
Chair of Petroleum and Geothermal Energy Recovery

Master Thesis

Application of neural networks for
short-term prediction of flowing

wellhead pressures in horizontal gas
storage wells

Written by:
Markus Sachsenhofer, BSc
1035241

Advisors:
Univ.-Prof. Dipl.-Ing. Dr.mont. Herbert Hofstätter

Dipl.-Ing. Dr.mont. Rudolf Fruhwirth
Dipl.-Ing. Alexander Gubik

Leoben, 21.11.2016

EIDESSTATTLICHE ERKLÄRUNG i

AFFIDAVIT ii

Ackknowledgement iii

Ackknowledgement

First of all I would like to express my gratitude to Dipl.-Ing. Bernhard Griess and everyone
else at Rohoel-Aufsuchungs AG (RAG) for this exceptional opportunity. I want to especially
thank Dipl.-Ing. Alexander Gubik, who was my supervisor at RAG. Without his experience,
encouragement and support this thesis would not have been possible.

I would like to thank the Chair of Petroleum and Geothermal Energy Recovery and its head
Univ.-Prof. Dipl.-Ing. Dr.mont. Herbert Hofstätter for their support and efforts throughout my
studies.

In particular I would like to thank my advisor at the Chair Dipl.-Ing. Dr.mont. Rudolf Fruhwirth,
who has been an outstanding thesis advisor. His experience and dedication were the main
inspiration for this thesis.

Finally I want to thank my parents for their effort and encouragement throughout the whole
time. I would also like to express my gratitude to my aunt and uncle for their support, which
made living as a student much easier. Additionally I would like to mention my brother Klaus,
who was a great help when writing this thesis.

Kurzfassung iv

Kurzfassung

Die Speicherung von Erdgas und die Versorgungssicherheit damit sind wichtig für ein Land wie
Österreich, das vom Import von fossilen Energiequellen abhängig ist. Typischerweise ist der
Betrieb eines Untertagespeichers für Erdgas durch den saisonal bedingten Verbrauch von Gas
und der nahezu konstanten Lieferkapazität von Pipelines gekennzeichnet. Eine kurzfristigere
Fahrweise des Speichers unterstützt durch eine numerische Simulation verschiedenerer Szenarien
könnte die Energieeffizienz verbessern und durch verbesserte Schaltzeiten Equipment schonen.

Diese Masterarbeit behandelt die Themenstellung ob künstliche neuronale Netze zur Model-
lierung des Betriebs eines Erdgasspeichers verwendet werden können. Neuronale Netze sind
heuristische Tools die nahezu jeden Trend in den Daten wiedergeben können, ohne Kenntnisse der
zugrundeliegenden physikalischen Gesetzmäßigkeiten. Es wird untersucht ob es eine Architektur
von neuronalen Netzen gibt, die eine Alternative zur klassischen Lagerstättensimulation im
Bereich der Simulation kurzfristiger Fahrweisen eines Erdgasspeichers darstellen können. Eine
Genauigkeit der Vorhersage der Sondenkopffließdrücken von ±1 Bar ist die Voraussetzung einer
weiteren Optimierung des Betriebsplans. Daten eines echten Untertageerdgasspeichers, betrieben
von der Rohölaufsuchungs AG (RAG) sind das Fundament aller Simulationen dieser Arbeit mit
Hilfe neuronaler Netze.

Mehrere Typen von neuronalen Netzen werden geprüft hinsichtlich ihrer Fähigkeit korrekte
Sondenkopfdrücke während der Injektion und Entnahme von Gas vorherzusagen. Die Anwen-
dung neuronaler Netze setzt eine geeignete Vorgangsweise der Datenverarbeitung voraus. Diese
inkludiert die Bearbeitung von fehlenden Datenpunkten und Ausreißern in den gemessen Daten
sowie die Umwandlung der irregulär gesampelten Signale in regulär gesampelte. Zwei verschiedene
Methoden zur Abtastratenkonvertierung werden verwendet um sicherzustellen, dass ein Signal
frei von Artefakten zum Training der neuronalen Netze angewendet wird. Alle Netze werden mit
den gleichen „History Matching“ und Testintervallen aus einer Datenquelle trainiert.

Die Resultate aus den „History Matching“ und Testdatensätzen haben gezeigt, dass manche
Netzarchitekturen die Sondenkopfdrücke, die während des Betriebs des Speichers gemessen
wurden, erfolgreich simulieren konnten. Bei der Verwendung von „recurrent“ neuronalen Netzen,
wie den „fully recurrent“, Elman und NARX konnten gute Ergebnisse erzielt werden. Die besten
Ergebnisse im „History Matching“ und auch im unabhängigen Testintervall konnten mit den
„fully recurrent“ Netzen erreicht werden. Obwohl keines der trainierten Modelle die gewünschte
Genauigkeit von ±1 Bar erzielte, konnte dennoch gezeigt werden, dass die „recurrent“ neuronalen
Netze generell im Stande waren die Sondenkopfdrücke zu simulieren. Abschließend kann man
sagen, dass neuronale Netze eine brauchbare Alternative sein können, wenn noch zusätzlich
Verbesserungen hinsichtlich ihrer Genauigkeit erzielt werden können.

Abstract v

Abstract

The underground storage of natural gas and the security of supply thereof is an important issue
for a country like Austria, which depends on imports of fossil fuels. Typically the operation
mode of an underground gas storage facility is determined by the seasonal swing in the demand
of gas opposed by the nearly constant supply through pipelines. A more short-term oriented
operation schedule supported by a numerical simulation of various scenarios could improve the
energy efficiency and reduce wear through optimized switching cycles.

This master’s thesis evaluates the application of neural networks to the simulation of gas storage
behaviour. Neural networks are heuristic tools that can be used to model nearly any trend in
the data fed to them, without prior knowledge of underlying physical laws. It is investigated
whether a neural network architecture exits that can act as an alternative to the classical reservoir
simulation to model the short-term operation of an underground gas storage facility. An accuracy
of the wellhead pressure prediction in the order of ±1 Bar is the prerequisite to the optimization
of operation schedules. Data from an actual underground gas storage plant, operated by the
Rohöl-Aufsuchungs AG (RAG) is the basis for all neural network simulations.

Several neural network types are tested with regards to their suitability of producing adequate
wellhead pressure predictions during injection and production of natural gas. A prerequisite
towards the application of these networks is an appropriate data management workflow. This
includes the treatment of missing samples and outliers in the measured data as well as the
transformation of the irregularly sampled signal to a regular one. Two different resampling
methods are built to ensure a clean signal is used to train the neural networks. All networks are
trained using equal history matching and testing intervals coming from one data set.

The results on the history matching and testing data set showed that there were some network
architectures that could successfully model the wellhead pressures during gas storage operation.
Good results were achieved when using recurrent neural network architectures, like the fully
recurrent one, the Elman network and NARX model. The best model outputs on the history
matching as well as the independent test interval were produced by the fully recurrent network.
Although none of the models trained and tested could reach the desired accuracy of ±1 Bar, it
could be shown that these recurrent neural networks were capable of modelling the wellhead
pressures in general. Finally it can be said that neural networks could be a viable alternative if
additional improvements towards an enhanced accuracy are made.

List of Tables vi

List of Tables

4.1 Automatic deletion of double time stamps . 49
4.2 Resampling intervals and respective filter configurations 64

5.1 Overview of neural network software packages . 78
5.2 Overview of MLP network generations . 79
5.3 Overview of fully recurrent network generations 81
5.4 Overview of Elman network generations . 82
5.5 Overview of NARX network generations . 82
5.6 Overview of ESN generations . 84

List of Figures vii

List of Figures

2.1 Gas Demand Profile . 4

3.1 Joshi Horizontal Well Model . 13
3.2 Babu & Odeh Horizontal Well Model . 14
3.3 Skin Effect & Darcy Coefficient . 17
3.4 Houpert Coefficients from Flow-after-Flow Test 19
3.5 Influence of Tubing Size on the Gas VLP Curve 25
3.6 Effect of Damage and Turbulence . 26
3.7 Concept of Upscaling . 28
3.8 Multi-Layer Perceptron . 31
3.9 Neuron Model and Transfer Function . 32
3.10 Schematic of ANN Input Data Treatment . 34
3.11 Flow of Error Signal through an ANN . 35
3.12 Effect of Overfitting . 36
3.13 Fully recurrent ANN . 39
3.14 Elman - simple recurrent ANN . 41
3.15 NARX recurrent ANN . 42
3.16 BPTT Training Method . 44
3.17 ESN with sparsely connected Reservoir . 46

4.1 Treatment of missing Data . 49
4.2 Distinction between Outliers and valuable Samples 50
4.3 Histogram of sampled Time Intervals . 51
4.4 Time Series Plot of Well 1 . 52
4.5 Scatter plots of flow rate vs pressure for all six operating wells 54
4.6 Box plot of pressures of all wells . 56
4.7 Boxplot of flow rates of all wells . 56
4.8 Histograms of the Pressure for all six operating Wells 58
4.9 Histograms of the Flow Rate for all six operating Wells 59
4.10 Relation between Nyquist Frequency and Aliasing 61
4.11 Comparison of a Gaussian & Median Filter . 63
4.12 Spectral analysis of a Gaussian filter . 64
4.13 Comparison of Original & Resampled Signal . 68
4.14 Critical Sections in the Original & Resampled Signal 69

5.1 Input & Output configuration of ANN models . 72
5.2 Input & Output configuration Obs-Well 1 . 73
5.3 Time Series Plot of Obs-Well 1 Prediction . 74

List of Figures viii

5.4 Output - Target correlation plot & error histogram - Obs-Well 1 75
5.5 Data Separation for ANN Models . 76
5.6 Computation Time of ANN . 77

6.1 MLP ANN Validation & Test Set Errors . 86
6.2 Time Series Plot of MLP ANN Prediction . 87
6.3 Output - Target correlation plot & error histogram - MLP 89
6.4 Fully recurrent ANN Validation & Test Set Errors 90
6.5 Time Series Plot of Fully Recurrent ANN Prediction 92
6.6 Time Series Plot of Fully Recurrent ANN Prediction 93
6.7 Output - Target correlation plot & error histogram - fully recurrent ANN 95
6.8 Elman ANN Validation & Test Set Errors . 96
6.9 Time Series Plot of Elman ANN Prediction . 98
6.10 Output - Target correlation plot & error histogram - Elman ANN 99
6.11 NARX ANN Validation & Test Set Errors . 100
6.12 Time Series Plot of NARX ANN Prediction . 102
6.13 Output - Target correlation plot & error histogram - NARX ANN 103
6.14 ESN Validation & Test Set Errors . 104
6.15 Time Series Plot of ESN Prediction . 106
6.16 Output - Target correlation plot & error histogram - ESN 107
6.17 Ranking of networks according to their validation errors 108

A1 Moody Diagram . 119
A2 Nodal Analysis . 120
A3 Overview of common ANN Transfer Functions 122
C1 Time Series Plot of Fully Recurrent ANN Prediction - Well 1 154
C2 Time Series Plot of Fully Recurrent ANN Prediction - Well 2 155
C3 Time Series Plot of Fully Recurrent ANN Prediction - Well 3 156
C4 Time Series Plot of Fully Recurrent ANN Prediction - Well 4 157
C5 Time Series Plot of Fully Recurrent ANN Prediction - Well 5 158
C6 Time Series Plot of Fully Recurrent ANN Prediction - Well 6 159

Abbreviations ix

Abbreviations

ANN
AOF
BP
BPTT
EFM
ESN
FVM
GLR
GOR
GRU
IMPES
IMPIMS
IPR
IQR
LNG
MLP
NARX
PVT
QC
RAG
RMSE
SCADA
UGS
VLP

Artificial Neural Network
Absolute Open Flow
Backpropagation
Backpropagation Through Time
Electronic Flow Measurement
Echo State Network
Finite Volume Method
Gas Liquid Ratio
Gas Oil Ratio
Gated Recurrent Unit Network
Implicit Pressure Explicit Saturation
Implicit Pressure Implicit Saturation
Inflow Performance Relationship
Inter-Quartile Range
Liquefied Natural Gas
Multilayer Perceptron
Nonlinear AutoRegressive Model with eXogenous Inputs
Pressure-Volume-Temperature
Quality Control
Rohölaufsuchungs AG
Root Mean Square Error
Supervisory Control and Data Acquisition
Underground Gas Storage
Vertical Lift Performance

Table of Contents x

Contents

1 Introduction 1
1.1 Problem Statement . 1

2 Fundamentals 3
2.1 Underground gas storage concept . 3
2.2 Types of UGS & Field data . 6
2.3 Data measurement & Management . 7

3 Literature Review 8
3.1 Classical approach to reservoir management . 8

3.1.1 IPR for gas wells . 8
3.1.2 Skin & Non-Darcy Effect . 15
3.1.3 VLP for gas wells . 19
3.1.4 Nodal Analysis . 24
3.1.5 General reservoir simulation . 26
3.1.6 Wellbore storage & Transient effects . 29

3.2 Mathematical approach with artificial neural networks 31
3.2.1 Multilayer Perceptron . 31

3.2.1.1 Neuron Model & Number of Weights 31
3.2.1.2 Input normalization & Weight initialization 33
3.2.1.3 Training of ANN . 34
3.2.1.4 Generalization . 35

3.2.2 Recurrent ANN . 37
3.2.2.1 Fully connected recurrent ANN 38
3.2.2.2 Simple recurrent ANN . 40
3.2.2.3 NARX recurrent network . 41
3.2.2.4 Training of recurrent ANN . 43
3.2.2.5 Vanishing Gradients . 43
3.2.2.6 Echo State Network . 44

4 Data Management 47
4.1 Description of available data . 47

4.1.1 Confidentiality agreement . 47
4.2 Gathering and preparation of data . 48

4.2.1 Missing values . 48
4.2.2 Double values . 48
4.2.3 Erroneous measurement . 49
4.2.4 Irregular sampling intervals . 50

Table of Contents xi

4.3 Data statistics . 51
4.3.1 Time series plot . 51
4.3.2 Scatter plot . 53
4.3.3 Box plot . 55
4.3.4 Histogram . 57

4.4 Resampling . 60
4.4.1 Linear resampling and filtering . 60

4.4.1.1 Filtering in the time domain - Gaussian filter 61
4.4.1.2 Filtering in the frequency domain 62
4.4.1.3 Median filter . 62
4.4.1.4 Applied filtering approach . 63

4.4.2 Resampling with local polynomial kernel regression 65
4.5 Quality control . 66

5 Methodology 70
5.1 Agenda . 70
5.2 Data preprocessing . 70

5.2.1 Selection of input & output for ANN . 71
5.2.1.1 Obs-Well 1 as input . 72

5.2.2 Data separation . 76
5.2.3 Sampling frequency & Computation time 77

5.3 Model Setup . 78
5.3.1 Overview of neural network programs . 78
5.3.2 MLP with RapidMiner . 78
5.3.3 Fully Recurrent ANN with MATLAB . 79

5.3.3.1 Smaller resampling interval . 81
5.3.4 Elman ANN with MATLAB . 81
5.3.5 NARX ANN with MATLAB . 82
5.3.6 ESN with MATLAB . 83

6 Results 85
6.1 MLP ANN . 85
6.2 Fully recurrent ANN . 90

6.2.1 Smaller resampling interval . 91
6.3 Elman ANN . 96
6.4 NARX ANN . 100
6.5 Echo State Network . 104
6.6 Ranking of ANN types . 108

7 Conclusion 109

8 Discussion and Outlook 112

Table of Contents xii

9 References 113

Appendices 119
Appendix A . 119
Appendix B . 123
Appendix C . 129

Chapter 1. Introduction 1

1 Introduction

Natural gas is one of the most important energy sources not only in Austria but also in the whole
European Union and covers around 17 % of Austria’s total energy consumption. The domestic
yearly production of natural gas in Austria remained in a range of 1.3 to 2 MMm3 since 1990.
The net import volumes of gas rose from 5 in 1990 up to 9 MMm3 in 2011. In the same time
period a remarkable development with regard to underground gas storage capacity could be
observed in Austria. As of April 2014 the working gas volume of all storage facilities in Austria
had reached 8.1 MMm3, which means that Austria can store nearly the whole yearly domestic
gas consumption [1, p. 43-50].

This impressive amount of storage capacity is mainly used in a seasonal cycle by storing gas in
summer and producing it again in winter. By utilizing spare storage capacities different short-
term oriented operation modi could be analysed to generate additional income or to optimise
facility usage. This thesis investigates if and how neural networks can be used to model the gas
storage’s behaviour for short-term periods.

1.1 Problem Statement

The possibility of modelling the short-term behaviour of an underground gas storage facility,
especially the wellhead pressure during injection and production opens many ways of optimization.
These improvements would additionally increase the overall energy efficiency and reduce wear at
valves and other equipment through enhanced switching cycles.

In general the classical reservoir simulation approach is used to generate a geological model and
do finite volume numerical simulation of the hydrocarbon reservoir. This approach reaches its
limit of unrestrained applicability when numerous prediction scenarios are required to optimize
short-term operation of a gas storage facility. This limitation results from the requirements
involved with the set up and the computation of different injection/production scenarios in
classical reservoir simulation software, therefore the method is hardly applicable when operational
decisions have to be taken in short time, requiring the numerical simulation of various scenarios
in a restricted time period.

The aim of this thesis is to investigate if neural networks can act as an alternative to the
classical reservoir simulation approach for short-term applications. This investigation is based on
actual data from underground gas storage facilities of Rohölaufsuchungs AG (RAG). The data
provided by RAG includes static reservoir parameters and dynamic data coming from wellhead
measurements. To check the suitability of neural networks a workflow including data gathering
and preparation as well as the setup of different network architectures has to be developed.

Chapter 1. Introduction 2

A simulation of wellhead pressures with an accuracy of ±1 Bar is required to investigate the
optimization potential of different operation modi.

Data Management

The challenge in data management is to extract suitable data from a multitude of different
sources with varying quality. Data is provided by different databases within RAG, which store
static information about the gas storage reservoir and dynamic information coming from wellhead
measurements. The raw data has to be refined in order to be applicable for neural networks and
this refinement process includes the selection of appropriate parameters in the model building
process. A workflow dedicated to data handling and identification of valuable information is
developed. This process discusses all necessary steps from identifying valuable information,
statistical analysis of gathered data and their transformation into a suitable format, in particular
the issue of suitable types of data for a neural network is dealt with. Typically data used in
classical reservoir simulation is in time series format, which requires that data from different
sources is scaled to identical time stamps. A similar approach is developed to treat dynamic
measurements coming from different wells.

Neural Networks

Neural networks are heuristic machine learning tools which allow modelling any observable rela-
tionship in data without prior knowledge of underlying physical processes. There are numerous
types and architectures to be found in the literature and several of them are evaluated. A review
of literature on existing types of neural networks is done which gives an indication of architectures
suitable for modelling underground gas storage operation. A workflow is proposed that discusses
the steps involved in model building and testing of those. These steps include the selection of
suitable variables and the data pre-processing required for neural network inputs. Furthermore
an investigation concerning the use of static and dynamic data is done to find out which kind
of data is required to model the gas storage’s behaviour by neural networks. Several network
architectures are evaluated regarding their predictive performance of wellhead pressures during
injection and production cycles.

All networks models are based on an equal data set as far as possible to ensure comparability and
validity of results. In a final step all networks are trained and evaluated on a history matching
period, as it would also be done in classical reservoir simulation. The result in the history
matching interval gives an indication if certain neural network architectures are suitable at all.
The network’s predictive capabilities are tested on an independent time interval that is the same
for all networks.

Chapter 2. Fundamentals 3

2 Fundamentals

2.1 Underground gas storage concept

"The gas supply chain is characterized by large hourly, daily and annual imbalances
between supply and demand. Although on the one hand, producers and trans-
porters prefer to deliver the gas at the same constant rate at all times, users only
need gas at certain times [. . .]" [2, p. 25].

Underground gas storage acts as a balancing measure, without which producers and transporters
would have to at least double the production and transport capacity to satisfy the demand. The
imbalances in demand do not only happen on seasonal, but also on a daily and hourly basis.
Different types of UGS, namely seasonal, daily and hourly storage facilities allow to satisfy the
gas supply demand at every instance. ‘Daily storage’ is characterized by an injection during
night time and an increased production in the morning and evening hours. ‘Seasonal storage’
aims at the increased gas demand in the year’s colder months and an injection phase in the
summer months, where generally the gas supply is larger than the demand. Figure 2.1 shows the
variation in the yearly demand of gas and the balancing done by the operation of gas storage.
Another important application of UGS is ‘strategic reserve’. Especially for Europe, which is no
longer able to produce its entire gas demand within Europe this form of storage is of utmost
significance. The gas stored in those facilities is primarily aimed to mitigate supply shortages
and interruptions, caused by technical nature and failures in the gas distribution network or
political events in producing countries or countries along the main transport routes. Additionally
UGS are sometimes found in the vicinity of gas producing areas. The purpose of this so-called
‘production storage’ is to ensure a steady feed into the pipeline in case of production fluctuation,
common in associated gas production and areas of severe weather events, e.g. hurricanes in the
Gulf of Mexico. A more recent development sees UGS in combination with LNG terminals to act
as buffer between continuous pipeline and non-continuous transport via ship. This requires a
special type of UGS with unordinary high production and injection rates [2, p. 25-27].

The history of UGS dates back to 1915 with the conversion of a depleted gas field in Welland
County, Ontario, Canada followed a year later by the Zoar field in the western New York state,
USA. Thereafter more and more gas fields in the USA were converted into gas storages. The
first UGS in Europe was commissioned in 1953 with the Engelborstel aquifer storage. A more
recent type of gas storage was the development of salt cavern storage, the first salt cavern was
commissioned in 1961 in Michigan, USA and in 1970 in Tersanne, France, Europe [2, p. 31].

Chapter 2. Fundamentals 4

Figure 2.1: Yearly gas demand profile (black) and pipeline capacity [2, p.
26]

The first UGS in Austria was commissioned in 1977 by OMV AG and 1982 by Rohölaufsuchungs
AG. In 2015, 715 UGS were in operation worldwide with a working gas volume of 396.000
MMNm3, out of these 9 were located in Austria with a working gas volume of 8.200 MMNm3 [3].

The gas market liberalization and the associated ‘unbundling’ in the 1990s in the USA followed
by Europe in the last decade resulted in a change within the whole gas storage business. The gas
supply chain was transformed from integrated companies, which were able to optimize a whole
system, into numerous independent operators, where each one is responsible to balance its own
demand and supply requirements [2, p. 26].

The standing of natural gas as a reliable, versatile and environmentally friendly source of energy
is steadily increasing and so does its demand. In the past the gas storage has been seasonal with
a clear gap in demand between winter and summer. A new phenomenon could be seen in the
USA since 2008, that there is no longer a correlation between the working gas in storage and the
wellhead price of natural gas. A main reason for this evidently undesirable situation for storage
operators is the abundance of gas, caused by the success of hydraulic fracturing.
Since the gas price is strongly tied to the oil price it saw a rapid decline in conjunction with the
oil prices from mid-2014 onward. Resulting in a similar situation in Europe where gas storage
operators are facing lower profit margins in their business. A remedy for this situation is to take
gas prices into account. In the ideal case the operator would inject gas when the price is low
and produce at a high price; thereby the working gas plot should mirror the gas price in the
opposite direction. The authors have proposed several simple modifications to generate profitable
injection and withdrawal schedules [4]

The endeavor of optimizing gas storage development and operation is no new topic at all; already
starting at the end of the 1960s people came up with numerous solutions addressing this issue.
In the following paragraph a few examples until now are introduced.

Chapter 2. Fundamentals 5

One of the first publications concerning this topic dates back to the year 1968 dealing with a gas
storage optimization problem composed of well placement considerations and operational strategy.
Henderson et al. applied a two-dimensional single-phase reservoir simulator to the task of finding
the optimal well placement scenario which could satisfy the constraints in a beforehand schemed
operation plan. It demonstrated the practicality of multidimensional models for planning in
petroleum reservoirs. Especially for storage operations it was said to be of utmost importance to
evaluate alternate methods of operation as it was to determine the proper placement of wells.
Particularly for UGS not only high initial but also an appropriate end-season production is
required, to deliver performance based on operational constraints set down in contracts [5]

A paper published in 1970 by Wattenbarger continued with the approach set by Henderson et al.
The described work proposed a method for putting the gas withdrawal scheduling problem into
a linear programming format. In order to apply linear programming well pressures had to be
expressed in terms of well rates. This was done via superposition in time and space so that the
pressures of several interacting wells could be calculated via the transient drawdown curve. The
author showed that with this approach an optimal solution to the gas withdrawal problem could
be found [6].

McVay and Spivey presented a specific procedure for efficient optimization of gas storage reservoir
performance by using a minimum number of simulation runs, through rigorous computer reservoir
simulation. This procedure was applied to two different tasks, each of major importance. The
first is maximizing the working gas volume and peak rates for a predetermined arrangement of
reservoir, well and surface facilities. Secondly the minimization of cost to fulfill a specific produc-
tion and injection schedule resulting from the working gas volume and peak rate requirements.
The core of this method is to use the least number of simulation runs necessary to generate plots
of average reservoir pressure versus gas in place, production and injection rate. The combination
of the beforehand listed plots can later be utilized to find the maximum working gas volume
and peak rates. Using the scheme in the opposite direction, by setting performance require-
ments first, the optimum number and location of wells and surface facilities can be determined [7].

Zangl et al. investigated an approach to reduce computation time needed to execute a numerical
full field in an optimization loop. Numerical models are highly capable tools in reservoir
management, running these models thousands of times searching for the most likely or profitable
solution is a very time consuming task. An ANN can be used as a surrogate to mimic the
behavior of the numerical model. Several runs of the numerical model are done, to generate
the training input for the ANN, the created inputs should span over the whole range of input
parameter variation. The trained neural network is then able to interpolate between the individual
simulation runs. In a last step the ANN is used as a proxy function in a genetic algorithm
optimizer to find the best possible solution in a minimum time. The proposed workflow can be
used to investigate uncertainties of designated input variables, to improve the history matching

Chapter 2. Fundamentals 6

procedure and to optimize operational settings [8].

2.2 Types of UGS & Field data

A short introduction of the terms ‘hourly, daily and seasonal storage’ has already been given in
the previous subchapter. As for now UGS can be classified roughly into three types according to
the underground storage environment:

• Storage in gas fields:
This the most common type of UGS, due to its proven ability of containing the gas over a
long period of time. The reservoir behavior is usually well understood, due to an abundance
of wells and long production history. Considerations with regard to the suitability of a
field for conversion to an UGS include the sealing capacity of the cap rock, the condition
of wells, reservoir properties, well productivity/injectivity and the influence of a potential
aquifer. This type is also often referred to as pore storage.

• Storage in aquifiers:
“An aquifer is a porous reservoir filled with water (generally saline at depth). By injecting
gas into this type of reservoir, it can be converted to a gas storage reservoir. Once in
operation the behavior and the operation of the facility is similar to storage in gas reservoirs.”
[2, p. 29]
Another noteworthy difference between storage in gas fields and aquifers is that the second
one is commonly operated at higher pressures than the initial pressure in the aquifer.
There are a lot of unknowns involved in the development of aquifer storage. A behavior
inherent with aquifer UGS is that at the end of an operation usually a large portion of the
cushion gas cannot be produced and remains in the reservoir, due to the high capillary
pressure of water.

• Storage in salt caverns:
A salt cavern is typically formed in a suitable underground formation by dissolving the
salt (halite) and thereby creating a cavity which can later on be used to store the gas.
This type of storage is primarily used for low volume – high deliverability UGS, which is
common in ’hourly and daily storage’ also sometimes referred to as ’peak shaver’ facilities.
The main difference between a cavern and a pore storage regarding the deliverability, is
that in the first one the productivity is only limited by the well configuration, while in the
case of the later one also the reservoir itself has a much larger effect [2, p. 29-31].

As previously stated, storage in gas fields is the most common and practical approach to
underground storage of gas. The suitability of a gas field for conversion to storage depends
on several qualities. First of all, the containment of gas in the underground formation, which
includes the cap rock’s pressure threshold, as well as the integrity along all wellbores. Obviously,
also the size of the former gas field is of importance, since it has to be large enough to hold the
planned working and cushion gas, but it should not be too large, in order to prevent excessive
demand of cushion gas. The sheer size only does not decide whether a field is ideal for UGS, it is

Chapter 2. Fundamentals 7

also determined by reservoir properties, like porosity, permeability and degree of homogeneity
which allow for efficient move of gas through the formation. The well performance is governed by
reservoir properties, depth and tubing size. Generally UGS tend to have larger diameter (75/8”
& 95/8”) and horizontal sections in the reservoir’s more productive areas. Other properties to
consider are the strength and influx from a potential aquifer, the distance to existing infrastructure
and market, as connection to an existing pipeline grid can be a major economic consideration [2,
p. 27-28].

2.3 Data measurement & Management

Data measurement and management is of essential significance for an efficient and reliable
operation of an UGS. Brown and Meikle have shown that a wellhead electronic flow measurement
(EFM) system can be used for several applications, ranging from immediate identification
of operational problems, pressure transient testing using data measured at the wellhead and
automated daily assessment of individual well performance. The key components of the EFM
system are located at three locations: the wellsite, the field office and the corporate headquarters.
The system at the wellsite comprises several sensors recording the pressure, temperature, flow
rate and cumulative flow at 10-second intervals. This dataset is sent via telecommunication to
the field and corporate office, where it is stored in relational databases. The authors have come
to several points in their conclusion of which the most important are summarized [9].

1. “Wellhead EFM systems can provide the data necessary for effective surveillance of gas
storage fields.”

2. “Surveillance using EFM can be highly automated.”
3. “Well deliverability can be effectively monitored, and declines in well deliverability identified

... “
4. “Wellhead EFM data is of sufficient quality for use in pressure transient analysis.”

From Tiani et al. it is evident that the advances in the computer and telecommunication industry
allow improving the beforehand mentioned possibilities even further. The usage of real time data
from a supervisory control and data aquisition (SCADA) system allowed the authors to create
workflows tailored to reservoir management in the gas storage environment. The outcome was a
workflow dedicated to data quality control which had to be applied before the dataset could be
used in later applications. Secondly a workflow dealing with matching well models with real time
data and live testing of this workflow. It is stated that the proposed workflows are just the tip of
the iceberg of what is possible and valid real time data bears much more applications [10].

Chapter 3. Literature Review 8

3 Literature Review

3.1 Classical approach to reservoir management

This chapter gives an overview of the methods used in the more classic approach to reservoir
management. It discusses the standard "Inflow Performance Relationship" models used with
horizontal wells. Furthermore the implementation of the skin effect, due to wellbore damage
and turbulence effects, into these models is presented. This is then followed by a comprehensive
discussion of "Vertical Lift Performance" and "Nodal Analysis" for system analysis in gas wells.
The final chapter presents the approach done in classic reservoir simulation and how the previously
described models contribute to it.

3.1.1 IPR for gas wells

The Inflow performance relationship is a mathematical tool used mainly in oil and gas production
engineering which represents the well rate as a function of the pressure drop from the reservoir
into the wellbore. The IPR depends on several reservoir properties and on the flow regime of
the producing well. Usually the data necessary to create the IPR is acquired by measuring
the production rates under various drawdown pressures. The reservoir fluid composition and
behaviour of the fluid phase under flowing condition determines the shape of the curve.

The most basic form of an IPR for an oil reservoir above the bubble point pressure, also referred
to as an under-saturated reservoir, is a linear relationship between the pressure drawdown, which
is the pressure drop between reservoir and wellbore, and the flow rate. The relationship between
pressure and flow rate can be expressed as given in eq 3.1 below [11, p. 19-22].

PI = qo

pres − pwf
(3.1)

PI Productivity Index [Sm3/day/bar]
qo Flow Rate Oil [Sm3/day/bar]
pres Reservoir Pressure [bar]
pwf Well Flowing Pressure [bar]

In order to account for gas coming out of solution when dropping below the bubble point
pressure, it was vital to introduce non-linear IPR’s. These models are especially important for
solution-gas drive reservoirs, where dissolution of gas out of the oil phase is the main driving factor.

Chapter 3. Literature Review 9

One of these models was proposed by Vogel [12, p. 83-92] which shows a quadratic relation
between pressure and flow rate. This model is valid for vertical oil wells with low to moderate
GOR below the bubble point. A combination of the linear and the Vogel model can be applied
to reservoirs, which are initially under-saturated and then drop below the bubble point pressure
during production.

qo

qo,max
= 1 − 0.2 · pwf

pres
− 0.8 ·

(
pwf

pres

)2
(3.2)

qo,max Maximum Oil Flow Rate at an atmospheric Bottom hole flowing Pressure [Sm3/day]

A second common model for an oil reservoir below the bubble point was proposed by [13, p.
1-24]. It was derived from the empirical backpressure gas well deliverability equation proposed
by Rawlins and Schellhardt in 1935 [14, p. 1-11].

qq,o = Cg,o · (p2
res − p2

wf)n (3.3)

Cg,o Flow Coefficient [Sm3/day/bar]
n Deliverability Exponent [-]

In the early days, estimates of gas well performance were conducted by opening the well to
the atmosphere and then measuring the flow rate. This so-called "open flow" posed danger
to personnel and equipment, wasted otherwise sellable gas and could possibly damage the
reservoir. Another downside was that it delivered only limited information of the producing
capabilities under varying flow conditions. This practice did however spark the concept of
AOF, which is a common indicator of well productivity and denotes the maximum rate at which
the reservoir could flow against a theoretical atmospheric backpressure at the reservoir [15, p. 5-7].

The common way to determine the productivity of a gas well is via deliverability testing. These
tests provide information used to develop reservoir rate-pressure relations for the well and gener-
ate an inflow performance or gas-backpressure curve. One method is the empirical backpressure
relationship developed by Rawlins and Schellhardt in 1935. The method was based on the
analysis of more than 500 well tests, with the observation that when the differences between
squared average and flowing bottomhole pressures were plotted on a log-log scale they appeared
to be a straight line.

The Flow Coefficient C is a factor dependent on reservoir parameters like reservoir permeability,
thickness, extension and temperature as well as wellbore radius and fluid properties like viscosity,
density and compressibility. The deliverability Exponent n is in a way a measure of the flow
regime and ranges between 0.5 and 1, where 1 denotes laminar and 0.5 fully turbulent flow. From
n being an exponent in the Fetkovich or Rawlins-Schellhardt equation it is apparent that the

Chapter 3. Literature Review 10

flow regime has a major influence on the pressure drop. [15, p. 7-12]

Another analytical approach is the derivation of the single-phase radial inflow equation from the
basic material balance equation for flow through a volume element of thickness ∆r , height h

and porosity Φ at a distance r from the well.

qρ|r+∆r − qρ|r = 2πrhφ∆r
∂ρ

∂t
(3.4)

Assuming a homogeneous reservoir with constant thickness, substituting q by Darcy’s law and
rewriting the compressibility term yields the pressure diffusion equation for radial coordinates:

∂p

∂t
= k

φµct
· 1

r
· ∂

∂r
(r∂p

∂r
) (3.5)

The solution of the equation above requires a linearisation, because of the dependence of the
physical properties ρ, ct and µ on pressure. For gas it can be linearised using two approximations.

The pressure squared approach substitutes ρ = 2.7pYg

zT and uses the assumption that p
µz is a linear

function of pressure. By replacing then p by p2 the relationship is linearised. This assumption is
valid up to around 200 bar [16, p. 178-180].

The second method uses pseudo-real pressure m(p), which was defined by [17, p. 624-627]. This
is a more rigorous approach, as no assumptions regarding the variations in physical properties
as functions of pressure are necessary. This yields a much more precise solution at the cost
of increased numerical effort. In the further work only the pseudo-real pressure approach
is considered due to its superior precision and the possibility of utilizing a computer for its
calculation [16, p. 180-181].

m(p) = 2 ·
∫ p

pbase

p

µz
dp (3.6)

Chapter 3. Literature Review 11

m(p) Pseudo-real Pressure [Pa2/(Pa · s]
r Distance from well [m]
∆r Thickness of Volume Element [m]
h Height of Volume Element [m]
t Time[s]
q Flow Rate [m3/s]
ρ Density [kg/m3]
p Pressure [Pa]
T Temperature [K]
c Compressibility [Pa−1]
µ Viscosity [Pa · s]
k Permeability [m2]
φ Porosity [-]

There are two flow regimes that usually take place in nature; these are transient and pseudo-steady
state flow. Transient state flow normally occurs when production from a new reservoir begins.
The pressure near the wellbore drops significantly as fluid is withdrawn, however further away
from the well no pressure drop can be observed at early times. During transient condition the
pressure drop moves, similar to a wave, through the reservoir until it reaches its boundaries.
Pseudo-steady state is reached when the pressure drop can be measured at all reservoir locations
and the whole reservoir is contributing to the well’s production. The mathematical formulation
of transient and pseudo-steady state flow regimes are as follows [16, p. 181-189]:

• Transient state: dp
dt = f(t)

• Pseudo-steady state: dp
dt = constant

The most convenient way is to utilize pseudo-steady state inflow equations, because these are
rather easy to handle and applicable to most reservoirs after a transient period at the early phase
of production. The transient solution of the pressure diffusion equation is much more complex
and also requires more reservoir parameters to be available for application.

Integrating the pressure diffusion equation with the boundary condition imposed by the pseudo-
steady state flow regime yields the following IPR for a vertical gas well, which does, at this state,
not include skin effect and non-Darcy effects [16, p. 186-189].

qsc = 7.6326 · 10−7kh[m(p̄) − m(pwf)]
T
[
ln re

rw
− 3

4

] (3.7)

Chapter 3. Literature Review 12

qsc Gas Flow Rate [Sm3/day]
k Permeability [md]
h Reservoir Thickness [m]
T Reservoir Temperature [K]
p̄ Average Reservoir Pressure [kPa]
pwf Well Flowing Pressure [kPa]
re Reservoir Radius [m]
rw Wellbore Radius [m]

Horizontal wells were more widely introduced in the 1980s and 1990s and since then they have
been a vital part of the oil and gas production worldwide. The key benefits of horizontal wells
according to [18] are:

• Increased productivity compared to vertical wells
• Reduction of water or gas coning
• Possibility to intersect fractures, i.e. efficient reservoir drainage
• Increased drainage area compared to vertical wells and reduction of vertical wells in low

permeable reservoirs
• Increased injectivity

Horizontal wells have proven to be tremendously significant in UGS, as high deliverability is
of key importance to storage operators in order to meet the needs of its customers especially
during peak demand periods. Another benefit of horizontal wells compared to vertical ones
is that their total performance is not impacted with the same severity by formation damage
through drilling. This is mainly because of their much larger overall reservoir contact com-
pared to a vertical well. Additionally because of lower delta pressures required for a given flow
rate, horizontal wells have the potential of reducing cushion gas and compression requirements [19].

Due to the completely different drainage areas and inflow mechanisms of horizontal wells compared
to vertical ones, the IPR of vertical wells cannot adequately describe the inflow into horizontal
wells. This resulted in the development of equations for horizontal wells in the last decades
which were based on assumptions of flow patterns for those wells. Most of them are combinations
of more than one standard pattern e.g. radial, linear, elliptical and spherical flow. Originally
horizontal IPR models were developed for oil wells and then modified for compressible fluids
like natural gas. Two pseudo-steady state IPR models for horizontal wells are presented in the
following.

Chapter 3. Literature Review 13

Figure 3.1: Ellipsoidal drainage area of the Joshi horizontal well IPR
model [11, p. 98]

The Joshi model from 1989, which was modified by Economides and published in 1994, assumes
an ellipsoid as drainage area around the wellbore. Joshi treated the horizontal well inflow as a
combination of flow in the x − y plane and the flow in the y − z plane separately. This leads
to the hypothesis of a drainage ellipse, which is depicted in Figure 3.1. Economides et al. have
extended this model to a general one, for one or more horizontal wells in no-flow boundary
“boxes”, in order to create any possible arbitrary well trajectory. The following formula is the
Joshi model for using an elliptic drainage area [20, p. 77-79]:

qsc = kHh(m(p̄) − m(pwf))

1424T

(
ln
{

a+
√

a2−(0.5L)2

0.5L

}
+ Ianih

L

{
ln Ianih

rw(Iani+1) − 0.75 + Dqsc

}) (3.8)

Iani =
√

kH

kV
(3.9)

a = L

2

⎧⎨⎩0.5 +
[
0.25 +

(
reH

0.5L

)4
]0.5

⎫⎬⎭
0.5

for
L

2 < 0.9 · reH (3.10)

Chapter 3. Literature Review 14

qsc Gas Flow Rate [MMscf/d]
kH , kV Horizontal & Vertical Permeability [md]
h Reservoir Thickness [ft]
L Horizontal Well Length [ft]
T Reservoir Temperature [°R]
p̄ Average Reservoir Pressure [psi]
pwf Well Flowing Pressure [psi]
Iani Measurement of Vertical to Horizontal Permeability Anisotropy [-]
a The Large Half-Axis of the Drainage Ellipsoid [ft]
reH Drainage Radius in the Horizontal Well [ft]

The Babu and Odeh (1988, 1989) model has a box-shaped drainage area with a horizontal well
placed parallel to the x-direction. Figure 3.2 shows a schematic of the box-shaped drainage area
and all parameters describing its extension. The well can be in any location within the reservoir,
with the constraints that the well must lie in the x-direction and cannot be too close to any
boundary. This model is based on radial flow in the y − z plane. The deviation of the drainage
area from circular shape is accounted for by a geometry factor and flow from beyond the wellbore
in the x-direction accounted for with a partial penetration skin factor.

Figure 3.2: Box-shaped drainage area of the Babu & Odeh horizontal
well IPR model [11, p. 105]

qsc = b
√

kykz(m(p̄) − m(pwf))
1424T

[
ln
(

A0.5

rw

)
+ ln CH − 0.75 + sR

] (3.11)

b Reservoir Length [m]
ky, kz Permeability in y and z Direction [md]
rw Wellbore Radius [m]
A Reservoir Cross-section Area [m2]
CH Shape Factor [-]
sR Partial Penetration Skin [-]

Chapter 3. Literature Review 15

In essence the Babu and Odeh model is the procedure for calculating the shape factor and partial
penetration skin factor. These factors are dependent on the reservoir geometry, the relation of
reservoir length to width and the positon of the well in the box-shaped reservoir. Equations
describing CH and sR can be found in [21, p. 417-421].

3.1.2 Skin & Non-Darcy Effect

As already indicated the inflow equations presented in the previous chapter do not take into
account any formation damage, effects from stimulation or hydraulic fracturing, as well as
turbulence effects.

A well is rarely drilled under ideal conditions, therefore in most cases the reservoir properties
around the wellbore are altered during drilling and completion, which results in a change
of permeability in the near wellbore region. Consequently cleanup, stimulation treatment or
hydraulic fracturing can increase the permeability in the wellbore’s vicinity to a level above the
original state. To quantify the changes, which have a tremendous impact on the well performance
the concept of the skin factor was developed. Damage in the near wellbore zone and consequently
a reduction in permeability causes an additional pressure drop, which can be defined in the
following way:

S = 7.6326 · 10−7kh

qsc · T
∆m(p)s (3.12)

∆m(p)s = m(ṗwf) − m(pwf) (3.13)

S Skin Factor [-]
ṗwf Ideal Well Flowing Pressure [kPa]
pwf Actual Well Flowing Pressure [kPa]

A positive skin factor specifies a damaged near wellbore zone, with a reduction of permeability,
whereas a negative value indicates a higher permeability around the wellbore than the original
one [16, p. 189-191].

The assumption that Darcy’s Law represents the relationship between pressure gradients and
flow velocity in the reservoir in the derivation of IPR from the pressure diffusion equation is only
valid for low velocity or laminar flow. Therefore to account for the turbulence effect around the
wellbore which causes an additional pressure drop to the skin effect due to formation damage
and completion effects; the apparent skin ś is given by:

ś = s + Dqsc (3.14)

Chapter 3. Literature Review 16

ś Apparent Skin Factor [-]
s Total Skin Factor [-]
D Non-Darcy Coefficient [Day/Sm3]
qsc Flow Rate [Sm3/Day]

The total skin factor is the sum of various contributing skin effects, of which some only apply at
certain reservoir and completion types. The most prominent are mechanical skin due to formation
damage and perforations, completion geometry skin, anisotropy skin and additional mechanical
skin from gravel packs, prepacked screens and filter cakes. A more thorough discussion of total
skin contributors can be found in the referenced sources [15, p. 241-267], [22, p. 25-38].

At high flow velocities the pressure drop in the wellbore vicinity increases more rapidly than
the linear relationship would suggest. This is called non-Darcy flow. Non-Darcy flow typi-
cally occurs when the reservoir’s Reynolds number which is based on particle diameter in the
porous medium, exceeds 10. Kelkar states two common ways in which the reservoir fluid’s
velocity increases. The first being the reduction of cross-sectional area available for fluid flow
when the fluid approaches the wellbore in the radial flow region. Since velocity can be seen
as the ratio between flow rate and cross-sectional area, a decrease in area available for fluid
results in an increase of velocity. The second way in the expansion of the reservoir fluid as it
approaches the wellbore. The reason is the lower well flowing pressure compared to the average
reservoir pressure, this phenomenon is especially important for compressible fluids like natural gas.

The Forchheimer equation describes the relation between the velocity and the pressure gradient
in a porous medium [16, p. 197-199].

− dp

dx
= µg

kg
vg + ρgβgvg

2 (3.15)

µg Gas Viscosity [Pa · s]
vg Superficial Velocity [m/s]
kg Permeability to Gas [m2]
βg Turbulence Factor [m−1]
ρg Gas Density [kg/m3]

The turbulence factor β can be calculated by using published theoretical and empirical correlations,
which are valid for single-phase gas flow only, therefore the subscript g is dropped from now on.
The correlation presented in this thesis is from [23, p. 799-806].

β = 5.5 · 109

k1.25φ0.75 (3.16)

Chapter 3. Literature Review 17

One way to derive the non-Darcy coefficient D, which was introduced in eq 3.14 is via the
integration of the Forchheimer equation. Substituting the expression for velocity by flow rate and
with the assumption that non-Darcy flow is only significant in the near wellbore region allows
the integration of the Forchheimer equation, which yields the following expression for D [16, p.
200-204]:

D = 2.226 · 10−21 βγgkh

hp
2µrw

(3.17)

βg Turbulence Factor [ft−1]
k Permeability [md]
φ Porosity [-]
D Non-Darcy Coefficient [Day/Sm3]
γg Specific Gravity of Gas [-]
h Reservoir Thickness [m]
hp Length of Perforated Interval [m]
µ Gas Viscosity [Pa · s]
rw Wellbore Radius [m]

The literature provides several other empirical correlations for D. However correlations should
only be used when no well test data is available. This is because usually D is determined by
multi-rate pressure test analysis. Figure 3.3 displays how D and s can be determined from well
test analysis.

Figure 3.3: Determination of skin effect and Darcy coefficient from multi-
rate well tests [11, p. 131]

Chapter 3. Literature Review 18

To assess the non-Darcy flow in a horizontal well a few adjustments have to be made to the
correlation for D by Tek et al. [20, p. 78-79]

k = a

√
kxkykz = a

√
kH

2kV (3.18)

βH = 5.5 · 109

(kxkykz) 5
12 φ

3
4

(3.19)

DH = 2.22 · 10−15(kxkykz) 1
3 γgβH

µhrwH
(3.20)

rwH = rw(1 + Iani)
2 · Iani

(3.21)

kx, ky, kz Permeability in x, y and z Direction [md]
kH , kV Permeability in Horizontal and Vertical Direction [md]
βH Turbulence Factor for Horizontal Well [ft−1]
rwH Effective Wellbore Radius for Horizontal Wells [ft]
Iani Measurement of Vertical to Horizontal Permeability Anisotropy [-]
rw Wellbore Radius [ft]

A convenient way to integrate the non-Darcy flow effects into a deliverability relationship derived
from the radial pressure diffusion equation was presented by [24, p. 1468-1684]. The relationship
can be expressed in terms of pseudo pressure in a quadratic form:

m(p̄) − m(pwf) = agqsc + bgq2
sc (3.22)

ag Houpeurt Coefficient [Pa2/Sm3]
bg Houpeurt Coefficient [Pa2/(Sm3)2]

The coefficient ag is also referred to as the laminar flow coefficient while bg is the turbulent one.
Coefficients ag and bg can be determined either by rearranging the deliverability equation 3.22
or preferably by using data from a four point flow after flow well test. Plotting the delta pseudo
pressure - ∆m(p) from the well test data on the ordinate and corresponding gas flow rate qsc on
the abscissa should yield a straight line behaviour. From this plot, shown in Figure 3.4, ag can
be read as the intercept and bg is obtained from the slope of the straight line [15, p. 5-12].

Chapter 3. Literature Review 19

Figure 3.4: Determination of Houpert coefficients from flow-after-flow
test data using the Pseudopressure method [25, p. 12]

It is also possible to apply the quadratic formulation in pseudo pressure form for horizontal gas
wells. Billiter et al. have applied this concept to the Babu and Odeh pseudo-steady state IPR
eq 3.11 for horizontal gas wells. It is stated that this set of equations is suitable to generate
IPR curves from buildup or drawdown well tests, accompanied by the knowledge of key reservoir
parameters. Using the idea of apparent skin, various contributions from different skin factors
can be included into the IPR as a total skin in addition to the non-Darcy flow effect. The set of
equations is as follows [26]:

qsc =
−apss +

√
a2

pss + 4bpss(m(p̄) − m(pwf))
2 · bpss

(3.23)

qpss =
1422T

[(
ln
(√

A
rw

)
+ ln CH − 0.75 + sR

)
+ b

Lsd

]
b
√

kxkz
(3.24)

bpss =
1422T

[
b
LD

]
b
√

kxkz
(3.25)

3.1.3 VLP for gas wells

The vertical lift performance equation is a mean to relate the downhole pressure in a well to the
pressure at the wellhead, with consideration of the flowing fluid, the flow rate and the conduit
of flow. With regard to well flow performance the objective is usually to predict the pressure
as a function of position between the bottomhole location and the surface. Generally the well
flow may be divided into several categories, depending on the flow geometry, the flow rate and
fluid properties. Additionally the properties of the fluid, especially their PVT behaviour and
rheological features have to be considered. Flow in the well can either be laminar or turbulent
depending on the flow rate and fluid properties and this will strongly influence the flow behaviour.

Chapter 3. Literature Review 20

A differentiation of single-phase flow as being laminar or turbulent is typically done via the value
of a dimensionless group, the Reynolds number NRe. This number is the ratio of inertial forces
to viscous forces in a flowing fluid. The flow regime in a pipe strongly influences the velocity
profile in the pipe and the frictional pressure drop among other factors. Generally the transition
from laminar to turbulent flow in circular pipes happens around a Reynolds number of 2100 [11,
p. 173-174].

NRe = Dρu

µ
(3.26)

NRe Reynolds Number [-]
D Pipe Inside Diameter [m]
u Flow Velocity [m/s]
ρ Density of Fluid [kg/m3]
µ Dynamic Viscosity of Fluid [Pa · s]

By solving the mechanical energy balance equation, the pressure drop over a distance L, of a
single-phase flow in a pipe can be gained; its differential form is given below.

dp

ρ
+ u du + g dz + 2ff u2dL

D
= 0 (3.27)

dp Pressure Drop [Pa]
g Constant of Gravitation circa 9.81 [m/s2]
dz Difference in Elevation [m]
dL Difference in Distance [m]
ff Fanning Friction Factor [-]

For an incompressible fluid (ρ = constant) eq.3.27 can be integrated without additional
assumptions and the pressure drop split up into three contributors.

∆p = ∆pP E + ∆pKE + ∆pF (3.28)

∆pP E Pressure Drop due to Potential Energy [Pa]
∆pKE Pressure Drop due to Kinetic Energy [Pa]
∆pF Frictional Pressure Drop [Pa]

The pressure drop due to the potential energy ∆pP E accounts for the pressure change due to the
weight of the fluid column. It is given by the following formula:

∆pP E = gρL · sin(θ) (3.29)

Chapter 3. Literature Review 21

θ Angle between Horizontal and Direction of Flow [°]
L Length of Pipe Segment [m]

The pressure drop due to kinetic energy change ∆pKE is the pressure drop resulting from a
change in the velocity of the fluid between two positions.

∆pKE = ρ

2(∆u2) (3.30)

The frictional pressure drop ∆pF is calculated with the Fanning equation. The Fanning friction
factor differs from the Darcy-Weisbach friction factor fD, which is four times ff . In laminar flow
the friction factor is a function only depending on the Reynolds number, whereas in the turbulent
flow regime, the friction factor does not only depend on the Reynolds number but also on the
relative pipe roughness ϵ. The relative pipe roughness is the ratio of the size of surface structures
on the pipe wall protruding into the flowing fluid to the pipe diameter [11, p. 178-183].

∆pF = 2 · ff u2L

D
(3.31)

The Fanning friction factor for laminar flow can be read from the laminar region of the Moody
diagram or calculated via the Hagen-Poiseullie law for fully laminar flow at low flow rate, or for
high flow rates in a hydraulically smooth pipe via the formula by Prandtl [27, p. 529-534].

ff = 16
NRe

(3.32)

1√
ff

= 4 · log
(√

ff · NRe

)
− 4 (3.33)

Commonly the Fanning friction factor in the turbulent flow regime is obtained from the Moody
friction factor chart (see Figure A1 in Appendix A), which was created from the Colebrook-White
equation.

1√
ff

= −4 · log
(

ϵ

3.7065 + 1.2613
NRe

√
ff

)
(3.34)

ϵ = k

D
(3.35)

ϵ Relative Pipe Roughness [-]
k Pipe Surface Roughness [m]

It can be seen that the Colebrook-white equation is implicit in ff , requiring an iterative solution
process. The Chen equation is an explicit equation for the friction factor with similar accuracy
as the Colebrook-White equation.

1√
ff

= −4 · log
{

ϵ

3.7065 − 5.0452
NRe

log
[

ϵ1.1098

2.8257 +
(7.149

NRe

)0.8981
]}

(3.36)

Chapter 3. Literature Review 22

The Colebrook-White and the Chen equation are said to describe the turbulent flow regime the
most accurate at Reynolds numbers higher than 3250. There are numerous other friction factor
equations in the literature, some of those are only applicable at certain ranges of NRe and ϵ,
where they show comparable performance to the Colebrook-White equation, which is suitable for
NRe > 3250 and all ranges of ϵ [11, p. 182-185].

The calculation of pressure drops in a gas well requires that the compressibility of the fluid
is taken into account. In a compressible medium the fluid density and fluid velocity vary
along the pipe. These deviations must be considered when integrating the mechanical en-
ergy balance equation. The pressure drop resulting from the change in kinetic energy may
be ignored when the depth is greater than 1250m or the flowing wellhead pressure is higher
than 35 Bar [28, p. 547-550]. These conditions are fulfilled for the gas wells featured in this thesis.

The mechanical energy balance equation can then be simplified as stated below:

dp

ρ
+
(

g · sin(θ) + 2 · ff u2

D

)
dL = 0 (3.37)

From the real gas law follows the following expression for gas density in terms of specific gas
gravity:

ρ = 28.97γgp

ZRT
(3.38)

γg Gas Specific Gravity [-]
Z Real Gas Factor [-]
R Gas Constant circa 8.314 [JK−1mol−1]
T Temperature [K]

After inserting the expression for density into eq 3.27, this equation still contains three variables,
Z, T and pressure, which are functions of the position in the pipe. A fast but less accurate way
to solve this equation is to use single, average values of temperature and compressibility factor
along the pipe segment of interest. This can be done in a semi-iterative approach, whereby the
Z factor calculated with the first assumption of starting values is compared to the Z factor
computed with the pressure that has been calculated in a previous step [11, p. 185-188].

p2
2 = esp2

1 + 32ff

π2D5 sin(θ)

(¯̄ZT̄qpsc

Tsc

)2

(es − 1) (3.39)

s = −2 · 28.97γgg sin(θ)L
ZRT

(3.40)

Chapter 3. Literature Review 23

psc Pressure – Standard Condition [Pa]
Tsc Temperature – Standard Condition [K]
q Flow Rate [m3/s]
Z Average Real Gas Factor [-]
T Average Temperature [K]

A second similar method for calculating the pressure in a gas well was proposed by Cullender and
Smith and later on modified which lead to reduction in error compared to the original formulation
by Cullender and Smith [29, p. 1-10]. A comparison of the average temperature and pressure
method stated in eq 3.39 and the Cullender and Smith method showed nearly the same error,
3.4% to 3.5%, referenced to measurements from 144 gas wells. The specific gas gravity in both
approaches can be replaced by a gravity adjusted term γm which takes the density variation due
to produced liquid into account. It is also stated that both methods produce considerably larger
errors at GLR’s lower than 10,000 SCF/STB [30, p. 1-10].

It is obvious that in the above described methods a longer flow distance will yield higher errors
due to the used approximations. One way to reduce the error is to use more segments along the
wellbore and calculate the pressure drop for each segment. Another way is a rigorous solution of
eq 3.37 which will require temperature profiles along the pipe and the compressibility factor
being substituted by a function of temperature and pressure using an equation of state. The
result would be a more accurate but numerically more intensive solution [11, p. 185-188].

The calculation of bottomhole pressures and pressure gradients in gas wells is a crucial issue
concerning the performance evaluation of these wells. It is highly recommended to pay attention
to the prevalent flow regimes and fluid types. In an UGS there are generally high flow rate
wells, where pressure losses due to friction are very prominent. Therefore it is obligatory to
carefully choose suitable friction factor correlations and adjustments for concomitant fluids.
Although pressure loss due to kinetic energy change can typically be neglected for many wells, it
is beneficial to be aware of its presence. Nowadays softwares used for well performance analysis
have an automatic selection of proper correlations already integrated. Additionally software
packages use equation of state solutions for PVT parameters accompanied by a temperature
profile, to reduce error compared to the average value method.

Chapter 3. Literature Review 24

3.1.4 Nodal Analysis

Nodal system analysis is defined as a system approach to the optimization of oil and gas wells.
The objectives of nodal analysis are, to determine the optimal flow rate, while considering
wellbore and reservoir limitations, to optimize the system towards producing a target flowrate
most economically and to check the whole system for unnecessary restrictions.

The nodal analysis approach aims at optimizing a total well system from the reservoir’s outer
boundary to the sand face, across perforations and through the completion up to the separator,
including any restrictions in tubing, surface chokes at wellhead as well as flowlines. To solve
the optimization problem for the total producing system, nodes are used to split the whole into
portions represented by different equations or correlations. The nodes themselves can be divided
into functional and non-functional nodes. The first ones having a pressure discontinuity across the
node, where the pressure – flowrate relationship can be described by a mathematical function and
the second type having no pressure discontinuity. A graphical representation of a typical producing
system including characteristic node positions is presented in Appendix A, Figure A2 [31, p. 1-19].

The classical way to evaluate well deliverability is via the combination of IPR and VLP curves.
The standardized representation of inflow performance relationship curve commonly has the
bottomhole flowing pressure plotted on the ordinate and the corresponding production rate on
the abscissa. The vertical lift performance curve is depicted again in a standardized manner,
with bottomhole flowing pressure on the ordinate and production rate on the abscissa.

The traditional way of solving the optimization of flow rate – pressure relation can be done
graphically. Commonly the starting point is the IPR depicted in a pwf vs qsc plot. Then for a
given wellhead pressure the bottomhole flowing pressure is calculated by utilizing the mechanical
energy balance equation, this yields the so-called VLP curve. The intersection of these curves
provides the expected production rate and the corresponding flowing bottomhole pressure. The
VLP of gas wells consists of the hydrostatic and frictional pressure drops, though for gas the
frictional pressure dominates. This results in a nearly linear VLP curve, with tubing diameter
and its selection being the most important factor. Figure 3.5 displays an IPR curve and the
influence of the tubing diameter on the well flowing pressure and production rate [11, p. 267-279].

Chapter 3. Literature Review 25

Figure 3.5: Influence of tubing size on the gas VLP curve [11, p. 279]

As already stated the VLP and IPR play an essential role in finding restrictions in the completion
and possible damage in the reservoir which prevents the system’s operation at an optimal
condition. The VLP covers the section from bottomhole to the wellhead, and evaluates the
ability of the completion to deliver the reservoir potential to surface. As shown in Fig 3.5 the
careful selection of the appropriate tubing and consideration of restriction along its course are
vital factors concerning the pressure requirements from the reservoir and possible production rates.

The IPR curve is a measure of reservoir performance and can in the context of nodal analysis be
used to detect damage in the reservoir and insufficient connection from it into the wellbore. To
recognize reservoir damage or improvement it is necessary to have a base case as reference. This
is best done via modelling the IPR from well test data; however it is hardly possible to exactly
quantify an already existing initial damage. There are numerous models to mathematically
describe the IPR, several of those, which are especially applicable for horizontal gas wells have
been presented in a previous chapter. Figure 3.6 shows that generally an additional damage
compared to the base case can be recognized as stronger curvature downwards in the IPR,
which consequently results in a lower AOF. In contrast an improved reservoir performance, from
stimulation or hydraulic fracturing, can be perceived as a less strong downwards curvature and
higher AOF. Without continuous performance assessment, it would not be likely to detect a
change in well deliverability [32, p. 1751-1763].

Chapter 3. Literature Review 26

Figure 3.6: Effect of damage and turbulence on the gas inflow perfor-
mance [33, p. 27]

3.1.5 General reservoir simulation

Reservoir simulation is the application of a proxy model to estimate the performance of a hydro-
carbon reservoir under various development scenarios. The main reason is that the actual field
can only be produced once, however a simulation model can be run an infinite number of times,
trying to find an optimal production scheme, targeted at maximizing net profits and ultimate
recovery. The common stages in reservoir simulation are the creation of a reservoir model from
available data (static model), the history match of this model with historic production data
(dynamic model) and a subsequent simulation of desired operation scenarios. Reservoir simulation
is not a new topic, but rather a long standing approach that started with rather simple models
and as computational capabilities increased throughout the development of microelectronics,
more complicated and complex models became feasible [25, p. 1399-1400].

The foundation of reservoir simulation is a mathematical model describing the material balance,
pressure evolution and fluid flow in all computation cells of the reservoir model. This is the
so-called mass conservation equation for a porous medium, the general concept behind is that
since mass must be conserved; the inflow and outflow in a control volume CV plus a source or
sink term equal the rate of accumulation. The mass conservation equation for three-dimensional
single-phase flow is as follows:

∇(ρq) ± ρq = −∂(ρφ)
∂t

(3.41)

Substituting the flow rate q by Darcy’s law using the interstitial velocity v, which is flow rate
divided by flow area and porosity, yields the general equation for single-phase flow in a porous

Chapter 3. Literature Review 27

medium.

∇
[

ρk

µ
(∇p − ρg∇D)

]
+ q = ∂(φρ)

∂t
(3.42)

ρ Fluid Density [kg/m3]
q Flow Rate [m3/s]
φ Porosity [-]
k Permeability [m2]
µ Viscosity [Pa · s]
p Pressure [Pa]
g Gravitational Constant circa 9.81 [m/s2]
D Depth [m]

These partial differential equations are commonly solved numerically as their analytical solution
is not trivial and only partly suitable for computer algorithms. The most common numerical
approaches are the fully implicit formulation and implicit-explicit formulation, which are also
referred to as IMPIMS and IMPES. The implicit formulation solves the eq 3.42 directly, using
an iterative method. The starting point is an assumption of saturations in the control volume,
and then the pressures of the respective phases are computed. From these pressures, capillary
pressures can be calculated, which can then be converted to saturations again. The deviation of
assumed and calculated saturations, determines if additional iterations are required. The IMPES
approach is based on the fact that the saturations of all phases add up to one; this allows the
modification of conservation equations in such a way as to yield a pressure equation. In this
solution method the pressure equation is solved first, resulting in a pressure distribution in the
cell, from the pressure distribution the saturations can be computed utilizing the conservation
equations. In general, it can be said that the implicit formulation yields higher accuracy at the
cost of increased computation time compared to the IMPES method [34, p. 1383-1388]. [35] has
improved the stability of IMPES by combining the explicit pressure equation with the solution
of implicit saturation for the water phase in a two-phase system. The Adaptive Implicit Method
by [36] is a combination of the implicit and explicit formulation which lays both in accuracy and
computation time between the former both.

In order to convert the geological model of the reservoir into a discrete one, on which flow equations
can be solved, it is divided into a grid of computation cells. There are several types of grids
ranging from structured ones, like the regular Cartesian and hexahedral grids to unstructured
grids with uneven polygonal cells. The size and number of cells in the fluid flow model depend
on the complexity and amount of features in the geological model and on the computation
capability available. One way to raise the accuracy in the vicinity of important features like wells
or geologic faults is local grid refining, by increasing the number of cells in a limited extent. A
higher number of cells allow a more detailed investigation of fluid flow in the reservoir at cost

Chapter 3. Literature Review 28

of increased calculation time. The conversion of the commonly finer meshed geological to the
coarser fluid flow model involves upscaling of static and dynamic reservoir parameters. Figure 3.7
depicts a schematic overview of this upscaling process which includes a reduction of geological
detail and an averaging of properties. Though there are numerous methods for upscaling the
individual reservoir parameters, the selection of appropriate ones is different for every reservoir
[25, p. 1415-1432].

Figure 3.7: Conceptual illustration of the Upscaling process from the
fine-scaled geological model to the coarse-scaled simulation
model [15, p. 1422]

The solution of the fluid flow equations in the gridded reservoir model requires a kind of dis-
cretization to apply those equations on the computation cells; a common type is the finite volume
method (FVM). FVM is mainly employed for the solution of numerical fluid mechanics problems,
which is also the case for a hydrocarbon reservoir. The basic steps in FVM encompass gridding the
domain of application into computational volumes. The next step is formulating the conservation
equations including possible boundary conditions in integral form for each cell in dependence of
the neighbouring cells. The integrals are then approximated using rules of numerical integration,
like the midpoint or Simpson rule. Additionally it is necessary to approximate the fluxes at the
faces of the control volume by using neighbouring nodal values. The last step is to assemble the
approximations from all control volumes into an algebraic system and consequently its solution.
The whole approach can be done in an iterative fashion as described in the section concerning
the solution methods [37, p. 77-105].

The generation of a reservoir model involves expertise from petro physics, geology, reservoir and
production engineering. The typical constituents are a geological model which acts as the basis,
as well as a PVT model describing the fluid properties and their changes with temperature,
pressure and interaction between phases. The integration of wells requires models describing
governing processes concerning the inflow into the well from the reservoir and the flow in the
wells itself.

Chapter 3. Literature Review 29

3.1.6 Wellbore storage & Transient effects

The start of injection or production from a wellbore and in succession from the reservoir is
commonly affiliated to transient effects from the reservoir and the wellbore itself. Already in
1953 [38] topics of including wellbore storage and skin effects in the analysis of fluid flow into a
wellbore were dealt with. Two years later Gladfelter et al. [39] proposed a method to include
wellbore storage effect in the investigation of oilwell pressure buildup data and presented a way
to correct for the beforehand mentioned effect. Since then the wellbore storage effect moved into
the focus of research on transient well test analysis. Ramey’s investigation concerned the effect
of Non-Darcy flow and wellbore storage on the pressure in buildup and drawdown tests of gas
wells. It was stated that the examination of these effects is vital to retrieve true results from well
tests and correction methods for them in gas wells have been proposed [40, p. 223-233].

Wellbore storage describes two phenomena happening immediately after a change of rate. In
the case of drawdown part of the production comes from the reservoir but the other part is due
to expansion of the fluid already in the wellbore. In the case of a shut-in at the wellhead, the
pressure in the wellbore is lower than in the reservoir, resulting in an inflow into the reservoir,
the so called afterflow, and compression of the wellbore’s fluid. Generally the wellbore storage
effect can have two physical explanations, first the expansion and compression of the fluid in
the wellbore and second a change of liquid level in the tubing and tubing-casing annulus. An
accurate evaluation of wellbore storage is essential for a precise analysis of transient well test
data and rate adjustment in the early times of flow. For a packed off gas well only fluid expansion
or compression is of significance, which can be expressed as follows [41, p. 147-151]:

C = ∆V

∆p
= cVw (3.43)

C Wellbore Storage Coefficient [m3/Pa]
∆V Change in Volume of Fluid in the Wellbore [m3]
∆p Change in Bottomhole Pressure [Pa]
Vw Volume of Wellbore [m3]
c Fluid Compressibility [Pa−1]

The wellbore storage effect is a transient phenomenon and therefore it is important to have an
idea on how to investigate its duration. A convenient way to investigate the transient flow of real
gas through a porous medium is via dimensionless and in some cases additionally dimensionless-
pseudo parameters. Ramey [40] reported in 1965 that there is a critical time after which wellbore
storage can be neglected. Agarwal et al. [42] in 1970 and in 1988 Oren et al. [43] have extended
this approach to include the effect of a positive skin and the later study furthermore the effect of
turbulence on the duration of wellbore storage. The following expression utilizing dimensionless

Chapter 3. Literature Review 30

pseudo variables can be used to determine its duration:

tpD ≥ (60 + 3.5 · śD)CD (3.44)

The authors also proposed a revised method to calculate the actual flowrate at the sand face
from the measured flowrate and the dimensionless pressure. It is stated that van Everdingen and
Hurst were the first to emphasize the difference in measured and sand face rate and that the
latter should be used to calculate the pressure at the wellbore. While still being influenced by
the wellbore storage effect and turbulence through Non-Darcy flow, the following approximation
can be used to calculate the flow rate at the sand face [43, p. 547-554].

qsf = qsc(1 − e−C2 · tpD) (3.45)

C2 = f(CD, tpD, sD, NT D, qscD) (3.46)

An overview of the necessary pseudo variables can be found in Appendix A.

Another noteworthy point addressed by Oren et al. is the assumption that the Non-Darcy
coefficient D, presented in a previous chapter, is only lightly dependent on the gas viscosity and
can therefore be kept constant. The basis for a further investigation on this issue was done in a
study by Lee et al. [44] where it was shown that the gas properties indeed have a significant
impact on the pseudo pressure drop which can be related to an actual pressure drop. They have
defined a dimensionless turbulence number, also called Forchheimer number, NF o, to specify
different flow regions from laminar, transitional to turbulent. It was shown that the assumption
of constant D becomes unreliable at high NF o and at small pseudo times [44, p. 108-120].

This issue is also of importance in modelling of an UGS, as wells in this field of application are
usually large in diameter and high in flow rate. The first fact clearly indicates that wellbore
storage might play an important role in the performance of an UGS well, as it is directly linked
to wellbore dimensions. This becomes even more important when a change in the operation
mode from seasonal to daily storage is planned, because it is vital to have experience about the
duration of wellbore storage effects during injection and production operations. Secondly the
high flow rate clearly promotes turbulence in the wellbore and in its connection to the reservoir.
Turbulence and wellbore storage combined can lead to an increased duration of transient effects.
Modelling of these transient effects becomes increasingly important in case of a more flexible
UGS operation mode. Currently not all reservoir simulation software fulfills those requirements.
This is mainly due to their time range being more oriented at long term simulations of reservoirs
in pseudo-steady and steady state regimes. This may lead to an incorrect prediction of pressures
or rates at the start of production and injection phases.

Chapter 3. Literature Review 31

3.2 Mathematical approach with artificial neural networks

This chapter gives an overview of existing types and architectures of ANN, which are considered
as an alternative to the tools of the classical reservoir simulation. In general there are numerous
different types of ANN, with various fields of application. Due to the sheer extent of research
done on ANN in the past decades only architectures dedicated to function approximation and
time series modelling are presented.

3.2.1 Multilayer Perceptron

The Multilayer Perceptron (MLP) can be seen as an evolution of Rosenblatt’s perceptron, which
is a single layer ANN. The characteristics typical for a MLP can be summed up in three points.
First it contains one or more hidden layers which are concealed from the input and output layer,
second each neuron in the MLP includes a nonlinear activation function, which is differentiable.
Finally there is a high degree of connectivity in the network, which is determined by the synaptic
weights of the individual neurons in the ANN.
Generally MLP are fully connected, whereby a neuron in a hidden layer is connected to all
neurons in the previous and the subsequent layer. Figure 3.8 below shows an architectural graph
of a fully connected MLP, with an input, two hidden and an output layer. The signal from the
input layer on the left passes through the network layer by layer to generate an output on the
right [45, p. 123-125].

Figure 3.8: Architectural overview of a MLP with two hidden layers and
an output layer [45, p. 124]

3.2.1.1 Neuron Model & Number of Weights

The neuron model is inspired by the human brain consisting of a large number of neurons,
which are highly connected. In a very broad sense a biological neuron can be divided into
three parts. First the cell body which thresholds and processes the incoming signals. The
dendrites are receptive networks of fibres which carry the signal coming from another neuron

Chapter 3. Literature Review 32

to the cell body. The axon acts as a transmitter for signals emitted from a neuron to other
neurons. The synapse is the point of contact of the axon of a neuron with the dendrite of
another one. Although ANN pale compared to the brain’s complexity, there are still noteworthy
similarities. The first is the high connectivity of neurons in an ANN and secondly that the weights
associated with neuron-neuron connections determine the network’s functionality [46, p. 1-8 - 1-9].

Figure 3.9(a) depicts the model of neuron commonly used in ANN. The inputs to the neuron
are scaled by the synaptic weights associated with each individual connection. The body of the
neuron applies a summation of the inputs, which are multiplied with their respective synaptic
weight. The activation function processes the input and generates an output. The addition of a
bias allows shifting the zero-centered activation function to the left or right. Common activation
functions are sigmoid; one of these is shown in Figure 3.9(b). The following set of equations
can be used to describe the mathematical operations applied at each neuron [45, p. 10-12]. A
broader overview of available activation functions for MLP is given by Figure A3 in Appendix A.

vk =
∑n

j=1
wkjxj (3.47)

yk = φ(vk) (3.48)

vk Output of Linear Combiner [-]
wk Synaptic Weights of the Neuron [-]
x Input Signals to Neuron [-]
yk Output from Neuron [-]
φ Activation Function [-]

(a) Model of Neuron used in ANN (b) Sigmoid Transfer Function used in the Neuron Model

Figure 3.9: Neuron model and sigmoid transfer function [45, p. 11]

The number of weights in an ANN depends on the number of inputs, outputs as well as the
number and size of hidden layers. The network’s complexity is governed by the number of weights.

Chapter 3. Literature Review 33

The adjustable parameters of the MLP shown in Figure 3.8 can be computed as follows:

Nw = (I + 1) · H1 + (H1 + 1) · H2 + (H2 + 1) · O (3.49)

Nw Number of Weights [-]
I Number of Inputs [-]
H1 Number of Neurons in the first Hidden Layer [-]
O Number of Outputs [-]

3.2.1.2 Input normalization & Weight initialization

For any model development process it is vital to be familiar with the available data. The
performance of an ANN is significantly influenced by data preprocessing. An essential part is to
investigate the value range of input and target data that are going to be used in the ANN. If
not much is known about the physical phenomenon that is to be modelled, it is advised to use
a standardization procedure. The purpose is to weigh all input and output variables equally,
independent of their actual range.

A common way of scaling the input data is by mapping each input signal to a mean of zero with
a standard deviation of one. This type of scaling is typically used in conjunction with sigmoid
activation functions, which are symmetrical around zero (see Figure 3.9b). LeCun et al. state
that the training process converges faster if additionally to the treatment described above, inputs
are scaled in way that they have nearly the same covariance. An exception from scaling to the
same covariance should be made if it is known that some inputs are less significant.

Ci = 1
N

∑N

j=1
(zj

i)2 (3.50)

C Covariance [-]
N Number of Samples [-]
z Sample [-]
i Index of Input Variable [-]
p Index of Individual Sample of ith Input Variable [-]

A final step is to check if input variables are correlated. If this is the case redundant information
is fed to the ANN, which may slow down the learning process. Correlated input should be
decorrelated if possible or removed otherwise. Figure 3.10 depicts the schematic that is applied
to the input data [47, p. 17-19].

The training process and ultimately the performance of an ANN are significantly influenced by
its initial weights. A simple way to initialize the weights is to choose them randomly. LeCun et
al. state that if the above described standardization procedure is applied, whereby the training

Chapter 3. Literature Review 34

Figure 3.10: Schematic of proposed ANN input data treatment [47, p.19]

set has been normalized to zero mean and a standard deviation of one. By using a symmetric
sigmoid activation function, a neuron’s initial weights can be randomly drawn from a distribution
with zero mean and the following standard deviation [47, p. 22]:

σw = m− 1
2 (3.51)

σw Standard Deviation [-]
m Number of Connections Feeding into the Neuron [-]

3.2.1.3 Training of ANN

In order to successfully apply an ANN to unseen data it is obligatory to train the network with
known data. This data normally consists of a certain number of samples, with corresponding
input and output values. Numerous training algorithms have been developed in the last few
decades. The algorithm, which was a breakthrough allowing an efficient training of an ANN,
was formulated by Werbos in 1974 and further popularized by Rumelhart and McClelland in 1986.

This so called “Backpropagation” approach is a supervised learning algorithm suitable for MLP
networks. Figure 3.11 describes the general flow of information in a MLP network. The function
signal graphed in black is the signal generated by the network’s input. It passes through the
ANN layer by layer and leaves at the output layer. At every pass through a neuron the signal
is calculated as a function of the inputs and synaptic weights tied to each individual neuron.
Then the output of the ANN is being compared to the desired output and the difference is then
considered as the error. Finally the error, shown in blue, is back propagated from the output
to the input layer. Thereby the synaptic weights of all neurons are changed according to their
leverage on the error. This procedure should result in a better output at the next iteration.

Chapter 3. Literature Review 35

Generally speaking the learning algorithm can be seen as an optimization procedure whereby an
error function is minimized. In most cases only a local minimum of this error function can be
found, which is highly dependent on initial starting conditions [45, p. 124-125, 129-137].

Generally the complete dataset is split into three parts, which are the training, validation and
testing dataset. The network is trained by using the training dataset, the validation dataset is
utilized to monitor, how well the network adapts to untrained samples. The testing dataset is
totally independent of the training process and is used to check the ANN’s response to new data.
Another application of the testing dataset is to compare the performance of different networks
on the same independent dataset [46, p. 13-5 - 13-6].

Typically the training process is terminated if one or more of the following conditions apply:

• The maximum number of training iterations has been reached.
• The desired error goal has been reached.
• Early Stopping.
• Training does not converge and is therefore aborted.

Figure 3.11: Flow of the error signal through an ANN [45, p. 125]

3.2.1.4 Generalization

The generalization of an ANN is its ability to compute a correct input output mapping. To
evaluate a network’s degree of generalization typically the independent test dataset is utilized. A
network that generalizes well is able to produce a most correct output even from an input that
slightly differs from the training data set. This means in a best case scenario it will perform as
well on unseen data as it does on the training dataset.

Overfitting is a condition of a network that can arise when the training process has not been done
properly or the network is much too complex for the problem at hand. A model that suffers from
overfitting has a poor predictive performance on unseen data and overreacts to slight fluctuations

Chapter 3. Literature Review 36

in the input signal. The ANN has not appropriately learned to distinguish random noise from
the underlying trend in the training data. The problem of overfitting is most prevalent in cases
where the number training samples is limited and in the same order of magnitude as the amount
of parameters in the network. This allows the network to “remember” the input-output mapping
rather than detecting the signal’s underlying trend. The occurrence of overfitting is unlikely
if the amount of training samples is much larger than the number of the ANN’s parameters.
Figure 3.12a shows the response of a network, graphed in black, which generalizes the underlying
function, graphed in blue, well. In Figure 3.12b an overfitting model, which is disturbed by the
noise in the input data, can be seen [46, p. 13-1 - 13-6].

Figure 3.12: The left graph shows a well adapted network vs. an overfitting one on the right
hand side [46, p. 13-17]

Improving the generalization capability of an ANN can basically be reduced to the task of
finding the simplest network that fits the data. Generally two concepts can be applied which
are restricting the number of weights in the network and restricting their magnitude. The first
method is done by training a certain number of networks with specified complexity and increase
the complexity incrementally. In order to preserve comparability it is vital to use identical
datasets and initial conditions when increasing network size. Tracking the error of the validation
and testing datasets allows finding the optimal complexity for the problem.

There are two very common means to restrict the magnitude of weights in the network. The
first one is the so called “Early Stopping” approach which is used to improve generalization and
prevent overfitting. The ANN is trained using only the training dataset and weight changes are
based solely on it. The validation set is used to evaluate the ANN’s error on untrained samples.
Training is aborted when the validation error stays the same or increases for a specified number of
iterations. The weights that produced the best error in the validation set are used as the final ones.

The second approach is called “Regularization” and was introduced by Tikhonov in 1963. This
method modifies the error function, generally the sum squared error, in a way as to penalize

Chapter 3. Literature Review 37

network complexity by introducing a new term, which comprises of the weights in an ANN.
Thereby reducing the sum squared weights, which will result in a more smooth network output.
Equation 3.52 gives the regularized error function used in ANN [46, p. 13-6 - 13-10].

E = γ · 1
N

∑N

i=1
(ti − ai)2 + (1 − γ) · 1

N

∑N

i=1
w2

i (3.52)

E Error Function [-]
γ Performance Ratio [-]
N Number of Samples [-]
t Target Output [-]
a Network Output [-]
w Weights in the Network [-]

The challenge in using regularization is to find the optimal value of γ, which produces the best
model. The larger γ is, the smoother the network response.

Another method to improve the generalization is the application of "Classifer Ensembles". The
most simple approach thereby is to train several neural networks or any other machine learning
tool on the same data set. Then the ensemble output is a combination of the outputs of each of
these networks, whereby the simplest way of combining is by averaging. Generally this type of
ensemble is only useful if there is sufficient disagreement between the individual outputs. The
greatest improvement over the output of a single ANN can be achieved by averaging highly
correct networks that disagree as much as possible. This means that not only networks of the
same topology and complexity should be combined, but also several ANN of varying complexity
[48].

3.2.2 Recurrent ANN

The distinguishing factor between the beforehand discussed MLP architecture and a recurrent
ANN is that the later one has at least one feedback loop. The term feedback loop describes a type
of neuron-neuron connection whereby the output signal of one neuron is fed back to its own input
and/or those of all other neurons. Feedback commonly exists in dynamic systems where the input
to a certain part of the system is influenced and dependent on the output of another one and vice
versa. This creates one or several closed paths of information transport in the system [45, p. 18-21].

Due to containing feedback loops recurrent ANN are suitable to operate on sequential input,
where the ordering of these is of the same importance as their numerical value. The feedback
loops enable recurrent ANN to generate a response that depends on historic and current values
of the input sequence, thereby allowing the network to learn time dependent patterns. This
behaviour can be used to approximate dynamic systems. Typical fields of application of recurrent
ANN are listed below [46, p. 14-1 - 14-2]:

Chapter 3. Literature Review 38

• Control of dynamic systems
• Time series prediction
• Speech recognition
• Learning of grammar
• Robotics

3.2.2.1 Fully connected recurrent ANN

There are numerous references to the term “Fully connected recurrent ANN” in the literature
concerning recurrent networks; unfortunately its definition varies depending on the individual
source. To clarify the terminology in this thesis, the following definition by Williams and Zipser
is used. They define a fully recurrent ANN as a network in which any neuron in the hidden layer
is connected to:

• All other neurons in the hidden layer
• All inputs to the ANN and outputs from all other neurons
• Itself via a feedback loop

In this configuration any subset of the hidden neurons may act as the designated output and the
remaining ones are treated as hidden nodes. Figure 3.13 depicts this configuration in a slightly
modified way. The lines in blue show the feedback connections from an individual neuron to
itself and all others. The feed forward connections are graphed in black. The recurrent ANN can
also be described in the form of a state space model [49, p. 437-440].

Chapter 3. Literature Review 39

Figure 3.13: Configuration of a recurrent ANN with feedback
connections shown in blue [45, p. 799]

The term state of a system is defined as follows:

"The state of a stochastic dynamic system is defined as the minimal amount of information about
the effects of past inputs applied to the system that is sufficient to completely describe the future
behavior of the system." [45, p. 732].

Mathematically the behaviour of the recurrent network can be described as a dynamical system
by the pair of equations:

xk(t) =

⎧⎪⎨⎪⎩xnet
k (t), k ∈ I

yk(t), k ∈ I
(3.53)

sk(t + 1) =
∑

l∈U
wklyl(t) +

∑
l∈I

wklx
net
l (t) (3.54)

yk(t + 1) = φk(sk(t + 1)) (3.55)

Chapter 3. Literature Review 40

xk, yk Output of a Neuron [-]
sk Input to Neuron [-]
wk Synaptic Weight [-]
φ Activation Function [-]
t Time Step [-]

The index k determines whether xk is the output of a neuron in the network or an external input.
The first case applies If k ∈ U the second one if k ∈ I. A similar rule also holds for the weights in
the network. Again U denotes weights associated with neuron–neuron connections and I input
to neuron connections [49, p. 437-440].

Williams and Zipser state that this type of network can be applied to any problem, even if
both the input and output may be time-varying. Additionally recurrent ANN offer a rich set of
possibilities for representing the internal state. The adaptive nature of the state in a recurrent
network, allows the creation of delay line structures and other forms of internal memory. This
type of memory allows the adjustment to nearly any time variation in input and output variables
[49, p. 433-434].

Lo et al. state that a recurrent ANN described by the state space equations listed above is a
universal approximator of all non-linear dynamic systems. More specifically a recurrent ANN
can describe any dynamic system to any desired degree of accuracy, if it is equipped with an
adequate number of hidden neurons [50, p. 217-218].

3.2.2.2 Simple recurrent ANN

One of the most prominent species of simple recurrent ANN is the “Elman Neural Network”. The
neural network architectures proposed by Elman were designed to learn time-varying pattern
or dynamic systems. The foremost importance was language processing, but in general these
architectures could be applied to any problem involving sequences.

This type of network is a simplified version of the fully recurrent ANN, where several neuron-
neuron connections are not considered. This reduces the Elman neural network to basically the
combination of a MLP with recurrent connections from the hidden layer to a context unit. The
purpose of the context unit is to remember the previous internal state, which is defined by the
synaptic weights in the hidden layer. Thus the context units provide the network with sort of
a memory, which allows it to associate current events with historic sequences. There are feed
forward connections from both the input layer and the context unit to the neurons in the hidden
layer. The task of the hidden neurons is to find a correct input-output mapping by utilizing
both an external input and the previous internal state provided by the context unit. Forcing
the neurons to adapt to current and previous inputs, their weights have to represent a time
dependent model. Therefore the time effect is inherent in these internal states. Figure 3.14 shows

Chapter 3. Literature Review 41

the block diagram of an Elman network with a single hidden layer. Generally there are as many
neurons in the context unit as in the hidden layer [51, p. 182-185].

Figure 3.14: Block diagram of the Elman simple recurrent ANN [45, p.
794]

The training process in an Elman network modifies the connection weights from the input layer
and the context unit to the hidden layer. The recurrent connections are fixed and not subjected
to any adjustment.

3.2.2.3 NARX recurrent network

Another type of recurrent ANN dedicated to tasks involving long term dependencies between the
input and output is the so called NARX network. It is based upon the “Nonlinear AutoRegressive
model with eXogenous Inputs”. The neural network representation of the NARX model consists
of a MLP with two tapped delay lines feeding into the input layer of the MLP. The concept
behind these tapped delay lines is to provide the network with a memory. This memory comprises
of the current value of an input variable and a certain amount of previous values thereof. Due to
the fact that the NARX has two tapped delay lines it is able to draw on memory from previous
inputs as well as outputs when computing the output for the current time step. Figure 3.15
depicts a single input – single output NARX network and the related delay lines. The time steps
stored in these memory units are treated as additional inputs to the MLP architecture [52, p.
208-210].
Mathematically the operation of a NARX network can be defined as follows:

y(t) = Ψ(u(t − nu), . . . , u(t − 1), u(t), y(t − ny), . . . , y(t − 1)) (3.56)

u Present and Past Values of the Input, which represent the Exogenous Input [-]
y Output and Delayed Values thereof [-]
nu,y Number of Input and Output Delays [-]
Ψ Mapping performed by the MLP [-]

Chapter 3. Literature Review 42

Figure 3.15: Configuration of a NARX model with feedback connections
shown in blue [45, p. 792]

The structure of a NARX network with a MLP in its core generally has fewer connections to
train compared to fully recurrent ANN. The training of a NARX ANN only adjusts the weights
inside the MLP and the feedback loops are replaced by the tapped delay line coming from the
network output. Siegelmann et al. could prove that although a NARX network is a lot less
complex than the fully recurrent ANN, it is capable to simulate a fully recurrent one. Therefore
the NARX can also be considered as a universal approximator. This led to the postulation that
NARX networks can replace fully recurrent neural networks without losing any computational

Chapter 3. Literature Review 43

power [52, p. 213-214].

Lin et al. could show that NARX networks are superior in tasks that involve long-term
dependences. The reason is said to be that the problem of vanishing gradients is not as prominent
in NARX networks as compared to fully recurrent ones. This allows a NARX ANN to better
latch on long term dependences prevalent in the input and output data. It was discovered that
in those kinds of problems the memory provided by external delay lines made it easier to learn
these long term relationships compared to the hidden states in fully recurrent networks [53, p.
1332-1335].

3.2.2.4 Training of recurrent ANN

The training of a recurrent ANN is a much more complex task than for a feed forward network
like the standard MLP. The increased complexity in training recurrent ones results from the
feedback connections, which are their characteristic feature. The standard “Backpropagation”
algorithm which proved to be an efficient way to train feed forward networks cannot be used
with recurrent ANN. This is due to the fact that the standard method requires that the network
has only feed forward connections and it cannot deal with recurrent ones. Werbos developed an
extension of the BP method that made it possible to resolve the issue of recurrent connections.
This extension is the so called “Backpropagation Through Time” (BPTT) [54, 1550-1560].

The idea behind the BPTT approach is unfold the recurrent ANN in time. Thereby identical
copies of the network are stacked and the recurrent connections are redirected. This results in a
MLP in which all former recurrent loops are represented by only feed forward connections. Now
the standard BP algorithm can be applied to this network. Figure 3.16 depicts recurrent network
with two neurons, and its unfolded representation. The layered MLP in the lower part grows by
a layer at each step of the temporal operation. The feed forward connections are then trained by
utilizing the standard BP algorithm [45, p. 808-812].
The BPTT algorithm is generally used with a batch training scheme. This type of training uses
the whole time sequence, where at each network copy at the respective time step n the input
u(n) is read in and the internal state x(n) and current output y(n) is calculated from u(n) and
x(n − 1). Then the error is back propagated through the whole network and the weights are
adjusted accordingly. The whole procedure is repeated numerous times until the error function
has been minimized to the desired level. The same rules concerning the termination of the
training process are applied as in the standard BP [55, p. 12-15].

3.2.2.5 Vanishing Gradients

The problem of vanishing gradients may arise while training recurrent ANN. It is of importance
when training is done on sequences in which the desired output is dependent on the input data
and output data in the distant past. The root of this issue is the way the error is propagated
through the network layer by layer. The BP algorithm calculates the partial derivative of

Chapter 3. Literature Review 44

Figure 3.16: Unfolding procedure for a recurrent ANN done by the BPTT
method [45, p. 808]

the error with respect to a certain weight by using the chain rule. Generally speaking the
more layers a network has the longer the terms have to be considered by the partial derivative.
This makes it difficult to honour the influence of temporally distant input, even if a large
change in it has an influence on the desired output. The reason behind is that this influence
is not measurable by the gradient. The issue of vanishing gradients makes it hard to learn
long term dependencies by gradient based algorithms [45, p. 818-821]. Jaeger states the mem-
ory span that can be captured by gradient based training is between 10 to 20 time steps [55, p. 14].

Utilizing second order optimization algorithms, such as Quasi Newton, instead of gradient based
ones, to adjust the weights might by a remedy to the vanishing gradients. A drawback of these
methods is that they are more likely to converge into poor local minima [45, p. 821].

3.2.2.6 Echo State Network

The Echo State Network (ESN) and similar network architectures known as “Liquid State
Machines” are summarized by the term “Reservoir Computing”. There are several resemblances
between the ESN and previously discussed architectures of recurrent ANN. The concept of the
ESN was first published in 2001 by Jaeger. The idea behind this type of network is on the one
hand to benefit from the computational power of recurrent networks and on the other hand
to avoid some of their weaknesses. They are mainly dedicated to modeling of time series and
dynamic system as a whole [56].

The ESN consists of a random recurrent ANN with an arbitrary number of neurons in it. The
neurons in this so called reservoir typically are the same as used in other ANN, which utilize
sigmoid activation functions. The neurons in the reservoir can be sparsely connected, meaning

Chapter 3. Literature Review 45

that the degree of connectivity in the reservoir can range from a small fraction to one. The
reservoir’s actual size depends on the task at hand. The input and output units are typically
connected to all neurons in the ESN, additionally feedback connections from the output to the
reservoir can be used if required. After the reservoir has been created the network is driven by
the input sequence of training data. The result is a sequence of reservoir states; these are signals
created by the non-linear transformation of the input sequence. The reservoir’s state and output
signal can be described by the following equations:

x(n + 1) = f(Wx(n) + W inu(n + 1) + W fby(n)) (3.57)

y(n) = g(W out[x(n); u(n)]) (3.58)

x Reservoir State [-]
W Reservoir Weight Matrix [-]
W in Input Weight Matrix [-]
W fb Feedback Weight Matrix [-]
W out Output Weight Matrix [-]
u, y Input & Output Signal [-]
g, f Activation Function [-]

The training of an ESN only adjusts the output weights from the reservoir. The internal weights
are initialized when the reservoir is created and kept untouched by the training process. The
output weights are calculated as the linear regression of the desired outputs on the reservoir
states. After this step the ESN is fully trained and ready for use [55, p. 20-32].

A decisive advantage of ESN over other recurrent networks is the incredibly simple training
scheme, due to the fact that only the output weights are trained by a computationally least
expensive linear regression. Although there are these simplifications in the ESN, they are still
able to capture dynamics over time and can successfully model dynamic systems [57, p- 36-38].
Figure 3.17 depicts the model of an ESN, where the five little graphs are the reservoir states
generated from the input signal. The solid arrows indicate fixed connections, while the dotted
lines represent trainable ones.

Chapter 3. Literature Review 46

Figure 3.17: ESN with a sparsely connected reservoir. The little graphs show
the input & output signal and a representation of the reservoir
states [56]

Chapter 4. Data Management 47

4 Data Management

4.1 Description of available data

The data used in this thesis was provided by several database sources within RAG. Static and
dynamic data from the UGS under investigation were gathered from database systems within
the RAG company. The static variables gathered consist of the number of wells and their
locations within the gas storage field, as well as the size and volume of the UGS. Additionally
the length, diameter and extension of each well and the wellhead configurations were readily
available. In addition to the static data several dynamic parameters describing the UGS operation
were gathered. The most important dynamic variables were the pressure, the flow rate and
the temperature measured at the wellhead for all operating and observation wells in the UGS field.

There are currently six operative wells used for injection and production of gas and two observation
wells which are mainly used to observe the development of pressure within the reservoir. The
six operative wells are denoted as Well 1 – 6 and the two observation wells as Obs-Well 1 and
2. Obs-Well 2 was not used in this thesis, as its wellhead pressure was highly influenced by
operating wells in its vicinity. Therefore it could not be used as in input to predict the dynamic
pressure at the operating wells. Furthermore long interval were missing from the measured data.

4.1.1 Confidentiality agreement

Due to a confidentiality agreement with RAG it was not possible to disclose technical details,
which would allow conclusions about the UGS being worked on. In order to fulfill this arrangement
with RAG, it was necessary to alter the gathered data. This included the names, locations and
exact configuration of the wells, but the dynamic data itself was left untouched. This greatly
improved the meaningfulness of all statistical plots as well as the time series plots of measured
variables. Furthermore the validity of the results from the various ANN and their respective
errors is enriched. Normalizing the dynamic data and therefore also the resulting errors of the
network prediction would disguise the actually achieved performance. Any assessment of network
results without proper knowledge about the numeric range of measured data would lead to invalid
and indiscriminate performance estimates.

Chapter 4. Data Management 48

4.2 Gathering and preparation of data

The dynamic data, namely pressure, temperature and flow rates for all wells were gathered for a
continuous 27 months’ time period. The datasets retrieved from the database were raw data
provided by the sensors at the wellhead, which therefore required extensive data preparation and
quality control before it could be used for further data analysis and simulation with an ANN.
Another undesired effect of the raw data gathered from databases was the irregular sampling
frequency of measurements ranging from a time interval of one millisecond to one hour.
The following list gives the most prominent issues that were encountered during inspection of
dynamic data gathered from the database:

• Missing values
• Double values for a specific stamp
• Erroneous measurement
• Irregular sampling intervals and high variation in sampling frequency

4.2.1 Missing values

The issue of missing values was encountered in all data sets of each well, occurring at totally
different time intervals for each well. The term missing values refers to intervals in the data
set where no data was measured or available in the database for a time interval larger than the
maximum sampling interval of one hour. Further investigation showed that the main reason
for this were workover operations at the wellsite, malfunctions of sensor equipment, faulty data
transmission and failures in the database. Remediation of data sets with regard to missing
values had to be done manually, due to the fact that there was no reliable and automatic way of
replacing missing data in a meaningful fashion. Missing values at time intervals shorter than
one day were replaced by linear interpolation where possible while thereby honouring the overall
trend in data. At higher time intervals than one day, data had to be replaced using mathematical
expressions tailored to the field of application e.g. approximation of the pressure behaviour
at the wellhead after shut-in with an exponential function. Figure 4.1 shows an example of
Well 2, where missing pressure data due to a workover operation has been replaced by linear
interpolation. The pressure drop in this eight days shut-in period had only been roughly 1.7%,
therefore this method was applicable.

4.2.2 Double values

Another noteworthy issue encountered in the raw data was the occurrence of double time stamps.
It was possible to distinguish between a systematic and a random occurrence of double values
in the datasets under investigation. The systematic event could be traced back to a failure in
the database, where adding new sensor data led to the creation of double values at the exact
same time each day. An Excel VBA script was issued to check for the occurrence of double time
stamps in the gathered data sets. Double time stamps were deleted from the data set, in a way
as to preserve the one time stamp with valid readings for pressure, temperature and flow rate.

Chapter 4. Data Management 49

Figure 4.1: Treatment of missing data samples due to workover operations. The measured signal
is plotted in red and the replacement is shown as the blue line. The replacement of
the missing samples is done by a linear interpolation.

Table 4.1 below shows the occurrence of a systematic double time stamp in the data set. The
second time stamp with erroneous data was deleted from the data set.

Table 4.1: Automatic deletion of double time stamps

4.2.3 Erroneous measurement

This term describes a situation where data could be gathered from the database but it was not
usable for further analysis. The main characteristics of such data samples were outliers, which
were far off the overall trend of data and constant readings for a parameter, where a certain
trend in data over time was expected to happen. The key reasons for this were thought to
be sensor malfunctions that led to wrong measurements and workover operation at the well.
Detection of faulty data samples was a tricky task which could not be automated, due to the fact
that no generally applicable rules for outlier detection could be found. Additionally no reliable
mechanism for an automatic classification and remediation of intervals with constant readings
was available. Remediation of this kind of flaws in the dataset had to be done manually in an
analogous manner as with the missing values. Figure 4.2 shows a situation where automatic
outlier detection would have falsely classified valid samples as outliers. The red line indicates
that samples lower than e.g. 70 Bar would have been cut if a certain deviation from a mean
value was used as the threshold. In reality the sharp decline in pressure was not caused by any
sensor malfunction but an unexpected inflow of water into the well.

Chapter 4. Data Management 50

Figure 4.2: Manual distinction between outliers and valuable samples. The blue line is the
wellhead pressure and the red dotted line resembles the cutoff of an automatic outlier
detection.

4.2.4 Irregular sampling intervals

Gathering of dynamic data from the database made the issue of non-continuously sampled
datasets apparent. The sensors measuring pressure, temperature and flow rate were not con-
figured to deliver measurements at a constant frequency but rather at time intervals between
one millisecond up to a maximum of one hour. The actual sampling interval was a function
of the minimum sampling interval the sensor equipment was able to deliver, which was in this
case the beforehand mentioned one millisecond. Another determining factor happened to be the
resolution of the sensors for the parameters measured at the wellhead. The resolution of pressure
was ±0.2 bar, for temperature ±0.15 ° C and around ±100 m3/h for gas flow rate. Therefore
during production or injection operations a change of any of these measured variables larger than
the threshold triggered the creation of a new time stamp, at which a value for all parameters
was logged. After a certain time period of shut-in of a well, when pressure had stabilized at a
nearly constant value, only an hourly measurement was delivered. An above threshold change of
temperature during shut-in intervals did not trigger the generation of a new time stamp, between
the regular hourly ones.

The advantage of the above outlined measuring scheme is a reduced demand of database storage,
while the data transmission capacity still has to be designed for full load scenario. A major
disadvantage is the high range of time intervals between measurements in the datasets and the
wide variation in the distribution of these. Figure 4.3 shows a histogram of time intervals in the
dataset from Well 1. It is clearly visible that there is a high concentration of sampling intervals
less than 100 seconds with a peak at 80 seconds. There are only few values between the 100
second mark and the final peak at one hour sampling interval.

Chapter 4. Data Management 51

Figure 4.3: Histogram of time intervals in the measured signal coming from Well 1

4.3 Data statistics

To get a better understanding of data and its distribution, a graphic representation of it was
advised. Four different types of graphs were utilized namely time series plots, box plots, scatter
plots and histograms. The purpose of these graphs was to allow an investigation of the data’s
features at a glance.

4.3.1 Time series plot

Figure 4.4 displays a time series plot over the whole 27 months of measured data for Well 1. The
plot on top displays the pressure measured at the wellhead, the graph in the middle the flow
rate and on the bottom the temperature which was also measured at the wellhead is depicted.
Negative flow rates indicate injection into the UGS, whilst positive ones resemble gas production.
All three graphs are already remedied of measurement errors, outliers and double time stamps.
These time series graphs were the starting point for all further data analysis steps using various
other plots.

Chapter 4. Data Management 52

Figure 4.4: Time series plot of pressure, flow rate and temperature measured at the wellhead for
Well 1. The unit of pressure is Bar, m3/h for the flow rate and K for the temperature
measurement. A positive flow rate indicates production from the UGS, whilst a
negative one resembles an injection of gas.

Chapter 4. Data Management 53

4.3.2 Scatter plot

The purpose of a scatter plot is to allow a first look to check if there is a notable correlation
between two variables. This plot can suggest variable kinds of correlations between variables
with a certain confidence interval. Another application is to see whether two comparable datasets
agree with each other. One of its biggest advantages is the ability to not only show linear but
also non-linear relationships between variables. Adjusting the marker’s opacity used in the scat-
ter plot allows a graphic estimation of accumulation points and underlying trends [58, p. 125-156].

From the parameters measured at the wellhead three different scatter plots were made. The
most relevant graph was used to evaluate if and to which degree a relation between flow rate
and pressure at wellhead existed. Therefore a plot of flow rate on the horizontal axis against
the pressure on the vertical axis was made. Figure 4.5 (a) - (f) shows scatter plots of flow rate
against pressure of all six operating wells. It is visible that there is not just one single identifiable
relationship in the data, but rather regions where a certain trend is visible. Another noteworthy
fact was that there has not been just a single pressure value for a zero flow rate, but rather
numerous values. This circumstance contributed to the selection of a recurrent ANN. Although
the actual ranges in between these graphs vary, there are several similarities to be observed. It is
clearly visible that all wells show numerous different pressure readings for zero flow rate and all
show similar non linear relationships between flow rate and pressure.

Chapter 4. Data Management 54

(a) Well 1 (b) Well 2

(c) Well 3 (d) Well 4

(e) Well 5 (f) Well 6

Figure 4.5: Scatter plots of flow rate vs pressure for all six operating wells. The unit of flow rate
is m3/h and Bar for pressure.

Chapter 4. Data Management 55

4.3.3 Box plot

The box plot, common in descriptive statistics, was the second type of plots used to analyse the
gathered data. This is a convenient way of plotting numerical data through their quartiles. In
general the top and the bottom of the box are the first and third quartile of data, while the band
inside the box is the second quartile also called median. In order to represent data extending
beyond the first and third quartile, lines called whiskers are added vertically to the box. The
most common way to define their extension is to add 1.5 times the interquartile range (IQR)
above and below the box. Any samples lying outside of the whiskers are usually plotted as
individual points and considered outliers. Although one would expect equal whiskers lengths
from this configuration, it is also a general convention to set the whiskers’ end where the last
data point inside of 1.5 · IQR lies. A box plot is an easy and suitable way of displaying and
comparing groups of similar data. It depicts the variation in data without making an assumption
of the underlying statistical distribution [58, p. 39-49].

Grouped box plots were utilized for the investigation and comparison of pressure and flow rate
data sets. The box plot of pressure data contained the data sets of Wells 1 - 6 and Obs-Well 1,
while the plot of flow rate was limited to the six operative wells. Figure 4.6 shows the box plot
of pressure data. It is clearly visible that all six operative wells lie in a quite similar range, while
the observation well shows a noticeable lower pressure range. The explanation for this is that
the measurements at the observation well were purely static pressures while the pressure at the
operative wells was heavily influenced by the flow rate. Noteworthy information was the lack of
outliers above the upper whisker, resulting from an imposed regulatory maximum pressure for
the operating wells. Further investigation showed that the causes of the outliers at low pressures
were mainly an inflow of water and/or a high production rate.

The box plot of flow rates seen in Figure 4.7 shows rather different IQRs for the various wells.
This resembled in a way the performance of a well compared to the others. The position of the
boxes and thus also the medians’ with respect to the zero line presented the allocation of injection
and production operation in the available time range. The reason for the high number of outliers,
especially in wells 1 - 5, was thought to stem from transients like the wellbore storage effect.
However no satisfactory explanation for the lack of outliers in Well 6 could be found. Further
investigation concerning the outliers in the box plots was necessary to distinguish between faulty
samples and data points which contain valuable information.

Chapter 4. Data Management 56

Figure 4.6: Box plot of pressures of all wells

Figure 4.7: Boxplot of flow rates of all wells

Chapter 4. Data Management 57

4.3.4 Histogram

The purpose of a histogram is to provide a graphical representation of the distribution of nu-
merical data. It is commonly used in descriptive statistics to estimate the probability density
distribution of a quantitative variable. In a histogram the data is divided into a number of bins,
which contain all samples falling in a certain value range. Then bars are erected above the bins
with their height being proportional to the count of samples, also called frequency, in a bin. In
general, a lower number of bins reduces noise originating from sampling randomness. A higher
count increases the precision of the distribution estimation, while being more vulnerable to the
adverse influence of random noise [59, p. 77-83].

In order to identify any present probability density function in the measured data sets, histograms
for pressure and flow rate were made. Figure 4.8(a) - (f) depicts histograms of pressure for all
six operating wells and Figure 4.9(a) - (f) shows the corresponding histograms of flow rates.
The patterns shown in Figure 4.8(a), (b), (c) and (e) are quite similar and could be described
as skewed left, showing a tendency to higher pressures in the range of 180 to 210 Bar. The
remaining two wells displayed in Figure 4.8(d) & (f) show a less clear distribution of pressure
readings. The histograms of flow rate for the six operating wells are depicted in Figure 4.9(a) -
(f). All samples with zero flow rate have been removed in those histograms, as these samples
would have resulted in a huge peak in the middle obscuring any recognizable distribution. The
histograms’ patterns could be described as bimodal, with a strong emphasis on negative flow
rates. These histograms reveal that during the 27 months long sequence more gas has been
injected than produced. It is also clearly visible that the examined wells vary significantly in
their achievable injection and production rates. It can also be observed that the histograms of
wells 1, 2 and 3 depicting the measured pressure and those of the corresponding flow rate are
quite similar, indicating that these wells were operated at comparable conditions.

Chapter 4. Data Management 58

(a) Well 1 (b) Well 2

(c) Well 3 (d) Well 4

(e) Well 5 (f) Well 6

Figure 4.8: Histograms (100 bins) of the pressure for all six operating wells. The x-axis displays
the pressure in Bar and the y-axis the frequency.

Chapter 4. Data Management 59

(a) Well 1 (b) Well 2

(c) Well 3 (d) Well 4

(e) Well 5 (f) Well 6

Figure 4.9: Histograms (250 bins) of the flow rate for all six operating wells. The x-axis displays
the flow rate in m3/h and the y-axis the frequency.

Chapter 4. Data Management 60

4.4 Resampling

This chapter describes the procedure applied to compile the data sets from all wells into a
single set with an uniform sampling interval. The wide distribution of sampling intervals in
the individual data sets and the variation in between different wells made this compilation to
a uniform sampling frequency a challenging task. There were several reasons why it was an
absolute requirement to have a single regularly sampled dataset.

First of all to enable reasonable training, simulation and prediction with an ANN using data
coupled to a time stamp, also referred to as a time series, it was essential to have a uniform
sampling frequency. In addition the data from the sensors was delivered with a substantial
amount of undesired noise in it. The various filters available for noise reduction require a constant
sampling frequency to work properly. Two different approaches to assemble time series data from
all wells into one coherent dataset were utilized. The MATLAB scripts written for resampling
the irregularly sampled signal to a regular one are to be found in Appendix B. This includes the
linear resampling with filtering and the kernel regression method.

4.4.1 Linear resampling and filtering

The first method utilized linear resampling of time series data to a new a uniformly sampled
time vector and applying a median and low pass filter afterwards to reduce noise and mitigate
aliasing effects.

The term aliasing describes a phenomenon in signal processing where undesired effects occur
at digitalizing of analogue signals or during resampling. During resampling the original signal
is sampled at regular time intervals and can later be restored with a low pass filter. In order
to ensure a proper restoration of the signal, the original signal has to be sampled with at
least twice the highest frequency occurring in the original signal, this relation is the so-called
Nyquist-Shannon sampling theorem. If a too low sampling frequency is being used, frequency
content higher than half of the sampling frequency is under sampled. Figure 4.10 shows the
outcome of under sampling. The upper graph shows the original signal, whose frequency increases
with time and is sampled at regular time intervals. The lower graph shows the reconstructed
signal, which is correct until the Nyquist frequency, marked as red line, is reached. The Nyquist
frequency is half of the sampling rate, and the following eq.4.1 & eq.4.2 describe the relation
between sampling, signal and Nyquist frequency required to prevent the occurrence of aliasing
[60]:

fNy = 1
2 · fsamp (4.1)

fsamp > 2 · forig (4.2)

Chapter 4. Data Management 61

fNy Nyquist Frequency [Hz]
fsamp Sampling Frequency [Hz]
forig Highest Frequency occurring in the original Signal [Hz]

Figure 4.10: The lower graph shows an erroneous reproduction of the signal
from the upper graph due to aliasing. The red line represents
the time where the Nyquist frequency is greater than half the
sampling frequency. Modified after [60]

4.4.1.1 Filtering in the time domain - Gaussian filter

The process of filtering in the time-domain can be viewed as a moving averaging method applied
to the noisy original signal. By using this procedure the noisy raw signal is smoothed and the
medium to long wavelength components are revealed more clearly by diminishing the influence
of short wavelength features. At the start of the procedure the weighting window is positioned
at one end of the signal and a weighted average is calculated for the first sample. Then the
window is moved by one data point and the average is computed once more, this is done until
the window has reached the signal’s last point. The length of the weighting window is governed
by the so-called cutoff, whereby a higher value increases the window length and therefore leads
to a higher degree of smoothing. Another major influencing factor is the characteristic of the
window itself and how the samples inside of it are weighted. The Gaussian filter puts the highest
weight to the central element and the weights on both sides of the center decrease gradually. The
process of applying the moving average is also called convolution of the signal with a window
function, thereby creating a third function, which is the smoothed response. The specialized
MATLAB function performs a convolution from both sides of the signal, thereby adjusting for
the shift of data inherent to the moving average process. The Gaussian window is given as [61, p.
23-38]:

Chapter 4. Data Management 62

w(n) = e
− 1

2 ·
(

α∗ n
(N−1)

2

)2

= e
−
(

n√
2∗σ

)2

(4.3)

w Window Function [-]
N Window Length [-]
σ Standard Deviation [-]
α Constant which is inversely proportional to σ [-]

4.4.1.2 Filtering in the frequency domain

Generally the digitized signal of any observable physical quantity exists in the time domain,
because it is measured as a function of time. The Fourier theory states that any signal measured
in the time domain can be understood as being composed of sinusoids of varying amplitude,
frequency and phase. Applying a Fourier transform to the time domain signal decomposes it
into the frequencies which make it up. This method allows identifying sinusoidal components of
specific wavelengths and their respective amplitude and phase. Additionally this transformation
enables identifying the contributions of valuable information and unwanted noise in the measured
signal. The noise can be suppressed by selecting a cutoff frequency and an appropriate filter,
which cuts all signal content lying outside of the beforehand defined frequency. The basic concept
of filtering in the frequency domain can be summed up into three phases. The first step is
transforming the signal from the time to the frequency domain, secondly applying a filter to
suppress certain frequencies and lastly the transformation of the filtered signal back into the
time domain [61, p. 13-21].

4.4.1.3 Median filter

The procedure used in the application of a median filter is in a way similar to any other filtering
in the time domain, as a window function is convoluted with the original signal, thereby resulting
in a filtered response. The window function of this filter replaces the data point in its center
with the median value of all points covered by the window. The median is the middle point of
a sequence ordered in ascending value. Similar to the moving average approach an increase in
window length results in a smoother response signal, due to the fact that more data points are
taken into account. A clear advantage of a median compared to a Gaussian filter is its ability
to automatically reject outliers. Another distinguishing feature is the capability to pass step
functions. A moving average filter would inevitably smear the edge, due to averaging of data
points across the jump in the step function. It is also stated that median filtering is useful for
reducing random noise and periodic patterns [62, p. 54-63]. The built-in MATLAB function
for median filtering is capable of automatic edge detection and correction of shift induced by
the moving window. Figure 4.11 shows the application of a Gaussian and a median filter to a
step function. The median filter is able to apply its advantageous features compared to a filter

Chapter 4. Data Management 63

using any kind of moving average window, thereby rejecting the outlier and displaying the step
function without smearing at the edges.

Figure 4.11: Comparison of a Gaussian & Median filter on the behaviour at a
step function

4.4.1.4 Applied filtering approach

The first step was to resample the non-uniformly sampled signal of pressure, rate and temperature
from each well to a new uniform auxiliary time vector, which was identical for all wells. The
purpose of this auxiliary time vector with a rather high sampling frequency of 0.1 HZ was to
mitigate aliasing effects and loss of information through the use of oversampling. Followed by
down sampling to the chosen sampling interval, which would later be used for further data
analysis and application in the ANN. Lastly the application of an appropriate filter to reduce
noise still present in the signal and aliasing effects, which could not be fully prevented.

A Gaussian filter was utilized to filter the pressure and temperature signal. Those two signals
were characterized by gradual changes over time compared to the fluctuations in the flow rate
measurements. The configuration of the Gaussian filter had to be adapted to the desired re-
sampling interval. A modification of the resampling interval led to a change of the number of
individual data points in a certain time interval, e.g. a sampling interval of five compared to ten
minutes reduced the data points per hour from twelve to six.

Using a resampling interval of 10 minutes, which was equal to a sampling frequency of 1.67
mHz, required all higher frequency content to be cut from the signal. This step was necessary to
not introduce errors and artefacts in the down sampled signal, originating from high frequency
content which could not be reproduced correctly in the lower frequency signal. Furthermore
ignoring this fact would have led to the introduction of false information and noise to the signal.

Chapter 4. Data Management 64

These disturbances are caused by the so called aliasing effect. To mitigate the occurrence of
aliasing the cutoff frequency was set to 2/3 of Nyquist frequency of the desired resampling time
interval, ensuring that higher frequency content was successfully suppressed. Therefore larger
resampling intervals led to wider filter windows in the domain time and as a consequence thereof
to narrow ones in the frequency domain.

Using the auxiliary step of oversampling resulted in a signal with 0.1 Hz, on which the following
filter configurations listed in Table 4.2 were applied.

Table 4.2: Resampling intervals and respective filter configurations
Resampling Interval [Min] Frequency [mHz] Window Width [-]

Resampling Nyquist Cutoff

0.5 33.34 16.67 11.11 9
5 3.34 1.67 1.11 91
10 1.67 0.83 0.56 181
30 0.56 0.28 0.18 541
60 0.28 0.14 0.09 1081

Figure 4.12a shows the time domain representation of the windows specified in Table 4.2 and
Figure 4.12b their frequency domain depiction. The dotted vertical line resembles the Nyquist
frequency for each resampling interval, this is exactly half of the Nyquist frequency’s value
tabulated in Table 4.2, because a single sided representation of frequency and magnitude is used.
Both figures display the Gaussian filter window for three different sampling frequencies. It can
be seen that an increase of the window width results in a decrease in the frequency domain and
vice versa. Both figures combined show the advantageous feature of a Gaussian window which
remains a Gaussian curve after applying a Fourier transform to it.

(a) Gaussian Window in the Time Domain (b) Gaussian Window in the Frequency Domain

Figure 4.12: Spectral analysis of a Gaussian filter

Chapter 4. Data Management 65

In contrast to the pressure and temperature, the signal generated by the flow rate measurement
contained a substantial amount of random noise at times of operation. Another distinguishing
feature was the nearly instantaneous change of flow rate from zero at shut-in to a certain value
while operating the well. This bore an undeniable resemblance to a step function. Both the
random noise, in form of fluctuating rate measurements, and the appearance of jumps in the
signal, made the flow rate signal a promising candidate for median filtering. The application
of the median filter to the high frequency auxiliary signal before down sampling to the desired
sampling interval, proved to be the best solution for the flow rate data. Analogous to the
Gaussian filter a change in the resampling interval demanded an adaption of window size. In
order to ensure nearly equal outcome from filtering to pressure, temperature and rate signal,
identical window sizes (see Table 4.2) have been used.

4.4.2 Resampling with local polynomial kernel regression

The second method deployed for resampling was a local polynomial kernel regression. This type
of non-parametric regression was found suitable for problems, where no other general model
could capture and reproduce the trend in data on the small as well as on the large scale.

The non-parametric regression estimates an unknown regression function from the given observa-
tions. A simple approach is to construct a local mean estimator; this approach was first proposed
by Nadaraya and Watson in 1964 and therefore referred to as Nadaraya-Watson kernel estimator.

m(x) =
∑n

i=1 w(xi − xjh)yi∑n
i=1 w(xi − xjh) (4.4)

m Estimated Value [-]
n Number of Observations [-]
w Window Function [-]
h Bandwidth [-]
y Observation [-]
x Corresponding x-Variable [-]

The window or also called kernel is generally a smooth positive function which has a peak at zero
and decreases monotonically at the sides. The Gaussian density function is an appropriate choice,
because it ensures that most weight is given to data points close to the point of interest. Similar
to the application of the Gaussian window in filtering, the bandwidth controls the window width
and thereby the degree of smoothing. An alternative to the local mean estimator is to fit data
with a local linear regression. Using the later type of estimator requires solving the following
least squares problem:

min
α,β

∑n

i=1
[yi − α − β(xi − x)]2w(xi − xjh) (4.5)

α, β Regression Coefficient [-]

Chapter 4. Data Management 66

As with the local mean estimator, there is also an explicit formula for the local linear regression
estimator:

m(x) = 1
n

∑n

i=1
[s2 − s1(xi − x)]w(xi − xjh)yi

s2s0 − s12 (4.6)

sτ (x, h) = 1
n

∑
(xi − x)τ w(xi − xjh) (4.7)

The operation mode of this non-parametric regression is similar to the moving average filtering
approach, as again a window function moves along the data points. At each step coefficients of a
linear regression and consequently an estimated value are calculated from the data points within
the window, until all observations have been taken into account. A key difference compared
to the beforehand mentioned filtering is that in kernel regression, the number of data points
created by the regression is independent from the count of observations present in the dataset.
In contrast to filtering, where only the existing data points are manipulated. Integrating the
standard model of linear regression into non-parametric regression made this a very reliable tool.
The local linear estimator proves to be superior to the local mean one, at edges and at start and
end segments of the data sequence [63, p. 48-52].

The nature of the non-parametric regression allowed resampling to a new uniformly sampled
time vector from the edited original signal without any intermediate steps. This approach merely
required choosing a desired sampling interval for the output and specifying the kernel bandwidth.
As with the alternative approach the default resampling interval was set to ten minutes. Testing
several bandwidths for various resampling intervals, found that a kernel width of 25 to 35 samples
yielded satisfactory results. Due to the kernel regression’s characteristics it was not necessary to
adapt the bandwidth when modifying the resampling interval.

The kernel regression acted as an alternative to the approach using linear resampling and filtering.
Therefore it was then possible to check the soundness of the resampled signal not only by
comparing to the original signal but also to the alternative resampling algorithm’s result.

4.5 Quality control

After the resampling had been done using one of the two previously described methods it was
necessary to check the integrity of the generated signal. Although precautions against aliasing
effects had been taken a quality control (QC) that lays its focus on critical sections was inevitable.
This QC comprised of checking if the signal’s trend was reflected in the resampled one and how
the filtering methods behaved in critical segments of the original signal.

The QC had to be done manually as there was no simple way to check all segments of an original

Chapter 4. Data Management 67

signal, which was characterized by highly various frequency content, noise coming from the
measurement process and abrupt changes in the quality of individual segments. Figure 4.13
displays an overview of the orignal and resampled signals of pressure and flow rate for Well 1.
The following Figures 4.14(a),(b) & (c) marked in green, orange and purple in the overview plot
show critical sequences in the measured signal that required special attention. In all plots the
originally measured signal is shown in red, while the blue line depicts the resampled signal of
10 Min sampling interval. Linear resampling was used as a standard method for generating the
resampled signal.

The first set (Figure 4.14(a)) displays a sequence that is plagued by high frequency noise, which
was undesired and had to be removed. The chosen filter configuration mitigated the high
frequency components and produced a smoother signal without inducing any aliasing effects.
The blue line shows that the filter configuration worked properly and returned the desired result.

Figure 4.14(b) shows the smoothing of the signal at time intervals below the specified sampling
interval of 10 Min. While at time intervals greater than the specified resampling frequency the
signal is not influenced and returned nearly unaltered. It can be seen that accurate results are
achieved at both pressure and rates, although two different filters were applied.

The last plot (Figure 4.14(c)) depicts a situation where mostly time intervals above 10 Min are
present in the original signal. It can be observed that the specified filter configurations smooth
the signal’s high frequency content, while again leaving the low frequency parts nearly unchanged.

As seen in the beforehand mentioned figures the applied filtering approach was proved to be
fitting for each of the sections. Furthermore this method provided a smooth and nearly noise
free signal without introducing aliasing effects. The resampled and filtered signal could then be
used as an appropriate input for the training of neural networks.

In general it can be said that both resampling methods provided good results, although the
linear resampling approach proved to be superior. The high degree of adaptability in the linear
resampling was its deciding advantage. The specification of an appropriate filter window with a
proper cutoff frequency allowed producing nearly noise free signals without introducing unwanted
aliasing effects. The biggest advantage of this filter could also be its greatest drawback, as it was
a challenging task to find suitable filter configurations. The benefit of the kernel smoother was
the ease of application and the generation of an acceptable and usable signal, without evaluating
numerous configurations for different resampling intervals.

Chapter 4. Data Management 68

Figure 4.13: Comparison of Original signal in red & Resampled signal in blue coming from Well
1 for the whole 27 months sequence. The green, orange and purple lines indicate
critical sections in the Original signal which required special attention.

Chapter 4. Data Management 69

Figure 4.14: Critical sections in the Original & Resampled signal. The plots show a comparison
of the Original signal in red & Resampled signal in blue at three critical intervals.

Chapter 5. Methodology 70

5 Methodology

This chapter discusses the workflow developed for the generation and training of various ANN
models. The key steps in model generation are described one after the other. The starting point
is a short description of the data preprocessing scheme tailored to neural networks. This is then
followed by the steps involved in the generation of ANN models with the software packages
RapidMiner and MATLAB. Finally the details of training and application of these prototypes
are discussed.

5.1 Agenda

The driving goal of this thesis was to test whether artificial neural networks can be used to
simulate the behaviour of an UGS. Therefore it was necessary to develop a suitable methodology
to apply these networks to the data gathered from databases within RAG. This data was the
foundation on which all networks were built upon and tested against. A good part of the workflow
was dedicated to the investigation if the provided data was sufficient to build sound models. The
selection of appropriate network types and architectures was another essential task in the whole
workflow. Finally the results should allow judgement whether there is an ANN architecture that
can adequately capture the underlying dynamics present in underground gas storage operation.
This judgement process included a history match of wellhead pressures for more than two years’
time of operation and about one and a half months of data that was used to test the network’s
capabilities to predict future pressures. The results will determine if neural networks can compete
with classical reservoir simulation and be considered as a viable alternative. The following
sections will discuss the steps that were taken from gathering the data, building models and their
application and testing.

5.2 Data preprocessing

This chapter discusses the practical aspects of data preprocessing that were necessary to shape
data in a suitable form for the application of an ANN. The description of available data, statistical
aspects and the resampling procedure applied were already outlined in the previous chapter.
After the gathered data had been remedied of deficiencies and resampled to a regular sampling
frequency it was required to compile it into a usable form. Arranging data streams from all wells
into a single table was found to be the most practical approach. The resampling script written
in MATLAB automatically compiled the resampled signals from all wells into a single table that
could be used in various other programs. This method guaranteed that all programs and models
were based on the same data basis.

Chapter 5. Methodology 71

5.2.1 Selection of input & output for ANN

The available dynamic data consisted of pressure, temperature and flowrate measurements at the
wellhead. Additionally static data about the wells locations, their design and completion were
available. It was found that the static data could not be integrated into the neural network models
in a meaningful way. There were several reasons why the static data was more or less neglected.
The first and most crucial reason was that the static data as the name implies was purely static.
The ANN model on the other side was solely driven by dynamic time series information coming
from the wellhead measurements. From a modeling point of view the ANN could be seen as a
black box, which should learn the dynamics veiled in the measured signals. The static properties
of the wells were not changed throughout the gathered time period. This meant that including
an input, which remained constant during the whole history matching period would not have
had any beneficial influence on the ANN’s modelling behavior. Secondly it was not intended to
create a static reservoir model that would be coupled with neural networks. In theory the ANN
could replace the numerical computations in a classic reservoir simulator. Zangl et al. showed
a conceptual way how a neural network could replace the numerical computation model of a
total reservoir model. They state that the computation speed is the decisive advantage of neural
networks over the numerical models in the classic reservoir simulation [8].

The beforehand mentioned circumstance reduced the data actually used to the pressure and flow
rate measured at the wellhead. The pressure data was coming from the operating wells 1 to 6
and the sensor readings of Obs-Well 1. The UGS’ filling level at each time step was calculated by
cumulating the flow rate measurements. This cumulative volume was then divided by the working
gas volume of the reservoir. Figure 5.1 displays the configuration of network input and output
signals used in this work. Although also wellhead temperature measurements were available, but
they were not utilized in the designed models. The main reasons behind this decision were firstly
that the temperature was influenced by ambient surface conditions and it was not possible to
find out at which time intervals the wellhead heating systems was active. Secondly the models
were designed to be trained on defined input variables and the desired outputs. In order to apply
them for any prediction tasks it was required to feed future inputs to the ANN to generate future
desired outputs. Using the temperature as an input would have required an additional model
to predict the future temperature at the wellhead. It was concluded that the possible error in
forecasting the temperature would outweigh the benefits of having it as an input.

Chapter 5. Methodology 72

Figure 5.1: Input & Output configuration of ANN models.

5.2.1.1 Obs-Well 1 as input

Using the pressure measured at Obs-Well 1 as an input to predict the pressures at Wells 1 to
6, as depicted in Figure 5.1, required knowing it in advance. This pressure was utilized as an
input to provide a sort of pressure baseline besides the gas storage filling level for the models
forecasting the dynamically influenced wellhead pressures. Due to the fact that the pressure at
Obs-Well 1 is only marginally influenced by immediate changes of flow rate at the operational
wells it could act as a pseudo reservoir pressure.

To forecast the pressure at Obs-Well 1 a fully recurrent ANN with ten hidden neurons was
used. The utilized networks, which are discussed in more detail in section 5.3.3, were identi-
cal to network generation 6 shown in Table 5.3. The only difference were the altered inputs
and output. Figure 5.2 shows the inputs used to model and predict the wellhead pressure
at Obs-Well 1. It was obvious that this pressure was governed by the filling level and the
flow rates at the six operating wells. Therefore the filling level, rates of all individual wells,
the sum of all rates at each time step and the cumulative injection/production were used as inputs.

The same data separation method as used in the models proposed to predict the wellhead
pressures for the operating wells was applied. Additionally the identical hourly resampled data
set was used to forecast the pressure at the observation well. Therefore the whole data sequence
was split into the same three time intervals for network training and validation as well as the
independent test sequence as were used when forecasting the pressures at the operating wells.
The data separation approach and selection criteria regarding the chosen resampling interval are
explained in the following two sections.

Chapter 5. Methodology 73

Figure 5.2: Input & Output configuration of the ANN model used to forecast
the wellhead pressure at Obs-Well 1.

Figure 5.3 displays a time series representation of the measured pressure and the output of the
fully recurrent network for Obs-Well 1 along with the total flow rate, which is the summation of the
rates from the six operating wells. It is clearly visible that the proposed model is able to forecast
the required pressure with a sufficient accuracy of less than 2 Bar deviation from the desired value.

Figures 5.4(a), (c) and (e) show scatter plots of the fully recurrent network’s output against the
desired one and a superimposed coefficient of determination R2 for the training, validation and
test data sets. Figures 5.4(b), (d) and (f) on the right hand side depict an error histogram of
each data set.

Figures 5.4(a), (c) and (e) clearly show that the fully recurrent ANN achieved a very good
generalization. The coefficient of determination R2 is greater than 0.999 for both the training
and validation data sets, which indicates a nearly perfect match. The R2 of 0.97 in the inde-
pendent test sequence still resembles an adequate network model. The three error histograms
in Figures 5.4(b), (d) and (f) underpin the conclusion that the proposed model is suitable to
predict the pressure for Obs-Well 1. The majority of errors lie in the range of −1 to +1 in
the training and validation sets. The slightly worse performance in the test interval is also
resembled in the somewhat skewed error histogram with a increased range of errors from −2 to +2.

A possible explanation for worse performance and the skewed distribution of errors in the test
interval was the nearly a month long period of inactivity where there were no changes in the
rates and filling level. Furthermore it can be seen that in the test interval the deviations between
the network output and the desired target are generally less in the active parts. This observation
allows the conclusion that the proposed model can forecast the pressure at Obs-Well 1 with an
accuracy of roughly 1 Bar in the active periods.

Chapter 5. Methodology 74

Figure 5.3: Comparison of Original & fully recurrent network (using 10 hidden neurons) Output
for Obs-Well 1 in a time series plot. The upper graph depicts the whole 27 months
period. The independent test set is shaded in grey.

Chapter 5. Methodology 75

(a) Training Set - Correlation (b) Training Set - Histogram of Errors

(c) Validation Set - Correlation (d) Validation Set - Histogram of Errors

(e) Test Set - Correlation (f) Test Set - Histogram of Errors

Figure 5.4: Output - Target correlation plot & error histogram for Obs-Well 1 using a fully
recurrent ANN. The training set is shown on top, the validation set in the middle
and the test interval on bottom.

Chapter 5. Methodology 76

5.2.2 Data separation

A similar data separation scheme as described in the chapter concerning the MLP network was
used to split the data into three parts. For feedforward networks the standard is to allocate
samples randomly into the three subsets. The time series data used in modelling the gas storage
operation required a different approach of data separation. This data was characterized by short
and long term dependencies in each individual signal and between input and output variables.
Randomly assigning the data into the three subsets would have destroyed the underlying depen-
dences. The majority of the roughly 27 months of measured data was dedicated to training and
validation of the models. The remaining part acted as an independent sequence used to test
the model’s response to unseen data. The training and validation dataset with a length of 25
months was split again into separate training and validation samples. The first one consisted of
80% of the data and the second of the remaining 20%. The MATLAB "Neural Network Toolbox"
offered several data separation methods. The "interleaved" approach divided the data as in
dealing a deck of cards. The whole 25 months of data were in the first step divided into a certain
number of subsets, and these were thereafter split into two blocks, namely training and validation
set. The percentages of training and validation samples were the beforehand specified 80% and
20%. Figure 5.5 depicts a schematic overview of the applied data separation approach. The
segments shaded in red are the intervals dedicated to training of the ANNs, while the subsequent
green segments are used as validation sets. The shorter purple segment at the end of the whole
sequence is the independent test set, which is identical for all networks.

Figure 5.5: Data separation for ANN models. The red segments are the training intervals and
green parts are used for validation. The independent test sequence is shown in purple.

Chapter 5. Methodology 77

5.2.3 Sampling frequency & Computation time

Apart from data separation it was also necessary to select an appropriate sampling frequency
for the dataset to be utilized in the modelling scheme. This frequency had to be a compromise
between ANN computation times and the capability of preserving the dependences in the sequen-
tial data. Jaeger stated that the computational complexity of the BPTT algorithm is O(TN2),
where N is the number of hidden neurons and T the time steps. Additionally the memory span
coverable by BPTT training was said to be 10 to 20 time steps [55, p. 14].

In order to have an idea about the actual computation times to be expected, several trials
were run. Generic models of the Elman, fully recurrent and NARX network were used to
investigate the influence of the number of hidden neurons and the number of samples on the
computation time. Figure 5.6(a) shows the computation time per iteration for the different
models with a fixed number of 100,000 time steps. This clearly indicates a highly non-linear
trend between number of neurons and computational complexity. The second Figure 5.6(b)
depicts the computation time per iteration as a function of the number of time steps. The
quantity of neurons in the hidden layer was fixed at 10 for all network architectures. The straight
line behaviour reveals the linear trend between the computation time and the number of time steps.

The resulting compromise suggested an hourly sampling frequency for the data fed to the ANN.
The hourly data still maintained the signal’s trend and allowed to train several networks in a
convenient time frame. The chosen sampling frequency reduced the whole dataset to roughly
20,000 time steps.

(a) Computation time of ANN architectures against
amount of hidden neurons

(b) Computation time of ANN architectures against
number of time steps

Figure 5.6: Computation time per iteration in seconds of various network types

Chapter 5. Methodology 78

5.3 Model Setup

This chapter discusses the steps taken in setting up neural network models to fit the gathered
time series data. Several different architectures were tested to find out if any of them proved to
be suitable. Additionally the performance of pure feed forward ANN was tried against several
recurrent architectures.

5.3.1 Overview of neural network programs

The two software packages RapidMiner and MATLAB were used to setup and train the various
neural network architectures. The following Table 5.1 gives an overview which software was used
for a specific type of ANN. The fully recurrent, Elman and NARX ANN were implemented using
the "Neural Network Toolbox" which is integrated into MATLAB. Each individual architecture
and how it was set up is discussed in more detail in the following sections.

Table 5.1: Overview of neural network software packages
Network Architecure Software Package Software Module

Multilayer Perceptron RapidMiner Neural Net
Fully Recurrent ANN MATLAB layrecnet (modified)
Elman ANN MATLAB elmannet
NARX ANN MATLAB narxnet
Echo State Network MATLAB ESN Toolbox [64]

5.3.2 MLP with RapidMiner

The representative of the feed forward MLP network was implemented with the open source
software "RapidMiner". This software was aimed at general data mining purposes whereby neural
networks were just a part of the tools available and not the centerpiece. The package offered
predefined tools dedicated to data loading and processing. In order to retain comparability with
neural network models done using other programs, the data was preprocessed in MATLAB using
the previously outlined scheme. The MLP model in RapidMiner could be configured with respect
to the number of neurons in the hidden layer and the input normalization. The standard BP
algorithm was the only option available for training of the ANN. The input was normalized using
the min-max approach which scaled data into the range of −1 to +1. The networks were trained
using early stopping and a maximum of 2000 iterations.

Several generations of networks were trained starting from five up to 20 neurons in the hidden
layer. Each generation included five individual networks, initialized with different random seed
values. Using several networks in one generation is typically done to mitigate the influence of
poor starting conditions. Analysing the results of several networks allowed formulating a more
general statement about a network generation’s generalization capabilities. When increasing the
network’s complexity the random seed values remained unchanged, thereby ensuring equivalent

Chapter 5. Methodology 79

starting conditions. The MLP implementation of RapidMiner had one noteworthy drawback
which allowed it to have only one numerical output. This meant that for each well an individual
model had to be set up. Additionally it was not possible to consider the interaction of pressures
and flow rates from different wells. An overview of trained networks is given in Table 5.2 below.

Table 5.2: Overview of MLP network generations
Network

Generation # Networks # Hidden
Neurons

Random
Seed

Training
Algorithm

Training
Conditions

1 5 5 1 - 10 BP ES - 2000
2 5 10 1 - 10 BP ES - 2000
3 5 15 1 - 10 BP ES - 2000
4 5 20 1 - 10 BP ES - 2000

5.3.3 Fully Recurrent ANN with MATLAB

The models utilizing recurrent ANNs were done in MATLAB, which offers an extensive toolbox
with various network architectures. Analogous to the setup of the MLP networks, the data for
the recurrent ones was prepared using the scheme outlined in the previous sections of this chapter.

The MATLAB toolbox offered various options in configuring the individual ANN types. The
possibilities ranged from adjusting the number of layers and neurons in the network, adapting
the transfer function for each neuron to choosing from a wide variety of training algorithms.
Mostly the MATLAB default setup for the neuron-neuron connections and transfer function
was adopted. The hyperbolic tangent sigmoid transfer function was set as the standard for all
neurons in the hidden layer while the output layer utilized linear ones. The advantage of a linear
transfer function in the output layer was the, although limited, capability of extrapolation beyond
the range covered by the training samples. Input was normalized by mapping them all to zero
mean and a standard deviation of one. The MATLAB toolbox used the “Levenberg-Marquardt”
optimization method in conjunction with BPTT as the standard training algorithm for recurrent
ANN dealing with time series modelling.

The Levenberg-Marquardt (LM) algorithm, also known as dampened least-squares method, is
a second order optimization technique used to solve non-linear least squares problems. It was
first published in 1944 by Levenberg and rediscovered by Marquardt in 1963. The LM method
optimizes the parameters of a model so that the sum of the deviations eq 5.1 becomes minimal.
It can be seen as a middle way between gradient descent and the Gauss-Newton method. The
LM algorithm eq 5.2 extends the standard Gauss-Newton method by a damping coefficient
λ, which is adjusted at every iteration step. For large values of λ the LM algorithm behaves
like a gradient descent method and for small λ more like the Gauss-Newton approach. The
introduction of the dampening coefficient λ makes the LM algorithm very robust, which means

Chapter 5. Methodology 80

that it will find a local minimum even if it starts very far off [65, p. 164-168], [66, p. 431-441].

E(β) =
∑n

i=1
[yi − f(xi, β)]2 (5.1)

βk+1 = βk − [JT J + λI]−1JT · [y − f(β)] (5.2)

xi, yi Independent and dependent Variable [-]
β Model Parameter(s) [-]
J Jacobian Matrix [-]
I Identity Matrix [-]
λ Dampening Coefficient [-]

The computation of the Jacobian matrix is the crucial part of the LM algorithm. To apply the
Levenberg-Marquardt technique to neural networks an adaption of the BP algorithm had to be
done. The main idea behind this modification is to calculate the elements of the Jacobian matrix
as the derivatives of the errors, instead of the derivatives of the sum squared errors, like it is
done in the standard BP algorithm. The LM method appears to be the fastest ANN training
algorithm for a moderate number of network parameters. It is stated that this method becomes
impractical for more than a few thousand parameters [67, p. 989-993].

Analogous to the training of MLP networks, several generations of fully recurrent ANN were
trained and tested. These network generations spanned from five up to 20 neurons in the hidden
layer. The maximum number of neurons was limited to a maximum of 20 neurons to ensure
realizable training times. Identical random seed values were used when increasing the network
complexity to ensure equal starting conditions. All ANNs were trained using the early stopping
approach and a maximum of 350 iterations per individual network. Table 5.3 below offers an
overview of the trained networks, their complexity and the respective random seed value. This
way of setting up models ensured reproducibility and allowed comparing results from different
network generations.

Several MATLAB scripts were written which automated the training process. The core of this
package was a script that allowed specifying all networks options by using a customized input
dialogue. These scripts made it possible to increase the network complexity automatically while
leaving all other network parameters unchanged. In addition a script dedicated to testing the
network’s response to the independent test set and storing the results was written. Combining
the described scripts enabled a nearly full automation of the training process thereby ensuring
utmost reproducibility. Finally another script compiled datasets and results from all network
generations into a file that could be opened and processed with various other programs. This was
mainly done to plot results using software packages that offered a broader variety of graphing
options. All of the beforehand described scripts were also adapted to by applicable with Elman,
NARX and the echo state networks. Using MATLAB as the software basis allowed adapting

Chapter 5. Methodology 81

Table 5.3: Overview of fully recurrent network generations
Network

Generation # Networks # Hidden
Neurons

Random
Seed

Training
Algorithm

Training
Conditions

1 10 5 1 - 10 LM ES - 350
2 10 6 1 - 10 LM ES - 350
3 10 7 1 - 10 LM ES - 350
4 10 8 1 - 10 LM ES - 350
5 10 9 1 - 10 LM ES - 350
6 10 10 1 - 10 LM ES - 350
7 10 11 1 - 10 LM ES - 350
8 10 12 1 - 10 LM ES - 350
9 10 13 1 - 10 LM ES - 350
10 10 15 1 - 10 LM ES - 350
11 5 20 1 - 10 LM ES - 350

these scripts without requiring major changes for the Elman and NARX network. Reaching
compatibility with the ESN extension required more changes, because the ESN was not integrated
into the MATLAB Neural Network Toolbox. In Appendix C the three major scripts for training
and testing of fully recurrent, Elman and NARX networks are shown one after the other.

5.3.3.1 Smaller resampling interval

In addition to the fully recurrent ANNs listed in Table 5.3 a network generation utilizing a
resampling interval of 10 Min was trained. This was motivated by the investigation how the
networks would cope with a change in the dependences in between time intervals, brought upon
by altering the resampling interval. Network generation 9 with 13 hidden neurons was selected
as the test candidate, because it showed the best validation error on the hourly data. To enable
reasonable computation times a five month long training interval, which equalled approximately
20,000 time steps was selected. The independent test set was also reduced to one and a half
weeks.

5.3.4 Elman ANN with MATLAB

The MATLAB Neural Network Toolbox also offered an out of the box usable implementation of
an Elman ANN. Due to the fact that the Elman network is a simplification of a fully recurrent
architecture, it was feasible to adopt nearly all specifications from the former network type.
Apart from the neuron-neuron connections all other options did also apply for the Elman ANN.
The similarity of implementations in the MATLAB Neural Network toolbox allowed an easy
adaption of all beforehand mentioned scripts.

Analogous to the fully recurrent type several network generations, using equivalent initial
conditions and normalization, were set up and trained. The span of hidden neurons again ranged
from five up to 20 and identical random seed values as in the fully recurrent architecture were
used. Training was again done utilizing the Levenberg-Marquardt algorithm combined with

Chapter 5. Methodology 82

early stopping and a maximum of 350 iterations. Table 5.4 gives an overview of the individual
generations of Elman networks and their properties.

Table 5.4: Overview of Elman network generations
Network

Generation # Networks # Hidden
Neurons

Random
Seed

Training
Algorithm

Training
Conditions

1 10 5 1 - 10 LM ES - 350
2 10 10 1 - 10 LM ES - 350
3 10 15 1 - 10 LM ES - 350
4 5 20 1 - 10 LM ES - 350

5.3.5 NARX ANN with MATLAB

The NARX models were once more realized using the in MATLAB implemented NARX network
architecture. The main difference between the NARX model and the two other recurrent types
was the kind of feedback connection. In the NARX model the feedback loop was realized via two
tapped delay lines, one from the input and the other one delaying the network output. A similar
set of scripts which introduced an automatic training procedure to NARX models was done, by
adding the option to specify delay lines.

Table 5.5: Overview of NARX network generations
Network

Generation # Networks # Hidden
Neurons

Random
Seed

Training
Algorithm

Training
Conditions

1 10 5 1 - 10 LM ES - 350
2 10 6 1 - 10 LM ES - 350
3 10 7 1 - 10 LM ES - 350
4 10 8 1 - 10 LM ES - 350
5 10 9 1 - 10 LM ES - 350
6 10 10 1 - 10 LM ES - 350
7 10 11 1 - 10 LM ES - 350
8 10 12 1 - 10 LM ES - 350
9 10 13 1 - 10 LM ES - 350
10 10 14 1 - 10 LM ES - 350
11 10 15 1 - 10 LM ES - 350
12 10 20 1 - 10 LM ES - 350

Several generations of NARX models were trained in a very similar fashion compared to all other
recurrent ANN types. The amount of neurons in the hidden layer ranged between five and 20.
Although the feedback was realized in a different way in the NARX network, the BPTT method
in conjunction with the LM algorithm has proved to be a viable choice for training. Again the
early stopping scheme with a maximum of 350 iterations was applied as the training process
stopping criterion. An investigation concerning the appropriate number of input and output
delays for the hourly resampled data was done. It was concluded that a delay of four time steps

Chapter 5. Methodology 83

in the input and output loop proved to be suitable choice. Table 5.5 depicts all generations of
NARX networks and their parameters.

5.3.6 ESN with MATLAB

The ESN networks were set up using a MATLAB toolbox done by Jaeger [64] which was free for
non-commercial purposes. This toolbox comprised of several individual scripts which enabled
the user to set up different types of ESN and adjust any parameter desired.

A comprehensive guideline which parameters could be adjusted in an ESN and how any modifi-
cation would influence the network’s functionality was done by Lukoševičius [68, p. 659-686]. It
is stated that the three most significant global parameters of a standard ESN are:

• Reservoir Size
• Spectral Radius
• Input Scaling

Generally, for a challenging task a reservoir as big as computationally possible can be used. Its
size is bounded by the number of independent real values from the input it has to recall to
generate the desired output and on the other side by the amount of time steps in the whole
input sequence. If very large reservoirs are used whose sizes are in the order of the amount of
total input time steps measures against overfitting have to be taken. Typically, other network
parameters are defined first and then followed by a stepwise increase of reservoir size. Growing
the reservoir is useful as long as the error coming from the training and testing data set decreases.

The spectral radius of the reservoir weight matrix, equivalent to the maximal absolute eigenvalue,
is one of the most global parameters of an ESN. Generally, it can be said that the spectral radius
governs the ESN’s treatment of long term dependences in the data sequence. The spectral radius
acts as sort of a memory in the reservoir; the smaller it is the faster an input’s influence dies
out. Typically, larger spectral should be utilized when more historic input values are required to
model the desired output. Commonly the spectral radius ranges between 0 – 1, but also values
greater than 1 can be used if required [68, p. 663-667].

A common way of computing ESN’s output weights is by using the "Pseudoinverse" approach.
This method solves the over-determined linear system of equations for output weights (eq. 5.3)
by applying a pseudoinverse matrix of X.

Yt = W outX (5.3)

W out = YtX
+ (5.4)

Chapter 5. Methodology 84

W out Output Weights [-]
Yt Targets [-]
X States produced by the Reservoir [-]
X+ Pseudoinverse of X [-]

Typically, the pseudoinverse method is numerically stable, but its high memory demands are a
limiting factor to reservoir size and amount of time steps. The pseudoinverse approach enables
network training with high precision but it does not have any regularization capability. The lack
thereof is a drawback that demands that the reservoir size is much smaller than the number
of training time steps in order to mitigate overfitting [68, p. 671]. Utilizing the pseudoinverse
method resulted in a change of data separation scheme used in training the ESN compared to
all other network types. The former training and validation sets were combined into the new
training set, while the independent test sequence was left untouched.

Several ESN generations were trained to investigate optimal values for the above described
parameters. For each network generation several trial run iterations were done, whereby the
input weight scaling and the spectral radius were increased incrementally. The same procedure
was repeated when increasing the reservoir size. The connectivity in the reservoir itself was fixed
at 10% for every network generation. Table 5.6 gives an overview of the network generations
trained and the utilized ranges of the two beforehand mentioned parameters.

Table 5.6: Overview of ESN generations
Network

Generation # Networks Reservoir
Size

Random
Seed Input Scaling Spectral Radius

1 100 50 1 - 10 0.1 - 1 0.1 - 1.5
2 100 100 1 - 10 0.1 - 1 0.1 - 1.5
3 100 250 1 - 10 0.1 - 1 0.1 - 1.5
4 100 500 1 - 10 0.1 - 1 0.1 - 1.5
5 100 1000 1 - 10 0.1 - 1 0.1 - 1.5
6 100 2000 1 - 10 0.1 - 1 0.1 - 1.5
7 50 5000 1 - 10 0.1 - 1 0.1 - 1.5

In order to train and test numerous networks in an efficient way several scripts were written
as an extension to the toolbox provided by Jaeger [64] which automated certain training steps.
Analogous to the training of other recurrent architectures these scripts added an input dialogue to
define training parameters. All network parameters were increased incrementally while ensuring
that identical random seed values were used. Furthermore, a script dedicated to testing the
network on the same independent data set, as used with all other recurrent ANNs, was written.
Finally, another script compiled data sets and results from all networks in a generation into a file
that could be stored.

Chapter 6. Results 85

6 Results

This chapter compiles the results of all network types and generations. The performance of
a network is determined by its error in the history matching period and the independent test
set. In a first step the results of each network type are discussed individually and then the
best performing networks of all architectures are compared against each other. Due to the
sheer number of trained networks it is not possible to discuss the result of every network
explicitly. Therefore it was decided to show them in a progressive way. An overview graph
depicting the performance of every network generation was plotted and the results from the
best performing one are discussed in more detail. The output of the best individual network of
each ANN type was plotted in a time series representation. In addition to the best network’s
output an averaged output of all networks in the specific ANN generation was depicted along of it.

The root mean square error (RMSE), eq 6.1, was the best choice to evaluate a network’s
performance and to compare them with each other. The RMSE was a good measure of accuracy
when comparing desired values with predicted ones. A drawback of the RMSE was its scale
dependency, meaning that only forecasts of a certain variable could be compared [69]. This
disadvantage did not influence the comparability of errors as only pressures of a similar range
were tested. The fact that the standard error function used in the training of ANN was a mean
squared one, which made it easy to compute the RMSE in one further step. Another advantage
of the RMSE was that it has the same unit as the forecasted variable.

RMSE =

√∑n
i=1(ŷi − yi)2

n
(6.1)

y Desired Value [-]
ŷ Forecasted Value [-]
n Number of Values [-]

6.1 MLP ANN

Several generations of feed forward MLP networks (see Table 5.2) were run and tested. The
purpose behind using static MLP was to investigate how well this type of ANN can handle
dynamic time series data. A major advantage of pure feed forward networks over recurrent
ones was the drastically reduced complexity and therefore a reduction of computation time per
iteration by at least an order of magnitude. Figure 6.1 depicts the validation error in blue and
the testing error in orange against the number of neurons in the hidden nodes.

It is clearly visible from Figure 6.1 that the validation error decreases with increasing network
complexity. Another noteworthy fact is that due to the reduced complexity of MLP networks

Chapter 6. Results 86

compared to recurrent ANNs, the spread in the validation errors of an individual network
generation is remarkably low. The testing error does not resemble the definite trend of better
performance at higher numbers of hidden neurons. It rather seems that there is no benefit
from having more than ten neurons in the hidden layer. Additionally there is a wider spread of
achievable testing performances throughout an individual network generation.

Figure 6.1: Development of validation & testing error with increasing network com-
plexity. Single points display the errors coming from all networks in a
MLP generation.

Figure 6.2 compares the desired output and network output for Well 1 in a time series plot.
Although the best network’s validation error of about 6 did not look that bad on a first glance,
figure 6.2 reveals the MLP’s weaknesses. It is clearly visible that the static network manages to
reproduce the overall trend in the training dataset but it is not able to capture more specific
dynamic sequences, like pressure buildup and drawdown. Even though the testing error of the
best network is just slightly worse at 7.5, the time series plot clearly shows that the MLP did
not generalize well. The network forecast of the test set is far off the actual trend and does not
resemble the dynamic pressure behaviour.

This led to the conclusion that static feed forward networks are not suitable to model the dynamic
wellhead pressure system. The lack of feedback connections did restrict the MLP’s generalization
capability of a system where future outputs obviously did not only depend on current inputs but
also on historic inputs and outputs.

Chapter 6. Results 87

Figure 6.2: Comparison of Original & Output of a MLP network using 20 hidden neurons of Well
4 in a time series plot. The upper graph depicts the whole 27 months period. The
independent test set is shaded in grey.

Chapter 6. Results 88

Figures 6.3(a), (c) and (e) show scatter plots of the network output against the desired one
and a superimposed coefficient of determination R2 for the training, validation and test data
sets. Figures 6.3(b), (d) and (f) on the right hand side display an error histogram of each data set.

It can be seen that the static MLP reached an acceptable generalization fitness for the history
matching period, which comprised of the training and validation test set. The R2 greater than
0.97 for both the training and validation sequence are only slightly worse compared to the
recurrent ANN types. Figure 6.3(e) reveals the weakness of the static feed forward MLP, an R2

of 0.64 on the test interval demonstrates that no generalization of the overall dynamics could be
achieved and therefore the network’s response on the unseen data is rather poor.

The three error histograms draw a similar picture, where the majority of errors lie in the range
of −10 to +10 in the training and validation interval. The test set error histogram reveals once
more the insufficient modelling done by the static MLP network. It can be seen that the errors
lie in the range of −5 to +20, with a skewed distribution, while the errors in the training and
validation set are nearly normally distributed with the mean around zero.

Chapter 6. Results 89

(a) Training Set - Correlation (b) Training Set - Histogram of Errors

(c) Validation Set - Correlation (d) Validation Set - Histogram of Errors

(e) Test Set - Correlation (f) Test Set - Histogram of Errors

Figure 6.3: Output - Target correlation plot & error histogram for the MLP network. The
training set is shown on top, the validation set in the middle and the test interval on
bottom.

Chapter 6. Results 90

6.2 Fully recurrent ANN

The investigation of recurrent neural network architectures became inevitable after noticing the
bad performance and generalization capability of feed forward networks on the task of modelling
the dynamic system at hand. Analogous to the feed forward ANN several generations of fully
recurrent networks were trained. Figure 6.4 shows the validation and testing error of all trained
network generations. The lines connect the best validation set errors and test set errors of the
networks achieving the best validation error. It is evident that the majority of both the validation
and testing errors are lower than those of MLP networks. Another remarkable circumstance is
the almost equal range of errors coming from the two data sets, leading to the conclusion that
the recurrent networks’ generalization capability is far superior. The substantially more complex
training procedure of a recurrent ANN compared to a feed forward MLP explains the much
wider spread in validation errors throughout individual network generations. The reason for this
is thought to be the much higher tendency of getting stuck in local minima during training of
recurrent networks with the BPTT method.

Figure 6.4: Development of validation & testing error with increasing network com-
plexity. Single points display the errors coming from all networks in a
fully recurrent generation. The red and green points are the validation
and testing errors of the 10 Min sampling interval.

Figure 6.4 allows drawing the conclusion that very good performances can be achieved in the
range of 13 to 20 neurons in the hidden layer, although more neurons reduce the required number
of individual networks in a generation to find a "good" one. This claim can be substantiated by
the reduction in the spread of errors from 13 to 20 neurons. Contrary to this especially the net-
work generation with seven hidden nodes performed rather poor and was plagued by local minima.

Chapter 6. Results 91

A time series plot of the best fully recurrent network’s forecast on Well 4 is shown in Figure 6.5.
It can already be seen that the history matching period and the forecast on the independent
data set is superior to the output from the MLP network. Especially in the lower figure, which
depicts a zoom into the forecasting interval, an improvement of the generalization fitness is
evident. The recurrent network is able to resolve the underlying dynamics and can therefore
model the pressure behaviour successfully. The deviations between forecasts and desired outputs
generally stay below 4 Bar, which is also the case for Wells 1, 2, 3 and 6. Time series plots
for these wells are presented in Appendix C. All tested models struggled when forecasting
pressure for Well 5, because this well had not been operated during the test interval and the
wellhead pressure was just a function of the reservoir pressure and interaction with the other wells.

Generally, it can be said that the fully recurrent ANN exhibited a substantial enhancement
compared to the feed forward architecture not only in the validation and test set error but also in
the actual generalization. The contrast between the predictions done by the MLP (Figure 6.2) and
the fully recurrent ANN (Figure 6.5) visualized this drastic improvement. These developments
could be seen as the proof that recurrent connections could tip the scales towards being able to
model the dynamic system governing the wellhead pressure.

6.2.1 Smaller resampling interval

A direct comparison of the same network generation on the 10 Min and hourly resampled data is
shown in Figure 6.4. It can be observed that nearly all networks utilizing the lower resampling
interval exhibit an improved performance compared to the hourly resampling interval. Figure
6.6 depicts a time series representation of the five month long training data set and independent
test interval of Well 4. It is clearly visible that the increase of the resampling frequency does not
decrease the network’s generalization capability at all. It can even be said that the deviations
between forecasts and desired outputs are generally lower than those of the network generation
utilizing an hourly resampling interval. The errors in the test set stay below 2 Bar, which is also
the case for Wells 1, 2, 3, 5, and 6.

Analysing the results depicted in Figures 6.5 & 6.6 allows drawing a few conclusions concerning
the generalization capability of fully recurrent networks with respect to the selected resampling
interval. It can be stated that successful training of ANNs using the BPTT method in conjunction
with the LM algorithm is possible for a wide range of resampling intervals. Therefore the short
and long-term dependences in the measured data can be resolved by the recurrent connections
regardless of the selected resampling frequency. It can be assumed that an arbitrarily long
training interval, which covers the whole range of possible input and target values that might
occur in the dynamic system, is sufficient to generate adequate forecasts on unseen test data. The
previous statement requires that the ranges of inputs encountered in the test and the training
data set are the same.

Chapter 6. Results 92

Figure 6.5: Comparison of Original & fully recurrent Network (Generation 9 with 13 hidden
neurons) Output for Well 4 in a time series plot. The upper graph depicts the whole
27 months period. The independent test set is shaded in grey.

Chapter 6. Results 93

Figure 6.6: Comparison of Original & fully recurrent Network (Generation 9 with 13 hidden
neurons) Output for Well 3 in a time series plot. The upper graph depicts the five
months training period. The one and a half weeks long independent test set is shaded
in grey.

Chapter 6. Results 94

Figures 6.7(a), (c) and (e) show scatter plots of the fully recurrent network’s output against the
desired one and a superimposed coefficient of determination R2 for the training, validation and
test data sets. Figures 6.7(b), (d) and (f) on the right hand side display an error histogram of
each data set. These figures are valid for the ANN using the hourly resampled data set, which is
depicted in Figure 6.5.

From Figures 6.7(a), (c) and (e) it can be observed that the fully recurrent ANN achieved a nearly
excellent generalization. Both the training and validation set have a coefficient of determination
R2 greater than 0.995 and even on the test interval the R2 is higher than 0.985. The three scatter
plots show that the fully recurrent ANN’s is clearly superior to the static MLP network. The
scatter plot of the test interval shows an impressive improvement of the fully recurrent network
over the static one. It can again be said that the feedback connections in the fully recurrent
ANN enabled this improvement.

All three error histograms also resemble the enhanced performance of the fully recurrent ANN.
The majority of errors lie in the range of −5 to +5 for all three data sets. In contrast to the
static MLP network all three histograms show a normal distribution of errors in the training and
validation as well as in the test interval. This normal distribution with a mean at zero indicates
the enhanced modelling capability enabled through the recurrent nature of this network type.

Chapter 6. Results 95

(a) Training Set - Correlation (b) Training Set - Histogram of Errors

(c) Validation Set - Correlation (d) Validation Set - Histogram of Errors

(e) Test Set - Correlation (f) Test Set - Histogram of Errors

Figure 6.7: Output - Target correlation plot & error histogram for the fully recurrent network.
The training set is shown on top, the validation set in the middle and the test interval
on bottom.

Chapter 6. Results 96

6.3 Elman ANN

Several generations of Elman networks were trained to study which influence the simplifications
done to the fully recurrent ANN would have on the performance and generalization fitness.
Figure 6.8 once more depicts the validation and testing errors of all network generations. The
lines connect the best validation set errors and test set errors of the networks achieving the best
validation error. It is apparent that also the Elman ANN shows enhanced performance over
the feed forward MLP network. The Elman network’s errors on the validation and testing set
are comparable to those of the fully recurrent ANN. Analogous to the beforehand discussed
network type, the Elman ANNs show similar deviations between validation and testing errors.
This fact clearly indicates that the generalization capability of the Elman architecture is more or
less equal to the fully recurrent ANN. The Elman network also suffers from the higher tendency
of getting trapped in a local minimum, which explains the spread of validation and testing errors
throughout a network generation. It is once more fair to say that an increase of neurons in
the hidden layer reduces this phenomenon’s occurrence. The results shown in Figure 6.8 allow
claiming that at least 10 hidden neurons are required to ensure a decent network generalization,
tantamount to small errors in both data sets. Due to the fact that just four Elman generations
were trained no arbitrarily poor performing network complexity could be found.

Figure 6.8: Development of validation & testing error with increasing network com-
plexity. Single points display the errors coming from all Networks in an
Elman generation.

Chapter 6. Results 97

Figure 6.9 graphs the best Elman network’s prediction of wellhead pressures for Well 4. Again
the performance in the history matching period and the forecast on the independent test set is
far better than what the best feed forward network was able to achieve. It is fair to say that the
Elman network is also capable of reproducing the underlying tendency. Although the errors of
the best Elman and fully recurrent ANN are close together, the zoom into the forecasting period
reveals later one’s slightly better performance. While the fully recurrent type managed to keep
the deviations between forecast and desired output below 4 Bar, the Elman ANN’s prediction
accuracy deteriorates with an increasing prediction horizon. This leads to errors up to 7 Bar, at
prediction horizons greater than one week. The Elman network showed equal outcomes for Wells
1, 2, 3, 4 and 6 while also struggling when dealing with Well 5, for the same reasons as discussed
in the previously.

Figures 6.10(a), (c) and (e) show scatter plots of the Elman network’s output against the desired
one and a superimposed coefficient of determination R2 for the training, validation and test data
sets. Figures 6.10(b), (d) and (f) on the right hand side display an error histogram of each data set.

The scatter plots of the training and validation data sets are comparable to those produced by
the fully recurrent ANN, with an R2 greater than 0.995. The plot coming from the test interval
with an R2 of 0.92 shows at a glance that the Elman network’s generalization capability is worse
than the fully recurrent one’s but way better than what the static MLP network could achieve.

The three error histograms draw a similar picture, where the majority of errors lie in the range
of −5 to +5 in the training and validation interval. The worse performance in the test interval
is also resembled in the error histogram, as the range in which the majority of the error lies
has increased to −10 to +10. In comparison to the static MLP network all errors in the Elman
network are nearly normally distributed with a mean at zero.

Analysing the results shown in Figures 6.8, 6.9 & 6.10 led to the conclusion that the generalization
capability of the Elman ANN is on the one hand superior to the feed forward ANN but on the
other hand surpassed by the fully recurrent one’s. It can still be said that even the simplified
feedback in the Elman network made it possible to model a dynamic system as it is prevalent in
the data gathered from an UGS.

Chapter 6. Results 98

Figure 6.9: Comparison of Original & Elman network (Generation 3 with 15 hidden neurons)
Output for Well 4 in a time series plot. The upper graph depicts the whole 27 months
period. The independent test set is shaded in grey.

Chapter 6. Results 99

(a) Training Set - Correlation (b) Training Set - Histogram of Errors

(c) Validation Set - Correlation (d) Validation Set - Histogram of Errors

(e) Test Set - Correlation (f) Test Set - Histogram of Errors

Figure 6.10: Output - Target correlation plot & error histogram for the Elman ANN. The training
set is shown on top, the validation set in the middle and the test interval on bottom.

Chapter 6. Results 100

6.4 NARX ANN

The NARX model was another examined variant of recurrent neural networks. As done with all
other architectures before, numerous NARX ANN generations (see Table 5.5) were trained and
tested. The resulting validation and testing errors are displayed in Figure 6.11. The lines connect
the best validation set errors and test set errors of the networks achieving the best validation
error. Similar to all previously discussed recurrent networks the errors reached are lower than
those of the feed forward MLP ANN. Another parallel shared between all recurrent network
architectures is the almost equal range of validation and test set errors, leading once more to the
conclusion that the NARX ANN is able to generalize adequately. In contrast to all similarities
described, the NARX generations do show a rather constant spread of deviations from 5 up
to 20 neurons. Additionally there is no such clear trend of decreasing errors with increasing
number of neurons in the hidden layer, as exhibited by the other two recurrent ANN types. The
performance more or less stabilizes for network complexities above 10 hidden neurons.

Figure 6.11: Development of validation & testing error with increasing network
complexity. Single points display the errors coming from all networks in
a NARX generation.

A time series plot of the best NARX ANN’s prediction on wellhead pressures for Well 4 is
displayed in Figure 6.12. The NARX model again displays the strength of feedback connections,
thereby producing far better outcomes both in the history matching and testing interval. The
zoom into the forecast period reveals the NARX network’s generalization fitness and its ability of
modelling the inherent dynamic system. There are errors up to 7 Bar in the network predictions
for the independent test set thereby achieving a similar performance as the Elman ANN. Similar
to the Elman model the prediction accuracy starts to deteriorate at prediction horizons greater
than a week. It can also be concluded that NARX model is not able to catch up with the fully re-

Chapter 6. Results 101

current ANN’s superior forecasting capabilities. A drawback encountered in the NARX networks
were the larger fluctuations in the prediction performance on the different wells. This circum-
stance made it difficult to identify an individual NARX model that showed equal generalization
for all wells. Additionally the issue regarding the pressure forecast for Well 5 was also encountered.

Figures 6.13(a), (c) and (e) show scatter plots of the NARX network’s output against the desired
one and a superimposed coefficient of determination R2 for the training, validation and test data
sets. Figures 6.13(b), (d) and (f) on the right hand side display an error histogram of each data set.

From Figures 6.13(a), (c) and (e) it can be observed that the results achieved by the NARX
network are comparable to those of the Elman network and worse than the fully recurrent ANN.
Both the training and validation set have a coefficient of determination R2 around 0.995. The
scatter plot of the results from the test interval with an R2 of 0.93 depict the worse generalization
of the NARX network compared to fully recurrent one. It can be observed that in general any
feedback connections can enhance the network’s predictive performance and produce better
results than the pure feed forward MLP.

The error histograms of the NARX network are quite similar to those of the Elman network.
The majority of errors coming from the training and validation data sets lie in the range of −5
to +5 with a mean around zero. The histogram of errors from the independent test interval lie
in a more skewed range of −7 to +5 with a mean around −2. The error histograms also confirm
the observation that the NARX and Elman networks show a comparable performance, which is
slightly worse than the fully recurrent one’s but way better than what the static MLP network
can achieve.

Chapter 6. Results 102

Figure 6.12: Comparison of Original & NARX network (Generation 8 with 12 hidden neurons)
Output for Well 4 in a time series plot. The upper graph depicts the whole 27
months period. The independent test set is shaded in grey.

Chapter 6. Results 103

(a) Training Set - Correlation (b) Training Set - Histogram of Errors

(c) Validation Set - Correlation (d) Validation Set - Histogram of Errors

(e) Test Set - Correlation (f) Test Set - Histogram of Errors

Figure 6.13: Output - Target correlation plot & error histogram for the NARX ANN. The training
set is shown on top, the validation set in the middle and the test interval on bottom.

Chapter 6. Results 104

6.5 Echo State Network

Several ESN generations (see Table 5.6) were trained and tested to investigate how the ESN archi-
tecture would compete with feed forward networks and other types of recurrent ANN. As already
discussed the major difference between an ESN and the other recurrent architectures tested was
the network training itself. In an ESN only output weights had to be trained whereas in all other
tested networks all connections were modified. Figure 6.14 displays the training and testing error
of the best set of trained networks for each generation. The lines connect the best validation set
errors and test set errors of the networks achieving the best validation error. It is clearly visible
that the error in the training set decreases monotonically with increasing reservoir size, whereas
the testing error shows a more irregular behaviour. A remarkable observation is the reverse trend
of errors in the test set with increasing complexity. This allows claiming that the general rule of
using a reservoir, as big as affordable does not apply for the problem at hand. The best performing
network generation is found to have 50 hidden neurons while the performance drastically decreases
at sizes greater than 500. The reason for this is thought to be overfitting of the ESN which leads
to a higher performance in the training interval at the cost of overall generalization capability. It
even results in clearly non reasonable outcomes as can be seen for more than 1,000 neurons, where
the trainable weights and the amount of time steps (≈ 18, 000) are just one order of magnitude off.

Figure 6.14: Development of validation & testing error with increasing network
complexity. Single points display the errors coming from all networks in
an ESN generation.

The investigation regarding the input scaling did reveal one already beforehand assumed cir-
cumstance. It could be observed that increasing the relative importance of the UGS filling level
and the pressure measurement coming from the one observation well did yield better outcomes.

Chapter 6. Results 105

Doubling the influence of those two inputs compared to the other six produced the lowest error.

No clear trend, concerning the impact of different spectral radii on the ESN’s performance could
be perceived. Testing additional ESN generation with a sampling interval of 10 Min instead of
the standard hourly interval revealed a few hints. The ESN generations trained with the hourly
sampled data set showed a tendency towards smaller spectral radii, whereas the ESN trained with
the smaller sampling interval indicated an opposing trend. The reason for this was thought to be
the memory span required to model the long term dependences in the data sequence properly.
Obviously when a smaller sampling interval had been used the reservoir had to remember more
individual time steps to cover a certain memory span and larger intervals had an opposite effect.

Figure 6.15 shows a time series plot of the best ESN generation’s forecast of wellhead pressure on
Well 4. A noteworthy observation is the spiky behaviour of the network’s response and although
the network is able to capture the overall trend in the data, it is not fit to resolve details like a
pressure buildup with a satisfactory accuracy. Especially in the independent test sequence this
lack of generalization is depicted by the unsatisfactory pressure modelling. The forecast for the
five other wells show the same rather underwhelming performances.

Figures 6.16(a) and (c) show scatter plots of the ESN’s output against the desired one and a
superimposed coefficient of determination R2 for the training and test data sets. Figures 6.16(b)
and (d) on the right hand side display an error histogram of each data set.

Figures 6.16(a) and (c) it can be observed that the results produced by the ESN are comparable
to those by a static MLP network. Especially the plot of network outputs against desired targets
of the ESN training period, which is a combination of the training and validation sets of the
other network types, with an R2 of 0.90 shows its poor generalization. Although this marks the
worst performance of all ANN types on the training set, the results on the test set with an R2 of
0.71 are slightly better than those achieved by the feed forward MLP.

The error histograms of the ESN are similar to the ones from the MLP network. From Fig-
ure 6.16(b) it can be observed that the majority of training errors lie in the range of −20 to
+20 with a mean around zero. The error histogram coming from the independent test interval
displays a skewed distribution with a range from −5 to +20, which is comparable to the MLP type.

It can be concluded that the ESN networks did not exhibit much of an improvement over the
static feed forward MLP. Comparing the time series plots from the other tested network types
clearly indicated that at the current state a fully recurrent, Elman or NARX model should
be prioritized over the ESN ANN. Due to the exceptionally fast training speed of ESN it was
possible to test various configurations in little time.

Chapter 6. Results 106

Figure 6.15: Comparison of Original & ESN (Generation 1 with a reservoir size of 50 neurons)
Output for Well 4 in a time series plot. The upper graph depicts the whole 27
months period. The independent test set is shaded in grey.

Chapter 6. Results 107

(a) Training Set - Correlation (b) Training Set - Histogram of Errors

(c) Validation Set - Correlation (d) Validation Set - Histogram of Errors

Figure 6.16: Output - Target correlation plot & error histogram for the ESN. The training set is
shown on top and the test interval on bottom.

Chapter 6. Results 108

6.6 Ranking of ANN types

A comparison of the results from all ANN types clearly indicated that the static feed forward MLP
network could not compete with the recurrent network architectures. The fully recurrent, Elman
and NARX network have exhibited an undoubtedly superior performance not only in the training
and validation data set but also in the independent test interval. Especially the time series
representations of network prediction and original values showed the enhanced generalization
capability of recurrent ANN types. In addition to those graphs the correlation plots and error
histograms further underline this conclusion. It could be concluded that the integration of historic
input and output variables into the generation of current network outputs enabled the recurrent
networks’ enhanced performance. The ESN was the only recurrent network architecture which
could not outperform the static MLP network and just achieved similar performance compared
to the former type.

Figure 6.17 ranks all tested ANN types according to their error in the validation data set with the
best architecture at the bottom. It can be seen that the fully recurrent ANN achieved the least
error in the validation as well as in the independent test set. It is closely followed by the Elman
and NARX network, whereas the ESN and MLP network are outperformed by a substantial
margin.

Figure 6.17: Ranking of networks architectures according to their validation errors.

Chapter 7. Conclusion 109

7 Conclusion

This chapter reviews the motivation and purpose of the research done and sums up the developed
methodology by discussing the steps from gathering the raw data to the generation and applica-
tion of simulation models. Finally, the outcome of all models is analysed and a recommendation
regarding their performance on this field of application is provided.

Although the underground storage of natural gas is a longstanding technology there is still a
potential for growth in this business. In former days this business was driven by a seasonal
varying demand of gas opposed by the nearly constant supply of gas produced and imported
to Europe. The majority of long term gas delivery contracts contained a fixed gas volume per
time, that would be too much in the warmer and too low in winter times. The true purpose of
gas storage was then to ensure that demand could be met throughout the whole year cycle by
using storage facilities to compensate for pipeline capacity. The boom of shale gas in the United
States and the rapid decline of oil price, which the gas price is coupled to led to changes in the
traditional supply and demand situation on the market. Economides and Wang stated that since
the upsurge of U.S. shale gas in the last decade the traditional gas storage business became
a lot less profitable. It was suggested to switch from long term contracts the fixed seasonal
injection and withdrawal schedules to more profitable short time schemes. The proposed short
time schedules were oriented at the weekly changes in supply and demand of gas and current
prices at the market [4].

The ability of forecasting the UGS operation not only on a seasonal but also daily and hourly
basis was the essential prerequisite to adapt these facilities to short time schedules in addition to
already booked long term volumes. These short time schedules required a response time in the
order of a few hours in which an optimal injection/withdrawal strategy had to be found. The
concept of classic reservoir simulation demanded exceedingly high computational power to model
several schedules in parallel and with appropriate accuracy.

This thesis investigated the applicability of neural networks to the task of forecasting the UGS
operation. Neural networks are a purely data driven mathematical tool dedicated to classification,
regression and prediction tasks. Therefore they can be used to model any existing relationship
in data without nearly any knowledge about the underlying physical laws. The methodology
developed to allow their application to simulate and forecast the operation of an UGS, included
the steps taken in data processing and setting up the actual models.

The established data processing procedure described the gathering of dynamic and static data
from internal RAG databases. The dynamic data consisted of pressure, flow rate and temperature
measured at the wellhead. These measured signals from all wells were compiled into a compre-

Chapter 7. Conclusion 110

hensive format and remedied of deficiencies like outliers, missing samples and errors coming
from the measurement process itself. Several statistical plots were done in order to get a better
understanding of the data at hand and to compare the quality of data coming from different
wells. Thereafter the irregularly sampled data was resampled to a regular time interval using two
different alternatives. In the first approach the signal was resampled using linear interpolation
and the application of appropriate filters. The alternative method used a kernel regression to
resample the signal to a continuous sampling interval and smoothing it in one step. The strength
of the non-parametric kernel regression was the use of general parameters in order to resample
the signal to any desired interval. Using the alternative of linear resampling required the careful
adaption of the filtering process to the preferred sampling intervals. Albeit the second method
suffered from greater complexity its greatest asset was the increased quality of the resampled
signal.

There were several neural network architectures to be taken into account for simulation and
forecasting of a dynamical model. The ANN model discussed in this work reached from pure feed
forward types to different variants of the recurrent architecture. The basis of all models was the
dynamic data coming from the wellhead measurement which had to be preprocessed before any
modeling could be done with it. The first step of this preprocessing schedule consisted of picking
suitable network inputs in order to predict the pressure at the wellhead. An hourly resampling
interval was selected as the basis for all ANN models, as this reduced the computation time while
still maintaining a satisfactory accuracy.

Several network generations of various ANN types were trained on identical data sets and equal
random seeds. Finding the best network architecture and its optimal complexity required testing
numerous networks with equal starting conditions and data sets. An obvious outcome from all
tested ANN types clearly indicated that static feed forward networks were a poor choice when
trying to model dynamic systems. This architecture did not only struggle with predictions on
unseen data but also with matching the historic pressures of the much longer training interval.
The recurrent architectures, particularly the fully recurrent ANN did exhibit a substantial
improvement of achieved errors and generalization capability. All of these models, with the
exception of ESN, managed to reproduce the trend in the training data set and also in the
independent test interval. The best fully recurrent network generation reached an error of approx-
imately ±4 Bar in the test set. In general all tested network architectures could be ranked in the
following order. The best performance was achieved by the fully recurrent ANN, followed by the
Elman and NARX network that showed very similar performances. The least effective recurrent
ANN proved to be ESN type which exhibited nearly as bad a performance as the feed forward MLP.

None of the tested neural network architectures could reach the imposed accuracy threshold
of ±1 Bar. The time series plots of network outputs and desired targets clearly indicated that
certain types of neural networks were able to model the operation of an UGS, albeit with reduced

Chapter 7. Conclusion 111

accuracy. Especially when analysing the performance on the independent test set it could be
observed that the prediction accuracy deteriorated over time. If ANNs were used for predictions
for a period less than one week a suitable accuracy could be reached. The very low computation
times for predictions done with pre-trained networks compared to classical reservoir simulation
proved to be a major strength of neural networks. A major advantage of neural networks, once
they are trained, lay in the very short computation time for a prediction scenario. A model
using neural networks could compute several times as much scenarios as a model using clas-
sic reservoir simulation. Requiring that both models had the same computational power available.

Analysing the averaged outputs in the time series plots revealed that the best network’s gener-
alization and errors were always slightly better than one of the average. It could be observed
that both the best network’s output and the averaged one did follow the trend in the original
data set. A network ensemble could be used as sort of guideline to check the reasonableness of a
network’s forecast on absolutely new data. A high deviation between the predictions coming
from an ensemble and a single network could indicate an erroneous forecast. This is based on
the assumption that a network ensemble’s output is more robust and the erroneous prediction of
a single ANN in the ensemble would be alleviated by the averaging process.

In addition to the evaluation of different ANN architectures the influence of the resampling
frequency on the network’s generalization capability was evaluated. It could be shown that there
was no negative impact inflicted on the network’s performance by decreasing the resampling
interval in the training data set. Therefore the short and long-term dependencies in the measured
data can be resolved by the recurrent connections, regardless of the selected resampling frequency.
It could even be observed that the reduced sampling interval resulted in lower errors both in the
validation and independent test set.

Chapter 8. Discussion and Outlook 112

8 Discussion and Outlook

To further increase the performance of neural networks on the task of simulating the operation of
an UGS, several options could be evaluated. First of all, additional data could be used as model
input if available and secondly the data could be transformed in any possible way to extract
supplementary features. The adaption of the used sampling interval and the filtering process
would be another option, although great care has been taken when designing the resampling
process. Increasing the sampling interval of the inputs fed to the ANN could be considered as a
possible way of decreasing the achievable errors. The largely increased computation time is a
major drawback of this approach.

Another approach to improve the prediction capabilities of ANNs would be modifications to the
discussed types. This ranges from increasing the number of individual networks in a generation
and the amount of training iterations up to a sensitivity analysis off all adjustable network
parameters. The MATLAB Neural Network toolbox offers the opportunity to change any network
parameter and to design custom neural network architectures. Analysing the impact of changing
predefined network parameters is a time consuming tasks and there is no clear indication of the
possible benefits coming along with it.

Although several ANN architectures were discussed and analysed in this work, there are still
numerous more advanced architectures to be tested. "The Long Short-Term Memory" (LSTM)
[70, p. 1735-1780] and "Gated Recurrent Unit Network" (GRU) are two types dedicated to the
modelling of sequences containing long term dependences. The general idea behind these network
architectures was to replace the hidden neurons and their standard sigmoid activation function
by a more complex memory cell. The purpose of this memory cells was to mitigate the issue of
vanishing gradients in training of recurrent ANN and therefore enabling it to capture long term
dependences. Chung et al. compared these two types and with each other and with standard
recurrent network on several data sequences. It was found that both types performed very similar
and were superior to the standard recurrent ANN, not only in the errors reached but also in
computation times required [71].

Chapter 9. References 113

9 References

[1] Bundesministerium für Wissenschaft, Forschung und Wirtschaft, “Energiestatus Österreich
2015,” 31.10.2016. [Online]. Available: http://www.bmwfw.gv.at/EnergieUndBergbau/
Energieeffizienz/Documents/Energiestatus%20%C3%96sterreich%202015.pdf

[2] D. J. Evans and R. A. Chadwick, Underground gas storage: Worldwide experiences and future
development in the UK and Europe, ser. Geological Society special publication. London:
Geological Society, 2009, vol. no. 313.

[3] LBEG, “Untertage-gasspeicherung in deutschland: Underground gas storage in germany,”
ERDÖL ERDGAS KOHLE, vol. 131, no. 11, pp. 398–406, 2015.

[4] M. J. Economides and X. Wang, “A modern approach to optimizing underground natural
gas storage,” in SPE Annual Technical Conference and Exhibition, 2013-09-30.

[5] J. H. Henderson, J. R. Dempsey, and J. C. Tyler, “Use of numerical models to develop
and operate gas storage reservoirs,” Journal of Petroleum Technology, vol. 20, no. 11, pp.
1239–1246, 1968.

[6] R. A. Wattenbarger, “Maximizing seasonal withdrawals from gas storage reservoirs,” Journal
of Petroleum Technology, vol. 22, no. 08, pp. 994–998, 1970.

[7] D. A. McVay and J. P. Spivey, “Optimizing gas-storage reservoir performance,” SPE
Reservoir Evaluation & Engineering, vol. 4, no. 03, pp. 173–178, 2001.

[8] G. Zangl, M. Giovannoli, and M. Stundner, “Application of artificial intelligence in gas storage
management,” in SPE Europec/EAGE Annual Conference and Exhibition, 2006-06-12.

[9] K. G. Brown and D. E. Meikle, “The value of wellhead electronic flow measurement in gas
storage fields,” in SPE Eastern Regional Meeting, 1995-09-18.

[10] A. Tiani, G. Bartolotto, P. Strippoli, R. Latronico, and G. Spitaleri, “From real time data
to updated models: The challenge of intelligent fields applied to gas storage business,” in
Europec/EAGE Conference and Exhibition, 2008-06-09.

[11] M. J. Economides, Petroleum production systems, 2nd ed. Upper Saddle River NJ u.a.:
Pearson Education Inc, 2013.

[12] J. V. Vogel, “Inflow performance relationships for solution-gas drive wells,” Journal of
Petroleum Technology, vol. 20, no. 01, pp. 83–92, 1968.

[13] M. J. Fetkovich, “The isochronal testing of oil wells,” in Fall Meeting of the Society of
Petroleum Engineers of AIME, 1973-09-30.

http://www.bmwfw.gv.at/EnergieUndBergbau/Energieeffizienz/Documents/Energiestatus%20%C3%96sterreich%202015.pdf
http://www.bmwfw.gv.at/EnergieUndBergbau/Energieeffizienz/Documents/Energiestatus%20%C3%96sterreich%202015.pdf

Chapter 9. References 114

[14] E. Rawlins and M. Schellhardt, Backpressure Data on Natural Gas Wells and Their Appli-
cation to Production Practices, ser. Monograph Series. Baltimore, Maryland: US Bureau
of Mines, 1935, vol. 7.

[15] L. W. Lake and J. R. Fanchi, Petroleum Engineering Handbook: Production Operations
Engineering. Richardson, TX: Society of Petroleum Engineers, 2007.

[16] M. Kelkar, Natural gas production engineering. Tulsa, Oklahoma: PennWell, 2008. [Online].
Available: http://www.loc.gov/catdir/enhancements/fy0901/2007046605-b.html

[17] R. Al-Hussainy, H. J. Ramey, and P. B. Crawford, “The flow of real gases through porous
media,” Journal of Petroleum Technology, vol. 18, no. 05, pp. 624–636, 1966.

[18] X. Wang and M. J. Economides, “Horizontal well deliverability with turbulence effects,” in
8th European Formation Damage Conference, 2009-05-27.

[19] S. R. Bergin and Y. A. Shikari, “A horizontal well in gas storage: A case study,” in SPE
Gas Technology Symposium, 1993-06-28.

[20] X. Wang and M. J. Economides, Advanced natural gas engineering. Houston, Tex: Gulf
Pub. Co, 2009. [Online]. Available: http://search.ebscohost.com/login.aspx?direct=true&
scope=site&db=nlebk&db=nlabk&AN=655315

[21] D. K. Babu and A. S. Odeh, “Productivity of a horizontal well (includes associated papers
20306, 20307, 20394, 20403, 20799, 21307, 21610, 21611, 21623, 21624, 25295, 25408, 26262,
26281, 31025, and 31035),” SPE Reservoir Engineering, vol. 4, no. 04, pp. 417–421, 1989.

[22] J. K. Pucknell and P. J. Clifford, “Calculation of total skin factors,” in Offshore Europe,
1991-09-03.

[23] M. R. Tek, K. H. Coats, and D. L. Katz, “The effect of turbulence on flow of natural gas
through porous reservoirs,” Journal of Petroleum Technology, vol. 14, no. 07, pp. 799–806,
1962.

[24] A. Houpeurt, “On the flow of gases in porous media,” Revue de L’Institut Francais du
Petrole, vol. XIV, no. 11, pp. 1468–1684, 1959.

[25] L. W. Lake and J. R. Fanchi, Petroleum Engineering Handbook: Reservoir Engineering and
Petrophysics. Richardson, TX: Society of Petroleum Engineers, 2007.

[26] T. Billiter, J. Lee, and R. Chase, “Dimensionless inflow-performance-relationship curve for
unfractured horizontal gas wells,” in SPE Eastern Regional Meeting, 2001-10-17.

[27] F. Morrison, An introduction to fluid mechanics. Cambridge: Cambridge Univ. Press,
2013. [Online]. Available: http://gbv.eblib.com/patron/FullRecord.aspx?p=1099833

[28] K. L. Young, “Effect of assumptions used to calculate bottom-hole pressures in gas wells,”
Journal of Petroleum Technology, vol. 19, no. 04, pp. 547–550, 1967.

http://www.loc.gov/catdir/enhancements/fy0901/2007046605-b.html
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=655315
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=655315
http://gbv.eblib.com/patron/FullRecord.aspx?p=1099833

Chapter 9. References 115

[29] R. D. Oden and J. W. Jennings, “Modification of the cullender and smith equation for more
accurate bottomhole pressure calculations in gas wells,” in Permian Basin Oil and Gas
Recovery Conference, 1988-03-10.

[30] C. M. Rendeiro and C. M. Kelso, “An investigation to improve the accuracy of calculating
bottomhole pressures in flowing gas wells producing liquids,” in Permian Basin Oil and Gas
Recovery Conference, 1988-03-10.

[31] J. Mach, E. Proano, and K. Brown, “A nodal approach for applying systems analysis to the
flowing and artificial lift oil or gas well,” Society of Petroleum Engineers, 1979.

[32] K. E. Brown and J. F. Lea, “Nodal systems analysis of oil and gas wells,” Journal of
Petroleum Technology, vol. 37, no. 10, pp. 1751–1763, 1985.

[33] J. Bellarby, Well completion design, reprinted. ed., ser. Developments in petroleum science.
Amsterdam: Elsevier, 2010, vol. 56.

[34] A. S. Odeh, “Reservoir simulation ...what is it,” Journal of Petroleum Technology, vol. 21,
no. 11, pp. 1383–1388, 1969.

[35] K. H. Coats, “A note on impes and some impes-based simulation models,” SPE Journal,
vol. 5, no. 03, pp. 245–251, 2000.

[36] A. G. Spillette, J. G. Hillestad, and H. L. Stone, “A high-stability sequential solution
approach to reservoir simulation,” in Fall Meeting of the Society of Petroleum Engineers of
AIME, 1973-09-30.

[37] M. Schäfer, Computational Engineering - Introduction to Numerical Methods. Berlin,
Heidelberg: Springer-Verlag Berlin Heidelberg, 2006.

[38] A. F. van Everdingen, “The skin effect and its influence on the productive capacity of a
well,” Journal of Petroleum Technology, vol. 5, no. 06, pp. 171–176, 1953.

[39] R. Gladfelter, G. Tracy, and L. Wilsey, “Selecting wells which will respond to production-
stimulation treatment,” in Drilling and Production Practice, 1955.

[40] H. J. Ramey, “Non-darcy flow and wellbore storage effects in pressure build-up and drawdown
of gas wells,” Journal of Petroleum Technology, vol. 17, no. 02, pp. 223–233, 1965.

[41] R. C. Earlougher, Advances in well test analysis, ser. SPE monograph series. Richardson,
Tex.: Henry L. Doherty Memorial Fund of AIME Society of Petroleum Engineers, 1977,
vol. 5.

[42] R. G. Agarwal, R. Al-Hussainy, and H. J. Ramey, “An investigation of wellbore storage and
skin effect in unsteady liquid flow: I. analytical treatment,” Society of Petroleum Engineers
Journal, vol. 10, no. 03, pp. 279–290, 1970.

Chapter 9. References 116

[43] P. E. Oren, R. L. Lee, and M. R. Tek, “The effects of wellbore storage, skin, and turbulence
intensity on early-time transient flow of real gas through porous media,” SPE Formation
Evaluation, vol. 3, no. 03, pp. 547–554, 1988.

[44] R. L. Lee, R. W. Logan, and M. R. Tek, “Effect of turbulence on transient flow of real gas
through porous media,” SPE Formation Evaluation, vol. 2, no. 01, pp. 108–120, 1987.

[45] S. Haykin, Neural networks and learning machines, 3rd ed. New York: Pearson, 2009.

[46] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. de Jesús, Neural network design, 2nd ed.
ebook, 2014.

[47] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in Neural Networks:
Tricks of the Trade, ser. Lecture Notes in Computer Science, G. B. Orr and K.-R. Müller,
Eds. Berlin and Heidelberg: Springer, 1998, vol. 1524, pp. 9–50.

[48] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, 1996.

[49] Y. Chauvin and D. E. Rumelhart, Backpropagation: Theory, architectures, and applications,
ser. Developments in connectionist theory. Hillsdale, N.J.: Lawrence Erlbaum Associates,
1995.

[50] Z. P. Lo, Y. Yu, and B. Bavarian, “Analysis of the convergence properties of topology
preserving neural networks,” IEEE transactions on neural networks / a publication of the
IEEE Neural Networks Council, vol. 4, no. 2, pp. 207–220, 1993.

[51] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–211,
1990.

[52] H. T. Siegelmann, B. G. Horne, and C. L. Giles, “Computational capabilities of recurrent
narx neural networks,” IEEE Transactions on Systems, Man and Cybernetics, Part B
(Cybernetics), vol. 27, no. 2, pp. 208–215, 1997.

[53] Tsungnan Lin, B. G. Horne, P. Tino, and C. L. Giles, “Learning long-term dependencies in
narx recurrent neural networks,” IEEE Transactions on Neural Networks, vol. 7, no. 6, pp.
1329–1338, 1996.

[54] P. J. Werbos, “Backpropagation through time: What it does and how to do it,” Proceedings
of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[55] H. Jaeger, Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and
the ’echo state network’ approach. GMD Report 159: German National Research Center
for Information Technology, 2002.

[56] ——, “Echo state network,” Scholarpedia, vol. 2, no. 9, p. 2330, 2007.

[57] ——, “The ’echo state’ approach to analysing and training recurrent neural networks: Gmd
report 148,” GMD - German National Research Institute for Computer Science, 2001.

Chapter 9. References 117

[58] J. W. Tukey, Exploratory data analysis, ser. Addison-Wesley series in behavioral science
Quantitative methods. Reading, Mass.: Addison-Wesley, 1997.

[59] B. Illowsky and S. Dean, Introductory Statistics, Rice University, 2015. [Online]. Available:
https://openstaxcollege.org/textbooks/introductory-statistics

[60] Wikipedia, “Antialiasing (signalverarbeitung),” 01.08.2016. [Online]. Available: https:
//de.wikipedia.org/w/index.php?oldid=155985753

[61] B. Muralikrishnan and J. Raja, Computational Surface and Roundness Metrology. London:
Springer-Verlag, 2009. [Online]. Available: http://dx.doi.org/10.1007/978-1-84800-297-5

[62] R. Stewart, “Median filtering: Review and a new f/k analogue design,” J. Can. Soc. Expl.
Geophys., vol. 21, pp. 54–63, 1985.

[63] A. W. Bowman and A. Azzalini, Applied smoothing techniques for data analysis: The kernel
approach with S-Plus illustrations, ser. Oxford statistical science series. Oxford: Clarendon
Press, 1997, vol. 18.

[64] H. Jaeger, “Simple and very simple matlab toolbox for echo state networks |,” 07.10.2016.
[Online]. Available: http://reservoir-computing.org/node/129

[65] K. Levenberg, “A method for the solution of certain non-linear problems in least square,”
Quarterly of Applied Mathematics, vol. 2, pp. 164–168, 1944.

[66] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,”
Journal of the Society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431–441,
1963.

[67] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the marquardt
algorithm,” IEEE transactions on neural networks / a publication of the IEEE Neural
Networks Council, vol. 5, no. 6, pp. 989–993, 1994.

[68] M. Lukoševičius, “A practical guide to applying echo state networks,” in Neural Networks:
Tricks of the Trade, ser. Lecture Notes in Computer Science, D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu
Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,
G. Montavon, G. B. Orr, and K.-R. Müller, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, vol. 7700, pp. 659–686.

[69] Wikipedia, “Root-mean-square deviation,” 18.09.2016. [Online]. Available: https:
//en.wikipedia.org/w/index.php?oldid=731675441

[70] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[71] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent
neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

https://openstaxcollege.org/textbooks/introductory-statistics
https://de.wikipedia.org/w/index.php?oldid=155985753
https://de.wikipedia.org/w/index.php?oldid=155985753
http://dx.doi.org/10.1007/978-1-84800-297-5
http://reservoir-computing.org/node/129
https://en.wikipedia.org/w/index.php?oldid=731675441
https://en.wikipedia.org/w/index.php?oldid=731675441

Chapter 9. References 118

[72] Wikipedia, “Moody chart,” 28.09.2016. [Online]. Available: https://en.wikipedia.org/w/
index.php?oldid=706339930

https://en.wikipedia.org/w/index.php?oldid=706339930
https://en.wikipedia.org/w/index.php?oldid=706339930

Appendices 119

Appendices

Appendix A

Figure A1: Moody diagram showing the Darcy-Weisbach friction factor fD plotted against the
Reynolds number NRe [72]

Appendices 120

Figure A2: Overview of possible nodes used in Nodal Analysis and pressure losses in the complete
system [31, p. 21]

Dimensionless Pseudo Variables

To investigate the influence of turbulence, skin, wellbore storage and variations in the gas
properties required a generalization of the problem. In order to analyse the early-time transient
flow in gas wells a dedimensionalizing procedure applied to all variables was necessary. This
resulted in the following set of dimensionless pseudo variables [43, p. 547-554].

CD = Vw

2πhφr2
w

(A.1)

tpD = FtpD · tD (A.2)

FtpD =
(∫ t

0

1
µc

dt

)
/

(
t

µici

)
(A.3)

tD = 2.637 · 10−4 krt

φr2
wµici

(A.4)

sD = kh∆ps

141.2µqB
(A.5)

Appendices 121

NT D = 1.564 · 10−18 k2
rβγgppi

Tµirw
(A.6)

qscD = 1.422 · 106 Tqsc

krhppi
(A.7)

c Compressibility [kPa−1]
ci Initial Compressibility [kPa−1]
CD Dimensionless Wellbore Storage Constant [-]
FtpD Pseudotime Ratio [-]
h Formation Thickness [m]
k Permeability [md]
kr Permeability in Radial Direction [md]
NT D Turbulence Intensity Number [-]
ppi Initial Pseudopressure [-]
qsc Standard Condition Flow rate [m3/d]
qscD Dimensionless Flow rate [-]
qscf Formation Flow rate [m3/d]
rw Wellbore Radius [m]
td Dimensionless Time [-]
tpd Dimensionless Pseudotime [-]
T Temperature [K]
Vw Wellbore Volume [m3]
β Turbulence Coefficient [1/m]
µ Viscosity [kPa · s]
µi Initial Viscosity [kPa · s]

Appendices 122

Figure A3: Overview of common ANN transfer functions and their mathematical formulation
[46, p. 2-6]

Appendices 123

Appendix B
Resamp.m

1 % Resampling using a Kernelsmoother or linear Interpolation und Filtering

2 % 1 Method: -Resampling with linear Interpolation

3 % -Filtering with Gaussian filter & Median filter

4 %

5 % 2 Method: -Resampling with Kernelsmoother

6 % -Combines resampling and filtering in one function

7 % Requires the "Kernel Smoothing Regression" from Mathworks File Exchange

8 % --%

9

10 %% Resampling Interval & Method

11 clc

12 prompt={'Resampling Interval' , 'Resampling Method'};

13 dlg_title='Selection of Resampling Interval and Method';

14 % Resampling Interval entered in Minutes

15 num_lines=1;

16 defaultans={'10','Linear'};

17 answer=inputdlg(prompt,dlg_title,num_lines,defaultans,'on');

18

19 T_Samp=str2double(answer{1});

20 Method=answer{2};

21

22 %% Loading of raw data

23 load('Daten2014-2016_modified.mat');

24

25 %% Resampling & Filtering

26

27 % Checks which Method was selected

28 if strcmp(answer{2},'Linear')

29 Resampling_Pressure;

30 Resampling_Rate;

31 else

32

33 T=Well1_t(1):(T_Samp/1440):Well1_t(end);

34 T=T';

35 Length=length(T);

36 Resampled_TimeVector=datetime(T,'ConvertFrom','datenum');

37

38 % Selection of bandwidth for kernelsmooter

39 % Greater bandwidth -> Smoother output

40 % Smaller bandwidth -> More details preserved

41

42 prompt='Select bandwidth for Kernelsmooter: \n';

43 Bandwidth=input(prompt);

44

45 % Kernelsmoother for pressure

Appendices 124

46 Kern_THP;

47

48 % Kernelsmoother for flow rates % filling level

49 Kern_Rates;

50 end

51

52 %% Data Storage

53 % Compiles resampled data in a MATLAB array and table

54 % Saves resampled data in a .csv file

55

56 WriteTable;

57 %---%

58 %% Cleaning up workspace

59

60 clear prompt answer defaultans dlg_title Length Bandwidth T_Samp g ...

61 Method Modus num_lines;

Linear Resampling Pressure.m

1 %% New Time Vector

2 %New Sampling Interval in seconds

3 T_Samp1=10;

4 T1=Well1_t(1):(T_Samp1/86400):Well1_t(end);

5 T1=T1';

6

7 %New Sampling Interval in Minutes

8 T_aux=60*T_Samp;

9 T=Well1_t(1):(T_aux/86400):Well1_t(end);

10 T=T';

11 Resampled_TimeVector=datetime(T,'ConvertFrom','datenum');

12

13 %% 1D-Gaussfilter

14 % Selection of Filter Width

15 % Filter width should correspond with resampling interval

16 % Greater window width -> More smoothing

17 % Smaller window width -> Less smoothing

18 %---%

19

20 %% Filtering Config

21 % Input dialog for Window width

22 prompt={'Window Width'};

23 dlg_title='Configuration of Gaussian filter Window Width';

24 num_lines=1;

25 defaultans={'120'};

26 answer=inputdlg(prompt,dlg_title,num_lines,defaultans,'on');

27

28 Window=str2double(answer{1});

Appendices 125

29 g=gausswin(Window);

30 g=g/sum(g);

31

32 %% Upsampling

33 yWell1_THP=interp1q(Well1_t,Well1_THP,T1);

34 yWell2_THP=interp1q(Well2_t,Well2_THP,T1);

35 yWell3_THP=interp1q(Well3_t,Well3_THP,T1);

36 yWell4_THP=interp1q(Well4_t,Well4_THP,T1);

37 yWell5_THP=interp1q(Well5_t,Well5_THP,T1);

38 yWell6_THP=interp1q(Well6_t,Well6_THP,T1);

39 yOWell1_THP=interp1q(OWell1_t,OWell1_THP,T1);

40

41 %% Filtering

42 Well1_THP_filtered=filtfilt(g,1,yWell1_THP);

43 Well2_THP_filtered=filtfilt(g,1,yWell2_THP);

44 Well3_THP_filtered=filtfilt(g,1,yWell3_THP);

45 Well4_THP_filtered=filtfilt(g,1,yWell4_THP);

46 Well5_THP_filtered=filtfilt(g,1,yWell5_THP);

47 Well6_THP_filtered=filtfilt(g,1,yWell6_THP);

48 OWell1_THP_filtered=filtfilt(g,1,yOWell1_THP);

49

50 %% Resampling

51 yWell1_THP_filtered=interp1q(T1,Well1_THP_filtered,T);

52 yWell2_THP_filtered=interp1q(T1,Well2_THP_filtered,T);

53 yWell3_THP_filtered=interp1q(T1,Well3_THP_filtered,T);

54 yWell4_THP_filtered=interp1q(T1,Well4_THP_filtered,T);

55 yWell5_THP_filtered=interp1q(T1,Well5_THP_filtered,T);

56 yWell6_THP_filtered=interp1q(T1,Well6_THP_filtered,T);

57 yOWell1_THP_filtered=interp1q(T1,OWell1_THP_filtered,T);

58 yFuellstand_filtered=interp1q(Fuellstand_t,Fuellstand,T);

59

60 clear Well1_THP_filtered Well3_THP_filtered Well2_THP_filtered ...

61 Well4_THP_filtered Well6_THP_filtered OWell1_THP_filtered ...

62 Well5_THP_filtered Window g prompt answer dlg_title defaultans ...

63 num_lines;

Linear Resampling Rates.m

1 %% New Time Vector

2 %New Sampling Interval in Seconds

3 T_Samp1=10;

4 T1=Well1_t(1):(T_Samp1/86400):Well1_t(end);

5 T1=T1';

6

7 %New Sampling Interval in Minutes

8 T_aux=60*T_Samp;

9 T=Well1_t(1):(T_aux/86400):Well1_t(end);

Appendices 126

10 T=T';

11 Resampled_TimeVector=datetime(T,'ConvertFrom','datenum');

12

13 %% Upsampling

14 % Linear upsampling to smaller intervals

15 yWell1_Rate=interp1q(Well1_t,Well1_Rate,T1);

16 yWell2_Rate=interp1q(Well2_t,Well2_Rate,T1);

17 yWell3_Rate=interp1q(Well3_t,Well3_Rate,T1);

18 yWell4_Rate=interp1q(Well4_t,Well4_Rate,T1);

19 yWell5_Rate=interp1q(Well5_t,Well5_Rate,T1);

20 yWell6_Rate=interp1q(Well6_t,Well6_Rate,T1);

21

22 %% Filtering Config

23 % Input dialog for Window width

24 prompt={'Window Width'};

25 dlg_title='Configuration of Filter Window Width';

26 num_lines=1;

27 defaultans={'120'};

28 answer=inputdlg(prompt,dlg_title,num_lines,defaultans,'on');

29

30 Window=str2double(answer{1});

31

32 %% Filtering

33 yWell1_Rate_filtered=medfilt1(yWell1_Rate,Window,'truncate');

34 yWell2_Rate_filtered=medfilt1(yWell2_Rate,Window,'truncate');

35 yWell3_Rate_filtered=medfilt1(yWell3_Rate,Window,'truncate');

36 yWell4_Rate_filtered=medfilt1(yWell4_Rate,Window,'truncate');

37 yWell5_Rate_filtered=medfilt1(yWell5_Rate,Window,'truncate');

38 yWell6_Rate_filtered=medfilt1(yWell6_Rate,Window,'truncate');

39

40 %% Downsampling

41 yWell1_Rate_filtered=interp1q(T1,yWell1_Rate_filtered,T);

42 yWell2_Rate_filtered=interp1q(T1,yWell2_Rate_filtered,T);

43 yWell3_Rate_filtered=interp1q(T1,yWell3_Rate_filtered,T);

44 yWell4_Rate_filtered=interp1q(T1,yWell4_Rate_filtered,T);

45 yWell5_Rate_filtered=interp1q(T1,yWell5_Rate_filtered,T);

46 yWell6_Rate_filtered=interp1q(T1,yWell6_Rate_filtered,T);

47

48 clear yWell1_Rate yWell2_Rate yWell3_Rate yWell4_Rate ...

49 yWell5_Rate yWell6_Rate T_Samp1 T1 Window prompt dlg_title num_lines ...

50 answer defaultans;

Kernel THP.m

1 % Kernelsmoothing for pressure

2 % Bandwidth & Length are transferred from Resampling.m

3

Appendices 127

4 %---%

5 Test=ksr(Well1_t,Well1_THP,Bandwidth,Length);

6 T=Test.x;

7 yWell1_THP_filtered=Test.f;

8

9 Test=ksr(Well2_t,Well2_THP,Bandwidth,Length);

10 yWell2_THP_filtered=Test.f;

11

12 Test=ksr(Well3_t,Well3_THP,Bandwidth,Length);

13 yWell3_THP_filtered=Test.f;

14

15 Test=ksr(Well4_t,Well4_THP,Bandwidth,Length);

16 yWell4_THP_filtered=Test.f;

17

18 Test=ksr(Well5_t,Well5_THP,Bandwidth,Length);

19 yWell5_THP_filtered=Test.f;

20

21 Test=ksr(Well6_t,Well6_THP,Bandwidth,Length);

22 yWell6_THP_filtered=Test.f;

23

24 Test=ksr(OWell1_t(1411:end,1),...

25 OWell1_THP(1411:end,1),Bandwidth,Length);

26 yOWell1_THP_filtered=Test.f;

27

28 clear Test;

Kernel Rates.m

1 % Kernelsmoothing for Flow rates & Filling level

2 % Bandwidth & Length are transferred from Resampling.m

3

4 %---%

5 Test1=ksr(Well1_t,Well1_Rate,Bandwidth,Length);

6 T=Test1.x;

7 yWell1_Rate_filtered=Test1.f;

8

9 Test1=ksr(Well2_t,Well2_Rate,Bandwidth,Length);

10 yWell2_Rate_filtered=Test1.f;

11

12 Test1=ksr(Well3_t,Well3_Rate,Bandwidth,Length);

13 yWell3_Rate_filtered=Test1.f;

14

15 Test1=ksr(Well4_t,Well4_Rate,Bandwidth,Length);

16 yWell4_Rate_filtered=Test1.f;

17

18 Test1=ksr(Well5_t,Well5_Rate,Bandwidth,Length);

19 yWell5_Rate_filtered=Test1.f;

Appendices 128

20

21 Test1=ksr(Well6_t,Well6_Rate,Bandwidth,Length);

22 yWell6_Rate_filtered=Test1.f;

23

24 Test1=ksr(Fuellstand_t(1411:end,1),...

25 Fuellstand(1411:end,1),Bandwidth,Length);

26 yFuellstand_filtered=Test1.f;

27

28 clear Test1;

Appendices 129

Appendix C
TrainNarx.m

1 % Training of NARX Neural Networks

2 % This script allows specifiying time intervals for training and testing of

3 % these NARX networks.

4 % Input dialogue for:

5 % - Number of networks in a network generation

6 % - The maximum and minimum number of hidden neurons,

7 % - The number of delays in the tapped delay line of the input and output

8 % - Random seed value

9 % - Number of training epochs

10 %--%

11 %% Checks if data sequence is loaded in workspace

12 % Loads data into workspace from .mat file if not already available.

13

14 if exist('Daten_Resampled_Table','var') == 0

15 uiopen('matlab');

16 end

17

18 %% Loading of specified time interval for training

19 clc

20 prompt={'Start Date:','End Date:'};

21 dlg_title='Timerange of Network Input';

22 num_lines=1;

23 defaultans={'01-Mar-2014','15-May-2016'};

24 answer=inputdlg(prompt,dlg_title,num_lines,defaultans);

25

26 Predict_Start=answer{2};

27

28 % TimeRange is selfmade MATLAB function which extracts the specified time

29 % interval from the complete data sequence

30 [InputMat_Narx,TargetMat_Narx,TimeVector_Narx]=TimeRange1(answer{1},...

31 answer{2},Daten_Resampled_Table);

32

33

34 % Conversion of MATLAB Array to neural network input.

35 Input=tonndata(InputMat_Narx,false,false);

36 Target=tonndata(TargetMat_Narx,false,false);

37

38 %% Configuration of networks

39 prompt={'Number of Networks','Min Number of hidden Neurons',...

40 'Max Number of hidden Neurons','Hidden Neurons Stepsize',...

41 'Input Delays','Output Delays','Training epochs','Random Seed'};

42 dlg_title='Expert Network Options';

43 num_lines=1;

44 defaultans={'10','14','14','2','3','4','25','666'};

45 answer=inputdlg(prompt,dlg_title,num_lines,defaultans);

Appendices 130

46

47 % Specification of network parameters

48 numNN = str2double(answer(1)); % Number of networks in generation

49 Hmax = str2double(answer{3}); % Max hidden neurons

50 Hmin = str2double(answer{2}); % Min hidden neurons

51 dH = str2double(answer{4}); % Stepsize hidden neurons

52 delayi=str2double(answer{5}); % Input delays

53 delayt_Narx=str2double(answer{6}); % Target delays

54 NumEpoch=str2double(answer{7}); % Number of training epochs

55 RandomSeed=str2double(answer{8}); % Random seed value

56

57

58 %% Training of networks

59

60 HiddenNodes_Forloop_NARX

61

62 %% Training Stats

63 % Compilation of a MATLAB table of training records

64

65 TrainStats

66 openvar('Stats')

67

68 %% Plotting of results

69 % Results of the best trained network and the an average of all network

70 % outputs is plotted

71 % Input dialogue asking whether plots are required

72

73 prompt={'Sollen Ergebnisse geplottet werden Ja oder Nein'};

74 dlg_title='Plotten der Ergebnisse';

75 num_lines=1;

76 defaultans={'Ja'};

77 answer=inputdlg(prompt,dlg_title,num_lines,defaultans);

78

79 if strcmp(answer{1},'Ja')

80 load 'SondenNamen.mat' % Loading of well names for plot

81 NumTarget=length(TargetMat_Narx(1,:));

82

83 [~,ind]=min(Best_Network_Performance_Narx,[],1);

84 delay=max(delayt_Narx,delayi);

85

86 Plot_HM_PR(TimeVector_Narx,TargetMat_Narx,Average_Narx,...

87 Best_Narx,NumTarget,delay,Sonden,ind);

88 end

89

90 %% Cleaning workspace

91 clear answer Best1 defaultans dlg_title y2Av y2 y2c y2Avc y2AverageOutput ...

92 y2AverageOutputc y2Total y2Totalc ans E1 E2 i j k netci neti netos ...

93 Separation s timing delayt ind

Appendices 131

HiddenForloopNarx.m

1 %% Network Initialization

2 clc

3

4 % The following variables in comment are delivered by TrainNarx.m

5 % They can be used to test the script without using TrainNarx.m

6

7 %numNN=5; %Number of Networks

8 %NumEpoch=25;%Number of Training Epochs

9 %delayi=3; %Input Delays

10 %delayt=4; %Feedback Delays

11 %Hmax=14; %Maximum Hidden Neurons

12 %Hmin=10; %Minimum Hidden Neurons

13 %dH=2; %Hidden Neurons Stepsize

14 Hcount=1+(Hmax-Hmin)/dH;

15 j=1; %Internal Count

16 NumTarget=numel(Target{1});

17 delayt=delayt_Narx;

18

19 % Multiplier for Number of training epochs:

20 Multi=14; % Standard = 5

21

22 %Preallocation of Matrices

23 perfs_closed=zeros(Hcount,numNN);

24 perfs_closed_trained = zeros(Hcount,numNN);

25 perfAverageOutput=zeros(Hcount,1);

26 perfAverageOutputc=zeros(Hcount,1);

27 Best_Network_Performance_Narx=zeros(Hcount,1);

28 Index_Best_Narx=zeros(Hcount,1);

29 nets_Narx=cell(Hcount,numNN);

30 netcs_Narx=cell(Hcount,numNN);

31 Tr_closed=cell(Hcount,numNN);

32 delay=max(delayt,delayi);

33 Best_Narx=zeros(Hcount*NumTarget,(length(Target)-delay));

34 Average_Narx=zeros(Hcount*NumTarget,(length(Target)-delay));

35 RandomSeed_Stored=cell(Hcount,numNN);

36 Separation=zeros(Hcount,1);

37 Hidden=zeros(Hcount,1);

38

39 %% Forloop over number of hidden neurons

40 % Generates a network generation with a specified number of neurons in the

41 % hidden layer

42 % All other network parameters stay the same

43

44 for H=Hmin:dH:Hmax

45 Hidden(j)=H;

46 netos=narxnet(1:delayi,1:delayt,H);

47 netos.trainFcn='trainlm';

Appendices 132

48 netos.trainParam.epochs=NumEpoch;

49 netos.divideFcn='divideint';

50 [xo,Xio,Aio,to]=preparets(netos,Input,{},Target);

51

52 %% Network train in open loop

53 % Trains all networks in a single network generation

54

55 for i=1:numNN

56

57 if RandomSeed~=0 % Checks if user defined random seed value exists

58 rng(RandomSeed+i);% If it exists it is used for training

59 end

60

61 nets_Narx{j,i}=init(netos);

62 nets_Narx{j,i}=train(netos,xo,to,Xio,Aio);

63 netcs_Narx{j,i}=closeloop(nets_Narx{j,i});

64 RandomSeed_Stored{j,i}=rng;

65 end

66

67 %% Performance Evaluation

68 % Evaluates the performance of all networks after training in NARX open

69 % loop

70

71 y2Total=0;

72 [xc, Xic, Aic, tc]=preparets(netcs_Narx{j,1},Input,{},Target);

73

74 for i=1:numNN

75 neti=netcs_Narx{j,i};

76 y2=neti(xc,Xic,Aic);

77 perfs_closed(j,i)=mse(tc,y2);

78 y2=cell2mat(y2);

79 y2Total=y2Total+y2;

80 end

81

82

83 y2AverageOutput=y2Total/numNN;

84 y2Av=num2cell(y2AverageOutput);

85 E1=gsubtract(y2Av,tc);

86 perfAverageOutput(j)=mse(E1);

87

88 %% Closed loop training

89 % Converts all networks to the NARX closed loop representation

90 % Retrains all networks in the closed loop

91

92 for i=1:numNN

93

94 if RandomSeed~=0 % Checks if user defined random seed value exists

95 rng(RandomSeed+i);% If it exists it is used for training

96 end

97

Appendices 133

98 netcs_Narx{j,i}.trainParam.showWindow=1;

99 netcs_Narx{j,i}.trainFcn='trainlm';

100 netcs_Narx{j,i}.trainParam.epochs=Multi*NumEpoch;

101 [netcs_Narx{j,i},Tr_closed{j,i}]=train(netcs_Narx{j,i},xc,tc,Xic,Aic);

102 end

103

104 %% Closed Loop Performance Evaluation

105 % Evaluates the performance of all networks after training in NARX closed

106 % loop

107

108 y2Totalc=0;

109 for i=1:numNN

110 netci=netcs_Narx{j,i};

111 y2c=netci(xc,Xic,Aic);

112 perfs_closed_trained(j,i)=mse(tc,y2c);

113 y2c=cell2mat(y2c);

114 y2Totalc=y2Totalc + y2c;

115 end

116

117 y2AverageOutputc=y2Totalc/numNN;

118 y2Avc=num2cell(y2AverageOutputc);

119 E2=gsubtract(y2Avc,tc);

120 perfAverageOutputc(j)=mse(E2);

121

122 [Best_Network_Performance_Narx(j,1),Index_Best_Narx(j,1)]=...

123 min(perfs_closed_trained(j,:));

124

125 k=(j-1)*NumTarget+1;

126 Best1=(netcs_Narx{j,Index_Best_Narx(j,1)}(xc,Xic,Aic));

127 Best_Narx((k:k+(NumTarget-1)),:)=cell2mat(Best1);

128 Average_Narx((k:k+(NumTarget-1)),:)=y2AverageOutputc;

129 j=j+1;

130

131 %% Checkpoint

132 % Saves a checkpoint file after a network generation is trained in open &

133 % closed loop

134

135 if mod(j,1)==0

136 s=rng;

137 tic

138 save('Checkpoint_tmp.mat');

139 if strcmp(computer,'PCWIN64') || strcmp(computer,'PCWIN')

140 %We are running on a windows machine

141 system('move /y checkpoint_tmp.mat checkpoint.mat');

142 else

143 %We are running on Linux or Mac

144 system('mv checkpoint_tmp.mat checkpoint.mat');

145 end

146 timing = toc;

147 fprintf('Checkpoint save took %f seconds\n',timing);

Appendices 134

148

149 end

150 end

151 %% Summary

152 % Summary file of network performances for all generations

153 % This file is used by other scripts can be stored as MATLAB Array

154 summary=[Hidden,Separation,perfs_closed,perfAverageOutput,Separation,...

155 perfs_closed_trained,perfAverageOutputc,Separation,...

156 Best_Network_Performance_Narx,Index_Best_Narx];

TestNarx.m

1 % This script allows using trained networks to predict outputs for unseen

2 % data sequences

3 % It also enables computing the error of the network response to unseen

4 % data sequences

5

6 % An input dialogue can be used to select a time interval for testing and

7 % prediction from the whole data sequence

8

9 % Indiviudal networks can be selected via a drop down menu

10 % An output for the selected network and an average of all networks in the

11 % specified generation is generated

12

13 % Requires the "Enhanced Input Dialog Box" from Mathworks File Exchange

14 %--%

15

16 %% Loading of data

17 Title = 'Time Range of Prediction';

18

19 %%%% SETTING DIALOG OPTIONS

20 Options.WindowStyle = 'modal';

21 Options.Resize = 'on';

22 Options.Interpreter = 'tex';

23 Options.CancelButton = 'on';

24 Options.ApplyButton = 'off';

25 Options.ButtonNames = {'Continue','Cancel'};

26 Option.Dim = 2; % Horizontal dimension in fields

27

28 Prompt = {};

29 Formats = {};

30 DefAns = struct([]);

31

32 Prompt(1,:) = {'Start Date:', 'start',[]};

33 Formats(1,1).type = 'edit';

34 Formats(1,1).format = 'text';

35 Formats(1,1).size = 200;

Appendices 135

36 DefAns(1).start = Predict_Start;

37

38 Prompt(2,:) = {'End Date:', 'end',[]};

39 Formats(2,1).type = 'edit';

40 Formats(2,1).format = 'text';

41 Formats(2,1).size = 200;

42 DefAns(1).end = '15-May-2016';

43

44 for j = 1:length(netcs_Narx)

45 Cat{1,j}=['Network' ' ' num2str(j)];

46 end

47

48 Prompt(3,:) = {'Networks','List',[]};

49 Formats(3,1).type = 'list';

50 Formats(3,1).style = 'popupmenu';

51 Formats(3,1).items = Cat;

52

53 Prompt(4,:) = {'Plot results ?' 'Plot',[]};

54 Formats(4,1).type = 'check';

55 DefAns(1).Plot = true;

56

57 Prompt(5,:) = {'Plotting Information' 'Best',[]};

58 Formats(5,1).type = 'check';

59 DefAns(1).Best = false;

60

61 Prompt(6,:) = {'Save Prediction File for Plotly' 'Save',[]};

62 Formats(6,1).type = 'check';

63 DefAns(1).Save= false;

64

65 [Answer,Cancelled] = inputsdlg(Prompt,Title,Formats,DefAns,Options);

66

67 if Answer.Best == 1

68 perfs_pred=zeros(1,numNN);

69 end

70

71 % TimeRange is selfmade MATLAB function which extracts the specified time

72 % interval from the complete data sequence

73 [InputPredMat_Narx,TargetPredMat_Narx,TimeVectorPred_Narx]= ...

74 TimeRange(Answer.start,Answer.end,Daten_Resampled_Table);

75

76 % Conversion of MATLAB Array to neural network data format

77 InputPred=tonndata(InputPredMat_Narx,false,false);

78 TargetPred=tonndata(TargetPredMat_Narx,false,false);

79

80 %% Loading of network & configuration

81 % Loads the specified network and configures the input

82 Net_Narx=netcs_Narx{1,Answer.List};

83 [xP, XicP, AicP, tcP]=preparets(Net_Narx,InputPred,{},TargetPred);

84

85 % Computing network prediction

Appendices 136

86 [Pred_Narx1, XcfP, AcfP]=Net_Narx(xP,XicP,AicP);

87 Pred_Narx=cell2mat(Pred_Narx1);

88

89 %% Average of all networks in a generation

90

91 y2Totalc=0;

92 for i=1:numNN

93 netci=netcs_Narx{1,i};

94 y2c=netci(xP,XicP,AicP);

95 if Answer.Best == 1

96 perfs_pred(1,i)=mse(tcP,y2c);

97 end

98 y2c=cell2mat(y2c);

99 y2Totalc=y2Totalc + y2c;

100 end

101 AveragePred_Narx=y2Totalc/numNN;

102 A=tonndata(AveragePred_Narx,true,false);

103

104 %% Output of testing erros in the console

105 disp(['Prediction Error - Network' ' ' num2str(Answer.List)])

106 disp(mse(tcP,Pred_Narx1))

107

108 disp('Prediction Error - Average')

109 disp(mse(tcP,A))

110

111 if Answer.Best == 1

112 [Best_Pred_Performance_Narx(1,1),Index_Best_Pred_Narx(1,1)]=...

113 min(perfs_pred(1,:));

114 [Worst_Pred_Performace_Narx,~]=max(perfs_pred(1,:));

115 disp(['Prediction Error - Best Network ' num2str(Index_Best_Pred_Narx)])

116 disp(Best_Pred_Performance_Narx(1,1))

117 PlottingInfoPred = [Hidden,sqrt(perfs_pred(1,Index_Best_Narx))];

118

119 for i = 3:(numNN+2)

120 PlottingInfoPred(1,i)=sqrt(perfs_pred(1,i-2));

121 end

122 end

123

124

125 %% Plotting Results

126 % Plots the results of the selected network and the average of all netowrks

127 % in a generation

128 % Input dialogue whether plots should be generated

129

130 if Answer.Plot == 1

131 load 'SondenNamen.mat' % Loading of well names for plots

132 NumTarget=length(TargetPredMat_Narx(1,:));

133 delay=max(delayt_Narx,delayi);

134

135 Plot_HM_PR(TimeVectorPred_Narx,TargetPredMat_Narx,AveragePred_Narx,...

Appendices 137

136 Pred_Narx,NumTarget,delay,Sonden,1);

137 end

138

139 %% Saving prediction file

140 % Saves a .csv file with all required data to plot the results in the

141 % program R using dygraphs

142 % Input dialogue for the file name

143

144 if Answer.Save==1

145 SavePred(TargetPredMat_Narx,Pred_Narx,AveragePred_Narx,...

146 TimeVectorPred_Narx,delay)

147 end

148 %% Cleaning workspace

149 clear y2Totalc y2c prompt i netci ind defaultans num_lines answer dgl_title ...

150 prompt Prompt Answer Formats DefAns Cat Pred_Narx1 A Net_Narx j ...

151 Cancelled Title Option Options;

Appendices 138

TrainFully.m

1 % Training of Recurrent Neural Networks

2 % This script allows specifiying time intervals for training and testing of

3 % these Recurrent networks.

4 % Input dialogue for:

5 % - Number of networks in a network generation

6 % - The maximum and minimum number of hidden neurons

7 % - Random seed value

8 % - Number of training epochs

9 %--%

10 %% Checks if data sequence is loaded in workspace

11 % Loads data into workspace from .mat file if not already available.

12

13 if exist('Daten_Resampled_Table','var') == 0

14 uiopen('matlab');

15 end

16

17 %% Loading of specified time interval for training

18 clc

19 prompt={'Start Date:','End Date:'};

20 dlg_title='Timerange of Network Input';

21 num_lines=1;

22 defaultans={'01-Mar-2014','15-May-2016'};

23 answer=inputdlg(prompt,dlg_title,num_lines,defaultans);

24

25 Predict_Start=answer{2};

26

27 % TimeRange is selfmade MATLAB function which extracts the specified time

28 % interval from the complete data sequence

29 [InputMat_Layrec,TargetMat_Layrec,F,TimeVector_Layrec]=...

30 TimeRange(answer{1},answer{2},Daten_Resampled_Table);

31

32 %F1=InputMat_Layrec(:,1)+InputMat_Layrec(:,2)+InputMat_Layrec...

33 %(:,3)+InputMat_Layrec(:,4)+InputMat_Layrec(:,5)+InputMat_Layrec(:,6);

34

35 %F3=zeros(length(F1),1);

36 %for i=2:length(F1)

37 %F3(i)=F3(i-1)+F1(i);

38 %end

39

40 %InputMat_Layrec=[InputMat_Layrec,F',F1,F3];

41

42 % Conversion of MATLAB Array to neural network input.

43 Input=tonndata(InputMat_Layrec,false,false);

44 Target=tonndata(TargetMat_Layrec,false,false);

45

46 %% Configuration of networks

47 prompt={'Zahl von Netzwerken','Min Nummer von Hidden nodes',...

Appendices 139

48 'Max Nummer von Hidden nodes','Hidden Nodes Stepsize',...

49 'FeedbackDelays','Trainingsepochen','RandomSeed'};

50 dlg_title='Experten Netzwerkeinstellungen';

51 num_lines=1;

52 defaultans={'10','14','14','2','4','100','666'};

53 answer=inputdlg(prompt,dlg_title,num_lines,defaultans);

54

55 % Specification of network parameters

56 numNN = str2double(answer(1)); % Number of networks in generation

57 Hmax = str2double(answer{3}); % Max hidden nodes

58 Hmin = str2double(answer{2}); % Min hidden nodes

59 dH = str2double(answer{4}); % Stepsize hidden nodes

60 delayt_Layrec=str2double(answer{5});% Target Delays (if required)

61 NumEpoch=str2double(answer{6}); % Number of training epochs

62 RandomSeed=str2double(answer{7}); % Random seed value

63

64 %% Training of networks

65

66 HiddenNodes_Forloop_Layrec

67

68 %% Training Stats

69 % Compilation of a MATLAB table of training records

70 TrainStats

71 openvar('Stats')

72

73 %% Plotting of results

74 % Results of the best trained network and the an average of all network

75 % outputs is plotted

76 % Input dialogue asking whether plots are required

77

78 prompt={'Sollen Ergebnisse geplottet werden Ja oder Nein'};

79 dlg_title='Plotten der Ergebnisse';

80 num_lines=1;

81 defaultans={'Ja'};

82 answer=inputdlg(prompt,dlg_title,num_lines,defaultans);

83

84 if strcmp(answer{1},'Ja')

85 load 'SondenNamen.mat' % Loading of well names for plot

86 NumTarget=length(TargetMat_Layrec(1,:));

87

88 [~,ind]=min(Best_Network_Performance_Layrec,[],1);

89

90 Plot_HM_PR(TimeVector_Layrec,TargetMat_Layrec,Average_Layrec,...

91 Best_Layrec,NumTarget,delayt_Layrec,Sonden,ind);

92 end

93

94 %% Cleaning workspace

95 clear answer Best1 defaultans dlg_title y2Av y2 y2c y2Avc y2AverageOutput ...

96 y2AverageOutputc y2Total y2Totalc ans E1 E2 i j k netci neti netos ...

97 Separation s delayt timing ind netLayrec

Appendices 140

HiddenForloopFully.m

1 %% Network Initialization

2 clc

3

4 % The following variables in comment are delivered by TrainLayrec.m

5 % They can be used to test the script without using TrainLayrec.m

6

7 %numNN=5; %Number of Networks

8 %NumEpoch=25;%Number of Training Epochs

9 %delayt=4; %Feedback Delays (if required)

10 %Hmax=14; %Maximum Hidden Neurons

11 %Hmin=10; %Minimum Hidden Neurons

12 %dH=2; %Hidden Neurons Stepsize

13 Hcount=1+(Hmax-Hmin)/dH;

14 j=1; %Internal Count

15 NumTarget=numel(Target{1});

16 delayt=delayt_Layrec;

17

18 %Preallocation of Matrices

19 perfs_closed_trained = zeros(Hcount,numNN);

20 perfAverageOutputc=zeros(Hcount,1);

21 Best_Network_Performance_Layrec=zeros(Hcount,1);

22 Index_Best_Layrec=zeros(Hcount,1);

23 netcs_Layrec=cell(Hcount,numNN);

24 Tr_closed=cell(Hcount,numNN);

25 Best_Layrec=zeros(Hcount*NumTarget,(length(Target)-delayt));

26 Average_Layrec=zeros(Hcount*NumTarget,(length(Target)-delayt));

27 RandomSeed_Stored=cell(Hcount,numNN);

28 Separation=zeros(Hcount,1);

29 Hidden=zeros(Hcount,1);

30

31 %% Forloop over number of hidden neurons

32 % Generates a network generation with a specified number of neurons in the

33 % hidden layer

34 % All other network parameters stay the same

35

36 for H=Hmin:dH:Hmax

37 Hidden(j)=H;

38 netLayrec=layrecnet(1:delayt,H);

39 netLayrec.trainFcn='trainlm';

40 netLayrec.trainParam.epochs=NumEpoch;

41 netLayrec.divideMode='time';

42 netLayrec.divideFcn='divideint';

43

44 [Xc,Xic,Aic,Tc]=preparets(netLayrec,Input,Target);

45

46 %% Network train in open loop

47 % Trains all networks in a single network generation

Appendices 141

48 for i=1:numNN

49

50 if RandomSeed~=0 % Checks if user defined random seed value exists

51 rng(RandomSeed+i);% If it exists it is used for training

52 end

53

54 netcs_Layrec{j,i}=init(netLayrec);

55 netcs_Layrec{j,i}.trainParam.epochs=NumEpoch;

56 [netcs_Layrec{j,i},Tr_closed{j,i}]=train(netcs_Layrec{j,i},Xc,Tc,Xic,Aic);

57 RandomSeed_Stored{j,i}=rng;

58 end

59

60 %% Closed Loop Performance Evaluation

61 % Evaluates the performance of all networks after training in closed loop

62

63 y2Totalc=0;

64 for i=1:numNN

65 netci=netcs_Layrec{j,i};

66 y2c=netci(Xc,Xic,Aic);

67 perfs_closed_trained(j,i)=mse(Tc,y2c);

68 y2c=cell2mat(y2c);

69 y2Totalc=y2Totalc + y2c;

70 end

71

72 y2AverageOutputc=y2Totalc/numNN;

73 y2Avc=num2cell(y2AverageOutputc);

74 E2=gsubtract(y2Avc,Tc);

75 perfAverageOutputc(j)=mse(E2);

76 [Best_Network_Performance_Layrec(j,1),Index_Best_Layrec(j,1)]=...

77 min(perfs_closed_trained(j,:));

78

79 k=(j-1)*NumTarget+1;

80 Best1=(netcs_Layrec{j,Index_Best_Layrec(j,1)}(Xc,Xic,Aic));

81 Best_Layrec((k:k+(NumTarget-1)),:)=cell2mat(Best1);

82 Average_Layrec((k:k+(NumTarget-1)),:)=y2AverageOutputc;

83 j=j+1;

84

85 %% Checkpoint

86 % Saves a checkpoint file after a network generation is trained in closed

87 % loop

88 if mod(j,1)==0

89 s=rng;

90 tic

91 save('Checkpoint_tmp.mat');

92 if strcmp(computer,'PCWIN64') || strcmp(computer,'PCWIN')

93 %We are running on a windows machine

94 system('move /y checkpoint_tmp.mat checkpoint.mat');

95 else

96 %We are running on Linux or Mac

97 system('mv checkpoint_tmp.mat checkpoint.mat');

Appendices 142

98 end

99 timing = toc;

100 fprintf('Checkpoint save took %f seconds\n',timing);

101

102 end

103 end

104 %% Summary

105 % Summary file of network performances for all generations

106 % This file is used by other scripts can be stored as MATLAB Array

107 summary=[Hidden,Separation,perfs_closed_trained,perfAverageOutputc,...

108 Separation,Best_Network_Performance_Layrec,Index_Best_Layrec];

TestFully.m

1 % This script allows using trained networks to predict outputs for unseen

2 % data sequences

3 % It also enables computing the error of the network response to unseen

4 % data sequences

5

6 % An input dialogue can be used to select a time interval for testing and

7 % prediction from the whole data sequence

8

9 % Indiviudal networks can be selected via a drop down menu

10 % An output for the selected network and an average of all networks in the

11 % specified generation is generated

12

13 % Requires the "Enhanced Input Dialog Box" from Mathworks File Exchange

14 %--%

15

16 %% Loading of data

17 Title = 'Time Range of Prediction';

18

19 %%%% SETTING DIALOG OPTIONS

20 Options.WindowStyle = 'modal';

21 Options.Resize = 'on';

22 Options.Interpreter = 'tex';

23 Options.CancelButton = 'on';

24 Options.ApplyButton = 'off';

25 Options.ButtonNames = {'Continue','Cancel'};

26 Option.Dim = 2; % Horizontal dimension in fields

27

28 Prompt = {};

29 Formats = {};

30 DefAns = struct([]);

31

32 Prompt(1,:) = {'Start Date:', 'start',[]};

33 Formats(1,1).type = 'edit';

Appendices 143

34 Formats(1,1).format = 'text';

35 Formats(1,1).size = 200; % automatically assign the height

36 DefAns(1).start = Predict_Start;

37

38 Prompt(2,:) = {'End Date:', 'end',[]};

39 Formats(2,1).type = 'edit';

40 Formats(2,1).format = 'text';

41 Formats(2,1).size = 200; % automatically assign the height

42 DefAns(1).end = '15-May-2016';

43

44 for j = 1:length(netcs_Layrec)

45 Cat{1,j}=['Network' ' ' num2str(j)];

46 end

47

48 Prompt(3,:) = {'Networks','List',[]};

49 Formats(3,1).type = 'list';

50 Formats(3,1).style = 'popupmenu';

51 Formats(3,1).items = Cat;

52

53 Prompt(4,:) = {'Plot results ?' 'Plot',[]};

54 Formats(4,1).type = 'check';

55 DefAns(1).Plot = true;

56

57 Prompt(5,:) = {'Plotting Information' 'Best',[]};

58 Formats(5,1).type = 'check';

59 DefAns(1).Best = false;

60

61 Prompt(6,:) = {'Save Prediction File for Plotly' 'Save',[]};

62 Formats(6,1).type = 'check';

63 DefAns(1).Save= false;

64

65 [Answer,Cancelled] = inputsdlg(Prompt,Title,Formats,DefAns,Options);

66

67 if Answer.Best == 1

68 perfs_pred=zeros(1,numNN);

69 end

70

71 % TimeRange is selfmade MATLAB function which extracts the specified time

72 % interval from the complete data sequence

73 [InputPredMat_Layrec,TargetPredMat_Layrec,TimeVectorPred_Layrec]= ...

74 TimeRange(Answer.start,Answer.end,Daten_Resampled_Table);

75

76 % Conversion of MATLAB Array to neural network data format

77 InputPred=tonndata(InputPredMat_Layrec,false,false);

78 TargetPred=tonndata(TargetPredMat_Layrec,false,false);

79

80 %% Loading of network & configuration

81 % Loads the specified network and configures the input

82

83 Net_Layrec=netcs_Layrec{1,Answer.List};

Appendices 144

84 [xP, XicP, AicP, tcP]=preparets(Net_Layrec,InputPred,TargetPred);

85

86 % Computing network prediction

87 [Pred_Layrec1, XcfP, AcfP]=Net_Layrec(xP,XicP,AicP);

88 Pred_Layrec=cell2mat(Pred_Layrec1);

89

90 %% Average of all networks in a generation

91

92 y2Totalc=0;

93 for i=1:numNN

94 netci=netcs_Layrec{1,i};

95 y2c=netci(xP,XicP,AicP);

96 if Answer.Best == 1

97 perfs_pred(1,i)=mse(tcP,y2c);

98 end

99 y2c=cell2mat(y2c);

100 y2Totalc=y2Totalc + y2c;

101 end

102

103 AveragePred_Layrec=y2Totalc/numNN;

104 A=tonndata(AveragePred_Layrec,true,false);

105

106 %% Output of testing erros in the console

107 disp(['Prediction Error - Netzwerk' ' ' num2str(Answer.List)])

108 disp(mse(tcP,Pred_Layrec1))

109

110 disp('Prediction Error - Average')

111 disp(mse(tcP,A))

112

113 if Answer.Best == 1

114 [Best_Pred_Performance_Layrec(1,1),Index_Best_Pred_Layrec(1,1)]=...

115 min(perfs_pred(1,:));

116 [Worst_Pred_Performace_Layrec,~]=max(perfs_pred(1,:));

117 disp(['Prediction Error - Bestes Netzwerk ' num2str(Index_Best_Pred_Layrec)])

118 disp(Best_Pred_Performance_Layrec(1,1))

119 PlottingInfoPred = [Hidden,sqrt(perfs_pred(1,Index_Best_Layrec))];

120

121 for i = 3:(numNN+2)

122 PlottingInfoPred(1,i)=sqrt(perfs_pred(1,i-2));

123 end

124 end

125

126

127 %% Plotting Results

128 % Plots the results of the selected network and the average of all netowrks

129 % in a generation

130 % Input dialogue whether plots should be generated

131

132 if Answer.Plot == 1

133 load 'SondenNamen.mat' % Loading of well names for plots

Appendices 145

134 NumTarget=length(TargetPredMat_Layrec(1,:));

135 delay=max(delayt_Layrec);

136

137 Plot_HM_PR(TimeVectorPred_Layrec,TargetPredMat_Layrec,AveragePred_Layrec,...

138 Pred_Layrec,NumTarget,delay,Sonden,1);

139 end

140

141 %% Saving prediction file

142 % Saves a .csv file with all required data to plot the results in the

143 % program R using dygraphs

144 % Input dialogue for the file name

145

146 if Answer.Save==1

147 SavePred(TargetPredMat_Layrec,Pred_Layrec,AveragePred_Layrec,...

148 TimeVectorPred_Layrec,delayt_Layrec)

149 end

150 %% Cleaning workspace

151 clear y2Totalc y2c prompt i netci ind defaultans num_lines answer dgl_title ...

152 prompt Prompt Answer Formats DefAns Cat Pred_Layrec1 A Net_Layrec j ...

153 Cancelled Title Option Options;

Appendices 146

TrainElman.m

1 % Training of Elman Neural Networks

2 % This script allows specifiying time intervals for training and testing of

3 % these Elman networks.

4 % Input dialogue for:

5 % - Number of networks in a network generation

6 % - The maximum and minimum number of hidden neurons

7 % - Random seed value

8 % - Number of training epochs

9 %--%

10 %% Checks if data sequence is loaded in workspace

11 % Loads data into workspace from .mat file if not already available.

12

13 if exist('Daten_Resampled_Table','var') == 0

14 uiopen('matlab');

15 end

16

17 %% Loading of specified time interval for training

18 clc

19 prompt={'Start Date:','End Date:'};

20 dlg_title='Timerange of Network Input';

21 num_lines=1;

22 defaultans={'01-Mar-2014','15-May-2016'};

23 answer=inputdlg(prompt,dlg_title,num_lines,defaultans);

24

25 Predict_Start=answer{2};

26

27 % TimeRange is selfmade MATLAB function which extracts the specified time

28 % interval from the complete data sequence

29 [InputMat_Elman,TargetMat_Elman,TimeVector_Elman]=TimeRange1(answer{1},...

30 answer{2},Daten_Resampled_Table);

31

32

33 % Conversion of MATLAB Array to neural network input.

34 Input=tonndata(InputMat_Elman,false,false);

35 Target=tonndata(TargetMat_Elman,false,false);

36

37 %% Configuration of networks

38

39 prompt={'Zahl von Netzwerken','Min Nummer von Hidden nodes',...

40 'Max Nummer von Hidden nodes','Hidden Nodes Stepsize',...

41 'FeedbackDelays','Trainingsepochen','RandomSeed'};

42 dlg_title='Experten Netzwerkeinstellungen';

43 num_lines=1;

44 defaultans={'10','14','14','2','4','100','666'};

45 answer=inputdlg(prompt,dlg_title,num_lines,defaultans);

46

47 % Specification of network parameters

Appendices 147

48 numNN = str2double(answer(1)); % Number of networks in generation

49 Hmax = str2double(answer{3}); % Max hidden nodes

50 Hmin = str2double(answer{2}); % Min hidden nodes

51 dH = str2double(answer{4}); % Stepsize hidden nodes

52 delayt_Elman=str2double(answer{5}); % Target delays

53 NumEpoch=str2double(answer{6}); % Number of training epochs

54 RandomSeed=str2double(answer{7}); % Random seed value

55

56

57 %% Training of networks

58

59 HiddenNodes_Forloop_Elman

60

61 %% Training Stats

62 % Compilation of a MATLAB table of training records

63 TrainStats

64 openvar('Stats')

65

66 %% Plotting of results

67 % Results of the best trained network and the an average of all network

68 % outputs is plotted

69 % Input dialogue asking whether plots are required

70

71 prompt={'Sollen Ergebnisse geplottet werden Ja oder Nein'};

72 dlg_title='Plotten der Ergebnisse';

73 num_lines=1;

74 defaultans={'Ja'};

75 answer=inputdlg(prompt,dlg_title,num_lines,defaultans);

76

77 if strcmp(answer{1},'Ja')

78 load 'SondenNamen.mat' % Loading of well names for plot

79 NumTarget=length(TargetMat_Elman(1,:));

80

81 [~,ind]=min(Best_Network_Performance_Elman,[],1);

82

83 Plot_HM_PR(TimeVector_Elman,TargetMat_Elman,Average_Elman,...

84 Best_Elman,NumTarget,delayt_Elman,Sonden,ind);

85 end

86

87 %% Cleaning workspace

88 clear answer Best1 defaultans dlg_title y2Av y2 y2c y2Avc y2AverageOutput ...

89 y2AverageOutputc y2Total y2Totalc ans E1 E2 i j k netci neti netos ...

90 Separation s timing delayt ind

Appendices 148

HiddenForloopElman.m

1 %% Network Initialization

2 clc

3

4 % The following variables in comment are delivered by TrainElman.m

5 % They can be used to test the script without using TrainElman.m

6

7 %numNN=5; %Number of Networks

8 %NumEpoch=25;%Number of Training Epochs

9 %delayt=4; %Feedback Delays

10 %Hmax=14; %Maximum Hidden Neurons

11 %Hmin=10; %Minimum Hidden Neurons

12 %dH=2; %Hidden Neurons Stepsize

13

14 Hcount=1+(Hmax-Hmin)/dH;

15 j=1; %Internal Count

16 NumTarget=numel(Target{1});

17 delayt=delayt_Elman;

18

19 %Preallocation of Matrices

20 perfs_closed_trained = zeros(Hcount,numNN);

21 perfAverageOutputc=zeros(Hcount,1);

22 Best_Network_Performance_Elman=zeros(Hcount,1);

23 Index_Best_Elman=zeros(Hcount,1);

24 netcs_Elman=cell(Hcount,numNN);

25 Tr_closed=cell(Hcount,numNN);

26 Best_Elman=zeros(Hcount*NumTarget,(length(Target)-delayt));

27 Average_Elman=zeros(Hcount*NumTarget,(length(Target)-delayt));

28 RandomSeed_Stored=cell(Hcount,numNN);

29 Separation=zeros(Hcount,1);

30 Hidden=zeros(Hcount,1);

31

32 %% Forloop over number of hidden neurons

33 % Generates a network generation with a specified number of neurons in the

34 % hidden layer

35 % All other network parameters stay the same

36

37 for H=Hmin:dH:Hmax

38 Hidden(j)=H;

39 netElman=elmannet(1:delayt,H);

40 netElman.trainFcn='trainlm';

41 netElman.trainParam.epochs=NumEpoch;

42 netElman.divideMode='time';

43 netElman.divideFcn='divideint';

44

45 [Xc,Xic,Aic,Tc]=preparets(netElman,Input,Target);

46

47 %% Network train in closed loop

Appendices 149

48 % Trains all networks in a single network generation

49 for i=1:numNN

50

51 if RandomSeed~=0 % Checks if user defined random seed value exists

52 rng(RandomSeed+i);% If it exists it is used for training

53 end

54

55 netcs_Elman{j,i}=init(netElman);

56 netcs_Elman{j,i}.trainParam.epochs=NumEpoch;

57 [netcs_Elman{j,i},Tr_closed{j,i}]=train(netcs_Elman{j,i},Xc,Tc,Xic,Aic);

58 RandomSeed_Stored{j,i}=rng;

59 end

60

61 %% Closed Loop Performance Evaluation

62 % Evaluates the performance of all networks after training in NARX closed

63 % loop

64

65

66 y2Totalc=0;

67 for i=1:numNN

68 netci=netcs_Elman{j,i};

69 y2c=netci(Xc,Xic,Aic);

70 perfs_closed_trained(j,i)=mse(Tc,y2c);

71 y2c=cell2mat(y2c);

72 y2Totalc=y2Totalc + y2c;

73 %[j,i]

74 end

75

76 y2AverageOutputc=y2Totalc/numNN;

77 y2Avc=num2cell(y2AverageOutputc);

78 E2=gsubtract(y2Avc,Tc);

79 perfAverageOutputc(j)=mse(E2);

80 [Best_Network_Performance_Elman(j,1),Index_Best_Elman(j,1)]=...

81 min(perfs_closed_trained(j,:));

82

83 k=(j-1)*NumTarget+1;

84 Best1=(netcs_Elman{j,Index_Best_Elman(j,1)}(Xc,Xic,Aic));

85 Best_Elman((k:k+(NumTarget-1)),:)=cell2mat(Best1);

86 Average_Elman((k:k+(NumTarget-1)),:)=y2AverageOutputc;

87 j=j+1;

88

89 %% Checkpoint

90 % Saves a checkpoint file after a network generation is trained in

91 % closed loop

92 if mod(j,1)==0

93 s=rng;

94 tic

95 save('Checkpoint_tmp.mat');

96 if strcmp(computer,'PCWIN64') || strcmp(computer,'PCWIN')

97 %We are running on a windows machine

Appendices 150

98 system('move /y checkpoint_tmp.mat checkpoint.mat');

99 else

100 %We are running on Linux or Mac

101 system('mv checkpoint_tmp.mat checkpoint.mat');

102 end

103 timing = toc;

104 fprintf('Checkpoint save took %f seconds\n',timing);

105

106 end

107 end

108 %% Summary

109 % Summary file of network performances for all generations

110 % This file is used by other scripts can be stored as MATLAB Array

111 summary=[Hidden,Separation,perfs_closed_trained,perfAverageOutputc,...

112 Separation,Best_Network_Performance_Elman,Index_Best_Elman];

TestElman.m

1 % This script allows using trained networks to predict outputs for unseen

2 % data sequences

3 % It also enables computing the error of the network response to unseen

4 % data sequences

5

6 % An input dialogue can be used to select a time interval for testing and

7 % prediction from the whole data sequence

8

9 % Indiviudal networks can be selected via a drop down menu

10 % An output for the selected network and an average of all networks in the

11 % specified generation is generated

12

13 % Requires the "Enhanced Input Dialog Box" from Mathworks File Exchange

14 %--%

15

16 %% Loading of data

17 Title = 'Time Range of Prediction';

18

19 %%%% SETTING DIALOG OPTIONS

20 Options.WindowStyle = 'modal';

21 Options.Resize = 'on';

22 Options.Interpreter = 'tex';

23 Options.CancelButton = 'on';

24 Options.ApplyButton = 'off';

25 Options.ButtonNames = {'Continue','Cancel'};

26 Option.Dim = 2; % Horizontal dimension in fields

27

28 Prompt = {};

29 Formats = {};

Appendices 151

30 DefAns = struct([]);

31

32 Prompt(1,:) = {'Start Date:', 'start',[]};

33 Formats(1,1).type = 'edit';

34 Formats(1,1).format = 'text';

35 Formats(1,1).size = 200; % automatically assign the height

36 DefAns(1).start = Predict_Start;

37

38 Prompt(2,:) = {'End Date:', 'end',[]};

39 Formats(2,1).type = 'edit';

40 Formats(2,1).format = 'text';

41 Formats(2,1).size = 200; % automatically assign the height

42 DefAns(1).end = '15-May-2016';

43

44 for j = 1:length(netcs_Elman)

45 Cat{1,j}=['Network' ' ' num2str(j)];

46 end

47

48 Prompt(3,:) = {'Networks','List',[]};

49 Formats(3,1).type = 'list';

50 Formats(3,1).style = 'popupmenu';

51 Formats(3,1).items = Cat;

52

53 Prompt(4,:) = {'Plot results ?' 'Plot',[]};

54 Formats(4,1).type = 'check';

55 DefAns(1).Plot = true;

56

57 Prompt(5,:) = {'Plotting Information' 'Best',[]};

58 Formats(5,1).type = 'check';

59 DefAns(1).Best = false;

60

61 Prompt(6,:) = {'Save Prediction File for Plotly' 'Save',[]};

62 Formats(6,1).type = 'check';

63 DefAns(1).Save= false;

64

65 [Answer,Cancelled] = inputsdlg(Prompt,Title,Formats,DefAns,Options);

66

67 if Answer.Best == 1

68 perfs_pred=zeros(1,numNN);

69 end

70

71 % TimeRange is selfmade MATLAB function which extracts the specified time

72 % interval from the complete data sequence

73 [InputPredMat_Elman,TargetPredMat_Elman,TimeVectorPred_Elman]= ...

74 TimeRange(Answer.start,Answer.end,Daten_Resampled_Table);

75

76 % Conversion of MATLAB Array to neural network data format

77 InputPred=tonndata(InputPredMat_Elman,false,false);

78 TargetPred=tonndata(TargetPredMat_Elman,false,false);

79

Appendices 152

80 %% Loading of network & configuration

81 % Loads the specified network and configures the input

82 Net_Elman=netcs_Elman{1,Answer.List};

83 [xP, XicP, AicP, tcP]=preparets(Net_Elman,InputPred,TargetPred);

84

85 % Computing network prediction

86 [Pred_Elman1, XcfP, AcfP]=Net_Elman(xP,XicP,AicP);

87 Pred_Elman=cell2mat(Pred_Elman1);

88

89 %% Average of all networks in a generation

90

91 y2Totalc=0;

92 for i=1:numNN

93 netci=netcs_Elman{1,i};

94 y2c=netci(xP,XicP,AicP);

95 if Answer.Best == 1

96 perfs_pred(1,i)=mse(tcP,y2c);

97 end

98 y2c=cell2mat(y2c);

99 y2Totalc=y2Totalc + y2c;

100 end

101 AveragePred_Elman=y2Totalc/numNN;

102 A=tonndata(AveragePred_Elman,true,false);

103

104 %% Output of testing erros in the console

105 disp(['Prediction Error - Netzwerk' ' ' num2str(Answer.List)])

106 disp(mse(tcP,Pred_Elman1))

107

108 disp('Prediction Error - Average')

109 disp(mse(tcP,A))

110

111 if Answer.Best == 1

112 [Best_Pred_Performance_Elman(1,1),Index_Best_Pred_Elman(1,1)]=min(perfs_pred(1,:));

113 [Worst_Pred_Performace_Elman,~]=max(perfs_pred(1,:));

114 disp(['Prediction Error - Bestes Netzwerk ' num2str(Index_Best_Pred_Elman)])

115 disp(Best_Pred_Performance_Elman(1,1))

116 PlottingInfoPred = [Hidden,sqrt(perfs_pred(1,Index_Best_Elman))];

117

118 for i = 3:(numNN+2)

119 PlottingInfoPred(1,i)=sqrt(perfs_pred(1,i-2));

120 end

121 end

122

123

124 %% Plotting Results

125 % Plots the results of the selected network and the average of all netowrks

126 % in a generation

127 % Input dialogue whether plots should be generated

128

129 if Answer.Plot == 1

Appendices 153

130 load 'SondenNamen.mat' % Loading of well names for plots

131 NumTarget=length(TargetPredMat_Elman(1,:));

132 delay=max(delayt_Elman);

133

134 Plot_HM_PR(TimeVectorPred_Elman,TargetPredMat_Elman,AveragePred_Elman,...

135 Pred_Elman,NumTarget,delay,Sonden,1);

136 end

137

138 %% Saving prediction file

139 % Saves a .csv file with all required data to plot the results in the

140 % program R using dygraphs

141 % Input dialogue for the file name

142

143 if Answer.Save==1

144 SavePred(TargetPredMat_Elman,Pred_Elman,AveragePred_Elman,...

145 TimeVectorPred_Elman,delayt_Elman)

146 end

147

148 %% Cleaning workspace

149 clear y2Totalc y2c prompt i netci ind defaultans num_lines answer dgl_title ...

150 prompt Prompt Answer Formats DefAns Cat Pred_Layrec1 A Net_Layrec j ...

151 Cancelled Title Option Options;

Appendices 154

Figure C1: Comparison of Original & fully recurrent network (Generation 9 with 13 hidden
neurons) Output for Well 1 in a time series plot. The upper graph depicts the whole
27 months period. The independent test set is shaded in grey.

Appendices 155

Figure C2: Comparison of Original & fully recurrent network (Generation 9 with 13 hidden
neurons) Output for Well 2 in a time series plot. The upper graph depicts the whole
27 months period. The independent test set is shaded in grey.

Appendices 156

Figure C3: Comparison of Original & fully recurrent network (Generation 9 with 13 hidden
neurons) Output for Well 3 in a time series plot. The upper graph depicts the whole
27 months period. The independent test set is shaded in grey.

Appendices 157

Figure C4: Comparison of Original & fully recurrent network (Generation 9 with 13 hidden
neurons) Output for Well 4 in a time series plot. The upper graph depicts the whole
27 months period. The independent test set is shaded in grey.

Appendices 158

Figure C5: Comparison of Original & fully recurrent network (Generation 9 with 13 hidden
neurons) Output for Well 5 in a time series plot. The upper graph depicts the whole
27 months period. The independent test set is shaded in grey.

Appendices 159

Figure C6: Comparison of Original & fully recurrent network (Generation 9 with 13 hidden
neurons) Output for Well 6 in a time series plot. The upper graph depicts the whole
27 months period. The independent test set is shaded in grey.

	Introduction
	Problem Statement

	Fundamentals
	Underground gas storage concept
	Types of UGS & Field data
	Data measurement & Management

	Literature Review
	Classical approach to reservoir management
	IPR for gas wells
	Skin & Non-Darcy Effect
	VLP for gas wells
	Nodal Analysis
	General reservoir simulation
	Wellbore storage & Transient effects

	Mathematical approach with artificial neural networks
	Multilayer Perceptron
	Neuron Model & Number of Weights
	Input normalization & Weight initialization
	Training of ANN
	Generalization

	Recurrent ANN
	Fully connected recurrent ANN
	Simple recurrent ANN
	NARX recurrent network
	Training of recurrent ANN
	Vanishing Gradients
	Echo State Network

	Data Management
	Description of available data
	Confidentiality agreement

	Gathering and preparation of data
	Missing values
	Double values
	Erroneous measurement
	Irregular sampling intervals

	Data statistics
	Time series plot
	Scatter plot
	Box plot
	Histogram

	Resampling
	Linear resampling and filtering
	Filtering in the time domain - Gaussian filter
	Filtering in the frequency domain
	Median filter
	Applied filtering approach

	Resampling with local polynomial kernel regression

	Quality control

	Methodology
	Agenda
	Data preprocessing
	Selection of input & output for ANN
	Obs-Well 1 as input

	Data separation
	Sampling frequency & Computation time

	Model Setup
	Overview of neural network programs
	MLP with RapidMiner
	Fully Recurrent ANN with MATLAB
	Smaller resampling interval

	Elman ANN with MATLAB
	NARX ANN with MATLAB
	ESN with MATLAB

	Results
	MLP ANN
	Fully recurrent ANN
	Smaller resampling interval

	Elman ANN
	NARX ANN
	Echo State Network
	Ranking of ANN types

	Conclusion
	Discussion and Outlook
	References
	Appendices
	Appendix A
	Appendix B
	Appendix C

