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acoustic seismic full waveform inversion in a petrophysical joint inversion to estimate reservoir

properties in petroleum exploration.
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Abstract

Most of the easy oil and gas have now been discovered, and as the petroleum exploration moves

towards more frontier areas, it is more important than ever before to combine different meth-

ods in order to find the remaining oil and gas. Therefore, this thesis investigates the feasibility of

combining controlled-source electromagnetic (CSEM) inversion and acoustic seismic full wave-

form inversion (FWI) in a petrophysical joint inversion workflow to estimate reservoir properties

(fluid saturation and porosity) in petroleum exploration. This is thought to be a candidate to the

next generation of reservoir characterization.

A Bayesian rock-physics inversion scheme is used in the joint inversion. Simple petrophysical

relationships as Archie equation, Han’s model and Gassmann equations are used in the forward

model. The developed workflow of this thesis was first tested on synthetic models and after-

wards tested on well log data and maps computed from 3D models of vertical resistivity and

P-wave velocity from the Johan Castberg area in the Barents Sea.

The developed method shows that the water saturation and porosity could be estimated with

high accuracy from synthetic models and well log data. Taking density into account as a third

geophysical parameter, improved the inversion results for well log data, especially for the poros-

ity. On the other hand, the method worked for the maps, but the quality of the results are not as

good as for the well log data.

Bayesian inversion using a rock-physics inversion scheme shows reliable results for the syn-

thetic models and well log data but the quality of the forward model and the input models of

vertical resistivity and P-wave velocity, need to be improved before the results for the maps are

reaching the quality of interest.

Keywords: Full waveform inversion ; controlled-source electromagnetic inversion ; Bayesian joint

inversion ; Johan Castberg Field ; petrophysics ; reservoir characterization.



vi

Kurzfassung

Da die Meisten einfach zu findenden Erdöl- und Gaslagerstätten bereits erforscht sind und die

Erdölaufsuchung sich in immer kompliziertere Fördergebiete wagt, ist es wichtiger als je zu-

vor, verschiedene Methoden der Aufsuchung zu verknüpfen. Diese Arbeit schlägt eine kom-

binierte Inversion aus controlled-source elektromagnetischer (CSEM) Inversion und seismis-

cher full waveform Inversion (FWI) vor, mit welcher gesteinsphysikalische Parameter besser

abgeschätzt werden können. Diese Methode könnte in Zukunft für eine genauere Charakter-

isierungen von Lagerstätten verwendet werden.

Ein probabilistischer Bayesian Ansatz wird für die kombinierte Inversion verwendet. Einfache

gesteinsphysikalische Beziehungen wie die Archie Gleichung, das Han´s Model und die Gassmann

Gleichungen werden für die Vorwärtsmodellierungen verwendet. Der entwickelte Arbeitsablauf

wird zuerst an synthetischen Modellen getestet und danach an echten Widerstands- und P-

Wellengeschwindigkeitsdaten von Bohrlöchern aus dem Johan Castberg Gebiet in der Barentssee

angewendet.

Die entwickelte Methode zeigt, dass Wassersättigungen und Porositäten, sowohl aus den syn-

thetischen als auch den Bohrlochdaten, abgeschätzt werden können. Unter zusätzlicher Ver-

wendung der Dichte als Eingabeparameter wird das Inversionsergebnis der Porosität für die

Bohrlochdaten verbessert.

Die Bayessche Inversion zeigt sowohl für die synthetischen als auch die realen Daten vielver-

sprechende Ergebnisse. Um das Inversionsergebnis zu verbessern, muss in Zukunft die Qual-

ität der Eingabeparameter (P-Wellengeschwindigkeit und Gesteinswiderstand) sowie die Vor-

wärtsmodellierung verbessert werden.

Keywords: Full waveform Inversion ; controlled-source elektromagnetischer Inversion ; Bayessche

Inversion ; Johan Castberg Gebiet ; Petrophysik ; Reservoircharakterisierung.
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Chapter 1

Introduction

1.1 Background and motivation

To locate and find hydrocarbon (HC) reservoirs without drilling exploration wells is of high im-

portance for the industry. The exploration is moving into more complex geological areas and

makes it more important to look for methods to complement the standard way of work. The

standard method being used to solve this are seismic methods, but controlled-source electro-

magnetic (CSEM) methods have shown the last 15 years promising potential to be a good sup-

plementary method (Ellingsrud et al., 2002). CSEM used in a marine setting, has grown from a

technique used to predict plain fluid anomalies in non-complex geological environments, to a

technique based on modeling and inversion used in complex geologically environments (Caraz-

zone et al., 2005).

In the late 1990s, Statoil invented the use of CSEM for marine HC identification. The first cou-

ple of years starting in year 2000, were used as a test period. The next few years, was an early

commercial period with some problems related to receiver calibration. After year 2007, the data

quality became better and more advanced methodology (modeling/inversion) became avail-

able. During the last years, the data quality and inversion algorithms have been significantly

better and is still improving fast (Buland et al., 2011).

1
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The CSEM method can be used to differentiate a reservoir containing HC (high resistivity) and

a reservoir containing saline fluids (low resistivity). The lateral extent and boundaries of HC

bearing layers can be found with CSEM, and complements the structural information given by

seismic (Ellingsrud et al., 2002). Even if the CSEM shows a highly resistive body, this does not

necessarily indicate HC. CSEM interpretation has some pitfalls, where other sources than HC

can give rise to high resistivity (false positive). Typical false positives could be salt, carbonates,

source rocks (SR) or cemented sandstones (because of lost porosity). Stefatos et al. (2014) dis-

cuss examples from the Norwegian Sea where CSEM gave a false positive anomaly of highly

resistive targets. Two of the wells drilled were dry and gave a negative picture of CSEM, be-

cause CSEM data were available before they drilled the dry wells. In this case, sabkha evaporite

showed high resistivity (false positve), but the true positive interpretation is HC filled reservoir

in erosional products near Bottom Cretaceous Unconformity (BCU) (Stefatos et al., 2014). This

makes it clear that by trusting the CSEM data too much is not a good idea, because of all the

pitfalls related to the method. In order to minimize the likelihood of introducing false positives,

the combination with other geophysical methods such as seismic is then preferred. Figure 1.1

demonstrates this in an understandable way.

Figure 1.1: Electric/elastic crossplot showing the typical pitfalls of seismic and CSEM. The sig-
nificant HC saturation is separated from the pitfalls of the two methods (Alvarez et al., 2018).



CHAPTER 1. INTRODUCTION 3

In general, to get the whole potential of a geophysical dataset, the data has to be combined

with other geological and geophysical datasets. Seismic and electromagnetic data complements

each other in terms of changes in rock fluid and lithology. The real advantage by doing joint in-

version comes when the acoustic impedance from seismic inversion is combined with pore fluid

resistivity information from CSEM inversion and would be important for reservoir appraisal and

evaluation applications. For this reason, the methods seismic Amplitude Versus Offset (AVO) in-

version and CSEM inversion were and still are, combined in order to make a joint petrophysical

inversion for reservoir properties detection. This thesis will investigate the feasibility of com-

bining acoustic seismic full waveform inversion (FWI) and CSEM inversion, and the idea is that,

within 10 years, joint inversion of seismic AVO and CSEM is replaced by full elastic seismic FWI

and CSEM inversion. The thesis will test this next generation of reservoir characterization using

acoustic FWI instead of AVO inversion, as one step on the way towards the joint inversion of

fully elastic FWI and CSEM inversion. The main purpose by doing this, is that FWI gives a better

velocity model than AVO inversion. In the past, and at present, FWI has mainly utilized turning

waves and refractions, with an acoustic seismic forward model. Currently a lot of research is

done on elastic FWI, possibly including attenuation. Therefore, it is expected that within a few

years, better seismic velocity models, with higher resolution, will be obtained by FWI. This gives

a better and more precise estimate of the reservoir properties, because a more correct velocity

model is used in the joint inversion, as well as that the limitations of each method can be over-

come and the strength of each method exploited. This can be useful in terms of exploration, as

well as during production. First and foremost, accurate velocity models are crucial for resolv-

ing prospectivity in complex geology. FWI is the most advanced data driven approach and is

under continuous development and refinement in the industry. The business value is linked to

reduced turnaround, improved imaging, shallow hazard identification and improved interpre-

tation. It may, in other words, reduce the risk of drilling dry wells (save money), help to calculate

the total volume of HC in charge and help to understand the reservoir even better and therefore

also be a possible candidate to maximize the production.
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Figure 1.2 shows why performing joint inversion based on velocities from FWI is an advantage.

In seismic migration, the frequencies used are typically in the range of 10-60 Hz, while CSEM

has frequencies between 0.1 and 15 Hz. This indicates that there is just a small overlap between

the frequency contents of seismic and CSEM. At this point, FWI will be advantageous because

it will fill this gap in frequencies between 2 and 10 Hz. This will give better velocity models for

further work and is of big importance.

Figure 1.2: Illustration of resolution expected from velocity analysis (velocity), imaging (reflec-
tivity), tomography and FWI from reflected broadband data. Tomography and FWI are filling
the mid frequency range of 2 to 10 Hz and make up the overlapping zone. Along the x axis is the
frequency, while the y axis shows the accuracy (modified after Claerbout (1985)).

The thesis will focus on the inversion for porosity and saturation. Other properties that can

in principle be inverted for are net erosion/uplift, pressure, volume estimation, cementation,

fracturing and 4D pressure versus saturation changes.

1.2 Research objectives

The main purpose with the thesis is to investigate the feasibility of using a combination of CSEM

inversion and acoustic seismic FWI to estimate fluid saturation in petroleum exploration. The

other reservoir property intestigated is porosity. The Johan Castberg area in the Barents Sea will

be used as case area. The developed code will be tested on synthetic models, well logs data

and map models computed from 3D cubes (from seismic FWI and CSEM inversion) in order to

predict the most important reservoir properties.
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1.3 Study area

An overview over the area status of the Norwegian Continental Shelf (NCS) as of June 2018 from

the Norwegian Petroleum Directorate (NPD) is shown in Figure 1.3 (NPD, 2019b). The NCS

consists of the North Sea, Norwegian Sea and Barents Sea. The Barents Sea is part of the Arctic

Ocean and is located north of the Norwegian and Russian mainland, between the Norwegian

Sea in the west, Novaya Zemlya and the Kara Sea in the east, Svalbard in the northwest and

Franz Josef Land in the northeast (Dore, 1995).

Figure 1.3: Area status of the NCS as of June 2018. The green areas represent areas open for
petroleum activity, yellow areas are open, special schemes and the red areas are awards in pre-
defined areas (APA). The grey dotted line is the border of the NCS (NPD, 2019b).
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The study area is located in the Bjørnøya Basin in the southwestern Barents Sea, around 100 km

northwest of the Snøhvit field. As for the Barents Sea in general, the study area has undergone

uplift and erosion and this had a big influence on the amount of HC in the structures today. A

lot of HC has leaked due to uplift and erosion, which means, unfortunately, that the potential

was much higher some 10 million years ago. The potential to find big discoveries is still huge. A

map showing the location of the Johan Castberg project is shown in Figure 1.4. The water depth

here is between 360 and 390 m. It is part of the production license (PL) 532 and Equinor (50 %) is

operator. The partners in PL 532 are Vår Energi (30 %) and Petoro (20 %). There is made several

discoveries in the area, among them, the discoveries Skrugard and Havis that were discovered in

2011 and 2012, respectively. The proven volume estimates ranges from 400 to 650 million barrels

of oil. The planned production start is in 2022 and will produce for 30 years (Equinor, 2018).

Figure 1.4: Geographical location of the Johan Castberg area with the different proven discover-
ies. Gas is marked with red and oil with green. The blue areas are Equinor operated (Equinor,
2018).
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A 3D version of the Johan Castberg project is given in Figure 1.5, and shows the three discoveries

Skrugard, Havis and Drivis.

Figure 1.5: 3D view of the Johan Castberg Field in rotated fault blocks in the Bjørnøyrenna Fault
Complex (BFC). The field development will consist of an Floating Production, Storage and Of-
floading (FPSO) and subsea structures (modified after Statoil (2017)).

Exploration activity in this area has shown prolific oil and gas plays (Upper Triassic to Mid-

dle Jurassic age) in the flank on the east side of the Bjørnøya Basin (well 7220/8-1, 7220/7-1

and 7220/7-3S). In other words, the Johan Castberg project. In the western part of the Loppa

High (see Figure 2.1 for the location), karstified/fractured carbonate plays (Permian age) have

been proven. A couple of discoveries are being made here (Gohta 7120/1-3 from 2013 and Alta

7220/11-1 from 2014) (Blaich et al., 2017). Due to restrictions, only the southern part (south

of 74°30’ N) is currently open for petroleum activities (Ohm et al., 2008). Figure 1.6 shows the

locations of the three studied wells (7220/8-1, 7220/7-1 and 7219/9-1T2).
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Figure 1.6: Location of the three wells taken into account in this study (modified after NPD
(2019a)).

Proven discoveries, already mentioned, are Skrugard, Havis and Drivis. In October 2018, a new

discovery in PL 532 was made by Equinor. The name of this discovery is Skruis (well 7220/5-3)

and is located 8 km north of the 7220/8-1 discovery well (see Figure 1.7). The wildcat well proved

oil. The primary exploration target was to prove the petroleum content in the Stø and Nordmela

formations (Fm). Volume estimations so far indicate between 2 and 4 million standard cubic

metres (Sm3) of recoverable oil. It is a rather small discovery, but could still be economic at-

tractive when the infrastructure is in place. The plan is that this can be linked up to the other

proven discoveries, and then increase the Johan Castberg volumes (Statoil, 2018). This indicates

the potential of the area and further exploration is recommended to do.
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Figure 1.7: Location of the Skruis discovery. The plan is to tie it up to the Johan Castberg project
in the south (Statoil, 2018).

As mentioned in the beginning, CSEM has a potentially high influence in petroleum exploration.

Figure 1.8 shows vertical resistivity (Rv ) anomalies together with the wells 7220/8-1 and 7219/9-

1. It is clearly visible that the resistivity model shows that the well 7220/8-1 is drilled through

a highly resistive anomaly, while well 7219/9-1 is not. Even if high resistivity areas are existing,

in this case due to HC, there is no guarantee that it is always like this, as discussed by (Stefatos

et al., 2014).

Figure 1.8: CSEM showing Rv anomalies of the Johan Castberg area. The Skrugard well (7220/8-
1) drilled through a high resistive anomaly, while well 7219/9-1 was drilled off the anomaly
(Nordskag et al., 2013).
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A 3D view of the resistivity anomalies and the well positions are presented in Figure 1.9. A seis-

mic line is included to show the geological structures.

Figure 1.9: 3D visualization, showing the resistivity anomalies and the wells studied. In the
background, a seismic section shows the big structures in the area (Statoil, 2013).

Figure 1.10 shows a seismic cross-section of Skrugard showing two flat spots (gas cap and oil

leg) and gives a good example of flat spots.

Figure 1.10: Skrugard seismic cross-section with flat spots (Statoil, 2013).
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1.4 Database and software

The programming language Matlab was the only software used and was applied to develop the

code.

An overview showing the most important information for the studied wells in the study area is

given in Table 1.1. Table 1.2 gives an overview over the well logs being used. The wells 7220/8-1

(Skrugard) and 7220/7-1 (Havis) are proven discoveries, while well 7219/9-1T2 is dry. The reason

for taking a dry well into account is to test the code on both discovery wells, as well as a dry well.

The goal is to indicate HC zones in the discovery wells and indicate water saturated zones in

the dry well. Maps computed from 3D cubes with FWI velocities and resistivities from CSEM

inversion are provided based on work from Maaø et al and Wiik et al, respectively.

Table 1.1: General information of the studied wells (NPD, 2019a).

Facts 7219/9-1T2 7220/7-1 7220/8-1
NS degrees 72° 24’ 0.78” N 72° 27’ 37.53” N 72° 29’ 28.92” N
EW degrees 19° 57’1.68” E 20° 9’ 8.59” E 20° 20’ 2.25” E

Year completed 1988 2012 2011
Content Shows (Dry) Oil/Gas Oil/Gas
Purpose Wildcat Wildcat Wildcat

(Discovery) name - Johan Castberg (Havis) Johan Castberg (Skrugard)
Current activity status - Approved for production Approved for production
1. level with HC, age - Middle Jurassic Middle Jurassic

1. level with HC, formation - Stø Fm Stø Fm
2. level with HC, age - Early Jurassic Early Jurassic

2. level with HC, formation - Nordmela Fm Nordmela Fm
GOC [m] - 1828 1312
OWC [m] - 1956 1395

Top Stø Fm [m] 1950 1781 1276
Top Nordmela Fm [m] 2062 1857 1354

Water depth [m] 356.0 365.0 374.0

Table 1.2: Well logs used. SOT = total oil saturation, SGT = total gas saturation, VCL = clay volume
fraction, PHIT = total porosity, VP = P-wave velocity, RT = true resistivity, RW = formation water
resistivity, RHOB = bulk density, RHOG = gas density, RHOW = formation water density, KFLW =
formation water bulk modulus.

Well log SOT SGT VCL PHIT VP RT RW RHOB RHOG RHOW KFLW
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Geological setting

2.1 Structure

The Barents Sea is located in the northwestern part of the Eurasian continental shelf. The Ceno-

zoic opening of the Norwegian-Greenland Sea and the Eurasia Basin created passive margins in

the western and northern part of the Barents Sea, while in the west, thick sequences of Upper

Palaeozoic to Cenozoic rocks that consists of three separated regions were created. The regions

are marked with the numbers 1-3 in Figure 2.1. The regions are the Svalbard Platform, a basin

province between the Svalbard Province and the Norwegian Coast, and the continental margin.

The Svalbard Platform contains flat-lying Triassic sediments. Highs and sub-basins characterize

the basin province. In the basins, sediments of Jurassic-Cretaceous and Palaeocene-Eocene (in

the west) age are preserved. Three major segments constitutes the continental margin (Senja

Fracture Zone, rift complex southwest of Bjørnøya and Hornsund Fault Zone).

Three major rift phases occured in the western Barents Sea (Late Devonian-Carboniferous, Mid-

dle Jurassic-Early Cretaceous and Early Tertiary). Most of the Barents Sea was affected by crustal

extension in Late Palaeozoic time. Continued extension gave westward rifting, and rift and pull-

apart basins were developed in the southwest and strike-slip faults were developed in the north

(Faleide et al., 2015).

12
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Figure 2.1: Major rifting events. The black rectangle indicates the study area (modified after
Faleide et al. (2015)). The numbers 1-3 indicate the three main regions in the western Barents
Sea. BB = Bjørnøya Basin, FSB = Fingerdjupet Sub-basin, SH = Stappen High, HB = Harstad
Basin, BP = Bjarmeland Platform, MB = Maud Basin, VVP = Vestbakken Volcanic Province, NKB
= Nordkapp Basin, LH = Loppa High, SNB = Sørvestsnaget Basin, TB = Tromsø Basin, HFB =
Hammerfest Basin.

2.2 Southwestern Barents Sea

Figure 2.2 shows a reflection seismic profile of the southwestern Barents Sea. The main struc-

tural setting and mega-sequences of this part of the Barents Sea are visible on the section. The

orientation of the profile is shown in the bottom right corner, which indicates a NNW-SSE ori-

entation. The main tectonic elements shown here are of Late Paleozoic, Mesozoic and Ceno-

zoic age. The interpretation of the section indicates that the Bjørnøya Basin is a big half-graben

structure. In the southeast, the basin is bounded by the BFC (big boundary faults). To the north-

west, it is bounded by the Knølegga Fault Zone. The orientation of the faults in the BFC and the

Knølegga Fault Zone is dipping to the west (Blaich et al., 2017).
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Figure 2.2: Seismic reflection profile and regional interpretation of the southwestern Barents
Sea. Marked in red is the BFC with the Skrugard well. Modified after Blaich et al. (2017).



CHAPTER 2. GEOLOGICAL SETTING 15

2.3 Uplift and erosion

In the Barents Sea, it has been difficult to find commercial quantities of HC, because of differ-

ent uplift and erosion episodes from Paleocene (Ohm et al., 2008). The Barents Sea has expe-

rienced up to 3000 m of net erosion (difference between maximum burial depth and present

day burial depth for a specific horizon), while the southwestern Barents Sea had a net erosion

up to 1000-1500 m (Faleide et al., 2015). Uplift and erosion constitute big consequences for the

petroleum systems. The processes affects many important petroleum system elements, among

them, reservoir quality, maturity of the SR and the migration of HC. Due to changes in pres-

sure volume temperature (PVT) conditions in a HC-filled structure, the processes will make the

chances of leakage higher and the gas cap in the structure will expand. It has shown big impor-

tance to understand and know when the uplift and re-migration of the HC happened (Henriksen

et al., 2011). Figure 2.3 shows how uplift and net erosion affect the petroleum system elements.

Figure 2.3: The connection between uplift and net erosion, and the elements that are important
for petroleum prospectivity (Henriksen et al., 2011).

2.4 Reservoir formations

The Realgrunnen Group (Gp) consists of four formations (Fm), the Fruholmen Fm, Tubåen Fm,

Nordmela Fm and Stø Fm. The two main reservoir formations in the study area are the Stø Fm

and Nordmela Fm (Halland et al., 2013).



CHAPTER 2. GEOLOGICAL SETTING 16

2.4.1 Stø formation

The main reservoir unit in the Johan Castberg area is the Stø Fm and is of early to middle Jurassic

age (see Figure 2.4). It consists of sandy sequences and is located above the Nordmela Fm. It

is mainly mature and contains moderately to well sorted sandstone. In between the sandstone,

thinner layers of siltstone and shale can be found. The thickness vary and the formation is gen-

erally thickest in the southwest, while it shows a thinning to the east. The below lying Nordmela

Fm follows the same thickness pattern. The whole Stø Fm can be divided into 3 depositional se-

quences. The formation sands were deposited in prograding coastal regimes, and various clas-

tic coast lithofacies are visible. The siltstone and shale layers indicates regional transgressive

episodes.

2.4.2 Nordmela formation

The minor reservoir target in the Johan Castberg area is the Nordmela Fm and is of early Jurassic

age (see Figure 2.4). It consists of interbedded sediments containing siltstones, sandstones and

claystone, as well as minor coal layers. Towards the top of the unit, the sandstones becomes

more common. As for the Stø Fm, it thickens to the southwest. The dopositional environment

was tidal flat to flood plain. The sandstone layers of the unit, represents estuarine and tidal

channels (Dalland et al., 1988).

Figure 2.4: Depositional environments of the various reservoir formations in the southwestern
Barents Sea. The main (Stø Fm) and minor (Nordmela Fm) reservoir targets are marked with
red. Modified after Halland et al. (2013).
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2.5 Stratigraphy

The lithostratigraphy in the western Barents Sea is presented in Figure 2.5. The Stø and Nord-

mela formations are marked in red. The Hekkingen Fm (shale) is the main SR and cap rock in

the area and is marked in blue.

Figure 2.5: Lithostratigraphic column for the western Barents Sea. Marked in red are the Stø and
Nordmela reservoir formations, and in blue the main source rock/cap rock the Hekkingen Fm.
Modified after Blaich et al. (2017).



Chapter 3

Theory

3.1 Matrix-vector formulation of adjoint state

This section will deal with a joint theory part that is applicable for both seismic FWI and CSEM

inversion. Both the forward problem and the inverse problem will be described. Vectors and

matrices are marked with bold, to better see the difference between scalars and vectors/matri-

ces.

3.1.1 The forward problem

Matrix notations are introduced to describe the partial-differential operators of the wave equa-

tion ((Marfurt, 1984); (Carcione et al., 2002)). The time domain formulation of the forward prob-

lem is given by

M(x)
d 2u(x, t )

d t 2
= A(x)u(x, t )+s(x, t ), (3.1)

where the matrices M and A are mass density and stiffness for the elastic problem, and suscep-

tibility and conductivity (inverse of resistivity) for the electromagnetic problem, while u (seis-

mic/electromagnetic wavefield) and s (source term) are vectors. The time is given by t and the

spatial coordinates are denoted by x. The wave equation consists, in the frequency domain, of a

system of linear equations. In this case, the source is found on the right part of equation 3.2 and

the solution is the wavefield.

18
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The forward problem can be defined in the frequency domain as

B(x,ω)u(x,ω) = s(x,ω), (3.2)

where B is the impedance matrix, ω is the angular frequency and is given by (Marfurt, 1984)

B =ω2M−A (3.3)

The matrices M, A and B contain the coefficients of interest in order to quantify the properties

of the subsurface. The model parameters and the wavefield have a nonlinear relationship and

can be connected through the operator in time or frequency domain as follows

u = G(m), (3.4)

where G is the operator and m is the model parameters.

3.1.2 Least-squares local optimization

The data misfit vector (∆d) can be defined as

∆d = dobs −dcal (m), (3.5)

by the differences at the receiver positions between the observed data (dobs) and the calculated

data (dcal ) for every pair of source and receiver in the survey. The model parameters are physical

parameters of the subsurface.

3.1.3 Misfit function

It is now time to define a norm defined of the misfit vector and refer to it as the misfit function.

The least-squares (L2) norm of the misfit vector is defined as

Φ= 1

2
∆dH∆d, (3.6)

whereΦ is the misfit norm and H is the transpose conjugate.
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Equation 3.6 is a simplified misfit function without any weights or regularization (Tarantola,

1987).

3.1.4 Gauss-Newton - normal equations

The calculated data is defined as

dcal = F(m), (3.7)

where F is the forward operator and is defined as

F(m) ' F(m0)+ J∆m, (3.8)

where m0 is the initial model, ∆m is the model misfit and J is the Jacobian matrix.

Now it is possible to find the misfit function expressed with the forward operator, by linearizing

the forward model

Φ≈ 1

2
(dobs −F(m0)− J∆m)H (dobs −F(m0)− J∆m) (3.9)

The next step is to find m = m0 +∆m such that ∂φ
∂∆m = 0

∂φ

∂∆m
=−JH (dobs −F(m0)− J∆m) = 0 (3.10)

The expression for Gauss-Newton is then given as

JH J∆m = JH∆d (3.11)

m(n+1) = m(n) +∆m (3.12)
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The data is modeled up if JH J or JJH can be inverted as follows

∆m = (JH J)−1JH∆d (3.13)

∆m = JH (JJH )−1∆d (3.14)

Equation 3.13 and 3.14 are expressed as least squares and minimum norm, respectively (Virieux

and Operto, 2009).

3.2 Introduction to joint seismic full waveform inversion and

controlled-source electromagnetic inversion

In the oil and gas exploration, as well as reservoir characterization and reservoir monitoring

applications, both seismic and electromagnetics (EM) have played a crucial role. When deal-

ing with formation evaluation, two of the most important aspects to evaluate are the porosity

and fluid saturation (water/oil/gas) distributions in the reservoir. Due to improvements in rock

physics, it is now possible to make a connection between seismic data and reservoir proper-

ties ((Gassmann, 1951); (Nur, 1992); (Wang, 2001)). Due to previous work from Archie (1942)

and Waxman and Smits (1968), EM data has been become a standard tool for quantifying fluid

saturations based on resistivity logs.

Seismic and EM represents differences in the fundamental physics and they are therefore sen-

sitive to different physical parameters. The main idea behind the joint inversion is, by perform-

ing the joint inversion, make it possible to invert for different reservoir parameters at the same

time. This will make the characterization of the reservoir even better compared to doing the

inversions separately.

It exists two ways to combine the methods. In geophysics in general, inversion methods are

often performed in order to extract the geophysical properties of the earth based on measure-

ments. To combine seismic FWI and CSEM inversion is not a trivial thing to do, because the

seismic FWI produce velocity and the CSEM inversion resistivity (elastic versus electric) (Harris
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et al., 2009). One way to do the joint inversion, is to use petrophysical relationships to connect

velocity and resistivity together (Hoversten et al., 2006). By using petrophysical approaches,

such as the Archie and Waxman-Smits equations, makes it possible to connect resistivity, poros-

ity and water saturation together, while the fluid substitution equations from Gassmann, makes

the connection between velocity, porosity and fluid saturations. In practice, these relationships

are derived from cores being analysed from the area of interest. That constitutes the main draw-

back of the joint petrophysical inversion approach.

One alternative approach is the cross-gradient approach. This was introduced by Gallardo and

Meju (2003) and the method looks at the structural similarity between resistivity and seismic ve-

locity for the region under investigation. A cross-gradient regularization is brought into the cost

function. A minimum value of the cross-gradient will be found when the structural similarity

between resistivity and velocity reaches their maximum.

3.3 Petrophysical relationships

3.3.1 Han’s model

Han et al. (1986) found empirical regressions connecting velocities together with porosity and

clay content. Those regressions were based on 70 consolidated sandstones from the Gulf Coast,

with porosities from 3% to 30% and clay volume from 0% to 55%. Han found out that the veloc-

ities of clean sandstones can be connected empirically alone very accurate. On the other hand,

when clay is present, the empirically correlation with porosity is quite poor, but gets very accu-

rate if clay volume also gets involved in the regression. The regressions between P-wave velocity

(Vp ), S-wave velocity (Vs), porosity (φ) and clay volume fractions (C ) for the confining stresses

5, 10, 20, 30 and 40 MPa, are summarized in Table 3.1. These relations can be used to relate

velocity, porosity, and clay content empirically in shaley sandstones.
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Table 3.1: Han’s empirical relations between Vp and Vs in km/s with φ and C . This is valid for
water saturated shaley sandstones and is determined from 70 samples.

Confining stress [MPa] Vp regression Vs regression
40 Vp = 5.59−6.93φ-2.18C Vs = 3.52−4.91φ-1.89C
30 Vp = 5.55−6.96φ-2.18C Vs = 3.47−4.84φ-1.87C
20 Vp = 5.49−6.94φ-2.17C Vs = 3.39−4.73φ-1.81C
10 Vp = 5.39−7.08φ-2.13C Vs = 3.29−4.73φ-1.74C
5 Vp = 5.26−7.08φ-2.02C Vs = 3.16−4.77φ-1.64C

This gives the following equations for estimating velocities (Vp and Vs):

Vp = Ap −Bpφ−CpVcl , (3.15)

Vs =Cs −Dsφ−EsVcl , (3.16)

where A-E are constants depending on the confining stress (see Table 3.1).

There exists a couple of limitations concerning the regressions mentioned above:

• Even if the relations are empirical, they should extend to other consolidated sandstones as

well. The most important result is that the clay content plays a crucial role in determining

the velocity. The regression coefficients should be recalibrated from cores or logs from the

study area.

• The regression coefficients are relatively stable above 10 MPa, but below they vary more.

3.3.2 Gassmann equations

Some of the most important equations to calculate the Vp and Vs velocities are presented below.

The remaining equations can be found in Appendix C.
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Equation 3.17 gives the density of the pore fluids as

ρ f l = Swρw +SHCρHC , (3.17)

where ρ f l is the density of the pore fluids, ρw is the density of water, ρHC is the hydrocarbon

density, Sw is the water saturation and SHC is the hydrocarbon saturation (SHC = 1−Sw ).

Bulk density is a simple volumetric average of the rock constituent densities and is closely re-

lated to porosity by

ρb = (1−φ)ρ0 +φρ f l , (3.18)

where ρb is the bulk density, ρ0 is the density of mineral grains andφ is porosity (Castagna et al.,

1993).

Thus, the assumptions of a homogeneous fluid, uniformly distributed throughout the pore space,

allows the bulk modulus of the fluid mixture to be calculated via the Reuss average

K f l =
· nX

i=1

Si

Ki

¸−1

, (3.19)

where K f l is the bulk modulus of the fluid mixture, Ki is the bulk modulus of the individual

phases, and Si is their saturation (Smith et al., 2003).

By modeling the dry rock as a porous elastic solid, then with great generality it is possible to

write the dry rock bulk modulus as

Kdr y = K0(1−β), (3.20)

where Kdr y and K0 are the bulk moduli of the dry rock and mineral and β is Biot’s coefficient

(Krief et al., 1990).

A swap variant of the Gassmann equation is used in the thesis, where substitution of the fluid

with Han’s model as a brine reference is performed. The goal is to find the changes when one

fluid is substituted with another fluid. One way to do this is to transform the moduli from the

starting fluid saturation to the dry state, and then directly transform from the dry moduli to the

new state of fluid saturation. By doing so, the dry-rock bulk modulus disapears.
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The saturated-rock moduli Ksat1 and Ksat2 are written as two fluid bulk moduli K f l1 and K f l2

given by

Ksat1

K0 −Ksat1
− K f l1

φ(K0 −K f l1)
= Ksat2

K0 −Ksat2
− K f l2

φ(K0 −K f l2)
, (3.21)

where Ksat1 is the bulk modulus of the brine saturated rock, K f l1 is the bulk modulus of the

brine, Ksat2 is the bulk modulus of the HC saturated rock and K f l2 is the bulk modulus of the

HC.

The velocities for P- and S-waves can be written as

Vp =

vuutK + 4
3µ

ρ
, (3.22)

Vs =
s
µ

ρ
, (3.23)

where Vp is the P-wave velocity, Vs is the S-wave velocity, K is the bulk modulus and µ is the

shear modulus (Gassmann, 1951; Biot, 1956).

3.3.3 Archie’s equation

Archie’s law created the foundation for modern well log interpretation, because it connects bore-

hole electrical resistivity measurements together with SHC . It is a purely empirical equation de-

scribing electrical resistivity flow in clean (no clay), consolidated sandstones, with varying inter-

granular porosity. Archie’s equation connects the in-situ electrical resistivity of a rock together

with its porosity and brine saturation (Mondol, 2015).

The Archie equation can be written as

Sn
w = Ro

Rt
= F Rw

Rt
= aRw Rt

φm
, (3.24)

where a is turtousity, n is saturation exponent, m is the porosity exponent, Ro is resistivity of

the water-saturated formation, Rt is the true resistivity, Rw is the water resistivity and F is the

formation factor (Archie, 1942).
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By solving equation 3.24 for Rt , it can be written as

Rt = aRw

φmSn
w

(3.25)

To get the logarithmic resistivity, the following formula is used

l og Rt = log (Rt ) (3.26)

Table 3.2 shows how to get the different parameters used in Archie’s equation to calculate Sw .

Table 3.2: Sources of data for calculation of Sw by Archie’s equation. Modified after (Mondol,
2015).

Parameter Source
Rt Deep resistivity tool
Rw SP log. Calculated from wa-

ter zone
φ Neutron, density, sonic,

nuclear magnetic resonance
(NMR)

F Guess
m Measured in the lab. Guess.
n Measured in the lab. Guess.

Winsauer et al. (1952) modified the formation factor after Archie (1942) to the following

F = a

φm
(3.27)

The formation factor is a function of the porosity and permeability of the rock and is an ex-

pression of rock properties independent of the conductivity of the pore water. Typical values

for m varies from 1 (porous rock) to 3 (very well cemented rock), where 2.0 is an average value

(Archie, 1942). It expresses how much the pore network increases the resistivity. It is normally

assumed to be independent on temperature. Keller (1982) showed that m depends on the lithol-

ogy, porosity, age, the degree of compaction and degree of cementation. An increase in consol-

idation, compaction and cementation makes the irregularity of the grains higher. If the grains

have a more angular shape, m will increase (Salem and Chilingarian, 1999).
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The saturation exponent gives information on the dependency on the presence of non-conductive

fluids (like HC) in the pore-space, and is related to the wettability of the rock. Rocks that are

water-wet will, for low Sw values, get a continuous film along the pore walls and makes the rock

conductive. Oil-wet rocks will have non-continuous droplets of water within the pore space,

and therefore the rock gets less conductive. Typically, the values are close to 2 (Mondol, 2015).

3.3.4 Waxman-Smits equation

The Waxman-Smits formula (Waxman and Smits, 1968) is given as

σ= 1

F
(σw +BQv ), (3.28)

B = 4.6
¡
1−0.6e−σw /1.3¢, (3.29)

Qv = C EC (1−φ)ρ0

φ
, (3.30)

where C EC is the cation exchange capacity, B is the average mobility of the ions, Qv is the charge

per unit pore volume and σw is the water conductivity. C EC is a measure of the excess charges.

In general, clays have a negative electrical charge within the sheet-like particles. Positive coun-

terions at the outside surface compensates for this negative electrical charge and is a property

of the dry clay mineral (Clavier et al., 1984).

3.4 Sensitivity of seismic and controlled-source electromagnet-

ics

After giving some theory about velocity and saturation, Figure 3.1 shows some important as-

pects about the sensitivities of CSEM and seismic. It indicates that CSEM has high sensitivity for

low Sw (high SHC ), while seismic has high sensitivity for high Sw (low SHC ). CSEM and seismic

have their high sensitivities in each end of the Sw scale, and therefore, compliments each other.

None of the methods have high sensitivity for Sw between 30% and 80%.
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Figure 3.1: Connection between the Archie and Gassmann equations. None of the methods can
determine medium high Sw in a good way (modified after Constable (2010)).

3.5 Transverse resistance

One important parameter to have in mind when interpreting the CSEM models, is the transverse

resistance, given by

T R =
nX

i=1
hi Ri , (3.31)

where T R is the transverse resistance, h is the thickness of the layer and R is the resistivity. The

unit is Ωm2. From equation 3.31, it is clear that it is not possible to distinguish between a thin

high resistive layer and a thick low resistive layer, and is a main drawback (Zohdy et al., 1974).
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3.6 Well logs

Logging is a method to record the rock properties in a well. A borehole is measured by pulling

a tool into the well bore after the drilling has completed. There exists many types of well logs

and some are being used even while drilling (Bjørlykke, 2015). A short description of the logs

used in the thesis are presented. Only LFP-logs are being used. The LFP-logs have been through

petrophysical modifications and are being proved by the petrophysicists. The details here are

being omitted. The porosity, saturation and shale volume are calculated from other logs and

not being measured directly by logs in the well. Only resistivity, density and velocity well logs

are being described.

3.6.1 Resistivity

Resistivity is normally easy to measure and has the unit Ωm. The well log Rw measures the

resistance of the formation water in the rocks, while Rt measures the resistivity of the rock partly

saturated with formation water. By knowing the resistivity of the mud used while drilling, it is

possible to calculate the porosity from the resistivity of the rock which is invaded by the drilling

mud. Water has a much lower resistivity than oil and gas. That is why resistivity logs are used to

find the oil water contact (OWC), gas water contact (GWC) or gas and oil contact (GOC).

3.6.2 Density

The density logs measure the density of both the rocks and their pore fluid and the unit is g/cm3.

Gamma rays from either cobolt-60 or cesium-137 are being used and the attenuation of the

gamma rays collided with the electrons are being measured. This gives indications of how high

the electron density is and is closely related to the density of the rock. By knowing the density

of the formations, it makes it possible to identify different lithologies. By knowing the density of

the minerals, bulk rock density and fluid density, the porosity can be found. The density of gas

is given by ρg , density of formation water is ρw and ρb is the bulk rock density.
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3.6.3 Velocity

A probe is lowered into the wellbore and sends out acoustic pulses that travel through the rock

around the well and ends up in the other end of the probe. The velocity is calculated from the

interval transit time (time the pulses use to travel the distance). The velocity is the inverse of

the interval transit time and has the unit m/s. The velocity measured (Vp and/or Vs), depends

a lot on the porosity (inversely proportional). The reason for this is that the velocity in porewa-

ter is significantly lower than in the rock matrix, but is not always the case. When the rock is

cemented, the velocity is high even if the porosity is high too (Bjørlykke, 2015).

3.7 Basic statistics

This chapter is based on the book of Devore and Berk (2012).

3.7.1 Probability density function

A probability density function (pdf) of X is a function such that for any two numbers a and b

with a ≤ b,

P (a ≤ X ≤ b) =
Z b

a
f (x)d x (3.32)

3.7.2 Mean

The mean value of a continuous random variable (rv) X with pdf f (x) is expressed as

µ=
Z ∞

−∞
x f (x)d x, (3.33)

where µ is the mean.
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3.7.3 Variance

The variance of continuous rv X with pdf f (x) and mean value µ is defined as

σ2 =
Z ∞

−∞
(x −µ)2 f (x)d x, (3.34)

where σ2 is the variance.

3.7.4 Standard deviation

The standard deviation is defined as

σ=
sZ ∞

−∞
(x −µ)2 f (x)d x, (3.35)

where σ is the standard deviation.

The standard deviation is the same as the square root of the variance and is a measure of the

spread of the data. The standard deviation is an estimator for the variance for a given data set.

3.7.5 Normal distribution

A continuous rv X has a normal distribution with parameters µ and σ, where −∞< µ<∞ and

0 <σ, if the pdf of X is

f (x;µ,σ) = 1p
2πσ

e
− (x−µ)2

(2σ2) , (3.36)

where −∞< x <∞. The statement that X is normally distributed with parameters µ and σ2 is

often abbreviated X ∼ N (µ,σ2).
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Figure 3.2: Normal distribution with the corresponding standard deviations. The pink, purple
and green areas are the 1σ, 2σ and 3σ, respectively.

In this case,

• Around 68% of the values are within 1σ of the mean.

• Around 95% of the values are within 2σ of the mean.

• Around 99.7% of the values are within 3σ of the mean.

3.7.6 Marginal distribution

The probability of an event defined only by X , is given by the marginal pdf of X

fX (x) =
Z ∞

−∞
f (x, y)d y, (3.37)

where −∞< x <∞. Similarly the marginal pdf of Y is

fY (y) =
Z ∞

−∞
f (x, y)d x, (3.38)

where −∞< y <∞.
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3.8 Bayesian inversion

A and B represents two different events. The discrete probability of the events are given by P (A)

and P (B). The probability that both A and B are happening, constitutes the Bayes’ theorem, and

is formulated as

P (A,B) = P (A|B)P (B) = P (B |A)P (A), (3.39)

where P (A|B) and P (B |A) are both conditional probabilities. P (A|B) is the probability of A hap-

pening, given that B has already happened and P (B |A) is the probability of B happening, given

that A has already happened.

Based on equation 3.39, it is possible to write Bayes’ theorem even more simple as

P (B |A) = P (A|B)P (B)

P (A)
. (3.40)

Bayes’ theorem (equation 3.40) can be formulated based on pdf’s given as

p(X |m) = p(m|X )p(X )

p(m)
. (3.41)

The pdf p(X ) is called the prior pdf and symbolizes the probability of the property X indepen-

dent of the given models. In other words, it gives the information on the property prior to the

joint inversion. The assumption is that the property is linear and has a Gaussian distribution

N (µ,σ2) (Sen and Stoffa, 1996). The factor p(m|X ) is called the likelihood function. Before the

joint inversion, p(m|X ) is the pdf related to possible model realizations for a fixed X . After the

joint inversion being performed, p(m|X ) has an another meaning. It is the likelihood of get-

ting the property as a function of the parameter vector X (posterior result). In other words,

Bayes’s rule is a powerful tool to update the knowledge at a given time with new measurements.

The joint connection of CSEM and seismics are done when calculating the product of the likeli-

hoods of resistivity and P-wave velocity. Maximum likelihood (MLH) is a point estimation of the

likelihood function and gives the maximum of the likelihood function.

The factor p(X |m) is the posterior pdf. This factor is the distribution of the property parameters

posterior to the model m, or in other words, the probability that the property is correct given a
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set of models m. By finding p(X |m), it is the same as answering "What is the probability that the

property is correct, given a certain set of models?". The probability of the models m, is a con-

stant, and make it possible to write p(m) = R p(m|X )p(X )d X to make sure that p(m) integrates

to one (as it should for pdf’s). Maximum a posteriori (MAP) is a point estimation of the posterior

distribution and finds the maximum of the posterior distribution (which equals the mean of the

posterior distribution), is given by

M AP = ar g maxX p(X |m), (3.42)

where argmax is the maximum argument of X given m (Ulrych et al., 2001).

By looking at equation 3.41, it is easy to see that the posterior pdf is the product of the likelihood

function(s) and the prior pdf. For a uniform prior pdf, the posterior pdf is obtained mainly by

the likelihood function. In some rare situations, it is possible to have a situation where the prior

pdf will dominate the likelihood function and have the biggest influence on the posterior pdf. In

general, the prior pdf dominates a subspace of the parameter space, while the likelihood func-

tion dominates other (and usually larger) subspaces (Sen and Stoffa, 1996).

Figure 3.3 and 3.4 show the relation between the prior, likelihood and posterior. It is clearly visi-

ble that the posterior (green) is proportional to the product of the prior (red) and the likelihood

(blue). Figure 3.3 also shows that the variance of the prior distribution is the uncertainty, and

the variance of the likelihood function is the noise in the models obtained. Figure 3.4 shows the

relationship between the higher probability distributions and the multivariate normal distribu-

tions (contour lines).
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Figure 3.3: A prior distribution, likelihood function and posterior distribution are shown. The
difference between the prior expectation and the peak of the likelihood function is known as
prediction error. The uncertainty of the prior distribution is the same as the variance, while
noise is the variance of the likelihood function (Yanagisawa et al., 2019).

Figure 3.4: The product of prior distribution and likelihood function gives the posterior dis-
tribution, which defines uncertainty as soon as both prior information and models are taken
into account. Higher probability distributions are marked with darker areas, while the dashed
lines are the contours of the multivariate normal distributions. Modified after Malinverno et al.
(2002).
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Methodology

4.1 Workflow

A statistical model (see Figure 4.1) is made for the dependence of geophysical model parameters

on fluid saturation and porosity, as well as the dependence of geophysical data on geophysical

model parameters (CSEM and seismic).

Figure 4.1: The workflow used for the computed maps (from the cubes) as a Bayesian network
representing petrophysical joint inversion of resistivity (R) and velocity (Vp ). X is the property
being inverted for (fluid saturation and porosity in this case). The input to the Bayesian net-
work are CSEM and seismic data. The inversion of these data gives the models of resistivity and
velocity. The joint inversion of these models gives the properties. The forward modeling of the
properties is based on rock-physics, while the forward modeling of the models is based on laws
of physics (modified after Hokstad et al. (2017)).

36
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A bayesian framework is chosen in order to account for the model uncertainty and the main

idea behind this algorithm is that every node in the Bayesian network, has a specific probability

and is conditional independent.

There is conditional independence between the different data types (seismic and CSEM), be-

cause it is possible to assume that the noise in the different data sets are independent. That

means, the different data types meets on the node they are conditional on at the top of the net-

work. For example, the noise in the CSEM data is independent from the noise in the seismic data

collected some years earlier. This is a reasonable assumption and the only assumption needed

to be taken to get the Bayesian network. Bayesian networks have also other applications, such

as medical diagnostics, artificial intelligence and machine learning. The algorithm is very pow-

erful and has a wide range of applications. This thesis will use the simplest version, called naive

Bayes. That means, applying the Bayes’ theorem with the naive assumption of conditional in-

dependence between the different data types.

The dependency between the properties and models can be summarized as

X = (Sw ,φ,Vcl )

Vp (Sw ,φ,Vcl )

R(Sw ,φ,Vcl )

ρ(Sw ,φ,Vcl ),

which shows the dependencies between properties and models, where Vcl is the clay volume.

Before going further, there are some important terms that need more focus. The inversion result

of the measured data are models. The inversion of the models are properties. The forward

modeling of the properties are models. The misfit between measured properties (from well logs)

and properties found by inversion is the property misfit. The misfit between the models from

inversion of the data and the models from the forward modeling of the properties is the model

misfit. This means that velocity, resistivity and density depend on saturation, porosity and clay

content. This is the whole idea behind the joint inversion, namely that it is possible to invert

jointly, because the models and properties depends on each other. If this was not the case, it

would not be possible to do joint inversion either. In the thesis, Vcl is considered deterministic,
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while φ and Sw are considered stochastic.

The first set of dependencies are based on petrophysical relations (forward modeling). The 2nd

set of dependencies comes from differential equations like Maxwell equations of electromag-

netics (CSEM inversion) and the elastic wave equation (seismic FWI). These dependencies are

indicated in Figure 4.1.

When moving from the top to the bottom of the Bayesian network, forward modeling is being

performed. Synthetic geophysical models and data are computed (given saturation and porosity

distributions). The interesting part is the inversion part (going from the bottom to the top). The

purpose of inversion, is to calculate the model parameters and the properties (saturation and

porosity), based on the measured geophysical data (Hokstad and Tänavsuu-Milkeviciene, 2017).

By performing CSEM measurements, the magnitude and phase of the electromagnetic field is

being measured. On the other hand, measurements done with seismics, measure the travel-

times the seismic waves use to travel their pathways. Performing inversion of the CSEM data,

the starting point is magnitude/phase information of the electromagnetic field and the result is

resistivity contrasts, while inversion of the seismic data, the traveltimes are resulting in velocity.

From CSEM inversion and seismic FWI (the data), models of resistivity and velocity, respec-

tively, are obtained. The inversions for CSEM and seismic are done separately. In comparison,

the petrophysical joint inversion, going from models to properties, is performed simultaneously

as Simultaneous Joint Inversion (SJI).

The first stage, is to invert geophysical data and create geophysical models (going from mea-

sured data to model parameters). The second stage, is to estimate the reservoir properties as

fluid saturation and porosity by inversion of the geophysical model parameters (result of the

first inversion). This second stage is actually a petrophysical (rock physics) inversion, given as

a statistical inversion scheme. In the petrophysical joint inversion, Bayes’ theorem (equation

3.39) is used as the main equation. The first step in the petrophysical joint inversion is to define

the prior distributions for the reservoir properties (saturation and porosity). Then the maxi-

mum likelihood function is calculated and, finally, the posterior distributions of the properties

are calculated. In this context, the first stage in the Bayesian network consist of the CSEM in-

version and seismic FWI, and the outputs from this geophysical inversion are used as inputs for
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the second stage statistical petrophysical inversion (going from models to parameters) (Hokstad

et al., 2017).

Figure 4.2 presents the workflow presented in Figure 4.1 from another point of view and sum-

marize the above mentioned workflow.

Figure 4.2: Workflow showing the 5 main steps in the Bayesian joint inversion.

Recalling the Bayes’ theorem (equation 3.41), it can be written for the properties φ and Sw , as

p(φ,Sw |m) = p(m|φ,Sw )p(φ,Sw )

p(m)
(4.1)

From the Bayesian network in Figure 4.1, the posterior distribution for X (Sw or φ), given one or

more geophysical model parameters mi , can be written as

p(X |m1, ...,mn) =C
nY

i=1
p(mi |X )p(X ), (4.2)

where C is the normalisation factor, and p(X ) is the prior distribution for X (Sw or φ) (Cowell

et al., 2007; Lundteigen and Rausand, 2008).
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The expressions for both the posterior µ and σ2, are given in equation 4.3 and 4.4

µX |mi =
Z

X p(X |mi )d X (4.3)

σ2
X |mi

=
Z

(X −µX |mi )2p(X |mi )d X (4.4)

In this setting, mi =
©
Rv ,Vp

ª
. By assuming Gaussian errors (e = Fi (X )−mi ), each of the likelihood

functions p(mi |X ) on the right side of equation 4.2, can be formulated as

p(mi |X ) = 1

σei
p

2π
e

−[mi −Fi (X )]2

2σ2
ei (4.5)

where σei is the error variance for model parameter mi , and Fi (X ) are petrophysical (rock-

physics) models connecting the Sw or φ to geophysical model parameters. It is important to

note that petrophysical (rock physics) models are forward models. One or more geophysical pa-

rameters can be used to calculate the posterior distribution for X . The product of two (or more)

likelihood functions creates the posterior distribution more narrow, and gives better posterior

mean and smaller variance. It is always a question about how to do the relative weighting of the

inversion parameters in the inversion, and the error variances of the posterior distribution can

also be used to decide this relative weighting (Hokstad et al., 2017).

In this thesis, the focus has been on the rock-physics inversion, and FWI and CSEM inversions

done by Equinor are being used directly without any further work.

All though not strictly correct, Equinor is using a pragmatic approach to the full joint inversion

problem, by handling the FWI and CSEM inversions and the rock-physics inversion as sepa-

rate steps. Then inversion models obtained from different service providers and using differ-

ent methods can be combined in the rock-physics inversion, giving fast project turn around.

An overview showing the typical prior information, data/model types and posterior results are

shown in Figure 4.3.
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Figure 4.3: Examples of prior information, data/models and posterior results.

Depending on the type of data/models (synthetic, well logs or maps), there are some differences

in the code. This is described in the next subsections. The most important Matlab codes are

attached in Appendix C, where the rest is being omitted.
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4.2 Synthetic testing

The whole idea to start with synthetic data is that the true values are known and the goal is to

get as close as possible with the inversion results to those values. A simple model was created

with the dimensions of depth (z) ranging from 800 m to 1600 m and offset (x) ranging from 0

m to 800 m. A reservoir zone at 1150-1250 m depth was defined. The offset increment length

(d x) was set to 25 m and the depth increment length (d z) was set to 12.5 m. In the reservoir,

the φ was set to 20% and the Sw to 20%, while outside the φ is 12% and Sw is 100%. The model

parameters are summarized in Table 4.1.

Table 4.1: Model parameters used for synthetic testing. dx = offset increment, dz = depth incre-
ment, x = offset, z = depth, φ = porosity, Sw = water saturation, res = reservoir zone.

dx [m] dz [m] x [m] z [m] φ res [-] φ [-] Sw res [-] Sw [-]
25 12.5 0-800 800-1600 0.2 0.12 0.2 1.0

In the forward modeling, the Archie and Gassmann equations (clean sandstone case) were used

to calculate log Rv and Vp , respectively. The value of the parameters used in the Archie and

Gassmann equations are based on the well logs to make it similar to the actual situation in the

Johan Castberg area.

Some noise (5%) was added to the properties (Sw and φ) to make it more realistic to the real

world. A random number generator was also introduced in order to give random numbers for

the properties. Minimum Sw and φ were set to 0.01 and the maximum values were set to 1 for

Sw and 0.5 for φ.

Then, prior µ and σ for the properties (φ and Sw ), as well as σ and µ errors for the models

(log Rv and Vp ) were defined. The next step was to calculate the likelihood functions (product

of the likelihood functions of log Rv and Vp ) and find the MLH. The MLH was then normalized.

In the end, the posterior distributions are calculated based on the priors for the properties and

the normalized MLH. MAP, µ and σ are being calculated for the posterior distributions.
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4.3 Well logs testing

After being sure that the code worked well for the synthetic cases, the next step was to apply

the code on well logs. At this point, the pre defined models are replaced by real data in terms

of well logs. The code is similar to the code for synthetic data, and the main differences will be

described below.

The las files of the well logs needed to be imported into Matlab before the code could be tested.

Only LFP (Lithology Fluid Prediction) logs created by Equinor’s petrophysics group were used.

Well tops were introduced in order to indicate the different formations in the wells. Then, the

logs were blocked in two different ways (into the same blocking size as for the 3D cubes (25-50

m) and averaged on the formations). When blocking high frequent well logs, the well logs get

the same resolution (sampling) as the cubes and is reliable when comparing the well logs with

cubes (due to the problem with different resolution). Depth below seabed was used as depth

(z) and kelly bushing was taken into account to get the correct depth. Depth below seabed is

the same as the sum of the kelly bushing and water depth subtracted from the actual measured

depth. No noise added as for synthetic data, since the logs are real measurements were noise

already exists.

Input to the petrophysical model was set to 50% oil and 50% gas among the fluid that was not

water. Input to the forward modeling are now So , Sg , φ, Vcl , C EC and z. The Vcl log was com-

puted from the GR log using the simple relation

Vcl =
GRl og −GRmi n

GRmax −GRmi n
(4.6)

where GRl og is the GR log value, GRmi n is the gamma ray for clean sand and GRmax is the

gamma ray for shale (Mavko et al., 2009). Density was introduced in order to show the potential

of adding density data in addition to log Rv and Vp in the joint inversion as a third geophysical

parameter.
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4.4 Calibration of forward modeling

The calibration of the rock-physics modeling was a lot of work. The forward modeling needed to

be tuned in to the three wells. Some important plots from the rock-physics modeling are given

in Appendix A. Figure A.1-A.4 compare the brine, virgin and model logs for the studied wells.

Some rock-physics relations of φ, Vp and Vs are presented in Figure A.5-A.9. Some important

well logs of the three wells are given in Figure A.10-A.12. The tuning parameters with the corre-

sponding values and other important forward modeling parameters are given in Table A.1 and

A.2, respectively. In the forward modeling part, Archie and a combination of Han’s model and

Gassmann equations were used. The combined Han-Gassmann model was created for several

reasons. First, to account for shale content for Vp calculation, second, because of the missing

matrix shear modulus lfp-log and third, to get rid of the bulk modulus of the dry rock (Kdr y )

because it is hard to estimate without measure it from cores in the lab.

A temperature dependence on the dry shear modulus was included in the Han-Gassmann com-

bined model to get a correct shear modulus. This was done to obtain a single rock-physics

model fitting all the three wells, which has jurassic reservoir zones at different depths. The wells

are sitting in different down-faulted blocks. This temperature effect on the dry shear modulus

(µdr y ) is given by

µdr y = (1−β)stempµma (4.7)

whereβ is the Biot coefficient, stemp is a temperature dependency andµma is the shear modulus

of the matrix. This formula was defined during the thesis, in order to account for the tempera-

ture dependency of the dry shear modulus. The code was tested on the three wells mentioned

in chapter 1 (7219/9-1T2, 7220/7-1 and 7220/8-1). The well logs for Rw , Kw , ρg and ρw were

used to improve the forward modeling code in order to tune in the code for the specific geology

in the Johan Castberg area.
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4.5 Maps testing

After getting good inversion results from the well testing, the code was applied to maps com-

puted from 3D cubes of Rv and Vp . The reasons for using maps instead of 3D cubes are, because

the FWI and CSEM inversion cubes have low depth resolution, the depths are not fully consis-

tent and the inversion runs much faster than on cubes. The maps are more than a horizon and

that is why words like time/depth/horizon slice are avoided. The maps show average Rv and

Vp for the Jurassic reservoir. When computing maps, the interval of interest can be extracted

from the cubes and therefore influence the different resolution by taking out a thicker interval

(500 m) from the CSEM cube compared to the FWI cube (50 m). The interpreted horizon of the

Top Realgrunnen Gp (see Figure B.1 and B.2) was used as reference horizon. An interval of 200

m up and 300 m down around Top Realgrunnen Gp was used from the CSEM cube and 50 m

down around Top Realgrunnen Gp was ued from the FWI cube (based on how the cubes looked

like around the Skrugard well). The forward modeling code was still the same as for the well

testing part, but also here, different priors and standard deviation were tested out in order to get

a small model misfit and property misfit. Input data as interpretation of Top Realgrunnen Gp,

seabed, Rv map and Vp map were imported into Matlab and used as input data. Easting and

northing were also considered and imported. The difference between Top Realgrunnen Gp and

the seabed constitutes the burial depth of today.
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Results

5.1 Synthetic models

The synthetic model testing consisted of two different cases, namely one non reservoir case

scenario (overburden) and one reservoir case scenario. The depth for the non reservoir case is

1000 m below seabed, while the reservoir case is located at 1212.5 m depth. The two cases will

be compared in terms of the inversion results and model misfits to show how they differ for both

Sw and φ. The values for µ and σ for prior of Sw and φ, as well as measuring errors for the input

models are given in Table 5.1. Wide priors and small noise variance for the input models are

chosen. That means, the models are trusted and therefore controls the posterior distributions.

Table 5.1: Values of µ and σ for the priors (φ and Sw ) and the models (log Rv and Vp ).

Parameter φ [-] Sw [-] log Rv [Ωm] Vp [m/s]
µ prior 0.2 0.7
σ prior 0.3 0.5

µ error model 0 0
σ error model 0.2 50

Figure 5.1 a and b shows the models for log Rv and Vp , respectively. These models will be slightly

different for every time the code is tested, because 5% noise which gives rise to slightly different

values is added. The log Rv values in the reservoir are ca 1.5 Ωm and ca 0.5 Ωm in the overbur-

den. The Vp values in the reservoir are ca 2350 m/s, while in the overburden it is ca 2900 m/s.

The log Rv and Vp are the forward models of the true values of φ and Sw .

46
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Figure 5.1: Forward models of log Rv og Vp . The reservoir is located at 1150-1275 m depth.

The Sw and φ values for true, posterior µ, posterior σ and the property misfit are presented in

Figure 5.2 a-h. By looking at the property misfits of Sw andφ (Figure 5.2 d and h), the misfit in the

reservoir is ca 0.02 for Sw and -0.07 for φ, while 0.03-0.07 for Sw and 0 for φ in the overburden.

The posterior σ for Sw is 0.05-0.07 for both the reservoir and overburden (Figure 5.2 c). The

posterior σ for φ in the reservoir is 0.1 and in the overburden it is 0.01 (Figure 5.2 g).

Figure 5.2: True, posterior µ, posterior σ and property misfits for Sw (top) and φ (bottom).

Figure 5.3 and 5.4 show the marginal likelihood probability distributions of the l og Rv and Vp in

the overburden and within the reservoir for both Sw andφ. The maximum value of the marginal

likelihood distributions is the MLH and indicates which value the model (log Rv or Vp ) predicts

for either Sw or φ at a given depth. A black star is shown and informs about the true value of Sw

and φ for the given depth. The log Rv MLH function at 1000 m depth is closer to the true value
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for φ than for Sw , while at reservoir depth, the MLH function is closer to the true value for Sw

than for φ. The Vp MLH function for Sw at 1000 m depth, is not within the defined range of Sw ,

while the MLH function for φ is relatively close to the true value. At 1212.5 m, the MLH function

of Sw is closer to the true value compared to φ.

Figure 5.3: MLH pdf’s at 1000 m depth. The true value is marked with a black star. a) log Rv for
Sw , b) Vp for Sw , c) l og Rv for φ and d) Vp for φ.

Figure 5.4: MLH pdf’s at 1212.5 m depth. The true value is marked with a black star. a) l og Rv

for Sw , b) Vp for Sw , c) log Rv for φ and d) Vp for φ.
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The connection between the prior, likelihood and posterior for Sw and φ at the two depths are

presented in Figure 5.5. The MLH in Figure 5.5 a-d, is the product of the likelihood contributions

from l og Rv and Vp models at the same depth for the investigated property (Sw or φ). At 1000

m depth, the posterior and likelihood distributions are almost the same for Sw , while they are

the same for φ. The priors are very broad and has little influence on the posterior distributions.

At 1212.5 m depth, the posterior and likelihood distributions are more different for Sw and φ,

compared to at 1000 m depth. The priors are still wide, but has more influence on the posterior

distributions compared to the overburden. Note the global and local maxima of the MLH curve

forφ at reservoir depth (see Figure 5.5 d). Figure 5.5 d is the only case where the true, µ and MAP

values are not close to the same value.

Figure 5.5: Prior (green), MLH (blue) and posterior (red) at 1000 m and 1212.5 m depth. The
true, µ and MAP values of Sw and φ are marked with black, green and pink stars, respectively. a)
Sw at 1000 m, b) φ at 1000 m, c) Sw at 1212.5 m and d) φ at 1212.5 m.
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Figure 5.6 shows the MLH for the log Rv and Vp at both depths for all combinations of Sw andφ.

Yellow indicates the highest probability for what the Sw and φ should be at a specific depth and

the probability is the same as long the colour is the same. The log Rv MLH for the two depths

have similar shapes, while the shapes of Vp are completely different. Depending on the depth

and the model (log Rv or Vp ), Figure 5.6 a-d are covering different ranges of Sw and φ. Figure

5.6 a is not covering low Sw and low φ, while Figure 5.6 b do not cover φ above ca 10%. Only

the lowest Sw is missing in Figure 5.6 c, while Figure 5.6 d does not include φ below 15% and Sw

above 80%.

Figure 5.6: MLH functions for all combinations of φ and Sw . Contributions to likelihood dis-
tributions from a) log Rv at 1000 m, b) Vp at 1000 m, c) log Rv at 1212.5 m and d) Vp at 1212.5
m.
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Figure 5.7 illustrates the prior, MLH and posterior for the two depths. The prior is the same

for both depths (only one defined prior), while the MLH and posterior differ for the different

depths. The MLH distributions in Figure 5.7 are the product of the MLH distributions given

in Figure 5.6 (product of log Rv and Vp at the same depth). In other words, Figure 5.7 b is the

product of Figure 5.6 a and b, while Figure 5.7 e is the product of Figure 5.6 c and d. When

comparing the MLH and posterior at 1000 m, they look very much the same. At reservoir depth,

the MLH and posterior also look similar, but in Figure 5.7 e, the global and local maxima once

again appear as already seen in Figure 5.5 d. In Figure 5.7 f, the most probable (global maxima)

point is chosen as the posterior result. At 1000 m depth, it is most probable to find Sw of 96% and

φ of 11%, while at 1212.5 m depth both Sw and φ have 21%. Taking those numbers into account

and comparing them with the pre defined true values forφ and Sw (see Table 4.1), makes it clear

that the property misfit is very small for both properties.

Figure 5.7: Prior, MLH and posterior for overburden and reservoir depth. a) and d) Prior for all
combinations of φ and Sw , b) MLH at 1000 m, c) Posterior at 1000 m, e) MLH at 1212.5 m and f)
Posterior at 1212.5 m.
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5.2 Well log data

In this chapter, the well log results are presented. Only blocked logs, both averaged on forma-

tions and regular, will be shown. In addition, the contribution of including ρ as a third geophys-

ical parameter will be presented. The future possibility to use Full Tensor Gravity (FTG) data

to obtain estimates of φ, in particular in the case of shallow gas reservoirs, was foreseen. Wide

priors are chosen, as well as a small noise variance for the input data, are presented in Table 5.2.

The data control the posterior distributions, but the prior for Sw is narrower and the likelihoods

wider than compared to the synthetic case. The prior for φ is the same as for the synthetic case,

because this gave a much better result than to decrease σ for φ to 0.2. This would be natural to

do, because real data is now considered instead of synthetic models. The reason for choosing

wider likelihoods, is that working with real data has higher uncertainty compared to synthetic

models. Well tops for the formations Top Hekkingen, Top Stø, Top Nordmela, Top Tubåen and

Top Fruholmen are marked on all the well log plots. The φ and Sw plotted are the MAP value at

each data point.

Table 5.2: Values of µ and σ for the priors (φ and Sw ) and the data (log Rv , Vp and ρ).

Parameter φ [-] Sw [-] l og Rt [Ωm] Vp [m/s] ρ [g/cm3]
µ prior 0.2 0.9
σ prior 0.3 0.3

µ error data 0 0 0
σ error data 0.5 150 50

Figure 5.8 a and b presents regular and formation blocked logs for the well 7219/9-1T2, respec-

tively. The Vp has an increasing trend with depth and has a bigger model misfit in the over-

burden and the Hekkingen Fm than in the Realgrunnen Gp. In the Realgrunnen Gp, the virgin

log and the modeled l og Rt follows the same trend where the modeled log is overestimating in

the interval of interest. Even in the overburden, there is a rather small model misfit. No sud-

den increase of l og Rt is observed. There are property misfits bigger than 1σ in the Hekkingen

Fm, in the Torsk Fm and Kolmule Fm in the overburden for φ and Sw , but less than 1σ in the

Realgrunnen Gp. Theφ decreases in general with depth. The measured Sw is mostly above 90%.



CHAPTER 5. RESULTS 53

The Havis well results are presented in Figure 5.9. Figure 5.9 a is regular blocked, while Figure

5.9 b is blocked over the formations. The Vp increases with depth, while the log Rt has a sudden

change in the Stø and Nordmela formations. The model misfits for Vp and l og Rt are small, es-

pecially for Vp . The model misfit of Vp is biggest in the overburden and the Hekkingen Fm, while

the log Rt has higher model misfit in the overburden and the Stø and Nordmela formations. The

inversion results are in general good in the reservoir zones, especially for the φ. The inversion

results for both φ and Sw are less good in the Hekkingen Fm, where the property misfit is larger

than 1σ. Theφ decreases and increases with depth, depending on where in the stratigraphy the

actual measuring point is located. The Sw has significantly lower values in the Stø and Nord-

mela formations than outside. The property misfits are within one σ significance from Top Stø

and downwards for φ and from lower part of Stø Fm and downwards for Sw .

The Skrugard well results are presented in Figure 5.10 and 5.11. In addition to comparing regu-

lar blocked and formation blocked well logs, ρ is included as a third geophysical parameter to

show how it will affect the inversion results. The Vp increases with depth, while the l og Rt has a

sudden change in the Stø Fm. The Vp and l og Rt model misfits are small, except in the Stø Fm

for the log Rt and in the overburden for Vp . The model misfit of ρ is very small in both the over-

burden and the reservoir. The width of the 1σ significance is much narrower when including

ρ. The inversion results are in general good, but adding density make the φ much better and

improves Sw a bit. It is a misfit larger than 1σ for the φ in the Fuglen Fm and above, while Sw

has a bigger misfit than 1σ in the Stø Fm and from Top Fuglen Fm and above. Theφ increases in

the Fuglen, Stø and bottom Nordmela formations, and decreases in the Nordmela and Tubåen

formations. The Sw has significantly lower values in the Stø and Nordmela formations than in

the rest.
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Figure 5.8: Well 7219/9-1T2 showing a) regular blocked well logs and b) blocked over formations.
Left: Virgin well logs (red) and modeled well logs (black) for Vp and l og Rt . Right: Measured
well logs (red), inversion results of φ and Sw (black) and the 1 σ significance of the properties
(turquoise).
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Figure 5.9: Well 7220/7-1 showing a) regular blocked well logs and b) blocked over formations.
Left: Virgin well logs (red) and modeled well logs (black) for Vp and l og Rt . Right: Measured
well logs (red), inversion results of φ and Sw (black) and the 1 σ significance of the properties
(turquoise).
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Figure 5.10: Well 7220/8-1 showing regular blocked well logs for a) without ρ and b) with ρ. Left:
Virgin well logs (red) and modeled well logs (black) for Vp and log Rt . Right: Measured well logs
(red), inversion results ofφ and Sw (black) and the 1σ significance of the properties (turquoise).
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Figure 5.11: Well 7220/8-1 showing formation blocked well logs for a) without ρ and b) with ρ.
Left: Virgin well logs (red) and modeled well logs (black) for Vp and l og Rt . Right: Measured
well logs (red), inversion results of φ and Sw (black) and the 1 σ significance of the properties
(turquoise).
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Figure 5.12 and 5.13 show the prior, posterior and likelihood distributions for a chosen depth

in the reservoir zone (827 m depth) and overburden (952 m depth) using the Skrugard well as

example, as well as with and without ρ as a third geophysical parameter. Note that the MLH is

now a product of three data types. The overburden case is not calibrated to the wells. This depth

is chosen of two reasons. First, to see how a depth outside the reservoir is affected by ρ as a third

geophysical parameter. Second, to see how ρ will affect the posterior distributions for a depth

that is not calibrated to the wells. The φ starts, as for the synthetic testing, at 1%. This is why

there is no data for φ= 0. The prior is of course the same for all the four cases, because only one

prior is defined that is valid both in the overburden and in the reservoir.

The MLH at 827 m depth without ρ shows that the highest probability is to find Sw of 50% and

φ of 22% (see Figure 5.12 b). The corresponding MAP values for Sw and φ are 72% and 23%,

respectively (see Figure 5.12 c). Figure 5.12 e and f give the results for the same depth when

including ρ. The MLH indicates that the highest probability is to find Sw of 60% and φ of 15%.

The MAP of the Sw is 78% and the φ is now 15%. The MLH and posterior are shifted to lower φ

and higher Sw compared to the case without ρ.

Figure 5.13 a-c show the results for a depth of 952 m (in the reservoir zone) without ρ. The MLH

shows that the highest probability is to find Sw of 3% and φ of 29%. The MAP of the Sw is 3%

and theφ is 29%. Fig 5.13 d-f give the results for the same depth with ρ. The MLH shows that the

highest possibility is to find Sw of 3% andφ of 24%. The MAP of Sw is 3% andφ is 24%. The MLH

and posterior are shifted to lower φ compared to the case without ρ. The Sw is still the same.

Taking ρ into account, shifted the the posterior distributions to lower φ and higher Sw in the

overburden, while at reservoir depth the Sw was unchanged and the φ became lower. Also, the

ρ made the value of the MLH and posterior much higher compared to the case without (both in

the overburden and the reservoir).
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Figure 5.12: Overburden case at 827 m depth in well 7220/8-1. b) and c) are without ρ, while e)
and f) are with ρ. Note the differences in MLH and posterior in b) and c) compared to e) and f).

Figure 5.13: Reservoir case at 952 m depth in well 7220/8-1. b) and c) are without ρ, while e) and
f) are with ρ. Note the differences in MLH and posterior in b) and c) compared to e) and f).
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5.3 Map models

As seen in the previous chapter about well log data, the Sw and φ were estimates with small

property misfits, while Vp and log Rt had small model misfits. The exciting part comes now,

when the method is applied on map models.

On all the maps in this chapter, the three wells are marked. The area of the computed maps are

ca 215 km2. Figure 5.14 a-c show maps of the burial depth of today, as well as l og Rv and Vp from

the CSEM inversion and FWI, respectively. The burial depth of today vary between 540 m and

2800 m. Deep buried areas are marked with yellow and shallow buried areas with blue. Three

main high resistive areas are visible (one next to each of the wells) in Figure 5.14 b. Some areas

in Figure 5.14 c have much higher Vp than other areas. By comparing those high Vp zones with

the burial depth of today, a connection between the high Vp zones and deep buried rocks could

be observed.

Figure 5.14: a) Burial depth of today, b) model of l og Rv and c) model of Vp .



CHAPTER 5. RESULTS 61

In total, five different cases will be presented, based on various combinations of the prior and

likelihood. The reason for doing so, is to show how different prior and likelihood distributions

affect the posterior distributions. For the map testing, wide priors are defined as σ = 0.5 for

Sw and σ = 0.2 for φ, and narrow priors as σ = 0.3 for Sw and σ = 0.05 for φ. Wide likelihoods

are defined as σ = 350 m/s for Vp and σ = 1.0 Ωm for log Rv , and narrow as σ = 150 m/s for

Vp and σ = 0.5 Ωm for log Rv . Similar priors and likelihoods as chosen in the well log testing,

were also used in the maps testing, but in general the (σ) error of the models need to be higher

compared to the well log data. The uncertainty of the models (log Rv and Vp ) from the CSEM

inversion and FWI, respectively, are significantly higher compared to well log data. With well

logs, the parameters are measured directly in the well bore, while working with models from the

first stage of the inversion (see Figure 4.1), nothing are measured directly. Two factors make it

challenging to find suitable values for σ for log Rv . First, resistivity is logarithmic and the Rt

in the wells vary from 0 to 1000 Ωm. The variation is so big and makes it therefore difficult to

choose appropriate σ for it. Second, comparing l og Rt and l og Rv directly should be avoided,

because they measure the horizontal and vertical resistivity, respectively. Even by knowing what

the Rt are in the wells, it is difficult to find appropriate values for the σ of log Rv , because it is

hard to say what the values for log Rv are in this case (without knowing the anisotropy). It is

easier to find appropriate values for the σ of Vp , because Vp can be directly compared between

the value from the model at the well locations with the measured value in the well. Table 5.3-5.7

illustrate the chosen values for the prior and likelihood for the different cases. The results for

the five cases are shown in Figure 5.15-5.19 (a and b present the model misfits of l og Rv and Vp ,

while c and d present the inversion results of SHC and φ), respectively. Table 5.8-5.13 present

the results at the well locations.
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Table 5.3: Case 1: Values of µ and σ for the priors and models.

Parameter φ [-] Sw [-] log Rv [Ωm] Vp [m/s]
µ prior 0.2 0.9
σ prior 0.2 0.5

µ error model 0 0
σ error model 0.5 150

Table 5.4: Case 2: Values of µ and σ for the priors and models.

Parameter φ [-] Sw [-] log Rv [Ωm] Vp [m/s]
µ prior 0.2 0.7
σ prior 0.2 0.3

µ error model 0 0
σ error model 1.0 150

Table 5.5: Case 3: Values of µ and σ for the priors and models.

Parameter φ [-] Sw [-] log Rv [Ωm] Vp [m/s]
µ prior 0.2 0.9
σ prior 0.05 0.5

µ error model 0 0
σ error model 0.5 350

Table 5.6: Case 4: Values of µ and σ for the priors and models.

Parameter φ [-] Sw [-] log Rv [Ωm] Vp [m/s]
µ prior 0.2 0.7
σ prior 0.05 0.3

µ error model 0 0
σ error model 1.0 350

Table 5.7: Case 5: Values of µ and σ for the priors and models.

Parameter φ [-] Sw [-] log Rv [Ωm] Vp [m/s]
µ prior 0.2 0.9
σ prior 0.05 0.3

µ error model 0 0
σ error model 0.5 250
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In case 1, the prior distributions are wide and the likelihood functions narrow (see Table 5.3).

The model misfits and inversion results for case 1 are presented in Figure 5.15. The model misfit

for l og Rv lies between -0.3 Ωm and 0.23 Ωm, while the model misfit for Vp lies between -246

m/s and 110 m/s. The φ has a minimum of 4% and maximum of 48%. The SHC lies between 0%

and 93%.

In case 2, the prior for φ and the likelihood for log Rv are wide, while the prior for Sw and the

likelihood for Vp are narrow (see Table 5.4). Figure 5.16 shows the model misfits and inversion

results for case 2. The model misfit for log Rv lies between -1.5 Ωm and 0.65 Ωm, while the

model misfit for Vp lies between -240 m/s and 92 m/s. The φ ranges from 3% to above 48%. The

SHC lies between 22% and 59%.

In case 3, the prior for φ and likelihood for log Rv are narrow, while the prior for Sw and likeli-

hood for Vp are wide (see Table 5.5). The model misfits and inversion results for case 3 are given

in Figure 5.17. The model misfit for log Rv lies between -0.26Ωm and -0.06Ωm, while the model

misfit for Vp lies between -633 m/s and 631 m/s. The φ ranges from 16% to above 24%. The SHC

lies between 14% and 89%.

In case 4, the prior forφ, the prior for Sw and the likelihood for log Rv are narrow, while the like-

lihood for Vp is wide (see Table 5.6). Figure 5.18 shows the model misfits and inversion results

for case 4. The model misfit for log Rv lies between -1.3Ωm and 0.06Ωm, while the model misfit

for Vp lies between -623 m/s and 613 m/s. The φ ranges from 16% to above 24%. The SHC lies

between 28% and 55%.

In case 5, the priors and the likelihood for log Rv are narrow, while the likelihood for Vp is some-

thing between narrow and wide (see Table 5.7). Figure 5.19 shows the model misfits and inver-

sion results for case 5. The model misfit for log Rv lies between -0.68 Ωm and -0.11 Ωm, while

the model misfit for Vp lies between -505 m/s and 554 m/s. The φ ranges from 12% to above

26%. The SHC lies between 10% and 87%.
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Figure 5.15: Model misfits and inversion results for case 1. a) log Rv misfit, b) Vp misfit, c) SHC

and d) φ.
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Figure 5.16: Model misfits and inversion results for case 2. a) log Rv misfit, b) Vp misfit, c) SHC

and d) φ.
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Figure 5.17: Model misfits and inversion results for case 3. a) log Rv misfit, b) Vp misfit, c) SHC

and d) φ.
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Figure 5.18: Model misfits and inversion results for case 4. a) log Rv misfit, b) Vp misfit, c) SHC

and d) φ.
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Figure 5.19: Model misfits and inversion results for case 5. a) log Rv misfit, b) Vp misfit, c) SHC

and d) φ.
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Table 5.8 shows the values for the virgin well log of Vp and calculated T R based on the Rt well

log, lfp well logs for φ and SHC and modeled values for both Vp and T R at the well locations. It

also shows the misfit between what the well log measured and the value at the well location for

the models from CSEM inversion and FWI. The Vp from the virgin log in the well 7220/8-1 is the

slowest, 7220/7-1 has higher and 7219/9-1T2 has the highest Vp . The deepest well (7219/9-1T2)

has the biggest Vp difference between the well log and the Vp model (from inversion), while the

shallowest well (7220/8-1) has the smallest Vp difference. For log Rv , well 7219/9-1T2 has the

smallest difference, while well 7220/7-1 has the biggest. The T R from well logs and lfp log SHC

are averaged from the interval from 200m above Top Realgrunnen Gp (Top Stø) down to 300 m

below it (same extracted depth interval as from the Rv cube). Formula 3.31 is used to calculate

the T R based on the log Rt . Virgin log Vp and lfp log φ are the average in the interval from Top

Realgrunnen Group and down to 50 m below (same interval as from the Vp cube). Modeled Rv

and Vp are taken directly from the well locations on the map. The model misfits T R and Vp

are the difference between modeled (synthetic) and models from the CSEM inversion and FWI,

respectively.

Table 5.9 to 5.13 show the modeled values and the model misfits for T R and Vp , as well as the

property misfits for φ and SHC in the well locations for the five cases. For both model and prop-

erty misfits, the values from this work are subtracted from the values from the provided maps

and well logs.

In case 1, the smallest model misfit of T R is observed in well 7219/9-1T2 and the largest misfit

in 7220/8-1. The biggest misfit of Vp is in 7220/8-1, while the smallest is in 7219/9-1T2. Well

7219/9-1T2 has the largest property misfit for φ, while 7220/8-1 has the smallest. The biggest

property misfit for SHC is observed in 7219/9-1T2, and the smallest in 7220/8-1. In general, both

the φ and SHC are overestimated.

In case 2, the largest model misfit of T R is observed in well 7220/8-1 and the smallest misfit

in 7219/9-1T2. The biggest misfit of Vp is in 7220/8-1, while the smallest in 7220/7-1 (no mis-

fit). Well 7219/9-1T2 has the largest property misfit for φ, while 7220/8-1 has the smallest. The

biggest property misfit for SHC is observed in 7219/9-1T2, and the smallest in 7220/7-1. In gen-

eral, both the φ and SHC are overestimated, except the SHC for the wells 7220/7-1 and 7220/8-1.
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In case 3, the largest misfit in T R are observed in well 7220/8-1, while the smallest misfit is

in 7219/9-1T2. The biggest misfit of Vp is in 7219/9-1T2, while the smallest in 7220/8-1. Well

7219/9-1T2 has the largest property misfit for φ, while 7220/8-1 has the smallest. The biggest

property misfit for SHC is observed in 7219/9-1T2, and the smallest in 7220/8-1. In general, both

the φ and SHC are overestimated, except the SHC and φ in the well 7220/8-1.

In case 4, the largest misfit in T R is observed in well 7220/8-1 and the smallest misfit in 7219/9-

1T2. The biggest misfit of Vp is in 7219/9-1T2, while the smallest in 7220/8-1. Well 7219/9-1T2

has the largest property misfit forφ, while 7220/8-1 has the smallest. The biggest property misfit

for SHC is observed in 7220/8-1, and the smallest in 7220/7-1. Theφ is overestimated in 7219/9-

1T2 and 7220/7-1, while the SHC is overestimated in 7219/9-1T2.

In case 5, the largest misfit in T R is observed in well 7220/8-1 and the smallest misfit in 7219/9-

1T2. The biggest misfit of Vp is in 7219/9-1T2, while the smallest in 7220/8-1. Well 7219/9-

1T2 has the largest property misfit for φ, while 7220/8-1 has the smallest. The biggest property

misfit for SHC is observed in 7219/9-1T2, and the smallest in 7220/7-1. The φ is overestimated

in 7219/9-1T2 and 7220/7-1, while the SHC is overestimated in 7219/9-1T2.

Table 5.14 shows which case that gives the biggest and smallest model and property misfits, as

well as showing if the input models were trusted or not. Case 1 gives the smallest T R model

misfit, while the φ and SHC property misfits are the biggest. The input models were trusted.

Case 2 gives the biggest misfit for T R and the smallest for Vp . Only the Vp model is trusted. Case

3 gives the smallest property misfit for the φ. Only the log Rv model is trusted. Case 4 gives the

biggest Vp model misfit and the smallest property misfit for φ. None of the input models are

trusted. Case 5 is a mix case and gives the smallest SHC property misfit. The log Rv model is

trusted, while the Vp model is partly trusted.

Taking both φ and SHC property misfits into account, case 1 gives the worst average posterior

results and case 5 the best. When letting the priors affect the posterior results, the inversion re-

sults are good, while when letting the models control the posterior results, the inversion results

are bad. This shows clearly that in this case, it’s impossible to achieve both small model misfits

and small property misfits. When one of the misfits (either model or property) is small is the

other big and opposite.
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Table 5.8: Comparing Vp and T R from well logs with Vp and T R models from inversion at the
well locations in the map. The values for φ and SHC from the well logs are also presented.

Well 7219/9-1T2 Well 7220/7-1 Well 7220/8-1
T R from well log

£
Ωm2

¤
1414 38844 17952

Vp from well log [m/s] 3810 3684 3352
T R model from inversion

£
Ωm2

¤
3932 11640 11994

Vp model from inversion [m/s] 3315 3300 3150
T R misfit

£
Ωm2

¤
-2518 27204 5958

Vp misfit [m/s] 495 384 202
φ from well log [-] 0.15 0.18 0.23

SHC from well log [-] 0.07 0.73 0.78

Table 5.9: Case 1: Modeled (synthetic) T R and Vp and model misfits of T R and Vp at the well
locations in the map, as well as φ and SHC property misfits.

Well 7219/9-1T2 Well 7220/7-1 Well 7220/8-1
T R model from modeling

£
Ωm2

¤
2450 9953 8298

Vp model from modeling [m/s] 3323 3285 3080
T R model misfit

£
Ωm2

¤
1482 1687 3696

Vp model misfit [m/s] -8 15 70
φ property misfit [-] -0.25 -0.20 -0.05

SHC property misfit [-] -0.68 -0.14 -0.03

Table 5.10: Case 2: Modeled (synthetic) T R and Vp and model misfits of T R and Vp at the well
locations in the map, as well as φ and SHC property misfits.

Well 7219/9-1T2 Well 7220/7-1 Well 7220/8-1
T R model from modeling

£
Ωm2

¤
529 733 1035

Vp model from modeling [m/s] 3341 3300 3104
T R model misfit

£
Ωm2

¤
3403 10907 10959

Vp model misfit [m/s] -26 0 46
φ property misfit [-] -0.24 -0.19 -0.05

SHC property misfit [-] -0.38 0.23 0.31
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Table 5.11: Case 3: Modeled (synthetic) T R and Vp and model misfits of T R and Vp at the well
locations in the map, as well as φ and SHC property misfits.

Well 7219/9-1T2 Well 7220/7-1 Well 7220/8-1
T R model from modeling

£
Ωm2

¤
2428 8491 7816

Vp model from modeling [m/s] 3725 3662 3321
T R model misfit

£
Ωm2

¤
1504 3149 4178

Vp model misfit [m/s] -410 -362 -171
φ property misfit [-] -0.07 -0.04 0.03

SHC property misfit [-] -0.5 -0.04 0.03

Table 5.12: Case 4: Modeled (synthetic) T R and Vp and model misfits of T R and Vp at the well
locations in the map, as well as φ and SHC property misfits.

Well 7219/9-1T2 Well 7220/7-1 Well 7220/8-1
T R model from modeling

£
Ωm2

¤
1206 1484 1614

Vp model from modeling [m/s] 3736 3673 3343
T R model misfit

£
Ωm2

¤
2726 10156 10380

Vp model misfit [m/s] -421 -373 -193
φ property misfit [-] -0.07 -0.04 0.03

SHC property misfit [-] -0.31 0.28 0.33

Table 5.13: Case 5: Modeled (synthetic) T R and Vp and model misfits of T R and Vp at the well
locations in the map, as well as φ and SHC property misfits.

Well 7219/9-1T2 Well 7220/7-1 Well 7220/8-1
T R model from modeling

£
Ωm2

¤
1190 3027 2904

Vp model from modeling [m/s] 3707 3636 3313
T R model misfit

£
Ωm2

¤
2742 8613 9090

Vp model misfit [m/s] -392 -336 -163
φ property misfit [-] -0.08 -0.05 0.03

SHC property misfit [-] -0.33 0.1 0.19
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Table 5.14: The biggest and smallest model and property misfits for the different cases, as well
as the priors and likelihoods.

Case 1 Case 2 Case 3 Case 4 Case 5
T R model misfit

£
Ωm2

¤
Min Max

Vp model misfit [m/s] Min Max
φ property misfit [-] Max Min Min

SHC property misfit [-] Max Min
Prior φ Wide Wide Narrow Narrow Narrow

Prior Sw Wide Narrow Wide Narrow Narrow
Likelihood log Rv Narrow Wide Narrow Wide Narrow

Likelihood Vp Narrow Narrow Wide Wide Narrow-wide



Chapter 6

Discussion

6.1 Work done

6.1.1 Synthetic models

The synthetic results show, as expected, that the Bayesian inversion works pretty well. In this

case, the priors for both φ and Sw were wide and small noise variance for the models were de-

fined (trusting both the log Rv and Vp models). When defining a big σ for the priors and a small

noise variance for the models, the models will find the answer by its own, without the help of

the priors.

Looking again at Figure 5.7, the prior here is larger than zero for all combinations of φ and Sw .

This is good, because every value between 0 and 1 for Sw and between 0 and 0.5 for φ has a

higher probability than 0. No values of Sw and φ are excluded and only the models influence

the posterior distributions. This is well illustrated in Figure 5.7 b and c. When comparing the

MLH and posterior at 1000 m depth, they look very much the same, and this indicates that the

models control the posterior distributions. At 1212.5 m depth, the situation is a bit different.

The double maxima in Figure 5.5 d, are visible also in Figure 5.7 e. The posterior distribution

chooses the MLH maxima with the highest value. This is a good example showing that the MLH

function could also be bimodal and that in this case (because of the bimodal distribution) the

prior decides which of the two maxima that is the global one. This also illustrates well how the

difference between a unimodal and bimodal distribution is affected by the prior information.

74
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For the unimodal situation, the prior did not influence the posterior result, but for the bimodal

situation, the prior helped to find the global maximum. That is why the priors should be defined

as accurate as possible, because they can contain information that is important for the posterior

distributions. The reason for the bimodal distribution, is how the MLH functions are defined.

In this case, a higher noise variance for Vp (for example 150 m/s) would give a unimodal distri-

bution again. In the reservoir zone, a noise variance of 50 m/s was too low to get a unimodal

distribution with the model created.

In Figure 5.3 and 5.4 a and c, the MLH distributions of l og Rv looks very much the same. This is

because m and n in the Archie equation are approximately (1.8 and 2.0, respectively) the same

and therefore the Archie equation do not see the difference between φ and Sw . On the other

hand, the MLH distributions of Vp looks different as they should. The φ in Figure 5.6 and 5.7 do

not start at 0, but starts at 1%. This is because the minimum φ defined in the prior is set to 1%

(to avoid to divide with zero in the Archie equation).

6.1.2 Well log data

For the well testing, wide priors for both φ and Sw and low noise variance of log Rt and Vp

were defined. As for the synthetic models, the data influence the posterior distributions. The

results from the tests on well log data, shown that the method works good, but not as good as

for the synthetic models. In the overburden, both the property misfit of Vp and model misfits

were bad, and this is due to the calibration of the rock physics model. Both the property misfits

of log Rt and ρ were very small also in the overburden. This means that the forward model

for the Vp needs more attention compared to the other two. The overburden was not taken

into account when calibrating the forward model, and in general, this is why the misfits are

bigger here compared to the Realgrunnen Gp. The Hekkingen and Fuglen formations (and the

overburden) showed bigger than 1σ property misfits for both φ and Sw in all the wells and this

is due to higher clay content (high gamma response) compared to the Realgrunnen Gp. The

clay content is not included in the forward model in a proper way and this is the reason to

those misfits. By looking at Appendix A in Figure A.10 to A.12, the gamma response (due to clay

content) are clearly higher in the Hekkingen/Fuglen formations and the overburden than in the
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Realgrunnen Gp. Experience has shown that the Gassmann equation must be calibrated per

formation or group. In the present study, the only focus was on the reservoir formations in the

Realgrunnen Gp. The reservoir zones in the two discovery wells are being detected where the

SHC increases drastically. This proof that the developed method is able to zones where there is

no HC and also able to find HC zones.

For the 7220/8-1 well, by including ρ as a third geophysical parameter, it is possible to make the

property misfit for φ smaller also in the zones where the amount of clay are high. It seems like

the ρ only affect the Sw if the interval is not calibrated to the well logs, but it affects φ in both

the calibrated and not calibrated zones. This shows the importance of taking ρ into account as

a third geophysical parameter. By looking at equation 3.18, it explains why the ρ has such a big

influence on the φ.

The way to find out if the developed method works nor not, is the tests on the well logs. Here,

real data measured directly in the wells are being investigated. Then, it is possible to compare

the forward modeled results with what is being measured (data misfit) and the inversion results

compared with the well logs calculated from other logs (property misfit). The inversion results

are close to the measured values (especially in the zones with low amount of clay) and shows

that the method works fine.

6.1.3 Map models

As seen throughout the thesis, there has been some challenges to solve (multi physics chal-

lenges). The first challenge is about the different physics behind CSEM and seismic (electric

versus elastic). This was solved by a rock-physics framework calibrated at well locations. The

uncertainties in the rock-physics models and the possibility that they vary between the well

locations can increase the uncertainty in the inversion results. Therefore, a cross-gradient ap-

proach is an alternative approach which takes this into account. The second challenge is about

the scale. Seismic, CSEM and well log techniques are operated at very different scales, vary-

ing from a few cm for the well logs to several hundreds of m for the CSEM method. Again, the

solution was to obtain a robust rock-physics framework calibrated at well locations, reducing

this uncertainty. The final challenge is about sensitivity. This is (partly) solved by extracting
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maps from different depth intervals from the cubes. One more thing to consider regarding the

sensitivity is how much the different input models should be trusted (relative weighting). This

depends on how small or big the noise variance of the input models that are being defined.

These challenges can be summarized as

• Physics: Electric versus elastic.

• Different scales.

• Different sensitivity.

By comparing Figure 5.14 c with the φ results in Figure 5.15 to 5.19, a connection between Vp

and φ could be observed. High Vp areas have low φ and opposite. Those areas are also visible

in Figure 5.14 a, being deep buried. The deeper buried high Vp zones are more compacted

compared to shallower ones, and therefore give rise to higher Vp . A similarly trend is to be

observed for the relation between log Rv and SHC . Comparing Figure 5.14 b with the SHC in

Figure 5.15 to 5.19, high resistive areas give high SHC and opposite. These examples are showing

the connections seen in the theory chapter, where the φ are linked to Vp and SHC are linked to

Rv . It is possible to see the edge effects from the big faults in the Bjørnøyrenna fault complex as

a sudden change in depth in Figure 5.14 a. This is also well shown in Figure 5.14 c (southeast

of the high Vp areas). Next to the big faults, there is problematic to get a good Vp model and

makes the Vp model less accurate close the faults than far away. Having a look at Figure 5.19 c

(as an example), there is, as already mentioned, a high resistive area next to the dry well. This is

actually divided into two parts, because of the fault in the area. In this area, the discovery Drivis

is being made (well 7220/7-3S). The Drivis discovery is shown in Figure 1.6.

Based on the map results, it seems like that it is not possible to achieve both small property

misfits and model misfits at the same time. There is two options, and they are either to achieve

small property misfits and big model misfits, or big property misfits and small model misfits.

The ideal situation is to let the input models control the posterior distributions and let the prior

distributions be wide, but only if the input models can be trusted. Five different cases were

tested out in the thesis, and there are two main problems concerning the results. The two main

problems are the quality of the input models and the forward model.
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The first main problem are the input Rv and Vp models. The Vp are too low in the well locations

where the Vp from the map can be compared with the Vp from the wells. The Vp is possibly

too low in general, but it is impossible to confirm this without drilling everywhere. The Vp cube

is not a perfect match with the wells because it is not calibrated to the wells and because an

acoustic FWI workflow is being used. Another parameter that could influence the Vp from FWI

is the value of the anisotropy (ε). It could be that the ε is too high, and therefore give lower Vp

than the actual case. Another important aspect is how deep FWI could be used. The depth in

the 7219/9-1T2 and 7220/7-1 wells are probably too deep to could use the full strength of FWI,

and contributes to another error candidate. By looking at Figure B.3 in Appendix B, it is clearly

visible that the FWI curve (red) is underestimating quite a lot in the reservoir interval. The area

around the Skrugard well is more shallow, and it should not be a problem to get a good image

of the subsurface here compared to the deeper areas around the two other wells. This is well

illustrated to the left in Figure B.3, where the FWI curve can pick up the sudden change in Vp at

1270 m in the Skrugard well. The aim is, namely, that the FWI should manage to pick up those

sudden changes in Vp (within it’s resolution requirements to thickness) and therefore makes the

Vp model more precise than the tomography Vp (blue). One day, the ultimate goal is that the Vp

cube has resolution as close as possible to what is being measured in the well. In the two other

deeper wells, the FWI is not able not pick up the rapid increase in Vp and this is probably due to

the depth. The FWI cube was not build to fit into this specific workflow and has therefore a lot of

improvements. It was originally made for research, and is therefore not calibrated to the wells.

In connection to the Vp cube, the Rv cube has also many possible reasons for the obtained

results. As for the Vp , the comparison of T R between what is measured in the well and the

extracted value from the well location in the map, is performed. When comparing the difference

between the T R based on the well log and from the well location at the map, the differences are

huge. The main reason to this is because the calculation of T R from well logs are based on

Rt which is the same as the horizontal resistivity (Rh) in a vertical well, while the calculation

of T R from well locations in the map are based on Rv . Other reasons are that the inversion is

not perfect and the cube has another resolution than the well logs. The CSEM inversion is not

able to make the extreme Rv values, because the CSEM method does not see a big difference

between 500Ωm and 1000Ωm (an example). In the Skrugard well, the well is sitting a bit off the
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strongest anomaly that is visible in the map, and this is because Skrugard is relatively narrow

and the CSEM has not so good lateral resolution. The main point is that only the anisotropy will

make this big T R misfit. One important question is which window to choose when there is no

anomaly (as for the dry well). For the discovery wells 7220/7-1 and 7220/8-1, the T R is lower in

the map as in the wells. When performing the CSEM inversion, the inversion is often performed

in a conservative way, meaning that overestimation is trying to be avoided. The second reason

is that the inversion does not manage to create the extreme resistivities (500-1000 Ωm). The

response from a 500 Ωm area and from a 1000 Ωm is not always so big. Both 500 Ωm and 1000

Ω are hard to carry current through. There is a factor 2 in difference between the two discovery

wells for T R based on the well logs. The values are almost the same for T R in the two wells

based on the maps. The inversion can see that the reservoirs have very high resistivity, but

the reason for why T R from the maps does not have the factor two in difference is probably

because the response from a 500 Ωm or 1000 Ωm is possibly approximately the same when

measuring at the surface. The saturation equal to 500 Ωm vs 1000 Ωm is very high, so it does

not play a big role anyway. For the discovery wells, the T R is calculated from the Top Stø and

down to the OWC. In theory, the T R could be calculated everywhere, but the problem is to know

what to sum up. If something has very high resistivity, is relatively thin and big enough laterally,

then the cheapest is to send the current vertically through. For the reservoir zones, this is the

same as T R, or actually the integral of vertical resistivity, as if there was many series connected

resistors in a curcuit. Therefore, it is normally only performed where there is an anomaly, and

is used to estimate the saturation. The problem with the dry well without any anomaly, is that

it is difficult to know that should be summed up (as for the discovery wells). Therefore, for

the calculation of T R, the whole depth interval extracted from the Rv cube, is being used to

calculate it. The CSEM inversion itself, smears out the T R from the reservoir with high resistivity

over a bigger interval. This is done because it does not find the extreme values found in the

discovery wells. Therefore, the whole interval from creation of the map is used to to find T R

(no anomaly smeared out). The main reasons for this underestimation are, first, comparing the

vertical and the horizontal component of the resistivity, second, the inversion is not able to make

the extreme values of the resistivity, and third, because the inversion is performed conservative

in order to avoid overestimation. Aspects that will affect the inversion results are how good the
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calibration between Rv and the wells are, how close the initial model of Rv is to be the true model

of Rv , the type of regularization (and the parameters), and to choose in general, the data that are

connected to the wells and the depth intervals of interest.

Even if the T R of the l og Rv map is potentially underestimated (see Table 5.8), the SHC are in

the well locations, overestimated. As already discussed, the low Vp gives rise to high φ. How

can underestimated T R give rise to overestimated SHC (at least in the well locations) when the

noise variance of the input models are low? At this point, the coupling of the methods plays

an important role. By looking at Figure 5.15 c and d, both the φ and the SHC are high. When

the input Vp model is too low, it gives too high φ. The Archie equation tells then that the high

resistivites have to be compensated by corresponding lower Sw in order to match those high

resistivity responses. If the φ is not allowing to be so high (prior information), then the Sw does

not have to be so low in order to produce the same resistivity response either. This is a part of the

non uniqueness of inversion. Everything is connected, so even if T R is underestimated, the SHC

will be affected of the estimate ofφ (and vice versa). After starting with low noise variance for the

input models (the ideal situation is to trust the input models), and realizing that the inversion

results are not reasonable, then the next step is to increase the noise variances. The goal is to

find suitable values for noise variance in order to find something that gives both small property

misfits and model misfits. At this point, the quality of the input models are being realized and

in this case, indicating to be not good enough in this specific project.

The second main problem is about the forward modeling. In the forward modeling, the Archie

equation is used and is only valid for clean sandstone (no clay). The log Rv map is taken from

a big interval (200 m above and 300 m below the Top Stø Fm) and is affected by shale. Both the

overburden and the Hekkingen/Fuglen Fm have high shale content. The reservoir units (Stø and

Nordmela Fm) have less shale (especially the Stø Fm) compared to the overburden. It is, strictly

speaken, not correct to use the Archie equation here. The Waxman-Smits equation should be

used instead to account for the shale. However, the Stø Fm is almost clean sandstone, so Archie

equation should work here. The problem are the units containing higher amount of shale, as

the Nordmela Fm.
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The Han-Gassmann forward modeling is tuned in from the wells, while the Vp cube is not. To

work with one part of the inversion that is tuned in from the wells and one that is not, makes it

less accurate to work with. The Vp should at least be calibrated from the wells in order to get the

potential out of it. It seems like that the forward modeling is assuming harder rock frame than

the actual case, and if the clay content is accounted for, this will make the rock frame more soft

and therefore reduce the modeled Vp .

Until now, the methods and their accuracy at the well locations have been discussed. There are

also some minor factors that will affect the results. One of these is the different resolution in

the input data. Due to different resolution for the log Rv and Vp cubes, different intervals were

extracted from the two cubes. In addition to different resolution (frequency content) and the

three main challenges discussed (physics, scale and sensitivity), there are other factors that af-

fect the joint inversion of seismic and CSEM. Seismic has geometrical spreading, while CSEM

has geometrical spreading and exponential damping. In addition to that, they have two dif-

ferent geometries for the data acquisition. The combination of those factors, makes the joint

inversion challenging. Since it is challenging to decide what the optimal depth interval for each

of the cubes are for this work, it is probably also a factor of uncertainty. The question is which

depth interval should be chosen from the two cubes in order to account for the reservoir re-

sponse. The depth intervals chosen for log Rv and Vp are definitely of big importance for the

outcome. There is high probability that the intervals extracted can be better chosen as in this

thesis, by looking deeper into the relative resolution differences between the two methods. The

Han-Gassmann model used the regressions from Han’s study, but it would be more accurate to

make new regression parameters based on logs and cores from the Johan Castberg area. Due

to more than 1.5 km of uplift, smectite has been transformed to illite (removed the water from

the smectite). All these different clay minerals make the forward modeling more complicated,

but makes it even more important to really understand the clay processes happened. The im-

portance the clay minerals have on the reservoir quality (porosity and permeability) is a crucial

part of really understanding the reservoir.
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6.2 Further work

Two main problems and some minor problems have already been pointed out. That means,

that there is still a lot to do as future work to improve the results. First and foremost, the CSEM

inversion and FWI workflows, as well as the forward model have to be improved.

Further CSEM inversion work should focus on the calibration to the wells, the initial model, the

regularization type (and the parameters belonging to it) and choose data from the specific the

wells and intervals of interest.

If, for FWI, TTI anisotropy, workflow for reflection based FWI, elastic forward modeling, multi-

parameter updates and absorption modeling and updates could be included, it will give a way

more accurate velocity model. This will make the Vp model way better than this acoustic Vp

model used in this thesis.

Monte Carlo Markov Chain (MCMC) can be introduced in order to be able to invert for a third

geophysical parameter (for example Vcl ). In this case, a third input model has to be included (for

example ρ), because the number of inversion properties and input models has to be the same

(number of equations and number of unknowns the same). Archie equation should be replaced

with Waxman-Smits (or equivalent) equation in order to account for the clay content. The in-

troduction of cross-gradients could be useful. In this case, the structural similarities between

log Rv and Vp are being investigated and observe when the structural similarity between l og Rv

and Vp reaches their maximum. When they reaches a maximum, the minimum of the cost func-

tion is being found, because a cross-gradient regularization is included in the cost function.

Maybe even a combination of the approach used in this thesis and the use of cross-gradients

will be possible?

More wells should be introduced, in order to tune in the forward modeling code more accu-

rate. The is a strong need for a more robust rock-physics model. The more wells taken into

account, the more knowledge about the actual geology in the area are being considered. Only

the wells can tell with accuracy how the subsurface look like. More combinations of priors and

noise variances of the input models should be tested out, to further improve the posterior dis-

tributions. To test out a two or even more stages prior, would be something to consider later on.
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That means, vary the prior depending on knowledge knowing prior to the measurements for

different depth intervals. There is maybe also possible to do something similar for the log Rv

forward modeling (use Archie equation in sandstone areas and Waxman-Smits equation where

it is shale) as well. As part of the calibration work, try to work further with the well logs. Not phys-

ical values should be removed and then only work with values that gives a physical meaning. In

the wells, for every location that are logged, find the point that are closest to this point in depth

compared to the depth registered on the data point in the well log. The Han-Gassmann model

used the regressions from Han’s study, but it would be more accurate to make new regression

parameters based on logs and cores from the Johan Castberg area.

As seen, ρ improved the well logs results. Therefore, it would have been a good idea to get a

ρ cube in order to combine this with the other two cubes. It is not trivial how to get the ρ,

but the two options are either from the seismic or FTG. Since ρ made the well log inversion

results better, it will probably also help the maps to become better (especially for φ). Another

advantage by introducing ρ as a third inversion parameter, is that it may be able to distinguish

between oil and gas. In this thesis, only water and HC have been considered, but in order to

decide whether it is water, oil or gas this may be of huge importance. If Vcl could be inverted

for (a third property), it would help to improve the forward modeling, because Vcl is input to

the forward modeling code, and the inverted Vcl could be used in the Han-Gassmann velocity

equation and Waxman-Smits equation to improve the forward modeling. This will hopefully

make the model misfits smaller. A sensitivity analysis would be to recommend. By looking at the

relative changes between the different parameters when changing some parameters, this would

indicate which requirements would be needed to ask the CSEM inversion and FWI to strive for

in order to get an improved inversion result. The relative weighting of the log Rv and Vp models

are something that need a closer look. The relative weighting is one of the most difficult things

with joint inversion. This is more like experience than science. What is also worth to try out,

is to use another inversion scheme than Bayesian inversion. The alternative inversion scheme

to try out is the gradient-Hess inversion. This inversion is an optimization inversion algorithm

(like CSEM inversion and FWI) and therefore do not use probability distributions. In stead, it

is an iterative process minimizing the misfit function. One drawback of this method is that it

do not get the posterior variance. In this case, the equivalence between the Bayesian inversion
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(statistical) and gradient-Hess inversion (optimalization), is that minimize the misfit function

is the same as maximize the probability distributions. In theory, it would be possible to do this

joint inversion as one stage and not two stages as done in this thesis. The main drawback here

is the computer power.



Chapter 7

Conclusions

The purpose of the thesis has been to investigate the feasibility of combining CSEM inver-

sion and seismic FWI to estimate reservoir properties in petroleum exploration. The thesis has

shown that the Bayesian petrophysical joint inversion works good for synthetic models and well

log data. The workflow has been tested out, starting with synthetic models via well log data

and finally map models. It has shown, for synthetic models, the importance of being careful

when defining the noise variance of the input models. A too low noise variance may lead to

bimodal MLH distributions. The confirmation of the feasibility of the method comes from the

well logs. The Bayesian inversion works for the maps, but the inversion results and modeling

results have some improvements. With the models provided, it is not possible for the maps to

get small property and model misfits at the same time. Therefore, improvements of the input

models of Rv and Vp , and the forward model have to be done. The question is still, if FWI one

day will get the resolution required to achieve good enough inversion results. The improvement

of the forward modeling is a much easier task, and should not be a problem to improve. If in-

troducing clay in the forward modeling, this will probably improve it a lot. There will still be

work to do when it comes to tuning of the parameters used in the Han-Gassmann model and

Archie/Waxman-Smits equations. Even a clay free rock-physics model like Archie equation, has

shown valuable results. Based on this thesis, it seems like that FWI has the potential to fit into

this joint inversion workflow. The question is, will FWI be able to substitute AVO in the future,

lets say within 10 years time? This is our prediction, namely that it would be a good candidate

to do so, and there will be exciting to see what the future will bring.
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Appendix A

Rock-physics modeling

A.1 Forward modeling parameters

Table A.1: Tuning parameters from well logs.

Rw [Ωm] Kw [Pa] ρg
£
g/cm3

¤
ρw
£
g/cm3

¤
0.06 2.93e9 150.5 1061

Table A.2: Parameters in the forward modeling not being tuned from well logs.

Parameter Value
a [-] 1
n [-] 2.0
m [-] 1.8
β [-] 0.6

Koi l [Pa] 1.2e9
ρoi l

£
g/cm3

¤
800

g
£
m/s2

¤
9.82

ρav g
£
g/cm3

¤
2300

Tg [°C/m] 38e-3
Kg [Pa] 0.83e9

ρma
£
g/cm3

¤
2640

Kma [Pa] 38e9

92
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A.2 Forward model calibration and high frequency well logs

Figure A.1: Well logs of ρ, Vp and log Rt for well 7219/9-1T2. Brine = blue, virgin = red and model
= black.

Figure A.2: Well logs of ρ, Vp and log Rt for well 7220/7-1. Brine = blue, virgin = red and model =
black.
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Figure A.3: Well logs of ρ, Vp and log Rt for well 7220/8-1. Brine = blue, virgin = red and model =
black.

Figure A.4: Regular blocked well logs of ρ, Vp and log Rt for well 7220/8-1. Brine=blue, vir-
gin=red and model=black.
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Figure A.5: Shear modulus for the different wells for the Stø Fm. The green model curve is the
temperature dependent dry shear modulus.

Figure A.6: Shear modulus for the different wells for the Nordmela Fm. The green model curve
is the temperature dependent dry shear modulus.
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Figure A.7: Measured velocities vs porosity plotted as blue (Vcl >0.3) and red (Vcl <0.3).

Figure A.8: Measured velocities vs porosity plotted as the formation contributions.

Figure A.9: Modeled velocities vs porosity plotted as the formation contributions.
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Figure A.10: Well logs for well 7219/9-1T2.
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Figure A.11: Well logs for well 7220/7-1.
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Figure A.12: Well logs for well 7220/8-1.



Appendix B

Analysis of velocity models

Figure B.1: Tomography interval velocity model (calibrated to the wells).

100
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Figure B.2: FWI velocity model (not calibrated to the wells).
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Figure B.3: Comparison of the velocities from tomography (blue), FWI (red) and the well log
(black) for the studied wells.



Appendix C

Matlab code

C.1 Synthetic models

C.1.1 Synthetic model

Creates the synthetic model used in the inversion.

1 clear all; % Delete everything

2 close all; % Close everything

3

4 dx = 25; % Horizontal increment length [m]

5 dz = 12.5; % Vertical increment length [m]

6 x = 0:dx:800; % Offset [m]

7 z = 800:dz:1600; % Depth [m]

8 nx = length(x); % Number of offset increments

9 nz = length(z); % Number of depth increments

10 phi = 0.12*ones(nz,nx); % Phi outside the reservoir

11 phi(30:38,:) = 0.2; % Phi in the reservoir

12 Sw = ones(nz,nx); % Sw outside the reservoir

13 Sw(30:38,:) = 0.2; % Sw in the reservoir

14 SatPor.dx = dx; % dx struct

15 SatPor.dz = dz; % dz struct

16 SatPor.nx = nx; % nx struct

17 SatPor.nz = nz; % nz struct

103
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18 SatPor.x = x; % x struct

19 SatPor.z = z; % z struct

20 SatPor.phi = phi; % phi struct

21 SatPor.Sw = Sw; % Sw struct

22

23 save ('test.mat', 'SatPor'); % Save as .mat file

C.1.2 Forward modeling

Forward modeling of synthetic models.

1 function [logRv, Vp] = Forward_modeling_synt(S_water, phi)

2 % Forward model using Archie and Gassmann models, calculating Vp and

3 % logRv. Valid for clean sandstone.

4 %

5 % Input:

6 % S_water: Water saturation

7 % phi: Porosity

8 %

9 % Output:

10 % Vp: P−wave velocity

11 % logRv: Vertical resistivity

12

13 logRv=0; Vp=0; % Initial values

14

15 % Archie parameters (fixed)

16 a = 1.0; % Turtousity factor

17 R_water = 0.06; % Water resistivity

18 sig_water = 1/R_water; % Water conductivity

19 n = 2.0; % Saturation exponent

20 m = 1.8; % Porosity exponent

21

22 % Gassmann parameters (fixed)

23 K_matrix = 38e9; % Mineral bulk modulus sandstone

24 K_oil = 1.20e9; % Bulk modulus oil
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25 K_water = 2.93e9; % Bulk modulus water

26 rho_matrix = 2640; % Mineral density sandstone

27 rho_water = 1061; % Water density

28 rho_oil = 800; % Oil density

29

30 % Independent of fluid:

31 mu_dry = 2.88e9; % Corresponding to Vs=1200 and rho=2000

32 K_gas = 0.83e9; % Just a guess

33 rho_gas = 150.5; % Gas density

34 B = 0.80; % Biot coefficient

35

36 K_dry = (1−B)*K_matrix; % Dry rock sandstone

37

38 for k=1:length(S_water)

39 S_HC(k) = 1.0*(1−S_water(k)); % HC saturation

40

41 % Compute Archie

42 R_sat(k) = (a*R_water)/(phi(k)^m*S_water(k)^n); % True formation ...

resistivity

43 logRv(k) = log10(R_sat(k)); % log(R_sat)

44

45 % Compute Gassmann

46 rho_fluid_gas = S_water(k)*rho_water + S_HC(k)*rho_gas; % Density water ...

and gas

47 rho_fluid_oil = S_water(k)*rho_water + S_HC(k)*rho_oil; % Density water ...

and oil

48 rho_sat_gas(k) = (1−phi(k))*rho_matrix + phi(k)*rho_fluid_gas; % Bulk ...

density gas

49 rho_sat_oil(k) = (1−phi(k))*rho_matrix + phi(k)*rho_fluid_oil; % Bulk ...

density oil

50 KI_fluid_gas = S_water(k)/K_water + S_HC(k)/K_gas; % Bulk modulus fluid ...

mixture

51 KI_fluid_oil = S_water(k)/K_water + S_HC(k)/K_oil; % Bulk modulus fluid ...

mixture

52 K_sat_gas = K_dry + B*B/((B−phi(k))/K_matrix + phi(k)*KI_fluid_gas); % ...

Bulk modulus gas
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53 K_sat_oil = K_dry + B*B/((B−phi(k))/K_matrix + phi(k)*KI_fluid_oil); % ...

Bulk modulus oil

54 Vp_sat_gas(k) = sqrt((K_sat_gas + (4/3)*mu_dry)/rho_sat_gas(k)); % Vp ...

for gas

55 Vp_sat_oil(k) = sqrt((K_sat_oil + (4/3)*mu_dry)/rho_sat_oil(k)); % Vp ...

for oil

56 Vp(k) = Vp_sat_oil(k); % P−wave velocity for oil used as input for ...

inversion

57 Vs_sat_gas(k) = sqrt((mu_dry)/rho_sat_gas(k)); % Vs for gas

58 Vs_sat_oil(k) = sqrt((mu_dry)/rho_sat_oil(k)); % Vs for oil

59 VpVs_sat_gas(k) = Vp_sat_gas(k)/Vs_sat_gas(k); % Vp/Vs ratio for gas

60 VpVs_sat_oil(k) = Vp_sat_oil(k)/Vs_sat_oil(k); % Vp/Vs ratio for oil

61 IP_sat_gas(k) = rho_sat_gas(k)*Vp_sat_gas(k); % Acoustic impedance for gas

62 IP_sat_oil(k) = rho_sat_oil(k)*Vp_sat_oil(k); % Acoustic impedance for oil

63 end % for

64 end % function

C.1.3 Inversion

Inversion of the synthetic models.

1 % Synthetic case:

2 % Calculating water saturation (Sw) and porosity (phi) from resistivity ...

(Rv) and P−wave velocity (Vp)

3

4 clear all; % Delete everything

5 close all; % Close everything

6

7 %−−−−−−−−−−−−−−−−−−−
8 % Load the inputs

9 %−−−−−−−−−−−−−−−−−−−
10

11 load test % load the model

12

13 % Add 5% noise to Sw
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14 noisesigma_Sw = 0.05*SatPor.Sw;

15 SatPor.Sw = SatPor.Sw + noisesigma_Sw.*randn(size(SatPor.Sw));

16 SatPor.Sw(SatPor.Sw>1) = 1;

17 SatPor.Sw(SatPor.Sw<0.01) = 0.01;

18

19 % Add 5% noise to phi

20 noisesigma_phi = 0.05*SatPor.phi;

21 SatPor.phi = SatPor.phi + noisesigma_phi.*randn(size(SatPor.phi));

22 SatPor.phi(SatPor.phi>1) = 1;

23 SatPor.phi(SatPor.phi<0.01) = 0.01;

24

25 % Calculate logRv and Vp

26 for iz = 1:SatPor.nz

27 [SatPor.logRv(iz,:), SatPor.Vp(iz,:)] = ...

Forward_modeling_synt(SatPor.Sw(iz,:), SatPor.phi(iz,:));

28 end % for

29

30 %−−−−−−−−−−−
31 % Tests

32 %−−−−−−−−−−−
33

34 % Relevant for joint inversion

35 % ktest = 1; % Use logRv only

36 % ktest = 2; % Use Vp only

37 ktest = 3; % Use Vp and logRv (all models)

38

39 disp(strcat('ktest=',num2str(ktest))); % Write to the screen which test

40

41 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 % Make one mesh for Sw and one for phi

43 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44

45 Swmin = 0.01; % Minimum Sw

46 Swmax = 1; % Maximum Sw

47 MC.nSw = 100; % Number of elements for Sw

48 MC.dSw = (Swmax−Swmin)/(MC.nSw−1); % Increment length
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49 MC.Sw = [Swmin:MC.dSw:Swmin+(MC.nSw−1)*MC.dSw]'; % Sw

50 phimin = 0.01; % Minimum phi

51 phimax = 0.5; % Maximum phi

52 MC.nphi = 50; % Number of elements for phi

53 MC.dphi = (phimax−phimin)/(MC.nphi−1); % Increment length

54 MC.phi = [phimin:MC.dphi:phimin+(MC.nphi−1)*MC.dphi]'; % Phi

55

56 % Make grid of all model parameter combinations (not only pairwise)

57 [AA,BB] = meshgrid(MC.Sw,MC.phi);

58 aa = reshape(AA,size(AA,1)*size(AA,2),1); % Reshape grid into vector

59 bb = reshape(BB,size(BB,1)*size(BB,2),1);

60 MC.Sw = aa;

61 MC.phi = bb;

62

63 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
64 % Simulate once and for all

65 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
66

67 [ MC.logRv, MC.Vp] = Forward_modeling_synt(MC.Sw, MC.phi);

68

69 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 % Prior for Sw

71 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72

73 PRI.muSw = 0.7; % Prior mean for Sw

74 PRI.stdSw = 0.5; % Prior std.dev for Sw

75 PRI.pdfSw = mvnpdf(MC.Sw,PRI.muSw,PRI.stdSw^2); % Multivariate normal ...

probability density function for Sw

76

77 %−−−−−−−−−−−−−−−−−−−−−−−−−−
78 % Prior for phi

79 %−−−−−−−−−−−−−−−−−−−−−−−−−−
80

81 PRI.muphi = 0.2; % Prior mean for phi

82 PRI.stdphi = 0.3; % Prior std.dev for phi
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83 PRI.pdfphi = mvnpdf(MC.phi,PRI.muphi,PRI.stdphi^2); % Multivariate normal ...

probability density function for phi

84

85 % Reshape pdf back to grid shape

86 PRI.pdfSw = reshape(PRI.pdfSw,size(AA,1),size(AA,2));

87 PRI.pdfphi = reshape(PRI.pdfphi,size(AA,1),size(AA,2));

88

89 %−−−−−−−−−−−−−−−−−−−−−−−−
90 % Error distributions

91 %−−−−−−−−−−−−−−−−−−−−−−−−
92

93 muErrlogRv = 0; % Mean error for logRv

94 muErrVp = 0; % Mean error for Vp

95 stdErrlogRv = 0.2; % Standard deviation logRv

96 stdErrVp = 50; % Standard deviation Vp

97 MLH.stdErrM1 = stdErrlogRv;

98 MLH.stdErrM2 = stdErrVp;

99

100 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
101 % Compute likelihoods and posteriors

102 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
103

104 % Output struct (Multi Geophysical Inversion):

105 MGI.nx = SatPor.nx; MGI.nz = SatPor.nz; % Puts input struct (nx, nz, x and ...

z) into output struct

106 MGI.x = SatPor.x; MGI.z = SatPor.z;

107 MGI.muSw = zeros(MGI.nz,MGI.nx); % Mean of Sw initialised with zeros

108 MGI.mapSw = zeros(MGI.nz,MGI.nx); % Map of Sw initialised with zeros

109 MGI.sigSw = zeros(MGI.nz,MGI.nx); % Std.dev of Sw initialised with zeros

110 MGI.label = 'Water saturation'; % Label output struct

111 MGI.muphi = zeros(MGI.nz,MGI.nx);

112 MGI.mapphi = zeros(MGI.nz,MGI.nx);

113 MGI.sigphi = zeros(MGI.nz,MGI.nx);

114 MGI.label = 'Porosity'; % Label output struct

115

116 % Number of data and model types:
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117 DD.nd = 2; % New mesh DD

118

119 % Outer loop over depth

120 for kk = 1:SatPor.nz

121 DD.d1 = SatPor.logRv(kk,:); % logRv

122 DD.d2 = SatPor.Vp(kk,:); % Vp

123 DD.n = SatPor.nx;

124

125 for jj=1:DD.n

126 % Calculate maximum likelihoods

127 MLH.pdfM1 = mvnpdf((MC.logRv)'−DD.d1(jj),0,MLH.stdErrM1^2); % logRv

128 MLH.pdfM2 = mvnpdf((MC.Vp)'−DD.d2(jj),0,MLH.stdErrM2^2); % Vp

129

130 if ktest == 1 % logRv

131 MLH.pdfM1 = reshape(MLH.pdfM1,size(AA,1),size(AA,2));

132 MLH.pdfAll = MLH.pdfM1;

133 elseif ktest == 2 % Vp

134 MLH.pdfM2 = reshape(MLH.pdfM2,size(AA,1),size(AA,2));

135 MLH.pdfAll = MLH.pdfM2;

136 elseif ktest == 3 % logRv and Vp

137 MLH.pdfM1 = reshape(MLH.pdfM1,size(AA,1),size(AA,2));

138 MLH.pdfM2 = reshape(MLH.pdfM2,size(AA,1),size(AA,2));

139 MLH.pdfAll = MLH.pdfM1.*MLH.pdfM2;

140 end % if

141

142 % Normalize MLH

143 rn = MC.dSw*MC.dphi*sum(sum(MLH.pdfAll));

144 MLH.pdfAll = MLH.pdfAll/rn;

145

146 % Posterior distribution

147 POST.pdf = PRI.pdfSw.*PRI.pdfphi.*MLH.pdfAll;

148 rn = MC.dSw*MC.dphi*sum(sum(POST.pdf));

149 POST.pdf = POST.pdf/rn;

150

151 % Compute mean, map and variance

152 POST.muSw(jj) = sum(sum(AA.*POST.pdf))*MC.dSw*MC.dphi; % Mean for Sw
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153 POST.muphi(jj) = sum(sum(BB.*POST.pdf))*MC.dSw*MC.dphi; % Mean for phi

154 maxVal = max(max(POST.pdf)); % MAP

155 [indX,indY] = find(POST.pdf == maxVal);

156 POST.mapSw(jj) = AA(indX,indY);

157 POST.mapphi(jj) = BB(indX,indY);

158 POST.varSw(jj) = ...

sum(sum(((AA−POST.muSw(jj)).^2).*POST.pdf))*MC.dSw*MC.dphi; % ...

Variance for Sw

159 POST.varphi(jj) = ...

sum(sum(((BB−POST.muphi(jj)).^2).*POST.pdf))*MC.dSw*MC.dphi; % ...

Variance for phi

160 POST.stdSw(jj) = sqrt(POST.varSw(jj)); % Convert to standard deviation ...

for Sw

161 POST.stdphi(jj) = sqrt(POST.varphi(jj)); % Convert to standard ...

deviation for phi

162

163 %jjc = 21; kkc = 17; jf0 = 600; % Choose a point outside the reservoir

164 jjc = 21; kkc = 34; jf0 = 700; % Choose a point in the reservoir

165 if(jj==jjc & kk==kkc)

166 MGI.pdfPostSw = sum(POST.pdf,1)*MC.dphi;

167 MGI.pdfPriSw = sum(PRI.pdfSw,1)*MC.dphi;

168 MGI.pdfPostphi = sum(POST.pdf,2)*MC.dSw;

169 MGI.pdfPriphi = sum(PRI.pdfphi,2)*MC.dSw;

170 MGI.pdfMLHm1_Sw = sum(MLH.pdfM1,1)*MC.dphi;

171 MGI.pdfMLHm2_Sw = sum(MLH.pdfM2,1)*MC.dphi;

172 MGI.pdfMLHm1_phi = sum(MLH.pdfM1,2)*MC.dSw;

173 MGI.pdfMLHm2_phi = sum(MLH.pdfM2,2)*MC.dSw;

174 MGI.pdfMLH_Sw = sum(MLH.pdfAll,1)*MC.dphi;

175 MGI.pdfMLH_phi = sum(MLH.pdfAll,2)*MC.dSw;

176 MGI.pdfPOST = POST.pdf;

177 MGI.pdfMLHm1 = MLH.pdfM1;

178 MGI.pdfMLHm2 = MLH.pdfM2;

179 MGI.pdfMLH = MLH.pdfAll;

180 MGI.pdfPri = PRI.pdfSw.*PRI.pdfphi;

181 MGI.xc = MGI.x(jjc);

182 MGI.zc = MGI.z(kkc);
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183 MGI.Swtrue = SatPor.Sw(kkc,jjc);

184 MGI.phitrue = SatPor.phi(kkc,jjc);

185 end % if

186 end % for

187

188 % Some output parameters

189 MGI.muSw(kk,:) = POST.muSw;

190 MGI.mapSw(kk,:) = POST.mapSw;

191 MGI.stdSw(kk,:) = POST.stdSw;

192 MGI.muphi(kk,:) = POST.muphi;

193 MGI.mapphi(kk,:) = POST.mapphi;

194 MGI.stdphi(kk,:) = POST.stdphi;

195 end % for

C.2 Blocking of well logs

Function for blocking of well logs.

1 function [ data2 ] = blockLog( z1, data1, z2 )

2 %

3 % data2 = blockLog( z1, data1, z2 )

4 %

5 % Purpose: Block a log curve

6 %

7 % Input:

8 % z1 : Input log sample depthw

9 % data1: Input log sample values

10 % z2 : Output blocked log sample depthw

11 %

12 % Output:

13 % data2: Output blocked log sample values

14

15 %−−− Allocate and initiate:

16 data2 = nan(size(z2));
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17

18 %−−− First output sample:

19 jj=1;

20 zfw = (z2(jj+1)+z2(jj))/2;

21 ind = find( z1≤zfw );

22 rwrk = data1(ind);

23 ind2 = find(¬isnan(rwrk));
24 data2(jj) = mean(rwrk(ind2));

25

26 %−−− Loop over 2 to nz−1:
27 for jj=2:length(z2)−1
28 zbw = (z2(jj)+z2(jj−1))/2;
29 zfw = (z2(jj+1)+z2(jj))/2;

30 ind = find( z1>zbw & z1≤zfw );

31 rwrk = data1(ind);

32 ind2 = find(¬isnan(rwrk));
33 data2(jj) = mean(rwrk(ind2));

34 end

35

36 %−−− Last output sample:

37 jj=length(z2);

38 zbw = (z2(jj)+z2(jj−1))/2;
39 ind = find( z1>zbw );

40 rwrk = data1(ind);

41 ind2 = find(¬isnan(rwrk));
42 data2(jj) = mean(rwrk(ind2));
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C.3 Rock-physics calibration

Rock-physics calibration for the studied wells.

1 % Try to combine Han model with Gassmann fluid substitution

2 % Calibration to Skrugard, Havis and 7219/9−1T2
3

4 clear all; % Delete everything

5 close all; % Close everything

6

7 % Real well logs from .mat files

8 load Wells_Lasfiles

9

10 dzBlock = 25; % Block length [m]

11 kblock = 1; % Block regular

12 %kblock = 2; % Block averaged on formations

13

14 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 % Get some more log curves

16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17

18 jj=1; % 7219/9−1T2 (old dry well)

19 WL(jj).zsf = 356; % Water depth

20 WL(jj).elev = 23; % Kelly bushing

21 WL(jj).tvdss = WR(jj).wlog.curves(:,2); % True Vertical Depth measured ...

from Mean Sea Level

22 WL(jj).lfp_rhob_b = 1e3*WR(jj).wlog.curves(:,75); % rho bulk brine

23 WL(jj).lfp_vp_b = WR(jj).wlog.curves(:,149); % vp brine

24 WL(jj).lfp_vs_b = WR(jj).wlog.curves(:,167); % vs brine

25

26 jj=2; % 7220/7−1 (Havis)

27 WL(jj).zsf = 385; % Water depth

28 WL(jj).elev = 40; % Kelly bushing

29 WL(jj).tvdss = WR(jj).wlog.curves(:,182); % True Vertical Depth measured ...

from Mean Sea Level
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30 WL(jj).lfp_rhob_b = 1e3*WR(jj).wlog.curves(:,75); % rho bulk brine

31 WL(jj).lfp_vp_b = WR(jj).wlog.curves(:,149); % vp brine

32 WL(jj).lfp_vs_b = WR(jj).wlog.curves(:,167); % vs brine

33

34 jj=3; % 7220/8−1 (Skrugard)

35 WL(jj).zsf = 373; % Water depth

36 WL(jj).elev = 23; % Kelly bushing

37 WL(jj).tvdss = WR(jj).wlog.curves(:,2); % True Vertical Depth measured ...

from Mean Sea Level

38 WL(jj).lfp_rhob_b = 1e3*WR(jj).wlog.curves(:,71); % rho bulk brine

39 WL(jj).lfp_vp_b = WR(jj).wlog.curves(:,145); % vp brine

40 WL(jj).lfp_vs_b = WR(jj).wlog.curves(:,163); % vs brine

41

42 %−−−−−−−−−−−−−−−−−−−
43 % Some well tops

44 %−−−−−−−−−−−−−−−−−−−
45

46 jj = 1; % 7219/9−1T2 (old dry well) (Measured depth (MD))

47 WL(jj).Tops.tvd = [483, 1467, 1893, 1951, 2062, 2206, 2250] − WL(jj).elev;

48 WL(jj).Tops.name = {'Top Torsk','Top Kolmule','Top Hekkingen','Top ...

S t ','Top Nordmela','Top Tub en','Top Fruholmen'};

49

50 jj = 2; % Havis (True vertical depth (TVD))

51 WL(jj).Tops.tvd = [445, 1275, 1700, 1741, 1818, 1983, 2090];

52 WL(jj).Tops.name = {'Top Torsk','Top Kolmule','Top Hekkingen','Top ...

S t ','Top Nordmela','Top Tub en','Top Fruholmen'};

53

54 jj = 3; % Skrugard (Measured depth (MD))

55 WL(jj).Tops.tvd = [455, 1013, 1252, 1275, 1353, 1510, 1628] − WL(jj).elev;

56 WL(jj).Tops.name = {'Top Torsk','Top Kolmule','Top Fuglen','Top S t ','Top ...

Nordmela','Top Tub en','Top Fruholmen'};

57

58 for jj=1:length(WL)

59 WL(jj).lfp_logrt = log10(WL(jj).lfp_rt); % logRt

60 end

61
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62 %−−−−−−−−−−−−−−−−−−−−−
63 % Block more logs

64 %−−−−−−−−−−−−−−−−−−−−−
65

66 for jj=1:length(WL)

67 if (kblock==1)

68 WB(jj).tvd = 1000:dzBlock:2200; % Regular sampling

69 elseif (kblock==2)

70 WB(jj).tvd = WL(jj).Tops.tvd + [diff(WL(jj).Tops.tvd),0]/2; % ...

Average over formations

71 end

72

73 WB(jj).depth = WB(jj).tvd; % Depth

74 WB(jj).zsf = WL(jj).zsf; % Water depth

75 WB(jj).lfp_phit = blockLog(WL(jj).tvd,WL(jj).lfp_phit,WB(jj).tvd); % ...

Total porosity

76 WB(jj).lfp_sgt = blockLog(WL(jj).tvd,WL(jj).lfp_sgt,WB(jj).tvd); % Gas ...

saturation total

77 WB(jj).lfp_sot = blockLog(WL(jj).tvd,WL(jj).lfp_sot,WB(jj).tvd); % Oil ...

saturation total

78 WB(jj).lfp_swt = 1 − WB(jj).lfp_sgt − WB(jj).lfp_sot; % Water ...

saturation total

79 WB(jj).lfp_vp_v = blockLog(WL(jj).tvd,WL(jj).lfp_vp_v,WB(jj).tvd); % ...

P−wave velocity virgin

80 WB(jj).lfp_vs_v = blockLog(WL(jj).tvd,WL(jj).lfp_vs_v,WB(jj).tvd); % ...

S−wave velocity virgin

81 WB(jj).lfp_rhob_v = blockLog(WL(jj).tvd,WL(jj).lfp_rhob_v,WB(jj).tvd); ...

% Bulk density virgin

82 WB(jj).lfp_vp_b = blockLog(WL(jj).tvd,WL(jj).lfp_vp_b,WB(jj).tvd); % ...

P−wave velocity brine

83 WB(jj).lfp_vs_b = blockLog(WL(jj).tvd,WL(jj).lfp_vs_b,WB(jj).tvd); % ...

S−wave velocity brine

84 WB(jj).lfp_rhob_b = blockLog(WL(jj).tvd,WL(jj).lfp_rhob_b,WB(jj).tvd); ...

% Bulk density brine

85 WB(jj).lfp_logrt = blockLog(WL(jj).tvd,WL(jj).lfp_logrt,WB(jj).tvd); % ...

log true resistivity
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86 WB(jj).lfp_rt = blockLog(WL(jj).tvd,WL(jj).lfp_rt,WB(jj).tvd); % True ...

resistivity

87 WB(jj).vcl = blockLog(WL(jj).tvd,WL(jj).vcl,WB(jj).tvd); % Clay volume

88 WB(jj).Tops = WL(jj).Tops; % Well tops

89 WB(jj).name = WL(jj).name; % Well names

90

91 % Remove the nans

92 ind = find(isnan(WB(jj).lfp_vp_v)); WB(jj).lfp_vp_v(ind) = 6000;

93 ind = find(isnan(WB(jj).lfp_rhob_v)); WB(jj).lfp_rhob_v(ind) = 3000;

94 ind = find(isnan(WB(jj).lfp_rt)); WB(jj).lfp_rt(ind) = 1;

95 ind = find(isnan(WB(jj).lfp_logrt)); WB(jj).lfp_logrt(ind) = 0;

96 end

97

98 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
99 % Han−Gassmann−Archie model

100 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
101

102 for jj=1:length(WL)

103 Sg = WL(jj).lfp_sgt; So = WL(jj).lfp_sot; % Virgin case

104 %So = zeros(size(WL(jj).lfp_sot)); Sg = zeros(size(WL(jj).lfp_sot)); % ...

Brine case

105 cec = zeros(size(WL(jj).vcl)); % Cation exchange capacity

106 zzz = WL(jj).tvd−WL(jj).zsf; % Depth below seabed

107 [ WL(jj).synt_logrt, WL(jj).synt_vp, WL(jj).synt_vs, WL(jj).synt_rho] = ...

RockPhysSeisEMsimp(So,Sg,WL(jj).lfp_phit,WL(jj).vcl,cec,zzz);

108

109 Sg = WB(jj).lfp_sgt; So = WB(jj).lfp_sot; % Virgin case

110 %So = zeros(size(WB(jj).lfp_sot)); Sg = zeros(size(WB(jj).lfp_sot)); % ...

Brine case

111 cec = zeros(size(WB(jj).vcl)); % Cation exchange capacity

112 zz2 = WB(jj).tvd−WB(jj).zsf; % Depth below seabed

113 [ WB(jj).synt_logrt, WB(jj).synt_vp, WB(jj).synt_vs, WB(jj).synt_rho] = ...

RockPhysSeisEMsimp(So,Sg,WB(jj).lfp_phit,WB(jj).vcl,cec,zz2);

114 end % for

115

116 %−−−−−−−−−−−−−−
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117 % Save logs

118 %−−−−−−−−−−−−−−
119

120 save Wells_WithAllLogs WL

121 if kblock == 1

122 save Wells_Blocked_Regular WB

123 elseif kblock == 2

124 save Wells_Blocked_Formations WB

125 end

C.4 Well log data

C.4.1 Inversion of well logs

Inversion of the well logs.

1 % Inversion of well logs:

2 % Calculating Sw and phi from logRv, Vp and rho

3

4 clear all; % Delete everything

5 close all; % Close everything

6

7 %−−−−−−−−−−−−−−−−−−−−
8 % Load the inputs

9 %−−−−−−−−−−−−−−−−−−−−
10

11 kblock = 1; % Block regular

12 %kblock = 2; % Block averaged on formations

13

14 if kblock == 1 % Block regular

15 load Wells_Blocked_Regular

16 elseif kblock == 2 % Block averaged on formations

17 load Wells_Blocked_Formations

18 end % if
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19

20 %−−−−−−−−−
21 % Tests

22 %−−−−−−−−−
23

24 % Relevant for joint inversion

25 % ktest = 1; % Use Rv only

26 % ktest = 2; % Use Vp only

27 %ktest = 3; % Use Vp and Rv

28 ktest = 4; % Use Vp, Rv and rho

29

30 UP.ktest = ktest; % Put ktest into struct

31 disp(strcat('ktest=',num2str(ktest))); % Write to the screen which test

32

33 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 % Prior for water saturation

35 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36

37 PRI.muSw = 0.9; % Prior mean for Sw

38 PRI.stdSw = 0.3; % Prior std.dev for Sw

39

40 %−−−−−−−−−−−−−−−−−−−−−−−
41 % Prior for porosity

42 %−−−−−−−−−−−−−−−−−−−−−−−
43

44 PRI.muphi = 0.2; % Prior mean for phi

45 PRI.stdphi = 0.3; % Prior std.dev for phi

46

47 %−−−−−−−−−−−−−−−−−−−−−−−
48 % Error distributions

49 %−−−−−−−−−−−−−−−−−−−−−−−
50

51 MC.muErrlogRv = 0; % Mean error logRv

52 MC.muErrVp = 0; % Mean error Vp

53 MC.muErrRho = 0; % Mean error rho

54 MC.sigErrlogRv = 0.5; % Standard deviation logRv



APPENDIX C. MATLAB CODE 120

55 MC.sigErrVp = 150; % Standard deviation Vp

56 MC.sigErrRho = 50; % Standard deviation rho

57

58 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59 % Compute likelihoods and posteriors

60 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61

62 for kk=1:length(WB)

63 ind = find(isnan(WB(kk).vcl)); WB(kk).vcl(ind) = 0.5; % Remove the NaN's

64 disp(['Analyzing well ',WB(kk).name]); % Write to screen which well is ...

being analyzed

65 dz = WB(kk).tvd(2) − WB(kk).tvd(1); % Depth increment

66

67 % Number of data and model types

68 DD.vcl = WB(kk).vcl; % Take clay content into account

69 DD.vcl = min(DD.vcl,0.6); % Max Vcl is set to 0.6

70 DD.z = WB(kk).tvd−WB(kk).zsf; % Calculate the depth from the seabed

71 DD.n = length(WB(kk).tvd); % New mesh DD

72

73 if ktest==1

74 DD.d1 = log10(WB(kk).lfp_rt); % logRv

75 elseif ktest==2

76 DD.d2 = WB(kk).lfp_vp_v; % Vp

77 elseif ktest==3

78 DD.d1 = log10(WB(kk).lfp_rt); % logRv

79 DD.d2 = WB(kk).lfp_vp_v; % Vp

80 elseif ktest==4

81 DD.d1 = log10(WB(kk).lfp_rt); % logRv

82 DD.d2 = WB(kk).lfp_vp_v; % Vp

83 DD.d4 = WB(kk).lfp_rhob_v; % rho

84 end % if

85

86 disp('%−− Bayesian calculations') % Write to screen

87 [WP(kk).POST] = inversion(DD,MC,PRI,UP); % Posterior distributions ...

(inversion itself)

88
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89 % Input to the rock physics model

90 Sw = WP(kk).POST.mapSw;

91 So = 0.5*(1−WP(kk).POST.mapSw); % 50% of HC is oil

92 Sg = 0.5*(1−WP(kk).POST.mapSw); % 50% of HC is gas

93 phi = WP(kk).POST.mapphi;

94 vcl = DD.vcl;

95 CEC = zeros(size(phi));

96

97 % Do the forward modeling

98 [ WP(kk).synt_logrt, WP(kk).synt_vp, WP(kk).synt_vs, WP(kk).synt_rho] = ...

RockPhysSeisEMsimp(So,Sg,phi,vcl,CEC,DD.z); % Calculate the models ...

of log resistivity, vp and rho.

99 end % for

100 disp('%−− Finished Bayesian calculations') % Write to screen

C.4.2 Forward modeling well logs and maps

Forward modeling for well logs and maps.

1 function [logRv, vp, vs, rho] = RockPhysSeisEMsimp(So,Sg,phi,vcl,CEC,zzz)

2 % Simplified seismic part, using combined Han model and

3 % Gassmann fluid substitution.

4

5 % Inputs: arrays should be same size or a scalar

6 % So : Oil saturation

7 % Sg : Gas saturation

8 % phi : Porosity

9 % vcl : Clay fraction

10 % CEC : Cation exchange capacity

11 % zzz : Depth below seabed

12

13 % Outputs:

14 % logRv : Log10(Resistivity)

15 % Vp : P−wave velocity

16 % Vs : S−wave velocity
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17 % rho : Density

18

19 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 % Set some fixed parameters for mineral sand fluids

21 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22

23 % Archie parameters (fixed)

24 a = 1; % Turtousity factor

25 R_water = 0.06; % Water resistivity, from LFP_RW

26 n = 2.0; % Saturation exponent

27 m = 1.8; % Porosity exponent

28

29 % Waxman−Smits parameters (fixed)

30 %R_water = 0.30; % Water resistivity

31 sig_water = 1/R_water; % Water conductivity

32 B_waxman = 4.6*(1−0.6*exp((−sig_water)/1.3)); % Equivalent conductance per ...

cation

33 rho_0 = 2700; % Mineral grain density

34 %CEC = 30; % Cation exchange capacity

35

36 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 % Fluid with partial/mixed saturation

38 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39

40 Sw = 1 − So − Sg; % Water saturation

41 Sw = max(Sw,0.001); % Make sure we dont divide by zero in Archie's law

42

43 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44 % Archie equation

45 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46

47 R_sat = a*R_water./(phi.^m.*Sw.^n); % Resistivity saturated rock

48 logRv = log10(R_sat); % Vertical resistivity (log)

49

50 %−−−−−−−−−−−−−−−−−
51 % Waxman−Smits
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52 %−−−−−−−−−−−−−−−−−
53

54 %F = a*phi.^(−m); % Formation factor

55 %Qv = (CEC.*(1−phi).*rho_0)./phi; % Charge per unit pore volume ...

(indicative of shaliness of a formation)

56 %sig = (1./F).*(sig_water + (B_waxman.*Qv)); % Conductivity

57 %logRv = log10(1./sig); % Log vertical resistivity

58

59 %−−−−−−−−−−−−−−−−−−−−−−−−
60 % Gassmann parameters

61 %−−−−−−−−−−−−−−−−−−−−−−−−
62

63 % Matrix (quartz)

64 rhoQz = 2640; % Density quartz.

65 KQz = 38e9; % Bulk modulus quartz.

66 muQz = 44e9; % Shear modulus quartz

67 KCl = 20.9e9; % Bulk modulus clay

68 muCl = 6.85e9; % Shear modulus clay

69

70 Biot = 0.60; % Biot coefficient (Quartzitic sandstone)

71 pscl = 1.00;

72 sscl = 0.45;

73 rho_matrix = rhoQz; % Density matrix

74 mu_matrix = muQz; % Shear modulus matrix

75 K_matrix = KQz; % Bulk modulus matrix

76

77 % Gassmann parameters (fluids)

78 K_gas = 0.83e9; % Tuning

79 K_oil = 1.200e9; % Just guessing

80 K_water = 2.93e9; % From LFP_KFLW

81 rho_gas = 150.5; % Gas density from LFP_RHOG

82 rho_oil = 800; % Oil density

83 rho_water = 1061; % Water density from LFP_RHOW

84

85 %−−−−−−−−−−−−−
86 % Density
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87 %−−−−−−−−−−−−−
88

89 rho_fluid = Sw.*rho_water + So.*rho_oil + Sg.*rho_gas; % Fluid density

90 rho_sat = (1−phi).*rho_matrix + phi.*rho_fluid; % Density of saturated rock

91 rho = rho_sat; % Density returned by function

92

93 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
94 % Han model for Vp and Vs (brine filled)

95 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
96

97 % Data from Han

98 sigHan = [5, 10, 20, 30, 40, 100]; % Effective stress

99 ApHan = [5.26, 5.39, 5.49, 5.55, 5.59, 5.59];

100 BpHan = [7.08, 7.08, 6.94, 6.96, 6.93, 6.93];

101 CpHan = [2.02, 2.13, 2.17, 2.18, 2.18, 2.18];

102 AsHan = [3.16, 3.29, 3.39, 3.47, 3.52, 3.52];

103 BsHan = [4.77, 4.73, 4.73, 4.84, 4.92, 4.92];

104 CsHan = [1.64, 1.74, 1.81, 1.87, 1.89, 1.89];

105

106 % Approximate effective stress

107 gz = 9.82; % Acceleration of gravity

108 rhoAvg = 2300; % Approx avg bulk density

109 nn = Biot; % Biot coefficient: 0<nn<1

110 sigEff = 1e−6*gz*(rhoAvg−nn*rho_water)*zzz; % Effective stress [MPa]

111

112 % Interpolate:

113 Ap = 1.00e3*interp1(sigHan,ApHan,sigEff);

114 Bp = 1.00e3*interp1(sigHan,BpHan,sigEff);

115 Cp = 1.00e3*interp1(sigHan,CpHan,sigEff);

116 As = 1.00e3*interp1(sigHan,AsHan,sigEff);

117 Bs = 1.00e3*interp1(sigHan,BsHan,sigEff);

118 Cs = 1.00e3*interp1(sigHan,CsHan,sigEff);

119

120 % Velocities from Han model

121 vpHan = Ap − Bp.*phi − Cp.*vcl;

122 vsHan = As − Bs.*phi − Cs.*vcl;
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123

124 % Water saturated density

125 rhoHan = (1−phi).*rho_matrix + phi.*rho_water;

126

127 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
128 % Gassmann fluid substitution around Gassmann

129 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
130

131 % Temperature effect on shear modulus

132 Tg = 38e−3; % Thermal gradient

133 aa = 18.8; % Tuning parameter

134 stemp = (1−aa./(Tg*zzz));
135 mu_dry = (1−Biot)*stemp*mu_matrix; % Shear modulus dry

136

137 % Bulk properties for brine filled rock (from Han model)

138 Ks1 = rhoHan.*(vpHan.^2 − (4/3)*vsHan.^2);

139 Kf1 = K_water;

140

141 % Bulk modulus of HC

142 Kf2 = 1./(Sg./K_gas + So./K_oil + Sw./K_water); % Uniform saturation

143 %Kf2 = Sg.*K_gas + So.*K_oil + Sw.*K_water; % Patchy saturation

144

145 % Fluid substitution

146 vs = sqrt(mu_dry./rho); % S−wave velocity

147 a1 = Ks1./(K_matrix−Ks1);
148 f1 = Kf1./(K_matrix−Kf1);
149 f2 = Kf2./(K_matrix−Kf2);
150 gg = (a1+(1./phi).*(f2−f1));
151 Ks2 = (gg./(1+gg)).*K_matrix;

152 vp = sqrt((Ks2 + (4/3)*mu_dry)./rho); % P−wave velocity

153 end % function
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C.4.3 Inversion

Inversion code for well logs and maps.

1 function [POST] = inversion(DD,MC,PRI,UP)

2 %

3 % Inversion code

4 % Bayesian inversion of Rv, Vp (and density)

5 %

6 % Input:

7 % DD: Blocked well log data

8 % MC: Error distributions

9 % PRI: Prior (mean and std.dev) for water saturation and porosity

10 % UP: Which test

11 %

12 % Output:

13 % POST: Posterior distribution

14

15 % −−−−−−−−−−−−−−−−−−−−−
16 % Water saturation

17 % −−−−−−−−−−−−−−−−−−−−−
18

19 Swmin = 0.01; % Minimum Sw

20 Swmax = 1; % Maximum Sw

21 MC.nSw = 50; % Number of elements for Sw

22 MC.dSw = (Swmax−Swmin)/(MC.nSw−1); % Increment length

23 MC.Sw = [Swmin:MC.dSw:Swmin+(MC.nSw−1)*MC.dSw]'; % Sw

24

25 % −−−−−−−−−−−−−−
26 % Porosity

27 % −−−−−−−−−−−−−−
28

29 phimin = 0.01; % Minimum phi

30 phimax = 0.5; % Maximum phi

31 MC.nphi = 50; % Number of elements for phi

32 MC.dphi = (phimax−phimin)/(MC.nphi−1); % Increment length
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33 MC.phi = [phimin:MC.dphi:phimin+(MC.nphi−1)*MC.dphi]'; % phi

34

35 % Make grid of all model parameter combinations (not only pairwise)

36 [AA,BB]=meshgrid(MC.Sw,MC.phi);

37 aa=reshape(AA,size(AA,1)*size(AA,2),1); % Make a vector

38 bb=reshape(BB,size(BB,1)*size(BB,2),1); % Make a vector

39 MC.Sw=aa;

40 MC.phi=bb;

41 MC.So = 0.5*(1−MC.Sw); % 50% oil

42 MC.Sg = 0.5*(1−MC.Sw); % 50% gas

43

44 %−−−−−−−−−−−−−−−
45 % Prior pdf

46 %−−−−−−−−−−−−−−−
47

48 PRI.pdfSw = mvnpdf(MC.Sw,PRI.muSw,PRI.stdSw^2); % Multivariate normal ...

probability density function for Sw

49 PRI.pdfphi = mvnpdf(MC.phi,PRI.muphi,PRI.stdphi^2); % Multivariate normal ...

probability density function for phi

50

51 % Reshape pdf back to grid shape

52 PRI.pdfSw = reshape(PRI.pdfSw,size(AA,1),size(AA,2));

53 PRI.pdfphi = reshape(PRI.pdfphi,size(AA,1),size(AA,2));

54

55 %−−−−−−−−−−−−−−−−−−−−−−−−−
56 % Error distributions

57 %−−−−−−−−−−−−−−−−−−−−−−−−−
58

59 MLH.stdErrM1 = MC.sigErrlogRv; % MLH mesh with std.dev of Model 1 (logRv)

60 MLH.stdErrM2 = MC.sigErrVp; % MLH mesh with std.dev of Model 2 (Vp)

61 %MLH.stdErrM4 = MC.sigErrRho; % MLH mesh with std.dev of Model 4 (density)

62

63 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
64 % Compute likelihoods and posteriors

65 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
66
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67 indCalc = []; % Create an empty vector

68 POST.mapSw = nan(size(DD.d1)); % To get the right size of the vector

69 POST.mapphi = nan(size(DD.d1)); % To get the right size of the vector

70

71 for jj = 1:DD.n

72

73 MC.vcl = 0.5*DD.vcl(jj)*ones(size(MC.phi)); % Clay content

74 %MC.CEC = zeros(size(MC.phi)); % Cation exchange capacity

75 MC.zzz = DD.z(jj)*ones(size(MC.phi)); % Depth below seabed

76

77 % Do the forward modeling

78 [ MC.m1, MC.m2, MC.m3, MC.m4 ] = ...

RockPhysSeisEMsimp(MC.So,MC.Sg,MC.phi,MC.vcl,MC.CEC,MC.zzz);

79

80 % Calculate (maximum)likelihoods

81 MLH.pdfM1 = mvnpdf((MC.m1)−DD.d1(jj),0,MLH.stdErrM1^2); % logRv

82 MLH.pdfM2 = mvnpdf((MC.m2)−DD.d2(jj),0,MLH.stdErrM2^2); % Vp

83 %MLH.pdfM4 = mvnpdf((MC.m4)−DD.d4(jj),0,MLH.stdErrM4^2); % Density

84 MLH.pdfAll = ones(size(PRI.pdfSw));

85

86 if isfield(DD,'d1')

87 MLH.pdfM1 = mvnpdf((MC.m1)−DD.d1(jj),0,MLH.stdErrM1^2); % logRv

88 MLH.pdfM1 = reshape(MLH.pdfM1,size(AA,1),size(AA,2));

89 MLH.pdfAll = MLH.pdfAll.*MLH.pdfM1;

90 end

91

92 if isfield(DD,'d2')

93 MLH.pdfM2 = mvnpdf((MC.m2)−DD.d2(jj),0,MLH.stdErrM2^2); % Vp

94 MLH.pdfM2 = reshape(MLH.pdfM2,size(AA,1),size(AA,2));

95 MLH.pdfAll = MLH.pdfAll.*MLH.pdfM2;

96 end

97

98 if isfield(DD,'d4')

99 MLH.pdfM4 = mvnpdf((MC.m4)−DD.d4(jj),0,MLH.stdErrM4^2); % Density

100 MLH.pdfM4 = reshape(MLH.pdfM4,size(AA,1),size(AA,2));

101 MLH.pdfAll = MLH.pdfAll.*MLH.pdfM4;



APPENDIX C. MATLAB CODE 129

102 end

103

104 % Normalize MLH

105 rn = MC.dSw*MC.dphi*sum(sum(MLH.pdfAll));

106 MLH.pdfAll = MLH.pdfAll/rn;

107

108 % Posterior distribution

109 POST.pdf = PRI.pdfSw.*PRI.pdfphi.*MLH.pdfAll;

110 rn = MC.dSw*MC.dphi*sum(sum(POST.pdf));

111 POST.pdf = POST.pdf/rn;

112

113 % Compute mean, map and variance

114 POST.muSw(jj) = sum(sum(AA.*POST.pdf))*MC.dSw*MC.dphi; % Mean for Sw

115 POST.muphi(jj) = sum(sum(BB.*POST.pdf))*MC.dSw*MC.dphi; % Mean for phi

116 maxVal = max(max(POST.pdf)); % MAP

117 [indX,indY] = find(POST.pdf==maxVal,1,'first');

118 if (¬isempty(indX) & ¬isempty(indY))
119 POST.mapSw(jj) = AA(indX,indY);

120 POST.mapphi(jj) = BB(indX,indY);

121 end % if

122 POST.varSw(jj) = ...

sum(sum(((AA−POST.muSw(jj)).^2).*POST.pdf))*MC.dSw*MC.dphi; % ...

Variance for Sw

123 POST.varphi(jj) = ...

sum(sum(((BB−POST.muphi(jj)).^2).*POST.pdf))*MC.dSw*MC.dphi; % ...

Variance for phi

124 POST.stdSw(jj) = sqrt(POST.varSw(jj)); % Convert to standard deviation ...

for Sw

125 POST.stdphi(jj) = sqrt(POST.varphi(jj)); % Convert to standard ...

deviation for phi

126 POST.z = DD.z;

127

128 % Choose a point in the reservoir and outside

129 %jjc = 14; % Reservoir in Skrugard

130 jjc = 9; % Outside reservoir Skrugard

131 if(jj==jjc)
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132 POST.pdfPostSw = sum(POST.pdf,1)*MC.dphi;

133 POST.pdfPriSw = sum(PRI.pdfSw,1)*MC.dphi;

134 POST.pdfPostphi = sum(POST.pdf,2)*MC.dSw;

135 POST.pdfPriphi = sum(PRI.pdfphi,2)*MC.dSw;

136 POST.pdfPri = PRI.pdfSw.*PRI.pdfphi;

137 POST.pdfMLH = MLH.pdfAll;

138 POST.pdfPOST = POST.pdf;

139 POST.Sw = MC.Sw;

140 POST.phi = MC.phi;

141 POST.zc = DD.z(jjc);

142 end % if

143 end % for

144 end % function

C.5 Map models

Inversion of the maps.

1 % Inversion maps:

2 % Calculating Sw and phi from logRv and Vp

3

4 clear all; % Delete everything

5 close all; % Close everything

6

7 load wells_las_test

8

9 % Load the input data

10 TopRealgrunnen = ...

dlmread('Z:\Students\Sondre\MapTests\Surfaces_FirstPass\Z.xyz',' '); % ...

Read the interpretation of top Realgrunnen

11 Seabed = dlmread(

12 'Z:\Students\Sondre\MapTests\Surfaces_FirstPass\seabed.xyz',' '); % Read ...

seabed

13 Rv = dlmread(
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14 'Z:\Students\Sondre\MapTests\Surfaces_ThirdPass\Rv_TRealg_200U_300D.xyz',' ...

'); % Read Rv

15 Vp = dlmread(

16 'Z:\Students\Sondre\MapTests\Surfaces_ThirdPass\FWI_TRealg_50D.xyz',' '); ...

% Read Vp FWI

17 X = Seabed(:,1); % Easting

18 Y = Seabed(:,2); % Northing

19 Z = TopRealgrunnen(:,3) − Seabed(:,3); % Burial depth

20 Rv = Rv(:,3); % Rv

21 VpX = Vp(:,1);

22 VpY = Vp(:,2);

23 indZero = find(Vp(:,3) 6=0);

24 VpInt = scatteredInterpolant(Vp(indZero,1),Vp(indZero,2),Vp(indZero,3));

25 Vp = VpInt(X,Y);

26 Vp = Vp; % Vp

27

28 %−−−−−−−−−
29 % Tests

30 %−−−−−−−−−
31

32 % Relevant for joint inversion

33 % ktest = 1; % Use logRv only

34 % ktest = 2; % Use Vp only

35 ktest = 3; % Use Vp and logRv

36

37 UP.ktest = ktest; % Put ktest into struct

38 disp(strcat('ktest=',num2str(ktest))); % Write to the screen which test we use

39

40 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41 % Prior for water saturation

42 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43

44 PRI.muSw = 0.7; % Prior mean for Sw

45 PRI.stdSw = 0.5; % Prior std.dev for Sw

46

47 %−−−−−−−−−−−−−−−−−−−−−−−



APPENDIX C. MATLAB CODE 132

48 % Prior for porosity

49 %−−−−−−−−−−−−−−−−−−−−−−−
50

51 PRI.muphi = 0.2; % Prior mean for phi

52 PRI.stdphi = 0.2; % Prior std.dev for phi

53

54 %−−−−−−−−−−−−−−−−−−−−−−−−
55 % Error distributions

56 %−−−−−−−−−−−−−−−−−−−−−−−−
57

58 MC.muErrlogRv = 0; % Mean error for logRv

59 MC.muErrVp = 0; % Mean error for Vp

60 MC.muErrRho = 0; % Mean error for rho

61 MC.sigErrlogRv = 0.8; % Std.dev error logRv

62 MC.sigErrVp = 300; % Std.dev error Vp

63 %MC.sigErrRho = 50; % Std.dev error rho

64

65 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
66 % Compute likelihoods and posteriors

67 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
68

69 for kk=1:1 %length(WB)

70 DD.z = Z; % Calculate the depth from the seabed

71 DD.n = length(Z); %length(WB(kk).tvd); % New mesh DD

72 DD.vcl = 0.15*ones(size(Z)); % Clay content

73 vcl = DD.vcl;

74

75 if ktest==1

76 DD.d1 = log10(Rv); % logRv

77 elseif ktest==2

78 DD.d2 = Vp; % Vp

79 elseif ktest==3

80 DD.d1 = log10(Rv); % logRv

81 DD.d2 = Vp; % Vp

82 end % if

83



APPENDIX C. MATLAB CODE 133

84 disp('%−− Bayesian calculations') % Write to screen

85 [WP(kk).POST] = inversion(DD,MC,PRI,UP); % Posterior distributions

86

87 % Input to the rock physics model

88 Sw = WP(kk).POST.mapSw;

89 So = 0.5*(1−WP(kk).POST.mapSw); % 50% of HC is oil

90 Sg = 0.5*(1−WP(kk).POST.mapSw); % 50% of HC is gas

91 phi = WP(kk).POST.mapphi;

92 vcl = 0.15*ones(size(phi));

93 %CEC = zeros(size(phi));

94

95 % Do the forward modeling

96 [WP(kk).synt_logrt, WP(kk).synt_vp, WP(kk).synt_vs, WP(kk).synt_rho] = ...

RockPhysSeisEMsimp(So,Sg,phi,vcl,CEC,DD.z); % Calculate the models ...

of logRv, Vp and rho.

97 end

98 disp('%−− Finished Bayesian calculations') % Write to screen
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