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Kurzfassung

NiTi Legierungen sind wegen ihrer vielfältigen mechanischen und funktionellen Eigen-
schaften aus ingenieurstechnischen, physikalischen bzw medinzinischen Gründen die am
häufigsten verwendeten Formgedächtnislegierungen. Der Formgedächtniseffekt beruht auf
einer völlig reversiblen martensitischen Phasenumwandlung, die von speziellen transforma-
tionsbedingten Steifigkeitsveränderungen und Dehnungsentwicklungen begleitet ist, wes-
halb sich NiTi Legierungen vor allem für den Einsatz als Sensoren, Aktuatoren, Dämp-
fungselemente und in der Medizintechnik besonders eignen. Die nachfolgende Arbeit be-
handelt die Modellierung dieser Transformation in nano- und polykristallinem NiTi, wel-
ches beim Abkühlen aus dem Austenitbereich (Hochtemperaturphase) anders als grobkör-
niges NiTi über eine orthorombische Zwischenphase ab ca. 30°C von einer kubisch geordne-
ten Kristallstruktur höchster Symmetrie in die monokline, niedriger-symmetrische Phase
des Martensits umwandelt. Die Transformation erstreckt sich über ein sehr breites Tempe-
raturintervall und ist in einer freien Energiebetrachtung überwiegend thermisch aktiviert.
Nach der Definition des monoklinen Kristallgitters würde die Umwandlung von Austenit-
bereichen im Inneren der kubischen Matrix hohe Spannungen hervorrufen, die energetisch
betrachtet sehr ungünstig wären, weshalb sich eine Martensitmorphologie ausbildet, wel-
che die entstehende Verzerrungsenergie minimiert, die sogenannten Zwillinge. Mit Hilfe
der nichtlinearen Theorie des Martensits wurde, ausgehend von den Gitterabständen der
kubischen bzw. der monoklinen Phase, der Deformationsgradient, der die Umwandlung
mathematisch beschreibt, sowie alle möglichen Martensitvarianten und daraus folgende
mögliche Zwillingskonfigurationen und deren Deformationen berechnet. Es wurde eine
Korngrößenverteilung unter 100nm Durchschnittsdurchmesser angenommen, da hier die
Martensitausbildung als vollständig transformiertes Nanokorn, durchzogen aus sich ab-
wechselnden Martensitvarianten, beobachtet wurde. Das Materialverhalten wurde völlig
anisotrop mit elastischen Konstanten aus ab initio Rechnungen beschrieben. In diesem
Modell zeigt sich, dass die elastische Verzerrungsenergie als Folge der Transformation den
größten Energiebeitrag zur Transformationsbarriere in nanokristallinem NiTi darstellt.
Ein inkrementeller Algorithmus für die Transformation wurde entwickelt, der in jedem
Umwandlungsschritt die absolute Energie minimiert und folglich auf ein absolutes Mini-
mum führen soll. Auf diese Art und Weise erhält man eine Umwandlungskinetik, die mit
der von NiTi aus Experimenten bekannten Kinetik sehr gut übereinstimmt.
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Abstract

NiTi alloys exhibit diverse mechanical as well as functional properties and are the most
commonly used SMAs (shape memory alloys) for engineering as well as medical appli-
cations. NiTi’s shape memory effect is caused by a fully reversible martensitic transfor-
mation. The transformation is accompanied by macroscopic changes in the material’s
stiffness and strain evolution which makes NiTi particularly relevant for sensors, actu-
ators and damping elements. The following work deals with the modeling of the cubic
to monoclinic transformation in nano- and polycrystalline NiTi, which is triggered by
temperature. It proceeds in a broad temperature interval starting after the very small
temperature interval of intermediate transformation to an orthorombic phase at around
30°C. The high-temperature, high-symmetry phase called austenite is a cubic, ordered
crystal and the low-temperature, lower symmetry phase called martensite is monoclinic.
In order to accommodate the new phase a twinned crystal structure is formed. Using the
nonlinear theory of martensitic transformations, starting only from lattice parameters of
the cubic and monoclinic phase, the deformation gradients describing the shape changes
of all possible martensitic variants and variant-pairs forming a twin are calculated. A
nano-grain distribution below 100nm average diameter is modeled, since for these small
grain sizes the preferred martensite morphology turns out to consist of a single laminate of
alternating variants. The material itself is modeled as a thermoelastic solid. Anisotropic
material behavior with elastic constants from ab initio calculations are used in combi-
nation with locally random orientations at the grain level. It was found that the elastic
strain energy constitutes the main contribution to the total energy barrier. In this work an
incremental algorithm for the transformation was developed based on an energy minimiz-
ing principle. The so obtained transformation kinetics agrees with experimental evidence
reported in the literature.
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1. Introduction and Motivation

In this work martensitic transformation is described using a thermodynamic approach by
calculating the free-energies of the different phases as this is frequently done in computa-
tional materials science. However, this model is furthermore combined with a geometri-
cally based approach on the atomic level outlined in chapter 2. The extension of a mere
thermodynamic approach seems reasonable since a martensitic transformation occurs by
lattice distortion, which makes it important to investigate these transformations with
respect to lattice dynamic properties rather than purely thermodynamic ones.

1.1. Martensitic Phase Transformations

1.1.1. Classification and Terminology of Martensitic Transformations

Martensitic transformations are heterogeneous, athermal, diffusionless, structural solid to
solid phase transformations. This section is intended to clarify the terminology relevant
to martensitic transformations. “Heterogeneous” means that at each intermediate stage
of the transformation the assembly can be divided microscopically into distinct regions,
some have transformed while others have not. “Athermal” means that although the trans-
formation is triggered by a temperature dependent chemical potential, the transformation
itself occurs in such a small time increment that it cannot be associated with a change
of heat or temperature. The term “diffusionless” already suggests that the transforma-
tion does not require long-range diffusion during the phase change, but only small atomic
movements over usually less than the interatomic distances. A general classification of
diffusionless phase transformations is shown in Figure 1.1. Since no atomic migration is
involved these transformations progress in a time independent fashion, with the motion
of the interface between the two phases being limited only by the speed of sound.
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Displacive / Diffusionless Phase Transformation 

Kinetics dominated by 
interface energies; 

morphology change by 
shuffle displacements 

Kinetics dominated by strain 
energy; morphology change by 
homogeneous lattice-distortive 

displacements 

Lattice-distortive transformations Shuffle 
transformations 

Deviatoric 
dominant 

Undistorted line  (Habit plane) No undistorted line 

Martensitic Quasimartensitic 

Dilatational 
dominant 

Shear dominated 
shape change by 
lattice distortive 
displacements 

Small atomic vibrational 
displacements (high 

RMS). Overall driving-
energy dominated 

Figure 1.1.: Classification scheme for diffusionless phase transformations as proposed by
Cohen et al. [1]

A martensitic phase transformation occurs as a quick regional change of the crystal lat-
tice, while the chemical composition remains constant. In general, a critical cooling rate
has to be applied to the material in order to inhibit diffusion and receive a martensitic
transformation. Martensitic phase transformations have been known since the early years
of materials science. The first observed case and most popular example is the martensitic
transformation in carbon alloyed iron, i.e. steel, where austenite, irons face-centered cubic
(fcc) phase with evenly distributed carbon, transforms to a carbon supersaturated body-
centered cubic (bcc) lattice phase called martensite. Since its first classification, over the
years this kind of transformation has also been observed in non-ferrous alloys, where it
revealed a variety of fascinating phenomena, including the effects of thermoelasticity, su-
perelasticity and the shape-memory effect. In non-ferrous materials the martensite may
exhibit quite different features compared to ferrous materials. A qualitative comparison
between ferrous and non-ferrous martensites is presented in Table 1.1. However, marten-
sitic transformations are not solely restricted to metallic alloys, they are also found in
polymers, ceramics and even in proteins (e.g. the Bacteriophage T-4).
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Table 1.1.: A qualitative comparison between ferrous and non-ferrous martensites accord-
ing to Delaey et al [2]

The classification of martensitic transformations is sometimes controversially discussed. It
has been pointed out several times in the literature, that an exact border categorizing the
nature of martensitic transformations is hard to draw. Nevertheless, much factual material
on the morphology, thermodynamics and kinetics of this special type of transformation has
accumulated to date. An outlining, yet incomplete list of features according to Roitburd
and Kurdjumov [3] is nevertheless given subsequently, as it is considered an adequate
guideline.

1. Martensite grows to a certain extent as flat plates, but owing to the high elastic
stresses that are building up it consequently forms in lenticular shapes which narrow
towards their ends. This is especially true for ferrous martensite as is illustrated in
Figure 1.2.

2. A general feature of martensite is the so called “Habit plane”, a crystallographic
plane or system of planes along which certain phenomena such as twinning occur.
However there are three different interpretations of a martensite habit plane in use [4]
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as can be seen in Figure 1.2. The first one is the plane of the plate shaped martensite
crystal. Second, in the case of twinned martensite and grain-sizes significantly larger
than about 100nm, smooth planar faces also called midribs or junction planes as it
is called in so called Herringbone structures shown in Figure 1.7 b) are referred to
as habit plane. And third, rarely also the plane boundary of a plate shaped product
is referred to as habit plane. In every case the habit plane has a discrete orientation
to the crystalline axes of the initial as well as the final phases.

3. Normally there exists a definite orientation relationship between the lattices of the
initial and final phases, as is elaborated in more detail in subsection 2.4.3.

4. Transformation changes the shape of the transformed region. This macrodeforma-
tion is homogeneous and can be seen as a combination of simple shear along the
plane of the plate and dilation or compression normal to that plane.

5. Martensitic crystals have a regular internal structure. For instance, fully trans-
formed nano-grains consist of a sequence of alternating twin variants explained in
more detail in subsection 2.5.1.

6. Martensite in general has the tendency towards forming a somehow ordered distri-
bution of plates, which is indicative for the aforementioned definite lattice relations
between the phases.

7. Transformation starts only at some deviation from the system’s free energy equilib-
rium, which is mainly depending on temperature, but also on stress.

8. The phase fraction of the transformed phase increases only with increasing deviation
from equilibrium conditions. For reversible martensitic transformations this means
it can also decrease in the case of free energy approaching back to equilibrium
again. For irreversible transformations only a monotonically increasing free energy
can cause further transformation.

9. In the formation of martensitic crystals a high growth rate is observed (104 − 105

cms−1), not showing any noticeable temperature dependence, provided other vari-
ables such as grain-size are held constant.

10. According to the nucleation kinetics, martensitic transformations are described as
athermal and isothermal. For athermal transformations the nucleation rate is high
and does not show any temperature dependence. The transformation rapidly reaches
a relatively stable state, at which it is necessary to increase the deviation from
equilibrium significantly in order to continuously drive the transformation. However
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in some reactions there is also a small amount of isothermal transformation to the
martensitic phase due to small diffusive contributions.

Figure 1.2.: lenticular martensite and the three interpretations of a habit plane

As mentioned above this list combines aspects of thermodynamics, crystallography and
kinetics. In the following these aspects shall be reviewed individually.

Chronologically, the first viable theoretical description of martensitic transformations took
advantage of the kinetic similarity to plastic deformation. Its theoretical basis was pre-
sented by Zener [5]. Here the martensitic transformation is said to occur due to a loss
of the mechanical stability of the austenite. Although this hypothesis could later on be
experimentally confirmed for special crystal systems, it still remains unclear whether a
mechanical instability is necessary for the transformation.

A combined thermodynamic-kinetic approach based on the framework of classical nucle-
ation and growth theory adopted for martensitic transformations was made by the soviet
school of physical metallurgy. Kurdjumov as one of the first classified the transformation
as a first-order phase transition according to Paul Ehrenfest (student of Ludwig Boltz-
mann) that proceeds under conditions where the initial phase maintains meta-stability.
The definition of the order of a phase transition shall be given here. In principle a sys-
tem is described by a thermodynamic potential generally referred to as free energy and
several forms of the free energy may be formulated based on system criteria. Which
form is suitable depends on which thermodynamic variable is held constant within the
described process. The two most common forms are the so called Gibbs free energy and
the Helmholtz potential. Generally the phase with the lowest free energy will be stable.
The thermodynamics of an alloy showing martensitic transformation resembles that of a
single-component system [6]. Figure 1.3 shows a free energy over temperature diagram
of martensite and austenite. The free energies of two coexisting phases at the transfor-
mation temperature and stress state are equal, but their first derivatives with respect
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to their thermodynamic variables may not be. If the first derivatives are different, the
difference in entropy ΔS, volume ΔV and enthalpy ΔH (in this case the latent heat)
become �= 0 between the two phases at the point of transition. Then the transition is
known as first order transition as schematically shown in Figure 1.3. Common examples
of first-order transitions are all solid - liquid - gas transitions because they involve a dis-
continuous change in density, being the first derivative of the free energy with respect to
the chemical potential. Principally the order of a phase transition can be defined as low-
est order of the derivative of the free energy that is discontinuous at the transition state.
For a first order phase transition, roughly speaking the free energy curve is a continuous
function. Some may consider this method of classification as inaccurate, for it does not

Figure 1.3.: classification of the order of a phase transformation

take into account the case where a derivative of the free energy diverges, i.e. it tends
to infinity, e.g. the heat capacity in the case of a ferromagnetic transition. In another
definition of order according to the theory of L.D. Landau, phase transitions are described
by symmetry-breaking from ordered to unordered phases accompanied by discontinuities
of macroscopic properties, called order parameters, such as the deformation of a crystal
lattice [7]. It should however be noted that this theory is mainly used for the description
of second order phase transitions, where the order parameter continuously approaches
zero as the temperature approaches the transformation temperature. An example due
to Landau for a symmetry classified transformation in the solid state is the transforma-
tion from cubic to tetragonal crystal structure. Although the symmetry changes abruptly
upon transformation, one can always determine in which phase a certain domain exists
at any given time. Whether the transformation is of first or second order also determines
the microstructure: First order transformations form parent/product or heterophase in-
terfaces in addition to product/product interfaces, whereas second order transformations
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only form product/product interfaces. In the former case the first plates formed can grow
to a larger extent than those formed later, which can lead, e.g. to microstructures with
fractal characteristics [8]. Furthermore it is important to restrict this classification to
the crystallographic local level, because only there the atoms or molecules, respectively,
can change their arrangement immediately within a very small time increment [7]. The
relations of symmetries and order parameters between different phases were elaborated
extensively in recent years within the framework of statistical physics, experimentally and
in simulations. The works inspired by the soviet school of physical metallurgy led to a
further distinction of isothermal and thermoelastic martensitic transformations, as well as
to the discovery of an intermediate martensite-like transformation resulting in so called
Widmanstätten structures [3]. Thermoelasticity is one of the key features characterizing
shape-memory alloys (SMAs), where martensitic transformation is fully reversible.

In recent years, experimental as well as theoretical research led to crystallographic the-
ories which describe the formation of martensite due to geometric compatibility of the
lattice at an atomic scale. At this scale, neglecting defects, the reconstruction of the
lattice causes a mere homogeneous strain deformation of the unit cell, so that the fi-
nal phase can be regarded as a homogeneously strained initial phase. Mathematically
this shape change of the unit cell is described by a deformation gradient (2.13). Such
phase transformations, where the states of the phases are completely determined by the
strain of the lattice are called strain transformations. At this point the term “displacive”
characterizing martensitic transformations is introduced. It denotes a diffusionless, first-
order strain transformation at the crystallographic level. In martensitic transformations
the local order of the crystal lattice at the emerging interface between the old and new
phases is maintained. This fact causes the new and the initial phases’ lattices to share
a common plane parallel to their interface. The interfaces therefore have an ordered,
so called coherent (or at least semi-coherent) structure. This notion became apparent
due to the high growth rate of the martensitic crystals long before transmission electron
microscopy enabled to observe and verify these coherent interfaces in situ. The regular
coherent structure of the forming interface boundaries thus is responsible for their low
energy and high mobility. However they are also the origin of internal stresses that play
an essential role for the transformation path of the microstructure and therefore for the
transformation kinetics. Residual stresses are self-equilibrated, thus they do not result
in a net external force. Furthermore, for a homogeneous deformation it is necessary that
the martensite domain is sufficiently mobile, and the slip systems are sufficiently rigid,
otherwise plastic deformation would occur instead. The basic idea is that a deformation
will best be accommodated by a stress-free, thus strain-energy minimizing microstruc-
ture. The material is said to be self-accommodating. Here it is important to keep in mind
that not every geometrically possible accommodation will arise, but only those that are
strain-energetically most favorable, due to a mutual compensation of the individual strain
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fields. If the material is volume preserving the amount of tensile and compressive stresses
in it are nearly equal so that a mutual compensation of these stresses by accommodation
lead to a barely stressed microstructure. The effectiveness of accommodation moreover
depends on the grain morphology, the orientation distribution (possibly textures) and
most importantly the number of variants and variant combinations the martensite can
form. This latter aspect depends on the lattices of the parent and product phases and
their symmetries and is elaborated later in more detail in subsection 2.4.3. However, it
should be made clear that not every material that undergoes a martensitic phase trans-
formation can be self-accommodating because some martensitic transformations are not
volume preserving, leading to macroscopic stresses being of tensile or compressive nature.
The beauty of the crystallographic theories is that they do not contradict other theories,
but can rather be seen as an additional constraint for the prediction of the morphological
evolution, thus complementing other methods. It describes the formation of martensite
based on geometric compatibility reasons necessary for a coherent interface on an atomic
level, which generally makes it a structural classification of the phase transition. Among
those the martensitic transformation is categorized into a discontinuous (reconstructive)
phase transition, where chemical bonds are broken and a continuous one, where they per-
sist. The term reconstructive recently also gained importance considering the reversibility
of the transformation. Reversibility means that given appropriate thermodynamic driving
forces a single crystal domain of austenite will resume its original lattice structure regard-
less of the morphology of the (twinned) product phase and regardless of the number of
transformation cycles. In the course of the transformation the atoms are displaced less
than one lattice parameter each, giving rise to the fact that neighboring atoms at the
boundary in the parent lattice remain neighbors in the product lattice after the transfor-
mation. This so called “lattice correspondence” suggests that there is no reason why the
movement of such an interface should not be reversible. Bhattacharya et al. [9] explained
the difference in reversibility with symmetry reasons. They claim a fundamental differ-
ence between “weak” and “reconstructive” transformation. In a weak transformation the
product and the parent phase must be included in a common finite symmetry group, e.g.
the cubic to monoclinic transformation. This means that the group with lower symme-
try has to be a subset of the higher symmetry one, as is illustrated in Figure 2.1. By
contrast, in reconstructive transformations they are not included in a common finite sym-
metry group, e.g. cubic to hexagonal. Only weak transformations can occur reversibly,
whereas in reconstructive transformations irreversibility is inevitable. Besides the the-
oretical explanation, this is also observed experimentally for the case of pure iron (Fe)
where a reconstructive transformation occurs. However, adding Ni and C for obtaining
steel the martensite becomes bct with increasing tetragonality, meaning the transforma-
tion becomes weak [9, 10].
The first crystallographic theory was published by Bowles and Mackenzie [11, 12] as well
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as Wechsler, Lieberman and Read. It is hence also referred to as phenomenological WLR
Theory [13]. Later on, based on ideas of Erickson et al. [14, 15, 16, 17] Ball and James
developed an elastically nonlinear theory [18] since large rotations occur in martensitic
transformations and if these are linearized then phantom stresses are predicted [19]. Both
these theories use the same equations of geometric compatibility for an invariant plane,
i.e. an undistorted and unrotated plane with continuous deformations on each side as
outlined in section 2.5. The nonlinear theory uses variational formulations of the free
energy as a function of deformation and temperature (see (2.18)). The basic assumption
of the non linear theory is that the observed microstructures correspond to minimizers or
almost minimizers of the strain energy. In both theories operations like deformations and
rotations of the parent lattice are represented by matrices. According to the WLR theory
the total deformation matrix P1, also called shape strain, consists of three components.
(i) a so called Bain strain B also denoted as U as elaborated in subsection 2.4.3, (ii) a
lattice invariant shear P2, i.e. an inhomogeneous shear leaving the martensite structure
unchanged, e.g. twinning or slip, and a rotation, here denoted by R [20] and therefore
writes as P1 = RP2B. This theory can be used to describe martensitic transformations if
the plane and direction of the lattice invariant shear is known, with no limitations on the
deformations. In the nonlinear theory, however, deformations are limited by a so called
Ericksen-Pitteri neighborhood [21] elaborated in section 2.3. More precisely in the non-
linear theory no reconstructive transformation, e.g. lattice invariant shear is allowed. For
certain materials like shape-memory alloys this Ericksen-Pitteri neighborhood suffices to
describe transformation deformations. Hence, in SMAs the nonlinear theory is commonly
the preferred tool. Ball [19] states that the nonlinear elasticity model incorporates the
WLR crystallographic theory of martensite. A remarkable result of the nonlinear the-
ory is that it predicts the formation of very fine microstructures, like those observed in
nanostructured materials. Static crystallographic theories are sometimes criticized since
the formation of martensite is clearly a pattern formation problem. It should therefore be
treated using dynamic models. A historical background to the above mentioned theories
can be found in [22] as well as in the introductory remarks of chapter 7 in [21].
Finally another noteworthy aspect is the effect of dislocations, which is generally an up-
coming topic in materials science. A so called glissile interface, a term from the theory
of dislocations, between parent and product phases is considered necessary in order to
obtain a martensitic transformation after all. A glissile dislocation has a Burger’s vector
that lies in the primary slip plane of the crystal and thus is able to move in that plane.
Contrary, a non-glissile or “sessile” dislocation has a Burger’s vector that does not lie in
the primary slip plane of the crystal making it immobile. A glissile interface can migrate
under the action of a suitable driving stress even at very low temperatures, and its move-
ment does not require thermal activation, whereas sessile interfaces require the assistance
of thermal fluctuations.
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1.1.2. Shape-Memory-Effect (SME)

The term “shape memory” has been used to cover a variety of effects. It is commonly
understood as purely thermal shape memory, where no external load is applied during
the transformation. Here the shape of the undeformed material at a high temperature
is recovered after deforming a specimen at some lower temperature and reheating to
the original temperature. Also the effects of pseudo- or superelasticity explained in this
section are referred to as shape-memory effect in the case that an external load is present
during the transformation. Anyway, the source of the shape-memory effect is always
a special case of the martensitic transformation, which is why Wayman [23] also refers
to this transformation as “Marmem”, an acronym for martensite memory effect. The
transformation in this case is thermoelastic, i.e. fully reversible, as pointed out earlier.
Materials that exhibit a purely thermal shape memory upon heating are referred to as
showing a one way shape-memory effect (OWSME). Materials that additionally undergo
a purely thermally activated change in shape (compared to their undeformed state) upon
recooling remember two different shapes: one at low temperatures, and one at the elevated
temperatures. This is termed two way shape-memory effect (TWSME). For a material to
posses a TWSME it must be trained by multiple transformations under certain conditions
as is explained at the end of this section. As an introductory remark suffice it to say that
after the training the TWSME entails a repeatable shape change of the material under
no applied mechanical load, but only subjected to a cyclic thermal load.

There are two major groups of alloys exhibiting the SME. First, the binary alloys of
transition metals. In the periodic table one component is found in the column left and
the other one right of the chromium group. The NiTi alloy treated here is a member
of this category. The β-phase alloys of noble metals constitute the second class [23].
Most of them have an ordered caesium chloride (CsCl) structure (cubic Bravais lattice)
at their high temperature phase and all of them transform martensitically to a low-
temperature phase with lower symmetry e.g. monoclinic, orthorombic or tetragonal. The
cubic parent phase has the highest possible symmetry of all Bravais lattices, enabling
it to form enough variants of the martensite to sufficiently accommodate the stresses
arising upon transformation, which is theoretically explained in subsection 2.4.3. The
total change in shape of the crystal lattice is mainly a pure shear in an invariant plane
strain. A significant change in volume is normally not observed. Therefore a widely
known feature of SMAs is that they are volume preserving upon transformation. Besides
NiTi Cu-Al-Ni is very popular and has intensively been studied.

The transformation from austenite to martensite is termed forward transformation. Four
characteristic temperatures are associated with the transformation, two for the forward
and two for the reverse transformation, respectively. They mark the start and finish of
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the newly arising phase. In the forward case these temperatures are called martensite
start (Ms) and martensite finish (Mf ) temperature and for the reverse case austenite
start (As) and austenite finish (Af ) temperature, respectively. Transformation tempera-
tures of common SMAs like NiTi lie near their operating-temperature which is typically
near room temperature. Diffusion does not play a role because critical cooling rates are
always exceeded. To understand the peculiarities of the transformation, one must study
the transformation concerning temperature and stress, because the magnitude and inter-
action of these two factors determine the transformation path. As is shown in Figure 1.4
there are four possible transformation paths, which are subsequently described and whose
effects are explained.
First the forward transformation without the influence of an external load shall be dis-

cussed. Generally, if a domain in the material transforms from one lattice to another
internal strains are generated. For domain sizes larger than some atom sizes these strains
would cause stresses up to the yield point leading to plastic deformations around the
transformed region in order to fit in the surrounding matrix. For plastic deformation to
occur dislocations have to be created, increasing the material’s internal energy. However,
in SMAs twinning is the common mechanism minimizing the overall strain of the deformed
domain such that the yield stress is not reached and no plastic deformation accompanied
by dislocation creation is necessary. The martensite is said to be self-accommodating. Ob-
viously, the strain energy stored in the elastically distorted lattice upon twinning is lower
than the energy to generate dislocations to enable plastic deformation. In the process of
twinning martensite forms as a combination of different variants called twins as shown
in Figure 1.5. Theoretically another lattice invariant rearrangement of the atoms mini-
mizing the strain could be realized via slip, however, in SMAs twinning is the preferred
mechanism. This circumstance has been expressed in the introductory classification of
the crystallographic theory by stating that the slip systems have to be sufficiently rigid.
In the literature also other examples referred to as self-accommodated beside twinned
martensite are found, where the internal structure of the shape-memory related marten-
site is not a twinned arrangement, but consists of long period stacking order modulations
[23, 24]. It is pointed out that in this work the theory behind the deformation of the
martensite domain is only related to twinned martensite. A general difference between
slip and twinning should be mentioned at this point: While atoms are moving at least one
atomic distance performing a slip operation this is not the case for twinning, where atoms
move only a fraction of an atomic distance. In a mere temperature dependent transforma-
tion the arrangement of variants occurs such that the average macroscopic shape change
is negligible, because the lattice is differently orientated within each grain and the tension
generated from one variant is compensated by another minimizing the total energy.
If a partially or completely transformed alloy is deformed, the strain minimizing, accom-
modated martensite will be stressed further. In principle the variants rearrange again,
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Figure 1.4.: a) and b): Schematic possible transformation paths in a shape-memory al-
loy. Forward and reverse transformation temperatures are shifted and also
depend on the applied external stress. Hysteretic behavior of each individual
transformation path is given in c), where the color of the arrow in the above
phase diagram matches the line color in the hysteresis curves.
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if possible, so as to remain stress-free. From an energetic point of view: the stress state
energetically favors the rearrangement of the variants. The mechanism is the following:
Microscopically, a resolved shear stress according to Schmid’s law [25] acts on the twin
plane. When the resolved shear stress reaches a critical value, the variant preferred by
orientation and direction of stress will evolve at the expense of other variants. At the
grain level this process is called detwinning, whereas on a macroscopic scale the mate-
rial’s behavior is termed pseudoelastic or superelastic, describing its elastic and reversible
response to an applied stress. The mechanical load results in a macroscopic strain in
the direction of the load that is limited due to the compatibility of variants and orien-
tations and is therefore found to be higher in materials with more possible variants or
a favorable texture. The resulting deformation appears macroscopically plastic, because
there is not enough restoring force once a new energy minimizing state has been reached
since the variants in their new configurations are not much more stressed than before
(Figure 1.4,c.2). Locally re-transforming would only lead to an increase of strain energy.
The mechanical load on twinned martensite can lead to detwinning processes resulting in
a macroscopic shape change that is retained if the load is released. However subsequently
heating the material above its transformation temperature lets each variant of martensite
transform back into austenite, completely recovering its original state at Af , as is shown
in Figure 1.5. Also, additional cooling below Mf again leads to twinned martensite with
no preferred variant. To trigger detwinning the load must be sufficiently large. However
the stress level for reorientation of the variants is still far lower than the plastic yield stress
of martensite. The transformation temperatures are dependent on the magnitude of the
applied load (regardless of tension or compression) because it is the second largest contri-
bution besides the temperature dependent chemical potential in the free-energy stabilizing
the martensite at higher temperatures, as is explained in section 2.6. A higher magnitude
of applied load leads to higher transformation temperatures. The new transformation
temperatures are represented as Mf

σ, Ms
σ, As

σ, Af
σ, where σ refers to the magnitude of a

uniaxial stress state or an appropriate scalar measure for a multiaxial stress state [26].
Following the above explanation the temperature interval for pseudoelasticity depends
on the magnitude of the applied stress as well. Typically the effect is observed about
0-40 K above the Af temperature. In this temperature interval removing the mechanical
load causes NiTi to spontaneously spring back to its original shape. In this mode the
NiTi possesses an elastic range 10-30 times greater than that of a normal spring material.
The minimum amount of stress which is required for the detwinning procedure to start is
called the detwinning start stress (σS), and the maximum level of stress that results in a
complete detwinning of the material is called the detwinning finish stress (σF ).
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Figure 1.5.: Shape-memory effect: Upon cooling austenite a) starts transforming at tem-
peratures < Ms to twinned martensite. Fig. b) shows fully twinned marten-
site consisting of two variants U1 and U2. Applying a mechanical load causes
one variant to grow at the expense of the other c). Heating above Af recovers
the original, undeformed austenite state.

Summarizing, martensite can form in two ways: twinned martensite, which is formed by
a selection of self-accommodated twinned variants, and detwinned or reoriented marten-
site in which a specific variant is dominant. In which way it will form depends on the
stress state during or after the transformation. The pseudoelastic behavior of the stress-
induced transformation leads to strain generation during loading and subsequent strain
recovery upon loading at temperatures above Af . This process is energy dissipating and
therefore accompanied by hysteresis, which can be explained in the following way: The
reverse martensite-austenite transformation is biased by the elastic energy stored during
the forward austenite-martensite transformation. In other words, the energy assists the
chemical driving-force gained by heating. As a consequence, the As temperature for the
reverse transformation frequently lies below the Ms temperature marking the start of
transformation on cooling. The hysteresis resulting during a pseudoelastic loading and
unloading cycle is a measure of the damping capacity of a vibrating device fabricated
from a shape-memory material cycled under extreme stress conditions exceeding the crit-
ical stress needed to induce martensite. Interestingly, vibrating fully martensitic samples
also exhibit high damping due to friction of the forward-backward moving domain bound-
aries. Generally, repeated thermomechanical cycling, that is deformation in martensitic
condition followed by heating and cooling called “training”, causes permanent changes in
the material behavior due to the formation of a characteristic dislocation structure which
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is responsible for the TWSME. Pure thermal cycling causes a draft of the transforma-
tion temperatures, whereas mechanical cycling on the one hand decreases the necessary
transformation stresses and on the other hands leads to higher irreversibility.

If one wants the material to recover all of the macroscopic strain upon heating this is only
possible if all strains were produced by deformations that are mechanically reversible such
as: Elastic deformation, reversible-growth of martensite, twinning, movement of stacking
fault partials and slip by superlattice dislocation in crystals with long-range order [23]. All
irreversible deformation such as (i) irreversible growth of martensite, high temperature
creep, relaxation processes of dislocation configurations and non-planar slip cannot be
recovered. The only known mode of reversible deformation accommodating the lattice
shape-change after forming martensite in nano crystalline NiTi is elastic strain which is
also the basis of the following model. Recoverable strains with at least 5% and a maximum
of 16% are reported in the literature in extreme cases depending on the specimen shape,
testing conditions, microstructure and other factors. Finally Otsuka [20] pointed out
that small diffusive contributions are of great importance for the enhancement of the
shape-memory effect.

1.1.3. Consequences of a Three Dimensional, Multi-Grain Model

Each simulation should start at a simple level to better understand the changes occurring
after extending an already existing model. In the case of martensitic transformations in
NiTi on a nanoscale a single grain model may be sufficient for the prediction of a certain
morphology. It lacks however the interactions of grains among each other. Especially
the above stated effect of self-accommodation on the one hand and self-triggering of the
martensitic variants on the other hand can only be obtained in a multi-grain model.
Furthermore, at the nanoscale several effects occur in a relatively small grain-size range
(see subsection 1.2.2) which may be explained by the fact that all dimensions are near
atomic dimensions. To explain the variety of effects an exact representation of energy
quantities at this scale is crucial. In three dimensions surface and strain energies differ
more between various transforming regions than in 2D due to the different scaling be-
havior of volumes and surfaces compared to areas and lines in two dimensions. Also the
complexity of the stress state may not be sufficiently reconstructed in two dimensional
models. Strain energy contributions, e.g., might be underestimated. In 3D coherency af-
ter deformation obviously requires more constraints. For all these reasons for numerically
analyzing martensitic transformations a three dimensional multi-grain model is considered
necessary.
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1.2. NiTi

1.2.1. Metallurgy

NiTi is an ordered intermetallic compound. It was discovered in 1963 in the Naval Ord-
nance Laboratory (NOL) which led to its commercial name NiTiNOL. Mostly, NiTi is
produced in a nearly fifty-fifty at.% composition, since only in the vicinity of this composi-
tion the martensitic transformation required for its technological applications is obtained.
NiTi’s homogeneous high temperature phase with a bcc crystal lattice is called B2 ac-
cording to its Strukturbericht designation, i.e. a classification that summarizes crystal
structures belonging to the same space group (having the same symmetry), where addi-
tionally the same points in the unit cell are occupied. If centered atoms and cornered
atoms are identical in a bcc lattice, then also the structure is said to be bcc However,
in NiTi they are different, therefore NiTi’s structure is called B2. The B stands for a
compound of the stoichiometric type AB and the number two for the caesium chloride
structure. Nowadays this designation is mainly used in metallurgy. A short explanation
of crystal structures, point and space groups as well as symmetries is given in section 2.1.
The main difficulty of the fabrication of NiTi is the exceptionally tight compositional
restriction in which it is stable or metastable at room temperature, as can be seen in
its phase diagram in Figure 1.6 according to Masslaski, Otsuka [27, 28] and Bastin [29],
respectively. Above all the high reactivity of titanium especially with oxygen and carbon
shifting the composition in Ni’s favor is a crucial problem to deal with. Deviations from
its stoichiometric composition are due to vacancies and substitutions of the two elements.
For Ni contents above 50%, substitutions of Ni in the Ti sub-lattice and for Ni contents
under 50% vacancies and Ti substitutions in the Ni sub-lattice to equal amounts are typ-
ical [30]. NiTi’s phase diagram has for a long time been discussed controversially, since
transformation temperatures are dependent of pre-treatments especially for Ni contents >

50at.%. The material’s history in terms of cycling, deformation and precipitation as well
as a possible misinterpretation of the R-phase transformation therefore are possible un-
certainties in the course of determining the phase diagram. Since in this work only nearly
stoichiometrically equal compositions are treated some properties of NiTi’s comparable
small phase space are listed subsequently:
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Figure 1.6.: Phase diagram of NiTi: a) due to Masslaski/Otsuka and b) Bastin. Only
an almost stoichiometric equally composition is stable at temperatures near
room-temperature

• The stoichiometrically equal composition exhibits the maximum Af temperature of
120°C of all compositions studied [26]. Ms decreases by more than 150K and Af

then lies around -40°C as the Ni content reaches 51%. A variation of composition
can change NiTi’s room temperature characteristics from a purely thermal SME to
pseudoelasticity. A further increase of Ni even causes the martensitic transformation
to vanish at about 51.5% [30]. Lowering the Ni content of the balanced composition
does not significantly change the transformation temperature.

• The solubility of Ti in the perfect fifty-fifty B2 matrix is less than 0.5 at.%, whereas
on the Ni rich side the range of existence of the B2 phase starts to significantly
broaden to higher solubility for Ni above 600°C. At room temperature the B2 phase
space lies between 50-50,5 at.% Ni. To achieve a then already metastable B2 austen-
ite phase outside a composition range of 50-50.5 at.% Ni at room temperature, the
specimen has to be heated until it is fully homogeneous, which is typically at tem-
peratures from 800-1000°C followed by quenching in water.

• For severely plastically deformed specimens of NiTi recrystallization starts around
550°C [31] which must be even lower in the nanograined specimens obtained through
high pressure torsion (HPT) regarded in this work, due to the much higher driving-
force for recrystallization, i.e. reduction of dislocation energy.

• For compostions above 50at.% Ni aging at elevated temperatures around 400°C leads
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to the formation of lenticular Ti3Ni4 precipitates. The Ti3Ni4 precipitates also act
as nucleation sites for martensite, and obstacles for dislocation motion. This mech-
anism effectively increases the critical stress for dislocation motion and decreases
the critical stress for inducing martensite, which has several effects on NiTi’s shape-
memory effects explained elsewhere [32]. Furthermore the precipitates’ stress fields
are claimed to enable the formation of an intermediate rhombohedral R Phase. For
a long time the R-phase transformation was thought to be a pre-martensitic phe-
nomenon since it appears under certain conditions prior to the martensitic transfor-
mation [20]. Normally the inhibition of this phase is under control thus it vanishes
in heat treatments at high temperatures and it is generally only associated with
certain conditions [33]. Whether the R-phase is desired or not depends on the ap-
plication of NiTi. On the one hand the R-phase transformation has a very small
hysteresis, which sometimes makes it desirable in some actuators, on the other hand
it does not offer large shape memory effects.

• Also the most important cases of alloying are mentioned here. Adding Cu to the
composition lowers the hysteresis of the SMA response but unfortunately also the
transformation strain, and at a Cu content above 7at.% the B2 austenite transforms
to the orthorombic B19 structure. The opposite effect, i.e. broadening of the hys-
teresis can be achieved by alloying with Nb, which is necessary for coupling devices
because they are required to show minimal response to wide temperature ranges. So
called High Temperature SMAs (HTSMA) are produced by ternary adding Pd, Pt,
Hf, Au and Zr. Their transformation temperatures are in the range of 100-800°C
[26]. It was also found that adding Co or Fe to the existing NiTi system causes a
drastic decrease in transformation temperature, opening new opportunities for its
applications as is described in subsection 1.2.3.

Concerning preparation there are two main paths. First there is vacuum electrical arc
melting, where no carbon is introduced during melting, which makes it mainly the pro-
cedure of choice since the presence of carbon lowers the reversibility of the martensitic
transformation and hence the SME. The second way is vacuum induction melting, where
alternating magnetic fields are used to heat the raw material in a carbon crucible, making
the introduction of carbon inevitable.
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1.2.2. Nanostructured NiTi

In a number of experiments enhanced mechanical and functional properties of ultra-fine
grained and nano crystalline Nitinol as compared to a coarse-grained material were demon-
strated [34, 35]. Therefore the production of a nano structured NiTi SMA is a promising
way for the realization of high functional shape recovery properties. Probably the most
popular effect accounting for a significant change of mechanical material properties on
a nanometer scale is the Hall-Patch effect. This effect basically states that dislocation
movement is impeded by grain boundaries. Mathematically this is expressed as σy ∝ d

1
2 ,

where σy is the yield strength and d is the average grain-size. Below a certain grain-size,
usually less than 100nm, this is not the case anymore and the yield strength remains con-
stant or even decreases. Explanations for this so called “Inverse Hall-Petch” where given
e.g. by Carlton et al [36]. Furthermore, due to the near atomic sizes on a nanometer scale
the grain boundary volume increases significantly. Gleiter [37] estimated the specific grain
boundary volume for a grain-size of 1 μm to be around 0.2%, whereas at a grain-size of 10
nm this value increases to around 20%. For NiTi an optimum nano grain-size is reported
to be located in the range from 40 to 80nm [34], where considerations of a higher true
(’dislocation’) yield stress against a reduced thermal stability (lower martensite start tem-
perature Ms) are taken into account. Subsequently a short overview on the terminology of
grain-sizes frequently found in the literature shall be given. In general, the term ultrafine
grain is used for average grain diameters between 1 μm and 2 μm. The term submicron
structure (if classified on its own) refers roughly to grain-sizes between 100nm and 1μm
and the term nano structure denotes grain-sizes below 100nm. In the case of NiTi a nano
grained structure is obtained using high pressure torsion (HPT) resulting in very high hy-
drostatic pressures [38]. Coarse-grained NiTi is converted to an amorphous phase which
transforms at 300-450°C into a nano crystalline structure. Grain-sizes are dependent on
the duration of heat treatment and vary in an interval of 5- 350nm [39, 40, 35]. Marten-
sitic transformations of such nano structures show typical size dependent morphologies
that are only observed in nanograins. It is reported that under a critical grain-size of ap-
proximately 50nm no B19’ martensite is found. These grains are preferably composed of
retained austenite or R-phase, respectively. Larger grains transforming martensitically by
twinning show two different morphologies: It was found that nanograins under a critical
grain-size fully transform into a single lamiate of two martensite variants, whereas above
that grain-size a so called herringbone structure, i.e. two twinned laminates separated
by a junction plane, is the preferred morphology for energetic reasons [41]. As already
mentioned in this work only single laminate variants are modeled as the grains are as-
sumed small enough. Figure 1.7 shows transmission electron microscope (TEM) images of
a Ni50.3at.%-Ti alloy of a martensite nano grain fully consisting of a single laminate and
a herringbone structure respectively. In nanostructured NiTi mainly so called compound
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twins are found (for a classification of twins see subsection 2.5.2). In a purely thermal
transformation it is observed that twins consist on average of equal amounts (50-50) of
two martensite variants (μ = 0.5). Martensitic variants down to a thickness as low as
0.9nm are observed in the TEM approximately corresponding to a range of 6 atoms.
As mentioned previously dislocations are only rarely observed, hence plastic deformation
plays no role [39].

Figure 1.7.: Transmission electron micrographs of martensitic NiTi nanograins. Com-
pound twins of B19’ indicated by white lines. a) The whole grain consists
of a single laminate. b) Above a critical grain-size a so called “Herringbone”
structure consisting of more than one twinned laminate becomes energetically
more favorable.

1.2.3. Applications of NiTi

Because of the superior mechanical, chemical and shape-memory properties of NiTi alloys,
this alloy system among all SMAs has been applied most successfully. About 90% of
present SMA applications use these alloys. Commercial applications of shape memory
devices can be divided into four groups [8]:

1. Motion: By free recovery during heating and/or cooling

2. Stress: By constrained recovery during heating and/or cooling

3. Work: By displacing a force, e.g. In actuators and sensors

4. Energy storage: by pseudoelastic loading of the specimen

Subsequently some important practical applications following the above given functional-
ity are given. The majority of applications of NiTi are found in medical engineering. The
50:50 ratio of NiTi has become the alloy system of choice due to bio-compatibility issues.
Histoid-spreader, guide wires in catheters and endoscopes, stents, clamps for bones, wires
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of braces are only some examples [42]. Once the SMA is at ambient body temperature it
contracts back to its original shape, applying a constant force to move the teeth or widen
veins. The braces do not need to be retightened as often as conventional stainless steel
wires since they can contract when the teeth displace. In aerospace and automotive engi-
neering NiTi is used for light weight design as well as high damping materials to absorb
and dissipate energy or damp vibrations in the hysteresis of the reversible transformation
without taking damage. Couplings of NiTi are a popular way to replace other kinds of
joints for stability reasons, NiTi’s high corrosion resistance and in some cases weight con-
siderations. In the galvanic series of metals, NiTi based alloys are slightly nobler than
stainless steel and therefore show a comparable corrosion behavior. The first industrial
application of NiTi was a coupling device, formerly known as Cryofit in aircrafts in the
mid 1960’s, where it replaced the weldseam at the area closest to fuel storage units. Over
the last decade the demand for actuation under high temperature operating conditions,
driven by the aerospace and oil industry, has revived a great deal of interest in the de-
velopement of HTSMAs. The oil industry is interested in the actuation capabilities for
release devices and protection systems for downhole drilling equipment. Regarding up-
coming topic of energy efficiency, NiTi’s functional properties can contribute positively
to the development of new technologies. They may be able to substitute components like
servo-electric actuators, operated at high cycle numbers. The so obtained reduction of
weight probably also makes them economically more attractive in other fields of applica-
tions. Other useful areas of applications are: valves, in micro-electro-mechanical systems
(MEMS), robotics, sensors and heat engines. Applications where cycle transformation
fatigue is an issue, are separated in two categories: (i) Functional fatigue means that
the material’s functional properties like reversible strains change in the course of cycling,
whereas (ii) structural fatigue points at the initiation and accumulation of defects that
eventually lead to failure due to cracks. Additional advantages of using NiTi SMAs in the
engineering area beside the already given ones are its simple, noiseless training mechanism
and its high power to weight ratio.



2. Theoretical description

The following chapter deals with the theoretical background of the physical quantities
and their relevant relations in this work. In the first section a short introduction to
symmetry in general and particular for crystals is given, which is considered necessary
to limit the very broad terminology and reveal ambiguities. Symmetry is an important
factor in this work since a three dimensional model is considered and symmetry plays
an important role for the equivalence of certain states as will be elaborated. A review
of mathematics used here is given. Especially different kinds of product definitions are
clarified, and basic matrix algebra used in continuum mechanics necessary for this work
is treated. Then basic ideas of the non-linear theory of martensitic transformations such
as the Cauchy-Born hypothesis and the Erkicksen-Pitteri neighborhood are introduced
and discussed. Next, the martensitic transformation in NiTi is discussed with respect to
crystal structures, lattice kinematics, martensite variants and classification of twins. Then
the governing equations of the twinning theory predicting coherent (smooth) interfaces are
presented and discussed, since in this model a certain twinned morphology is considered.
The calculation results of the twinning theory are comparted with the experimentally
observed ones, which obviously represent energy minimizing states. Note that this work
aims to elaborate and compactly summarize twinning theory from different points of view,
hence different theories will be discussed and their intersections as well as their differences
will be pointed out. However, all these theories refer to an initial single crystal and it is
not clear how the arising structures interact in a polycrystal. Therefore, an energy based
model described in chapter 3 is created. Finally, energy contributions due to the phase
stability are discussed to define a transformation criterion.



2. Theoretical description 23

2.1. Point Groups, Space Groups, Symmetry and
Crystallography

As stated in 1.1.1 in martensitic transformations normally there are definite orientation
relationships between the parent and the product phase. It is common practice to de-
scribe them by giving the relations of crystallographic planes or directions of the two
phases, determined by X-Ray spectroscopy for instance. However, symmetry relations
are considered a clearer approach when all possible relationships are being investigated.
This section is intended to elucidate the concept of symmetry as well as to clarify some
terminology. To start with some basic definitions are given:

• A mapping of an object onto itself is the basis of the concept of geometric symmetry.
In mathematics a mapping is called an isometry if it leaves all distances invariant.
An isometry is a special kind of an affine mapping, in which parallel lines are mapped
to parallel lines, lengths and angles may be distorted but fractions of lengths on the
same line are preserved.

• A symmetry operation is an isometry which maps the object onto itself. This does
not mean that each point of the object is mapped onto itself, rather the object is
mapped in such a way that an observer cannot distinguish the states of the object
before and after the mapping, therefore the object is said to be left invariant.

• A crystal is a finite block of a periodic array of atoms. The smallest part containing
all the information on the positions of atoms relative to each other is called a unit
cell. The two main rules for the selection of a unit cell with decreasing importance
are (i) the highest possible symmetry and (ii) the smallest configuration possible.
If ambiguity exists nevertheless, the last criterion for a unit cell is simplicity.

All symmetry operations for a unit cell can be divided into proper rotations around a
certain axis and improper rotations or rotoinversions, which are a combination of a rota-
tion with an inversion at a point. All the rotation axes (proper and improper) must pass
through the center of the object, hence there is always at least one point that remains
invariant, while moving other directions and faces of the crystal to positions and direc-
tions of the same kind. The existence of an invariant point is the reason why the set of
all symmetry operations of a finite object is called a “point group”. There are only 32
possible crystallographic point groups, or in crystallographic language “crystal classes”.
Space groups in general are symmetry groups of a configuration in space (subgroup of the
Euclidean motion group). In crystallography these three dimensional configurations are
restricted to ideal, periodic crystals and are called crystallographic groups. A crystallo-
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graphic group extends the symmetries of point groups by translational symmetries (pure,
glide plane, screw axes), where translational symmetries are transforms which map the
crystal pattern onto itself upon translation. As the name space group suggests there are
no invariant points, since the lattice translations always present do not leave any point
unmoved. In crystallography space groups are divided into 7 crystal systems according to
their point groups, and into 7 lattice systems according to their translational symmetry.
Limiting oneself to unit cells there are exactly 14 unique types called the Bravais lattices.
In other words, one can show that there are seven distinct point groups that arise in Bra-
vais lattices [9], and they describe the seven different symmetry types (lattice systems)
shown in Figure 2.1. Note that two lattices only belong to the same Bravais type if and
only if they coincide both in their point-group and in their centering.

Figure 2.1.: The seven types of lattice systems. The numbers after the system name
indicate the number of rotational symmetries mapping the lattice onto itself.
The arrows indicate that lower systems are subgroups of the higher ones,
where the cubic system has the highest and the triclinic the lowest symmetry.
Note that the hexagonal lattice is not a subgroup of the cubic lattice.
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A crystal’s rotational symmetry is restricted to five types of symmetry axes denoted
as 1,2,3,4 or 6 corresponding to their order, i.e. the number of consecutive elementary
rotations that will restore the object to its initial orientation. This is a consequence of
the periodicity of crystal lattices. Generally a symmetry operation of a crystal pattern is
called a crystallographic symmetry operation.
One of the main tasks of theoretical crystallography is to sort the infinite number of
conceivable crystal patterns into a finite number of classes, where the members of each
class have certain properties in common. In such a classification, each crystal pattern is
assigned to only one class. The elements of a class are called equivalent, the classes being
equivalence classes in the mathematical sense of the word.

2.2. Mathematics

This section introduces the mathematical framework used throughout this work. Espe-
cially, different definitions of products of tensors in the form of dyads and matrices are
elaborated and the differences between certain notations are shown. Also some matrix
algebra commonly used in continuum mechanics is presented.

2.2.1. Terms and Definitions of Products of 2nd Order Tensors and
Matrices

Equations of continuum mechanics describe displacements, strains and stresses by vector
and tensor fields. Thereby, four notational systems are in common use. This may be
confusing since for each notation the operations that may be generally the same in the
case of continuum mechanics are often termed differently. This section is intended to give
a quick overview on the terms used for these notations especially for the different kinds
of mathematical “products”. (i) The first notation is index or component notation, where
an index identifies components of vectors and tensors. It has convenient abbreviation
rules, such as Einstein’s summation convention [43], and can handle arbitrary tensors
of any order and coordinate system as well as nonlinear expressions. When used in
non-Cartesian coordinates, it sharply distinguishes between covariant and contravariant
quantities, which basically describe the behavior of a tensor upon a transformation of
coordinates [43]. However, in the case of Euclidean distance metrics, where the dual
space and the original vector space are identical, co- and contravariant quantities are also
identical, hence the stress tensor can also be written in matrix form. (ii) The second one
is direct notation, where vectors and tensors are represented by single symbols, usually
bold characters, which are linked by well known operators of mathematical physics, such
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as ” · ” for a dot product or ” × ” for the vector cross product. On the one hand it
is beneficial for a quick visualization while on the other hand some operations become
undefined. (iii) Third is matrix notation, which is similar to the direct notation with the
difference that mathematical expressions are appropriately rewritten so that only matrix
operations can be used. A disadvantage is the loss of physical meaning. For example
the symmetric second-order stress tensor is recast as a 6 entry vector for finite element
method (FEM) applications. In vector form one cannot simply define eigenvalues such as
the principal stresses of the stress tensor. Finally, there is of course a full notation, where
every term is spelled out and no ambiguities of interpretation can arise, but in which for
instance equation (3.6) would not fit on one page.
Starting from two vectors �a = a1�x+a2�y+a3�z and�b = b1�x+b2�y+b3�z in 3D cartesian space,
subsequently the dot product = scalar product (= inner product in a general perspective
as tensors in Euclidean space) of these two vectors is written in all four notations:

aibi︸︷︷︸
index

= a · b︸ ︷︷ ︸
direct

= aTb︸ ︷︷ ︸
matrix

= a1b1 + a2b2 + a3b3︸ ︷︷ ︸
full

(2.1)

A vector can be regarded as a tensor of rank 1 and a scalar as a tensor of rank 0. From this
perspective the dot product is an algebraic operation that reduces the rank of two first
order tensors. In general the single dot product between a tensor of order n and a tensor
of order m is a tensor of order n + m - 2. This concept can be extended until the rank of
the product is 0, whereby a commonly used notation is to write as many dots horizontally
next to each other as the rank of the tensor. This is also called index contraction. Also
index based notation using Einstein’s sum convention is used causing equal indices to
disappear. Both notations are subsequently written for second order tensors.

A : B = AijBij (2.2)

In the case of matrices the equivalent operation is called Frobenius inner product and is
written analogously to the (vertical) double dot product.
Next the two starting vectors �a and �b are multiplied in distributive fashion. The result
is called a dyad and the product dyadic product. A dyad can be represented as a square
matrix using the coefficients of the unit dyads. A dyadic product sometimes is written
as the juxtaposition ab as established by Gibbs in 1884. The dyadic product is not
commutative in general. It can be considered a special case of the general tensor product
denoted by “⊗”. Subsequently several notations are given:

ab = a ⊗ b = abT = aibj =

⎡
⎢⎢⎢⎣

a1

a2

a3

⎤
⎥⎥⎥⎦
[

b1 b2 b3
]

=

⎡
⎢⎢⎢⎣

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎤
⎥⎥⎥⎦ (2.3)
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The dot product of a dyad and a vector will be especially important.

(a ⊗ b) · c = a ⊗ (b · c) = (ab) · c = a(b · c) (2.4)

As can be seen any vector c is converted to a vector which is parallel to a and whose
magnitude multiplied by the scalar b · c. It should be noted, that this is not commutative.
By exchanging the vector and the dyad, the result is a vector which is parallel to b and
whose magnitude is multiplied by the scalar a · c. The dyadic product will play a crucial
role in the discussion concerning coherency. The linear combination of dyads is called
a dyadic. The same way a dyad is formed from two vectors, a triad is formed from a
dyad and a vector and a tetrad is formed from two dyads, whereby every formed tensor
of rank n has 3n components in three-dimensional space. As mentioned a dyad can be
written in matrix form. In matrix algebra the dyadic product of two dyads is known as
the Kronecker product. It converts two matrices of arbitrary size to a block matrix. For
example if A and B are 3×3 matrices it gives:

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B a13B
a21B a22B a23B
a31B a32B a33B

⎤
⎥⎥⎥⎦ (2.5)

In full notation this would give a 9 × 9 matrix. It should be noted that there is no index
notation for the Kronecker product. However, since vectors can be seen as matrices with
the dimensons 1 × n the Kronecker product can be coded as an outer product of those
vectors. Finally, the well known matrix product is discussed. The matrix product is very
important for linear transformations as in Equation 2.13 and linear equations. In general
it is not commutative. The general definition of the matrix product is:

(AB)ij = AikBkj (2.6)

Thus the product AB is defined only if the number of columns in A is equal to the number
of rows in B, in this case N. This also works for vectors written as matrices. Given two
column vectors a and b, the Euclidean inner product and outer product are the simplest
special cases of the matrix product by transposing one column vector into a row vector
respectively as can be seen in (2.1) and (2.3).

2.2.2. Fundamental Algebra in Continuum Mechanics

In this section the notion of the deformation gradient and some important algebraic
relations commonly used in continuum mechanics are given. Subsequently, some relations
necessary for the definition of the so called polar decomposition theorem are presented.
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• A rotation or reflection is defined by all matrices for which the following holds:
QTQ = QQT = I and detQ = 1 is a rotation or detQ = -1 is a reflection.

• If a matrix U is symmetric (U = UT) then it has 3 real eigenvalues and one can
choose corresponding eigenvectors to be mutually perpendicular unit vectors.

• A matrix U is positive definite if aiUijaj > 0 for all vectors a �= 0. A positive
definite matrix has only positive eigenvalues

For any given matrix F with det(F) > 0 there exists a unique rotation Q and a unique
positive-definite symmetric matrix U (right stretch tensor) such that F = QU, where Q
and U can be calculated by:

U =
√

FTF (2.7)

Q = FU−1 (2.8)

In the context of quantities describing martensitic transformations U is a pure stretch and
is called Bain strain. This decomposition will be crucial for the discussion of martensitic
variants in 2.4.3 and that of frame indifference in 2.3.

Now the general definition of the deformation gradient is introduced. Given any deforma-
tion y that acts on a vector �x representing an arbitrary point in three dimensional space,
the deformation gradient normally denoted as F is the matrix of partial derivatives:

F = [∇y(�x)]ij = ∂yi

∂xj

(2.9)

For a homogeneous deformation the deformation gradient is constant in space, i.e. in-
dependent from the spatial coordinates, whereas for an inhomogeneous it is not. The
definition above implies that the deformation gradient can be written in a matrix form
as for instance the deformation that describes the martensitic transformation from B2
to B19’ given in Equation 2.13. A useful feature of the transformation gradient is
that the determinant of the deformation gradient describes the local change in volume
det(F) = dv

dV

F =const= ΔV . Note that det(U) = 1 is a necessary and sufficient condition for
self-accommodation in SMAs with a cubic austenite [21].

Probably the most important relation in crystallographic theories of martensitic transfor-
mations is that of kinematic compatibility upon deformation, which essentially explains
the resulting martensitic morphology. In the process of twinning the lattice gets sheared
in opposite directions on each side of an invariant plane. Pure shear is a homogeneous
deformation, hence the entire transformation around is homogeneous too. However, the
deformation gradient is not homogeneous in the area around the habit plane. More pre-
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cisely, it jumps across the coherent habit plane. It can be shown that if the deformation
is continuous the jump of the deformation gradient must satisfy certain conditions [18].
It is then possible to show that the invariant plane and the deformations on each side can
be described by the following relation.

F − G = a ⊗ n̂ (2.10)

where F and G are the matrices that describe the homogeneous deformation (shear in
the case of martensitic transformations) on each side of the habit plane, n̂ is the normal
unit vector to the habit plane and a is proportional to the amount of shear (amplitude
of the jump). This equation is known by many names such as invariant plane condition,
kinematic compatibility condition, rank one condition or Hadamard jump condition.

Figure 2.2.: Viszualization of the components in the Hadamard jump condition. F and G
are the homogeneous deformations on each side of the undistorted interface.

Next, the rotation of a matrix from one orthogonal coordinate system to another with the
same origin is discussed. For a given matrix A in the coordinate system xi, A′ in another
coordinate system Xi can be obtained by

A′ = RAR−1 orthogonal= RART (2.11)

where R is the transformation matrix between the initial and the new coordinate system
containing the directional cosines of the two orthogonal basis sets with the same origin.
Note that the reverse transformation is A = RTA′R, which is directly obtained from
(2.11) by premultiplying both sides by RT and postmultiplying both sides by R giving
RTRARTR and using RTR = I.
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2.3. Continuum Theory of Crystalline Solids

In this section the link between the crystal lattice and the macroscopic continuum is pre-
sented following Bhattacharya [21]. In a solid state transformation the Bravais lattice
defined by the set of lattice vectors xi changes to another Bravais lattice with the basis
Xi, where the deformation is described by a deformation gradient dx = FdX. As a con-
sequence of symmetry, some deformations map the lattice back onto itself. In continuum
theory deformations are normally limited to those that preserve orientation ( det(F) > 0).
Therefore, as opposed to point groups, reflections are excluded since they do not preserve
the orientation. Furthermore, since in shape memory alloys plasticity is very limited,
lattice invariant shear deformations associated with plasticity and slip are excluded as
well. Eventually, the remaining set of deformations mapping the Bravais lattice back
onto itself is the set of rotations describing the point group of the initial Bravais lattice
of austenite Pa(xi). In the case of NiTi the intial Bravais lattice is of cubic type and
the set of rotations mapping the cubic lattice onto itself contains 24 rotations. The next
step linking the lattice to the continuum is the Cauchy-Born hypothesis, which states
that the continuum also deforms according to the deformation gradient dx = FdX. The
Cauchy Born hypothesis is a definite way to bridge the atomistic scale and the macro-
scopic continuum picture. It should however be noted that it only holds as long as the
reference configuration and the deformation gradient are homogeneous (i.e. plasticity and
slip would violate the Cauchy Born hypothesis). For SMAs it is important to note that
the hypothesis is justified. A comprehensive review on the hypothesis and its validity
can be found in [17]. Subsequently, some considerations on the energy density are made.
Starting from the intital Bravais lattice the stored energy density g is assumed to depend
on the lattice vectors and the temperature g(xi, T ). Furthermore g is assumed to satisfy
two properties: (i) Frame-indifference: If the lattice is rotated or a change of frame is
carried out in its symmetry group, g does not change. (ii) Material-symmetry: For the
same Bravais lattice g is independent from the set of lattice vectors.

g(FR, T ) = g(F, T ) = g(RFRT, T ) for all rotations P(xi) (2.12)

Recall that the goal is to construct a theory where lattice deformations are large enough to
include transformations and elastic deformations, but small enough to exclude plasticity
and slip. Therefore the idea of a so called Ericksen-Pitteri Neighborhood is introduced,
primarily based on three observations: (i) Starting from a specific Bravais lattice the
symmetry is easily reduced with small distortions and normally it takes a higher amount
of distortion to increase the symmetry. (ii) For small distortions the elements of P(xi)
map lattices that are close to the parent lattice xi to other lattices that are close to xi,
i.e. lattices which can be obtained from xi with another small distortion. (iii) Equally
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to (ii) P(xi) maps lattices that are far away from xi to other lattices that are far away.
The Erickson-Pitteri neighborhood thus is the set of all lattice vectors that are obtained
by a small deformation of the inital set xi. It entails that only transformations where the
symmetry of the parent lattice is a higher than that of the new one can be studied and
excludes large distortions such as lattice invariant shears. These restrictions still allow to
study martensitic phase transformations in SMAs.
Mathematically the difference of two sets of lattice vectors except for a rotation is con-
veniently described the metric tensor: Cij = xi · Xj. Generally, the same lattice can be
described by a variety of basis sets. However, provided that orientation is preserved the
initial set xi and the new set Xi describe the same lattice if xi = μj

i Xj where μj
i is a 3x3

matrix with a determinant equal to 1. Cμ = C0 only if μj
i generates an element of the

point group. Due to (ii) such μj
i also map a metric C, which is close to C0 to a metric D

close to C0 and according to (iii) μj
i that are not in the point group map a metric C that

is close to C0 to one that is far away from C0 (see Figure 2.3 a) ). Additionally, since
(2.12) also the free energy depends on this metric as shown in Figure 2.3 b). At this point
it shall be mentioned that the reason for considering closed groups is that the constitutive
function for the free energy of the crystal is assumed to be smooth. Then, following Ball
and James the wells can be visualized as circles in space of the deformation gradients as is
shown in Figure 2.3 c). The idea is that the free energy density has a multiwell character

1

2

2

1

Figure 2.3.: a) Schematic illustration of the Erickson-Pitteri neighborhood in the space
of metrics between two lattice vector sets. b) Schematic free energy den-
sity function for all metrics along the dashed line in a). c) Representation
of energy wells: The circles schematically represent the pre-multiplication
with all rotations. The dashed circle is the austenite well and the others are
martensite wells .

related to the crystal structures of the involved phases in the transformation. At the
transformation temperature, the energy has wells in the space of deformation gradients
corresponding to both the austenite and the martensite phases. The position of the wells
is determined by the lattice parameters of the crystal lattices of both phases. It shall be
mentioned that multi-lattices (combined Bravais lattices) can be treated as the union of
multiple Bravais lattices [21].
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2.4. Martensitic Transformation in NiTi

In ordered alloys such as NiTi, it has been shown that the phase formed by the martensitic
transformation is also ordered. This section presents the atomic structures of NiTi relevant
in this work. Its lattice parameters are discussed and the Cartesian coordinate system
used throughout this work is presented. In this system first the deformation gradient and
subsequently symmetry related so called martensitic variants are represented.

2.4.1. Crystal-Structure of NiTi

As already stated in subsection 1.2.1 the austenitic phase is of an ordered bcc B2 type.
Note that the space group of a pure metal with bcc structure is different from B2. The
cubic unit cell has a lattice constant of ac = 3.015Å. This lattice constant was determined
in a Ni49.75a%-Ti compositon by Otsuka [20]. Figure 2.4 a) shows this unit cell as well
as the orientation relation between the cubic lattice of the austenite and a tetragonal
unit cell that upon forward transformation will become the monoclinic unit cell of B19’
martensite. The monoclinic B19’ martensite unit cell has lattice parameters: am = 4.646Å,
bm = 2.898Å, cm = 4.108Åand the monoclinic angle γm = 97.78°. The lattice parameters
for the B19’ structure were determined in a Ni49.2a%-Ti by Kudoh et al. [44]. Note
that the lattice parameters are defined in correspondence to the elastic tensor calculated
in a different coordinate system, see [45]. This is important in order to ensure that the
calculated deformations and the elastic tensor refer to the same coordinate system. A
selection of possible Cartesian coordinate systems for the monoclinic system is discussed
separately in the next paragraph. Obviously in an ordered crystal like NiTi the deviation
of lattice constants due to varying amounts of Ni and Ti as well as additional alloying
elements can abruptly change the material behavior. The here encountered difference
of 0.5a% is however considered a reasonable approximation. Finally, some information
is given on the so-called R-phase with Strukturbericht-designation B19, which is often
confused with B19’. This orthorombic structure is sometimes called 2H according to its
stacking sequence ignoring symmetry. The lattice parameters are b < c < a in this space
group. This crystal structure has similarity only with the martensite phase in AuCd
alloys.

Generally, if a crystal has a single axis of two-fold symmetry, or a single plane of reflection
symmetry or both, it belongs to the monoclinic system. The two-fold axis or the normal to
the plane of symmetry is called unique axis. In a Cartesian coordinate system, the unique
axis is usually assigned to the monoclinic side b and defined as Y axis, and β < 90°is the
angle between +a and +c. Then there are two choices for the X and Z axis namely X||a
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or Z||c. For monoclinic systems with m point-group symmetry, there is an alternative
choice for the axes. The unique axis is assigned to the side c, which lies along Z, and γ

is the angle between the sides +a and +b. Also for this case there are two choices for the
other two axes, namely X along a or Y along b. As can be seen in Figure 2.4 b) the latter
is used in this work. This leads to the following naming convenction compared to Kudoh:
[45] → [44] : a → c, c → b, b → a, γ → β

Figure 2.4.: a) Orientation relationship of the parent cubic B2 lattice and a tetragonal
cell that can martensitically transform to a monoclinic cell. b) Lattice cor-
respondence of the same tetragonal cell as in a) and a certain monoclinic
cell. An additional shuffling of atoms occurs in the middle plane with normal
[001]B19’. The monoclinic angle γ is between Y and [001]B19’

2.4.2. Kinematics of Transformation

Pure NiTi specimens directly transform after solution annealing during cooling to marten-
site. There are plenty of alloys that have a B2 parent structure and transform upon cooling
to another structure, however the B2 to B19’ transformation is unique. While other al-
loys change their phase only by changing the stacking-fault order of their (110) planes,
in NiTi an additional shear perpendicular to these planes takes place. The unit cell of
B19’ is stretched against the austenitic matrix by around 10%, whereas the volume barely
increases upon transformation at about 0.5% [46]. Macroscopically the deformation can
be decomposed into a stretch normal to the habit plane and a shear component almost
parallel to it. The latter is called macroscopic shear and quantifies the shape deforma-
tion, whereas the former represents the volume change. The habit plane is not distorted,
hence the macroscopic shape change associated with the transformation is also called an
invarinat plane strain deformation (IPS). Also many other martensitic transformations
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show an IPS deformation consisting of an extension and a simple shear. The habit plane
and the direction of macroscopic shear are, with few exceptions, not simple low-indexed
crystallographic planes or directions of the parent or product phase. Mathematically the
deformation of the unit cell can be represented as a homogeneous linear transformation,
which is also termed affine transformation. Straight lines remain straight lines and planes
remain planes upon transformation. An affine transformation can conveniently be written
in a matrix formulation given in 2.13. From the tetragonal unit cell shown in Figure 2.4
a) the whole transformation can be decomposed into three steps. (i) An expansion or
contraction along the directions X,Y,Z. (ii) A shuffling of the atoms in the middle plane,
i.e. in the case of the variant shown in Figure 2.4 b) the plane with normal [001]B19’ in
the direction Z. This step is required in order to obtain a close-packed structure. How-
ever, it is ignored for the deformation gradient hence it does not contribute to the overall
transformation strain. Third, a shear in the plane with normal Z. For the here presented
case this writes in matrix form as:

F m =

⎛
⎜⎜⎜⎝

1 0 0
cot(γm) 1 0

0 0 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

sin(γm) am√
2ac

0 0
0 bm

ac
0

0 0 cm√
2ac

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

sin(γm) am√
2ac

0 0
cos(γm) am√

2ac

bm

ac
0

0 0 cm√
2ac

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1.0796 0 0
−0.1475 0.9612 0

0 0 0.9634

⎞
⎟⎟⎟⎠ (2.13)

where the first term represents the shear and the second one the stretch. The change of
volume during the transformation is det(F) = 0.9995 and can therefore be neglected.

Finally a crucial point of the transformation considering the R-phase shall be mentioned.
Actually, in NiTi nanograins the transformation from B2 to B19’ does not proceed di-
rectly, but via the rhombohedral R-interphase so that the transformation sequence is
B2 −→ B19 −→ B19′. However, the maximal distortion upon B2 −→ B19 transforma-
tion is only around 1 %, whereas for the B2 −→ B19′ transformation it is 10%. This
gives a ratio of strain energies of 1:100, hence the intermediate R-phase can be neglected
in models that are dominated by strain energy, such as the one presented here.

2.4.3. Variants of Martensite

Because of the periodicity of the lattice there are more possibilities to draw a tetrag-
onal unit cell like the one in Figure 2.4 which overlaps with a certain cubic unit cell.
Additionally considering the shear responsible for the monoclinic angle in both direc-
tions leads to 12 martensite (correspondence) variants. Material scientists commonly de-
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scribe such orientation relationships in families of directions <> and planes {} in Miller
indices. Popular examples of orientation relationships are e.g. the Kurdjumov Sachs
(K-S) relation between bcc austenite and tetragonal martensite in low carbon steels (C
< 0.5m% : 111A||110M , < 110 >A ||(111)M) or the Burgers relation in intermetallic
TiAl between the “high-temperature” bcc β− and the “low-temperature” hexagonal close
packed (hcp) α−phase: (0001)α||{101}β. In NiTi, the axis of monoclinic rotational (two-
fold) symmetry in the martensite is the cubic 〈110〉 direction (edge marked c in Figure 2.4
b) ). This transformation is termed cubic to monoclinic I [21] and the variants are termed
face diagonal variants because their two-fold axis is along a face-diagonal of the origi-
nal cubic unit cell. There exists another type of cubic to monoclinic transformation (II)
where the axis of monoclinic symmetry is a cubic 〈100〉 (cube-edge variants) direction
such as in CuZnAl, not elaborated here any further. For NiTi the full set of orientation
relationships of the B19’ lattice vectors with respect to the parent cubic structure can be
found elsewhere [39]. A more lucid way to calculate all correspondence variants is by the
rotational symmetry group of the cubic parent phase, as is subsequently elaborated. If the
deformation gradient of the lattice transformation is symmetric than it can be considered
as Bain strain. However, if it is not symmetric as the deformation gradient in (2.13) the
polar decomposition theorem (2.7) is used to decompose it into a rotation R and a positive
definite symmetric matrix U, which then is considered the Bain strain. This is important
since in the theory for the construction of microstructures presented in section 2.5, only
the symmetric part of the deformation gradient needs to be considered. Afterwards, the
full set of variants can be calculated by rotating the austenitic lattice with all rotations
that define the symmetry of the parent phase (Ui = RiU1RT

i ). Then depending on the
symmetry of the martensitic phase some variants can coincide. Generally, the number of
martensite variants N can be calculated by

N = number of rotations in Pa

number of rotations in Pm

(2.14)

In the case considered here this is 24/2 = 12 since the monoclinic lattice has a two-
fold rotational symmetry. In the literature either the set of directly rotated deformation
gradients (Fi = RiU1) or the Bain Variants can be found. Again, it is emphasized that
in this work the chosen Cartesian coordinate system is different from what is commonly
used in literature (axes are interchanged). Since anisotropic elastic constants are used
for the monoclinic phase it is important that these refer to the same coordinate system
as the calculated strains, i.e. the Cartesian coordinate system of the cubic cell shown in
Figure 2.4 a) obtained by rotating the X,Y,Z system of the tetragonal cell clockwise by
45° around the Y axis. All deformation gradients of different symmetry related variants
calculated in this coordinate system can be found in Table 2.1. Note that the deformation
gradient given in (2.13) is denoted (a) and that variants with opposite shear (denoted x
and x’ respectively) form a laminate as is elaborated in subsection 2.5.1. Analogously
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all symmetry related Bain variants are given in Table 2.2. At this point it is worth
clarifying one important thing also pointed out by Bhattacharya [21]: Although both
material symmetry and frame indifference involve rotations, in material symmetry the
rotation acts in the reference configuration and in frame-indifference the rotation acts in
the deformed configuration. Therefore, it is not possible to rigidly rotate one variant to
obtain another, i.e. QU1 �= U2 otherwise the polar decomposition theorem would not be
unique. This also proves that the energy wells in Figure 2.3 c) are indeed unconnected.

Table 2.1.: Deformation gradients of all martensite variants represented in one and the
same identical cubic basis. Variants of opposite shear form a twin laminate.

Variant elements of F
i

f11 f12 f13 f21 f22 f23 f31 f32 f33
(a) η 0 -ζ -κ ξ κ -ζ 0 η
(a’) η 0 -ζ κ ξ -κ -ζ 0 η
(b) η ζ 0 ζ η 0 -κ -κ -κ
(b’) η ζ 0 ζ η 0 -κ κ κ
(c) η 0 ζ κ ξ κ ζ 0 ξ
(c’) η 0 ζ -κ ξ -κ ζ 0 ξ
(d) η -ζ 0 -ζ η 0 κ -κ ξ
(d’) η -ζ 0 -ζ η 0 -κ κ ξ
(e) ξ κ -κ 0 η -ζ 0 -ζ η
(e’) -ξ -κ -κ 0 η -ζ 0 -ζ η
(f) ξ κ κ 0 η ζ 0 ζ η
(f’) -ξ -κ κ 0 η ζ 0 ζ η
Elements of F

i
: ξ = 0.9612, η = 1.0215, ζ = 0.0581 and κ = 0.1043

Table 2.2.: Possible Bain-strain matrices for the representation in the cubic basis. The
order is in analogy with Table 2.1 and the notation in accordance to [21]

Ua =

⎛
⎜⎝ α −ε −δ

−ε γ ε
−δ ε α

⎞
⎟⎠ Ua′ =

⎛
⎜⎝ α ε −δ

ε γ −ε
−δ −ε α

⎞
⎟⎠

Ub =

⎛
⎜⎝ α δ −ε

δ α −ε
−ε −ε γ

⎞
⎟⎠ Ub′ =

⎛
⎜⎝ α δ ε

δ α ε
ε ε γ

⎞
⎟⎠

Uc =

⎛
⎜⎝ α ε δ

ε γ ε
δ ε α

⎞
⎟⎠ Uc′ =

⎛
⎜⎝ α −ε δ

−ε γ −ε
δ −ε α

⎞
⎟⎠

Ud =

⎛
⎜⎝ α −δ ε

−δ α −ε
ε −ε γ

⎞
⎟⎠ Ud′ =

⎛
⎜⎝ α −δ −ε

−δ α ε
−ε ε γ

⎞
⎟⎠

Ue =

⎛
⎜⎝ γ ε −ε

ε α −δ
−ε −δ −α

⎞
⎟⎠ Ue′ =

⎛
⎜⎝ γ −ε ε

−ε α −δ
ε −δ α

⎞
⎟⎠

Uf =

⎛
⎜⎝ γ ε ε

ε α δ
ε δ α

⎞
⎟⎠ Uf ′ =

⎛
⎜⎝ γ −ε −ε

−ε α δ
−ε δ α

⎞
⎟⎠

Elements of U
i
: α = 1.0254,ε = 0.0490, δ = 0.0620 and γ = 0.9587.
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2.5. Twinning theory

This section intends to give an overview of the mathematical description of microstruc-
tures that can be formed with a combination of martensitic variants (twins). There are
many related, but slightly different definitons of a twin [21, 47]. A graphical one shall be
given here: A twin is a planar defect in a crystal where the lattice on the one side can be
obtained either by a simple shear or a rotation of the lattice on the other side. Principally,
twinning modes are determined as a consequence of the energy well structure elaborated
in section 2.3. Practically, the Hadamard jump condition is used as a condition for a
coherent interface, where more complex microstructures can be described with additional
side constraints of further Hadamard jump conditions. The theoretical framework of this
line of thought is quite mathematical since solutions for the compatibility of more com-
plicated structures are rather restrictive and require a concise mathematical description.
In the literature often the term non-linear theory can be found. It has to be mentioned
that this could easily be misinterpreted as mathematical non-linearity, although the equa-
tions used to describe twinning without an external loading are linear. By contrast, the
multi-well energy character of the evolving phase leads to a physically non-linear material
behavior.
The governing equations for the compatibility of two variants (also twin plane or multiple
well problem) are presented in subsection 2.5.1, where furthermore the considered lam-
inate structure considered here (alternating parallel variant domains) is discussed along
with a linearization, which is useful in some cases. Note that in the non-linear theory
the set of all possible homogeneous boundary conditions is only known in the case of
transformations involving two variants of martensite [10]. The description of other mi-
crostructures consisting of two variants like so called "Zig-zag" or "Crossing" twins can be
found elsewhere [21].
In subsection 2.5.3 the formalism for describing habit plane structures by additional side
constraints to the martensite variants is elaborated. In particular it will be shown that
the non-linear theory reduces to the crystallographic theory of martensite for the habit
plane between a twin laminate and austenite. Other habit plane structures like the one
between two (or more) twin laminates, two twin laminates and the austenite (wedge-like
microstructures), which are characteristic features observed in SMAs, are treated concep-
tually.
Generally, a main result of the non-linear theory is the conclusion that some common
microstructures, like for example wedge-like microstructures, are only possible in shape
memory alloys in a stress free manner with very special lattice parameters satisfying
certain highly restrictive conditions [48].
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2.5.1. Twin Plane Calculation

In this section we use the Hadamard jump condition (2.10) as twinning equation by setting
the two deformation gradients F and G in (2.10) to two out of 12 possible Bain variants.
Also, remembering the above definition of a twin its two variants must be related by a
rotation R, therefore:

RUj − Ui = a ⊗ n̂ (2.15)

The following algorithm can be used to find any possible twin described by a rotation R,
shear vector a, and twin plane normal n̂ satisfying the twinning equation for a given pair
of martensite variants (Ui, Uj). If (2.15) is post-multiplied by Ui, then it follows that
RUjU−1

i = I + a ⊗ U−1
i n̂. From this a symmetric matrix Ct is defined by multiplying

each side with its transpose:

Ct := U−1
i UT

j UjU−1
i = U−1

i U2
j U−1

i
Ct �=0= (I + U−1

i n̂ ⊗ a)(I + a ⊗ U−1
i n̂) (2.16)

The six parameters that determine a and n can be obtained as proposed by Ball and
James [18]: Necessary and sufficient conditions for a symmetric 3×3 matrix Ct with
eigenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3 (ordered sequence) to be expressible in the form 2.16 for
nonzero U−1

i n̂, a and Ct are given by:

a = �

⎛
⎝
√

λ3(1 − λ1)
λ3 − λ1

ê1 + χ

√
λ1(λ3 − 1)

λ3 − λ1
ê3

⎞
⎠

n̂U−1
i = �−1

(
χ

√
λ3 − √

λ1√
λ3 − λ1

)
(−χ

√
1 − λ1ê1 + χ

√
λ3 − 1ê3)

(2.17)

where � is the norm of the calculated vector resulting in | n̂ | = 1, ê1, ê3 are normalized
eigenvectors of Ct corresponding to λ1, λ2 respectively and χ, χ can take the values ± 1.
So n̂ is determined first, then �, next a and finally R by reinserting into (2.15). A proof
of (2.17) can be found in [18]. Subsequently, some remarks on solutions in dependence of
the eigenvalues in (2.17) according to [18] are given:
(i) I + a · U−1

i n̂ = χ
√

λ1λ3

(ii) Consider solutions of (2.16) with I + a ⊗ U−1
i n̂ ≥ 0. If λ1 < λ2 = 1 < λ3, then

there are two essentially distinct solutions related by a rotation R in the sense that
I + a+ ⊗ (U−1

i n̂)+ = R(I + a− ⊗ (U−1
i n̂)−); this follows from the polar decomposition

theorem in the case λ1 > 0 and by an explicit calculation if λ1 = 0. If λ1 or λ3 equals 1,
there is only one solution. If λ1 and λ3 are both equal to 1, there is no solution.
Note that physically the eigenvalues of the matrix Ct describe the stretches of one side
of the twin plane relative to the other. Coherency of the two sides after each one has
deformed requires that one eigenvalue is equal to one. This is only possible if one of the
other two is less than 1 and the other greater than 1.
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A comprehensive application of the above results for NiTi can be found in [49] for example.
The above equations are comprehensive and yield all possible coherent variant pairings
(twins). In other words, an isolated single crystal composed of only one variant would
have the same free energy as the same crystal composed of two variants fulfilling the
twinning equation. In the bulk however, there are additional constrains that the crystal
has to fulfill in order to minimize the free energy. Obviously, a minimal misfit to the
matrix and consequently a minimal misfit strain energy can be achieved if the martensite
forms a very fine mixture of two variants called a twin laminate or fine twins. These
fine twins are described as weakly converging sequences fulfilling that each deformation
is continuous (note that the deformation gradient not necessarily is continuous) and that
the deformation gradients do not converge locally but on average and also do not become
larger. From this point of view fine twins exhibit scale invariant characteristics similarly
to fractals. Mathematically, the minimization can be performed by a variational caluclus,
where the functional is of the general form:

IT (y) =
∫

Ω
g(F, T )dx ( + loading energy ) (2.18)

Neglecting external loading this variational approach principally yields an infinitely small
twin variant width. Taking loading into account, this generally leads to a difficult nonlin-
ear elasticity problem [22]. Comprehensive reviews on variational approaches concerning
this topic can be found in [50, 51].

It is worth mentioning that as for all geometric problems there exists a linearized version of
the above problem, meaning physically nonlinear but geometrically linear. In the linear
theory the multiplicative polar decomposition for example is replaced by an additive
decomposition F = RU ⇒ H = E + W where H = ∇u(x) = F − I (u(x) = y(x) − x) is
called the displacement gradient, E = 1/2(H + HT) the infinitesimal strain matrix and
W = 1/2(H − HT) the infinitesimal rotation matrix. As for all linearizations it must
be pointed out that this is only a good approximation as long as changes (here H or E
and W) are small. The wells are then defined by linear strain matrices and the twinning
equation becomes the strain compatibility equation, since on many occasions only the
strains need to be considered.

EH − EK = 1
2

(a ⊗ n̂ + n̂ ⊗ a) (2.19)

Also for this equation there are procedures that lead to a solution as well as interpre-
tations of the solutions. A modified version of the linear theory is the piecewise linear
theory, whose main assumption is that the wells of the free energy density are piecewise
approximated quadratic functions. This enables to describe any material as a composite
of linear elastic materials with different residual strains. For details on the computation-
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ally interesting piecewise linear theory it is referred to [52].
Finally, again it has to be pointed out that all the above theories globally only apply
to single crystals and are only useful in a polycrystal for a local minimization inside a
single grain. A mathematical continuation of compatibility in polycrystals can be found
in [21].

2.5.2. Classification of Twins

From remark (ii) to (2.17) it can be seen that the solutions come in pairs. The two
different twins obtained from a solution are called reciprocal twins. There are two other
popular results that are easier to use, but which are (i) not comprehensive and (ii) are only
applicable if the martensite variants are related through a rotation in the point group of
austenite. The first one is called "Mallards Law" [21, 22] and works for variants related by
a 180° rotation in the nonlinear theory. It is useful since most twins in the martensite are
of this type and because it allows a classification of twins to type I (twin plane is a plane of
symmetry) and type II (shearing direction is a direction of symmetry) respectively. There
are twins that fulfill both conditions and are consequently termed compound twins. Type
I and II twins are often referred to as conventional twins. In nanograined NiTi mainly
those are found. The second result is due to Forclaz and provides a quick check if two
variants of the above type fulfill the twinning equation. It states that this is the case for
two martensite variants Ui, Uj if det(Ui − Uj) = 0.
Another classification divides twins into generic and non generic ones. Generic twins
are transformation twins that can form for any lattice parameters in the martensite and
are thus purely “symmetry-driven”. By contrast, the existence of non-generic twins is
restricted to particular lattice parameters. Or from a mathematical point of view: For
fixed Pa and Pm the eigenvectors of the Bain strain U are unique, whereas the eigenvalues
depend on the lattice parameters of the austenite and martensite phase [47].

2.5.3. Calculation of Habit Plane Structures

In this section the mathematical construction of habit plane structures in the non-linear
theory is summarized. The two main assumptions are: (i) Twin laminates are described as
weakly converging sequences (see subsection 2.5.1). (ii) As a consequence of energy mini-
mization, the gradients in this sequences only take values in the energy wells. In principle,
based on this assumptions criteria are constructed under which the above equations for a
coherent interface can be applied. The easiest case of a habit plane between the austenite
and a single martensite variant is not discussed here since it is strongly, non-generic. A
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commonly observed and historically the most important habit plane structure is between
austenite, seen as a domain of constant deformation gradient I and finely twinned marten-
site as illustrated in Figure 2.5. In order to make the deformation between the laminate

Figure 2.5.: Schematic representations of an austenite-martensite interface. a) Energy
well representation and b) the microstructure arrangement. Austenite, with
the deformation gradient I, is separated from martensite by the habit plane
with the normal ĥ. The grey space indicates a transition zone since the
interface is not sharp, however the deformation is continuous across it.

and the austenite continuous the laminate is assumed to be very fine. Let the volume
fraction of the variant with deformation gradient QRUj be μ ∈ (0, 1), then the average
deformation gradient of the laminate is:

Fμ = Q[μRUj + (1 − μ)Ui] (2.20)

Since the deformations on both sides of the habit plane must be compatible:

Fμ − I = b ⊗ ĥ (2.21)

where the vector ĥ is the habit plane normal and the vector b ∈ R3 is called shape
strain. Additionally, for the laminate the twinning equation (2.15) applies, therefore
the compatibility condition comprises a system of two equations. The austenite-twinned
martensite interface was first described by the crystallographic theory. Therefore, at this
point the equivalence of the non-linear and crystallographic theory is by inserting the
twinning equation (2.15) into the expression for RUj in (2.21).

Q[μa ⊗ n̂ + μUi + Ui − μUi] = Q︸︷︷︸
R

[I + μa ⊗ (U−1
i n̂)︸ ︷︷ ︸

P2

] Ui︸︷︷︸
B

= I + b ⊗ ĥ︸ ︷︷ ︸
P1

(2.22)

Combining the Chauchy Born hypothesis, the twinning equation and a result from matrix
algebra it can be shown [21] that the matrix (I + μa ⊗ (U−1

i n̂) is a simple shear. There-
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fore, the non-linear theory in this case is equal to the crystallographic theory outlined in
subsection 1.1.1. Conceptually, the advantage of Equation 2.21 is that Fμ describes the
macro-scale deformation of the laminate.
From the theory of Ball and James it is clear, that in order to solve the coherency condi-
tion for the eigenvalues of any C matrix, describing the deformation of one side relatively
to the other, the following has to hold true: λ1 < 1, λ2 = 1, λ3 > 1. They also derive
an existence theorem ensuring that this condition is fulfilled and Equation 2.21 has a
solution [18]. From the left hand side of (2.22) it is easy to check that the C matrix for
Equation 2.21, describing the deformations around the habit plane, has the form:

Ch = (Ui + μn̂ ⊗ a)(Ui + μa ⊗ n̂) = (I + ĥ ⊗ b)(I + b ⊗ ĥ) (2.23)

Then solutions for b and ĥ can be found using (2.17) where b = a and ĥ = U−1
i n̂. Note

that for a given martensite laminate, specified by twin related variants Ui and Uj and a
corresponding twinning shear a and normal n̂, there are up to four distinct solutions for
the habit plane equation. It is worth mentioning that these interfaces are irrational or
high indexed planes that are also experimentally observed. This is especially important
since a mere experimental (e.g. X-Ray) detection of high indexed planes would be highly
controversial because of measurement inaccuracies. Overall, there are 192 possible dis-
tinct austenite-martensite interfaces in NiTi. This is especially interesting since 192 is a
multiple of 24, the number of symmetry rotations in the parent cubic phase.

At this point it should be clear that other habit plane structures can similarly be con-
structed. For instance consider a twin within a twin. For this microstructure one obtains
three equations. One for each twin laminate, respectively, and one for that describing
their connection. This line of thought can be carried on to a twin within a twin within a
twin where the system of coherency equations for an overall compatibility already involves
8 equations. Another, more popular and above all thermodynamically reasonable example
is the so called wedge like microstructure. This microstructure is basically a twin within
a twin, which sharpens on one side to a corner and where each twin laminate additionally
forms an austenite-martensite interface, leading to a system of 5 equations.

Note that the constructive methods above are inherently limited to answering the question
if a material can generally form a self-accommodating microstructure. To quickly rule out
impossible microstructures so called average compatibility conditons or minor relations
(mathematically also referred to as cofactor conditions) have been developed [53].



2. Theoretical description 43

2.6. Energy Contributions

Thermodynamically, phase transformations are described by the free energies (here de-
noted as G) of the participating phases. Note that by convention extensive variables are
denoted with capital letters, whereas intensive variables are denoted with lowercase let-
ters. In this work we study a volume preserving (dV=0) solid state transformation (closed
system), where the change in free energy without a transformation is simply

dG = −SdT (2.24)

where S is the entropy. Commonly, the free energies of the phases taking part in the
transformation are plotted against temperature as linear functions. It is emphasized that
this is only a reasonable approximation in the vicinity of the free energy equilibrium of
the two phases since the free energy function actually is curved. The intersection of the
two curves marks the equilibrium temperature T0 where Ga = Gm. Above (T > T0)
and below that point (T < T0) the phase with the lower free energy is stable from a
pure equilibrium-thermodynamic point of view. In practice, the forward transformation
from austenite to martensite does not take place directly under T0, but only at a certain
under-cooling ΔT = T0 − Ms as illustrated in Figure 2.6. The amount of undercooling is
proportional to a free energy barrier, i.e all additional emerging energies in the wake of the
transformation, here denoted as Eb. Commonly, the free energy barrier is expressed in the
form that the negative free energy change resulting from the formation of a given volume
of a more stable phase is opposed by a positive free energy change due to the creation of
an interface between the initial and the new phase as well as other positive contributions
such as the strain-energies as a consequence of the transformation in solid matter. In
the literature this transformation barrier is commonly termed nucleation energy. At this
point it is mentioned that a phase is called metastable if thermodynamically another phase
should be stable but is not due to a transformation barrier. In the model presented here
the initial state is considered as stress free austenite. A time dependent homogeneous
temperature field is assumed in the whole model. Thus, the energy density − ∫ sdT is
equal in all grains of the same phase. To evaluate an energy minimizing configuration also
all dragging forces must be assigned specific values Eb ⇒ eb. Upon cooling the austenite
phase below T0, gm becomes lower than ga and a specific driving force Δg, acts on the
austenite to change it to the thermodynamically more stable martensite. The moment
the first martensite forms, the amount of driving force is equal to the energy barrier. In
this work the energy barrier is constituted of several interface-energies (IEs) as well as
elastic strain energy as a consequence of the normal eigenstrain of each laminate (Uv) and
a dissipative work of friction for the transformation (Fc) [54] . Contributions to the IE
term are the twin-plane IE (ΓIN), the energy of the austenite-martensite interface (ΣS)
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Figure 2.6.: Free energy curves of austenite (Ga) and martensite (Gm) as a function of
temperature. T0 marks the thermodynamical phase equilibrium. However, in
practice an an additional undercooling is necessary in order to overcome the
transformation barrier

and the twin surface-energy (ΓT W ) [54]. The first two terms are discussed in chapter 4
and the last one in section 3.1. The governing equation of the specific free energy function
for each grain is fully written as:

0 = −Δg︸ ︷︷ ︸
Drivingforce

+ (ΓIN + ΓT W + ΣS)Ai

Vi

+ Fc + Uvi

Vi︸ ︷︷ ︸
Energy barrier

(2.25)

The contribution of IEs to the energy-barrier strongly depends on the coherency of emerg-
ing interfaces, but is comparatively low in martensitic transformations. However, it is
emphasized that IE contributions increase with decreasing grain-size since the surface to
volume ratio increases, hence IEs have to be considered at the nano-scale investigated
here. Note that IEs basically emerge due to misfits in the atomic structure between two
phases. Therefore considering nano-structured materials these misfit energies can be ap-
proximately determined as misfit strain-energies at a near atomic scale if the morphology
and the materials elastic constants are well known, see section 3.1.



3. Model

In this chapter a three dimensional multi-variant model is presented. The model devel-
oped here simulates a purely thermally activated martensitic transformation in a nanos-
tructured NiTi microstructure without any preferred texture. No external loadings are
applied, so no variant selection due to macroscopic stresses or detwinning is expected.
In this work it is also intended to investigate the influence of the grain morphology on
the transformation. To this end a regular and a random grain morphology, respectively,
with different boundary conditions are developed. The evolving strain-energies are cal-
culated by the finite element method and IEs are accounted for semi analytically. After
some manual preprocessing the whole simulation proceeds fully automated only requiring
the Abaqus standard finite element solver and a working python setup. Computational
aspects of this automation are discussed by pointing out programming techniques of the
scripting language Python and its implementation for the finite element software Abaqus.
Finally, considerations regarding the transformation algorithm and the accompanying
meshing issues as well as the pre- and postprocessing are presented.



3. Model 46

3.1. Interface Energy Model

The model for the interface energies (IE) in this work follows [54] and is subsequently
reviewed. First and foremost all interface energies of a specific grain are calculated for
a hypothetical spherical grain with the same volume. After the calculation of a specific
interface energy in [J/m2] it is related to the surface of the volume-equivalent grain and not
to the original surface although it would be possible to implement a quick-hull algorithm
to get the exact surface of a certain grain. However, since the model in [54] is derived for
a spherical grain equivalent sizes are considered. Note that since a sphere has the largest
volume to surface ratio, this approach can be considered a lower boundary of the interface
energy. Also note that although the strain energy dominates the energy barrier, interface
energies should particularly be considered. First in order to obtain more exact results
and second and more importantly because they exhibit a typical grain size dependent
scaling, which explains the suppression of the martensitic transformation at low grain
sizes. In the calculation of the interface energies isotropic elastic constants are considered
also for martensite, which are deliberately set higher (Em = 150, EA = 75 GPa) than the
ones used for the strain energy calculations given in section 4.3 for two reasons. (i) To
partially compensate the smaller surface of the equivalent volume sphere. (ii) To account
for martensite neighbors since in [54] only one grain in an austenitic matrix is considered.
An overview of important IE contributions in this model is visualized in Figure 3.1. The

δ

D = 2d

Γ
T W

Γin

Figure 3.1.: Illustration of IEs: ΓT W is the concentrated strain energy caused by the shear
of the martensite variants at the interface to the austenite matrix. Note
from the left hand side that the shear stresses are symmetric and the normal
stresses are antisymmetric w.r.t to the twin axes. Γin is the low IE at the
twin plane due to an atomic mismatch.

first IE is the surface strain energy ΓT W [J/m2]. Since the strain energy caused by the
opposite shear eigenstrains of the martensite variants in the twin laminate is concentrated
at the ends of the twinned domain near the matrix, it is reasonable to relate the strain
energy part resulting from a pure shear to the surface area of the twinned domain. It can
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be shown that the following relation applies to an infinite twin laminate [54]:

ΓT W = fT W (C)αT W GAγ2
T 2d (3.1)

where γT = 2
√

ε2
13 + ε2

23, GA is the shear modulus of austenite in GPa, which is related
to the Young’s modulus of austenite by GA = EA/(2(1 + ν)), d is the thickness of one
martensite variant in the laminate. Note that in [54] the two variants lamellae are termed
double-twin with the width D. The factor fT W (C) accounts for the elastic contrast C,
which is the ratio of the isotropic modulus in the austenitic matrix to that in the trans-
formed inclusion: C = EA/EM = GA/GM . αT W depends on the Poisson’s ratio and is
for an infinite stack of double twins [54]: αT W = 0.856(1 + ν)/8π. fT W is determined
numerically using FEM from a single lamella inclusion modeled with plane stress elements
and appropriate symmetry conditions on its boundary, obviously sufficient for the case of
a periodic sequence of double twins, by setting ΓT W [J/m2] equal to the inclusion’s strain
energy per thickness of the FEM model UI [J/m3] / t [m].

fT W (C) = UI

αT W GA γ2
T 2 d t

(3.2)

Note that since UI depends on d, fT W is constant for an arbitrarily chosen d. An additional
term on the grain boundary ΣS is considered accounting for the difference of the non-
mechanical IE of the initial grain boundary energy prior to transformation Σa and the
interface energy after transformation Σm (ΣS = Σm − Σa ).
The twin-boundary energy Γin [J/m2] is a size which relates the IE obtained from the
area of all twin-planes in the laminate (Atot(δ)) multiplied by a specific twin-boundary
energy ΣT W [J/m2] to the equivalent sphere’s surface Os = δ2π (m2 ·J/m2 ·1/m2 = J/m2).
After some algebra [54]

Γin = Atot(δ)
δ2π

ΣT W ≈ δ

6d
ΣT W (3.3)

As can be seen from 3.1 and 3.3 the IEs show different scaling behavior with respect to
the lamella width d: ΓT W ∝ d−1 and Γin ∝ d. Obviously, from an energetic point of view
an optimum lamella width dopt can be obtained by a minimization of the energy density.

∂

∂d

(
ΓT W

Os

Vs

+ Γin
Os

Vs

)
= 12

δ
αT W GAγ2fT W (C)d − ΣT W

d
= 0

⇒ dopt(δ) =

√√√√( ΣT W

12fT W (C)αT W GAγ2
T

δ

)
(3.4)

dopt is in good agreement with the experimental evidence. For d = dopt ΓT W = Γin and
the sum of both increases proportional to δ−1/2, thus fulfilling the criterion of a larger
energy barrier to the transformation, as stated introductory.
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3.2. Artificial Microstructure Models

3.2.1. Random Voronoi Tesselation

The first investigated artificial microstructure is generated by the polycrystal generator
"Neper" [55]. It consists of three dimensional Voronoi cells around randomly distributed
points. The so called Voronoi diagram, i.e. the graph of the Voronoi cells, is generated
by a well known algorithm. Note that the Voronoi diagram is dual to the Delaunay
trianglulation, a common algorithm for the generation of a mesh consisting of triangular
faces like that of the tetrahedral element mesh used here. The subsequent mesh generation
additionally uses the gmsh package [56] within Neper. Neper has a lot of useful features
shortly outlined subsequently:

1. Specification of the point distribution for the germs of the Voronoi cells. In work
presented here a Poisson-Voronoi tesselation is used resulting from randomly cho-
sen positions of the germs. Alternatively Neper can generate a wide variety of
microstructures such as so called Hardcore Voronoi tesselations, Centroidal Voronoi
tesselations and Laguerre Voronoi tesselations [57].

2. Creation of free or structured mesh types for linear and quadratic shape functions

3. Statistics on the generated structures

4. Definition of characteristic mesh lengths for certain regions, including the definition
of a biased mesh.

5. An option to select grains that lie a certain number of grains (x) under the surface.
This means that from such a grain the shortest path to the surface crosses at least
x grains.

The last two points were combined to generate a refined mesh in the region of the trans-
forming grain cluster and a coarser mesh for the region far away from it. This is done to
keep the overall node and element number low enough so that the calculation time for one
transformation is reasonable, since many such calculations have to be performed to find
the energy minimum for each transformation state as is explained in subsection 3.5.2. The
matrix of outer grains, which is not evaluated, is modeled in a self-consistent framework
described in section 3.3. Figure 3.2 shows the full cubic matrix, a view cut of it and the
inner evaluated grain-cluster constituting the representative volume element (RVE). The
average grain size of the generated grain-cluster is ≈ 80nm equivalent-volume sphere’s di-
ameter. The grain size frequency distribution is approximately normal-distributed. The
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Figure 3.2.: a) cubic matrix with coarse outer mesh. b) view cut of a). c) extracted
representative volume element (RVE) of clustered grains with a finer mesh.

volume of the largest grain is about 8 times larger than that of the shortest grain, result-
ing in an equivalent sphere diameter, which is only twice as large. Therefore, the grain
size frequency distribution spans an interval from about 50 to 100 nm equivalent sphere’s
diameter. The nanograined NiTi microstructure reported in [35] reveals a broader grain
size distribution in an interval >100 nm starting at the small grain size of 15 nm. There-
fore, the artificial microstructure misses especially very small grains observed in a real
microstructure. Nevertheless, the generated microstructure morphology is quite realistic
and since the transformation is reported to be dominated by larger grains [35] the model
seems justified.
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Figure 3.3.: Grain size frequency distribution of the random Voronoi microstructure. Note
that this distribution is narrower than in a real microstructure like the one
reported in [35]

3.2.2. Regular Tessellation of Truncated Octahedra

Beside the random microstructure also a regular one is created due to two reasons:
(i) For a regular tessellation periodic boundary conditions (PBCs) can be developed.
PBCs are desirable to accurately predict the strain energy development inside a bulk.
Defining PBCs is not possible with Neper, at least not for a tetrahedral mesh. For details
on the PBCs see section C.2.
(ii) IEs become relevant for the selection of the transforming grain since they are equal
for all grains. Hence the free energy barrier is purely controlled by the strain energy.
The goal is to fill the three dimensional Euclidean space with one kind of a polyhedron.
Among all convex polyhedra (only confined by regular polygons) only a few are space-
filling e.g. a cube, three- and six-sided prisms, truncated octahedra and the rhombic
dodecahedron. These polyhedra are congruent to their symmetric copies and are therefore
said to be cell-transitive or isochoric, as already explained in 2.1, a property which makes
them space-filling polyhedra. In geometry, such a space filling or close packing of three
dimensional solids leaving no gaps, with flat faces and straight edges (polyhedral), is also
called a honeycomb. It is furthermore called a uniform honeycomb if it is composed of
only one uniform polyhedral cell. In this model a RVE consisting of truncated octahedra
is used. The truncated octahedron is the Voronoi diagram of the bcc cubic lattice. Beside
the truncated octahedron honeycomb the rhombic dodecahedron honeycomb is a popular
example since it represents the Voronoi diagram of the face-centered cubic sphere-packing,
which is the densest possible packing of equal spheres in three dimensions. A space filling
cell of truncated octahedra is illustrated in Figure 3.4 consisting of two linear tesselations
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of truncated octahedra interlocked into each other, similar to the simple-cubic sub-lattices
of Na and Cl, respectively, in a NaCl lattice.

Figure 3.4.: Space filling RVE of truncated octahedra representing grains of a regular
microstructure

The characteristic length of the tesselated truncated octahedron is calculated again by
means of an equivalent-volume sphere with the characteristic average grain diameter of
80 nm as for the random Voronoi microstructure. Note that this is nearly equal to the
average of its midsphere and inscribed sphere’s radius due to the highly symmetrical
structure of the truncated octahedron.

3.3. Self-Consistent Matrix

At a first glance a belt of transforming grains around the evaluated cluster of grains seems
to be a suitable boundary assumption for the random Voronoi microstructure. However it
is not clear which and when a grain in the boundary belt should transform. Also adding
the boundary belt to the calculation of the overall energy minimum is not advisable since
only a limited inner cluster of grains can be evaluated within reasonable computation
times. Therefore, for this kind of RVE a self-consistent embedding in analogy to classical
micromechanics is used. More precisely, the matrix surrounding the grain-cluster is given
the average properties of the RVE. This means that from the anisotropic elastic constants
related to each grain’s local random orientation the grain volume weighted average of the
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local elastic tensor is calculated for the whole RVE.

Cave = 1
Vges

N∑
i=1

ViCi
(3.5)

The terms C
i

in (3.5) are the elastic tensors of each grain respectively expressed in the
global coordinate system. The general equation for the rotatin of a fourth order tensor
in index notation using Einsteins summation convention is:

Cijkl = TimTjnTkpTlqCmnpq (3.6)

where the matrix T maps the local coordinate system to the global one. T generally can be
obtained by describing the initial coordinate system in the new one. Then T is the matrix
of prefactors (also known as directional cosines). Hereby, the definition of the directional
cosine via the dot product should be recalled. In this model Eulerian angles are used
to define T . Generally, Eulerian angles are used to correlate two orthogonal coordinate
systems with a common origin, where the transformation from one coordinate system into
the other is achieved by a series of plane rotations. The rotations are performed about
coordinate system axes generated by the previous rotation step. This transformation
however is not unique. There are exactly six different ways of selecting the order of the
three different axes. Here in the order was chosen to be z1, y2, z3 resulting in rotation
matrices of the general form:

Figure 3.5.: Visualization of the three plane rotations and their corresponding Eulerian
angles for the here chosen order of plane rotations describing the coordinate
transformation.

T = Rz1(α)Ry2(β)Rz3(γ) =

=

⎛
⎜⎜⎜⎝

cos(α) sin(α) 0
−sin(α) cos(α) 0

0 0 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

cos(β) 0 −sin(β)
0 1 0

sin(β) 0 cos(β)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

cos(γ) sin(γ) 0
−sin(γ) cos(γ) 0

0 0 1

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

cos(α)cos(β)cos(γ) − sin(α)sin(γ) sin(α)cos(β)cos(γ) + cos(α)sin(γ) −sin(β)cos(γ)
cos(α)cos(β)sin(γ) − sin(α)cos(γ) −sin(α)cos(β)sin(γ) + cos(α)cos(γ) sin(β)sin(γ)

cos(α)sin(β) sin(α)sin(β) cos(β)

⎞
⎟⎟⎟⎠
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Recalling Einsteins summation convention, from (3.6) it is straightforward to program
the rotation element wise (see section E.5). In the simulation the self consistent matrix
properties are recalculated in each increment. Although no stresses are introduced by
the self consistent matrix into the grain-cluster RVE, the difference of overall generated
stresses in the RVE due to hardening in the matrix nevertheless is significant because of
the high difference of stiffness between martensite and austenite.

3.4. Comparison of Microstructures and Boundary
Conditions

The regular morphology of truncated octahedra actually simplifies the calculation proce-
dure, because the evaluated properties do not have to be weighted by the volume since
it is equal for all cells. On the other hand random Voronoi cells are geometrically more
realistic than the regular tesselation. However, the evaluation is not as straight forward
because all energy densities have to be weighted by their individual grains volumes. As
stated above PBCs are desirable, since the self-consistent matrix does not transfer the
stresses realistically from outside the RVE. However, these stresses are significant for the
in-bulk behavior. Note that this is especially important in this work because of the high
surface to volume ratio as a consequence of the very small RVE size. Note that the mesh of
the periodic RVE and the here specified boundary equations can be used in other models
as well. On the other hand, it is more difficult to generate a periodic mesh and in further
consequence apply PBCs to its boundaries. The advantage of the self-consistent scheme
is that it can be applied to any mesh, which simplifies the preprocessing of the geometry.
Both models, PBC and embedded RVE, represent boundaries for the energy calculations
bracketing the energy found in realistic microstructures.
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3.5. Computational Aspects

3.5.1. Python Tools and Abaqus Phyton

Scripting is a powerful tool that enables to combine the functionality of the Graphical
User Interface (GUI) of Abaqus called “CAE” and the power of the programming lan-
guage Python [58] [59]. Python is a general-purpose, high-level programming language,
emphasizing code readability. Therefore it is the language of choice for scripting espe-
cially for non professional programmers. In Abaqus, scripting is used mainly to perform
a repetitive task to save time. Using the Abaqus GUI and an editor for Python a script
is developed the following way: First a .mdb file (model database) must be created us-
ing CAE. Every operation carried out in CAE is written to a file with the ending .jnl
(journal) in the Python script language at every file-save in CAE. This file then is used
to create a Python script with the file extension .py. A Python script file can be run
directly in CAE via “FILE” - “Run script” or on the command line by typing “abaqus
python scriptname.py”. Also the automation of processing data from the generated *.odb
(output database) file can be achieved using a script. However, in the case of reading spe-
cific data the GUI is not that helpful any more because the user has to familiarize with
the highly hierarchical object structure (called Abaqus object model). Abaqus .odb and
also .mdb files are organized as is briefly outlined in section B.2. For using the Abaqus
scripting interface to access an output database, it is necessary to understand how an
Abaqus analysis writes data to the output database as well as the difference between field
data, history data, and model data. Also there are several levels at which output data
can be written ranging from the integration point level, via an element and element set
level, to the level of the whole model. However, some properties are only available at
an integration point level. Therefore it is necessary to make weighted averages if these
properties are requested at a higher level as is done in section E.3. In the “Scripting
Reference Manual” of the Abaqus documentation [60] an overview of all objects can be
found. In this work the Abaqus Python interface is only used for an automatic evaluation
of the results, so that no model data is manipulated using the Abaqus Python interface.
Python is used to modify model data by automating the creation of new slightly modified
input-files depending on the results of previous calculations. The manipulation of input
files via scripts is preferred in this case because the transformation algorithm requires a
huge amount of similar jobs to be calculated, which is achieved more efficiently by parallel
computing outside CAE only invoking the Abaqus solver. Related commands for input
files are found in the “Abaqus Keyword Reference Manual” of the Abaqus documentation
[60].
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3.5.2. Transformation Algorithm

The key features of the RVE model can be briefly summarized as follows:

• The polycrystal is approximated by a RVE of many polyhedra constituting the
entire polycrystal.

• The grains are small enough so that only a single laminate martensite morphol-
ogy will appear in the grains upon transformation. Since experimentally only six
laminates are observed only these are considered within this model, where each lam-
inate is represented by its averaged eigenstrain and compliance as is elaborated in
section 4.1 and section 4.3 respectively.

• The crystal lattice is oriented randomly in each grain. This means that the anisotropic
elastic constants obtained from ab initio calculations are assigned to each individual
coordinate system.

• Surface and interface energies are accounted for (semi-)analytically.

Given the above conditions it is not possible to determine a priori which transformations
result in the lowest specific transformation barrier ebmin

that in turn minimizes the specific
free energy Δg of the whole system (=RVE). The main problem is that the contribution
of the elastic strain energy uvi = Uvi

Vi
to eb plays a major role and it is not clear how to

(if possible at all) reliably predict uvi and consequently that specific grain-laminate pair
which minimizes the next energy increment. This is outlined in section 5.1. Obviously a
strain energy minimum can be found by calculating all combinations of micro structural
possibilities for a certain fraction of transformed grains and then choosing the minimum
from all these results. However, such an approach would (i) not be efficiently calculable
because of the immense number of necessary jobs (calculable by means of combinatorics)
and (ii) it would not produce a realistic dynamic evolution of the product phase. Therefore
an algorithm must be developed which efficiently and realistically minimizes the free
energy upon transformation while keeping the total number of calculations low enough.
An incremental approach is chosen, where only on grain is subject to transformation
within the increment. However, in this increment Uvi is explicitly calculated for all not-
transformed grains and their laminates using the finite element method. Then the grain-
laminate pair with the lowest ebmin

minimizing the systems Δg is picked out and represents
the energy minimizing state of this increment. Note that the increments correspond to
the transformation of one grain respectively but should not be associated with a time as
is elaborated in section 5.3. This procedure is repeated until all grains of the RVE have
transformed, see Figure 3.6.
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Step 2: Evaluate the 
grain and variant 
combination that 

leads to a minimal 
increase of the 

systems free energy 
density

Step 3: Generate a 
new inputfile with 
an additional fixed 

grain and set 
i = i +1

Step 1: Calculate all
(n - i) v

possibilities a 
further grain could 

transform in the RVE

Figure 3.6.: Illustration of a transformation increment. In a transformation increment
one energetically favorable martensite grain is chosen to transform. This is
repeated until a full martensitic state is reached. n...total number of grains in
the RVE, i...number of already transformed grains, v...number of martensite
laminates

Denoting the total number of grains in the RVE n, the number of already transformed
grains i and the number of martensite laminates v the total number of calculations carried
out in the above procedure is ∑n

i=0(n − i)v � (n + 1)n
2 v. However, this number can

significantly be lowered by preselecting grain variant combinations that are known to be
more likely to transform from previous calculations because they are not too far away from
the current transformation site. In the algorithm here presented there are two parameters
describing the degree of preselection. First, the fraction of all possible states representing
the grain-laminate combinations that are more likely to transform and second the number
of increments that are carried out using that preselected set. Based on the results from a
full analysis where all (n − i)v possibilities have been calculated in each increment these
parameters can be estimated. Using the estimated preselection parameters the number of
necessary calculations is one order of magnitude less then without using any such strategy,
while it has been verified that the results are identical.
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3.6. Preprocessing and Mesh Optimization

In this section the mesh preprocessing of the random and regular microstructures are
discussed as the mesh plays a very important role considering computation time as well
as validity of the calculated strain energies. Also the creation of some text files which are
fixed parts of the input-files as well as the input-file’s general structure and dynamically
rewritten parts are discussed. At the end, specifications of simulation parameters in the
code are given.
Since the whole model is defined on a nanoscale all lengths are considered in nanometers.
Note that Abaqus has no built-in system of units. Therefore all input data must be
specified in consistent units. In section B.1 the system of consistent units on the nanoscale
considered here and some relations to other useful units are given. In both the regular
and the random microstructure model tetrahedral elements with quadratic shape functions
are used (C3D10) in a nonuniform mesh with elements of slightly different size. However,
much effort is spent on generating a nearly uniform mesh. Tests indicated that for a
proper selection of grain-laminat pairs it is sufficient to run the algorithm described in
subsection 3.5.2 with a relatively coarse mesh. This is crucial because the time for the
high number of calculations necessary in the algorithm to find a realistic minimum of the
free energy can be significantly reduced since the computation time scales quadratically
with the number of elements. However, to obtain proper values for the strain energy the
determined sequence of grain-laminate pairs is recalculated with a very fine mesh ensuring
a valid result for the strain energy.
First, the creation of the regular RVE is elaborated. It is completely accomplished using
CAE. For the construction of a truncated octahedron it is emphasized that it is the
Voronoi diagram of the b.c.c cubic lattice.After meshing, the necessary node-sets for the
periodic boundary conditions according to Figure A.2 must be selected manually. Then,
in order for the periodic boundary conditions to be written for the node-sets, the sets
must me ordered so that matching nodes are at the same position in the nodeset, which
is achieved using another python script that sorts each node-sets for the coordinate it has
the largest dimension in.
As previously mentioned, for the creation of the random micro structure the software
"Neper" is used. The exact execution parameters for the coarse and for the fine mesh
respectively can be found in Appendix D. The output from the polycrystal generator is
modified partially manually and partially via a python script, which uses the information
of a generated statistics file to rename the generated element sets to matrix sets and inner
connected grain sets constituting the evaluated grain-cluster RVE. After renaming the
matrix sets are easily combined and rewritten using CAE.
In both cases the results of the mesh preprocessing, which are the nodes, elements and
sets of either are written together with a set of randomly generated orientations into a file.



3. Model 58

This file is the first part of every input-file during a full simulation and therefore termed
the "static" part of the input-file. Other static input-file sections saved in separate text-
files are the material data and job specific data or in the case of the truncated octahedra
RVE the periodic boundary equations. All these can be found in Appendix C. Figure 3.7
provides an overview of static and dynamic input-file sections. Finally, the parameters
for the simulation, i.e. the names of the static files as well as the boundary conditions
have to be specified at the beginning of the main script found in section E.1.

Figure 3.7.: Overview of static and dynamic input-file sections. Each static section is
saved in a seperate textfile, that does not change during the whole simulation.
Parts of the input-file are dynamically rewritten in each increment of the
simulation based on previous results.

3.7. Postprocessing

In this work the postprocessing of the simulation is limited to the evaluation of the gen-
erated text-files. For the main simulation these are: save_grain, save_model, allruns_n
where n is the increment number. The first two hold only the information of the en-
ergy minimizing state determined in each increment for the evaluated grain-laminate pair
and for the whole model, respectively. The file allruns_n holds the information of all
calculations carried out in the increment n. save_grain holds the volumes and specific
energies that are strain energies as well as IEs for the energy minimizing grain-laminate
pair, whereas save_model holds cumulative data of volumes and energies, i.e. the frac-
tion of austenite and martensite respectively as well as the sum of energies in the whole
RVE. Note that always volumes and either a specific or total energy corresponding to
that volume is saved so that that third component can be calculated easily for weighting
purposes.
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4.1. Transformation Strains

In this section the strain energy calculation of transformation strains used as input for
the finite element calculation of Uv is discussed. Note that in the model here presented
the transformation strain is applied as anisotropic thermal expansion in the finite element
program. Experimentally it is observed that a single laminate structure of two martensite
variants is the dominating morphology in nanograined NiTi with grain sizes under ≈
100nm. The experimentally observed laminate structures consist of certain compound
twins, with an average variant fraction of μ = 0.5 and an average variant width of d ≈
1.5nm. Therefore, not all theoretically possible laminates consisting of two twin variants
Ui, Uj according to subsection 2.5.1 are considered in this model, but only those observed
experimentally. Note that μ ≈ 0.5 is only observed for a purely thermal transformation.
This no longer hold if an external load provides additional driving force. For the multi-
variant model to be efficiently calculable the transformation strains of the martensite
variants forming a laminate were averaged resulting in the transformation strain of the
entire laminate. It is hence not necessary to resolve single variants in the FE discretisation.
The lost information of the effects of the opposing shear strains is taken care of by ΣT W . In
Table 2.1 the deformation gradients Fi, Fi′ forming a laminate can be found. Interestingly,
the six observed laminates consist of all 12 unique deformation gradients possible in NiTi.
Since for NiTi in a purely thermal transformation μ = 0.5 the average or mean deformation
Fm then is:

Fm = 0.5(Fi + Fi′) (4.1)

The general Green - St-Venant or Lagrangian finite strain tensor E is used, because in
the non linear theory large rotations can be accounted for and the twins modeled here
are rational (hence generic).

E =

⎛
⎜⎜⎜⎝

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎞
⎟⎟⎟⎠ = 1

2

(
FTF − I

)
(4.2)
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However, Abaqus interprets expansion strains as enginerring strains. It was verified that
the shear components of E are only slightly different from those calculated by the lin-
earized small strain theory. Therefore, as a first approximation the shear terms εij are
set equal to those in the small strain theory where the tensorial shear strain components
of the strain tensor can then be expressed using the linearized strain definition: εi = ∂ui

∂xi

and γij = γji = ∂ui

∂xj
+ ∂uj

∂xi
. The results of the averaged laminate strains are shown in

Table 4.1.

Table 4.1.: Symmetric deformation tensors (transformation strains) of the martensite vari-
ants. Note that Abaqus uses the engineering strain definition for anisotropic
expansion.

εi
t

ε1
t

ε2
t

ε3
t

ε4
t

ε5
t

ε6
t

ε11 0.0234 0.0234 0.0234 0.0234 -0.0381 -0.0381
ε22 -0.0381 0.0234 -0.0381 0.0234 0.0234 0.0234
ε33 0.0234 -0.0381 0.0234 -0.0381 0.0234 0.0234

γ12 = 2 ε12 0 0.1186 0 -0.1186 0 0
γ13 = 2 ε13 -0.1186 0 0.1186 0 0 0
γ23 = 2 ε23 0 0 0 0 -0.1186 0.1866

4.2. Interface Energies

In this section the values used for the IE model described in section 3.1 are given. A
value of Fc = 5.8 · 106 J/m3 = 5.8 · 10−12 nJ/nm3 of the irreversible work of friction was
taken from the measurements of the thermodynamics of the transformation of coarse-
grained NiTi [61]. However, it is known that Fc has to be much higher in nanograined
NiTi, consequently the above value is only a lower bound. Experimentally an irreversible
energy of 3 J/g was measured for an estimated maximum fraction of 64% martensite
using differential scanning calorimetry (DSC) [35]. Considering the density of NiTi being
6.45 g/cm3 and assuming the work of friction as the only irreversible dissipated energy
contribution yields an Fc of (1.935 · 107)/0.64 J/m3 ≈ 3 · 10−11 nJ/nm3 which would
be about 5 times higher than in coarse grained NiTi. Note that Fc does not change
the transformation kinetics but only the onset of the transformation, thus the results
can be compared afterwards for both values as is discussed in section 5.5. For ΣS a
slight increase of 0.1 J/m2 = 0.1 · 10−9 nJ/nm3 was estimated, since it is supposed
that the transformation causes misfit at the grain boundary, thus Σm > Σa. ΣS can
only be provided with high uncertainty and must therefore be treated as open parameter
in the model. However, ΣS must not be greater than 0.4 · 10−9 nJ/nm2. A specific
twin-boundary energy ΣT W of 0.014 J/m2 = 0.014 ·10−9 nJ/nm2, was calculated by first-
principle calculations of atomic models of compound twins, based on HRTEM experiments
[62].
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4.3. Elastic Constants

Previous investigations of the stored elastic strain energy in NiTi nano structures using
isotropic material data and a single grain morphology [41] underestimated the experimen-
tally measured elastic strain energy for two reasons. First, the isotropic Young’s modulus
of martensite obtained from tensile experiments differs quite strongly from NiTi B19’ real
elastic constants due to detwinning effects influencing the measurement as is explained in
subsection 1.1.2. Second, the effect of accommodation (also explained in subsection 1.1.2),
which is considered to be of great importance is not captured using a single grain model.
As a remedy, a set of fully anisotropic elastic material constants (inverse compliance ten-
sor) for the B19’ phase is computed by DFT (Density functional theory) [45] in an ordered
NiTi phase and given in Voigt notation (4.3). An overview of the full elastic tensor of all
81 entries corresponding to 13 independent constants in the case of a monoclinic system
(21 in the most general case of a triclinic system) can be found in appendix E.4. The
calculated constants were compared to two other sets recently published by Wagner and
Windl [63] as well as Hatcher [64], where the elastic constants of the different phases
were calculated using pseudo-potential and FLAPW (full potential linearized augmented
planewave). Possible shortcomings of these works are the lack of lattice relaxation [45].
Interestingly in both works softening of the elastic constants during the forward marten-
sitic transformation is a result of the ab initio studies [63, 64]. Insignificant differences
regarding the constant’s absolute values are observed. The ab initio elastic constants
used here for B19’ are given in the coordinate system of the tetragonal cell as is shown in
Figure 2.4 a). In general, crystal properties like elastic properties are expressed by a ma-
trix, depending on the choice of both the crystal axes and the Cartesian reference frame.
Therefore, comparison of calculated elastic constants with results of other calculations or
experimental data is only possible provided the chosen crystal axes and reference frame
are identical. In [45] the orientation of the monoclinic cell of martensite was chosen such
that the unique axis c lies along Z and γ is associated with the angle between +a and +b
(see also subsection 2.4.1). The elastic constants matrix for any monoclinic phase then
has the general form: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• • • 0 0 •
• • 0 0 •

• 0 0 •
• • 0

• 0
•

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where • are non zero entries. This general form for the martensite was calculated to be:

Cm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

254 104 136 0 0 21
180 151 0 0 0

248 0 0 −6
91 −3 0

93 0
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

GPa (4.3)

Below, the general convention of elastic constants in Voigts notation used in Abaqus is
shown. It is mentioned that it is a little different to what is commonly found in literature,
where the index pairs 23 and 12 are interchanged.

Cijkl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133 C1112 C1113 C1123

C2211 C2222 C2233 C2212 C2213 C2223

C3311 C3322 C3333 C3312 C3313 C3323

C1211 C1222 C1233 C1212 C1213 C1223

C1311 C1322 C1333 C1312 C1313 C1323

C2311 C2322 C2333 C2312 C2313 C2323

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

GPa

The fact that the entry C2223 = C26 in Cm is zero is not due to some symmetry but is
only a result of the ab initio calculation. For the austenite phase it is not reasonable to
use ab initio values yet, since most of the calculations are still carried out at 0K. At this
temperature the austenite phase would be unstable, causing the calculation to yield unrea-
sonable results. Moreover, B2 is a cubic phase with very weak anisotropy because of the
high cubic symmetry, which makes isotropic data a very close reasonable approximation.
Additionally, for temperatures notably above Ms stress induced martensite, which would
otherwise lead to a misinterpretation of the Young’s modulus, is no longer expected. The
isotropic Youngs modulus was determined as 65 GPa and a Poisson’s ratio of 0.4 was used
in agreement with works by Fukuhara et al. [65] as well as Mei et al. [66]. Finally the
austenite was assumed to be stress free prior to transformation.

To compare the anisotropic elastic constants for B19’ to isotropic ones from literature the
script written for the micro-mechanical self-consistence scheme was adopted to a higher
number of random orientations (106) as compared to the RVE investigated here (100-
200) in order to improve the averaging of the anisotropic compliances as is explained
in section 3.3. In order to obtain isotropic reference values (Youngs modulus (E) and
Poissons ratio (ν)) for the martensite the so obtained elastic tensor Cm

ave given below is
compared to the isotropic representation of Hooke’s law, given in Equation 4.4. A system
of two equations obtained by equal entries of the general and averaged elasticity tensors
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must be solved for E and ν.

Cm
ave

=

⎛
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255 120 112 0 0 7
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⎞
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⎛
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= E

(1 + ν)(1 − 2ν)

⎛
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1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
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2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.4)

Following this procedure the elastic constants are determined as Em = 110 GPa and
νm = 0.33 for B19’ martensite. Common values of Youngs modulus from literature
are in the range of 55-80 GPa for austenite and 25-45 GPa for martensite. Obviously,
the data calculated above for martensite suggests that martensite is actually the harder
phase. It even differs by a factor of 3-4 from common literature values. However, it is
pointed out that DFT calculations yield ground-state properties of materials at 0K, such
that temperature effects are not taken into account, hence elastic constants are usually
overestimated. However, it is assumed that the tendency of martensite being harder than
austenite is correct and that the effect of detwinning in the martensite phase described in
subsection 1.1.2 is responsible for the much lower measured values obtained from literature
[63].

For the simulation the elastic tensor Cm in (4.3) was averaged the same way as the
transformation strains. Therefore, it was first rotated into the cubic austenite basis by a
clockwise rotation around Y in Figure 2.4 a). Then Cm is referred to the same coordi-
nate system as Fa or Ua (subsection 2.4.3). Next, the rotations in the cubic symmetry
group relating Fa and Fi, F′

i, respectively, are determined. Note that since there are two
rotations R in the cubic symmetry group relating Fa to Fi there are four combinations of
rotations that describe the laminate Fi, F′

i. It was verified that all four so obtained aver-
aged elastic tensors are equal within a tolerance < 10 GPa. All averaged elastic laminate
tensors can be found in appendix C.1.



5. Results and Discussion

In this chapter the obtained results are discussed and compared to other models as well
as experimental data. First, the IEMTA is compared to other transformation strategies.
Second, the energy evolution is discussed at the grain scale, which must be considered
for the transformation criterion and the RVE scale from which averaged macroscopic
quantities can be derived. Then the importance of the strain energy contribution to
the free energy is emphasized and discussed. Next, a transformation kinetics is derived
from the results of the simulation, followed by a discussion on the impact on varying
model parameters such as some IE parameters. Finally, the amount of the experimentally
observed retained austenite is discussed. It is pointed out that in this chapter the results
of the regular microstructure RVE with periodic boundary conditions (PBC ) and the
random microstructure RVE embedded in a self consistent matrix (ESCM ) are presented
and compared to each other.
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5.1. Comparison of Transformation Strategies

In this section the effectiveness of the incremental energy minimization is demonstrated.
To this end, two alternative transformation strategies are introduced: (i) A random trans-
formation is considered, where “random” means that for a certain number of grains, which
are determined to transform, the grain and the laminate are chosen arbitrarily. In further
consequence this transformation strategy is termed random toggling. (ii) Prior to the
IEMTA, as a first approach to avoid the still high number of calculations necessary in the
IEMTA, an incremental transformation strategy, based on a local transformation criterion
(LTC) has been considered. Here in each increment the transforming grain-laminate pair
is determined from the current state of the RVE in the following way: First, each grain
is assigned an averaged stress tensor 〈σi〉 (average over all its integration points see sec-
tion E.3). This effective stress tensor is considered in combination with the 6 calculated
transformation strains εi

t
to define the transformation driving force 〈σi〉 : εi

t
. Considering

all IEs, the grain-laminate pair fulfilling max[〈σi〉 : εi
t
− (ΓIN + ΓT W + ΣS)Ai

Vi
] is chosen

to transform in each increment. The evolution of the strain-energy density following this
transformation criterion compared to random toggling is shown in Figure Figure 5.1. For
a better illustration of this transformation criterion, the curve of the RVE’s strain energy
density (black) is additionally split up into the martensite (blue) and austenite (red) phase
respectively. A comparison of the black line with results from a random toggling (black
points) shows that the transformation criterion based on the mechanical driving force
is not sufficient to predict a transformation evolution that accommodates the evolving
strain energy best, because it lacks important information from outside the grain domain
considered in the LTC, e.g. which phases are the nearest neighbors of a certain grain or if
the neighboring grains are orientated advantageously, such that they are deformed more
easily. Looking, at the strain energy evolution in each phase, it can be seen that at lower
martensite fraction the strain energy is much higher in the martensite phase and much
lower in the austenite phase compared to a random transformation. Obviously, the for-
mation pattern of the martensite using this transformation criterion is an agglomeration
of the evolving martensite phase, where the martensite forms a growing cluster of grains.
If the IEMTA is used, however, there is no agglomeration of the martensite phase, but a
network-like growth, where in the early stages of the transformation the martensite forms
a net of connected martensite variants around yet untransformed austenite regions as can
be seen in Figure 5.2. Note, that this effect is better illustrated in the PBC model because
of the limited RVE sizes. In any case, the explicit calculation of the arising strain ener-
gies is considered necessary after this comparison. Next, the results of the strain energy
minimization using the IEMTA are presented. As can be seen in Figure 5.4 the IEMTA
reduces the arising strain energy significantly compared to the random toggling.
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Figure 5.1.: Comparison of the strain-energy evolution for the LTC (lines) and random
toggling (points). The first leads to a strong agglomeration of transforming
grains, hence the strain energy increases faster in the martensite phase than
in the random toggling. From the black line it can be seen that with this
transformation criterion the strain energy is not better accommodated than
by means of a random toggling.
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Figure 5.2.: Illustration of the evolution of martensite in the PBC model, consisting of 128
grains. The numbers indicate how many grains have transformed. From the
upper states it can be seen that the martensite forms a network of connected
grains which has already spread over the entire RVE for a martensite fraction
of about 30%. Note that grains at the border are connected by the PBCs.
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Figure 5.3.: Illustration of the evolution of martensite in the ESCM model, consisting of
170 grains. The numbers indicate how many grains have transformed. From
the upper states it can be seen that a network-growth is present but less
pronounced than in the PBC model since the self-consistent matrix does not
transfer stresses from outside the RVE.
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Figure 5.4.: Comparison of the strain energy evolution for the IEMTA and the random
toggling. a) PBC model b) ESCM model. In both models, using the IEMTA,
the produced strain energy density is reduced by one third compared to the
random toggling.
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5.2. Energy Evolution

First, the calculated energies are locally investigated at the grain level, since at this level
the transformation criterion is defined. In Figure 5.5 the calculated minimal energy bar-
riers ei

bmin for each transforming increment and their compositions are visualized for the
ESCM. It can be seen that the strain energy constitutes the main portion of the trans-
formation barrier, even larger than the sum of all other contributions. Considering the
high influence of the strain energy, obviously the martensitic transformation is facilitated
at free surfaces, because there strain energy is lower. Furthermore, the contribution of
the strain energy to the energy barrier increases on average as the transformation pro-
ceeds. This means that the strain energy is mainly responsible for the transformation
rate to decrease as the transformation proceeds contrary to the common assumption in
the literature, that the transformation is suppressed for smaller grains mainly because of
their higher IE. This discussion is continued in section 5.6 where the input parameters
for this model are discussed. Another noteworthy fact is that the transformation barrier
is not necessarily monotonously increasing with progressing transformation. This will be
important in the subsequent two sections.

Figure 5.5.: Illustration of the contributions to ei
bmin for the determined energy minimiz-

ing sequence of grain-laminate pairs in the ESCM. The yellow bars indicate
the contribution of all IEs and the stacked purple bars the contribution of
the strain energy. It can be seen that (i) the strain energy contribution is
dominating and (ii) grows on average in the course of the transformation.
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Now the calculated energies are investigated at the RVE level. A new variable em is
introduced representing the sum of all arising IEs and strain energies due to the martensite
transformations relative to the total RVE volume. In Figure 5.6 this variable is plotted
versus the martensite fraction. Experimentally, a value of ≈ 5 J/g reversible strain energy
is measured using DSC at an estimated maximum of 64% martensite [35]. Considering
the density of NiTi (6,45 g/cm3) this yields a value of about 32 J/cm3. Then it has to
be considered that the IE term ΣT W actually represents the shear related part of the
strain energy. ΣT W accounts for about 35% of all IEs with the parameters used here (see
section 4.2). From Figure 5.4 a) it can be seen that for 64% martensite phase the strain
energy density of the PBC RVE is 40 J/cm3, while em is 58 J/cm3 according to Figure 5.6.
The difference of 20 J/cm3 is obviously attributable to IE terms. However, 65% of these
20 J/cm3 i.e. 0.65 · 20 = 13 J/cm3 are non-mechanical IEs, which must be deducted in
order to make it comparable to the experiment. Consequently, for a martensite fraction
of 64% the found strain energy for the PBC model is 58 − 13 = 45 J/cm3. For the
random microstructure likewise an additional IE of about 13 J/cm3 has to be considered,
yielding a strain energy of 50 − 13 = 37 J/cm3, which comes close to the experimentally
measured value. The fact that both results are greater than the experimentally measured
value indicates that the elastic constants from ab inito are overestimated. Assuming that
the behavior of a realistic microstructure can be found between the two models the strain
energy and consequently the elastic constants are probably overestimated by 20%.
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Figure 5.6.: Illustration of the total energies eb versus martensite fraction evolving in the
course of the transformation.a) PBC model. b) ESCM model. The experi-
mentally measured value of reversible strain energy [35] is near the value in
the ESCM model.
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5.3. Stress Influence on the Transformation

The initial minimum energy barrier in Figure 5.5 is about 90 J/cm3. If the specific
driving force has reached that level, i.e. −Δg = ebmin, the first transformation occurs.
Since it is well known that the velocity of a martensitic transformation is only limited by
the speed of sound, it occurs much faster than any change of Δg(T ) necessary to cause
another thermally induced transformation elsewhere in the material. The following case
is observed: Some transformations cause an advantageous stress field, meaning that the
induced stress field partially annihilates existing stress fields of previous transformations,
consequently reducing the produced strain energy uvi. In some cases this even causes
ei+1

bmin < ei
bmin as pointed out in the previous section. Therefore in the next increment this

grain automatically transforms without any further increase of Δg. It has to be pointed
out that in an increment of the IEMTA there could be several grains for which this holds
true. The transformation is said to be self-triggering. Note that since self-triggering is a
consequence of an energy minimization, it also reflects the ability of self accommodation.
So far a martensitic transformation proceeds under isothermal conditions. However, since
the energy barrier increases on average, at some point it is again necessary to further
increase Δg (i.e. to apply further cooling in the case of the forward transformation) in
order to trigger further transformation. Note that the necessary Δg to start the first
transformation ( ≈ 90 J/cm3) is larger than the interval of the transformation itself
(≈ 80 J/cm3). The results of the simulation are shown in Figure 5.7 and Figure 5.8 for
each model.

Figure 5.7.: Illustration of self-triggering for the PBC model. After the transformation
has started the arising stress field causes an autocatalytic transformation until
there is more martensite than austenite. The red points indicate the levels of
chemical driving force that have to be reached to cause further transformation.
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Figure 5.8.: Visualization of the process of the minimum free energy barrier for the found
grain using the IEMTA in the ESCM model. Exemplary levels of chemical
driving force and the according martensite fraction are indicated.
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5.4. Transformation Kinetics

According to Figure 5.8 every increment in driving force Δg creates a certain number
of new martensitic grains thus increasing the overall martensite fraction. Plotting this
fraction versus the invested driving force Δg yields the transformation kinetics from an
energetic point of view as illustrated in Figure 5.9. For the PBC model the self-triggering
effect in the initial state is more pronounced, because the boundary condition enables
transformation triggering in all directions starting from the initial nucleation site, whereas
for the ESCM model the triggering effect is only obtained in one direction for grains next
to the matrix. The self-triggering effect in the PBC model proceeds until a phase frac-
tion of about 50% martensite has formed, which again reflects the network growth of the
martensite discussed in section 5.1. For both models the highest increase of martensite
can be found at the same level of the chemical driving force, because of the same average
grain diameter of the equivalent sphere in both models. Δg for the initial transformation
in the ESCM model is 5 J/cm3 less than in the PBC model because of the more complex
morphology and because there are occasionally larger grains than in the PBC causing a
lower IE barrier. In both models the required Δg to complete the martensitic transfor-
mation until no retained austenite is left is approximately equal. As already discussed in
section 3.4 at this small RVE scale a realistic macroscopic behavior is found somewhere
in between both models. Note that for much larger RVEs the behavior of both models
must converge to a uniform behavior because of the much higher volume to surface ratio.
As a next step the obtained kinetics is compared to common kinetics models. Kinetics
of martensitic transformations are often reproduced by phenomenological approaches for
a fast implementation in numerical algorithms. For athermal martensitic transforma-
tions probably the most popular example is the well known Koistinen Marburger kinetics
[67]. It was initially obtained by fitting X-Ray diffraction measurements of volume-%
fraction retained austenite as a function of the quenching temperature interval in ferrous
martensite. The exponential fit function is of the form: ξ = 1 − e−C(Ms−Tq), where C is a
constant, Ms is the already discussed martensite start temperature and Tq is the current
quenching temperature. A minor shortcoming of the Koistinen Marburger kinetics is that
it lacks a small incubation period that is observed in real transformations. Assuming a
linear relation between the temperature and the chemical driving force in the vicinity
of the transformation, the obtained kinetics is fitted using the same exponential ansatz:
ξ = 1−e−C(Δg1−Δg). Note that since the time for a martensitic transformation is much less
than the time the chemical driving force changes enough to cause a transformation else-
where in the RVE, only the maximum values of the martensite phase for a certain driving
force are considered. The constant C for the PBC and ESCM model is Cpbc = −0.0387
and Cescm = −0.563, as well as Δg1

pbc = 90 J/cm3 and Δg1
escm = 89 J/cm3 respectively.
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Figure 5.9.: Kinetics of the transformation in terms of energies. a) PBC model. b) ESCM
model. The self-triggering effect is most pronounced in the initial transforma-
tion of the PBC model. The minimum energy barrier in the ESCM model is
lower than in the PBC model. Interestingly, the highest increase of marten-
site fraction occurs at the same level of chemical driving force.
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Figure 5.10.: Koistinen Marburger fits of the obtained transformation kinetics. a) PBC
model. b) ESCM model.
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5.5. Open Parameters of the Energy Barrier

As mentioned in chapter 4 the parameter Σs can only be estimated with a high degree of
uncertainty. In the above simulations Σs is assumed to be 0.1 J/m2. Because this parame-
ter gives rise to a scaling with δ2 it is responsible for the suppression of the transformation
in smaller grains. For the average grain size considered here Σs constitutes about 20% of
the energy barrier without uvi. The highest reasonable value of 0.4 J/cm3 results in a 25
J/cm3 larger energy barrier for the average grain size. A reference simulation is run with
Σs = 0.4. As can be seen from Figure 5.11 the higher IE does not only delay the trans-
formation by the discussed 25 J/cm3, but also changes the course of the transformation.
However, the effect is not pronounced because of the generally low contribution of Σs to
the total energy barrier. Note that for the regular tessellation the curve would only be
shifted without any change because of the equal grain sizes. Another critical point is that
the work of friction Fc is massively underestimated. Note that Fc does not change the
course of the transformation since it is assumed to be equal for all grains. However, as-
suming that the value for Fc for coarse-grained NiTi is indeed five times smaller than that
for nanograined NiTi, the scaling behavior of Fc should also be investigated. Furthermore,
in the theory for the determination of ΣT W so far only isotropic material properties have
been assumed. However, NiTi obviously has a considerable anisotropy, which should not
be neglected.

Figure 5.11.: Influence of a higher value of Σs on the transformation kinetics for the ESCM
model. A higher value of Σs shifts the transformation to higher driving forces
and causes a different transformation path.
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5.6. Retained Austenite

In this section the experimentally observed retained phase beside martensite is discussed.
It is consists of austenite and R-phase, but for the sake of simplicity in the following
discussion it is referred to as retained austenite. First, the facts following [35] are sum-
marized: (i) Contrary, to the transformation in coarse-grained NiTi in nanocrystalline
NiTi the transformation is strongly suppressed and occurs via an intermediate R-phase.
(ii) A quantitative determination of the fraction of retained austenite is hardly possible.
A maximum fraction of 64% transformed martensite is estimated from energy measure-
ments using DSC [35]. (iii) An estimation of the transformation temperature for grains
of 80 nm diameter yields about -75 K. Thermodynamically, the equilibrium temperature
T0 between austenite and martensite can be approximated by 1

2(Ms − Af ) [68] yielding
a value of 89°C, measured by DSC in nanograined NiTi. According to the literature the
difference of entropy between the two phases is 0.5 J/cm3. A linear extrapolation of
Δg = (T0 − T )Δs is only valid in the vicinity of the equilibrium temperature. However,
in the case of NiTi the required undercooling is so large that a linear extrapolation be-
comes irrelevant. Nevertheless, since s −→ 0 for T −→ 0 it can be seen as an upper
boundary. Therefore, from the initial specific energy barrier e1

b = 90J/cm3 in the simula-
tion, the start of the transformation would occur at 89 − 90/0.5 = −91°C. Obviously, the
calculated energy barrier is too high. Furthermore, it must be mentioned that the much
higher work of friction is not even considered in this calculation. This again indicates that
the calculated elastic constants are overestimated. Therefore, the calculation of elastic
constants above 0 K is crucial.



6. Conclusions and Outlook

The effect of self-accommodation has been quantified in nanograined NiTi using an incre-
mental energy minimizing transformation algorithm. The automation and optimization of
the IEMTA enables to study RVE sizes, which already capture important characteristics
of the martensitic transformation on higher scales. As has been discussed in section 5.3
on the one hand the strain energy is found to be the dominant contribution to the energy
barrier, on the other hand it can trigger the transformation at a constant temperature.
Furthermore, the simulation indicates that the transformation barrier mainly grows be-
cause of the evolving stress state. Therefore the strain energy mainly determines the
course of the transformation. However, as explained in section 3.1 in this model only a
lower boundary of the IE has been considered. The IE model used here increases signifi-
cantly for very small grains [54]. Consequently, the course of the transformation is more
affected by the IEs if smaller grains are present. Therefore, clearly a broader distribution
of grain sizes must be considered for the artificially generated RVE. The fact that the
measured reversible energy is slightly lower than the results of the simulation indicates
that the elastic constants from ab inito are overestimated. Considering the observed
network-growth of the martensite phase, it is reasonable that experimentally a maximum
fraction near the estimated value of 64% martensite is obtained, since at this fraction the
amount of additional driving force for the transformation increases stronger, because the
remaining austenite is surrounded by the harder martensite. A direct correlation of the
obtained energies to temperatures is not possible, because the function of Δg(T ) is not
available in this large temperature interval.

Possible extensions to the model presented in this work along with a collection of ideas
for some alternative applications are enumerated as follows:

• Triggering of the transformation by applying external forces to the RVE in the
vicinity of the free energy equilibrium to study the differences of thermal as well as
stress-induced transformation. It would be interesting to test how large a uniaxial
loading has to be, so that a transformation is energetically favorable.

• Use of preferred orientation data e.g. from pole figures of textured NiTi as in [69].
Due to the literature texture has a strong influence on the selection of the martensite
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morphology and hence on the SME [70].

• Adjustment of the grain morphology to stretched or plate-like grains as they are
obtained by rolling for instance.

• Extension to a non-homogeneous temperature field where the chemical driving force
becomes a function of the position, representing for instance contact with a hot
material.

• Extension to a non stress free initial state. Real microstructures are not exactly
stress-free since phase boundary motion always requires a certain driving traction.
The presented model can easily be extended to a non stress-free initial state in the
first step.

No reverse transformations are included in the transformation model even though in
certain cases they may be energetically favorable. However, due to the shift between
Ms − Af � Mf − As that is attributable to the work of friction the chance for this to
happen is considered low.
Another noteworthy aspect to be taken into account in future research is the existence of
the intermediate R-Phase. Considering this phase would lead to other energy minimizing
transformation paths. However, the deviation from the evolution found here is assumed to
be small because of the small produced strain energy upon transformation to this phase.
The model can be used to calibrate IE contributions like the energy of the austenite
martensite IE. Also the study of transformation fatigue may be a prospective application
by evaluating a full transformation and subsequently introducing artificial defects in the
microstructure, which are then considered in a recalculation.
The exact same model could be employed to investigate the reverse transformation caused
by a heating process, i.e. the transformation from martensite to austenite.
In a future work the investigation of the effect of elastic anisotropy on the twin scale has
to be investigated. The effect of coupling terms between shear stresses and normal strains
as well as normal stresses and shear strains must be investigated. Finally, the question
how the twin laminate forms in an arbitrary grain morphology remains to be solved.



A. Periodic Boundary Conditions

Periodic boundary conditions are an efficient way to obtain mean quantities of relatively
large systems by modeling comparatively small ones. As previously mentioned, the re-
quirement for PBCs to be applicable is that the modeled region is space filling. This
applies for the RVE consisting of truncated octahedra shown in Figure 3.4. In a peri-
odic tesselation for each of the RVE’s surfaces there is at least one corresponding face on
the other side(s). These faces are equally sized in a space-filling pattern, separating two
adjacent RVEs. Note that for PBCs to be applicable in a finite element model also the
RVE’s mesh has to be periodic. This means that the nodes of the surface’s mesh have to
be congruent. Each node of the node-set has to be coupled with its matching node of the
corresponding node-set. In the finite element software Abaqus [60] this is accomplished
with the *EQUATION command in the input file, where the overall deformation behavior
of the RVE is governed by virtual reference points. The necessary equations for PBCs
can be derived from ⎛

⎜⎜⎜⎝
ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

Δl1

Δl2

Δl3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Δu1

Δu2

Δu3

⎞
⎟⎟⎟⎠ (A.1)

where of εij represents the overall average engineering strains, the vector containing Δli

is the metric distance of two coupled node-sets and the vector containing Δui is the
difference of the displacements of the coupled node-sets. The equation coupling the node-
sets “faceFront” and “faceBack” is explained exemplarily. To facilitate the following
procedure the RVE is rotated such that as many Δli as possible become 0. This is the case
if the RVE’s faces are parallel to the global coordinate system as shown in Figure A.3.
Then, since Δl2 = Δl3 = 0 the first equation obtained from Equation A.1 is simply
ε11Δl1 = Δu1, where Δu1 = u1(faceFront) − u2(faceBack). For the implementation of
the equation in the inputfile, it has to be rewritten as:

u1(faceFront) − u1(faceBack) − ε11Δl1 = 0 (A.2)

Furthermore, it is common practice to introduce virtual reference nodes to hold the infor-
mation of the overall deformation of the RVE necessary to define the equations. In this
work they are referred to as REFD and REFS, where the degrees of freedoms (DOFs) of
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REFD correspond to normal strains and the DOFs of REFS to shear strains. Equation A.2
is added to the inputfile as:

faceFront, 1, 1., faceBack, 1, −1., REFD, 1, −1., (A.3)

Until now only the coupling of surfaces has been described. However, in the case of a
space-filling tesselation this must also be done for lines and corners that bound these
surfaces. Corresponding lines and corners that have to be coupled appear at least three
times on each space-filling RVE. To get a clearer picture of the couplings it is helpful to
imagine a cubic tessellation that fills the space. Opposite faces of the cube have to be
coupled. Each edge of the cube has to be coupled with three other edges and each corner
of the cube must be coupled with each of the other ones. Figure A.2 gives an overview of
all couplings necessary to obtain full PBCs. Figure A.3 shows projections of the RVE to
comprehend the couplings. The coloring in both figures refers to the given legend. The
set of equations presented here can be used for every cell consisting of 2n3 grains, where n
is an arbitrary number. Note that a periodic mesh could in principle also be achieved for
a randomly generated microstructure in the following way: (i) Fixing all lines and corners
of the periodic tesselation. (ii) Generating a random surface, bounded by the fixed lines
and corners, for one side of the RVE. (iii) Translating the information of the surface mesh
created in (ii) to the opposite side of the RVE and use it as a constraint for the generation
of the mesh at this side. This way a fully periodic mesh can be generated. However, at
the time of this thesis, such an algorithm was not available. In Figure A.1 the effect of
the implemented PBCs is illustrated.

Figure A.1.: Illustration of the periodic bounary conditions. The grain on the left hand
side is transformed and creates a certain deformation. At the other side of
the RVE this deformation is perfectly reproduced complementary so that the
RVE remains space filling
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Figure A.2.: oblique projections of the modeled cell and a colored legend of all used node-
sets for the setup of the periodic boundary conditions (Also see Figure A.3).
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Figure A.3.: Normal projection views of the periodic cell. To achieve the given views the
picture in the upper left side is rotated around X,Y and Z respectively. Top:
Front- and back side, Mid: Top and bottom side, Bottom: Left and right
side.



B. Abaqus related Issues

B.1. Consistent Units at a Nanoscale

Quantity SI SI(nm)
Length m nm
Force N N
Mass kg 109 kg
Time s s
Stress Pa = N/m2 1018 Pa = N/nm2

Energy J nJ = 10−9 J
Density kg/m3 109 kg/nm3

Strain-energy-density J/m3 nJ/nm3 = 10−12 J/cm3 = 10−12 MPa
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B.2. Abaqus Object Model

Figure B.1 exemplarily shows object trees of an .mdb and an .odb file respectively and the
partition of them into objects and containers. According to the Abaqus scripting users
manual a Container is an object that contains objects of a similar type. A container in the
Abaqus object model can be either a repository or a sequence. For example, the “step”
container in Figure B.1 is a repository that contains all the steps in the analysis and a
script uses the “step” container to access these steps. A good idea is to use a variable to
refer to an object, making scripts easier to read and understand.

Figure B.1.: abaqus hierarchy same result with: frame number = -1 ... last frame, output
property for instance S..Stress, SENER...Strainenergydensity etc.
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B.3. Resource Optimization

The automated calculations are run on a “node” of a computer cluster. A node has 12
cores, each with a slightly more than 10 Gigabyte (Gb) Random Access Memor (RAM)
resulting in a total amount of 128 Gb RAM and 2 Central Processing Units (CPUs) (E5-
2667, 6-Core, 2.9/3.5 GHz, 15 Megabyte (MB) Cache). First a full transformation was
simulated with a coarser mesh, following the transformation algorithm in subsection 3.5.2
to determine the sequence of grain-laminate pairs the martensite grains transform to in-
crementally minimize the total free energy. Obviously, the fastest way to do so is (i)
to calculate as many states simultaneously as possible while (ii) ensuring that each job
runs with enough resources, i.e. RAM and cores. For optimization purposes, first the
speedup of one job was determined as a function of the parallelization on more than
one core. As can be seen in Figure B.2 the additional speedup of one job reduces sig-
nificantly with every additional core its parallelized on and even stagnates from 6 to
eight cores. Regarding memory availability, each job of coarse mesh needs about 5-6
Gb of RAM. Another aspect is that Abaqus has a strict token policy, meaning that for
each calculation using the Abaqus standart, explicit or CFD solver a certain amount of
tokens is required as a function of the number of cores. This function is shown in Fig-
ure B.3 [71]. As a consequence of the two issues above in the full transformation 12 jobs
are run simultaneously on one core respectively requiring 60 tokens, whereas for exact
results assuring mesh convergence each determined increment was recalculated with a re-
fined mesh using only two nodes but reserving all twelve nodes to reserve enough memory.

Tokens = �5 · Cores0.422�

Figure B.3.: cores vs tokens
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Figure B.2.: Visualization of the calculation time ratios (speedup) in the case of calculat-
ing one job parallelized on more than one core.

Finally it is mentioned that abaqus can work on the scratch disk space available on clusters
normally having the advantage of faster I/O, leading to an increase in overall speed of
execution. Here a temporary file system (tmpfs) [72], that is an improved replacement
of the RAM-Disk common in Unix distributions, was used instead of the normal scratch
space.



C. Static Input File Sections

C.1. Material and Job Data

*Material, name=austenite
*Elastic, type=ISOTROPIC
6.5e-8, 0.4
**
*Material, name=laminate1
*Elastic, type=ANISOTROPIC
2.865e-07, 1.275e-07, 1.80e-07, 1.00e-07, 1,275e-07, 2.865e-07, 0., 0.
0., 4.8e-08, 0., 0., 0., 0., 5,75e-08, 0.
0., 0., 0., 0., 4,8e-08
*Expansion, type=ANISO
0.0234, -0.0381, 0.0234, 0., -0.1186, 0.
**
*Material, name=laminate2
*Elastic, type=ANISOTROPIC
2.865e-07, 1.005e-07, 2.86e-07, 1.275e-07, 1,275e-07, 1,80e-07, 0., 0.
0., 5.75e-08, 0., 0., 0., 0., 4.8e-08, 0.
0., 0., 0., 0., 4.8e-8
*Expansion, type=ANISO
0.0234, 0.0234, -0.0381, 0.1186, 0., 0.

*Material, name=laminate3
*Elastic, type=ANISOTROPIC
2.865e-07, 1.275e-07, 1.80e-07, 1.005e-07, 1.275e-07, 2.865e-07, 0., 0.
0., 4.8e-08, 0., 0., 0., 0., 5.75e-08, 0.
0., 0., 0., 0., 4.8e-08
*Expansion, type=ANISO
0.0234, -0.0381, 0.0234, 0., 0.1186, 0.
**
*Material, name=laminate4
*Elastic, type=ANISOTROPIC
2.865e-07, 1.005e-07, 2.865e-07, 1.275e-07, 1.275e-07, 1.80e-07, 0., 0.
0., 5.75e-08, 0., 0., 0., 0., 4.8e-08, 0.
0., 0., 0., 0., 4.8e-08
*Expansion, type=ANISO
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0.0234, 0.0234, -0.0381, -0.1186, 0., 0.
**
*Material, name=laminate5
*Elastic, type=ANISOTROPIC
1.80e-07, 1.275e-07, 2.865e-07, 1.275e-07, 1.005e-07, 2.865e-07, 0., 0.
0., 4.8e-08, 0., 0., 0., 0., 4.8e-8, 0.
0., 0., 0., 0., 5.75e-08
*Expansion, type=ANISO
-0.0381, 0.0234, 0.0234, 0., 0., -0.1186
**
*Material, name=laminate6
*Elastic, type=ANISOTROPIC
1.80e-07, 1.275e-07, 2.865e-07, 1.275e-07, 1.005e-07, 2.865e-07, 0., 0.
0., 4.8e-08, 0., 0., 0., 0., 4.8e-08, 0.
0., 0., 0., 0., 5.75e-08
*Expansion, type=ANISO
-0.0381, 0.0234, 0.0234, 0., 0., 0.1186
**
*Initial Conditions, type=TEMPERATURE
ALLNODES, 0.
**
*Step, name=Transformation
MartensiticTransformation_applied
*Static
1., 1., 1e-05, 1.
**
*Temperature
ALLNODES, 1.
**
*BOUNDARY
bc1, 1, 3
bc2, 1, 2
bc3, 1, 1
**
*Restart, write, frequency=0
**
*Output, field
*Element Output, directions=YES
E, S, SENER, IVOL
**
*Node Output
U
**
*Output, history, variable=PRESELECT
*Energy Output
ALLIE
*Energy Print
*End Step
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C.2. Periodic Boundary Equations

1 *EQUATION
2 3
3 faceFront, 1, 1., faceBack, 1, -1., REFD, 1, -1.,
4 3
5 faceFront, 2, 1., faceBack, 2, -1., REFS, 1, -1.,
6 3
7 faceFront, 3, 1., faceBack, 3, -1., REFS, 3, -1.,
8 3
9 faceTop, 1, 1., faceBot, 1, -1., REFS, 1, -1.,

10 3
11 faceTop, 2, 1., faceBot, 2, -1., REFD, 2, -1.,
12 3
13 faceTop, 3, 1., faceBot, 3, -1., REFS, 2, -1.,
14 3
15 faceRight, 1, 1., faceLeft, 1, -1., REFS, 3, 1.,
16 3
17 faceRight, 2, 1., faceLeft, 2, -1., REFS, 2, 1.,
18 3
19 faceRight, 3, 1., faceLeft, 3, -1., REFD, 3, 1.,
20 4
21 face_edge_top_left, 1, 1., face_edge_bot_right, 1, -1., REFS, 1, -1., REFS, 3, -1.,
22 4
23 face_edge_top_left, 2, 1., face_edge_bot_right, 2, -1., REFD, 2, -1., REFS, 2, -1.,
24 4
25 face_edge_top_left, 3, 1., face_edge_bot_right, 3, -1., REFS, 2, -1., REFD, 3, -1.,
26 4
27 face_edge_front_right, 1, 1., face_edge_back_left, 1, -1., REFD, 1, -1., REFS, 1, 1.,
28 4
29 face_edge_front_right, 2, 1., face_edge_back_left, 2, -1., REFS, 1, -1., REFS, 2, 1.,
30 4
31 face_edge_front_right, 3, 1., face_edge_back_left, 3, -1., REFS, 3, -1., REFD, 3, 1.,
32 4
33 face_edge_front_bot, 1, 1., face_edge_back_top, 1, -1., REFD, 1, -1., REFS, 1, 1.,
34 4
35 face_edge_front_bot, 2, 1., face_edge_back_top, 2, -1., REFS, 1, -1., REFD, 2, 1.,
36 4
37 face_edge_front_bot, 3, 1., face_edge_back_top, 1, -1., REFS, 3, -1., REFS, 2, 1.,
38 5
39 face_edge_front_bot_solo, 1, 1., face_edge_back_top_solo, 1, -1., REFD, 1, -1., REFS, 1, 1.,
40 REFS, 3, 1.,
41 5
42 face_edge_front_bot_solo, 2, 1., face_edge_back_top_solo, 2, -1., REFS, 1, -1., REFD, 2, 1.,
43 REFS, 2, 1.,
44 5
45 face_edge_front_bot_solo, 3, 1., face_edge_back_top_solo, 3, -1., REFS, 3, -1., REFS, 2, 1.,
46 REFD, 3, 1.,
47 3
48 edge_back_top, 1, 1., edge_front_top, 1, -1., REFD, 1, 1.,
49 3
50 edge_back_top, 2, 1., edge_front_top, 2, -1., REFS, 1, 1.,
51 3
52 edge_back_top, 3, 1., edge_front_top, 3, -1., REFS, 3, 1.,
53 3
54 edge_front_bot_bot, 1, 1., edge_front_top, 1, -1., REFS, 1, 1.,
55 3
56 edge_front_bot_bot, 2, 1., edge_front_top, 2, -1., REFD, 2, 1.,
57 3
58 edge_front_bot_bot, 3, 1., edge_front_top, 3, -1., REFS, 2, 1.,
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59 3
60 edge_front_bot, 1, 1., edge_back_bot, 1, -1., REFD, 1, -1.,
61 3
62 edge_front_bot, 2, 1., edge_back_bot, 2, -1., REFS, 1, -1.,
63 3
64 edge_front_bot, 3, 1., edge_back_bot, 3, -1., REFS, 3, -1.,
65 3
66 edge_back_top_top, 1, 1., edge_back_bot, 1, -1., REFS, 1, -1.,
67 3
68 edge_back_top_top, 2, 1., edge_back_bot, 2, -1., REFD, 2, -1.,
69 3
70 edge_back_top_top, 3, 1., edge_back_bot, 3, -1., REFS, 2, -1.,
71 3
72 edge_front_right_right, 1, 1., edge_front_left, 1, -1., REFS, 3, 1.,
73 3
74 edge_front_right_right, 2, 1., edge_front_left, 2, -1., REFS, 2, 1.,
75 3
76 edge_front_right_right, 3, 1., edge_front_left, 3, -1., REFD, 3, 1.,
77 3
78 edge_back_left, 1, 1., edge_front_left, 1, -1., REFD, 1, 1.,
79 3
80 edge_back_left, 2, 1., edge_front_left, 2, -1., REFS, 1, 1.,
81 3
82 edge_back_left, 3, 1., edge_front_left, 3, -1., REFS, 3, 1.,
83 3
84 edge_front_right, 1, 1., edge_back_right, 1, -1., REFD, 1, -1.,
85 3
86 edge_front_right, 2, 1., edge_back_right, 2, -1., REFS, 1, -1.,
87 3
88 edge_front_right, 3, 1., edge_back_right, 3, -1., REFS, 3, -1.,
89 3
90 edge_back_left_left, 1, 1., edge_back_right, 1, -1., REFS, 3, -1.,
91 3
92 edge_back_left_left, 2, 1., edge_back_right, 2, -1., REFS, 2, -1.,
93 3
94 edge_back_left_left, 3, 1., edge_back_right, 3, -1., REFD, 3, -1.,
95 3
96 edge_1_solo1, 1, 1., edge_solo_front_top_right, 1, -1., REFS, 1, 1.,
97 3
98 edge_1_solo1, 2, 1., edge_solo_front_top_right, 2, -1., REFD, 2, 1.,
99 3

100 edge_1_solo1, 3, 1., edge_solo_front_top_right, 3, -1., REFS, 2, 1.,
101 4
102 edge_1_solo2, 1, 1., edge_solo_front_top_right, 1, -1., REFD, 1, 1., REFS, 3, -1.,
103 4
104 edge_1_solo2, 2, 1., edge_solo_front_top_right, 2, -1., REFS, 2, 1., REFS, 2, -1.,
105 4
106 edge_1_solo2, 3, 1., edge_solo_front_top_right, 3, -1., REFS, 3, 1., REFD, 3, -1.,
107 4
108 edge_2_solo1, 1, 1., edge_solo_front_top_left, 1, -1., REFS, 1, 1., REFS, 3, 1.,
109 4
110 edge_2_solo1, 2, 1., edge_solo_front_top_left, 2, -1., REFD, 2, 1., REFS, 2, 1.,
111 4
112 edge_2_solo1, 3, 1., edge_solo_front_top_left, 3, -1., REFS, 2, 1., REFD, 3, 1.,
113 3
114 edge_2_solo2, 1, 1., edge_solo_front_top_left, 1, -1., REFD, 1, 1.,
115 3
116 edge_2_solo2, 2, 1., edge_solo_front_top_left, 2, -1., REFS, 1, 1.,
117 3
118 edge_2_solo2, 3, 1., edge_solo_front_top_left, 3, -1., REFS, 3, 1.,
119 3
120 edge_3_solo1, 1, 1., edge_solo_front_bot_left, 1, -1., REFS, 3, 1.,
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121 3
122 edge_3_solo1, 2, 1., edge_solo_front_bot_left, 2, -1., REFS, 2, 1.,
123 3
124 edge_3_solo1, 3, 1., edge_solo_front_bot_left, 3, -1., REFD, 3, 1.,
125 4
126 edge_3_solo2, 1, 1., edge_solo_front_bot_left, 1, -1., REFD, 1, 1., REFS, 1, -1.,
127 4
128 edge_3_solo2, 2, 1., edge_solo_front_bot_left, 2, -1., REFS, 1, 1., REFD, 2, -1.,
129 4
130 edge_3_solo2, 3, 1., edge_solo_front_bot_left, 3, -1., REFS, 3, 1., REFS, 2, -1.,
131 4
132 edge_4_solo1, 1, 1., edge_solo_back_bot_left, 1, -1., REFD, 1, -1., REFS, 3, 1.,
133 4
134 edge_4_solo1, 2, 1., edge_solo_back_bot_left, 2, -1., REFS, 1, -1., REFS, 2, 1.,
135 4
136 edge_4_solo1, 3, 1., edge_solo_back_bot_left, 3, -1., REFS, 3, -1., REFD, 3, 1.,
137 3
138 edge_4_solo2, 1, 1., edge_solo_back_bot_left, 1, -1., REFS, 1, -1.,
139 3
140 edge_4_solo2, 2, 1., edge_solo_back_bot_left, 2, -1., REFD, 2, -1.,
141 3
142 edge_4_solo2, 3, 1., edge_solo_back_bot_left, 3, -1., REFS, 2, -1.,
143 3
144 edge_5_solo1, 1, 1., edge_solo_back_bot_right, 1, -1., REFD, 1, -1.,
145 3
146 edge_5_solo1, 2, 1., edge_solo_back_bot_right, 2, -1., REFS, 1, -1.,
147 3
148 edge_5_solo1, 3, 1., edge_solo_back_bot_right, 3, -1., REFS, 3, -1.,
149 4
150 edge_5_solo2, 1, 1., edge_solo_back_bot_right, 1, -1., REFS, 1, -1., REFS, 3, -1.,
151 4
152 edge_5_solo2, 2, 1., edge_solo_back_bot_right, 2, -1., REFD, 2, -1., REFS, 2, -1.,
153 4
154 edge_5_solo2, 3, 1., edge_solo_back_bot_right, 3, -1., REFS, 2, -1., REFD, 3, -1.,
155 4
156 edge_6_solo1, 1, 1., edge_solo_back_top_right, 1, -1., REFD, 1, -1., REFS, 1, 1.,
157 4
158 edge_6_solo1, 2, 1., edge_solo_back_top_right, 2, -1., REFS, 1, -1., REFD, 2, 1.,
159 4
160 edge_6_solo1, 3, 1., edge_solo_back_top_right, 3, -1., REFS, 3, -1., REFS, 2, 1.,
161 3
162 edge_6_solo2, 1, 1., edge_solo_back_top_right, 1, -1., REFS, 3, -1.,
163 3
164 edge_6_solo2, 2, 1., edge_solo_back_top_right, 2, -1., REFS, 2, -1.,
165 3
166 edge_6_solo2, 3, 1., edge_solo_back_top_right, 3, -1., REFD, 3, -1.,
167 3
168 edge_left_top_top, 1, 1., edge_left_bot, 1, -1., REFS, 1, -1.,
169 3
170 edge_left_top_top, 2, 1., edge_left_bot, 2, -1., REFD, 2, -1.,
171 3
172 edge_left_top_top, 3, 1., edge_left_bot, 3, -1., REFS, 2, -1.,
173 3
174 edge_right_bot, 1, 1., edge_left_bot, 1, -1., REFS, 3, 1.,
175 3
176 edge_right_bot, 2, 1., edge_left_bot, 2, -1., REFS, 2, 1.,
177 3
178 edge_right_bot, 3, 1., edge_left_bot, 3, -1., REFD, 3, 1.,
179 3
180 edge_left_top, 1, 1., edge_right_top, 1, -1., REFS, 3, -1.,
181 3
182 edge_left_top, 2, 1., edge_right_top, 2, -1., REFS, 2, -1.,



C. Static Input File Sections 95

183 3
184 edge_left_top, 3, 1., edge_right_top, 3, -1., REFD, 3, -1.,
185 3
186 edge_right_bot_bot, 1, 1., edge_right_top, 1, -1., REFS, 1, 1.,
187 3
188 edge_right_bot_bot, 2, 1., edge_right_top, 2, -1., REFD, 2, 1.,
189 3
190 edge_right_bot_bot, 3, 1., edge_right_top, 3, -1., REFS, 2, 1.,
191 4
192 c1, 1, 1., c_f_t_l_2, 1, -1., REFS, 1, 1., REFS, 3, 1.,
193 4
194 c1, 2, 1., c_f_t_l_2, 2, -1., REFD, 2, 1., REFS, 2, 1.,
195 4
196 c1, 3, 1., c_f_t_l_2, 3, -1., REFS, 2, 1., REFD, 3, 1.,
197 3
198 c11, 1, 1., c_f_t_l_2, 1, -1., REFD, 1, 1.,
199 3
200 c11, 2, 1., c_f_t_l_2, 2, -1., REFS, 1, 1.,
201 3
202 c11, 3, 1., c_f_t_l_2, 3, -1., REFS, 3, 1.,
203 3
204 c_f_t_r_2, 1, 1., c_f_t_l_2, 1, -1., REFS, 3, 1.,
205 3
206 c_f_t_r_2, 2, 1., c_f_t_l_2, 2, -1., REFS, 2, 1.,
207 3
208 c_f_t_r_2, 3, 1., c_f_t_l_2, 3, -1., REFD, 3, 1.,
209 4
210 c2, 1, 1., c_f_t_l_1, 1, -1., REFS, 1, 1., REFS, 3, 1.,
211 4
212 c2, 2, 1., c_f_t_l_1, 2, -1., REFD, 2, 1., REFS, 2, 1.,
213 4
214 c2, 3, 1., c_f_t_l_1, 3, -1., REFS, 2, 1., REFD, 3, 1.,
215 3
216 c22, 1, 1., c_f_t_l_1, 1, -1., REFD, 1, 1.,
217 3
218 c22, 2, 1., c_f_t_l_1, 2, -1., REFS, 1, 1.,
219 3
220 c22, 3, 1., c_f_t_l_1, 3, -1., REFS, 3, 1.,
221 3
222 c_f_bo_l_2, 1, 1., c_f_t_l_1, 1, -1., REFS, 1, 1.,
223 3
224 c_f_bo_l_2, 2, 1., c_f_t_l_1, 2, -1., REFD, 2, 1.,
225 3
226 c_f_bo_l_2, 3, 1., c_f_t_l_1, 3, -1., REFS, 2, 1.,
227 3
228 c3, 1, 1., c_f_bo_l_1, 1, -1., REFS, 3, 1.,
229 3
230 c3, 2, 1., c_f_bo_l_1, 2, -1., REFS, 2, 1.,
231 3
232 c3, 3, 1., c_f_bo_l_1, 3, -1., REFD, 3, 1.,
233 4
234 c33, 1, 1., c_f_bo_l_1, 1, -1., REFD, 1, 1., REFS, 1, -1.,
235 4
236 c33, 2, 1., c_f_bo_l_1, 2, -1., REFS, 1, 1., REFD, 2, -1.,
237 4
238 c33, 3, 1., c_f_bo_l_1, 3, -1., REFS, 3, 1., REFS, 2, -1.,
239 3
240 c_ba_bo_l_2, 1, 1., c_f_bo_l_1, 1, -1., REFD, 1, 1.,
241 3
242 c_ba_bo_l_2, 2, 1., c_f_bo_l_1, 2, -1., REFS, 1, 1.,
243 3
244 c_ba_bo_l_2, 3, 1., c_f_bo_l_1, 3, -1., REFS, 3, 1.,
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245 3
246 c4, 1, 1., c_ba_bo_r_1, 1, -1., REFD, 1, -1.,
247 3
248 c4, 2, 1., c_ba_bo_r_1, 2, -1., REFS, 1, -1.,
249 3
250 c4, 3, 1., c_ba_bo_r_1, 3, -1., REFS, 3, -1.,
251 4
252 c44, 1, 1., c_ba_bo_r_1, 1, -1., REFS, 1, -1., REFS, 3, -1.,
253 4
254 c44, 2, 1., c_ba_bo_r_1, 2, -1., REFD, 2, -1., REFS, 2, -1.,
255 4
256 c44, 3, 1., c_ba_bo_r_1, 3, -1., REFS, 2, -1., REFD, 3, -1.,
257 3
258 c_ba_bo_l_1, 1, 1., c_ba_bo_r_1, 1, -1., REFS, 3, -1.,
259 3
260 c_ba_bo_l_1, 2, 1., c_ba_bo_r_1, 2, -1., REFS, 2, -1.,
261 3
262 c_ba_bo_l_1, 3, 1., c_ba_bo_r_1, 3, -1., REFD, 3, -1.,
263 3
264 c5, 1, 1., c_ba_bo_r_2, 1, -1., REFD, 1, -1.,
265 3
266 c5, 2, 1., c_ba_bo_r_2, 2, -1., REFS, 1, -1.,
267 3
268 c5, 3, 1., c_ba_bo_r_2, 3, -1., REFS, 3, -1.,
269 4
270 c55, 1, 1., c_ba_bo_r_2, 1, -1., REFS, 1, -1., REFS, 3, -1.,
271 4
272 c55, 2, 1., c_ba_bo_r_2, 2, -1., REFD, 2, -1., REFS, 2, -1.,
273 4
274 c55, 3, 1., c_ba_bo_r_2, 3, -1., REFS, 2, -1., REFD, 3, -1.,
275 3
276 c_ba_t_r_1, 1, 1., c_ba_bo_r_2, 1, -1., REFS, 1, -1.,
277 3
278 c_ba_t_r_1, 2, 1., c_ba_bo_r_2, 2, -1., REFD, 2, -1.,
279 3
280 c_ba_t_r_1, 3, 1., c_ba_bo_r_2, 3, -1., REFS, 2, -1.,
281 4
282 c6, 1, 1., c_ba_t_r_2, 1, -1., REFD, 1, -1., REFS, 1, 1.,
283 4
284 c6, 2, 1., c_ba_t_r_2, 2, -1., REFS, 1, -1., REFD, 2, 1.,
285 4
286 c6, 3, 1., c_ba_t_r_2, 3, -1., REFS, 3, -1., REFS, 2, 1.,
287 3
288 c66, 1, 1., c_ba_t_r_2, 1, -1., REFS, 3, -1.,
289 3
290 c66, 2, 1., c_ba_t_r_2, 2, -1., REFS, 2, -1.,
291 3
292 c66, 3, 1., c_ba_t_r_2, 3, -1., REFD, 3, -1.,
293 3
294 c_f_t_r_1, 1, 1., c_ba_t_r_2, 1, -1., REFD, 1, -1.,
295 3
296 c_f_t_r_1, 2, 1., c_ba_t_r_2, 2, -1., REFS, 1, -1.,
297 3
298 c_f_t_r_1, 3, 1., c_ba_t_r_2, 3, -1., REFS, 3, -1.,



D. Neper Run Parameters

1 # Generate tesselation

3 neper -T # use the tesselation module
4 -n 888 # specifiy the number of grains
5 -statpoly id,body,vol,area # create a statistic file and write the specified variables to it
6 -id 1 # specify identifier of tesselation
7 -o n888 # specify output name
8 -sort poly # name the created nodesets in ascending order
9 -scale 650:650:650 # specify scaling factors for x:y:z (default 1:1:1)

10 -morpho equiaxed # alternatively columnar (+direction) or lamellae

13 # Mesh tesselation with the specified mesh

15 neper -M # use the meshing module
16 n888.tess # specify tesselation filename
17 -o n888_mesh # specify the output filename
18 -format inp # specify the output as abaqus input-file
19 -order 2 # specify the element order
20 # specify the relative characteristic length for the inner and outer mesh
21 -rcl "0.5,body<2:3"
22 # refine mesh as far as possible using multiple meshing algorythms and use the best result
23 -mesh3dalgo netg:gmsh,netg:netg,netg:gmne -nset facebodies -faset faces



E. Python Scripts

E.1. transEnergymin.py

1 ’’’ This script evaluates the grain-laminate pair which minimizes the total free energy
2 density of the specified RVE upon transformation. If previous increments are fully
3 calculated the script automatically starts from the last state that is saved in file
4 ’continuing_data’. The script needs N = (1 + maxGrainNr)* 6 * (maxGrainNr / 2) calculations
5 to find the energy minimizing state of a full transformation. A preselection of more likely
6 states based on previous results can be done reducing N significantly. At the beginning
7 the script-parameters and the used textfiles have to be specified.’’’

9 # python modules
10 import cPickle as pickle # Phython module to save intermediate results conveniently
11 import shutil # high level file operations like copying
12 import glob # Unix style pathname pattern expansion
13 import os # miscellaneous operating system interfaces
14 import time # module for time access
15 # my modules
16 import write
17 import automate
18 import material

21 #-----< SPECIFY SCRIPT-PARAMETERS >-------------------------------------------------------#
22 pbc = True # use the specified periodic boundary equations or a self-consistent matrix
23 preselection = True # define if presection is used
24 # define at which increments (number of transformed grains) all possibillities for the
25 # preselection are calculated
26 selected_steps = [1,15,30,45,60,75,85,95,101,107,113,117,121,124]
27 # set the timeout after which a single calculation is killed if it has not finished
28 timeout = 1200
29 # initialize array of numbers that define the transformed material behavior (here laminates)
30 laminateVariants = [1,2,3,4,5,6 ]
31 # choose between periodic boundary conditions for the regular tesselation or the self
32 # consistent matrix for the random microstrocture and specify the required files
33 if pbc == True:
34 material_jobData_filename = ’ path/to/file’ # holds the equations for the PBCs
35 geometry_filename = ’ path/to/file’ # fixed mesh and orientations for the PBC model
36 totalGrainAmount = 128 # total number of equally sized octahedra in the RVE
37 grainVolume = 268000.0 # Volume of a sphere of 80nm diameter
38 else:
39 material_jobData_filename = ’ path/to/file’ # static inputfile section of random RVE
40 geometry_filename = ’ path/to/file’ # fixed mesh for the ESCM
41 # here the orientations are written explicitly since they are also used for the
42 # averaging of the material properties in each increment
43 orientation_filename = ’ path/to/file’
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46 #-----< DETERMINE LAST STATE of simulation (if) or
PREPARE CALCULATION (else) >----------#

47 if os.path.isfile(’saves/continuing_data’): # check if there are calculation results
48 # open file and load results in the same order they were written
49 cont = open(’saves/continuing_data’,’rb’)
50 martensiteAmount = pickle.load( cont )
51 oris = pickle.load( cont ) if pbc == False else 0 # ternary operator assignment
52 martensiteGrains = pickle.load( cont )
53 austeniteGrains = pickle.load( cont )
54 chemical_drivingForce = pickle.load( cont )
55 total_strainEner_cell_before = pickle.load( cont )
56 selected_variants = pickle.load( cont )
57 cont.close()

59 # get amount of grains for the randomly generated microstructure
60 totalGrainAmount = len(austeniteGrains) + len(martensiteGrains)
61 # Define name of .odb file containing latest evaluated result
62 odbname = ’saves/Outputfile_’+ str( martensiteAmount - 1 )+ ’_’+ \
63 str( martensiteGrains[-1][0] ) + ’_’+ str( martensiteGrains[-1][1] )+’.odb’
64 #
65 else: # create save directory and files
66 martensiteGrains = selected_variants = []
67 martensiteAmount = 1
68 os.system(’mkdir saves’) # create directory where results are saved
69 with open(’saves/save_grain’, ’w’) as save_grain:
70 save_grain.write(’grainNr\tlaminateNr\tgrainVol\tdragEner_spec\t\t’ + \
71 ’delta_totStrainEner_spec\tdelta_allEnergies\ttransformingEnergy\n’)
72 with open(’saves/save_model’, ’w’) as save_model:
73 save_model.write(’tot_strainEner\t\tdelta_tot_strainEner\ttot_aveSener’ + \
74 ’\t\tivol_aust\t\tivol_mart\t\tave_sener_aust\t\tave_sener_mart\n’)
75 #
76 if pbc == False:
77 odbname = exodb_filename
78 austeniteGrains = automate.get_volumes_and_laminates( exodb_filename )
79 # austeniteGrains [grainNr, grainvolume, grainmaterial]
80 totalGrainAmount = len(austeniteGrains) # get Nr of grains in the ESCM
81 else:
82 austeniteGrains = []
83 for i in range(totalGrainAmount):
84 austeniteGrains.append( [i+1, grainVolume, 0] )
85 # recall that the grain volume is equal for all octahedra

88 #-----< CALCULATE SELF CONSISTENT MATERIAL PROPERTIES and PRESELECT more likely states >--#
89 if pbc == False:
90 # list [grainnumber, grainvolume, grainmaterial]
91 # necessary for averaging anisotropic data
92 graindata, Vinner = automate.get_volumes_and_laminates.get( odbname )
93 #
94 # calculate the averaged material properties from the last energy-minimizing state
95 C_ave = material.selfconsistent_matrix( oris, graindata, Vinner )
96 del graindata, Vinner
97 #
98 # Limit number of calculations by preselecting more likely states
99 if preselection == True:

100 # calculate all possible states only in every selected stepwidth
101 if martensiteAmount in selected_steps:
102 preselection = False
103 if (martensiteAmount-1) in selected_steps:
104 selected_variants = automate.preselect( totalGrainAmount, martensiteAmount )
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107 #-----< INPUTFILE CREATION >--------------------------------------------------------------#
108 # All possible or preselected states of one more transformed grain are evaluated
109 for austeniteGrain in austeniteGrains:
110 # Every not transformed grain can transform in multiple ways
111 for laminate in laminateVariants:
112 if ( [austeniteGrain[0], laminate] in selected_variants) or preselection == False:
113 write.writeInputfile( martensiteAmount, austeniteGrain, \
114 austeniteGrains, martensiteGrains, laminate, pbc, \
115 geometry_filename, material_jobData_filename, C_ave )

119 #-----< JOB SUBMISSION of all Jobs that were created >------------------------------------#
120 automate.submitjobs( austeniteGrains, martensiteAmount, laminateVariants, preselection, \
121 selected_variants, timeout )
122 # delay to finish operations on the .odb files so that no *lck files are created
123 time.sleep(60)

126 #-----< EVALUATE ALL jobs and SET PARAMETERS for the transformation of the next grain >---#
127 if martensiteAmount == 1:
128 evaluationData = automate.findMinimumEnergy( austeniteGrains, martensiteAmount, \
129 laminateVariants, preselection)
130 # evaluationData = [0-delta_G, 1-GrainNr, 2-GrainLaminate, 3-GrainVol,
131 # 4-dragEner_spec, 5-delta_totalStrain_spec, 6-total_strainEner_cell]
132 chemical_drivingForce = max( evaluationData )[0] # note that this is a negative value
133 else:
134 evaluationData = automate.findMinimumEnergy(austeniteGrains, martensiteAmount,\
135 laminateVariants, preselection, selected_variants, \
136 total_strainEner_cell_before, chemical_drivingForce)
137 # # the optimum grain is that with minimum delta_G
138 foundGrain = min( abs( evaluationData ) )
139 # the max function acts on the first entry which is ’delta_G’
140 #
141 # if delta_G reaches a new negative maximum the chemical driving force
142 # has to be increased for further transformations
143 if foundGrain[0] < 0: # if delta_G < 0
144 chemical_drivingForce = foundGrain[0]
145 #
146 total_strainEner_cell_before = foundGrain[6]

149 #-----< WRITE DATA of all runs and energy-minimizing configuration to files >-------------#
150 write.writeSaves( martensiteAmount, evaluationData, chemical_drivingForce, foundGrain )
151 del evaluationData

154 #-----< MOVE FOUNDGRAIN from austeniteGrains to martensiteGrains >------------------------#
155 for index, iGrain in enumerate(austeniteGrains):
156 # remove found grain from austeniteGrains
157 if iGrain[0] == foundGrain[1]:
158 austeniteGrains.pop( index )
159 # add found grain - material pair to martensiteGrains
160 martensiteGrains.append( [ foundGrain[1], foundGrain[2] ]

)
161 #
162 # remove foundgrain from selected_variants if preselection is used
163 if preselection == True:
164 for index, iGrain in enumerate( selected_variants ):
165 if iGrain[0] == foundGrain[1]:
166 selected_variants.pop( index )
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169 #-----< SAVE (PICKLE) EVALUATED NECESSARY VARIABLES for the next increment >--------------#
170 # it is crucial that the values are ’loaded’ in the same order they are ’dumped’
171 cont = open(’saves/continuing_data’,’wb’)
172 pickle.dump( martensiteAmount + 1, cont )
173 if pbc == False: pickle.dump( oris, cont )
174 pickle.dump( martensiteGrains, cont )
175 pickle.dump( austeniteGrains, cont )
176 pickle.dump( chemical_drivingForce, cont )
177 pickle.dump( total_strainEner_cell_before, cont )
178 pickle.dump( selected_variants, cont )
179 cont.close()

182 #-----< SAVE FILES OF FOUNDGRAIND AND DELETE THE REST >-----------------------------------#
183 savefilenames = glob.glob( ’*_’ + str( martensiteAmount ) +’_’+ str( foundGrain[1] ) + \
184 ’_’+ str( foundGrain[2] ) +’*’) # example ’*_17_44_5*’
185 for i in savefilenames:
186 shutil.move(i,’saves’) # generally: src --> destination, here: i --> saves
187 #
188 # delete all other files
189 os.system(’rm *.*’)

192 #-----< CREATE STOPPINGFILE >-------------------------------------------------------------#
193 # Obviously Abaqus only allows a maximum number of around 1000 jobs in one interactive
194 # Python # session. As a workaround, the script is written for one increment and is
195 # recalled from an external bash script. When the transformation is finished, the file
196 # finish_loop file is created # causing the bash-script not to recall the script anymore
197 if martensiteAmount == totalGrainAmount:
198 with open(’saves/finish_loop’,’w’) as f:
199 pass

E.2. write.py

1 ’’’This module creates the specified inputfiles and writes simulation results to files ’’’

3 import shutil
4 from automate import evaluate_odb

6 def writeInputfile( martensiteAmount, austeniteGrain, austeniteGrains, martensiteGrains, \
7 laminate, pbc, geometry_filename, material_jobData_filename, C_ave = 0 ):
8 ’’’ creates an inputfile according to the specified parameters ’’’
9 #

10 # specify the name of the created inputfile
11 inputFile_name = ’Inputfile_’+ str(martensiteAmount)+’_’+ str(austeniteGrain[0])+’_’+ \
12 str(laminate) +’.inp’
13 # the first section of the created inputfile is the used mesh from the specified
14 # external file. Copy this external file and rename it to the specified inputfile name
15 shutil.copy2( geometry_filename, inputFile_name )
16 # append section definitions and assignments to inputfile according to previous results
17 with open(inputFile_name, ’a’) as ifile:
18 # ----- write sections -----
19 for iGrain in austeniteGrains:
20 # only write currently transforming grain once
21 if austeniteGrain == iGrain: continue
22 string = ’*Solid Section, elset=transig_’ + str( iGrain[0]) + \
23 ’, orientation=Ori_’+ str(iGrain[0]) +’, material=austenite\n’
24 ifile.write(string)
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25 # write sections for already transformed grains
26 for iGrain in martensiteGrains:
27 # iGrain = [ grainNr, laminate ]
28 string = ’*Solid Section, elset=transig_’+ str( iGrain[0] ) + \
29 ’, orientation=Ori_’+ str( iGrain[0] ) + ’, material=laminate’+ \
30 str( iGrain[1] ) +’\n’
31 ifile.write(string)
32 # write section of additional grain transforming in this increment
33 string = ’*Solid Section, elset=transig_’ + str( austeniteGrain[0] ) + \
34 ’, orientation=Ori_’ + str( austeniteGrain[0] ) + ’, material=laminate’ + \
35 str( laminate ) +’\n’
36 ifile.write(string)
37 # ---- write material and jobdata -----
38 if pbc == False:
39 # write section for self consistent matrix, an orientation is
40 # needed because self consistent isotropic properties are given as
41 # averaged anisotropic tensor
42 string = ’*Solid Section, elset=matrix, orientation=Ori_1,’ + \
43 ’material=selfconsistentIsotropic\n’
44 ifile.write(string)
45 ifile.write(’*Material, name=selfconsistentIsotropic\n*Elastic, type=ANISOTROPIC\n’)
46 # the specification due to abaqus is first and second line 8
47 # and third line 4 entries, see keyword *elastic, type=anisotropic
48 entry = 0
49 for i in C_ave:
50 entry = entry + 1
51 ifile.write( i +’\t,’)
52 if entry == 8:
53 ifile.write(’\n’)
54 entry = 0
55 ifile.write(’\n’)
56 # finally write laminate and job information
57 with open( material_jobData_filename, ’r’) as material_jobData:
58 for line in material_jobData:
59 ifile.write( line )

64 def writeSaves( martensiteAmount, evaluationData, chem_drivForce, foundGrain ):
65 ’’’ write data of Energy minimizing-configuration in the two files ’save_gain’
66 containing grain specific data and ’save_model’ containing model specific data.
67 Also save the information of all other transformations in an increment as a reference.
68 foundGrain = [0 - delta_allEner, 1 - GrainNr, 2 - GrainLaminate, 3 - GrainVol,
69 4 - dragEner_spec, 5 - delta_totalStrain_spec,
70 6 - stress_drivingForce, 7 - total_strainEner_cell ] ’’’
71 #
72 # write data from all runs of the actual increment
73 with open(’saves/allruns_’+str(martensiteAmount), ’w’) as save_all:
74 save_all.write(’grainNr\tlaminateNr\tgrainVol\tdragEner_spec\t\t’ + \
75 ’delta_totStrainEner_spec\tdelta_allEnergies\n’)
76 for dat in evaluationData:
77 save_all.write( str(dat[1])+’\t’+str(dat[2])+’\t\t’+str(dat[3])+’\t’+ \
78 str(dat[4])+’\t’+str(dat[5])+’\t\t’+str(dat[0])+’\n’ )
79 # write grain data:
80 with open(’saves/save_grain’, ’a’) as save_grain:
81 save_grain.write(str(fg[1])+’\t’+str(fg[2])+’\t\t’+str(fg[3])+’\t’+str(fg[4])+ \
82 ’\t’+str(fg[5])+’\t\t’+str(fg[0])+’\t’+str(- hD + chem_drivForce )+’\n’ )
83 # gather and write model data:
84 odbname = ’Outputfile_’+ str(martensiteAmount)+’_’+ str( fg[1] )+ \
85 ’_’+ str( fg[2] )+’.odb’
86 md = automate.evaluate_odb( odbname, var = 0 ) # md ... modeldata
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87 md_6 = fg[3]*fg[5] # this is delta_total_strainEner
88 # md = [0 - tot_strainEner, 1 - tot_aveSener, 2 - ivol_aust, 3 - ivol_mart,
89 # 4 - aveSener_aust, 5 - aveSener_mart ]
90 with open(’saves/save_model’, ’a’) as save_model:
91 save_model.write(str(md[0])+’\t’+str( md_6)+’\t’+str(md[1])+’\t’+str(md[2])+’\t’+ \
92 str(md[3])+’\t’+str(md[4])+’\t’+str(md[5])+’\n’)

E.3. automate.py

1 ’’’ This module automates the calculation of all generated inputfiles as well as the
2 evaluation of the Outputdatabases. Also preselection parameters are specified.’’’

4 import os
5 import time
6 import sys # to exit the subprocess after the abaqus standard job has finished
7 from multiprocessing import Process # manages subprocesses calculating the abaqus jobs
8 import psutil # library for retrieving information on running processes
9 # my modules

10 import mathutils

13 def preselect( totalGrainAmount, martensiteAmount ):
14 ’’’ This function reduces the number of calculations carried out in a increment
15 by preselecting more likely states known from a previous increment. The here
16 defined parameters reduce the number of total calculations for this simulation
17 by a factor of 6 while the results are the same. Note that especially, low
18 fractions at early increments lower the number of total calculations because the
19 number of not transformed grains and all possibilites are related multiplicatively.’’’

21 # here the fraction of all possible transformations is declared
22 if martensiteAmount < int(totalGrainAmount*.7):
23 calc_fraction = (1./7)
24 if martensiteAmount>=int(totalGrainAmount*.7) and martensiteAmount<int(totalGrainAmount*.9):
25 calc_fraction = (1./5)
26 if martensiteAmount>=int(totalGrainAmount*.9) and martensiteAmount<int(totalGrainAmount*.94):
27 calc_fraction = (1./2)
28 if martensiteAmount >= int(totalGrainAmount*.95):
29 calc_fraction = 1
30 deltas = []
31 # variant_preselection is taken from the last state in which
32 # all variant permutations are known
33 allstates = ’saves/allruns_’ + str( martensiteAmount - 1 )
34 with open(allstates,’r’) as allstates:
35 for index, line in enumerate( allstates ):
36 line = line.rstrip(’\n’)
37 if index == 0: continue # ignore the headerline
38 else:
39 # data = [ delta_ener, grain_nr, laminate_nr ]
40 data = [ float(line.split()[5]), line.split()[0], line.split()[1] ]
41 deltas.append( data )
42 del data
43 deltas.sort() # sort ascending
44 deltas.reverse() # reverse to get descending sort
45 amount = int( len(deltas)* calc_fraction )
46 deltas = deltas[ 0 : amount ]
47 preselection = []
48 for i in deltas:
49 preselection.append( [ int(i[1]), int(i[2]) ] ) # [grainNr, laminate]
50 return preselection
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52 def submitjobs( austeniteGrains, martensiteAmount, laminateVariants, preselection, \
53 selected_variants, timeout ):
54 ’’’ handles automatic submission of all inputfiles, created in an increment ’’’
55 #
56 wait_array = []
57 jobNr = 0
58 #
59 for austeniteGrain in austeniteGrains:
60 for laminate in laminateVariants:
61 if ( [austeniteGrain[0], laminate] in selected_variants) or preselection == False:
62 #
63 jobNr = jobNr + 1
64 inputname = ’Inputfile_’+ str(martensiteAmount)+’_’+ \
65 str(austeniteGrain[0])+ ’_’+ str(laminate) +’.inp’
66 outputname = ’Outputfile_’+ str(martensiteAmount)+ ’_’+ \
67 str( austeniteGrain[0] )+’_’+ str(laminate)
68 #
69 pid = os.fork() # start (=fork) subprocesses
70 if pid == 0: # 0 is the child process
71 # in the child process invoke the standard solver
72 os.system( ’/opt/abaqus/Commands/abq6123 job=’ + outputname + \
73 ’ interactive cpus=2 scratch=/dev/shm input=’ + \
74 inputname +’ mp_mode=threads standard_parallel=all’)
75 # /dev/shm tmpfs directory
76 sys.exit() # close subprocess after the job has finished
77 else: # in the parent process the child process are managed
78 process = psutil.Process( pid )
79 wait_array.append( process)
80 #
81 if jobNr % 6 == 0 or (preselection == True and jobNr == len(selected_variants) ):
82 for iprocess in wait_array:
83 try:
84 iprocess.wait( timeout )
85 # timeout is the time in seconds the script waits for completion of the job
86 except psutil.TimeoutExpired:
87 print ’process running after timeout, killing proces...’
88 os.system(’killall -9 standard.exe’)
89 time.sleep(30)
90 wait_array = [] # empty wait array for new processes
91 del inputname, outputname, wait_array, jobNr

94 def findMinimumEnergy( austeniteGrains, martensiteAmount, laminateVariants, preselection, \
95 selected_variants = [], total_strainEner_cell_before = 0, \
96 chemical_drivingForce = 0 ):
97 ’’’ Reads totalstrainergy from outputfiles and evaluates the transformation that minimizes
98 the total strain energy density ’’’
99 #

100 evaluationData = [] # Define list for calculation results
101 #
102 for austeniteGrain in austeniteGrains:
103 for laminate in laminateVariants:
104 if ( [austeniteGrain[0], laminate] in selected_variants) or preselection == False:
105 #
106 odbname = ’Outputfile_’+ str(martensiteAmount)+’_’+ str( austeniteGrain[0] )+ \
107 ’_’+ str(laminate)+’.odb’
108 #
109 # if the calculation was terminated and a .lck file exist ignore that .odb
110 if os.path.isfile( odbname[0:len(odbname)-3] +’lck’ ): continue
111 # read the totalstrainenergy of the whole model via the odb file
112 # alternatively it could be extracted from the .dat file
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113 else: total_strainEner_cell = evaluate_odb.(odbname, var=1)
114 #
115 # Calculate difference of free energy density to previous increment:
116 # first calculate specific strain energy of transformed grain
117 delta_totalStrain = total_strainEner_cell - total_strainEner_cell_before
118 delta_totalStrain_spec = delta_totalStrain / austeniteGrain[1]
119 # next calculate specific interface energy barrier of transformed grain
120 dragEner_spec = forces.calc_draggingForces( austeniteGrain[1] )
121 #
122 # In the first run the chemical_drivingForce is determined as the sum
123 # of dragging energies, thus it a negative value
124 delta_G = chemical_drivingForce - ( dragEner_spec + delta_totalStrain_spec )
125 # CAUTION! : line continuation with - \ - gives +! 1--1 = 2!
126 #
127 evaluationData.append( [delta_G, austeniteGrain[0], laminate, austeniteGrain[1], \
128 dragEner_spec, delta_totalStrain_spec, total_strainEner_cell ] )
129 #
130 del total_strainEner_cell, delta_totalStrain, delta_totalStrain_spec, \
131 dragEner_spec, delta_G
132 return evaluationData

135 def evaluate_odb(odbname, var = 0):
136 ’’’ this function has three different return values (var = 0, 1, 2)
137 per default (0) weighted strain energy densities are returned. var = 1: only the total
138 strain energy of the model is returned. var = 2: The transformation criterion for
139 the LTC is returned based on the specific IE energy barrier and the double dot product
140 of the averaged strain tensor in a grain and its possible eigenstrains’’’
141 # create odb singular object
142 odb = openOdb(path=odbname)
143 # go through the object model
144 trans_step = odb.steps[’Transformation’]
145 last_frame = trans_step.frames[-1] # [-1] gives last frame

147 if var == 1:
148 histreg = trans_step.historyRegions[’Assembly Assembly-1’]
149 # Assembly Assembly-1 is the default repository key that is generated
150 all_total_energies = histreg.historyOutputs[’ALLIE’].data
151 # .data is the key in the dictionary for the Allenergies (total energies) array.
152 odb.close()
153 return all_total_energies[1][1] # [1][1] is the totalstrainenergy

155 # --- integration point variables ---
156 stresses = last_frame.fieldOutputs[’S’] # stress tensor components of integration points
157 seners = last_frame.fieldOutputs[’SENER’] # strain energy densities of integration points
158 ivols = last_frame.fieldOutputs[’IVOL’] # integration point volumes
159 ’’’# --- alternatively wole element variables can be read ---
160 last_frame.fieldOutputs[’ESEDEN’] # equivalent to SENER for whole elements
161 last_frame.fieldOutputs[’ELSE’] # strain energy for all whole Elements
162 last_frame.fieldOutputs[’EVOL’] # equivalent to IVOL for whole elements ’’’
163 #
164 # initialize variables to be weighted from the integration point level
165 total_strainEner = total_aveSener = ivol_total = ivol_aust = ivol_mart = 0
166 tot_strainEner_aust = tot_strainEner_mart = 0
167 #
168 for igrain in odb.sections.values():
169 # or: for i in odb.rootAssembly.elementSets.keys() -> i = set_name from inputfile
170 #
171 material = igrain.material
172 set_name = igrain.name.lstrip(’Section-’)
173 #
174 # ’PART-1-1’ is the default name of the first created part if none is specified
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175 grain = odb.rootAssembly.instances[’PART-1-1’].elementSets[set_name]
176 # integration point variable subsets
177 set_stresses = stresses.getSubset(region = grain, position=INTEGRATION_POINT)
178 set_ivol = ivols.getSubset(region = grain, position=INTEGRATION_POINT)
179 set_sener = seners.getSubset(region = grain, position=INTEGRATION_POINT)
180 # for whole element variables the same can be done without the parameter position=...
181 #
182 # evaluate the elementset related to the section
183 grain_sener_sum = grain_ges_ivol = 0
184 for i in range(len(set_stresses.values)): # number of all integration points
185 # in the set SENER must be weighted with the element volume since
186 # not elements are of the same size. Same as ELSE
187 grain_sener_sum=grain_sener_sum+set_sener.values[i].data*set_ivol.values[i].data
188 grain_ges_ivol = grain_ges_ivol + set_ivol.values[i].data
189 grain_ave_sener = grain_sener_sum / grain_ges_ivol
190 total_strainEner = total_strainEner + grain_sener_sum
191 # the volume of the matrix must not be considered for the random RVE cell !
192 if ’TRANSIG’ in set_name: ivol_total = ivol_total + grain_ges_ivol
193 #
194 # additionally calculate the strain energy developement in each phase respectively
195 if material == ’AUSTENITE’:
196 ivol_aust = ivol_aust + grain_ges_ivol
197 tot_strainEner_aust = tot_strainEner_aust + grain_ave_sener * grain_ges_ivol
198 #
199 if ’LAMINATE’ in material:
200 ivol_mart = ivol_mart + grain_ges_ivol
201 tot_strainEner_mart = tot_strainEner_mart + grain_ave_sener * grain_ges_ivol

203 if var == 2 and material == ’AUSTENITE’:
204 # initialize transformation strains
205 transforming_strains = eigenstrains()
206 # Define average "effective" stress tensor components
207 sig_eff_11 = sig_eff_22 = sig_eff_33 = sig_eff_12 = sig_eff_13 = sig_eff_23 = 0
208 #
209 for i in range(len(set_stresses.values)):
210 grain_ges_ivol = grain_ges_ivol + set_ivol.values[i].data
211 #
212 sig_eff_11 = sig_eff_11 + set_stresses.values[i].data[0]*set_ivol.values[i].data
213 sig_eff_22 = sig_eff_22 + set_stresses.values[i].data[1]*set_ivol.values[i].data
214 sig_eff_33 = sig_eff_33 + set_stresses.values[i].data[2]*set_ivol.values[i].data
215 sig_eff_12 = sig_eff_12 + set_stresses.values[i].data[3]*set_ivol.values[i].data
216 sig_eff_13 = sig_eff_13 + set_stresses.values[i].data[4]*set_ivol.values[i].data
217 sig_eff_23 = sig_eff_23 + set_stresses.values[i].data[5]*set_ivol.values[i].data
218 #
219 sig_eff_11 = sig_eff_11 / grain_ges_ivol
220 sig_eff_22 = sig_eff_22 / grain_ges_ivol
221 sig_eff_33 = sig_eff_33 / grain_ges_ivol
222 sig_eff_12 = sig_eff_12 / grain_ges_ivol
223 sig_eff_13 = sig_eff_13 / grain_ges_ivol
224 sig_eff_23 = sig_eff_23 / grain_ges_ivol
225 #
226 sigma = [sig_eff_11, sig_eff_22, sig_eff_33, sig_eff_12, sig_eff_13, sig_eff_23]
227 sigma = mathutils.fillmatrix(sigma)
228 #
229 spec_grain_drag = forces.calc_draggingForces( grain_ges_ivol )
230 for laminate in range(1, 6+1): # = [1,2,3,4,5,6]
231 spec_driving_stress=mathutils.doubledotproduct(transforming_strains[laminate-1],sigma)
232 check_term = spec_driving_stress - spec_grain_drag
233 if check_term > driving_force
234 driving_force = check_term
235 found_grain = [set_name, laminate, driving_force]
236 odb.close()
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237 #
238 # calculate total model values
239 total_ivol = ivol_aust + ivol_mart
240 # note that for the random RVE this is only the graincluster without the matrix
241 total_aveSener = total_strainEner / ivol_total
242 total_aveSener_mart = total_strainEner_mart / ivol_mart
243 if ivol_aust != 0: total_aveSener_aust = total_strainEner_aust / ivol_aust

245 if var == 2:
246 return found_grain, total_strainEner, total_aveSener, ivol_austenite, ivol_transformed, \
247 tot_aveSener_aust, tot_aveSener_mart

249 return total_strainEner, total_aveSener, ivol_austenite, ivol_transformed, \
250 tot_aveSener_aust, tot_aveSener_mart

E.4. material.py

1 ’’’ It also holds the parameters for the semianalytical calculation of
2 all IEs constituting a part of the energy barrier in the transformation ’’’

4 import numpy as np # used for a faster function of tensor rotation using outer products
5 import math
6 #my modules
7 import mathutils

9 def eigenstrains():
10 ’’’ initializes the matrices representing the transformation strains’’’
11 stress_driving_forces = []
12 # transformation strain components
13 [ v, u, w ] = [ 0.0381, 0.0234 0.1186 ]
14 # e1 corresponds to laminate 1, e2 to laminate 2 etc.
15 e1 = [ u, -v, u, 0,-w, 0 ]
16 e2 = [ u, u, -v, w, 0, 0 ]
17 e3 = [ u, -v, u, 0, w, 0 ]
18 e4 = [ u, u, -v,-w, 0, 0 ]
19 e5 = [ v, u, u, 0, 0, -w ]
20 e6 = [ -v, u, u, 0, 0, w ]
21 e = [ e1, e2, e3, e4, e5, e6]
22 transforming_strains = []
23 for i in e:
24 transforming_strains.append( mathutils.fillmatrix( i ) )
25 return transforming_strains

28 def calc_draggingForces( volume_grain ):
29 ’’’ Given the grainvolume of a certain grain in [nm^3] the specific dragging forces for
30 the grain are calculated. Therefore the grain is assumed to be a sphere with equal volume
31 as the grain. ’’’
32 #
33 # ----- < P A R A M E T E R S > -----
34 sigma_twin = 0.014E-9 # [nJ/nm^2] specific twin interfaceenergy
35 poissons_ratio_austenite = 0.4
36 alpha_twin = 0.856 * (1+poissons_ratio_austenite) / (8*math.pi)
37 shear_distortion = 0.1677 # 2*math.sqrt( e12**2 + e23**2 )
38 youngs_modulus_austenite = 72.E-9
39 shear_modulus_austenite = youngs_modulus_austenite / (2*(1+poissons_ratio_austenite))
40 inclusion_energy = 2.42E-10 # 1.177E-10
41 fit_C = inclusion_energy / (alpha_twin*2*1.5*shear_distortion**2 * shear_modulus_austenite)
42 # 1.5nm = d, 2d = D, the thickness of the 1nm model is not written explicitly
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43 Fc = 5.8E-12 # [nJ/nm^3] work of friction, dissipated energy
44 delta_surfaceEnergy = 0.1E-9 # [nJ/nm^2]; values from 0.1 ... 0.4 are reasonable
45 #
46 # At first the equal sphere’s radius and surface is calculated
47 diameter, surf = equal_lengths(volume_grain)
48 # next the optimal twin width minimizing the dragging force is calculated
49 d_opt = math.sqrt( sigma_twin / (12 * fit_C * alpha_twin * shear_modulus_austenite * \
50 shear_distortion**2) ) * math.sqrt(diameter)
51 #
52 # The dragging forces follow as:
53 total_interfaceEnergy = ( diameter / (6*d_opt) ) * sigma_twin
54 twin_surfaceEnergy = fit_C*alpha_twin*shear_modulus_austenite*shear_distortion**2 *2 *d_opt
55 dragging_forces = (total_interfaceEnergy + delta_surfaceEnergy + twin_surfaceEnergy) \
56 * (surf / volume_grain) + Fc
57 return dragging_forces

60 def equal_lengths(volume):
61 ’’’ given the volume of a grain calculates the diameter
62 and surface of a sphere with equal volume ’’’
63 diameter = ( (6*volume) / math.pi ) ** (1./3.)
64 surf = diameter**2 * math.pi
65 return diameter, surf

68 def selfconsistent_matrix( oris, graindata, Vinner ):
69 ’’’This function averages anisotropic elastic constants ( refering to local coordinate
70 systems respectively) to global isotropic elastic constants considering phase fractions.
71 The nearly isotropic elastic constants are used as the matrix material property. In
72 micromechanics this is commonly called "self consistence scheme" ’’’
73 #
74 # define isotropic elastic constants for austenite
75 E_aust = 70e-9
76 poissons_ratio_aust = 0.4
77 prefactor_austenite = E_aust / (( 1 + poissons_ratio_aust)*( 1 - 2*poissons_ratio_aust))
78 # Assemble isotropic elastic constants of austenite as a fourth order tensor
79 # note that the the following lines hold the 21 independent entries of the elastic tensor
80 # respectively. The order is the same as in the abaqus inputfile.
81 # first line in inputfile
82 A1111 = prefactor_austenite * (1 - poissons_ratio_aust)
83 A1122 = A2211 = prefactor_austenite * poissons_ratio_aust
84 A2222 = prefactor_austenite * (1 - poissons_ratio_aust)
85 A1133 = A3311 = prefactor_austenite * poissons_ratio_aust
86 A2233 = A3322 = prefactor_austenite * poissons_ratio_aust
87 A3333 = prefactor_austenite * (1 - poissons_ratio_aust)
88 A1112 = A1211 = A1121 = A2111 = 0.
89 A2212 = A1222 = A2221 = A2122 = 0.
90 # second line in inputfile
91 A3312 = A1233 = A3321 = A2133 = 0.
92 A1212 = A2112 = A1221 = A2121 = prefactor_austenite * ((1 - 2*poissons_ratio_aust) / 2)
93 A1113 = A1311 = A1131 = A3111 = 0.
94 A2213 = A1322 = A2231 = A3122 = 0.
95 A3313 = A1333 = A3331 = A3133 = 0.
96 A1213 = A1312 = A2113 = A1231 = A3112 = A1321 = A2131 = A3121 = 0.
97 A1313 = A3113 = A1331 = A3131 = prefactor_austenite * ((1 - 2*poissons_ratio_aust) / 2)
98 A1123 = A2311 = A1132 = A3211 = 0.
99 # thirA line in inputfile

100 A2223 = A2322 = A2232 = A3222 = 0.
101 A3323 = A2333 = A3332 = A3233 = 0.
102 A1223 = A2312 = A2123 = A1232 = A3212 = A2321 = A2132 = A3221 = 0.
103 A1323 = A2313 = A3123 = A1332 = A3213 = A2331 = A3132 = A3231 = 0.
104 A2323 = A3223 = A2332 = A3232 = prefactor_austenite * ((1 - 2*poissons_ratio_aust) / 2)
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105 # anisotropic elastic constants of martensite given in the basis of the tetragonal unit cell
106 M1111 = 2.54e-07
107 M1122 = M2211 = 1.04e-07
108 M2222 = 1.8e-07
109 M1133 = M3311 = 1.36e-07
110 M2233 = M3322 = 1.51e-07
111 M3333 = 2.48e-07
112 M1112 = M1211 = M1121 = M2111 = 0.
113 M2212 = M1222 = M2221 = M2122 = 0.
114 M3312 = M1233 = M3321 = M2133 = 0.
115 M1212 = M2112 = M1221 = M2121 = 9.1e-8
116 M1113 = M1311 = M1131 = M3111 = 0.
117 M2213 = M1322 = M2231 = M3122 = 0.
118 M3313 = M1333 = M3331 = M3133 = 0.
119 M1213 = M1312 = M2113 = M1231 = M3112 = M1321 = M2131 = M3121 = -3.e-9
120 M1313 = M3113 = M1331 = M3131 = 9.3e-08
121 M1123 = M2311 = M1132 = M3211 = 2.1e-08
122 M2223 = M2322 = M2232 = M3222 = 0.
123 M3323 = M2333 = M3332 = M3233 = -6.e-09
124 M1223 = M2312 = M2123 = M1232 = M3212 = M2321 = M2132 = M3221 = 0.
125 M1323 = M2313 = M3123 = M1332 = M3213 = M2331 = M3132 = M3231 = 0.
126 M2323 = M3223 = M2332 = M3232 = 5.e-09
127 #
128 Ca =[ [ [ [A1111, A1112, A1113], [A1121, A1122, A1123], [A1131, A1132, A1133] ],
129 [ [A1211, A1212, A1213], [A1221, A1222, A1223], [A1231, A1232, A1233] ],
130 [ [A1311, A1312, A1313], [A1321, A1322, A1323], [A1331, A1332, A1333] ] ],
131 [ [ [A2111, A2112, A2113], [A2121, A2122, A2123], [A2131, A2132, A2133] ],
132 [ [A2211, A2212, A2213], [A2221, A2222, A2223], [A2231, A2232, A2233] ],
133 [ [A2311, A2312, A2313], [A2321, A2322, A2323], [A2331, A2332, A2333] ] ],
134 [ [ [A3111, A3112, A3113], [A3121, A3122, A3123], [A3131, A3132, A3133] ],
135 [ [A3211, A3212, A3213], [A3221, A3222, A3223], [A3231, A3232, A3233] ],
136 [ [A3311, A3312, A3313], [A3321, A3322, A3323], [A3331, A3332, A3333] ] ] ]
137 #
138 Cm =[ [ [ [M1111, M1112, M1113], [M1121, M1122, M1123], [M1131, M1132, M1133] ],
139 [ [M1211, M1212, M1213], [M1221, M1222, M1223], [M1231, M1232, M1233] ],
140 [ [M1311, M1312, M1313], [M1321, M1322, M1323], [M1331, M1332, M1333] ] ],
141 [ [ [M2111, M2112, M2113], [M2121, M2122, M2123], [M2131, M2132, M2133] ],
142 [ [M2211, M2212, M2213], [M2221, M2222, M2223], [M2231, M2232, M2233] ],
143 [ [M2311, M2312, M2313], [M2321, M2322, M2323], [M2331, M2332, M2333] ] ],
144 [ [ [M3111, M3112, M3113], [M3121, M3122, M3123], [M3131, M3132, M3133] ],
145 [ [M3211, M3212, M3213], [M3221, M3222, M3223], [M3231, M3232, M3233] ],
146 [ [M3311, M3312, M3313], [M3321, M3322, M3323], [M3331, M3332, M3333] ] ] ]
147 # create numpy arrays
148 Ca = np.array(Ca)
149 Cm = np.array(Cm)
150 C_ave = np.zeros((3,3,3,3))
151 for i in range(len(graindata)):
152 # get rotationmatrix between local and global coordinate system.
153 rot_euler = np.array( mathutils.calc_rotmatrix_euler( oris[i][0], oris[i][1] ) )
154 # distinguish between austenite and martensite
155 if graindata[i][2] == ’AUSTENITE’: C = Ca
156 else: C = Cm
157 Vi = graindata[i][1]
158 # calculate C_averaged = sum_x[ (Vx/Vinner) * ( Rim Rjn Rkp Rlq Cmnpq ) ]
159 # where Cmnpq can be C_a or C_m
160 C_ave = np.add( C_ave, np.multiply( (Vi/Vinner), rotateElasticTensor(C,rot_euler) ) )
161 C_selfconsistent_voigt = voigt_notation( C_ave )
162 # convert float entries to strings with five decimals in order to write to inputfile
163 for i in range( len(C_selfconsistent_voigt) ):
164 C_selfconsistent_voigt[i] = ’{0:.5e}’.format(float( C_selfconsistent_voigt[i]) )
165 # positional argument 0 in python 2.x required.
166 return C_selfconsistent_voigt
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E.5. mathutils.py

1 ’’’ This module contains all mathematical operations needed for the simulation ’’’

3 import math
4 import izip
5 import numpy as np # installed along with abaqus. Available after invoking abaqus python

7 # -----< used matrix operations >---------------------------------------------------------#

9 def doubledot_product(A, B):
10 ’’’returns the doubledot product of two 3x3 matrices’’’
11 result = 0
12 for i in range(3):
13 for j in range(3):
14 result = result + A[i][j]*B[i][j]
15 return result

17 def fillMatrix(A):
18 ’’’ creates a symmetric 3x3 matrix from its elements
19 A = [11,22,33,12,13,23] ’’’
20 result = [ [A[0],A[3],A[4]],[A[3],A[1],A[5]],[A[4],A[5],A[2]] ]
21 return result

23 # -----< used vector operations >---------------------------------------------------------#

25 def vecDotProduct(vec1,vec2):
26 ’’’ calculates the dot or scalar product of two arbitrary vectors’’’
27 return sum(x1 * x2 for x1, x2 in izip(vec1, vec2))

29 def vecNorm(vec):
30 ’’’ calculates the Euclidean norm of a vector ’’’
31 return vecDotProduct(vec,vec)**0.5

33 def angle_between_vectors(vec1,vec2):
34 ’’’calculates the angle between two vectors in radians’’’
35 return math.acos( vecDotProduct(vec1,vec2) / ( vecNorm(vec1)*vecNorm(vec2) ) )

37 def vecCrossProduct(vec1, vec2):
38 ’’’ calculates the cross product between two vectors ’’’
39 return( [ vec1[1] * vec2[2] - vec1[2] * vec2[1],
40 vec1[2] * vec2[0] - vec1[0] * vec2[2],
41 vec1[0] * vec2[1] - vec1[1] * vec2[0])

43 # -----[ calculation of rotation matrix relating two Cartesion coordinate systems and ]---#
44 # [ rotations of fourth order tensors from one coordinate system to the other ]

46 def voigt_notation( C )
47 ’’’ this function takes the elastic fourth order tensor and returns its Voigt notation,
48 which is a 6 x 6 matrix ’’’
49 return C_voigt = [ C[0][0][0][0],C[0][0][1][1],C[1][1][1][1],
50 C[0][0][2][2],C[1][1][2][2],C[2][2][2][2],
51 C[0][0][0][1],C[1][1][0][1],C[2][2][0][1],
52 C[0][1][0][1],C[0][0][0][2],C[1][1][0][2],
53 C[2][2][0][2],C[0][1][0][2],C[0][2][0][2],
54 C[0][0][1][2],C[1][1][1][2],C[2][2][1][2],
55 C[0][1][1][2],C[0][2][1][2],C[1][2][1][2] ]
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59 def calc_rotmatrix_euler(a,b):
60 ’’’Calculates the rotation matrix R that takes the Cartesion coordinate system
61 defined by the two normal unit vectors a and b to the reference system given by
62 x[1,0,0] y[0,1,0] z[0,0,1]. R is defined using three Eulerian angles whereby
63 the x-convention (z,y’,z’’) is used. ’’’
64 #
65 # the third vector of the rotated system is calculated
66 c = vecCrossProduct(a,b)
67 # the Eulerian angles are calculated
68 alpha, beta, gamma = eulerian_angles(a,b,c)
69 # the Rotationsmatrix entrys are given as:
70 r11 = - math.sin(alpha)*math.sin(gamma) + math.cos(alpha)*math.cos(beta)*math.cos(gamma)
71 r12 = math.cos(alpha)*math.sin(gamma) + math.sin(alpha)*math.cos(beta)*math.cos(gamma)
72 r13 = - math.sin(beta)*math.cos(gamma)
73 r21 = - math.sin(alpha)*math.cos(gamma) - math.cos(alpha)*math.cos(beta)*math.sin(gamma)
74 r22 = math.cos(alpha)*math.cos(gamma) - math.sin(alpha)*math.cos(beta)*math.sin(gamma)
75 r23 = math.sin(beta)*math.sin(gamma)
76 r31 = math.cos(alpha)*math.sin(beta)
77 r32 = math.sin(alpha)*math.sin(beta)
78 r33 = math.cos(beta)
79 return ((r11, r12, r13),(r21, r22, r23),(r31, r32, r33))

81 def eulerian_angles(a,b,c):
82 ’’’ calculates the eulerangles between two Cartesian coordinate systems with
83 the same origin. The 3 Eulerian angles are dependent from each other, which means
84 the order of plane rotations carried out to transform the coordinate system is
85 definite. The angle beta is simply the angle between the z axes of both coordinate
86 systems (Z and c here). The angle alpha is the angle between the X axis of the
87 reference coordinate system and the projection of c into the X,Y plane. Finally,
88 gamma is the angle between the b - axis and Y’
89 ’’’
90 beta = angle_between_vectors( (0.,0.,1.),c )
91 alpha = angle_between_vectors( (1.,0.,0.), (c[0],c[1],0) )
92 # for gamma Y has to be rotated first
93 Y_rotated = [0,0,0]
94 Y_rotated[0] = - math.sin(alpha) * 1
95 Y_rotated[1] = math.cos(alpha) * 1
96 gamma = angle_between_vectors(Y_rotated, b)
97 return alpha, beta, gamma

99 def rotate_indicial( C, R ):
100 ’’’ calculates the rotation of a fourth order tensor C by the rotation defined by R,
101 where both are given as standard python lists ’’’
102 for i in range(3):
103 for j in range(3):
104 for k in range(3):
105 for l in range(3):
106 for m in range(3):
107 for n in range(3):
108 for o in range(3):
109 for p in range(3):
110 Crot[i][j][k][l]=R[i][m]*R[j][n]*R[k][o]*R[l][p]*C[m][n][o][p]+Crot[i][j][k][l]
111 return Crot

113 def rotateElasticTensor(C, R):
114 ’’’ rotates a forth order tensor C by a rotation given by the matrix R.
115 see: numpy reference-linear-algebra p653 ’’’
116 RR = np.outer(R, R)
117 RRRR = np.outer(RR, RR).reshape(4 * R.shape)
118 axes = ((0, 2, 4, 6), (0, 1, 2, 3))
119 return np.tensordot(RRRR, C, axes)
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