based on the Performance operator, which provides different criteria to calculate the 

error by measuring the difference between the predicted values and the actual values 

(Li 2017), including, among others: 

- Root mean squared error:  

𝑅𝑀𝑆𝑄𝐸𝑟𝑟 = √∑
(𝑦𝑖 − �̅�𝑖)2

𝑛

𝑛

1

 

(4) 

- Absolute error:  

𝐴𝐸𝑟𝑟 = ∑
|𝑦𝑖 − �̅�𝑖|

𝑛

𝑛

1

 
(5) 

 

Where: 

 n is the number of examples in the data set 

 𝑦𝑖 is the observed value for i-example 

 �̅�𝑖 is the prediction for i-example 

 

In both cases, errors are given in the unit of measurement of the ROP attribute, i.e., 

ft/hr.  

The same procedure for model implementation and evaluation was followed for the 

other two sections, with the corresponding QC training sets, and using k-NN 

algorithm. The calculated performance errors in each case were: 
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  TRAINING ERROR 

  Using Wells 1 & 3 for training and testing 

Section RMSQErr AErr 

2 16" 53.224 +/- 6.632 33.901 +/- 3.008 

3 12.25" 32.441 +/- 3.388 23.205 +/- 1.791 

4 8.5" 20.321 +/- 3.446 15.612 +/- 2.427 

Table 10 RMSQErr and AErr for all sections using k-NN 

 

Graphical View: 

In the graphical view, there are different ways to visualize the errors. For example, 

when comparing the measured values for ROP with the predicted ones (Figure 37). 

Ideally, the result would be a straight line in the form of prediction(ROP) = ROP. 

This graph can be accompanied by indicating a colour scale for the generated Error 

attribute (ERR = |ROP - prediction(ROP)|) to show how the prediction error spreads. 

Another example is obtained by plotting the Depth vs. the generated Error, which 

shows higher differences in shallow depths (Figure 38). 

 

Figure 37 ROP vs. prediction(ROP) using k-NN for 16” Section training set. In colour 

scale is the generated difference between both values, suggesting the tendency for a 

straight line as wanted 

 



Methodology 

 

44 

 

 

Figure 38 Depth vs. Error using k-NN in 16” Section 

 

Statistical Description: 

To complement the graphical and performance error methods, the statistical view, as 

well offers valuable information to understand the range in which the values of ROP 

are measured (Minimum and Maximum), and in which range the prediction is 

obtained (red square): 

 

Figure 39 Statistical summarize of results using k-NN in 16” Section 

4.3.2 Auto Model Extension 
Auto Model provides a sequential steps workflow to go through the process of creating 

a regression model.  

 

Figure 40 Auto Model sequential workflow 
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4.3.2.1 Model Selection 

Once the data is loaded, it is defined as a prediction problem and the target is 

addressed as a regression task. Then the inputs are selected from the 20 attributes 

available, where one is the label attribute (ROP), and some others are left out, based on 

redundancy, correlation, and relevance, ending with 12 attributes to train the model. 

Based on the choices then some relevant machine learning model types are suggested 

by RM, and displayed in Figure 41 to solve the task.  

 

Figure 41 Model Types step 

Selection between models is possible, but when all are applied, then it generates 

generate a comparison between models. In addition, based on the model type, an 

option for automatic optimization can be selected too. 

Figure 42 shows the results for all selected models in two main graphs, one for the 

error (RMSQErr in this case) and one for the runtime in miliseconds (ms). In both cases, 

results are presented per model and summarized in its numerical form in a table where 

the type of error to displayed can be changed as well. 

 

Figure 42 Auto Model results comparisson 
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According to the results, Gradient Boosted Trees offers (GBT) the smaller Error (red 

square). GBT is considered one of the most powerful techniques to build predictive 

models and was derived from the idea that a weak learner can be modified to become 

better (Brownlee 2016). 

The fundamental idea was to filter observations based on difficulty, leaving the easy 

ones and focusing on the difficult ones by developing new weak learners to handle 

them. At the end, the weak learning method is used repetitively, with a succession of 

refocused observations that the previous learners could not solve properly. Then 

predictions are made by majority vote of the weak learners’ predictions, in accordance 

to their individual accuracy, i.e., difficult observations receive larger weights until the 

algorithm identifies the model that better suit them (Kuhn and Johnson 2013).  

The model was further developed as a numerical optimization problem with the 

objective of minimizing its losses. To sum it up, it involves three main components 

(Brownlee 2016):  

1. The loss function to be optimized, which could be the squared error in the case 

of a regression problem. 

2. A weak learner to make predictions. As the name suggested, “Decision Tress” 

are used as the weak learner, with real values outputs to choose the best split 

points to later be added together. Generally, larger trees can be used with 4 to 8 

levels. 

3. An additive model to add weak learners to optimize the loss function. In this 

case, trees are added one at a time, while existing trees are left unchanged. 

Furthermore, a gradient descent procedure is applied, where the loss is 

calculated, then a tree is added to the model to follow the gradient and reduce 

the loss. Finally, the output of the new tree is added to the output of the 

existing sequence of trees to improve the final output until an acceptable level 

or when no longer improve is achieved.  

 

4.3.2.2 Model Implementation and Evaluation 

GBT model reaches its optimal results with 140 Trees and a Maximal Depth of seven 

levels (Figure 43). In addition, a chart plotting the Number of Tress vs. the Maximal 

Depth is presented to compare the results regarding the model inputs, which allows 

the evaluation of the Performance for Parameters resulting in the optimal selection. 
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Figure 43 Graphical visualization of the Performance for Parameters and table of 

Performance 

Due to the size of the model, its visualization in only one image is hardly legible. 

However, a GBT model can be calculated with restriction of parameters in order to 

offer a visualization of the model that can be discussed to understand the concept. 

 

Figure 44 Gradient Boosted Trees model with restricted parameters. First tree 

Figure 44 shows a GBT model for the same training set but with a Maximum Depth of 

3 levels and a limited Number of Trees to 3. The Maximal Depth is highlighted by the 

right brace in blue. The given Number of Trees, for this case, restricts the possible 

combinations to 2 another similar decision trees (Figure 45) that complement the one 

presented below, to finally form the model.  

 

 

 

Figure 45 The two remaining trees that complete the model for the limited case 
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As expected, a restricted model results in a poorer performance with higher errors. For 

this example: RMSQErr = 102.55 and AErr = 77.413 +/- 67.259. 

The following evaluation mainly corresponds to the GBM optimized model created for 

the 16” Section data set (Process: 007ModelGradientBoostedTrees), with 140 Number of 

Trees and a Maximum Depth of 7.  

The structure presented for the model evaluation and Error methods will be the same 

as the one used with k-NN model. 

 

Performance Error: 

Using the QC training sets for each section, each GBT model was trained and tested. 

The performance results are as follow: 

 

  TRAINING ERROR 

  Using Wells 1 & 3 for training and testing 

Section RMSQErr AErr 

2 16" 48.819 +/- 0 32.010 +/- 36.859 

3 12.25" 29.905 +/- 0 21.164 +/- 21.128 

4 8.5" 19.776 +/- 0 14.886 +/- 13.019 

Table 11 RMSQErr and AErr for all sections using optimized GBT. 

 

Graphical View: 

During the model implementation, the same process was followed to generate a 

calculated error as an additional attribute, by comparing the measured ROP with the 

predicted value.  

  

Figure 46 Left: ROP vs. prediction(ROP). Generated Error in colour scale. Right: Depth 

vs. Error 
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Statistical Description: 

 

 

 

Figure 47 Statistical data for a) The measured ROP, b) The predicted ROP, and c) The 

Error 

 

The proper discussion for the results of both models is prepared and presented in the 

Data Analysis and Discussion chapter. 
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Chapter 5 Data Analysis and Results 

Discussion 

With the data processed and prior to discuss the results, data needs to be further 

analyzed using the visualization tools, considering the types of errors and using 

descriptive statistics to improve the understanding of the variables on research.  

5.1 Training Error and Prediction Error 
During the previous stage, models were implemented and tested, providing a 

comparison between the measured values for ROP and the predicted ones. That 

difference was called “Error”. However, in prediction modelling, there are two well-

defined types of errors, and quite different in importance (Nivre 2007):  

1. Training error: Assess the model about the answer in comparison to the 

training sample. The error is the mean error over the same data used for its 

creation. 

2. Prediction error: Also known as “Test error”, the model is tested with unseen 

data sets. It refers on how well would do a model with an independent test 

sample. 

To this point, only the Training errors have been calculated and presented for the two 

algorithms used, k-NN and GBT.  

5.2 Model Evaluation 
In order to calculate the Prediction error, both models need to be tested in a “new” 

Well. In this case, the initial data set included four Wells drilled in the same field and 

in consequently order. Well #2 was excluded for the modelling due to its particularity 

in the profile and design. Wells #1 and #3 were used to create the models, which can 

now be tested in Well #4.   

This stage is called deployment process (Process: 008Deployment), and its structure is 

basically the same for both models. It starts by retrieving the corresponding created 

model to apply it into the new Well. Data from new set must be filtered per section as 

each section has its corresponding model. Finally, the Prediction errors are calculated 

and  consequently ,  the performance per model and per section can be generated.   

5.3 Models Comparison  
With both models fully deployed and tested on a new data set, it was necessary to 

compare its performance per section. Comparison was done following the same criteria 

earlier defined using the Performance Error, the Graphical View and the Statistical 

Description methods. 
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5.3.1 Performance Error 
Table 12 shows the results for the prediction error after testing both algorithms using 

the data set from Well #4. Results are presented per section, as each section has its own 

model.  

 PREDICTION ERROR 

Model: k-NN Gradient Boost Trees 

Section RMSQErr AErr RMSWErr AErr 

16" 143.775 +/- 0 115.031 +/- 86.250 106.588 +/- 0 82.672 +/- 67.278 

12.25" 63.729 +/- 0 47.259 +/- 42.755 62.424 +/- 0 48.830 +/- 38.890 

8.5" 29.163 +/- 0 22.922 +/- 18.030 26.952 +/- 0 21.361 +/- 16.436 

Table 12 Prediction error per model and per section 

 

5.3.2 Graphical View and Statistical Description 
The graphical view along with the statistical description are displayed together to 

allow the comparison for testing results per model and for each section. 

Under ideal conditions, where the measurement and the prediction would be equal, 

results should be concentrated in a 45° diagonal, with no dispersion around it. 

Therefore, what is expected in the charts is that the majority of the data points follow 

the diagonal with a minimum of dispersion.  

In addition, the statistical values could be reflected in the charts too. For example, in 

cases where the prediction values are lower than the real measurements, this would 

change the data concentration slope. 

  

16” Section:  

k-NN GBT 

  

Attribute Min Max Min Max 

ROP 2.800 875.700 2.800 875.700 

Prediction 38.852 613.700 24.846 644.588 

Err 0.029 700.540 0.010 555.105 

Table 13 16” Section results for both models 
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12.25” Section:  

k-NN GBT 

  

Attribute Min Max Min Max 

ROP 2.400 462.500 2.400 462.500 

Prediction 11.189 329.498 1.961 291.037 

Err 0.023 256.589 0.001 253.256 

Table 14 12.25” Section results for both models 

8.5” Section:  

k-NN GBT 

  

Attribute Min Max Min Max 

ROP 4.700 170.100 4.700 170.100 

Prediction 17.944 103.942 41.281 102.039 

Err 0.008 126.803 0.040 109.576 

Table 15 8.5” Section results for both models 

 

5.4 ROP Statistical Summaries 
Prior to discuss the results, descriptive statistic shall be used to summarize the ROP 

behavior from the training samples, i.e., Wells #1 and #3. A process was created 

(Process: 005Statistics), where the training data sets are retrieved and combined, to 
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later be filtered per well and per section. The Aggregate operator was used to add the 

calculation of the median and mode to the statistical results.  

16” Section  

Well #1 Well #3 

  
 

Well Min Max Mean Median Mode Standard Deviation 

#1 10.400 881.100 312.888 324.300 305.200 133.382 

#3 33.100 832.200 279.885 277.600 278.700 87.149 

Table 16 ROP Histogram and basic summary statistics for 16” Section. 

 

12.25” Section  

Well #1 Well #3 

  
 

Well Min Max Mean Median Mode Standard Deviation 

#1 7.300 418.100 143.258 138.200 99.200 68.863 

#3 2.400 447.900 117.693 85.500 48.400 88.092 

Table 17 ROP Histogram and basic summary statistics for 12.25” Section 

 

8.5” Section  

Well #1 Well #3 

  
 

Well Min Max Mean Median Mode Standard Deviation 
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#1 3.000 135.400 51.638 49.000 48.400 23.789 

#3 2.800 162.800 67.183 65.000 43.700 27.613 

Table 18 ROP Histogram and basic summary statistics for 8.5” Section 

The histograms for all cases show data concentration is in the lower side of the ROP 

measurements values. At the same time, the high values of the standard deviation 

reveal a large amount of variation in the sample. This could be a reflection of reality, 

but it could also mean noise in the measurements, or simply due to the presence of 

remaining outliers (extremely high or extremely low values).   

In this case, another property can be considered using the Pearson mode skewness 

formula, which provides a reference of the data skewness. 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛′𝑠 𝑓𝑖𝑟𝑠𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
𝑚𝑒𝑎𝑛 − 𝑚𝑜𝑑𝑒

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

(6) 

 

The following table summarize the results: 

Section Mean Mode Standard Deviation Skewness 

16” 312.88 305.2 133.382 0.057579 

279.885 278.7 87.149 0.013597 

12.25” 143.258 99.2 68.863 0.639792 

117.693 48.4 88.092 0.786598 

8.5” 51.638 48.4 23.789 0.136113 

67.183 43.7 27.613 0.850433 

Table 19 Pearson’s first coefficient of skewness calculation 

 

Zero value would mean no skewness, and positive values, mean Positive skewness, in 

other words, the ROP distribution is skewed to the right. 

5.5 Evaluation of Results 
For the evaluation of this work and its results, three outcomes are considered: 

1. Visualization Tools Functionalities 

2. Predictive Modelling Evaluation 

3. Resource Constraints 

5.5.1 Visualization Tools Functionalities 
Visualization tools have proved to be essential while working with data. Thus, through 

the methodology phases, data mining software visualization tools were used in five of 

the six steps followed during this project, in other words during the Pre-processing, 

Processing, Analysis, Evaluation, and Results. 

The different options delivered: 

- Relationships between attributes using scatter plots or correlation matrix. 
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- Relation between examples using histograms. 

- Support to identify outliers. 

- Simplification and promptness for data processing.  

- Pre-defined descriptive statistics options to improve analysis.  

5.5.2 Predictive Modelling Evaluation 
It is necessary to clarify that the evaluation is not regarding the algorithm used, but the 

developed model for the proposed problem and its implementation process.  

The algorithms selected to model the ROP prediction for a new well in the same field 

were k-NN and Gradient Boosted Trees. The model evaluation should consider three 

important aspects: 

Aspects k-NN GBT 

1. Ease to interpret the 

output: 

Use the database in which data 

points are separated to make 

predictions just-in-time by 

calculating the similarity 

between an input sample and 

each training instance. 

Works on the principal of 

reconstruction of the residual, 

considering that the best possible 

next model in combination with 

previous weaker ones will improve 

the result.  

2. Calculation time: Low Low 

3. Predictive power:  Low Low 

Table 20 Model Evaluation aspects 

 

Regarding the first aspect, k-NN is considered easier in terms of model description; 

however, the calculations behind it are not quite clear. On the other hand, GBT seems 

simple, but potentially extensive and therefore, harder to follow. Nevertheless, 

calculations behind its results are transparent.  

In term of Performance results, it is important to consider, that the MSQErr along with 

the AErr serve well as a general purpose error metric, but both only indicate the 

magnitude of the average error, where GBT seems slightly better than k-NN (Table 12). 

This aligns with the corresponding charts for ROP vs. prediction(ROP) presented in the 

model comparison section, where results appear less spread for GBT compared to k-

NN.   

Moreover, the concepts of the Training and Testing error are the ones that need to be 

taken into account. In a good prediction model, both should be close. When the Testing 

error is higher means that the model performance for prediction is low; therefore the 

prediction power in both cases was found to be low. 

An interesting point to consider is the prediction range (Table 13 – Table 15). Only in 

the 16” Section, GBT prediction reaches a ROP maximum value higher than one 

obtained using k-NN model. In the other two sections, k-NN prediction reaches higher 

values. Still, in both cases, the prediction maximum values are rather below the 

maximum measured values, which could be due to the positive skewness of the data 

used to train both models.  
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Other important conclusion which related to the modelling evaluation and worth to be 

mentioned here is: results show that prediction under specific conditions is possible, 

but highly depending on the data availability for the model input, in two fronts: 

quantity and quality.  

For this project, the label attribute information was obtained in the form of a Depth 

based LAS file with a granularity per foot. This could be improved when Time based 

LAS files are available and for a fair amount of candidate wells. 

It would also require an extensive quality control and higher processing power as 

earlier exemplified in chapter 4. 

5.5.3 Resource Constraints 
Finally, yet importantly, the resource constraints need to be mentioned and assessed, 

starting with the data availability. Data mining reaches its potential based on its 

capacity to handle huge amounts of data and extract useful information from it.  

Unfortunately, for this study data was restricted in several ways: 

- Samples, i.e., the number of well candidates was limited. The amount of 

examples for 16” Section was much higher compared to the other two sections 

(Table 8). 

-  Quality of the data. During the pre-processing stage, the data cleaning process 

demanded extra QC work due to inconsistencies in the data. The outlier detection 

was used for this aim through manual inspection and using an automated 

detection operator (LOF distance).  

- The geological attribute was the one including more missing values. It was not 

complemented with a formation description to better feed the model.  

- No metadata was available in the form of Daily Drilling Reports, Mud Reports, 

Slide Sheets, Geological Reports, etc.  

As equal in importance as data availability, is data understanding. Once the data is 

obtained, understanding its format and the fields within it represents a challenge for 

any outsider trying to analyse it. Particularly when not familiar with the data 

acquisition process, which could result in unrepresentative data that would lead to 

unpredictable results.  
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Chapter 6 Conclusions & Recommendations 

6.1 Conclusions 
The main conclusions of the thesis can be summarized in the following points: 

 Referring to the overall process, extracting value from data should be 

considered an iterative process that consists of specific phases, following clear 

objectives with the corresponding acceptance criteria. 

 When working with real data, quality issues will always come across, where 

the proper counter actions need to be put in place.   

 There are several software including different types of visualizations tools that 

can be used in combination with descriptive statistics to increase efficiency 

while performing data mining. However, in terms of processing, sufficient 

computational power must be considered. 

 Data availability and its understanding are the main constraints for modelling 

and prediction, along with the time frame needed to perform a good research 

of the variable of concern and the data processing.  

 Training sets were summarized per section and using only the attributes that 

could affect the outcome.  

 While performing algorithms selection, concepts need to be clear, considering 

the “No Free Lunch Theorems for optimization”.  

 Model performance will vary depending on the amount of examples and 

attributes, but typically requiring large volumes of training data to be effective. 

In this context, data Pre-processing is essential to prepare a data set capable of 

being mined in a reasonable amount of time without sacrificing accuracy. 

 k-NN model has two main parameters to be set: the distance measure method 

used and the number of neighbours to choose. The number of neighbours is, in 

fact, the most important parameter for this algorithm to perform properly, and 

it is usually selected by training and evaluating the model. 

 GBT can slow the training process when lot of trees are used. In this regard, 

optimization of parameters is needed to define a sweet spot involving the 

maximum depth, because the deeper the tree, the more information it captures 

about the data. 

 Performance optimization shows improvement in the prediction values for 

both algorithms tested. However optimization was handled in different forms, 

for: 

- k-NN: a Cross Validation operator was used to optimize the model based 

on random combinations of the training and testing sets from the original 

sample.  

- GBT: the performance optimization parameters functionality was used, 

allowing evaluation of different model parameters, i.e., Maximum Depth 

and Number of Trees, until the lower error were achieved.  
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6.2 Recommendations 
Based on the findings of this thesis the following recommendations can be drawn: 

 Data mining demands data quality. It is highly recommended that during the 

data acquisition process, sensors’ operators get a clear understanding of their 

role in constantly checking the sources of the data for accuracy. Most surface 

sensors in the O&G industry still require often recalibration to avoid recording 

null values or issuing readings with values physically not possible. 

Furthermore, the implementation of Quality Control measurements for data 

during acquisition and prior to delivery must become a standard procedure.  

 When possible, redundancy in the measurements should be considered, to 

provide means for data validation, and to improve data quality.  

 It is suggested to assess the use of the Directional Difficulty Index (Oag W. and 

Williams 2000), instead of some of the Directional Drilling attributes. This is due 

to the differences in the ranges of values between attributes, which for 

directional drilling attributes are considerable low compared to the other ones. 

By reducing the difference between features values, attribute's weighting could 

be prevented. 

 Consider a scalable infrastructure for high-density data, due to data acquisition 

in two domains: depth and time. Additionally, balance of the data must be 

taken into account to prevent effects on the validation of the performance. 

 Especial attention handling missing values is required, with focus in 

understanding its type, possible effects and categorising how to do its 

processing. 

6.3 Further Work 
The main goal was to apply data mining to assess ROP response. Although this 

objective was partially reached, mainly due to the resources constraints and the 

resulted low prediction capability covered during the discussion of results, the 

processes presented using drilling data endorse the application of data mining for ROP 

analysis and prediction, where the further work should focus on: 

 Improving the prediction capability of the model, by overcoming its 

uncertainty.  A concept should be developed to generate uncertainty windows 

for each predicted value. 

 Working through the cases where the actual ROP is below the predicted value. 

 Assessing the error per case, and as a group looking for common patterns. 

 Analyzing the factors contributing to the deviation from the reference. 
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Appendix 

A.1 VBS  

A.1.1 Assigning of geological information to all the 

survey stations.  
 

 

 

A.1.2 Survey data per foot.  
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A.1.3 Geological data per foot.  
 

 

 

 

A.1.4 Sections and tools used per foot 
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A.2 Main RM Operators used 
List of the main operators used to create the processes along with a brief description 

based on RM Studio Help: 

 

Operators Description 

 

Reads a data file from the CSV format. 

 

Reads a data file from the xls format. 

 

Pick a subset of specific Attributes of a data-set selected 

by the user and removes the ones unselected ones. 

Provides an option to invert the selection. 

 

Selects which Examples are kept and which ones are 

removed based on different conditions manually defined 

including missing values, comparative options, etc.  

 

Stores an IO Object in the data repository folder selected 

by the user. 

 

Access data sets from the repository to be used in the 

process. 

 

 

Join two data sets using one or more attributes of the 

input data as key attribute for the joining. 

 

 

Creates new attributes using mathematical expressions 

and according to the user specifications. 

 

Makes copies of the selected data set to be used it as 

different inputs of other processes. 
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Adds a new attribute with an ID role selected by the 

user. 

 

Identifies n outliers in a data set based on the distance to 

their k nearest neighbors, where  n and k are user 

defined parameters. 

 

Returns the examples of the data whose IDs are not part 

of the other data set.  

 

Merges two or more compatible data sets into one 

combined set. 

 

Aggregation different functions, among others, statistical 

measurements. 

 

Described in detail in Section 4.3.1. It performs a cross 

validation to estimate the statistical performance of a 

model. 

 

Generates a k-NN model. 

 

Delivers a list of performance criteria values for 

statistical performance evaluation. 

 

Executes Gradient Boosted Trees algorithm as defined by 

user. 

Table 21 List of main operators used for the model implementation and testing. 
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A.3 RM Project stages 
Project creation and structure: 

 

Figure 48 Creation of a local Repository and folders to store data and processes. 

 

Process: 001DataLoadDP & 001DataLoadDG respectively 

 

 

Figure 49 Data load of LAS File and Survey listing. 
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Process: 002DataPerWell 

 

 

Figure 50 Data Integration. The block called sub process corresponds to a super 

operator, which purpose is to join the data and generate a WellID Attribute. 

 

Process: 003RemovingMissingValues 

 

Figure 51 Filter examples to remove null values. 
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Figure 52 Removing null values per attribute. 

 

Process: 004CleaningData 

 

Figure 53 Process to correct erratic values in RPM and TRQ. Sub-processes were used 

per case. In addition, the Filter Example operator was used to remove those wrong 

examples that could not be further corrected. 

 

 



Appendix 

68 

 

 

 

Figure 54 Internal description of the subprocesses where erratic values were adjusted 

per well. 

 

Process: 004CleaningData_QC 

 

Figure 55  Creation of the training data set using Wells #1 and #3, after final QC per 

section. 

 

A sub-process operator was used for the final QC, to then store the training data that 

will serve as input for the model. Sub-processes per section were created with similar 

analysis, but distinguish QC processes. 
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Figure 56 QC Sub-processes for the other two sections. 

 

Process: 005Statistics 

 

 

Figure 57 Process to obtain descriptive statistic data for the ROP for training wells. 
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Process: 007Model 

 

Figure 58 Model Implementation using k-NN algorithm inside a Cross Validation 

operator for optimization. Implementation is done per section. 

 

Process: 007ModelGradientBoostedTrees 

 

Figure 59 GBT implemantion and performance evaluation. 
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Process: 008Deployment 

 

Figure 60 Deployment process used to test both models in Well #4 sample. Well #4 

set was filtered per section to test each model. 
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ROP 

O&G 

VBS 

WOB 

WOH 

SPP 

TVD 

DLS 

BR 

TR 

RM 

RSS 

k-NN 

RMSQErr 

AErr 

GBT 

KDD 

NGL 

QC 

Rate of Penetration 

Oil and Gas 

Visual Basic Script 

Weight on Bit 

Weight on Hook 

Standpipe pressure 

True Vertical Depth 

Dogleg Severity 

Build-Rate 

Turn-Rate 

RapidMiner Studio 

Rotary Steerable System 

k-Nearest Neighbours 

Root Mean Square Error 

Absolute Error 

Gradient Boost Trees 

Knowledge Discovery from Data 

Natural Gas Liquid 

Quality Control 
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Symbols 

𝐼  Inclination [degrees] 

𝐴  

ds 

Azimuth 

Course length 

[degrees] 

[ft. or m] 

n number of examples in a data set [ - ] 

𝑦𝑖  observed value for i-example [depends on example] 

�̅�𝑖  prediction for i-example [depends on example] 
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