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Abstract—This paper presents a novel method for polynomial
approximation (Hermite approximation) using the fusion of value
and derivative information. Therefore, the least-squares error
in both domains is simultaneously minimized. A covariance
weighting is used to introduce a metric between the value
and derivative domain, to handle different noise behaviour.
Based on a recurrence relation with full re-orthogonalization,
a weighted polynomial basis function set is generated. This
basis is numerically more stable compared to other algorithms,
making it suitable for the approximation of data with high
degree polynomials. With the new method, the fitting problem
can be solved using inner products instead of matrix-inverses,
yielding a computational more efficient method, e.g., for real-
time approximation.

A Monte Carlo simulation is performed on synthetic data,
demonstrating the validity of the method. Additionally, various
tests on the basis function set are presented, showing the
improvement on the numerical stability.

Index Terms—discrete orthogonal polynomials, basis functions,
Hermite approximation, optimization

I. MOTIVATION

Measurements with a fusion of value and derivative infor-
mation are common in geotechnical monitoring, e.g. Fig. 1.
In this case, inclinometer measurements and reference mea-
surements from total stations are used to reconstruct the
measurement line and detect unwanted changes or deflections.
These measurements are perturbed by noise of different char-
acteristics, i.e., the reference measurements act as constraints
and are normally more precise than inclinometer measure-
ments. Especially in engineering problems, polynomials are
the model of choice for the approximation of such data,
due to their properties and their relation to the underlying
physical model. Within this work, we develop a framework
for the approximation with polynomials of given values and
derivatives with different noises characteristics using covari-
ance weighted discrete orthogonal polynomials. The developed
method proves to be suitable for high degree polynomial
approximation, since it is numerically more stable than other
methods.

The main contribution of this paper span:

Fig. 1. Schematic of geotechnical monitoring using inclination measurements
in combination with reference measurements

1) The derivation of a novel methodology for the generation
of a discrete orthogonal polynomial basis function set
which can be used to approximate values and deriva-
tives which are subjected to noise of different levels.
It uses a three-term recurrence relation with full re-
orthogonalization (to increase numerical stability) to-
gether with covariance weighting of the residual (for
introducing a metric between the value and derivative
domain).

2) The derivation of covariance propagation for the coeffi-
cients and the resulting approximation.

3) The introduction of various measures for the evaluation
of the numerical stability.

The paper is structured as follows: A review of literature is
found in Sec. II. In Sec. III all the derivations for the genera-
tion of a covariance weighted discrete orthogonal polynomial
basis function set are introduced. The derivation of the covari-
ance propagation is presented in Sec. III-D. To demonstrate
the validity of the novel method, a Monte Carlo experiment
for high degree polynomial approximation is performed on a
synthetic data set in Sec. IV. It is shown that the residual
between the data and the approximated values is reduced to
noise with the same parameters as used in the generation of
the synthetic noise. The numerical stability of the generated
basis is validated in Sec. V demonstrating the novel method
to be advantageous compared to using Vandermonde type
basis functions, especially for higher degrees. Various quality
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measures are tested and presented for both, complete and
incomplete basis function sets.

II. REVIEW OF LITERATURE

The use of value and derivative information for polynomial
approximation (Hermite approximation) is not common in
literature, whereas the use value and derivative information
for interpolation is well-known in literature.

Based on the idea of a Newton type interpolation, Hermite
introduced a similar methodology for the interpolation of
values and derivatives. The original idea can be found in [1].
Based on this, several books, e.g. [2], introduce this idea to a
broader audience.

A generalized version for arbitrary orders of derivatives at
given points can be found in [3]. This idea is extended to
bivariate functions in [4]. An extensive study on multivariate
Hermite interpolation can be found in [5].

Since the calculation of those interpolating polynomials
is straight forward, Hermite type interpolating polynomials
gained popularity for the approximation of functions using
a two point approach rather than Taylor expansion [6], [7].
They are well studied in terms of error bounds [8], [9] and
compared to other standard methods [10]. They are used to
solving ordinary differential equation [11], [12] and partial
differential equation [13]–[15] by approximating the equations
using Hermite type interpolation. It is pointed out, that using
this method lead to higher order of approximation, which
improves step-size for iterative methods compared to standard
methods.

Another use of the Hermite interpolation is presented in
[16]. In this work it is used to perform a moving-least-squares
approximation based on local basis functions which use value
and derivative information.

The idea of including derivative information within the
approximation of data is mostly found in constrained poly-
nomial approximation, e.g., [17]–[20]. There it is assumed,
that some information (e.g. reference points) is 100% certain.
Approximation of data with uncertain value and derivatives is
introduced in [21].

The idea of including a covariance weighting on the resid-
uals to get a valid metric between the value and derivative
domain is introduced in [18] and extended to higher order
derivatives in [22].

Within this paper we use this idea of covariance weighting
within the generation of a discrete orthogonal polynomial
basis function set to improve the numerical stability, making
it suitable for high degree polynomial fitting.

III. THEORETICAL FRAMEWORK

The herein presented framework addresses the approxima-
tion of a polynomial model given noisy values and collocated
derivatives using discrete orthogonal polynomials, i.e., systems
of polynomials that satisfy a discrete orthogonality constraint.

A. Modelling of Measured Values

The measured noisy values and derivatives are col-
lected in the vectors ŷ =

[
ŷ1 ŷ2 . . . ŷn

]T
and ŷ′ =[

ŷ′1 ŷ′2 . . . ŷ′n
]T

. They are sampled at the positions x =[
x1 x2 . . . xn

]T
. For modelling the measurement, we

assume that we measure the true value plus covariant noise.
This covariant noise is generated from a vector of gaussian ran-
dom variables with zero mean and unit variance (i.i.d. noise)
together with the according covariance matrix. Mathematically
this is described as

ŷ = y + Λ
1
2
ys (1)

ŷ′ = y′ + Λ
1
2

dyt, (2)

where y and y′ are the true values, Λy and Λ dy are the
associated covariance matrices and s and t are vectors of
i.i.d. noise.

B. Approximation of Values and Derivatives

The goal is now to approximate the given data in a least-
squares sense, using a set of discrete basis functions collected
in the columns of the matrix B and their derivatives B’. The
true values y and derivates y′ are modelled as

y = Bγ (3)
y′ = B′γ, (4)

where B′ denotes the first derivative of the basis functions B
with respect to x and γ is the coefficient vector. To apply
Gauss’s least-squares theorem, the involved errors must be
i.i.d., so we solve for the gaussian random variables s and
t using Eqn. (1)-(4), yielding

s = Λ
− 1

2
y (ŷ − Bγ) (5)

t = Λ
− 1

2

dy

(
ŷ′ − B′γ

)
. (6)

This results in the following functional to be minimized,

E (γ) = ‖s‖22 + ‖t‖
2
2 = (7)

= ‖Λ−
1
2

y (ŷ − Bγ)‖22 + ‖Λ
− 1

2

dy

(
ŷ′ − B′γ

)
‖22. (8)

Clearly, this introduces covariance weighting on the residual
and thus a metric between value and derivative domain is
established as stated in [18] and [22]. Substituting W

1
2
y , Λ

− 1
2

y

and W
1
2

dy , Λ
− 1

2

dy and minimizing Eqn. (7) leads to the normal
equations for weighted regression [23],(

BTWyB + B′TW dyB′
)
γ = BTWyŷ + B′TW dyŷ

′. (9)

To solve this equation for γ one can use standard methods,
e.g, inverting

(
BTWyB + B′TW dyB′

)
which is known to be

computational costly.
To overcome this problem, we developed a method to find

a polynomial basis function set P and its derivative P′, which
fulfil

PTWyP + P′TW dyP′ = I, (10)

i.e., a discrete orthogonality condition. The
matrices P =

[
p0 p1 . . . pi . . . pd

]
and



P′ =
[
p′0 p′1 . . . p′i . . .p′d

]
are a collection of

discrete polynomial basis functions and their derivatives.
Each column pi represents a polynomial of degree i and p′i
is the first derivative of that discrete polynomial. They are
sorted on increasing degrees yielding a basis function set of
degree d. Respectively a linear combination of those basis
functions yield a polynomial of degree d at most.

The coefficients γ for the approximating polynomial can
then be easily calculated from Eqn. (9) using,

γ = PTWyŷ + P′TW dyŷ
′, (11)

which are inner products of the basis functions and the
covariance weighted measurements. That is, the coefficient γi
for a certain basis function pi of degree i can be directly
calculated as

γi = p
T
i Wyŷ + p′Ti W dyŷ

′, (12)

which is similar to the calculation of discrete Fourier series.
Thus, the computational efficiency is improved compared to
solving the fitting problem using standard algorithms including
matrix inverses. To calculate the approximated values ỹ and
ỹ′, we use the estimated parameters γ within the model
equation (3) and (4), yielding

ỹ = Pγ (13)
ỹ′ = P′γ, (14)

C. Synthesis of Weighted Discrete Orthogonal Basis

In this section, a novel method for the synthesis of a set of
weighted discrete orthogonal polynomials fulfilling Eqn. (10)
is presented.

Two important conditions can be directly derived form the
identity in Eqn. (10). These are the normal condition

pT
k+1Wypk+1 + p

′T
k+1W dyp

′
k+1 = 1 (15)

and the orthogonality condition

PT
k Wypk+1 + P′Tk W dyp

′
k+1 = 0, (16)

which requires, that a basis function of degree k + 1 is
orthogonal to all basis functions of lower degree. The matrices
Pk =

[
p0 p1 . . . pk

]
and P′k =

[
p′0 p′1 . . . p′k

]
collect the basis vectors up to degree k.

For the generation of a set of suitable polynomial basis
functions P and their derivatives P′ up to a certain degree d,
we use a recurrence relation with full re-orthogonalisation (as
studied in [17], [24]) together with covariance weighting.

Starting from the classical three-term recurrence relation
from functional analysis for orthogonal polynomials, e.g. [25],
also known as Gram-Schmidt process [23], a polynomial
pk+1 (x) of degree k + 1 can be generated from lower degree
polynomials using

pk+1 (x) = αxpk (x)− βpk (x)− γpk-1 (x) . (17)

The derivative of this polynomial with respect to x is calcu-
lated as

p′k+1 (x) = αxp′k (x) +αx′pk (x)− βp′k (x)− γp′k-1 (x) . (18)

This is the definition for the continuous case.
The discrete formulations of Eqn. (17) and (18) for a given

vector x =
[
x1 x2 . . . xn

]T
are1

pk+1 = αx ◦ pk − βpk − γpk-1 (19)

and
p′k+1 = αx ◦ p′k + αx′ ◦ pk − βp′k − γp′k-1. (20)

The vectors pi =
[
pi (x1) pi (x2) . . . pi (xn)

]T
and p′i =[

p′i (x1) p′i (x2) . . . p′i (xn)
]T

are the polynomial of de-
gree i and its derivative evaluated at the points x. As shown
in [26], the normal three-term recurrence relation is numeri-
cally unstable, so we use a complete re-orthogonalization as
suggested in [24]. Using this improvement, Eqn. (19) and (20)
read as

pk+1 = αx ◦ pk − Pkβ (21)

and
p′k+1 = αx ◦ p′k + αx′ ◦ pk − P′kβ. (22)

Using the substitutions

uk = x ◦ pk (23)

and
vk = x ◦ p′k + x′ ◦ pk, (24)

Eqn. (21) and (22) read as

pk+1 = αuk − Pkβ (25)

and
p′k+1 = αvk − P′kβ. (26)

Using the orthogonality condition (16) together with (25)
and (26) yields(

PT
k WyPk + P′Tk W dyP′k

)
β = α

(
PT

k Wyuk + P′Tk W dyv
′
k

)
.

(27)
Since, per definition, the previous generated basis functions
have to fulfil the orthogonality and normal condition

PT
k WyPk + P′Tk W dyP′k = I, (28)

β can be expressed as

β = α
(
PT

k Wyuk + P′Tk W dyvk
)
. (29)

Using this, Eqn. (25) and (26) can be rewritten as

pk+1 = α
(
uk − PkPT

k Wyuk − PkP′Tk W dyvk
)
= αck+1 (30)

and

p′k+1 = α
(
vk − P′kPT

k Wyuk − P′kP′Tk W dyvk
)
= αc′k+1. (31)

ck+1 and c′k+1 represent a basis function and (its derivative)
which is orthogonal to all previous basis functions but not yet

1The operation with the symbol ◦ denotes the Hadamard product, i.e., the
element-wise product.



normed. To fulfil the norm condition in Eqn. (15), the scaling
factor α is calculated as

α =

√
1

cT
k+1Wyck+1 + c′Tk+1W dyc′k+1

. (32)

This scaling factor and the coefficient vector β have to be
calculated for each newly generated basis function.

To start the recurrence, the first basis functions p0, p1 and
their derivatives have to be defined in an initial step, to meet
the above mentioned conditions. The first basis function of
degree d = 0 is defined as

p0 =
e√

eTWye
, (33)

which is a normalized constant vector. e denotes a vector of
ones. The first derivative of this basis function is the zero
vector

p′0 = 0. (34)

For the second basis function p1 we first generate the vector

u1 = x ◦ p0, (35)

which we project onto the orthogonal complement of p0 to
meet the orthogonality condition, yielding

p̂1 =
(
I− p0p

T
0 Wy

)
u1. (36)

This is a scaled version of p1. To get the slope for the
derivatives of the basis functions right, the vector x′ is
calculated as

x′ =
√
eTWye

(
p̂1,n − p̂1,1

xn − x1

)
e. (37)

Using this, we calculate a scaled version of p′1 based on
Eqn. (24) and (26), yielding

p̂′1 = x′ ◦ p0. (38)

To generate the basis functions fulfilling the norm conditions,
we calculate the scaling factor

α1 =

√
1

p̂T
1 Wyp̂1 + p̂

′T
1 W dyp̂

′
1
. (39)

From this we calculate the second pair of basis functions

p1 = α1p̂1 (40)

and
p′1 = α1p̂

′
1. (41)

This is the prerequisite to start the synthesis of higher order
basis functions. The final set of basis functions P , Pd
and P′ , P′d of a certain degree d can now be used in
Eqn. (11), (13) and (14) to calculate the coefficients and to
finally approximate perturbed values and its derivatives with
a polynomial of degree d. A set of basis functions is shown
in Fig. 2.

The generation of a basis function set using the presented
method is a generalized Gram-Schmidt process. As it can be

Fig. 2. A set of discrete orthogonal basis functions P of degree d = 4
and its derivative P′ generated for n = 300 equally spaced points with
σyi = σy = 0.2 and σ dyi = σ dy = 0.8

seen, the generation of the basis depends only on the relative
locations of the x values2 and not on the values itself. If the
abscissa values x do not change, the basis function set can
be calculated a priori and the solution to the weighted fitting
problem reduces to a simple matrix-vector multiplication (see
Eqn. (11)). This is advantageous when implemented in smart
sensors or low power controllers. A further advantage is, that
the weighting matrices Wy and W dy can be rank-deficient,
e.g., points can be weighted with 0 if they should not be
considered. This can be helpful to suppress outliers.

D. Covariance Propagation

Since we are dealing with noisy data, covariance propaga-
tion is a prerequisite for making assumptions about the quality
of the approximated values. Based on Eqn. (11) the covariance
Λγ for the coefficients γ is calculated as

Λγ = PT
cWcΛcWT

cPc (42)

with the block matrices

Λc =

[
Λy 0
0 Λ dy

]
, Wc =

[
Wy 0

0 W dy

]
, Pc =

[
P
P′

]
.(43)

Similarly, the covariance matrices for the approximated
values and derivatives can be propagated as

Λỹ = PPT
cWcΛcWT

cPcPT (44)

and
Λdỹ = P′PT

cWcΛcWT
cPcP′T. (45)

Since Wc , Λ−1c the middle-term results in WcΛcWT
c = Wc.

Together with the identity from Eqn. (10), the above equations
simplify to

Λγ = I, (46)

Λỹ = PPT (47)

2To improve numerical stability, x is transformed to be centered at the
origin and scaled to unit norm.



and
Λdỹ = P′P′T. (48)

These covariance matrices for the approximated coefficients
and values, can be used to calculate confidence intervals or
predictions intervals. Note: As it can be seen in Eqn. (46),
the presented method decorrelates the noise to i.i.d. noise, to
accord with Gauss’s theorem.

IV. NUMERICAL EXAMPLE

To test the validity of the herein presented method to
approximate a polynomial given perturbed values and deriva-
tives, a synthetic dataset is generated. The underlying function
is defined as

f (x) = cos (5x) (49)

with its analytical first derivative

df (x)

dx
= −5 sin (5x) . (50)

The function and its derivative are evaluated in the range
[−2π, 2π] at n = 500 equally spaced nodes, yielding the
vectors of values and derivatives y and y′. Gaussian noise with
different gains σyi = σy = 0.1 and σ dyi = σ dy = 2 is added
to those vectors yielding the noisy measurement vectors ŷ and
ŷ′. A polynomial of degree d = 35 is used for approximating
the noisy data set. To test the developed method, a Monte Carlo
simulation is performed with niter = 1000 iterations. As a
measure, the standard deviation of the residuals std{ry} =
std{y − ŷ} and std{r dy} = std{y′ − ŷ′} are calculated
in each run. Since the presented method uses covariance
weighting, the standard deviation of the result should be the
same as σy ≈ std{y − ŷ} and σ dy ≈ std{y′ − ŷ′}. The
mean value of the standard deviations over all runs is shown
in Fig. 3. As it can be seen, although the noise gains are
very different, the presented method which uses covariance
weighted approximation delivers the correct results for both,
values and derivatives demonstrating the method to be valid.

As expected, the method using the Vandermonde basis as
presented in [22], is not stable for such a high degree. As one
can inspect, the approximation does not follow the signal.

V. NUMERICAL QUALITY OF BASIS

To verify the numerical quality of herein presented method,
a meaningful measure has to be found. As Wilkinson [27]
pointed out, a posteriori estimation of error bounds is preferred
to a priori error predictions in such cases. The identity in
Eqn. (10) can be written in terms of the block matrices as

PT
cWcPc = I. (51)

Rewriting in terms of a unitary matrix U yields

UTU = I, (52)

with
U = W

1
2
c Pc. (53)

The residual matrix

R = I− PT
cWcPc ≈ 0 (54)

should contain zeros in a perfect reconstruction. Due to numer-
ical errors, this does not hold (see Fig. 4). To summarize the
numerical quality of the generated basis, the following error
measures are tested in order to find the appropriate measure:

1) Maximum norm. The maximum norm is the largest
single element within the residual matrix, i.e., εmax =
‖R‖max = max{|rij |}. Since this norm depends only on
one specific entry, this may lead to wrong conclusions.

2) Frobenius norm. The Frobenius norm is the square root
of the sum of the squares of all entries in the residual
matrix, i.e., εF = ‖R‖F =

√∑
i

∑
j r

2
ij . This norm is a

measure for the total error.
3) Determinant. The determinant of a matrix is a theoret-

ical quality measure and equals 1 for an ideal unitary
matrix. The variation from this, i.e., εdet = 1− det{U}
is a measure for the quality of the tested basis function
set.

4) Condition number. The condition number of a matrix is
connected to the error propagation. For a unitary matrix
the condition number is 1. Thus, the measure tested is
εcond = 1− cond{U}.

5) Rank. Since the presented method generates a weighted
orthogonal basis function set, the rank of U should be
full rank, i.e., no linear dependencies. Due to round off
errors this can be used to find linear dependencies, i.e.,
εrank = n− rank {U } .

Based on those measures the approximate number of sig-
nificant digits η is calculated as

ηm = − log10 (εm) . (55)

These measures are calculated for a complete basis function
set where the number of basis functions equals the number of
data points (values and derivatives). Therefore, the degree of
the resulting polynomial is d = 2n− 1. In Fig. 5 the different
measures are presented for varying degrees. As it can be seen,
the Frobenius norm and the condition number are the most
meaningful measures, since they show the highest dependency
on the degree of the resulting polynomial. The rank measure
is not visible, since the proposed algorithm generates full-
rank basis function sets, so there is no error visible. Since the
Frobenius norm is a measure for the total error, this measure
is chosen to compare to other algorithms in the following.

The new method is compared to the one presented in [22].
It uses a Vandermonde basis function set to solve the same
problem. As [17] pointed out, the Vandermonde basis for
normal polynomial regression gets degenerate at high degrees.
This behaviour can also be inspected within this paper. As it
can be seen in Fig. 6, the new method generates a more stable
result also for high degrees.

Since this new method can also be used for approxima-
tion (overdetermined system of equations), the quality of the
basis is determined for an incomplete basis function set for
n = 1000. The result for various degrees of polynomial is
visualized in Fig. 7, showing that the new method performs
also better for an incomplete basis.



Fig. 3. Approximation of a polynomial of degree d = 35 to synthetic data generated from f (x) = cos (5x) with σyi = σy = 0.1 and σ dyi = σ dy = 2
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Fig. 4. The structure of a residual matrix R = I − PT
cWcPc for d = 100

and n = 50 with σyi = σy = 0.2 and σ dyi = σ dy = 0.8

max

F

cond

rank

det

Fig. 5. Comparison of different error measures for a complete basis function
set with d = 2n− 1 and σyi = σy = 0.2 and σ dyi = σ dy = 0.8

VI. CONCLUSION

The herein presented method introduces a novel poly-
nomial fitting framework for the approximation of value
and derivative data. Including both sources of information
within the fitting procedure improves the quality of the fit-

weighted discrete orthogonal polynomials

Vandermonde

Fig. 6. Numerical quality of Vandermonde basis compared to the new method
using a complete basis with σyi = σy = 0.2 and σ dyi = σ dy = 0.8

weighted discrete orthogonal polynomials

Vandermonde

Fig. 7. Numerical quality of Vandermonde basis compared to the new method
using an incomplete basis with σyi = σy = 0.2, σ dyi = σ dy = 0.8 and
n = 1000

ted polynomial improving both, reconstruction of values and
derivatives. The method uses a recurrence relation with full
re-orthogonalization together with covariance weighting for
introducing a metric between value and derivative domain,
yielding a set of discrete orthogonal polynomials. As it is
shown, the generated basis function set is numerically more
stable compared to other methods, especially for high degree
polynomials. Using this basis, the fitting problem is reduced



to inner products, which is beneficial in terms of computa-
tional efficiency. Due to the covariance weighting, the noise
associated with the channels is decorrelated to i.i.d. noise, to
accord with Gauss’s theorem. Thus, there is no bias based on
different noise parameters. The validity of the method is tested
and presented on a numerical example, where a polynomial
of degree d = 35 is fitted to a periodic function. In future
research, this method will be adapted for fitting data given
noisy constraints, based on discrete orthogonal polynomials.
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