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Abstract

Abstract

Due to current structural change in energy systems (energy transition), the construction of wind

turbines in order to provide a sustainable production of energy rose to prominence in the last

couple of years. While investment in renewable energy has been supported by governments

in one way or the other in the past, ceased subsidy may strongly influence profitability in the

future. The costs of construction as well as for operations and maintenance (O&M) can be

significant. Unscheduled maintenance, often caused by breakdown of the turbine, has been

identified as a major part of overall (O&M) costs, owing to increased logistical expenditure

and lost revenue. As a consequence condition monitoring systems (CMS) more and more have

manifested themselves to measure behavior of the turbine or individual components in order

to provide diagnostic information. This in turn facilitates the scheduling of repair work as

well as allows the prediction and consecutive avoidance of component failures that may lead

to a breakdown. CMS can have access to various data sources in form of time series, that

include vibration, voltage levels or performance related information. Common CMS approaches

and related research likewise are often focused on anomaly detection in time series by applying

physical models and various transformations on the data (e.g. Wavelet transformation). The

usage of machine learning algorithms for prediction lacks a more thorough investigation.

The subject of this thesis is to contribute to the closure of this gap by applying two different

machine learning algorithms to performance related data of a wind turbine in order to detect

anomalies and predict events in defined future time intervals. Despite the technical nature of

this specific case, we aim to present the applied approach as valuable procedure for any time

series prediction as often occurring in the domain of predictive analytics. Besides physical time

series data also sequential event data were provided. Because of it’s proclaimed applicability for

modeling time series, a restricted Boltzmann machine (RBM) with Gaussian visible units has

been used. As it is a generative model the trained RBM can estimate the probability of a given

set of input variables, that are the sensor values at a specific point in time. In case the probability

falls below a threshold the occurrence of an event is predicted. The second applied algorithm was

a support vector machine (SVM), a binary linear classifier which is trained through supervised

learning. To examine the performances of the methods for the respective time interval a receiver

operating characteristic (ROC) was used. Thereby not only false event predictions but also

the number of missed events could be investigated. The results substantiate the approach to be

valuable for data analysis, although further improvements are possible. Furthermore, the derived

predictions can be enhanced by decision prescriptions in the sense of prescriptive analytics. A

link to entrepreneurial circumstances could enlarge practical benefits.
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Kurzfassung

Kurzfassung

Im Zuge der strukturellen Umstellung zu einer nachhaltigen Energieversorgung (Energiewende)

hat der Einsatz von Windkraftanlagen in den vergangenen Jahren an Bedeutung gewonnen.

Die Kosten sowohl für Errichtung als auch für Wartung und Betrieb können erheblich sein. Es

konnte festgestellt werden, dass außerplanmäßige Wartung einen wesentlichen Anteil der Kosten

ausmacht, welche erhöhten logistischen Aufwänden und Umsatzverlusten geschuldet sind. In-

folgedessen haben sich sogenannte Condition Monitoring Systems (CMS) etabliert, welche das

Verhalten der Anlage oder einzelnen Komponenten messen um diagnostische Informationen über

den Zustand liefern zu können. Dadurch kann die Planung der Wartungsarbeiten verbessert,

sowie eine Vorhersage und folgerichtige Vermeidung von Schäden ermöglicht werden. CMS

haben Zugriff auf unterschiedliche Zeitreihendaten, die z.B. Vibration oder Stromgrößen. CMS

und damit verbundene Forschungsarbeiten fokussieren oft die Anomalie-Erkennung in Zeitrei-

hen mithilfe physikalischer Modelle und verschiedener Transformationen. Der hingegen geringere

Einsatz von Algorithmen des maschinellen Lernens bedarf einer intensiveren Untersuchung. Der

Inhalt vorliegender Arbeit soll dazu beitragen diese Lücke zu schließen, indem zwei verschiedene

Algorithmen des maschinellen Lernens auf leistungsbezogene Zeitreihendaten angewandt werden,

um Ereignisse in zukünftigen Zeitintervallen vorherzusagen. Ungeachtet des technischen Charak-

ters des Anwendungsfalls, ist die Vorgehensweise auf jedwede Vorhersage von Zeitreihen - wie

häufig im Bereich von Predictive Analytics erforderlich - anwendbar. Aufgrund von Empfehlun-

gen gängiger Fachliteratur wurde eine Restricted Boltzmann Maschine (RBM) mit Gauß’schen

sichtbaren Knoten implementiert. Da sie ein generatives Modell ist, kann eine trainierte RBM

die Auftrittswahrscheinlichkeit von Eingangsvariablen, d.h. den Sensorwerten zu einem bestim-

men Zeitpunkt, abschätzen. Fällt die Wahrscheinlichkeit unter einen gewissen Schwellwert, wird

eine Anomalie vorhergesagt. Der zweite verwendete Algorithmus ist eine Support Vector Mas-

chine (SVM), ein linearer Klassifikator, welcher durch supervised learning trainiert wird. Um die

Leistungsfähigkeit der Methoden zu prüfen, wurde für verschiedene Zeitintervalle eine Receiver-

Operating-Characteristic (ROC) angewandt. Die Ergebnisse bestätigen, dass die Vorgehensweise

für Datenanalyse nützlich ist, obwohl Verbesserungen möglich sind. Überdies kann die gesamte

Methodik im Sinne von Prescriptive Analytics erweitert werden, indem die Prädiktion mit da-

rauf aufbauenden Handlungsvorschlägen ergänzt wird. Verknüpfungen zu Rahmenbedingungen

könnten so größeren praktischen Nutzen ermöglichen.
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Chapter 1. Introduction

1 Introduction

The introduction of this thesis shall give an appropriate overview of the context the work is

related to, as well as define and explain the terms in use. An extensive treatise of the topics

would by far exceed the scope of the thesis, so that for any additional information it shall be

referred to the referenced literature.

1.1 Predictive analytics

Predictive analytics is regarded as the second phase of business analytics[34], which in turn

refers to an extensive conglomeration of data-based practices to explore and investigate business

performance and to improve business planning.[4]

As can be seen in figure 1.1 predictive analytics shall be understood as to build on the pre-

ceding phase, thus inheriting techniques as well as methodology and leads to the final phase,

prescriptive analytics. However, the term of prescriptive analytics is not well defined so far and

thus the distinction to predictive analytics remains ambiguous and scrutinized.[56]

Descriptive Analytics

Predictive Analytics

Prescriptive Analytics How to benefit from an action? 
What is the impact of an action?

Business Analytics

What will happen? 
When will it happen?

What happened? 
Why did it happen?Inf

orm
ati

on
   

   
   

   
Op

tim
iza

tio
n

Figure 1.1: Phases of Business Analytics.

While descriptive analytics strives to explain past behavior by quantifying relationships in data,

predictive analytics seeks to predict trends and behavior patterns using data mining and ma-

chine learning techniques. If not deployed commercially the latter usually is accompanied - if

not even used synonymously - by the term predictive modeling for the purpose of emphasizing

the modeling of relationships prior to prediction.[40]
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Chapter 1. Introduction

Consequently prescriptive analytics is now considered to enhance the derived predictions with

meaningful action/decision prescription in order to optimize one or more predefined metrics by

linking them to given entrepreneurial circumstances (strategic directions, business processes, side

conditions etc.). Figure 1.1 further depicts the idea that evolving from descriptive to prescriptive

analytics is paralleled by changing the procedure’s objective from the gaining of information to

optimization.

As stated this extension does not quite serve for proper differentiation due to vagueness, so that

an additional perspective seems reasonable.

Given the characteristic of data-based decision support one may also integrate prescriptive an-

alytics into the realm of data science in general and data-driven decision making (DDD) in

particular as both have well established descriptions.

Figure 1.2 illustrates the connection between these two and explicitly separates them from

disciplines, which may be mistakenly confused to be data science, but belong to different activ-

ities - here jointly referred to as data engineering and processing.

The overall objective of data science is to facilitate and improve decision making by involving

certain principles, processes and techniques. DDD addresses the modus operandi of basing de-

cisions on data analysis rather than on pure intuition.1

Data Driven Decision Making

Data Engineering and 
Processing

Automated DDD

Data Science

Figure 1.2: Data science in the context of data-related processes.

Finally an overlap between DDD and data science exists, that represents business decisions

which are not only data driven but also partially or fully automated.[44]

With regard to our initial attempt of categorization it becomes evident that the discipline of

prescriptive analytics can belong to this overlap, whereas predictive analytics cannot. While the

former automatically extends the range of application for information based on prediction, the

latter strictly pertains to data science, because the final use of the prediction’s results maintains

1It has been shown extensively that enterprises following this practice turn out to be more productive. Actually
there exists a positive correlation with return on assets, return on equity, asset utilization and market value.[10]
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Chapter 1. Introduction

to be user-driven.However, prescriptive analytics does not explicitly match the definition of au-

tomated DDD as analytics, in general, aims at facilitating decisions in business planning rather

than fully automating processes.2

One may conclude that a differentiation is legitimate due to a reduced user-driven decision

making by optimization with respect to user-defined metrics, while a full automation is not the

general purpose of analytics.

Nevertheless, predictive analytics as well as prescriptive approaches find a use in a myriad

of different application fields including marketing, financial services, actuarial science or phar-

maceuticals.

1.1.1 Related Disciplines

To conduct predictive analytics one makes use of various analytical techniques or process models

(see section 1.1.2) of related disciplines. However, it has to be stated, that the scientific commu-

nity provides different perspectives in regard to the relationship of the individual disciplines to

each other. While this thesis considers3 predictive analytics as part of business analytics irre-

spective to data mining, which is in turn a sub-field of computer science[16], Finlay et.al.(2014)

proposes, that the former is actually a sub-area of the latter.[19]

Data mining

’Data mining is the process of automatically discovering useful information in large data respos-

itories’ [53]. It seeks to discover useful and novel patterns (features) using methods of machine

learning and statistics. Furthermore it comprises the capability of prediction. Though the

term is used as a buzzword for any information discovery involving large-scale databases, and

even for preparatory steps, the distinction to information retrieval is clear and well-defined. In

fact information retrieval is relying on traditional computer science techniques and focuses on

more trivial features and the reorganization of data. Data mining uses methods, whose origin

is statistics and machine learning, such as estimation, hypothesis testing, search algorithms or

modeling. The tasks are generally separated into two major classes.[53]

• Predictive tasks aim to predict values (targets) of particular attributes based on others

(explanatory variables).

• Descriptive tasks on the other hand seek to discover patterns such as correlations,

clusters or anomalies in data.

Within these classes one can in turn identify four core tasks, which are cluster analysis, associ-

ation analysis4, predictive modeling and anomaly detection, whereas the latter two will take a

central role in this thesis.
2Although this is in dispute as some professionals consider them to be synonyms (e.g. [59]).
3The considerations were motivated by ideas from Provost (2013)[44].
4Association rule learning is a very prominent method of data mining to discover interesting relationships
between variables, which is known for its application in retail business (market basket analysis)[1].
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Chapter 1. Introduction

Machine Learning

An often quoted definition of machine learning has been proposed by Mitchell (1997)[37]:

A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T , as measured

by P, improves with experience E.

Historically machine learning can be seen as a branch of artificial intelligence, although the

strong statistical line of research of the former caused a rift between the two. In machine

learning systems are designed and trained to learn from data, improve with experience and can

be used to predict outcomes based on previous learning. The manifold algorithms in machine

learning can be generally categorized based (1) on their characteristic learning type or (2) their

application, that is the desired outcome.[5][46]

The learning type is depending on the form of the learning signal the system has access to and

falls into the following classes:[46]

• Supervised learning refers to training with labeled data. That is, for every training

example exists an explanatory variable (input) and the desired output value.5

• Unsupervised learning algorithms, on the contrary, cope without labels and seek to

find hidden patterns or structure in the input data.

• Reinforcement learning comprises a different setting. In fact it studies the behavior of

agents taking actions in a dynamic environment to maximize some reward.

As mentioned machine learning algorithms can also be classified according to the desired output

which includes the following.[46]

• Classification

Input data belong to different classes and the algorithm seeks to assign unseen inputs to

one or more of them.

• Clustering

Clustering aims to divide input data into groups, but on the contrary to classification, the

groups are not known prior to training.

• Regression

Hereby the output values are not discrete but continuous.

Examples for algorithms are neural network, restricted Boltzmann machine Bayesian network,

support vector machine, random forest, self-organizing map or Q-learning.

5One furthermore distinguishes between the principle of reasoning from observed training cases to general rules
(transduction) or reasoning from observed training cases to specific test cases (Induction).
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1.1.2 Process model

Due to the magnitude of different problem cases, incorporated disciplines and potential solutions,

a process model for standardization of the overall procedure is necessary to allow consistency,

repeatability and objectiveness.

As no specific structure for predictive analytics applications exists, one may incorporate well-

established models from related disciplines.

Cross Industry Standard Process for Data Mining

The Cross Industry Standard Process for Data Mining (CRISP-DM) is a non-proprietary, doc-

umented, freely-available data mining model established in 1996. As illustrated in figure 1.3

the model comprises six process phases with clearly defined tasks consolidated in an iterative

design. The illustration as well as the following description is taken from Shearer (2000).[49]

 

Data

Business 
Understanding

Data 
Understanding

Data 
Preparation

Modeling 

Evaluation 

Deployment 

Figure 1.3: The CRISP-DM.

• Business understanding

Considered as outstandingly important the phase’s focus is firstly to determine the ob-

jectives and success criteria from a business perspective. Secondly the situation has to

be properly assessed in regard to requirements, available resources, constraints, risks as

well as costs and benefits. Finally one converts the knowledge into a data mining problem

definition which in turn allows the draft of a project plan and an initial assessment of

techniques.

• Data understanding

This phase involves initial collection and description of data. Furthermore the familiarity

Montanuniversität Leoben 5 Elmar Steiner



Chapter 1. Introduction

with the data is increased by exploration, gathering a-priori information and establishing

hypotheses about hidden information. The verification of data quality (i.e. completeness,

erroneousness) is also particularly significant.

• Data preparation

Based on the predefined goals as well as technical and quality constraints (e.g. limits of

data volume or type) tables, records or attributes of data are selected for the further anal-

ysis. This reduction is often coercive facing ’big data’ volumes nowadays. However, many

data mining techniques are also quite delicate to unnecessary but impairing variables.

Further steps are cleaning of data, integration of data from multiple sources and transfor-

mation into an applicable format as required by the respective algorithm.

• Modeling

The primary objective during this phase is to establish some sort of model or pattern

capture of the data. Thus, one has to select the appropriate technique, test the validity

and quality by running empirical tests,6 then run it on the prepared data and eventually

interpret the models according to the domain knowledge or the success criteria. This

process is paralleled with the setting and adjustment of the model’s parameters.

• Evaluation

Before the final deployment can take place, a thorough evaluation of the model is necessary.

While it’s general accuracy and capability has been addressed in the previous phase this

phase assesses to which extent the model achieves the business objectives and explicitly

which objectives could not have been met.

At this point also the whole process and its phases undergo an exhaustive review in order

to detect deficiencies in the approach and as depicted in 1.3 one must now decide whether

going to deployment or to initiate another process iteration.

• Deployment

The very last phase resembles well-known procedures in project management and covers

the definition of the deployment strategy, the planning of monitoring and maintenance

(especially in case of a integration into daily business), production of a final report and

finally the review of the whole project.

Figure 1.3 makes it explicit that iteration is a crucial component of this process model. It

emphasizes that a complete and entire problem understanding is not premised but evolving

during the process. So does the understanding of the given data or the appropriateness of

the applied model. Actually even the evaluation may reset the business objectives and thus

recommence the cycle.

6It shall be noted that determining the strength of a model is rarely trivial. In supervised data mining tasks
this is usually done by somehow quantifying the error of the prediction.
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The KDD Process

The process of knowledge discovery in databases (KDD) is based on a different, more holistic

perspective. In contrary to CRISP-DM the KDD process understands data mining as a single

step in the overall process of knowledge discovery (see figure 1.4), which is in turn defined as

The nontrivial process of identifying valid, novel, potentially useful, and ultimately

understandable patterns in data.[18]

Data Target 
Data

Selection Preprocessing Transformation Data Mining Interpretation

Preprocessed 
Data

Transformed 
Data

Patterns Knowledge

Figure 1.4: The steps of the KDD process.

The process is designed to be iterative and consists of the steps below[18], nevertheless the form

of iterative transitions between steps are not as clearly defined as in CRISP.

• Selection

This phase includes the acquisition of prior knowledge of the application domain and the

establishment of business targets. Based on the captured information one selects relevant

parts of the dataset or focuses on a reduced number of variables.

• Pre-Processing

Processing of data comprises cleaning (e.g. filling missing data fields), noise reduction or

the elimination of outliers if expedient.

• Transformation

The characteristics of the data may require a dimensionality reduction or a transformation

method to a different domain (e.g. Fourier tranformation).

• Data mining

This essential part of the process comprises not only the actual search for patterns, but

also the prior determination of function (e.g. classification, regression, clustering) and the

appropriate algorithmic methods or models. The latter further includes parameter setting

and optimization.

• Interpretation and usage

Eventually the discovered patterns are interpreted and evaluated, which includes visualiza-

tion and translation of the discovered results into a form understandable by the user. At

this point - with the awareness of the actual outcome - one may also return to a previous

step in order to improve the overall result.
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The authors of the KDD process try to emphasize that preliminary or planning phases deserve

equal attention and valuation as the actual data mining and are often overlooked in other

process schemes.[18] However, it has to be stated that the contents, as described above, can be

found in CRISP-DM as well, although the arrangement and the denotation of steps differ.[18]

A comparison is illustrated in table 1.1[3].

KDD CRISP-DM

Selection Data preparation / Business understanding

Pre-processing / Transformation Data understanding / Data preparation

Data mining Modeling

Interpretation Evaluation / Deployment

Table 1.1: Comparison of process steps.

1.2 Time series analysis

Time series are sequences of observations Xt ∈ {Xt}, that are listed in time order. Usually these

observations are captured at successive equally spaced points in time. Domains of occurrence

are manifold and include meteorology, economy and finance, marketing, industry or biology.

The analysis of data in form of time series has multiple reasons also depending on the domain

and can be generally categorized as follows.

• Prediction of future data points based on past observations

• Understanding of the underlying mechanism, which defines the time series

• Control of the process producing the series

• Description of non-trivial salient features of the data

It has to be stated that although time series often represent processes that change in a con-

tinuous way, in practice digital recording is done discretely in time. The measured values are

considered to be a combination of a systematic part, which is a deterministic function of time,

and a stochastic sequence (i.e. a residual term, also called noise). Furthermore one distinguishes

univariate and multivariate time series, depending on the number of variables that are measured

at each point in time.

In time series analysis the pivotal aspect is to determine how observations are related to each

other in time, which is called autocovariance.[39] This is measuring the degree of second order

variation, that is the covariance σ2, between two elements at two different times. Formally the

autocovariance between Xt and Xs of a process {Xt} is defined as

cov(Xt, Xs) = E[{Xt − E(Xt)}{Xs − E(Xs)}]. (1.1)
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1.2.1 Stationarity

Simply put, the statistical properties of a stationary process do not change over time. Formally, a

stochastic process is called strictly stationary when the joint statistical distribution ofXt1 , ..., Xtl

is the same as the joint statistical distribution of Xt1+τ , ..., Xtl+τ for all l and τ . This signifies,

that all moments of all degrees are identical throughout the process. Consequently the joint

distribution of (Xt, Xs) is the same as (Xt+r, Xs+r), showing clearly that it cannot depend on

s or t but only on the distance between them.[39] A weak stationary process allows mean and

variance to be independent of t and thus the autocovariance between Xt and Xt+τ , with τ ∈ N+,

can only depend on the so called lag τ and hence

γ(τ) = cov(Xt, Xt+τ ). (1.2)

Another widely used measure is the autocorrelation of a process, which is a normalized version

of autocovariance to values between -1 and 1:[39]

ρ(τ) = γ(τ)/γ(0), (1.3)

with τ ∈ N+ and γ(0) = cov(Xt, Xt) = var(Xt).

However, one should consider stationary processes as models, which may not fit the needs of

real-world problems.Time series can be non-stationary due to multiple reasons. Very common

ones, however, are trends in mean, caused by the presence of a unit root7 or a deterministic

trend. While in case of a deterministic trend, referred to as trend stationary process, effects

given a stochastic shock are transitory, in the case of a unit root they are permanent.

A trend stationary process can be transformed to a strictly stationary process by eliminating

the underlying trend. Applying differencing can make processes with unit roots stationary.

Stationarity testing

There are multiple ways to determine whether a time series is stationary, whereas the respective

effectiveness strongly coheres with the complexity of the stationarity violations. As mentioned

quite common but already challenging effects are mean change, variance change or change in

the autoregressive coefficients. Time series in engineering domains may constitute even more

complex issues as long range dependence, fractional integration or pink noise. Hence, analyzing

data in frequency instead of time domain may facilitate the determination. This so-called spec-

tral approach is often implemented by applying Wavelet or Fourier Transforms to the data.

The basic idea of testing is to consider alternative hypotheses Hi for any assumption of sta-

tionarity (null hypothesis H0). It has to be stated that albeit tests for complex effects have been

developed (e.g. Dickey-Fuller test, Priestley-Subba Rao test (PSR)), formal hypothesis tests tend

to concentrate on a specific type of alternative being insensitive to others at the same time.[39]

As a logical consequence various tests are applied jointly on the data, which is called a multiple

hypothesis test and in turn constitutes a severe drawback, referred to as multiple comparison

problem.

7A stochastic process has a unit root if 1 is a root of the characteristic equation.
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This problem arises when a set of statistical inferences are conducted simultaneously, since

errors in inference - false positive hypothesis tests in this case8 - are more likely to occur by

multiple testing on identical samples. A common measure to counteract this accumulation of

type I errors is the Bonferroni correction. It follows Boole’s inequality and is based on the idea

that the familywise error rate (FWER) is derived by testing each of the m hypotheses at a

significance level of α ∗ 1
m , where α is the desired overall significance level.

1.2.2 ARMA models

ARMA models are capable of describing (weakly) stationary processes and are a common ap-

proach for modeling univariate time series. Actually they are a concatenation of a autoregressive

model (AR) and amoving average model. Those are in turn very basic probability models, which

are commonly used to model time series.

Moving average models

A moving average model represents a linear combination of lagged elements of a process, {ϵt}.
In other words it specifies, that the output is linearly depending on the current and various past

elements of a stochastic process. Formally, a moving average process {Xt} is defined as

Xt = µ+ θ0ϵt + θ1ϵt−1 + ...+ θqϵt−q = µ+

q∑
i=0

θiϵt−i, (1.4)

where µ is the mean of the process, θ0, ..., θq are the model’s parameters, q is the order of the

model and ϵt, ..., ϵt−q are white noise9 error terms, which are considered to be independent,

identically distributed (iid) variables sampled from a Gaussian normal distribution. It is usually

denoted as MA(q).

Instantly one can derive interesting statistical properties of this model:10

E(Xt) = E

(
µ+

q∑
i=0

θiϵt−i

)
= µ+

q∑
i=0

θiE(ϵt−i) = µ (1.5)

var(Xt) = var

(
µ+

q∑
i=0

θiϵt−i

)
=

q∑
i=0

θ2i var(ϵt−i) = σ2
q∑

i=0

θ2i (1.6)

γ(τ) = cov

⎛⎝µ+

q∑
i=0

θiϵt−i, µ+

q∑
j=0

θjϵt−τ−j

⎞⎠ = σ2
q∑

i=0

q∑
j=0

θiθjδj,i+τ . (1.7)

δu,v represents the Kronecker delta, that is 1 for u = v and zero otherwise. Given this property

8In statistical hypothesis testing formally referred to as type I errors.
9The term white noise describes a random signal with constant power spectral density.

10For the full derivations see [39].
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yields

γ(τ) =

q−τ∑
i=0

θiθi+τ , (1.8)

which effectively is an autoconvolution of {θi}. One can take from equation 1.8 that the auto-

covariance is obviously zero for lag τ > q. This important feature can be used to estimate the

model order q using the sample autocovariance function γ̂(τ) for an actual time series x1, ..., xn,

which is defined as

γ̂(τ) =
n−τ∑
i=1

(xi − x̄)(xi+τ − x̄). (1.9)

By examining the sample autocovariance (or the sample autocorrelation ρ̂) for τ = 0, ..., n − 1

one is able to determine where it becomes negligibly different from zero, which is only the case

for lags of q + 1 or higher.

Autoregressive models

As the very name already implies, these models specify that the ouput value depends linearly

on its own previous values and on a stochastic term. They are denoted as AR(p) and defined as

Xt = c+ φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + ϵt = c+

p∑
i=1

φiXt−i + ϵt. (1.10)

Whereby φ1, ..., φp constitute the parameters of the model, c is constant and ϵt white noise.

While an MA(q) is always stationary, autoregressive models may not as they can contain a unit

root. If they are, however, statistical properties of the model can be derived likewise, although

higher order p constitute substantial complexity.11[39]

E(Xt) = E

(
c+

p∑
i=1

φiXt−i + ϵt

)
=

c

1−∑p
i=1 φi

= µ (1.11)

γ(τ) =

⎧⎨⎩σ2 +
∑p

i=1 φiγ(i) if τ = 0∑p
i=1 φiγ(τ − i) if τ ∈ N+.

(1.12)

Combination to ARMA models

It has to be noted that AR and MA model different types of stochastic dependence. While AR

processes comprise a Markov-like behavior, MA processes combine elements of randomness from

the past using a moving window. The combination of these to a ARMA(p,q) model was firstly

described in 1951 by Peter Whittle and follows a simple concatenation s.t.

Xt = c+ ϵt +

p∑
i=1

φiXt−i +

q∑
i=1

θiϵt−i. (1.13)

11In order to do so the AR(p) process is actually turned to an MA(∞) process by recursively applying formula
1.10. For the full derivations see [39].
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They rose to prominence in the 1970’s, when George E. P. Box and Gwilym M. Jenkins pos-

tulated an effective iterative method for fitting of the models - the Box-Jenkins method. This

procedure involves examining the sample autocorrelation functions to decide the order of MA

or AR terms and further covers the elimination of deterministic trends or outliers.[39]

1.2.3 ARIMA models

An autoregressive integrated moving average (ARIMA) process can be seen as a generalization

of an ARMA process. The ’integrated’ corresponds to an initial differentiation of the time series

of d times, which is reducing the non-stationarity. In order to make the formal distinction

more intuitively accessible the definition of an ARMA(p,q) model given equation 1.13 can be

equivalently written as

Xt − φ1Xt−1 − ...− φp′Xt−p′ = ϵt + θ1ϵt−1 + ...+ θqϵt−q (1.14)

and consequently ⎛⎝1−
p′∑
i=1

φiL
i

⎞⎠Xt =

(
1 +

q∑
i=1

θiL
i

)
ϵt, (1.15)

where the left part of the equation represents the autoregressive model and the right part the

moving average model. L represents the so-called lag operator that produces the previous

element of a time series when applied to the current one (i.e. LXt = Xt−1 for t > 1). In case of

non-stationarity due to the presence of a unit root (a factor (1 − L)) of multiplicity d12 in the

characteristic polynomial
(
1−∑p′

i=1 φiL
i
)
it can be written as⎛⎝1−

p′∑
i=1

φiL
i

⎞⎠ =

⎛⎝1−
p′−d∑
i=1

ϕiL
i

⎞⎠ (1− L)d. (1.16)

Combining this with equation 1.15 yields⎛⎝1−
p′−d∑
i=1

ϕiL
i

⎞⎠ (1− L)dXt =

(
1 +

q∑
i=1

θiL
i

)
ϵt, (1.17)

which is commonly referred to as ARIMA(p, d, q) process. The key aspect when estimating the

latter is to successively differentiate the data until the time series appears stationary given a

specific value of d.[39]

1.2.4 Machine learning concepts for time series prediction

The classical statistical models (e.g. ARMA), constituting the established approach in predict-

ing time series, more and more compete with machine learning techniques as support vector

machines, neuronal networks or decision trees. While those methods primarily focused on the

classification domain at first, their applications extended also to regression tasks and they proved

12In case the characteristic polynomial of a stochastic process has 1 as a root, commonly referred to as unit root,
the process is integrated of order one. If 1 is a multiple root of order d, the process is integrated of order d.
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their efficiency, though some perform better than others.[2]

Ahmed et.al.(2010) conducted an empirical comparison of machine learning models applied on

the M3 time series competition data of the International Institute of Forecasters.13

The comparison sought to quantitatively determine the efficiency of selected methods, which

included multilayer perceptron, Bayesian neural networks, K-nearest neighbor regression, regres-

sion trees, support vector regression, generalized regression neural networks (also called kernel

regression), radial basis functions and Gaussian processes. As a measure of error served the

symmetric mean absolute percentage error (SMAPE) and the average rank R̄, and for the case

that no special pre-processing was conducted, the results are as illustrated in table 1.214. While

SMAPE is intuitively comprehensible and given in equation 1.18, the average rank R̄ requires

more explanation. The crucial aspect is to determine whether some methods outperform others

at specific tests significantly, although they might not in the overall performance. After com-

puting the performance rank of each method q on each time series p, Rq(p) (1=best, 8=worst),

the average performance rank of each model R̄q can be obtained by averaging Rq(p) over all p.

SMAPE =
1

n

n∑
i=1

|ŷi − yi|
(|ŷi|+ |yi|)12

(1.18)

The α% confidence intervals given the number of methods Q as well as the amount of time series

(i.e. tests) P are defined as[2]

R̄q ± 0.5qαQ

√
Q(Q+ 1)

12P
(1.19)

where qαQ is the upper α percentile of the range of Q independent standard normal variables.15

Model SMAPE Mean rank

MLP 0.0857 2.78

GP 0.0947 3.17

SVR 0.0996 4.19

BNN 0.1027 3.42

KNN 0.1035 5.10

RT 0.1205 6.77

GRNN 0.1041 5.24

RBF 0.1245 5.33

Table 1.2: Comparison of selected machine learning methods for time series forecasting on M3 data.

Another concept, which has received attention more recently, is the Conditional Restricted Boltz-

mann Machine (see section 4.3), which is especially suitable for the prediction of multivariate

time series.[31]

13The M3 data has become an important benchmark for testing forecasting models.
14The results are based on testing of a number of methods Q = 8 on an amount of time series P = 1045.
15For the detailed derivation and the preconditions for this test see Koning et.al.(2005)[30]
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1.3 Wind turbine

Since this work addresses analytics applied to wind turbines and their data (for the detailed

problem specification see section 2) - the following section shall give a brief overview of the

major aspects. A complete description including formulas or derivations would exceed the scope

of this work. Thus, it shall be referred to the extensive and detailed treatises of Hau (2008) and

Gasch et.al (2005) on which this overview is based if not stated otherwise. [25][22]

1.3.1 Construction design

As all wind turbines are energy converters, regardless of constructional layout they share the

property of transforming the kinetic energy of moving air masses into mechanical rotational

energy. However, one generally distinguishes based on the exploited aerodynamic principle,

resistance or buoyancy. The former comprises a low level of efficiency16 and therefore has no

relevance for technical applications except anemometers. The buoyancy runners in turn can be

differentiated with respect to the orientation of their power train. Vertical turbines do not need

any yaw control for wind direction tracking, but constitute severe disadvantages when applied to

greater dimensions. Consequently only buoyancy runnners with horizontal power train axis have

been widely accepted. Figure 1.5 illustrates two different wind turbines with vertical axis, while

the one on the left, the Savonius rotor, is based on resistance the other, a two-blade Darrieus

rotor, on buoyancy.

Figure 1.5: Wind turbines with vertical axis

The prevailing design principle of wind turbines with horizontal axis (HAWT) is a blade oriented

16In fact it is easy to see that peripheral speed of resistance runners - the relevant component of the resulting
force - can not exceed wind speed and is consequently limiting potential power output.
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architecture of the rotor as depicted in figure 1.6[25].

The figure also schematically illustrates the principle components of a turbine, albeit their design

as well as their setup may vary in practical construction.

Rotor

The rotor constitutes the centerpiece of the tur-
bine, converting the wind energy into kinetic
energy of rotation.
The rotational speed Ω represents a crucial de-
sign parameter and is connected to wind speed
v over the so-called tip-speed ratio λ. This is
in turn the proportion between the velocity of
circulation at the end of a blade and the inflow-
ing wind speed, s.t. λ = ΩR/v with the length
of the blade R. The tip-speed ratio serves as
basis for the aerodynamic design of blades as
well as for the construction of the nave, since
it strongly influences the arising torsional mo-
ment.
The number of blades is usually set to three,
because, due to a more even distribution of the
inertia and aerodynamic forces over the swept
area, the operation is smoother and thus re-
duces the stress on the components. The blades
themselves are nowadays made of carbon or
glass fiber reinforced plastic and differ in di-
mensions and geometric profile, depending on
a.o. usage and design parameters.
There are two different concepts for power lim-
itation, to prevent the turbine from operating
beyond their design. The first approach, al-
ready introduced in the 80’s, is based on the
stall effect and was applied to rotors that op-
erated at constant rotational speed. At high
wind speeds the angle of attack at the blade
would get too big and consequently lead to
stalling. Due to the disadvantageous inertia of
the concept, automatic controls that pitch to
stall also exists. The second approach, pitch
to feather, similarly relies on adjustment of
the rotor blade, but in the opposite direction.
Since the air stream is in contact throughout
the regulation, this limitation control operates
smoother, though the angle of adjustment is
bigger.

.HORIZONTALACHSEN-ROTOREN 

Bild .: Horizontalachsen-Windkraftanlage, schematisch

nave with  
pitch control

rotor blade

rotor shaft 
and bearing

gearbox
mechanical brake

generator

switchgear and 
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transformer
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Figure 1.6: Schematic structure of a wind turbine with
vertical axis.

Nacelle

Inside the nacelle all remaining parts of the drive train are located, that usually includes the bear-

ings of the shaft, gearbox, couplings and brakes as well as the generator and the control system.
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The arrangement can broadly differ depending on manufacturer or conditions of use. Never-

theless one distinguishes between disintegrated or integrated architectures. A very prominent

example of the former are the gearless drop-shaped wind turbines of the company ENERCON.

In this case the rotor shaft is directly attached to the generator omitting any gearbox, brakes or

couplings. The generator’s spinning rate is then equivalent to the rotor’s, which is compensated

by increased diameters and a higher number of magnets.

The nacelle also houses sensors measuring wind speed or vibration of the shaft and the yaw

control, that moves the turbine into the correct direction by adjusting the azimuth angle.

Control system

The control system comprises the switchgear and the programmable logic controller(PLC),

that controls and monitors the system. Commonly a supervisory control and data acquisition

(SCADA) system exists on top, which allow the remote monitoring and process data acquisition

(such as wind speed, rotational speed, electrical flows, azimuth angle etc.).

Tower

The height of the tower usually depends on the geographic conditions of use and on the size

of the rotor blades. Since wind speed is increasing with height and hub heights beyond the

turbulent bottom boundary layer generate higher energy output the height constitutes a major

profitability criteria.

While off-shore wind turbines are typically lower, comprising a ratio between height and diam-

eter of 1.0 to 1.4, on-shore turbines exhibit a ration between 1.2 and 1.8. The maximum height

is further limited by the availability of cranes for the erection. Modern installations use towers

about 65m high.

Common constructions concepts include conical tubular steel towers or the use of high-performance

concrete. Hybrid versions of pre-stressed concrete and steel have the advantage of combining

the good structure damping of concrete towers with the easier assembly of steel towers. They

furthermore constitute a solution to transport issues arising with big steel segments.

1.3.2 Costs and profitability

The review of costs and profitability of wind turbines can naturally be only a snapshot, as

they are subject to constantly changing economical, juridical and technical circumstances (e.g.

demand, manufacturing processes). Nevertheless, the costs clearly depend on some characteris-

tic properties. Conventional considerations link the construction costs to the performance and

therefore employ the relationship of building costs per kilowatt. The dimensions of the rotor

and the height of the tower are also commonly used as parameters, though the ratio between

investment costs and energy production is still important for profitability assumptions. Fur-

thermore, a comparison to conventional installations is only valid if the operating life per year

is comparable.

The construction costs, however, are said to amount for 1.0 ∗ 106 EUR/MW for on-shore and

about 1.5 ∗ 106 EUR/MW for off-shore projects[57], which has also been shown analytically
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through Hau (2008) by considering component costs and cubic capacity.

Modern inland wind turbines have powers that range from 2.5 MW up to 6.0 MW, off-shore

turbines are built up to 8.0 MW. In order to compete with traditional/fossil sources in regard

to power production17, the erection of a multitude of turbines becomes obligatory (e.g. the East

Anglia THREE is a planned wind park in the Northern Sea comprising 172 turbines producing

1200 MW[48]).

The operating costs can differ significantly, depending on the location and the technological

standard of the turbine. Gasch et.al. (2005) indicate costs of energy (COE) of 6.5 ct/kWh,

according to Walford (2006)[57] modern turbines can create COE of 3.5 to 6 ct/kWh.

Investment in renewable energy production has been strongly supported by governments in the

last couple of years. While at the beginning this was effectuated in form of funding, today

statutory feed-in compensation prevails in Germany through the Erneuerbare-Energien-Gesetz

(EEG). This law basically sets a yearly fixed minimum energy price for each kWh produced by

a wind turbine, differing between on- and off-shore locations (see table 1.3 for the 2016 feed-in

compensations)[11].

Type First operation Basic compensation [ct/kWh] Initial compensation [ct/kWh]

On-shore 2016 4.58 8.53

Off-shore 2016 3.90 15.40

Table 1.3: Statutory feed-in compensation in DE 2016 according to EEG. The initial compensation is valid for 12
years.

1.3.3 Operation and maintenance

Operation and maintenance (O&M) constitute a major portion of costs, representing around

75-90% of a turbine’s overall costs based on a 20-year life cycle - although the costs may de-

crease with higher turbine dimension. The costs can be separated into categories of operations,

scheduled maintenance and unscheduled maintenance, whereas the latter is the most difficult to

predict and can represent 30-60% of the total O&M. The variety and complexity of the turbine’s

components encourages malfunctions, that may lead to a shut-down of the whole turbine.[57]

The related cost of a breakdown can in turn be divided into direct and indirect costs: The direct

ones include labor and equipment costs that arise through the repair or replacement. The latter

are associated with the lost revenue due to downtime. They depend on the total repair time

involving any processes connected to the repair, such as acknowledgment, diagnosis or the actual

replacement activity. The costs also depend on the economic and meteorological circumstances.

That is, they depend on energy price and appropriate wind speed downtime.[57] Another influ-

ence on the costs represents the arrangement of components in the turbine. Specifically, in case

of an integrated design, a breakdown can cohere with the replacement of the whole rotor, which

evidently correlates with increased expenditure.

17A typical coal power station can reach up to 1000 MW per block-unit. The conceptual study of a 600 MW
black coal power station in Nordrhein-Westfalen calculated construction costs of 478.8 ∗ 106 EUR[35].
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Reduction of maintenance costs

Walford (2006) has postulated the following measures to prevent and reduce maintenance costs[57],

though they are partially valid for any industrial plant:

• Improving system reliability

This involves identifying critical components in order to focus on their monitoring, inven-

tory and logistic issues they may comprise. A further essential action to improve stability

is to see failure as opportunity for improvement. That is, one determines the root cause

of a problem and evaluates the defective part for redesign.

• Logistics plan

A logistics plan can facilitate the efficiency of the repair process, optimizing the schedule

of necessary tasks or the execution of sub-processes.

• Improving maintainability

Maintainability is commonly referred to the ease and the efficiency of performing main-

tenance. It may include improving accessibility to components that are prone to defects

or easements for the process of replacement as markings. The perspective of maintenance

should be considered even in the very early stage of design.

• Condition monitoring

Condition monitoring systems more and more manifest themselves in preventive mainte-

nance concepts. The basic idea is to measure the behavior of the turbine or its individual

components to provide diagnostic information. This significantly facilitates and optimizes

the scheduling of repair work as well as allows the prediction and consecutive avoidance of

component failures that may lead to a breakdown and lost revenue. Condition monitoring

can either be on- or offline, whereby the former can be incorporated into SCADA systems.

Common measured data include vibration, temperature, voltage levels or performance

related information and are usually provided as time series.
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2 Problem Statement

The problem statement shall firstly provide a profound motivation for the content of this work

and secondly states and concisely describes the objectives of the thesis.

2.1 Motivation

The motivation for this thesis consists of three considerations, of which two are devoted to the

specific problem case and the remaining to machine learning in analytics.

1. The prognosis of overall energy demand expects a worldwide increase by a third by 2040

according to the World Energy Outlook, whereas the entire growth is caused outside of

OECD countries[29].18 Due to current structural change in energy systems (energy tran-

sition), the construction of wind turbines in order to feed this increasing demand in a

sustainable way rose to prominence in the last couple of years. In fact the produced wind

energy in Germany reached the amount of 85 TWh in 2015 (see figure 2.1). While energy

production using fossil energy sources declined, wind energy rose by 50% with respect to

the preceding year (see figure 2.2). The total installed capacity worldwide is expected to

more than double by 2020[21].
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Figure 2.1: Electricity generation in Germany 2015 by source of energy.[12]

2. As outlined in the introductory sections 1.3.2 and 1.3.3 costs of operation and maintenance

of wind turbines can crucially affect profitability of the investment. Constituting up to

60% of maintenance costs, unscheduled maintenance is in turn a major cost factor. As a

consequence condition monitoring systems (CMS) more and more manifested themselves

to measure behavior of the turbine or individual components in order to provide diagnostic

information. This facilitates the scheduling of repair work as well as allows the prediction

18Because of higher efficiency in consumption the EU will reduce consumption by 15% , Japan by 12% and the
U.S. by 3%.[29]
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Figure 2.2: Change of electricity generation in Germany from 2014 to 2015.[12]

and consecutive avoidance of component failures that may lead to a breakdown (preventive

maintenance).[57]

CMS in wind turbines typically measure vibration, acoustic emission, strain or electrical

effects. However, the usual approach and related research likewise mainly focuses - simply

put - firstly on the technical implementation of measurement, secondly on signal processing

in form of Fourier transformation orWavelet transformation and thirdly on the application

of physical models, the technical process shall obey.[21][24] Subsequently and given the

model one computes from a set of observations the causal factors that produced them,

which is called an inverse problem. Alternatively one may apply a more abstract model

and train it with machine learning, which has been done (e.g.[45][36]) to a lesser extent,

although they might capture more non-trivial patterns or effects in the data.

Furthermore the temporal horizon of the prediction (i.e. the earliness of the anomaly

detection with respect to the moment when the anomaly is affecting the system) often

lack a more thorough investigation.

3. The modeling and prediction of time series takes a central role in predictive analytics.

Established methods such as ARIMA may not always be applicable (see introductory sec-

tion 1.2). According to literature the machine learning concept of a restricted Boltzmann

machine (RBM) has proven usefulness in different domains[31][32], albeit the applicability

has only been investigated to a limited extent so far.

Since the amount of installed capacity of wind energy production is increasing significantly in

future and profitability is more and more determined by unscheduled maintenance costs, evolved

CMS technology receives a pivotal role (which holds in general for various technical applications).

As machine learning is currently not in the focus of CMS-related research, the content of this

thesis shall firstly contribute to the closure of this gap. Secondly, giving the fact that the RBM

has not been extensively investigated yet, the work examines another specific application for

the model. Finally we seek to present the applied approach, despite the technical nature of this

case, as valuable procedure for any time series prediction as often occurring in the domain of

predictive analytics.
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2.2 Objectives

The major objective of this work is to apply a restricted Boltzmann machine to a large amount

of performance-related time series data provided by on-shore wind parks in order to predict the

occurrence of events. To allow evaluation of the performance the concept will be compared with

another machine learning algorithm - the support vector machine. Due to the different character

of the methods a secondary goal shall be to develop an appropriate setting of implementation.

The methods’ performance shall be compared in regard to their capability of detecting events

based on time series data as well as to the earliness of detection. However, there will be no

categorization of events, whether being a breakdown or of a different kind, but the outcome of

the work shall serve as a basis for further research in preventive maintenance with RBMs and

as a contribution to the investigation of applicability of the concept of RBM to time series data

in analytics.

For this purpose the remainder of this thesis is organized as follows. Part 3 describes the

available data in detail and by its exploration shall deliver a valid indication for the usage of

machine learning algorithms. Part 4 firstly gives a general overview of the approach and sec-

ondly describes the methods and their peculiarities in appropriate detail. Part 5 presents and

discusses the results, while part 6 concludes the thesis and gives implications for future work in

practice and research likewise.
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3 Data Exploration

As already outlined in section 1.2 time series are, because of the temporal autocorrelation be-

tween data points, formally speaking a special type of sequential data, which are in turn ordered

data. That is, records of both, sequential and time series, are associated to a time, though data

points of time series comprise a relationship in time and often are separated through a constant

time interval.[53] The data provided in this very case are of two different kinds: For each wind

turbine of each wind park the implemented SCADA system is measuring (1) performance related

time series data in a time interval of 10 minutes and (2) any occurring technical event (break-

down, defect) in form of sequential data. An overview of the characteristics of the provided data

is given in table 3.1.

Number of parks 1

Number of turbines 3

Time interval May to July 2015

Number of records each turbine 13140

Table 3.1: Data description.

This section will give a brief description of the involved data, necessary pre-processing steps

and examines the stationarity of the time series in order to investigate the appropriateness of

established modeling techniques (ARIMA).

3.1 Time Series Data

The time series data obtained from the SCADA system comprises 35 attributes for each wind

turbine, that are grouped in parks all over Germany. Not considering turbine ID, park ID, date,

time stamp and working hours so far (time in operation), only 11 are usable, whereas the rest of

the attributes are not changing over time. The quantity of data points for the respective wind

turbine depends on activation and amounts to 52560 points for each year.

Concretely the SCADA system provides the cumulated maximum, minimum and average value

every 10 minutes for wind speed (vw), rotational speed of the rotor (vrot) and power output (P ).

Furthermore it measures azimuth angle of the nacelle (∢) and performed mechanical work so

far (W ) (see table 3.2). As one can see this data is undeniably low-dimensional, so that an

enhancement in terms of feature engineering will be applied in this work (see section 4.2).

While one typically takes basic statistics of continuous data such as measures of spread (variance

and range) or location (mean and median) in order to obtain an insight into the characteristics
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vw max(vw) min(vw) vrot max(vrot) min(vrot) P max(P ) min(P ) ∢ azimuth W

8.8 10.8 6.4 32.32 35.4 27.30 202 340 117 -511 12107520

8.6 10.2 6.9 31.52 34.31 28.06 184 244 130 -512 12107552

8.5 10.1 6.3 32.41 34.86 26.97 202 282 110 -512 12107586

8.4 10.7 6.4 30.6 34.46 25.81 169 251 99 -511 12107607

... ... ... ... ... ... ... ... ... ... ...

Table 3.2: Time series of a wind turbine.

(see Tan (2014)[53]), in this case we also investigate the stationarity of the time series.

3.1.1 Stationarity testing

For this reason at first eventual seasonality or trend (invalidating first-order stationarity) will

be modeled via moving averages (MA) and eliminated from the time series using the decompose

method provided in programming language R.19 Consequently two second-order statistically

rigorous hypothesis tests are applied.

Priestley-Subba-Rao (PSR) second-order testing

The Priestley-Subba Rao (PSR) test examines the homogeneity of a set of spectral density

function (SDF) estimates over time or frequency or both.[43] The stationarity method of the

R package fractal, which has been used in this thesis, is a slightly differing implementation of

the original algorithm proposed by Priestley et.al.(1969). In fact the localized lag window SDF

estimators have been replaced by averages of multitaper SDF estimates.

SDF estimator Multitaper

Number of (sine) tapers 5

Centered TRUE

Number of blocks 13

Block size 1019

p-value for T 0

p-value for I+R 4.609947e-05

p-value for T+I+R 6.375234e-12

Table 3.3: Results of PSR second-order test for rotational speed.

The output of the method applied to 3-month rotational speed data can be seen in table 3.3.

Since the p-value for T, which is measuring variation over time, is essentially zero, there is strong

evidence to reject the null hypothesis of stationarity.20

19It has to be stated, that decomposing time series is without doubt non-trivial and there are multiple different
ways to do so (e.g. decomposition using local polynomial regression fitting).

20The p-value indicates whether the statistical summary of the sample is similar or more extreme as for actual
observed results and 0 ≤ p ≤ 1. The closer to 0, the more one should reject the null hypothesis. For decision
support one usually establishes a significance level α, such as α = 0.05, below which the null hypothesis will
be rejected.
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Wavelet second-order testing

Secondly we apply a wavelet-based multiple hypothesis test for investigating secondary-order

stationarity as outlined in Nason (2013)[38]. Concretely the method firstly computes an evolu-

tionary wavelet spectral estimate and consequently computes the Haar wavelet coefficients for

each scale of the spectral estimate. Since large coefficients indicate non-stationarity, the test

secondly investigates if any Haar coefficient is large enough to reject the null hypothesis.
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Figure 3.1: Wavelet-based test of secondary-order stationarity.

Applied to the very same set of 3-month rotational data, using the R function hwtos2 with

α = 0.05 and Daubechies wavelets, provides again strong evidence to reject the null hypothesis

of stationarity. In fact 1270 hypothesis have been tested and the measurement of significance

of the multiple hypothesis test (outlined in section 1.2.1) has been twofold. The test rejects

18 hypothesis against false discovery rate (FDR) assessment and 7 according to Bonferroni

correction. Figure 3.1 shows the plot of the rotational data and each red arrow corresponds to

one of the FDR non-stationarities identified by the test. The length of the arrow corresponds to

the scale of the wavelet coefficient whose null hypothesis was rejected and the location of that

wavelet coefficient is fixed by the mid-point of the arrow. The summary of the test can bee seen

in table 3.4.

α 0.05

# hypothesis tests 1270

# rejections (FDR) 18

p-value (FDR) 0.0006882402

# rejections (Bonferroni) 7

p-value (Bonferroni) 3.937008e-05

Table 3.4: Results of wavelet-based test for rotational speed.

The time series in any case is evidently not stationary, such that the usage of modeling or predic-

tion methods, which are premising at least weak stationarity, would be certainly inappropriate
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and thus the application of machine learning algorithms seems more promising.

3.2 Sequential Data

The provided sequential data comprises 7 attributes, which clearly characterize each event. As

exemplified in table 3.5 these include the serial number, the date of occurrence, description of

the incident and the operating state of the turbine.

Serial # Date Notification Status Add. info warning info Add. info

782241 23.05.2016 20:00 SCADA S:0/0 W:58/2 operating failure lubr.sys. no press. (90)

782241 22.05.2016 20:52 SCADA S:0/0 W:58/2 operating failure lubr.sys. no press. (90)

782242 03.08.2015 17:02 SCADA S:0/1 W:90/91 starting prot. switch trigg. tower fan (14)

... ... ... ... ... ... ...

Table 3.5: Service notifications of a wind park.
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4 Methods

This section shall describe the concept, preliminary steps, and the applied methods in order to

accomplish the objectives given in the problem statement (see section 2).

4.1 Concept overview

As mentioned the investigation of the restricted Boltzmann machine takes a central role. How-

ever, for the purpose of relative performance measurement a different model shall be imple-

mented. The support vector machine, that has been referred to already as potential machine

learning alternative for time series prediction (see section 1.2.4), will serve for comparison.

Consequently an appropriate conceptual layout for the application of the prediction models is

required, which has to cover three major issues: training, testing and verification of results.

Since the algorithms differ in their methodology, so does the layout as illustrated in figure 4.1

and 4.2. Initially the data has to be divided in both cases into training and testing examples,

where the former typically amounts to 70% of the sample.

As depicted in section 4.4 in more detail, a support vector machine is a supervised learning

model, which needs the corresponding label for each training example, indicating the correct

classification. In this case the label refers to the occurrence of an event in a defined time horizon

t. After training the SVM serves as a linear classifier by predicting, whether an event will occur

in time horizon t given a testing example or not.

SVM

Data

Training  
data

Test  
data Features

Labels

Training

Testing

Evaluation

Features

Labels

Predictive 
Model

Verification

Figure 4.1: Conceptual layout for the application of a SVM.
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On the contrary the RBM (see section 4.3) shall not be implemented as a linear classifier per se,

but after training estimates the likelihood of the occurrence of a testing example. Subsequently,

given a pre-defined threshold τth for the deviation between actual and expected values, a pre-

diction can be made, based on the assumption that unlikely or anomalous data coheres

with the occurrence of events.

Finally the results are evaluated with the actual labels for both algorithms.

RBM

Data

Training  
data Features

Test  
data Features

Labels

Training

Testing

Evaluation

Predictive 
Model

Verification

Figure 4.2: Conceptual layout for the application of a RBM..

The algorithms expect the features in a distinct shape, so that the input data has to be formatted

appropriately. Furthermore, as stated in the data exploration section 3, we seek to qualitatively

augment the data by means of feature engineering.

4.2 Data Preparation

4.2.1 Selection and formatting

Initially the data sets of time series and sequential data have to be combined and formatted in

order to be usable jointly as input for the proposed algorithms. Therefore we had to overcome

the following issues:

• To combine the different types of ordered data, the sequential data set has to be trans-

formed to time series data by assigning each sequential record to the respective time series

elements. However not all turbines can be connected to events.

• Given the objective to predict the occurrence of an event under time horizon t, the target

values of the classification have been established through aggregation as illustrated

in figure 4.3. For a better understanding the operation can be seen in pseudo-code 1.

The data manipulation was performed using programming language R, any further programming

was conducted in Python.

The investigation of all wind turbines and parks (> 300 units) was limited by the reduced
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accessibility of the control system linked to the data source, so that we had to select data from

three of the most promising turbines, i.e. units with a high amount of events to predict.

False False True False False False False False False True …

T1 T2 T3 Tn… Tn-1…

True

T1 T2 T3 TnT4 Tn-1…

time span t

True True False

T5

True True True True True True

…

…

Figure 4.3: Target value (label) aggregation for a time span t.

Algorithm 1 Label aggregation.

Input: Data label vector l of size n, time horizon of steps t

1: for i, ..., (n− 1) do ▷ No aggregation for last element
2: for j = i, ...,min(n− 1, t) do ▷ Minimum of t and remaining steps in array
3: if l[j]==True then
4: l[i] ← True

4.2.2 Feature Engineering

To enlarge the amount of attributes in the time series data set, the four statistical moments and

the standard deviation of each primary attribute has been computed and added to the set. In

statistics, a moment is a quantitative measure of the shape of a probability density. The k-th

moment is in general defined as

µk := E
(
(X− µ)k

)
(4.1)

where E(X) represents the expected value of a variable. While the zeroth moment is the total

probability, the first moment is the mean, the second is the variance, the third the skewness and

the fourth is the so-called kurtosis. The standard deviation is defined as σ =
√

Var(X).[42]

To obtain the moments for each point t in time the unbiased sample variance (eq. 4.2), sample

excess skewness (eq. 4.3) and sample kurtosis (eq. 4.4) have been computed for each based on

the t data points before. The named sample moments are obtained through
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1
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τ=1(xτ − xt)2

]2 − 3, (4.4)

where xt denotes the sample mean given the t data points of the sample, i.e. the currently

observed fraction of the time series in our case. The computed values are added as additional

columns to the dataset.

4.3 Restricted Boltzmann Machine

Restricted Boltzmann Machines (RBMs) received an increase in popularity in the last couple

of years21 with a wide range of applications for dimensionality reduction, classification, feature

learning and topic modeling. As it is extensively used in the presented work this section shall

give a outline over the employed mathematical structure and is based on the tutorial of Fischer

and Igel[20] if not stated otherwise.

Formally, an RBM is a probabilistic undirected graphical model, which can be interpreted as

generative stochastic neuronal network. As the name implies the RBM is derived from the

Boltzmann Machine, a parametrized model representing a probability distribution, that can

learn relevant characteristics of an unknown target distribution based on samples from this dis-

tribution.

Learning Boltzmann Machines is computationally demanding and can be simplified by restricting

the network topology of the neurons such that they must form a bipartite graph. Consequently

one distinguishes between two groups of units, commonly referred to as the visible and the hid-

den units. These groups can be thought of as being arranged in two layers, with symmetric

connections between but without any connections within the layers. While the visible units

represent the first layer and correspond to an observation, the hidden units model the depen-

dencies between the components of an observation and thus can be seen as non-linear feature

detectors. The RBM in figure 4.4 consists of n visible units V = (v1, ..., vn) and m hidden units

H = (h1, ..., hm).

The basic idea is to learn a closed-form representation of the distribution underlying the training

data and in turn make use of the generative characteristic of the model, that is sampling from

a learned distribution. This property may be used to complete a partial observation by fixing

some of the visible units (treat them as constants) and sample the remaining components, for

example for the recognition of anomalous behavior.

21Initially the RBM has been invented under the name Harmonium by Paul Smolensky in 1986[51], and gained
in significance after the development of fast learning algorithms amongst others by Geoffrey Hinton and rise
of computational power in the mid-2000s.
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Figure 4.4: The network graph of a Restricted Boltzmann Machine.

Regarding RBMs as probabilistic undirected graphical models, also referred to as Markov Ran-

dom Fields or Markov Random Networks provides access to established training algorithms and

theoretical results. Unsupervised learning of MRFs, training of RBMs respectively, is commonly

conducted by gradient-based maximization of the likelihood by adjustment of the model’s pa-

rameters given the training data D = {x1, ...,xl}.The likelihood L : Θ→ R maps parameters θ

from a parameter space Θ to

L(θ | D) =
l∏

i=1

p(xi | θ). (4.5)

Maximizing the likelihood is equal to maximizing the log-likelihood given by

lnL(θ | D) = ln

l∏
i=1

p(xi | θ) =
l∑

i=1

ln p(xi | θ). (4.6)

To emphasize the consistency between the objective of modeling the unknown distribution un-

derlying the training data and maximizing the likelihood, it can be shown as in [50] that the

latter corresponds to minimizing the Kullback-Leibler divergence (KL divergence). The KL di-

vergence between the unknown distribution q underlyingD, which is represented by the currently

observed sample, and the (current) distribution p of the RBM is given by

KL(q ∥ p) =
∑
x

q(x) ln
q(x)

p(x)
=
∑
x

q(x) ln q(x)−
∑
x

q(x) ln p(x) (4.7)

and is a (non-symmetric) measure of the difference between the actual distribution and the

approximation.

Due to its complexity the computation of the maximum likelihood of an RBM is not feasi-
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ble in appropriate time (which holds in general for undirected graphical models) and therefore

numerical approximations have to be applied. One approach to find parameters through ap-

proximation is gradient ascent.

That is, iteratively updating the parameters θ(t) to θ(t+1) based on the gradient of the log-

likelihood as shown in the following update-rule.

θ(t+1) = θ(t) + η

[
∂

∂θ(t)

(
lnL(θ(t) | D)

)
− λθ(t)

]
+ ν∆θ(t−1)  

∆θ(t)

(4.8)

The constant η ∈ R+ in equation 4.8 is the learning rate. The term λθ(t) with λ ∈ R+
0 rep-

resents a method called weight decay, which is penalizing high parameter values. The final

extension ∆θ(t−1), referred to as the momentum, is controlled by ν ∈ R+
0 and seeks to avoid the

occurrence of oscillations in the iterative update procedure, while additionally speeding up the

learning process. The correct setting of the constants, which is in fact a crucial performance

factor and highly non-trivial, is dealt with in section 4.3.4.

Returning to the mentioned categorization of units into two groups (visible and hidden) in

an RBM, allows us to describe a distribution over the visible variables by means of conditional

distributions. The so-called Gibbs distribution of an MRF describes the joint probability dis-

tribution of visible V and hidden variables H. The marginal distribution of the former is

consequently given by

p(v) =
∑
h

p(v,h) =
1

Z

∑
h

e−E(v,h) (4.9)

where Z is a partition function defined as the sum of e−E(v,h) of all possible configurations,

that is, a normalizing constant. E(v,h) refers to the energy function, computing a scalar value

associated with each state of a network. As described, training algorithms are based on gradient

ascent on the log-likelihood which combined with the model of 4.9 yields

lnL(θ | v) = ln p(v | θ) = ln
1

Z

∑
h

e−E(v,h) = ln
∑
h

e−E(v,h) − ln
∑
v,h

e−E(v,h). (4.10)

As a consequence the gradient is22

∂ lnL(θ | v)
∂θ

=
∑
v,h

p(v,h)
∂E(v,h)

∂θ
−
∑
h

p(h | v)∂E(v,h)

∂θ
. (4.11)

Equation 4.11 expresses the difference between the expected values of the energy function under

the model distribution and those under the conditional distribution of the hidden variables. It

is easy to see that a simple calculation of the sums over all possible configurations turns out

to be computational expensive, in fact exponential in the numbers of variables. A therefore

common approximation is drawing samples from the distributions by applying Markov chain

Monte Carlo (MCMC) techniques.

22For the full derivation of the gradient see Fischer (2014).
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So far we neglected the detailed definition of parameter vector θ and energy function E(v,h)

for the sake of simplicity, we also did not define which values the units can assume.

As pictured in Figure 4.4 an RBM is - apart from it’s network topology - configured by real-

valued weights wij for i ∈ {1, ..., n}, j ∈ {1, ...,m} associated with the connection between units

Vi and Hj and real-valued bias terms ci and bj associated with each visible and hidden vari-

able. Hence θ = (W, c,v). In binary (or Bernoulli) RBMs the units (V ,H) can take values

(v,h) ∈ {0, 1} and considering the interpretation of the RBM as stochastic neural network the

conditional probability of a variable being one is the firing rate of a neuron with the sigmoid

activation function sig(x) = 1/(1 + e−x), s.t

p(Hj = 1 | v) = sig

(
n∑

i=1

wijvi + bj

)
(4.12)

and

p(Vi = 1 | h) = sig

⎛⎝ m∑
j=1

wijhj + ci

⎞⎠ . (4.13)

The energy function of the Gibbs distribution p(v,h) = 1
Z e

−E(v,h) in turn is given by

E(v,h) = −
n∑

i=1

m∑
j=1

wijvihj −
n∑

i=1

civi −
m∑
j=1

bjhj . (4.14)

4.3.1 Learning Algorithms

Inserting the energy function of an RBM in equation 4.11 of the log-likelihood gradient of a

MRF reveals that the second term (i.e. the expected values of the energy gradient under the

conditional distribution of the hidden variables) factorizes w.r.t. to wij s.t.23

∑
h

p(h | v)∂E(v,h)

∂wij
= p(Hj = 1 | v)vi = sig

(
m∑
i=1

wijvi + bj

)
vi. (4.15)

Rewriting the first term of equation 4.11 as
∑

v p(v)
∑

h p(h | v)∂E(v,h)
∂θ the derivative of the

log-likelihood w.r.t. wij , ci and bj respectively, becomes

∂ lnL(θ | v)
∂wij

= p(Hj = 1 | v)vi −
∑
v

p(v)p(Hj = 1 | v)vi, (4.16)

∂ lnL(θ | v)
∂ci

= vi −
∑
v

p(v)vi, (4.17)

∂ lnL(θ | v)
∂bj

= p(Hj = 1 | v)−
∑
v

p(v)p(Hj = 1 | v). (4.18)

As noted earlier summing over all values of visible variables when computing the second term

23For the full derivation of the factorization see Fischer (2014).
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of equation 4.16 comprises exponential complexity and thus the log-likelihood gradient is ap-

proximated by sampling from the model distribution with MCMC techniques. A prominent

representative, which is commonly applied, is Gibbs sampling. A detailed description of this

technique would exceed the scope of this work, thus please refer to Geman (1984)[23]. The basic

idea, however, is to construct a Markov Chain by updating each variable with the respective

conditional probability and the state of the others. Given the conditional independence between

variables in the same layer allows to sample all variables in one layer jointly instead of sampling

new values for all variables subsequently and thereby simplifies Gibbs sampling significantly.

In fact, the procedure is reduced to only two steps: Sampling state h based on p(h | v) and

sampling state v based on p(v | h). Unfortunately the sampling procedure has to be repeated

until the Markov chain converges at the stationary point requiring a large number of steps, and

further no reliable method exists to determine whether equilibrium has been actually reached.

The resulting considerable computational effort can be reduced applying common RBM learning

techniques as Contrastive Divergence (CD) or Parallel Tempering.

Contrastive Divergence

The idea of k-Contrastive Divergence, which was introduced by Hinton[27], is instead of running

the Markov Chain implemented by Gibbs sampling to equilibrium one runs it only for k steps

(and usually k = 1). Subseqently the parameters are updated to reduce the tendency of the

chain to move away from the data distribution q0. More formally, instead of minimizing KL(q0 ∥
q∞)24, with q∞ the distribution at equilibrium, we minimize KL(q0 ∥ qk), where qk is the

distribution over the k-step reconstructions of the data vectors computed by Gibbs sampling.

The approximation of the log-likelihood gradient for one training vector is thus generally given

by

CDk(θ,v
(0)) =

∑
h

p(h | v(k))
∂E(v(0),h)

∂θ
−
∑
h

p(h | v(0))
∂E(v(k),h)

∂θ
(4.19)

Algorithm 2 shows the procedure in detail for training data set D making use of derivative

equations 4.16, 4.17 and 4.18.

24Which is equivalent to maximize the log-likelihood as described earlier.
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Algorithm 2 k-step contrastive divergence

Input: Training data D
Output: Gradient approximations ∆wij , ∆ci and ∆bj

1: ∆wij ,∆ci,∆bj ← 0 for i = 1, ..., n, j = 1, ...,m ▷ Initialization
2: for all v ∈ D do
3: v(0) ← v
4: for t = 1, ..., k do ▷ Gibbs sampling for k steps
5: for j = 1, ...m do
6: sample htj from p(hj | vt)

7: for i = 1, ...n do
8: sample vt+1

i from p(vi | ht)

9: for i = 1, ..., n , j = 1, ...,m do

10: ∆wij ← ∆wij + p(Hj = 1 | v(0))v
(0)
i − p(Hj = 1 | v(k))v

(k)
i ▷ Eq. 4.16

11: for i = 1, ..., n do

12: ∆ci ← ∆ci + v
(0)
i − v

(k)
i ▷ Eq. 4.17

13: for j = 1, ...,m do
14: ∆bj ← ∆bj + p(Hj | v(0))− p(Hj | v(k)) ▷ Eq. 4.18

In order to avoid looping over variables it is common practice to treat them as vector elements

and consequently apply matrix multiplication, which further improves computation time.

4.3.2 Continuous-Valued Restricted Boltzmann Machine

Restricting the visible units to only assume binary values is severely limiting the capability of

RBMs and their applications fields likewise. Especially when considering real-valued/continuous

input data, as time series data, adjustments become inevitable and there is a variety of ways to

deal with them.

Continuous Restricted Boltzmann Machine

Incipient work is constituted by Chen and Murray[14] introducing ’continuous stochastic units’,

where zero-mean Gaussian noise is added to the input of sampled sigmoid units.

Hinton[28] demonstrated, that a continuous-valued input can be modeled with binary units by

firstly replacing the state space of visible units {0, 1} by [0, 1] and scaling the input data to

the very same interval. Then the expectation p(Vi = 1 | h) - the probability of the visible

variable to be one - is regarded as the current state of the unit and substitutes the samples in

the subsequent procedure.

Another quite common and simple approach is to use truncated exponential units. That is,

allowing v to take any value in a given Interval I, here I = [0, 1], the conditional density

becomes

p(vl | h) =
e−vlal(h)1vl∈I∫
e−vlal(h)1vl∈Idvl

(4.20)

with vl denoting the lth visible unit and al(h) = −
∑m

j=1wljhj−cl. For I = [0, 1] the normalizing

integral yields e−al(h)−1
al(h)

. The conditional expectation E of vl given h is further sigmoid-like and

Montanuniversität Leoben 34 Elmar Steiner



Chapter 4. Methods

comprises monotone non-linearity:

E[vl | h] =
1

1− e−al(h)
− 1

al(h)
(4.21)

Samples from this truncated exponential are obtained from a uniform sample U , employing the

inverse cumulative F−1 of the conditional density p(vl | h) s.t.

F−1(U) =
ln(1− U × (1− eal(h)))

al(h)
. (4.22)

An RBM with these type of units is commonly referred to as Continuous Restricted Boltzmann

Machine.[7] It is important to note, that while the sampling step for visible units has been

changed, the learning process remains the same as with binary hidden units.

Gaussian-Bernoulli Restricted Boltzmann Machine

The also widely appreciated model of Gaussian-Bernoulli or Gaussian-Binary RBMs (GBRBM)

involves normally distributed visible variables and binary hidden units. That is, the linear

pre-activation values of the visible units serve as means for drawing samples from a Gaussian

distribution. The energy function is then augmented with quadratic terms and can be written

as

E(v,h) = −
n∑

i=1

m∑
j=1

wijhj
vi
σ2
i

−
n∑

i=1

(vi − ci)
2

2σ2
i

−
m∑
j=1

bjhj (4.23)

where σi denotes the standard deviation of the Gaussian distribution for visible unit i. In case

the input data is normalized, one may set σ = 1. Otherwise the model can be forced to learn

the standard deviations itself, which are then effectively an additional vector of biases one must

optimize. This supplementary task, however, can be challenging with Contrastive Divergence

and requires a careful setting of learning parameters.

The corresponding conditional probability of a visible neuron is consequently given by

p(vi | h) = N

⎛⎝vi

⏐⏐⏐⏐⏐⏐
m∑
j=1

hjwij + ci, σ
2
i

⎞⎠ , (4.24)

where N (· | µ, σ2) is the probability density of a Normal distribution with mean µ and variance

σ2. The conditional probability of a hidden neuron to be one is then

p(hj | v) = sig

(
m∑
i=1

wij
vi
σ2
i

+ bj

)
(4.25)

and can be reduced to equation 4.12, when setting σ = 1.[15][58]

4.3.3 Conditional Restricted Boltzmann Machine

Regardless of considering continuous values or not, an ordinary RBM (i.e. with a classic network

topology) does not include any regional inter-dependencies of subsequent data points. That is,
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the models presented so far model static frames of data, but cannot incorporate any temporal

information. When dealing with time series data, however, short-term temporal dependencies

and longer-term temporal structures should be taken into account[31]. In order to overcome this

shortcoming Taylor et.al.[55] introduced the conditional RBM (cRBM) by adding two types of

direct connections to previous data points (Figure 4.5). That is, a defined number n of past ob-

servations have an influence not only to the current hidden structure but also to current visible

units. The weighting of these connections are also trained with contrastive divergence.

W

… i

v(t)

… j

h(t)

…
v(t-1)

…
v(t-n)

An

A1

B1Bn

…

Figure 4.5: The network graph of a conditional Restricted Boltzmann Machine.

Practically this means treating data from previous time steps as a dynamically changing biases,

which are defined as

ĉi = ci +
k∑

i=1

Aiv
(t−i) (4.26)

and

b̂j = bj +

l∑
i=1

Biv
(t−i) (4.27)

where k denotes the number of auto-regressive connections between visible layers v at time

(t− i) and the current visible layer and l the number of connections to the current hidden layer

likewise. k and l may differ, but for the sake of simplicity we set k = l = p.[31]

The conditional probabilities for a entirely binary cRBM are then given by

p(hj | v) = sig

(
bj +

n∑
i=1

wijvi +

p∑
o=1

n∑
i=1

Bijov
(t−o)
i

)
(4.28)

p(vi | h) = sig

⎛⎝ci +

m∑
j=1

wijhj +

p∑
o=1

n∑
i=1

Aijov
(t−o)
i

⎞⎠ . (4.29)
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The parameters A and B have to be trained similarly to the classic RBM using Contrastive

Divergence.[32]In practice it is more convenient to calculate the dynamic biases (Equ. 4.26,

4.27) seperately and insert them into the original equations of conditional probabilities instead

of computing equations 4.28 and 4.29. This holds especially when applying non-binary units.

Generally it must be stated, that although the marginal conceptual change might suggest minor

increase in implementation complexity likewise, it still comes with some obstacles.

4.3.4 Parameter Setting

As already mentioned the parameter setting is doubtless non-trivial. Besides the values of

numerical meta-parameters such as learning rate, momentum or weight-decay, one must also

determine an adequate amount of hidden units or consider the initialization and the size of the

data mini-batches during training phase. Furthermore a beneficial setting for one problem case

might not be useful at all for another. Thus practical expertise to set and consequently relate

failures in learning to the setting is a necessity. However, there has been extensive research in

the last few years in this field, so one can benefit from shared knowledge as given by Geoffrey

Hinton and collaborators [26].

Size of mini-batch

Although one can update the weights and biases based on the estimated gradient on a single

observation, it is more efficient to split the training set into mini-batches, which are a group of

observations. The update is then computed simultaneously for all observations in the batch.

When applying gradient descent the size of the mini-batch can vary from 10 up to 100 training

examples. In case stochastic gradient ascent is used, too large batches can be problematic.[26]

Learning rate

The learning rate η ∈ R+ represents the step range of the update and if chosen too large may

let the reconstruction error increase significantly and weights may explode. However, choosing

too small can result in slower learning.

It is common practice to implement a dynamic rate, which is reduced during the process and

should correspond to the adjustment of the weights. Hinton (2010)[26] recommends a rate which

is about 10−3 times the size of the weights.

Initial Weights and Biases

Usually the weights are initialized to small random values from a Gaussian distribution with

µ = 0 and standard deviation σ = 0.01. Larger values may speed up initial learning but can

also deliver a worse model. In case binary visible units are used it is advantageous to initialize

the bias of unit i to ln(pi/(1− pi)) where pi is the proportion of training vectors in which unit

i is 1. Hidden biases are set to 0.[26]
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Momentum

(Stochastic) gradient ascent - and descent likewise - experiences difficulties when navigating in

ravines (i.e. areas where the gradient is a lot steeper in one dimension than in another), which

are quite common around local minima[52]. As already mentioned the momentum ν∆θ
(t−1)

∆θ(t)

is controlled by ν ∈ R+
0 and is a simple method to increase the speed of learning in case of

existence of such ravines by accelerating (stochastic) gradient descent in the relevant direction

and dampening oscillations. Metaphorically speaking one simulates a heavy ball rolling down a

surface. The ball accumulates momentum as it rolls downhill and the momentum term enhances

parameter updates for dimensions whose gradients point in the same directions. Conversely it

reduces parameter updates for dimensions whose gradients change direction.

Hinton (2010)[26] recommends to start with a momentum of 0.5 and to raise it to 0.9 as soon

as the main reduction of reconstruction error took place. This adjustment may cause a severe

increase of error or a even lasting instability. The latter can be opposed by an adaptive learning

rate.

Weight-decay

The term λθ(t) in equation 4.8 is controlled by λ ∈ R+
0 and is the derivative of a function that

penalizes large weights.25 It reduces overfitting26 and significantly improves the mixing rate of

the alternating Gibbs Markov chain. According to Hinton (2010)[26], the penalty function ’L2’

is the common and reasonable choice, and for a cost function C with energy function E it is

defined as

C = E +
λ

2

n∑
i=1

m∑
j=1

w2
ij . (4.30)

Applying the derivative of the weights yields:

∂C

∂wij
=

∂E

∂wij
+ λwij . (4.31)

The above equation intentionally just considers the weights between the units, while neglecting

biases. Those in particular are typically less likely to cause overfitting and sometimes are required

to be very large.

The value of the weight-cost coefficient λ usually ranges from 0.01 to 0.00001 depending on the

amount of training data.[26]

Number of hidden units

Finally one must deal with the sensible number of hidden units, whose inappropriate setting can

cause severe overfitting or tremendous computation time in training and testing. A common

approach is to firstly estimate the number of bits that could describe each data vector v, which is

25The simplified case where λ = ν = 0 is commonly referred to as Vanilla Gradient Descent.
26In other words it prevents the network from using weights, which are not needed and severely improves gener-

alization.
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equivalent to
∫
p(v) log 1

p(v) dv. Secondly this figure is multiplied by the number of training cases

and eventually the designated amount of hidden units shall be about one order of magnitude

smaller than that. However, if training cases show a high redundancy, which might be the case

in big training sets of real-world scenarios, the amount should be even smaller.

4.4 Support Vector Machine

A support vector machine (SVM) is a supervised machine learning model and has been initially

proposed by Vladimir Vapnik and collaborators in 1992.[6] The concept evolved, especially by

introducing the kernel trick in order to create nonlinear classifiers. Developed in industrial en-

vironment, the research consistently focused on realistic application, maintaining it a prominent

candidate for any real-world problem cases. This section provides an introduction to SVM, that

is based on the tutorial of Burges (1998)[13] and the treatise of sparse kernel machines of Bishop

(2006)[8] if not stated otherwise.

Formally speaking a SVM constructs a hyperplane or a set of hyperplanes in a high-dimensional

space for the purpose of classification (which has been the primary motivation) or regression.

The quality of separation is determined by the distance of the hyperplane to the nearest data

point - the so-called margin, since the size of the margin coheres with the generalization error27

of the method. Therefore the SVM is commonly referred to as maximum margin classifier.

The basic idea is to find a function f(x) that, given training data {(x1, y1), ..., (xl, yl)} ⊂ X ×R,
where X denotes the space of input patterns28, as well as corresponding target values yi, sepa-

rates the data with largest possible margin. Misclassification permitted to a predefined extent,

is known as soft-margined, while the opposite is called hard-margined.

In case f is supposed to be linear, it is defined as

f(x) = ⟨w, x⟩+ b with w ∈ X , b ∈ R, (4.32)

where w represents the (not necessarily normalized) normal vector to the hyperplane and b
∥w∥

the offset of the origin along w.

As illustrated for a hard-margined linear separation of two classes in figure 4.6, maximizing the

distance between the planes, which are parallel to the hyperplane and constructed through the

nearest data point(s) of each class, is equivalent to minimizing ∥w∥2. Additionally one has to

prevent data points from falling into the margin. The convex optimization problem can then be

27The generalization error is a common measure for the accuracy of the prediction made by supervised machine
learning models.

28X needs to be a Hilbert space, so that there exists a dot product ⟨·, ·⟩.
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Figure 4.6: The linearly separating hyperplane for the separable case.

written as:

minimize
1

2
∥w∥2

subject to yi(⟨w, x⟩+ b) ≥ 1 ∀i
(4.33)

In order to solve this constrained optimization problem one makes use of the standard dualization

method utilizing Lagrange multipliers and the Karush-Kuhn-Tucker (KKT) conditions. At first

the Lagrange function ΛP is build from the objective function and the constraint (as defined in

equation 4.33), whereas for the latter a dual variable, the Lagrange multiplier λi, is introduced:

ΛP =
1

2
∥w∥2 −

l∑
i=1

λi[yi(⟨w, x⟩+ b)− 1] (4.34)

Since it can be shown that this function has a saddle point at the solution, consequently the

partial derivatives of ΛP with respect to the primal variables (b, w) have to vanish for optimality:

∂ΛP

∂w
= w −

l∑
i=1

λiyixi = 0 (4.35)

∂ΛP

∂b
=

l∑
i=1

λiyi = 0 (4.36)

(4.37)

The derived conditions are equality constraints in the dual formulation, thus can be substituted
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for w and b in equation 4.34, which then yields the dual representation

maximize ΛD =
l∑

i=1

λi −
1

2

l∑
i=1

l∑
j=1

λiλjyiyj⟨xi, xj⟩

subject to

⎧⎨⎩λi ≥ 0 ∀i∑l
i=1 λiyi = 0.

(4.38)

The dual problem is equivalent to the primal one, though w is never computed explicitly, but

represented as linear combination of training examples xi. The Support Vector method is named

after a subset of the training data, for which elements λi ̸= 0. Intriguingly the complexity of

the function does not depend on X , but on the amount of support vectors.

One way to compute the bias b is to make use of the KKT conditions, that inter alia state

that the product between dual variables and constraints has to vanish. That is

λi[yif(xi)− 1] = 0, (4.39)

where f(xi) (see equation 4.32) can be expressed substituting w using equation 4.35 s.t.

f(x) =

l∑
i=1

λiyi⟨x, xn⟩+ b. (4.40)

Now b can be easily computed by using an arbitrarily chosen support vector xi, though it is

numerically more stable to take the mean value resulting from equations of all support vectors.

There will be definitely situations where a convex optimization will be not feasible, as lin-

ear separation in classification tasks may sometimes not be possible either. In these cases one

usually applies the soft margin loss function, introducing positive slack variables ξi to adjust

the constraints of the optimization problem, which then is defined as

minimize
1

2
∥w∥2 + C

l∑
i=1

ξi

subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⟨w, xi⟩+ b ≥ 1− ξi for yi = +1

⟨w, xi⟩+ b ≤ −1 + ξi for yi = −1
ξi ≥ 0 ∀i.

(4.41)

C controls the trade-off between the slack variable penalty and the margin. The linear soft-

margin approach (equations 4.41) is illustrated in figure 4.7.

The corresponding Lagrangian to equation 4.41 is then given by

ΛP =
1

2
∥w∥2 + C

l∑
i=1

ξi −
l∑

i=1

λi[yi(⟨w, x⟩+ b)− 1 + ξi]−
l∑

i=1

ηiξi, (4.42)
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Figure 4.7: The linearly separating hyperplane for the non-separable case.

where ηi and λi are Lagrange multipliers. In order to obtain the dual optimization problem,

the derivatives with respect to the primal variables are taken and substituted into the primal

Lagrange objective function, which consequently yields29

maximize ΛD =
l∑

i=1

λi −
1

2

l∑
i=1

l∑
j=1

λiλjyiyj⟨xi, xj⟩

subject to

⎧⎨⎩0 ≤ λi ≤ C ∀i∑l
i=1 λiyi = 0.

(4.43)

Though the objective function, we seek to maximize, is identical to the soft-margined case, the

constraints alternate.

However, so far we only covered a linear decision function, which severely limits the applicability

for real-life scenarios.

4.4.1 Nonlinear Support Vector machines

The consecutive action is to make the SV algorithm nonlinear, which is usually achieved by

applying a function to the training data xi, Φ : X → F prior to the actual training. The

function maps the input into a higher-dimensional feature space F , followed by the standard

SV algorithm - combined allowing nonlinear separation.

However explicitly computing Φ can turn out to be computational expensive. Nevertheless it

has been shown that it does suffice to simply know the dot product k(x, x′) = ⟨Φ(x),Φ(x′)⟩, the

29For the complete derivations see [13] and [8].
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so-called kernel, instead and substitute it into the optimization problem.30 As a consequence

it has been studied, which functions k(x, x′) correspond to a dot product in a feature space F
(e.g.[47]). In fact one distinguishes different types such as polynomial or Gaussian or radial

basis function (RBF) kernels. The definition of a polynomial kernel of degree d and a Gaussian

kernel with width controlling parameter γ is given by equations 4.44, 4.45 respectively.

k(x, x′) = (⟨x, x′⟩+ 1)d (4.44)

k(x, x′) = exp(−γ∥x− x′∥2) (4.45)

Due to the property, that the SVM depends on the data only through dot products, it formally

belongs to the general category of kernel methods.[6]

4.4.2 Parameter Setting

The training of a SVM sets the parameters λi and b in order to find the large margin hyperplane.

Nevertheless, the pre-setting of the so-called hyperparameters, such as the soft margin constant

C or kernel depending parameter γ, has crucial effect on the decision boundary of the algorithm.

A large value for parameter C results in a high penalty to margin errors, thus affecting the size

of the margin of a SVM. The kernel parameters in turn control the flexibility of the classifier.

If setting to high, however, it can result in overfitting (see following section). Finally the

adjustment of one parameter may affect the other. For a Gaussian kernel the decrease of γ

decreases the curvature of the decision boundary. An increase of C forces the curve to adjust.

The standard method of visually exploring the accuracy of the classifier for different parameters

is a grid-search. In this method one assigns for each point of a grid, which is corresponding to

specific parameter values on the axes, an accuracy value.[6] Another popular approach for the

optimization of parameter choice is the usage of simulated annealing algorithms (e.g. [41], [33]).

4.5 Overfitting

One fundamental concept of machine learning is generalization. This is the intuitively reasonable

property of a model to be applicable also to data to which it has not been applied yet.

Overfitting in turn is the related effect, which may occur when a machine learning model starts

to describe the noise present in the given data instead of the underlying relationship, i.e. the

patterns. The reason may be, that the model is excessively complex with a large amount of

parameters relative to the amount of training data. Consequently the model lacks robustness

and overreacts to fluctuations in the data. Simply put: if we allow our machine learning model

enough flexibility to find patterns, it certainly will discover some. However, these may just

be chance occurrences in the data, which are useless given the objective of generalization. To

counteract there have been proposed techniques such as adding a sparsity term to the objective

function or the regularization method called dropout. Even though all procedures have the

30E.g. Φ : R2 → R3 with Φ(x1, x2) = (x2
1,
√
2x1x2, x

2
2). Boser et. al. observed in this case that k(x, x′) =

⟨(x2
1,
√
2x1x2, x

2
2), (x

′
1
2,
√

2x′
1x

′
2, x

′
2
2)⟩ = ⟨x, x′⟩2.[9]
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tendency to overfit, it still can be a strong indication for an inappropriate model.[31][44]

4.6 Implementation

The implementation of the depicted algorithms was conducted in the programming language

Python. The time series data (see section 3) required continuous hidden units, so that we imple-

mented a standard as well as a conditional Gaussian-Bernoulli restricted Boltzmann

machine. The re-implementation of the support vector machine has been omitted, since

the used programming language provides well established librariers.The predictions have been

derived based on a time horizon t of seven days, which corresponds to a number of 1008 time

series records (6 records
h ∗ 24 h

day ∗ 7days).

4.6.1 Gaussian-Bernoulli restricted Boltzmann machine

In order to achieve optimal performance we initially scaled each feature xj with the attribute’s

overall maximum and minimum:

x′j =
xj −min(xj)

max(xj)−min(xj)
(4.46)

The parameter values and procedures for the contrastive divergence learning, which have been

implemented, are based on the ideas of Hinton (2010)[26].

Dynamic parameters

The number of Gibbs sampling iterations is progressively increased over the number of learning

epochs E, starting with one and ending with eight sampling iterations. The underlying idea is to

enhance the accuracy at a later state of training process. Likewise the learning momentum and

the learning rate are dynamically implemented, whereas the former starts with 0.5 and reaches

0.9 in the last epochs and the latter at first starts with 0.0010 and successively is halved as

soon as the moment increases. All three parameters are illustrated in figure 4.8. However, the

learning rate is additionally coupled to the update target, i.e. the desired adjustment of weights

each epoch.

That is, the learning rate is adjusted depending on the update size of the weights and biases

(see pseudo-code 3), until a predefined decay period p, 0 ≤ p ≤ 1 , at the end of training. After

this point the learning rate is continuously reduced with a auto-regressive decay parameter α

given a decay target δ and the total number of epochs ϵ (see equation 4.47).

α = δ1/pE . (4.47)
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Figure 4.8: The RBM learning parameters.

Algorithm 3 Dynamic learning rate adjustment.

Input: weight updates in epoch e, update target τ , number of epochs E

1: if e < int(E(1− p)) then ▷ Check whether decay start is reached
2: if max(update) < 0.1τ then
3: ηe+1 = 2ηe
4: else if max(update) > 10τ then
5: ηe+1 = 0.5ηe
6: else if max(update) < 0.9τ then
7: ηe+1 = 1.1ηe
8: else if max(update) > 1.2τ then
9: ηe+1 = 0.9ηe

10: else
11: ηe+1 = ηe

12: else
13: ηe+1 = αηe ▷ Decay of learning rate

Static parameter values

The remaining parameter values, which have been set using the guideline of Hinton (2010)[26]

(such as decay period or number of epochs), are given in table 4.1. 31

Finally we have to determine a threshold τth for prediction purposes The underlying idea is

to examine whether a new example, i.e. an actual observation, is probable in regard to the

distribution, which has been learned by the RBM.

Prediction

As already stated, the model can be used to estimate the likelihood of occurrence of a given

observation after it has learned the underlying distribution. For this purpose one may examine

31It has to be stated that other values despite the recommendations of Hinton have been used, yielding similar
results.
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Parameter Value

Weight decay λ 0.0001

Epochs E 20

Batch size 100

Update target 0.1%

Decay target δ 10%

Decay period p 0.1

Reshuffling every 10 examples

Table 4.1: RBM static parameter setting.

the reconstruction error computed with the model for one example. Concretely one firstly

computes the binary hidden units based on the input (illustration 4.9 (a)) and consequently

the values of the visible units based on the hidden units’ values (illustration 4.9 (b)). Now

the deviations between initial and recalculated values represent the reconstruction error. The

smaller the error the more likely is the observation’s occurrence.32. However, variation/error is

accepted to a certain extent, which is in turn implemented with the before mentioned threshold

τth. The threshold is actually a vector, which holds a probable deviation for each attribute. It

has been obtained by computing the average reconstruction error for each feature of a single

batch of observations with 10 Gibbs sampling iterations. Additionally we allow deviation

values during testing to be 20% larger as the initially computed value. This measure shall take

the non-stationarity of the time series into account. That is, even when representing a valid

approximation to the deviation in the training data set, the threshold might not be equally

representative in the testing data set.
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Figure 4.9: Recalculation of the input values with prior learned weights.

Equation 4.48 shows the prediction of an event (xt) at time t in case the reconstruction error

is larger than the threshold of at least one of a features (attributes) . The reconstruction error

is defined as the absolute difference between input at the visible units and values which are

32This is essentially the procedure in any Gibbs sampling iteration. Although trivial, it has to be stated that a
higher amount of Gibbs iterations yields a more likely output and therefore a more likely reconstruction error.
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reconstructed by the RBM using weight and biases.

xt =

⎧⎨⎩1 if ∃i ∈ {1, .., a} : (vi,true − vi,recon) > τth

0 otherwise
(4.48)

4.6.2 Conditional Gaussian-Bernoulli restricted Boltzmann machine

The parameter setting for the conditional Gaussian-Bernoulli restricted Boltzmann machine

has been slightly adjusted. Since initial test results of the the training with 20 epochs showed

much more fluctuation of the reconstruction error and no signs of convergence (see figure 4.10),

firstly the number of epochs has been significantly enhanced. Secondly, to stabilize the learning

process33, the momentum has been set to 0 and the learning rate decoupled from the weight

adjustment. In fact the learning rate has been set to various values, static as well as decreasing

over time. Additionally we have to define the range of regional inter-dependency, i.e. the amount

of past data points that influence the current hidden and current visible units (see section 4.3.3).

The used values are given in table 4.2.
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Figure 4.10: Initial training process of the conditional GBRBM.

4.6.3 Support vector machine

Since support vector machines assume that the input data is in a standard range, normalization

of feature vectors prior to training is crucial. We applied ’hard’ normalization, which signifies

mapping of the minimum and maximum values of a given attribute to 0 and 1.

x′j =
xj −min(xj)

max(xj)−min(xj)
(4.49)

33Surprisingly the merely prolongation of the learning process had no effect.
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Parameter Value

Weight decay λ 0.0001

Learning rate η 0.001 | 0.01 | 0.1 | decreasing
Momentum ν 0.0

Epochs E 300 | 1000
Batch size 100

Update target 0.1%

Decay target δ 10%

Decay period p 0.1

Reshuffling every 300 examples

# conditional dependencies 1 - 5 nc

Table 4.2: cRBM parameter setting.

The different configurations of the support vector machine are given in tables 4.3, 4.4. The

degree of a the polynomial kernel and the error penalty parameter C have been varied to find

optimal results.

Parameter Value

Penalty parameter C 0.1-1.5

Kernel type radial basis functions

γ value 1
number of features

Maximum iterations unlimited

Table 4.3: SVM parameter setting for radial basis function kernel.

Parameter Value

Penalty parameter C 0.1-1.5

Kernel type polynomial

Degree 5 - 15

γ value 1
number of features

Maximum iterations unlimited

Table 4.4: SVM parameter setting for polynomial kernel.
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5 Results

This section describes and illustrates the findings of the case study and discusses the results.

For this purpose firstly the training process of the restricted Boltzmann machine is examined

and subsequently the prediction capability of both methods is investigated. The data has been

chronologically split into training and test data set at the ratio of 70:30.

5.1 Training process of (c)GBRBM

The training process of the RBM should follow a successively improvement of the likelhood given

the training data by adjusting the weights and biases. Hence the reconstruction error can be34

used as an indicator for the refinement over the epochs. Figures 5.1, 5.2, 5.3 show this in detail

for the GBRBM for three different turbines. The alteration of learning rate (blue) is depending

on the extent of weight adjustment (see pseudo-code 3). The standard implementations show

improvement as expected. Figure 5.1 furthermore depicts the dynamic learning rate: At an

early epoch the rate is heavily increased, due to low weight updates, until a certain point where

the increasing updates become to large. A decrease of the rate is the logical consequence until

the decay period is reached.
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Figure 5.1: Training process of the GBRBM given data of turbine one.

34Though this is in dispute (see Hinton (2010)[26]).
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Figure 5.2: Training process of the GBRBM given data of turbine two.
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Figure 5.3: Training process of the GBRBM given data of turbine three.
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Intriguingly the conditional restricted Boltzmann machine shows striking fluctuations of the

reconstruction error, depending on the parameter setting and on the choice of regional inter-

dependency, that is the number of past data points influencing the current units. Based on the

recommendations of Hinton (2010) [26] we started the training experiments considering one past

data point, i.e. nc = 1, and using η = 0.001, 0.01 respectively, ν = 0 and 300 epochs. However,

as one can see in figure 5.4 the reduction of the reconstruction error with η = 0.001 (a) has been

slower compared to 0.01 (b).
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Figure 5.4: Training process of the cGBRBM with η = {0.001, 0.01}, nc = 1 and 300 epochs.

Prolonging the training procedure by setting E = 1000 shows that the lower learning rate

results in slower convergence to the minimum, which nevertheless is 5% higher (0.15 normalized

reconstruction error) in comparison to the training with η = 0.01 (0.10 normalized reconstruction

error). Furthermore the reduction exhibits a stronger fluctuation (see figure 5.5).
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Figure 5.5: Training process of the cGBRBM with η = {0.001, 0.01}, nc = 1 and 1000 epochs.

Since the model performed appropriately with nc = 1, we consequently investigated the training

process with > 1 conditional units. Figures 5.6 and 5.7 illustrate the process for 2 and 3, 4 and

5 units respectively.
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Figure 5.6: Training process of the cGBRBM with η = 0.01, nc = {2, 3} and 300 epochs.
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Figure 5.7: Training process of the cGBRBM with η = 0.01, nc = {4, 5} and 300 epochs.

One can easily see that convergence speed is reduced with increasing number of considered past

units. In other words with growing model complexity the learning of the underlying distribution

of the data requires a higher number of learning epochs in order to reach a minimum. Figure

5.8 depicts the process for a cGBRBM with η = 0.01, nc = 3, E = 1000. As already noticeable

with E = 300 and different values of nc the error tends to oscillate at convergence. There could

be a number of reasons causing this oscillation. A very likely one, however, might be that the

model is not able to adjust properly the connecting weights to units, that are representing former

time series (vt−1, vt−2, ..). Possibly the influence on the current state in reality (at least in the

provided data)35 cannot be represented with the applied model. However, the conditional units

improve the modeling through reducing the reconstruction error by obtaining further features

in the form of regional inter-dependencies of the data points.

35Recall that the provided time series data consists of already averaged data (10 minutes average values).
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Figure 5.8: Training process of the cGBRBM with η = 0.01, nc = 3 and 1000 epochs.

5.2 Prediction capability

As already outlined the implemented models shall detect events based on time series data.

The scenario is fairly simplified, since the models serve as merely binary classifier, that decide

whether something happens given the input or not. That is, one can enlarge the setting of the

investigation by e.g. classifying with regard to different types of events or with regard to positive

and negative events. However, we set the focus on examining the general prediction capability

of the RBM.

The capability to correctly predict future events is measured with the so-called ROC, a visual-

ization which besides correct also captures incorrect detections.

5.2.1 ROC

A receiver operating characteristic (ROC) is a graphical plot used for visualizing the perfor-

mance of classifiers. It depicts the tradeoff between the rate of positives correctly classified

(true positives) and the rate of negatives incorrectly classified ((false positives)). For better

understanding of the terms see the confusion matrix in figure 5.9.

true positives rate =
positives correctly classified

total positives
(5.1)

false positives rate =
negatives incorrectly classified

total negatives
(5.2)

sensitivity = recall (5.3)
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Figure 5.9: The confusion matrix.

specificity =
true negatives

false positives + true negatives
= 1− FP rate (5.4)

The ROC curve demonstrates the tradeoff between sensitivity and specificity and the area un-

der the curve (AUC) measures the accuracy. The latter is useful, when a single number for

performance is needed. A diagonal line from down left to up right represents a classification

performance of a random guess.[17][44] The ROC plots for SVM and RBM for different scenarios

are illustrated in the following figures.
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Figure 5.10: The ROC for RBM and turbine one
(t=7).
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Figure 5.11: The ROC for RBM and turbine two
(t=7).
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Figure 5.12: The ROC for RBM and turbine three
(t=7).
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Figure 5.13: The ROC for CRBM and turbine one
(t=7, nc = 1).
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Figure 5.14: The ROC for CRBM and turbine two
(t=7, nc = 1).
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Figure 5.15: The ROC for CRBM and turbine three
(t=7, nc = 1).
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Figure 5.16: The ROC for SVM and turbine one
(t=7, rbf, C=0.1).
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Figure 5.17: The ROC for SVM and turbine two
(t=7, rbf, C=0.1).
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Figure 5.18: The ROC for SVM and turbine three
(t=7, rbf, C=0.1).
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Figure 5.19: The ROC for SVM and turbine one
(t=7, rbf, C=1.5).
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Figure 5.20: The ROC for SVM and turbine two
(t=7, rbf, C=1.5).
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Figure 5.21: The ROC for SVM and turbine three
(t=7, rbf, C=1.5).

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
Po

si
ti

ve
R

at
e

Receiver operating characteristic

ROC curve (area = 0.50)

Figure 5.22: The ROC for SVM and turbine one
(t=7, poly, C=0.1).
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Figure 5.23: The ROC for SVM and turbine two
(t=7, poly, C=0.1).
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Figure 5.24: The ROC for SVM and turbine three
(t=7, poly, C=0.1).
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Figure 5.25: The ROC for SVM and turbine two
(t=7, poly, C=1.5).
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Figure 5.26: The ROC for SVM and turbine three
(t=7, poly, C=1.5).

5.3 Discussion

As depicted in the previous section, both concepts, the SVM and the (conditional) restricted

Boltzmann machine, could not predict events properly. The ROC curves in the illustration -

which are in fact straight diagonal lines - cover only an area of 0.5. That is, the capability

of both algorithms is not better as random guess. Although we have applied different types

and various parameterizations, the models are not appropriate for our problem case, our data

respectively. The findings show that the data provided do not exhibit predictive features that

can be detected by this classifiers, even though we provided statistical moments (see section 3)

to the methods. Investigating the details of incorrect classifications show two major issues:

• The GBRBM does very likely classify any time series as anomalous, thus predicting an

event. This strongly coheres with the setting of the threshold τth. As outlined the threshold

include a value for each feature and an unacceptable deviation for at least one of these is

very likely to occur. Therefore the correct setting of τth is crucial.

• On the contrary the SVM is not predicting any future event, even when error penalty term

C is reduced, which might encourage the method to classify more data points as events.

Also the kernel choice does not influence the performance. Obviously the SVM achieves

a better cost function when not correctly adjusting the hyperplane, but accepting miss-

classifications. The reason might be a skewed distribution of the reconstruction errors,

which exacerbates the classification task as well as the fact that the data comprises only

few events.

Furthermore one must state that the cRBM performed better in training as the standard RBM

with a 50% better reconstruction error.
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6 Conclusions

The final section shall conclude this thesis by stating and briefly describing accomplishments

and gives implications for practical as well as theoretical future work.

6.1 Accomplishments

Although, the results have not been as compelling as expected (see previous section), the derived

concept doubtlessly contributes in regards to following issues:

• The relatively young concept of restricted Boltzmann machine with continuous visible

units has been applied to time series data of another domain. As the training process

depicts, the RBM can learn performance related data of machinery with an appropriate

parametrization.

• Omitting the classifying step and and aiming for regression instead, the RBM can be

considered as a promising method in predictive analytics.

• The usage of a RBM for classification purposes is heavily depending on the correct setting

of a threshold vector, which should be data-driven. Concretely the threshold values should

be appropriately coupled to the distribution of the reconstruction error of the respective

feature. The simple mean value of the batch, as implemented in this work, does obviously

not suffice.

• The conditional Gaussian Bernoulli restricted Boltzmann machine achieves a better mod-

eling of the training data as the standard GBRBM. In fact the reconstruction error is by

50% lower. Crucial for the convergence is the setting of the appropriate regional inter-

dependency, i.e. the amount of past units connected to the current ones. If one choses the

amount too large the result is a volatile performance.

6.2 Implications for Future Work

An obvious implication is the further improvement of the methodology in this specific case,

such as optimization of the parameters of the SVM based on a thorough investigation of the

reconstruction error distributions with e.g. simulated annealing ([41]). Since this investigation

dealt with a limited amount of very specific data cRBMs should be applied to different data sets

for further investigating applicability.

The concept, however, lacks the capability for online adaption so far, which could be worth

investigating. Furthermore the concept of conditional RBM seems not quite evolved at this

point. To our best knowledge there have not been any investigation in regards to alternative
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ways to connect past observations to the current ones. Finally the work can be seen as a

starting point for additional enhancement of predictions with meaningful decision prescriptions,

in the sense of prescriptive analytics. A link to entrepreneurial circumstances thus could enlarge

practical benefits. Concretely in this case the optimization of repair scheduling of a wind turbine

given meteorological data or energy price forecasts could decrease maintenance costs.
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