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Abstract

On a long path of finding appropriate materials to store hydrogen, graphene and carbon

nanotubes have drawn a lot of attention as potential storage materials. Their advantages lie

at hand since those materials provide a large surface area (which can be used for physisorp-

tion), are cheap compared to metal hydrides, are abundant nearly everywhere, and most

importantly, can increase safety to existing storage solutions. Therefore, a great variety of

theoretical studies were employed to study those materials.

After a benchmark study of different van-der-Waals corrections to Generalized Gradi-

ent Approximation (GGA), the present Density Functional Theory (DFT) study employs

Tkatchenko-Schäffler (TS) correction to study the influence of vacancy and Stone-

Wales defects in graphene on the physisorption of the hydrogen molecule. Finally, the impact

of different carbon nanotube diameters and geometries (zigzag & armchair confguration) on

physisorption energetics and behavior is presented.
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Kurzfassung

Während der langen Suche nach Materialien für die Speicherung von Wasserstoff, haben

sich besonders Graphen und Kohlenstoffnanoröhrchen als potentielle Kandidaten hervor-

getan. Die Vorteile dieser Materialien liegen auf der Hand. Zum ersten eine große spez-

ifische Oberfläche auf der Wasserstoff adsorbiert werden kannn, niedrige Preise im Ver-

gleich zu Metallhydraten, sowie weltweite Vorkommen, um nur einige Vorteile zu nen-

nen. Zum zweiten kann die Sicherheit im Gegensatz zu existierenden Lösungen erhöht

werden. Aus diesen Gründen wurden bereits viele theoretische und experimentelle Studien

durchgeführt. Nach einer Benchmark-Studie von verschiedenen van-der-Waals Korrekturen

für Generalized Gradient Approximation (GGA) Funktionale, setzt die hier präsentierte

Dichtefunktionaltheorie- (DFT) Studie eine Korrektur nach Tkatchenko-Schäffler (TS) ein,

um den Einfluss von Leerstellen und Stone-Wales Defekten in Graphen auf das Physisorp-

tionsverhalten von Wasserstoff zu untersuchen. Weiters wird der Einfluss des Durchmessers

von Kohlenstoffnanoröhrchen, sowie deren Geometrie (zigzag & armchair) auf die Wechsel-

wirkungsenergien mit dem H2 Molekül präsentiert.
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Chapter 1

Introduction

Hydrogen storage

Storing hydrogen in a cheap and effective way is one of the biggest challenges when it comes

finding sustainable energy solutions. Consequently, researchers all over the world approached

this problem from many different fields and came up with many solutions, however, without

achieving a breakthrough. Basically one can distinguish between two forms of hydrogen

storage, namely physical-based and material-based. Physical-based storage is the technolog-

ically most advanced form, where the hydrogen is stored as a gas or liquid e.g. in pressurized

gas tanks. Storing hydrogen in tanks however, implies either pressures as high as 700 bar

or “low” (< 150 K) temperatures, neither of which is easily implemented for automotive

applications. Material-based applications can be further divided into systems where hydro-

gen is either physically stored on materials or chemically bonded to materials or molecules.

Since the last decades the a of effort has been put into finding material-based solutions to

avoid non-ambient conditions, to increase saftey and decrease costs. The U.S Department

of Energy (DOE) defined goals for the hydrogen uptake (9 wt.% in 2015) which are being

raced for by many research groups. A few recent achievements are given here to illustrate

the interdisciplinarity of this problem.

• In 2007 biochemical scientists at the Oak Ridge National Laboratory (ORNL) found a

way to use starch and water as a hydrogen carrier and claimed an uptake of 14 wt.%

(1 ).

• In 2009 an uptake of 10 wt.% could be achieved by employing metal organic framework

by researchers of the University of Nottingham (2 ).
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• Recently, Australian researchers even managed to power a car with ammonium by

literally undoing the Haber-Bosch synthesis (3 ).

Also carbon nanostructures such as carbon nanotubes (CNTs) or graphene were under heavy

consideration as storage materials. It was the discoverer of graphene himself, Geim, who

showed that the novel 2D material could store hydrogen easily and release it again at higher

temperatures (4 ). Nevertheless graphene is up to now a very expensive material and it is not

possible to produce it in vast amounts. The main focus of the researches examining carbon

structures however shifted away from CNTs since their uptake is too small to meet the DOE

criterions, especially at room temperature. Recent studies have tried to employ extremely

cheap activated carbon with tailored porosity size and extremely high porosities to meet the

desired uptake goals (5–7 ).

The presented thesis provides a benchmark calculation for different van-der-Waals correction

schemes, to study the interaction between the H2 molecule and carbon nanostructures. The

first part of the results deals with the adsorption behaviour of perfect graphene. Next the

influence of vacancy and Stone-Wales defects in graphene on the adsorption is presented.

Finally, the third part investigates the adsorption of the H2 molecule on the outer wall of

single-walled carbon nanotubes (SWCNT). This study is a part of larger project aiming

on building a multi-method package for multi-scale modelling of interaction between H and

structurally complex (e.g., nanoporous) carbon structures.
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Chapter 2

Theoretical background

2.1 Carbon nanostructures

Although a large variety of carbon nanostructures, so-called fullerenes, proved experimentally

existent already in the 1970s (8 , 9 ), the research on hydrogen storage materials deals mostly

with bulk nanoporous carbon. For the sake of easiness, the present thesis focuses on graphene

and carbon nanotubes, as representatives of well defined carbon nanostructures, which still

contain different bonding as well as geometrical environments.

2.1.1 Graphene

In the 1960s theoretical studies led to the Mermin-Wagner theorem (10 ), postulating that

2D materials would not be stable for finite temperatures. Nevertheless, further theoretical

investigations (11 ) stated that certain materials could violate the theorem. So does graphene.

When it was discovered to be the first true 2D crystal by Geim and Novosolev (12 ) its

extraordinary properties made it one of the most intensively studied material. The hexagonal

crystal lattice of sp2 bonded carbon atoms with a bond length of 1.42 Åis created by three in-

plane σ bonds. The π orbital is aligned perpendicular to the plane. Since the sp2 bond is one

of the strongest known, graphene shows remarkable mechanical properties (13 ). Similarly,

the electronic structure is very special due to the fact that the valence and conduction bands

meet at the K point in the reciprocal space (so-called Dirac points), electrons move as if

they had no mass (band curvature is zero) leading to extremely high electron mobility (4 ).

Consequently, the electric resistivity is the lowest known up to now (14 ). Graphene and

graphene-like materials are also serious candidates for hydrogen storage due to their huge

specific area (2630 m2/g). Experimental (15 ) and lots of theoretical studies (16–18 ) with
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different approaches like DFT or MD have already been carried out to study the interaction

with hydrogen. Also in this thesis graphene is one of the main topics.

2.1.2 Carbon nanotubes

After Kroto et al. found fullerenes in 1985 (9 ), the existence of carbon nanotubes was

speculated until finally in 1991 Iijima found them in experiments (19 ). A single-walled car-

bon Nanotubes (SWCNTs) is simply a rolled up sheet of graphene. Although in reality also

multi-walled carbon nanotubes (MWCNTs) are observed, they are not considered here. As

well as graphene CNTs also show remarkable properties. Depending on the way (under which

angle) one cuts out the CNT from the graphene plane, metallic or semiconducting behaviour

can be observed. Similarly to graphene CNTs show extraordinary mechanical (stiffness ≈ 1

TPa), electronic and heat conduction properties. CNTs already found real-world applica-

tions such as reinforcement fibers for polymers or transistors. Since they possibly could trap

hydrogen inside the tube, they are also thoroughly studied by research groups worldwide as

potential candidates for hydrogen storage materials (20–24 ).

2.1.2.1 Structure of carbon nanotubes

As mentioned before a CNT is a rolled-up sheet of graphene. To model this and generate

CNT unit cells, a short excursion to the mathematical description of the structure of CNTs

is given here.
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the 1D tubule unit cell and the rotation angle ~ and the translation r which constitute the 
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Figure 2.1: Schematic unit cell of a chiral n = 4, m = 2 nanotube. C⃗h denotes the chiral

vector (25 ) and T⃗ the tubule translation vector. ψ and τ correspond to the symmetry

operation

2.1.2.2 Tubule lattice vectors

Consider a graphene plane with lattice parameters a⃗1 =


3
2
aC−C ,

√
3
2
aC−C


and a⃗2 =

3
2
aC−C , −

√
3
2
aC−C


, where aC−C denotes the carbon-carbon bondlength, as it is illustrated

in Fig. 2.1. A SWCNT is fully defined by two chirality parameters n and m, which define

at which angle the unit cell is cut from the graphene plane. Both parameters compose the

chirality vector C⃗h as

C⃗h = na⃗1 +ma⃗2 (2.1)

along which the tube is rolled up (26 ). Thus the tube diameter is given by

dt =
||C⃗h||
π

=

√
3aC−C

√
n2 + nm+m2

π
(2.2)

The chiral angle Θ as illustrated in Fig. 2.1 is given by

Θ = arctan

 √
3m

2n+m


(2.3)
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The tube translation vector T⃗ is introduced orthogonal to the chiral vector C⃗h and defines

the length of the unit cell in the tube axis direction and is defined as

T⃗ =
2m+ n

dR
a⃗1 +

2n+m

dR
a⃗2 (2.4)

with dR being given as

d = gcd(m,n)

dR =


d if (n−m) is not a multiple of 3d

3d if (n−m) is a multiple of 3d

(2.5)

where gcd(n,m) is the greatest common divisor of the two chirality parameters n and m.

The number of hexagons in the unit cell can be calculated using the formula

N =
2 (m2 + n2 + nm)

dR
(2.6)

which will be needed later on to calculate the atomic positions.

2.1.3 Atomic coordinates

The basic space group symmetry operation of a general (chiral) nanotube is composed of

a rotation ψ and a translation τ which is represented with a symmetry vector R⃗ such that

ψ = R⃗ · C⃗h and τ = R⃗ · T⃗ holds true (25 ). The symmetry vector is defined as

R⃗ = pa⃗1 + qa⃗2 (2.7)

ψ = R⃗ · C⃗h =
2π

N
(2.8)

τ = R⃗ · T⃗ =
(mp− nq)||T⃗ ||

N
(2.9)

The integer pair (p, q) can be determined by finding a solution to the diophantine equation

d = mp − nq. (p, q) represents the coordinates of the origin after the symmetry operation

(ψ|τ) acted on it, i.e. (ψ|τ)(0, 0) = (p, q). (25 ). For obtaining the coordinates of the

individual atoms one transforms each lattice site and adds two atoms per site since two

atoms are needed to represent a honeycomb structure. The atom positions are therefore

given for a lattice site i

x⃗i,1 =


dt
2
cos(iψ),

dt
2
sin(iψ), iτ


x⃗i,2 =


dt
2
cos(iψ + ψ0),

dt
2
sin(iψ + ψ0), iτ + τ0

 (2.10)
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where t0 and ψ0 represent the rotation and translation between the two atoms of the basis

and are given by

τ0 = aC−C sin
π
6
−Θ


(2.11)

ψ0 =
aC−C sin


π
6
−Θ


2π||C⃗h||

(2.12)

Using all these equations, a Python script for generating SWCNTs was implemented, which

just takes the chirality parameters n and m as input arguments and generates the nanotube

unit cell. It is also possible to specify a vacuum around the CNT to avoid the interaction

with its periodic image due to periodic boundary conditions. Figure 2.2 shows the structural

model when rolling up the graphene sheet as illustrated in Fig. 2.1.

Figure 2.2: Structural model of an n = 4,m = 2 chiral carbon nanotube, generated with the

aforementiond Python script



CHAPTER 2. THEORETICAL BACKGROUND 8

2.2 Density Functional Theory (DFT)

Since Density Functional Theory (DFT) is a very sophisticated ab-initio method for elec-

tronic structure calculations, this chapter aims to introduce the reader to only rough ideas

about the basic theorems and principles. There are many books which describe all aspects

of DFT in more detail. A freely available ABC of DFT from Burke is recommended to get

a good insight (27 ).

2.2.1 Many-body Schrödinger equation

Finding solutions for the Schrödinger equation is one of the main tasks of quantum mechanics.

In its time-independent version (Eq. 2.13) Ĥ denotes the Hamiltonian which is the total

energy operator and uniquely describes the underlying quantum-mechanical system.

ĤΨ = EΨ (2.13)

Although it is easy to find a solution for one particle, the complexity increases dramati-

cally for more particles. Therefore consider a generic system with N nuclei at positions R⃗i

as well as n electrons at positions r⃗i. Thus the wave-function becomes a function of the coor-

dinates of each particle Ψ

R⃗1, . . . , R⃗N , r⃗1, . . . , r⃗n


and is therefore a function of 3× (N +n)

variables. If more than one particle is under consideration also their mutual interactions

have to be taken into account, yielding a Hamiltonian of the form of Eq. 2.14 which de-

scribes the aforementioned system properly. The operators T̂N and T̂e denote the kinetic

energy operators of the nuclei and electrons. V̂N↔e, V̂N↔N and V̂e↔e therefore represent the

operators to obtain the potential energy of nucleus-electron, nucleus-nucleus, and electron-

electron Coulomb interactions. It turns out that it is not possible to to find an analytical

solution to the Schrödinger equation with the Hamiltonian from Eq. 2.14 for more than a

few particles because of its extraordinary difficulty.

Ĥ =

T̂N  
−ℏ2

2

N
i

∇2
R⃗i

Mi

−

T̂e  
ℏ2

2

n
i

∇2
r⃗i

me

−

V̂N↔e  
1

4πϵ0

N
i

n
j

e2ZiR⃗i − r⃗j


+

1

8πϵ0

N
i

N
j

e2ZiZjR⃗i − R⃗j

  
V̂N↔N

+
1

8πϵ0

n
i

n
j

e2

|r⃗i − r⃗j|  
V̂e↔e

(2.14)
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2.2.1.1 Born-Oppenheimer approximation

It is obvious that the many-body problem has to be simplified in some meaningful way. In

1927, Born and Oppenheimer (28 ) suggested neglecting the motion of the nuclei since

they are much heavier and slower than the electrons. From the perspective of a moving

electron, the nucleus appears as a fixed point since it is M mp

me
(M denotes the atomic mass

number, mp ≈ mn) times heavier and consequently reacts to external forces much slower.

This obvious and intuitive simplification has however a great impact on the Hamiltonian.

First of all, the wave function’s complexity is dramatically reduced and becomes a function

of the electron positions only Ψ (r⃗1, . . . , r⃗n). Secondly, since the velocity of the nuclei is

small ∇R⃗i < ∇r⃗i as well ∇2R⃗i ≪ ∇2r⃗i holds true. Further, the approximation imposes that

V̂N↔N becomes a constant and V̂N↔e becomes just an ordinary external potential. Finally,

the many-body Hamiltonian can be reduced to

Ĥ = T̂e + V̂e↔e + V̂ext

= − ℏ2

2

n
i

∇2
r⃗i

me  
T̂e

+
1

8πϵ0

n
i

n
j

e2

|r⃗i − r⃗j|  
V̂e↔e

+ V̂ext
V̂N↔N+V̂N↔e

(2.15)

Although this simplification reduces the complexity a lot, the problem is still not tractable

at least not for real solids. However, the Ritz-Rayleigh variational principle (29 ) provides

a method to find the lowest eigenvalue E0 of this problem and therefore a way to find

a solution. Nevertheless, this still proves difficult in reality. The principle states if the

Hamiltonian acts on a family of test vectors Ψ constructed from an orthonormal basis set,

the vector with the lowest energy represents the ground state, while all others will give a

higher energy states. However, the basis set is not obligated to have finite dimensions which

is indeed the case for the wave functions in the Hilbert space.

E0 ≤
⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩

(2.16)

2.2.2 Hohenberg-Kohn theorems

Since methods which find an approximate solutions to the wavefunction itself such as e.g the

Hartree-Fock (30 ) approach, are very limited in terms of system size, other researchers

tried to employ the charge density ρ(r⃗) as Thomas and Fermi did already in 1927 (31 ).
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Despite those early steps, it took until the 1960s when Hohenberg and Kohn proved that

a system can be fully described by its charge density (32 ). These two theorems represent

a real breakthrough since if one is able to describe a system with only the charge density

instead of the many-body wave function, the problem is reduced to searching for a function

of only three variables. As a consequence, the problem can be treated much easier and many

more particles can be handled in practice. The charge density itself is an observable of the

problem, and therefore can be obtained by applying the single-particle density operator on

the many-body wavefunction. Again, consider a system with n electrons. Then the charge

density can be written as

ρ(r⃗) = ⟨Ψ|ρ̂|Ψ⟩ =
n
i


δ(r⃗ − r⃗i)|Ψ(r⃗1, . . . , r⃗n) |2dr⃗1 · · · dr⃗n

=


|Ψ(r⃗, r⃗2, . . . , r⃗n) |2dr⃗2dr⃗3 · · · dr⃗n +


|Ψ(r⃗1, r⃗, . . . , r⃗n) |2dr⃗1dr⃗3 · · · dr⃗n + . . .

= n


|Ψ(r⃗, . . . , r⃗n) |2dr⃗2 · · · dr⃗n

(2.17)

Since the following two theorems are fundamental for the density functional theory, a

short proof will be presented (33 ).

Theorem 1. For any system of interacting particles in an external potential Vext(r⃗), the

density is uniquely determined.

Proof. Let Ĥa = T̂e+V̂e↔e+V
a
ext(r⃗) and Ĥ

b = T̂e+V̂e↔e+V
b
ext(r⃗) be two distinct Hamiltonians.

The external potentials differ by more than a constant V a
ext(r⃗)−V b

ext(r⃗) ̸= const. V a
ext(r⃗) and

V b
ext(r⃗) correspond to the same ground state electron density ρ0(r⃗), thus Ĥ

a and Ĥb give rise

to two different wave functions Ψa and Ψb

From the variational principle from Eq. 2.16 we know that no wave function can yield a

lower energy than Ψa if Ĥa acts on it, thus

Ea
0 = ⟨Ψa|Ĥa|Ψa⟩ < ⟨Ψb|Ĥa|Ψb⟩ (2.18)

must hold true. Since both Hamiltonians have the same ground state density it is easy to

rewrite the expectation value from Eq. 2.18 to

⟨Ψb|Ĥa|Ψb⟩ =

Eb
0  

⟨Ψb|Ĥb|Ψb⟩+
 

V a
ext(r⃗)− V b

ext(r⃗)

ρ0(r⃗)dr⃗ (2.19)
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Analogously one ends up with

⟨Ψa|Ĥb|Ψa⟩ =

Ea
0  

⟨Ψa|Ĥa|Ψa⟩+
 

V b
ext(r⃗)− V a

ext(r⃗)

ρ0(r⃗)dr⃗ (2.20)

Adding up Eq. 2.19 and Eq 2.24 leads to a simple contradiction.

Ea
0 + Eb

0 < Eb
0 + Ea

0 (2.21)

Therefore the theorem has been proven by a very simple reductio ad absurdum

Since it was shown that the external potential uniquely determines the electron density

and vice versa, the ground state wavefunction, therefore, is also determined. Furthermore,

this implies that all the observables such as kinetic energy or momentum are uniquely de-

termined which therefore automatically leads to the second theorem of Hohenberg and

Kohn.

Theorem 2. Since all observables are uniquely determined for a given charge density, one

can reformulate the energy as a functional of the charge density ρ(r⃗) (Eq. 2.22). For all

electronic structure problems a universial functional E[ρ] can be formulated such that the

ground state energy is the global minimum value of the functional E[ρ].

Proof. Again let Ĥ = T̂e + V̂e↔e + Vext(r⃗) and ψ[ρ] be the minimizing wave-function. The

energy can then be written as the following functional

E[ρ] = ⟨Ψ[ρ]|Ĥ|Ψ[ρ]⟩ = ⟨Ψ[ρ]|T̂e + V̂e↔e|Ψ[ρ]⟩+

Vext(r⃗)ρ(r⃗)dr⃗

= Te[ρ] + Ve↔e[ρ] +


Vext(r⃗)ρ(r⃗)dr⃗

(2.22)

From the first theorem it is known that only one charge density ρa(r⃗) yields the ground state

energy

Ea
0 = E[ρa] = T [ρa] + Ve↔e[ρ

a] +


Vext(r⃗)ρ

a(r⃗)dr⃗ (2.23)

From the variational principle (Eq. 2.16), a different charge density ρb(r⃗) yields a higher

energy if fed into Eq. 2.22.

Ea
0 = ⟨Ψa|Ĥa|Ψa⟩ < ⟨Ψb|Ĥa|Ψb⟩ = Eb

0 (2.24)
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By finding the minimum of this functional
δE[ρ(r⃗)]

δρ(r⃗)
= 0 the total energy of the ground

state can be obtained. However, for certain contributions to the total energy no functional

representation has been found yet. Although those theorems changed the way how electronic

structure problems were approached, they still provide (only) a variational principle approach

but no direct recipe how to solve the many-body problem. Only a year later, Kohn together

with Sham (34 ) provides such recipie, based on the theorems above.

2.2.3 Kohn-Sham method

The major idea behind this method is to represent the physical system by a set of fictitious

non-interacting particles, which themselves are influenced by an external effective potential

Veff. However, these fictitious particles give rise to the same charge density as the real physical

system. Therefore the problem is transformed into an eigenvalue one-particle problem of the

form


− ℏ2

2m
∇2 + Veff(r⃗)


ϕi(r⃗) = ϵiϕi(r⃗) (2.25)

with

ρ(r⃗) =
N
i

|ϕi(r⃗)|2. (2.26)

Here, ϕi(r⃗) denote the so-called Kohn-Sham (KS) orbitals and ϵi the corresponding

eigenvalues. It lies at hand that the eigenvalues of the system obtained from Eq. 2.25 do

not represent the single electron energies. However, it has been shown that the KS-orbitals

can give a very decent description of real electronic band structures (35 ). The Kohn-Sham

wave function (in the following Φ(r⃗)) is then expressed as the Slater determinant of the

single particle KS orbitals (36 ). Anyway, a set of non-interacting particles does neglect two

fundamental principles of quantum mechanics and therefore will yield a different energy if

the contributions are not considered in the effective potential term Veff. The neglected effects

are

• the exchange energy originating from the Pauli repulsion

• the correlation energy which one can think of the electron-electron repulsion
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Consequently the effective potential Veff includes a non-classical term VXC which takes into

account Pauli exchange interactions as well as correlations (correction of the single-particle

treatment)

Thefore, the energy functional as introduced by the second Hohenberg-Kohn (Eq.

2.22) becomes

E[ρ(r⃗)] = Ts[ρ(r⃗)] +


Veff(r⃗)ρ(r⃗)dr⃗

= Ts[ρ(r⃗)] +


Ve↔e(r⃗)ρ(r⃗)dr⃗ +


Vext(r⃗)ρ(r⃗)dr⃗ +


VXC(r⃗)ρ(r⃗)dr⃗  

EXC

(2.27)

where T̂s is the single particle kinetic energy operator therefore neglecting the correlation

energy such that T [ρ] = Ts[ρ]+Tc[ρ] holds true. The missing part of the kinetic energy Tc[ρ] is

included in the EXC [ρ(r⃗)] term which represents the exchange-correlation energy functional.

The EXC [ρ(r⃗)] term of this equation is very crucial, because it has to be approximated. The

kinetic energy can be writte in functional representation as

Ts[ρ(r⃗)] = − ℏ2

2m

N
i

⟨ϕi|∇2|ϕi⟩ (2.28)

With all these definitions one can rewrite the effective potential as Veff

Veff(r⃗) =
δ

δρ(r⃗)

 ⟨Φ|V̂ext|Φ⟩  
V̂N↔N+V̂N↔e

+ ⟨Φ|V̂e↔e|Φ⟩+ EXC [ρ(r⃗),∇ρ(r⃗), . . .]


=

δ

δρ(r⃗)


Vext(r⃗) |Φ(r⃗)|2  

ρ(r⃗)

dr⃗ +
δ

δρ(r⃗)


1

8πε0

 
ρ(r⃗)ρ(r⃗)

|r⃗ − r⃗′|
dr⃗′dr⃗


  

EHartree

+
δEXC [ρ(r⃗),∇ρ(r⃗), . . .]

δρ(r⃗)

= Vext(r⃗) +
1

4πε0


ρ(r⃗′)

|r⃗ − r⃗′|
dr⃗′  

Ve↔e

+VXC(ρ(r⃗),∇ρ(r⃗), . . .)

(2.29)

Because of the first Hohenberg-Kohn theorem, the potential in Eq. 2.29 is unique. The

Kohn-Sham equations (Eqs. 2.25 , 2.27) provide an exact theory and yield the correct

charge density for any system if the exchange-correlation functional is known. There is
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nothing approximative in KS theory apart from the Born-Oppenheimer approximation.

However the EXC [ρ(r⃗),∇ρ(r⃗), . . .] term is unknown and has to be approximated. In return

the KS equations are a set of single particle equations and thus can be handled much easier

than any explicit many-body treatment.

2.2.4 LDA and GGA

The quality of an DFT calculation depends mostly on how well the XC-functional is able to

mimic the behaviour of the system under consideration. The two simpliest but most widely

spread approximations are described below.

2.2.4.1 Local Density Approximation

The first approximation of the EXC [ρ(r⃗),∇ρ(r⃗), . . .] functional was suggested already by Ho-

henberg and Kohn themselves in the original paper (34 ). Their idea was to approximate

the exchange-correlation energy by that of a uniform electronic gas. Thus EXC [ρ(r⃗),∇ρ(r⃗), . . .]
becomes only a functional of the density itself

ELDA
XC [ρ(r⃗)] =


ρ(r⃗)εhomXC [ρ(r⃗)]dr⃗ (2.30)

where εhomXC [ρ(r⃗] is the exchange-correlation energy density of a homogeneous electron gas.

The EXC [ρ(r⃗)] is assembled by two contributions, the exchange energy functional Ehom
X [ρ(r⃗)]

and the correlation functional Ehom
C [ρ(r⃗)]. Only a few years after the Thomas-Fermi theory

was published, Dirac already in 1930 (37 ) found an approximation to the exchange term

of the homogeneous electron gas

V hom
X [ρ(r⃗)] = −3

4


3

π

 1
3

ρ(r⃗)

4
3dr⃗. (2.31)

The correlation Ehom
C [ρ(r⃗)] is somewhat more difficult to handle. Although Wigner could

find an approximation for low electron densities (38 ) and Gell-Mann et al. a limit form

for high densities (39 ), a general approximation was not found. Instead, an interpolation

formula is used to interpolate between those known limits (40 ). Perdew and Zunger

suggested calculating the coefficients of this interpolation function from quantum Monte-

Carlo data (41 ). Although LDA is a very simple and crude approximation, it turned out

to be a real success due to the cancellation of errors, since LDA tends to overestimate EX

and underestimate EC . However, for systems like metals where fluctuations in the electron

density are usually small, LDA yields good results.
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2.2.4.2 Generalized Gradient Approximation

It was already Kohn and Sham themselves which predicted that higher order approxima-

tions (including the gradient) would be necessary to get a better estimate of the exchange-

correlation energy. Despite the first implementation of an approximation using the density

gradient failed, based on the work of Perdew (42 ) et al. the Generalized Gradient Approx-

imation (GGA) became a real breakthrough. Although Perdew’s method is a rather crude

approach as well, the GGA could drastically reduce the effect of LDA tending to overbind

solids and molecules. The general form of GGA can be written as

EGGA
XC [ρ(r⃗),∇ρ(r⃗)] =


ρ(r⃗)εhomXC (ρ(r⃗))FXC(ρ(r⃗),∇ρ(r⃗))dr⃗ (2.32)

where FXC(ρ(r⃗),∇ρ(r⃗)) is an analytic function, usually named the GGA enhancement factor,

and is often written as a function of the reduced spin density gradient s.

s(r⃗) =
|∇ρ(r⃗)|

2 (3π2ρ(r⃗))
1
3  

k⃗F

ρ(r⃗)
(2.33)

In 1991 Perdew and Wang came up with a fully non-empirical functional for FXC (PW91)

(42 , 43 ) which extended Becke’s B88 functional (44 ). Perhaps the most used functional

today is the PBE parameterization of the FXC enhancement factor as proposed by Perdew,

Burke, and Ernzerhof (45 , 46 ).

2.3 Van der Waals correction to exchange-correlation

functionals

When Kohn and Sham proposed the LDA approximation for the EXC functional, it enabled

the boom of quantum mechanical calculations. Nevertheless, various GGA types proved to

be the optimum between the accuracy and the computational effort. Despite their robust-

ness and general accuracy, GGA functionals fail in describing long-range van-der Waals

interactions. Therefore the following sections provide an overview of how this problem is

currently approached in the DFT.
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2.3.1 DFT-D

One of the most intuitive yet powerful approaches was suggested by Grimme (47 ), which

provides a semi-empirical correction to the total energy, in a form

EDFT−D = EDFT + Edisp (2.34)

holds true. EDFT denotes just the total energy obtained from the system by solving the

KS equations. Edisp provides the semi-empirical correction originating from the vdW in-

teractions. From the physical point of view, the dispersion energy is negative, since vdW

interactions involve the correlated movement of electrons which are actually relatively far

away and therefore the total energy is lowered. In general, within the DFT-D method the

dispersion energy Edisp is calculated as the sum of all pair London atom-atom interac-

tion energies (48 ) multiplied by a correction term, the so-called damping function fdamp.

Grimme states however that there is no direct physical meaning of Edisp because it is a

model dependent quantity (47 ). Since the publication of the DFT-D method in 2004 a lot

of different damping functions have been proposed. It seems that the choice of the damping

function however has only a minor influence on the result (49 , 50 ).

2.3.2 DFT-D2 method

The DFT-D2 method was also suggested by Grimme (51 ) and provides a semiempirical

term for the dispersion energy in Eq. 2.34 as the sum of pair atom-atom interactions. As

London already found in the last century, the dispersion energy between two atoms A and

B can be approximated as

EAB
disp ≈

constant=CAB
6  

−3IAIBαAαB

2(IA + IB)

1

r6AB

(2.35)

where IA and IB correspond to the atoms first ionization potentials and αA and αB represent

the dipole polarizabilities of the atoms A and B respectively. rAB is the interatomic distance.

Thus Grimme defines the dispersion correction for a system with N atoms as the sum over

all atom-atom London pair interactions of the system

Edisp = −s6
N−1
i

N
j>i

Cij
6

r6ij
fdamp(rij) (2.36)

where s6 is a global scaling factor. Since Eq. 2.35 is just an approximation, and therefore

provides a good description for limited values of rij one needs to provide a correction term.
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Thus fdamp(rij) is a damping function to correct the London formula to avoid singularities

for small rij and double-counting effects at intermediate distances. The damping function

suggested by Grimme is a Fermi-type one given as

fdamp =
1

1 + e
−d


rij

rw,i+rw,j
−1

 (2.37)

with d as design parameter for the sharpness of the Fermi edge lying at rw,i + rw,j, where

rw,i and rw,j correspond to the vdW radii of the atomic species. Thus if the hard spheres

with vdW radii rw,j and rw,j of the atoms touch each other exatly the damping factor will

be exactly 0.5, and is much smaller for rij < rw,i + rw,j. The parameter Cij
6 should describe

the interaction between atoms i and j, and therefore has to be approximated for a real

system. This is because Eq. 2.35 does not consider the local chemical neighborhood and

is therefore valid only for isolated atoms. Nevertheless, by doing a lot of calculations and

testing, Grimme found that the relationship

Cij
6 =


Ci

6C
j
6 (2.38)

leads to the best results (51 ). Furthermore, they showed that taking higher order correction

terms into account does not significantly improve the accuracy.

2.3.3 DFT-D3 method

DFT-D3 method is an enhanced version of the DFT-D2 method. In addition to more accurate

results, the Edisp term also considers an eighth order correction, with a different damping

function fdamp which proved to be numerically stable for higher order corrections as well

(52 ). The modified versions of Eq. 2.59 and Eq. 2.37 read (53 )

Edisp =
N−1
i

N
j>i


Cij

6

r6ij
fdamp,6(rij) +

Cij
8

r8ij
fdamp,8(rij)


(2.39)

fdamp,n(rij) =
sn

1 + 6


rij

sR,nR
ij
0

−αn
(2.40)

where Rij
0 denotes a cutoff radius and sR,n its order dependent scaling factor. Therefore,

to fully describe Eq. 2.39 one needs to provide the steepness parameters α6 and α8, the

scaling factors for the cutoff radii sR,6 and sR,8 as well as the global scaling parameters
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s6 and s8. Although DFT packages (may) provide sensible default values, note that these

values depend on the used XC functional, therefore, most of them allow to set one or more

of those parameters manually to handle the XC functional influence. However, Grimme

provides sensible values for many different functionals on his webpage for zero1 and Becke-

Johnson (BJ) damping2. There also exists a small programm written in Fortran named

dftd33 which takes structure files and an XC-functional name as inputs and estimates the

parameters needed for the D3 correction.

Nevertheless, the biggest differences to the DFT-D2 method are that the dispersion

coefficients Cij
n are also dependent on the local geometry and therefore are computed during

the calculation instead of being tabulated and a three-body correction term to the dispersion

energy has been added. The three body energy term is given by the sum over all triplet

dispersion energies

E3
disp =


ijk

fd,3(r̄ijk)
Cijk

9 (3 cos(θi) cos(θj) cos(θk) + 1

(rijrjkrik)3  
Eijk

(2.41)

where Eijk is the Axilrod-Teller-Muto dispersion energy and is obtained from third

order perturbation theory (54 , 55 ). θi, θj and θk are the angles of the triangle formed by

atoms i, j and k, while rij, rjk and rik represent the interatomic distances. A very decent

guess for the three body dispersion coefficient Cijk
9 can be calculated from the pair dispersion

coefficient as (53 )

Cijk
9 = −


Cij

6 C
jk
6 C

ik
6 (2.42)

The path how to obtain the dispersion coefficients Cij
n is rather complex and was suggested

by Lein et al. (56 ) and is therefore not given here. (See: (57 , 58 ) ). For the sake of

completeness, it should be mentioned that the three body correction term is not implemented

in VASP as it is stated in the original paper (53 ).

2.3.4 Tkatchenko-Schäffler method

Although the DFT-D3 method reduces empiricism in the van-der-Waals correction term,

Tkatchenko and Schäffler proposed a method (59 ) where the dispersion coefficients

1https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/functionals
2https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/functionalsbj
3https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/get-the-current-version-of-dft-

d3

https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/functionals
https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/functionalsbj
https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/get-the-current-version-of-dft-d3
https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/get-the-current-version-of-dft-d3
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between atoms A and B, CAB
6 , are calculated from the KS charge density instead of being

tabulated for each atom. As seen in Eq. 2.35 the dispersion coefficient CAB
6 is a function

of the polarizability of the two atoms. Therefore Casimir and Polder found the exact

relation for the dispersion coefficients (60 )

Cij
6 =

3

π


αi(iω)αj(iω)dω (2.43)

as the integral over all imaginary frequencies. Now the polarizabilities are expanded as a

Padé series where only the first term is kept and therefore they can be rewritten as

α1
i (ω) =

α0
i

1−

ω

ηi

2 (2.44)

where α0
i represents the static polarizability of an atom i. ηi denotes an effective frequency.

Inserting the truncated Pade series α1
i and α1

j into the Casimir-Polder equation (Eq.

2.43) yields the London’s formula

Cij
6 =

3

2

ηiηj
ηi + ηj

α0
iα

0
j (2.45)

For two atoms of the same type ηi = ηj and α
0
i = α0

j the effective frequency for homonuclear

dispersion calculates to

ηi =
4Cii

6

3(α0
i )

2
. (2.46)

Now one can find a formula for the dispersion coefficient Cij
6 which is only a function of

the homonuclear dispersion coefficients Cii
6 and Cjj

6 and the static polarizabilities α0
i and α0

j

which can be found in databases (61 ).

Cij
6 =

2Cii
6 C

jj
6

α0
j

α0
i
Cii

6 +
α0
i

α0
j
Cjj

6

(2.47)

However, it should be mentioned that the derivation (Eqs. 2.43-2.45) of the formula for the

dispersion coefficient Eq. 2.45 merely applies to free isolated atoms, thus a relation has to

be found between the dispersion coefficient of a free atom Cii
6,iso and an atom in a solid Cii

6,sol.

To do so, one can employ the direct proportionality between polarizability α and volume

of an atom proposed by Brinck et al. (62 ) V = kα where k denotes the proportionality

constant between the quantities. This immediately yields the relation
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kisolα
i
sol

kiisoα
i
iso

=
V i
sol

V i
iso

(2.48)

between the polarizabilities of an atom i in a solid and as an isolated atom. However to

compute the effective volume of an atom in a solid (V i
sol e. g. for an atom i), one has to

know the charge density of the atom in a solid ρisol(r⃗). Now let ρiiso(r⃗) denote the charge

density of an isolated atom of the same species as atom i. Thus the isolated volume V i
iso can

be written as

V i
iso =


r⃗ 3ρiiso(r⃗)dr⃗ (2.49)

V i
sol =


r⃗ 3ρisol(r⃗)dr⃗ (2.50)

Although it is trivial to calculate V i
iso, it is not so for V i

sol since ρ
i
sol is not known.

2.3.4.1 Hirshfeld partitioning

As the KS theory yields the charge density ρ(r⃗) for the whole system, Hirshfeld (63 ) came

up with a method to dissect the charge density into atomic contributions, such that

ρ(r⃗) =
N
i

ρisol(r⃗) (2.51)

where N is the number of atoms in the system under consideration. Employing Hirshfeld’s

method consequently provides the atomic charge density contributions ρisol(r⃗) which are

necessary for computing the effective volumes V i
sol, and further on the effective dispersion

coefficients, Cii
6,sol.

To obtain the atomic charge densities ρisol(r⃗) consider again a system with N atoms and

charge density ρ(r⃗) as well as a fictions system (Hirshfeld named this fictitious system the

promolecule or procrystal) with a charge density described by the sum of the charge densities

of N isolated atoms at the same positions.

ρiso(r⃗) =
N
i

ρiiso(r⃗) (2.52)
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As the next step a sharing function w(r⃗) for each atom is introduced in the form of

wi(r⃗) =
ρiiso(r⃗)

ρiso(r⃗)
(2.53)

and consequently describes the relative share of the charge density of an atom i in the

promolecule/procrystal charge density ρiso(r⃗). Then Hirshfeld simply suggests to define

the charge density of an atom i in a bonded state in a solid as

ρisol(r⃗) = wi(r⃗)ρ(r⃗) (2.54)

and thus dissects the charge density system into overlapping and continuous atom distribu-

tions such that Eq. 2.51 holds true.

By employing Hirshfeld partitioning Eq. 2.48 can be rewritten to (59 )

kisolα
i
sol

kiisoα
i
iso

=
V i
sol

V i
iso

=


r⃗ 3wi(r⃗)ρ(r⃗)dr⃗
r⃗ 3ρiso(r⃗)dr⃗

(2.55)

and therefore yields a relation between the charge density and polarizability, where wi(r⃗)

denotes the Hirshfeld weighting function (Eq. 2.53), ρ(r⃗) the actual charge density as

obtained from the KS-DFT and ρiso(r⃗) the charge density of the promolecule/procrystal as

defined in Eq. 2.52. Finally, by combining all previously derived relations from Eqs. 2.45,

2.46 and 2.55, Tkatchenko and Schäffler arrive at the final relation between tabulated

homonuclear dispersion coefficients for isolated atoms Cii
6,iso and the corresponding effective

coefficients Cii
6,eff as

Cii
6,eff =

ηisol
ηiiso


kiiso
kisol

2

  
≈1


V i
sol

V i
iso

2

Cii
6,iso =


r⃗ 3wi(r⃗)ρ(r⃗)dr⃗
r⃗ 3ρiso(r⃗)dr⃗

2

Cii
6,iso (2.56)

Furthermore, they prove empirically that the approximation
ηisol
ηiiso


kiiso
kisol

2

≈ 1 holds true

for a large variety of molecules except for very small ones, e.g, the hydrogen molecule. In

summary it can be stated that theTkatchenko-Schäfflermethod is formally identical to

the DFT-D2 method since it considers only pair interactions for the correction of the KS total

energy. Nevertheless, it drastically reduces empiricism at the cost that the approximation

for the dispersion coefficient (Eq. 2.56) yields relatively big errors (up to 44% for the H2

molecule) (59 ) for small molecules. Furthermore, when it comes to describing the structures



CHAPTER 2. THEORETICAL BACKGROUND 22

and energetics of ionic solids, the theory fails too. However, Bučko et al. could show that

by employing a modified version of Hirshfeld partitioning one can solve this problem (64 ,

65 ).

2.3.5 Tkatchenko-Schäffler method with Self-consistent screening

Although Tkatchenko-Schäffler van der Waals (TS-vdW) correction provides a clean

ab-initio method, there are still some phenomena which are not taken into account in this

method. At first long-range electrostatic screening effects beyond the range of atomic charge

densities are not considered. Secondly, if an atom is built in a large molecule or a solid its

dipole fluctuations differ drastically from those of an isolated free atom. The reason for this

is that dipole fluctuations are not only influenced by the local environment but also by the

electrostatic interaction of distant dipoles. (66 ). Therefore Tkatchenko et al. proposed a

method where classical electrodynamics is employed to extend TS-vdW (66 ). Starting from

the self-consistent screening equation (see App. A sec. A.1)

αSCS
i (ω) = αi(ω)− αi(ω)


j ̸=i

Tijα
SCS
i (ω) (2.57)

where Tij is the dipole-dipole interaction tensor (see Sec. A.1.4) and αi(ω) the approximated

frequency-dependent polarizability as defined in Eq. 2.44. After obtaining αSCS
i (ω) from Eq.

2.57 the dispersion coefficients Cii
6,SCS are evaluated by plugging αSCS

i (ω) into the Casimir-

Polder integral (Eq. 2.43). The characteristic excitation frequency is again the same

as in simple TS-vdW method (Eq. 2.46). The method works the same as TS-vdW just

with the modified parameters Cii
6,SCS, α

SCS
i (ω) and RSCS

0i where RSCS
0i is then the rescaled

van-der-Waals radius, which is given by

RSCS
0i =


αSCS
i

αi

 1
3

R0i. (2.58)

This method is still computationally efficient and useful if polarizable atoms and molecules

are studied (67 ).

2.3.6 Density-dependent energy correction (dDsC) dispersion

correction

Using the second order perturbation theory, Becke and Johnson derived a formalism

for the dispersion interaction by analyzing the position-dependent dipole moment of the



CHAPTER 2. THEORETICAL BACKGROUND 23

exchange hole (68–70 ). Based on this model, Steinmann and Corminboeuf introduced

a correction (71 , 72 ) which is formally similar to DFT-D2 (Eq. 2.59)(67 )

Edisp = −
N−1
i

N
j>i

Cij
2n

r2nij
fdamp,2n(rij b(x)

Eq. 2.61

). (2.59)

However, it uses a different damping function fdamp,2n(rijb) in a form proposed by Tang(73 )

fdamp,2n(x)1− ex
2n
k=0

xk

k!
(2.60)

where 2n is the correction order (6, 8 or 10). All physical quantities are contained in the

damping factor b(x) which is given as

b(x) =
2bij,asym
ea0·x + 1

(2.61)

where a0 is a fitted parameter which controls short-range behaviour of the damping function.

The model parameter bij,asym is estimated from the atomic polarizabilities and is computed

by the rule of Böhm and Ahlrichs (74 ) as

bij,asym = 2
bii,asym × bjj,asym
bii,asym + bjj,asym

× bjj,asym

bjj,asym = b0


2Ii
3


V i
iso

V i
eff  

1

αi

(2.62)

where Ii denotes the ionization energy of the ith atom. As Eq. 2.62 shows the polariz-

ability is again estimated using the linear relationship with the volume as it is done in the

Tkatchenko-Schäffler method in Eq. 2.55. Consequently, the dDsC method calculates

all necessary physical properties from ab-initio data without empirical data input. The for-

mulas for the dispersion coefficients are not stated here since more theoretical background

would be necessary for a sufficient explanation. The interested reader is directed to Beckes’s

paper (69 ). The x parameter for b(x) (Eq. 2.61) is suggested in the original paper as

x =

qij + qji −
(Zi −Ni)(Zj −Nj)

rij

 Ni +Nj

NiNj

(2.63)

where Ni is the effective Hirshfeld charge contribution of atom i as defined in Eq. 2.54

qij is an overlap term representing folding of the Hirshfeld the weighting functions (Eq.
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2.53) of the atoms i and j

Ni =


ρisol(r⃗)dr⃗ =


wi(r⃗)ρ(r⃗)dr⃗ (2.64)

qji =


wj(r⃗)ρ

i
sol(r⃗)dr⃗ =


wj(r⃗)wi(r⃗)ρ(r⃗)dr⃗ (2.65)

As seen in the previous equations, the dDsC method is an advanced full ab-initio method

which also considers the local chemical environment of an atom. All physical quantities

such as charge Ni (Eq. 2.64), overlap charge qji (Eq. 2.65), dispersion coefficients Cij
6,sol and

polarizability αi (Eq. 2.55) are solely functions of the charge density itself. The dDsC has

been intensively studied and verified (75 ) and it has been successfully applied (76 ).
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Chapter 3

Results and discussion

3.1 Calculation & Analysis

3.1.1 DFT calculation setup

All quantum-mechanical calculations were carried out with the Vienna Ab-initio Simulation

Package (VASP) (77 , 78 ). The functional used for approximating the exchange and correla-

tion, was Perdew-Burke-Ernzerhof parametrized generalised gradient approximation

(PBE-GGA) (45 ). The projector augmented wave method (PAW)(79 ) enabled pseudo-

potentials described electron-ion interactions. The plane-wave cutoff energy for the basis set

was tested for a convergence in a combination with the Monkhorst-Pack (80 ) k-mesh of

the Brillouin zone.

3.1.1.1 Convergence criteria

The general energy convergence criteria for the calculation is < 0.1 eV/atom. To ensure

the accuracy throughout all calculations, convergence tests were performed by varying cutoff

energy (ENCUT from 300 to 1200) and k-mesh density (automatic density from 30 to 90) for

the unit cells of graphene and graphite. For all calculations containing only hydrogen atoms,

an energy cutoff of 600 eV was found to be sufficient, whereas for all other calculations

containing carbon atoms, a higher cutoff energy of 1000 eV is needed. Furthermore, as a

standard convergence criterion for all calculations energy criteria of 10−6 eV (EDIFF=1E-6)

for the self-consistent electronic loop and 10−4 eV (EDIFFG=1E-4) for the ionic steps used.

The k-meshes for the individual structures can be found in Tab. 3.2
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3.1.2 Van-der-Waals correction

To find the most appropriate van-der-Waals correction method for simulations of carbon

nanostructures, a small benchmark test was performed. Unit cells of graphene, graphite and

diamond structures with experimental lattice parameters were relaxed both with and with-

out fixed unit cell volume (ISIF = 3/4) by additionally applying all possible van-der-Waals

corrections. Tab. 3.1 shows the result of the benchmark where ISIF=4 rows represent the

calculations with fixed cell volume. The first line shows the resulting lattice parameter, the

second line the relative error in % compared to the corresponding literature value. When

it comes to choosing the van-der-Waals correction method the greatest focus lies on the

graphite c parameter since the grahpite interplanar bonds are van-der-Waals type bonds.

Examining which of the available correction methods yields results closest to the experimen-

tal parameters best, the Tkatchenko-Schäffler (DFT-TS) was chosen.

3.1.3 Preparation and evaluation

The necessary input files containig unit cell information were obtained from materialspro-

ject.com (81 ) to ensure that reasonable structures are at the beginning of our studies. Further

processing was done with Python scripting, by heavily using the SciPy (82 ) as well as the

pymatgen (83 ) package as an interface between Python and VASP. All pictures of structural

models which appear in this thesis were created with the VESTA software package (84 ).

3.2 Single species interaction potential

Before focusing on the adsorption of the hydrogen molecule on various carbon structures, we

aimed for the single species interaction potentials of hydrogen, sp2 bonded (graphene) and

sp3 bonded (diamond) carbon. All calculated data was fitted with common analytical forms

of interaction potentials to examine if they can reasonably describe the interaction.

3.2.1 Fitting interatomic potentials

There is a big variety of analytical forms of pair potentials which describe the interaction of

two isolated atoms. We focused only on the most common potentials to estimate how well

they can describe hydrogen-hydrogen and carbon-carbon bonds. All fitting routines were

written in Python by employing SciPy ’s fitting procedures. Interatomic potentials play a

vital role in MD simulations, thus the used analytic potentials are presented here
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None D2 D3 D3-BJ TS TS + SCS MBD dDsC
IVDW=0 IVDW=10 IVDW=11 IVDW=12 IVDW=20 IVDW=21 IVDW=202 IVDW=4

graphite (c = 6.708 Å)

ISIF=4
6.762 6.727 6.741 6.732 6.757 6.760 6.747 6.739
0.811 0.281 0.493 0.360 0.731 0.780 0.589 0.471

ISIF=3
7.978 6.447 6.952 6.709 6.708 6.710 6.743 6.707
18.936 3.891 3.638 0.016 0.006 0.032 0.530 0.008

graphite (a = 2.470 Å)

ISIF=4
2.460 2.467 2.464 2.466 2.461 2.460 2.463 2.465
0.047 0.217 0.111 0.180 0.148 0.005 0.029 0.063

ISIF=3
2.467 2.463 2.466 2.466 2.460 2.460 2.461 2.455
0.218 0.067 0.194 0.179 0.248 0.057 0.048 0.024

graphene (a = 2.470 Å)

ISIF=4
2.467 2.467 2.467 2.467 2.464 2.465 2.464 2.459
0.252 0.249 0.236 0.218 0.134 0.137 0.120 0.088

ISIF=3
2.467 2.467 2.467 2.466 2.465 2.465 2.464 2.459
0.243 0.240 0.228 0.211 0.138 0.140 0.126 0.084

diamond (a = 2.470 Å)

ISIF=4
3.575 3.575 3.575 3.575 3.575 3.575 3.575 3.575
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ISIF=3
3.572 3.564 3.564 3.558 3.553 3.554 3.560 3.552
0.065 0.300 0.288 0.473 0.591 0.579 0.421 0.618

Table 3.1: van-der-Waals correction benchmark results

3.2.1.1 Lennard-Jones potential

One of the earliest interatomic potentials was suggested by Lennard-Jones in 1924 (85 ).

The Lennard-Jones potential is composed of a 12th order repulsion term and a 6th order

attraction term which is derived from the London’s formula (Eq. 2.35) and is therefore

usually used to describe the interactions between noble-gas atoms. Two parameters, namely

ε which denotes the depth of the potential well, and σ representing the root (VLJ(σ) = 0)

of the interaction function, parametrize the potential. From Eq. 3.1 one can obtain the

equilibrium bond distance as rm = 6
√
2σ. The potential is usually written in the following

form:
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Table 3.2: Simulation cell lattice parameters as well as the corresponding k-meshes
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VLJ(r) = 4ε

σ
r

12
−
σ
r

6
(3.1)

In the following sections we use a modified Lennard-Jones potential to fit the interac-

tion energies, which adds an additional fitting parameter r0 and is given by

VLJ(r) = 4ε


σ

r + r0

12

−


σ

r + r0

6

. (3.2)

3.2.1.2 Buckingham potential

Buckingham aimed for simplifying the Lennard-Jones potential (86 ). He therefore kept

the 6th order van-der-Waals attraction term, but for the Pauli repulsion he suggests an

exponential term

VBuckingham(r) = γ


exp


−r
r0


−
r0
r

6
(3.3)

where γ and r0 represent fitting parameters.

3.2.1.3 Morse potential

The interatomic potential proposed by Morse (87 ) already in 1929 utilizes exponential

functions. The Morse potential proved to be successful for metals MD simulations metals.

The analytical form has three fitting

VMorse(r) = ED


e−2α(r−r0) − 2e−α(r−r0)


(3.4)

parameters where ED is the dissociation energy or the depth of the potential well, r0 is the

equilibrium bond length and α is often referred to as a stiffness parameter. With increasing

α the flanks of the potential well increase in steepness which consequently leads to a stiffer

bond.

3.2.2 Hydrogen-hydrogen bond

3.2.2.1 Calculational setup

To ensure that the hydrogen molecules do not interact due to periodic boundary conditions,

a big simulation cell of 10 × 10 × 10 Å was used. The hydrogen molecule was positioned
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in the middle (molecule center: [0.5, 0.5, 0.5]) of the cell whereas the molecule axis pointed

into x-direction. Fig 3.1 shows a sample configuration.

Figure 3.1: Simulation box for the hydrogen potential curve

The spacing between the two hydrogen atoms ranges from 0.1 Å to 1.4 Å. Since those

calculations are relatively cheap, a dense distance sampling was employed, especially around

the equilibrium distance of 0.75 eV. Around the potential minimum the distance spacing is

0.005 Å (r = 0.7 − 0.8 Å), 0.01 Å (r = 0.6 − 0.8 Å and r = 0.8 − 0.9 Å) and 0.02 Å for all

other regimes. All the curves were calculated without van-der-Waals correction as well with

DFT-D3 and DFT-TS correction method.
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3.2.2.2 Results
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Figure 3.2: H2 interaction potential fitted with modified Lennard-Jones (Eq. 3.2) poten-

tial (ε = 6.818 eV, σ = 3.216 Å, r0 = 2.845 Å) and Morse potential (ED = 6.7732 eV, α =

1.525, r0 = 0.8005 Å)

Figure 3.2 shows the calculated energies. The bonding energy was calculated by subtracting

two times the total energy of an isolated hydrogen atom (Etot,H = −0.565 eV) from the

calculated total energy Eint,H2 = Etot,H2 − 2 · Etot,H. Etot,H was obtained from a separate
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calculation where a single hydrogen atom was placed in the simulation box shown in Fig.

3.1. Fitting the calculated data with a cubic spline and analysing it, yields the same bonding

distances for all calculated curves (rmin,standard = rmin,DFT-D3 = rmin,DFT-TS = 0.749 Å). Also,

the DFT-TS and the curve without van-der-Waals corrections shows no significant difference

over the whole graph. Only the DFT-D3 interaction curve ist shifted by ≈ 2.5meV at

the interaction minimum. Although at the first look one can get the impression that the

analytical potentials fit the interaction potential well, the minima of the modified Lennard-

Jones and the Morse potentials lie at rmin,mod. LJ = 0.764 Å and rmin,Morse = 0.8007 Å

respectively, which is relatively far away. The minima of the fits differ by ≈ 75.93meV

(modified Lennard-Jones) and ≈ 120.27meV (Morse) from the calculated value.

3.2.3 Carbon sp2 bond

3.2.3.1 Calculational setup

To calculate the interaction energy per bond the a and b lattice parameters of the graphene

unit cell were increased step by step, resulting in a sampling of the bondlength from 0.927 Å

to 5.704 Å. As in the previous subsection the densest mesh is around the miniumum.

Therefore, the bondlength is given by aC−C =
a

2
√
3
where a ist the lattice parameter of the

unit cell. The interaction energy per bond is therefore given as

Eint,sp2 =
Etot,graphene −NEtot,C

3

2
N

number of bonds

(3.5)

where Etot,graphene is the calculate total energy of the stretched graphene cell, Etot,C the

energy of an isolated carbon atom and N the number of carbon atoms in the simulation

box. Since every atoms is bonded with three others, the factor 3
2
has to be introduced in the

denominator. Figure 3.3 shows the graphene unit cell which was used for the calculations.

The energy cutoff was ENCUT=1000 eV the corresponding k-mesh is tabulated in Tab. 3.2.
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Figure 3.3: Structural model of a

graphene unit cell

Figure 3.4: Structural model of an

A4 diamond conventional unit cell
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3.2.3.2 Results
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Figure 3.5: sp2 interaction potential fitted with Lennard-Jones potential (ε =

9.143 eV, σ = 0.969 Å, r0 = 6
√
2σ = 1.088 Å), modified Lennard-Jones potential

(ε = 5.986 eV, σ = 2.878 Å, r0 = 1.825 Å), Morse potential (ED = 6.068 eV, α =

1.935, r0 = 1.4236 Å), and Buckingham potential (γ = −41.298 eV, r0 = 0.848 eV)

The purple crosses in Fig. 3.5 represent the calculated sp2 bonding energies with DFT-TS

correction. Fitting a cubic spline yields a bondlength rmin,DFT-TS = 1.4229 Å and a bonding

energy of Ebond = −6.079 eV/bond. Again, the standard analytical potentials do not describe

the interaction very well as shown in Tab. 3.3 due to a shift of the minima position and value.

Nevertheless the Morse potential gives the best description overall (around the minimum

and for great values of the bond length). However as Fig. 3.5 shows, all fits fail to model the
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regime between 2.5 and 3.5 Å. ∆Ebond in Tab. 3.3 and Tab. 3.4 represents the difference of

the bonding energies at their minima ∆Ebond = Ebond,DFT-TS(rmin,DFT-TS)− Ebond,fit(rmin,fit)

in meV.

Potential rmin [Å] Ebond [eV] ∆Ebond [meV]

Lennard-Jones 1.088 -9.143 3064.045

mod. Lennard-Jones 1.405 -5.987 92.355

Buckingham 1.382 -5.889 189.555

Morse 1.423 -6.068 10.619

Table 3.3: Position and value of the minima of the analytic potentials fitted to the C sp2

interaction potential as well as their deviation from the calculated DFT data

3.2.4 Carbon sp3 bond

3.2.4.1 Calculational setup

The methodological aprroach to calculate the interaction energy of the sp3 bonded carbon

is analogical to that of the sp2 bonded case (Subsec. 3.2.3.1). As a starting point, A4

conventional cubic diamond cell with four atoms was used as illustrated in Fig. 3.4. However

a different amount of bonds per unit cell has to be considered since each carbon atom is

bonded with four neighbors. Similarly to the previous section the interaction energy thus

can be computed by

Eint,sp3 =
Etot,diamond −NEtot,C

2N
number of bonds

(3.6)

where Etot,diamond is the calculated energy of the cell. The range of sampled bond lengths

starts from 1.006 Å to 5.158 Å, with the densest grid around the minimum. The energy cutoff

was set to ENCUT=1000 eV the corresponding k-mesh is tabulated in Tab. 3.2.

3.2.4.2 Results

Analyzing a cubic spline fitted to the calculated DFT-TS interaction energy (purple crosses)

in Fig. 3.6 yields the minimum at rmin,DFT-TS = 1.5386 Å with a bonding energy Ebond =

−4.5709 eV/bond which is ≈ 75% of the value of sp2 bonded carbon. Tab. 3.4 shows

the position and the bonding energy for the analytical potentials. Again, none of the fits

describes the interaction well (Fig. 3.6), where again (as for the sp2 bond) the Morse
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potential yields the best results. The fits do not only have different values at the minimum

but also shift the position of the minima as Tab. 3.4 shows.

Potential rmin [Å] Ebond [eV] ∆Ebond [meV]

Lennard-Jones 1.182 -6.819 2248.112

mod. Lennard-Jones 1.524 -4.515 55.788

Buckingham 1.506 -4.428 143.388

Morse 1.544 -4.579 8.112

Table 3.4: Position and value of the minima of the analytical potentials fitted to the sp3

interaction potential as well as their deviation from calculated DFT-TS data

Figure 3.6 shows the the calculated DFT-TS data (pruple crosses) as well as the fitted

interatomic potentials. The detailed graph in the lower right corner of Fig. 3.6 shows nicely

that the fits deviate from the calculated curve. Especially at medium ranges between 2.0 Å

and 4.5 A all fitted curves fail to describe the calculated data.
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Figure 3.6: sp3 interaction potential fitted with Lennard-Jones potential (ε =

6.819 eV, σ = 1.053 Å, r0 = 6
√
2σ = 1.182 Å), modified Lennard-Jones potential

(ε = 4.515 eV, σ = 3.077 Å, r0 = 1.929 Å), Morse potential (ED = 4.579 eV, α =

1.806, r0 = 1.544 Å), and Buckingham potential (γ = −31.0457 eV, r0 = 0.924 Å)

Figure 3.7 shows the calculated DFT-TS curves for sp2 and sp3 bonds. One can see that

sp2 is the stiffer bond due to a shorter bond distance and a deeper minimum, however at

around 2 Å bondlength the curves begin to converge.
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3.3 Interaction with the hydrogen molecule

The focus of this thesis is the interaction of the hydrogen molecule with carbon nanostruc-

tures, thus the interaction with graphene, defected graphene and carbon nanotubes will be

presented in this main result section .

3.3.1 Graphene

3.3.1.1 Calculational setup

For modelling the interaction between hydrogen molecule and a graphene plane, a 5× 5× 1

graphene supercell (dimensions can be found in Tab. 3.2) was created to ensure the hydrogen

molecule does not interact with one of its periodic images. In the c direction (spacing between

periodic images of the graphene planes) a lattice parameter of 25 Å was chosen to ensure that

also for big separations (> 10 Å) between the graphene plane and the hydrogen molecule no

interactions with the periodic image can occur. Because the length of the cell in a and b

direction as indicated in Fig. 3.8 is 12.35 Å possible interaction of the H2 molecule with its
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periodic image is minimised. The graphene unitcell was obtained from materialsproject.com

and the ionic positions were relaxed with fixed volume (ISIF=2).
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Figure 3.8: Hydrogen molecule placed on the individual adsorption sites (top, bridge,

hexagon)

As Figure 3.8 illustrates there are three high symmetry sites where the hydrogen molecule

can be placed. Directly above a carbon atom, hereafter referred to as top site, above a bond

between two carbon atoms (bridge site) and above the center of a hexagon (hexagon site).

Furthermore, we have considered three alignments for each site resulting in 9 configurations

in total. The x direction as illustrated in Fig. 3.8 is parallel to the a lattice vector, the y

direction is perpendicular to it, while the z direction is parallel to the c lattice vector of the

simulation cell.

https://materialsproject.com
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Figure 3.9: Definition of the height above the graphene plane. The height is always calculated

between the graphene plane and the center of the hydrogen molecule

For each configuration shown in Fig. 3.8, a cell was set up with the hydrogen molecule

3.275 Å above the graphene plane. The height of the hydrogen molecule is calculated between

its center and the graphene sheet as illustrated in Fig. 3.9. After placing the hydrogen

molecule above the graphene sheet an ionic relaxation with constant cell volume and shape

(ISIF=2) was performed to find the local asdorption minimum, such that the hydrogen

atoms find their equilibrium positions, while the carbon atom positions were fixed. All

calculations were again performed with the DFT-TS correction (IVDW=20) and a cutoff energy

of ENCUT=1000 eV.

After finishing the ionic relaxation, the hydrogen molecule was shifted along the c axis

so that the height of the molecule center above the graphene plane is sampled from ≈ 2 Å to

12.5 Å (half height of the simulation cell). For each of those height steps the total energy is

calculated for a fixed geometry (NSW=0) and used for the evaluation of the interaction energy

Eint,graphene+H2

Eint,graphene+H2
= Etot,graphene+H2

− Etot,graphene − Etot,H2(hmin,DFT-TS) (3.7)

3.3.1.2 Results

For each adsorption curve and every hydrogen molecule arrangement the interaction energy

Eint,graphene+H2
between the hydrogen molecule and the graphene plane was calculated by

using the value Etot,graphene = −463.974 eV (The value was obtained from a separate cal-

culation of the plain graphene plane with the same cutoff ENCUT=1000 eV and k-mesh as

shown in Tab. 3.2) and Etot,H2(hmin,DFT-TS = 0.749 Å) = −6.772 eV for the bonded hydrogen
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molecule energy. The resulting curves are plotted in Fig. 3.10. The hexagon-x and hexagon-

y curves show the deepest adsorption minima and are completely indentical although the

configurations are not in terms of symmetry. A cubic spline was fitted to all curve shown in

Fig. 3.10 and the location and depth of the minima (adsorption energy) were evaluated and

are given in Tab. 3.5. The interaction energy is approaching zero for great spacing between

the molecule an the grahpene plane.
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Figure 3.10: Interaction energy (Eq. 3.7) plotted for each of the hydrogen molecule arrange-

ments (Fig. 3.8)
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Site Alignment hads [Å] Eads [eV] Eads(h = hmax) [eV]

to
p

x 3.095 -0.062 -0.0014

y 3.101 -0.062 -0.0014

z 3.196 -0.062 -0.0014
b
ri
d
ge x 3.089 -0.063 -0.0014

y 3.084 -0.063 -0.0014

z 3.194 -0.063 -0.0014

h
ex
ag
on x 2.941 -0.075 -0.0014

y 2.940 -0.075 -0.0014

z 3.153 -0.069 -0.0014

Table 3.5: Equilibrium adsorption height and adsorption energy for the individual molecule

configurations as illustrated in Fig. 3.8.

Figure 3.10 and Tab. 3.5 clearly show that the strongest adsorption energy is obtained

for the hydrogen molecule sitting within a hexagon. The hexagon-x and hexagon-y configu-

rations have a slightly lower adsorption energy than the hexagon-z site (≈ 6 meV) which was

already shown by Okamoto that x and y configuration are preferred (88 ). Previous works

showed that the z alingment in energetically more favourable (22 , 23 ). The same energy

difference of ≈ 6 meV can be observed between the hexagon-z site and all other adsorption

configurations. Furthermore, it is remarkable that all top configurations show the same ad-

sorption energy although the minima correspond to different adsorption heights. Similarly

the same is true for all bridge configuration. The adsorption minimima (difference between

smallest hads for hexagon-y and largest for bridge-z ) lie within a range of 0.25 Å. The theo-

retical estimation of the adsorption energies lie within the range between 10− 60 meV (89 ,

90 ) (since London forces are hard to etimate) which is nevertheless in good agreement with

the caclulated data in Tab. 3.5. Furthermore a previous DFT study reports similar values

as our calculated data (24 ) while the data in Tab. 3.5 is shifted to more negative values by

≈ 8 meV compared with the results by Krishnan et al. (23 ).

3.3.2 Graphene with a vacancy defect

Additionally to perfect graphene, the influence of defects on adsorption is of interest. Thus,

a sampling of the adsorption height and energy was performed for the whole supercell.

Furthermore, the incluence of the defect on the energy barrier when hydrogen molecule
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penetrates the graphene layer was studied. From here on the main focus is set on the

hexagon since it is energetically the preferential adsorption site.

3.3.2.1 Calculational setup

Adsorption energy and height map After determining the irreducible zone of the

5 × 5 × 1 graphene supercell, which posseses a regular triangular shape, a sampling mesh

was defined as illustrated in Fig. 3.11. The relation between the lattice parameters of the

sampling mesh a⃗′1 and the graphene unit cell lattice vector a⃗1 is

a⃗′1 =
a⃗1

2
√
3

and a⃗′2 =
a⃗2

2
√
3

(3.8)

Figure 3.11: Irreducible mesh for sampling the graphene supercell with 66 points.

which yields a trinagle mesh such that along each side of the regular trianglular shaped

sampling zone are eleven grid points1. (See Fig. 3.11). For each of those grid points

described below adsorption height and energy of the hydrogen molecule was estimated.

166 =

12
2


is the 11th triangle number.
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Figure 3.12: Interpolation of the equilibrium adsorption height within a graphene sheet.

First, each point on the mesh grid, the nearest hexagon, bridge and top site are determined,

which therefore define a triangle as shown in Fig. 3.12. On this specific triangle the height is

interpolated by calculating the weights of barycentric coordinates within the triangle W top,

W bridge and W hexagon (91 ) such that

W top +W bridge +W hexagon = 1 (3.9)

holds true. The estimated height is then given by the inner product of the following vectors:

hintads =

 W top

W bridge

W hexagon

 ·

 htopads

hbridgeads

hhexagonads


T

(3.10)

This interpolated height hintads is expected to be near the real adsorption height at this grid

point, thus serves as a reasonable starting guess. The hydrogen molecule was placed at

heights from hintads + 0.3 Å to hintads − 0.3 Å with a step of 0.1 Å to sample the adsorption

minimum. By fitting the energy versus molecule distance curve with a quadratic function, the

real equilibrium adsorption height was determined hrealads , subsequently the hydrogen molecule

was placed at this position to calculate the final adsorption energy. This results in 528 (66·8)
calculations for this cell. The interaction energy was calculated similarly to Eq. 3.7 as

Evacancy
int,graphene+H2

= Evacancy
tot,graphene+H2

− Evacancy
tot,graphene − Etot,H2(hmin,DFT-TS) (3.11)

where Evacancy
tot,graphene+H2

= −446.662 eV is the total energy of a graphene plane with a single

vacancy (computed in a separate calculation) and Etot,H2(hmin,DFT-TS) = −6.772 eV the total

energy of the isolated hydrogen molecule. The height shown in Fig. 3.15 is the visualization
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of hrealads and corresponding adsorption energy (Fig. 3.16) is the minimum of the interaction

energy Eads = Evacancy
int,graphene+H2

(hrealads ) at each point of the grid (Fig. 3.11). All calculations

were performed with the DFT-TS correction (IVDW=20) and a cutoff energy of ENCUT=1000

eV in the hexagon-z configuration.

Push through of the hydrogen molecule Additionally to the adsorpion energy and

height, the influence of the vacancy defect on the adsorption-distance curve throughout the

whole cell was studied. Therefore, the hydrogen molecule was not only set in equilibrium

height above the grahpene plane, but also pushed through it such that the height (as shown

in Fig. 3.9) becomes zero. Furthermore this procedure was repeated for different hexagons in

the supercell with increasing distance from the vacancy defect, (marked with 1 in Fig. 3.13).

60 different spacings between the graphene plane and the hydrogen molecule were used to

calculate the curves. Around the adsorption minima hads a step of 0.1 Å was chosen for the

range 0 < r < 1.25hads. 0.25 Å for the intermediate range between ≈ 4− 6 Å and 0.75 Å for

the rest. A Python script was implemented to prepare and evaluate the calculations.
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Figure 3.13: Hexagons at which the hydrogen molecule was pushed through the graphene

plane. The increasing label numbers represent increasing distance from the vacancy marked

with 1

3.3.2.2 Results

Adsorption energy and height map Figures 3.15 show the location of the adsorption

minima or the equilibrium adsorption height of the hydrogen molecule in the z alingment on

the whole 5×5×1 graphene supercell (red line). One can observe the largest distances above

bonds at the border of the vacancy, which also correspond to the weakest adsorption energy

as Fig. 3.16 shows. The center of the defect shows the lowest adsorption height (blue center

region in Fig. 3.15) however −63 meV is not the lowest adsorption energy (6 meV higher

than on perfect graphene, see Fig. 3.16). The hexagon sites neighboring the vacancy (sites

3 and 4 in Fig. 3.13) show higher adsorption energy, while with the increasing distance from

the defect the energy valleys in the hexagons are getting deeper and deeper until the value

reaches ≈ −69 meV (Tab. 3.5 and Fig. 3.16), the value on graphene without a defect for

more distant hexagons (sites 6 and 7 in Fig. 3.13). Although the adsorption energy, when

going away from the defect, reaches the value of perfect graphene, the adsorption height does
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not, it remains (≈ 0.03 Å) above the perfect graphene value. Both Figs. 3.15 and 3.16 clearly

illustrate that the vacancy has only a short-ranged influence on the adsorption (especially at

the site 3 in Fig. 3.13) while the more distant sites show graphene plane behaviour, which

suggests the conclusion that the supercell size is sufficient for studying the vacancy defect.

Push through of the hydrogen molecule The interaction energy versus the molecule

height above the graphene plane for all seven hexagon-z configurations (see Fig. 3.13) are

plotted in Fig. 3.14. The curves were fitted by cubic splines and results are summarized in

Tab. 3.6. As already said in the aforementioned paragraph and clearly underpinned by Tab.

3.6 and the detail graph in Fig. 3.14, there is only a weak dependence between the distance

to the defect center and the depth of the adsorption minima.
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Figure 3.14: Evacancy
int,graphene+H2

versus separation between hydrogen molecule and graphene plane

for seven distinct hexagon-z molecule alignment on the supercell as illustrated in Fig. 3.13.

The numbers in the parenthesis represent the distance of the site to the vacancy defect

Furthermore Fig. 3.14 clearly shows that the sites far away from the vacancy defect

(sites 4, 5, 6 and 7) behave very similary, have very similar adsorption energies and energy

barriers. Only sites 2 and 3 show a significant lowering of the energy barrier. However the

most interesting curve is the one at the vacancy site itself. One can observe that the curve

shape is different from the others and has a local minimum directly when the molecule center

is on the graphene plane, with a energy barrier of 2.664 eV. Therefore the vacancy acts as a

trap for the hydrogen molecule in the graphene plane.
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Site Distance from the defect [Å] E(h = 0) [eV] hads [Å] Eads(h = hads) [eV]

1 0.000 2.033 3.110 -0.063

2 1.431 8.470 3.124 -0.064

3 2.861 9.946 3.130 -0.066

4 3.785 12.161 3.118 -0.067

5 5.158 12.205 3.120 -0.067

6 5.722 12.643 3.136 -0.068

7 6.162 12.425 3.139 -0.068

Table 3.6: Distance to the vacancy defect center, height of the energy barrier, position of the

adsorption minimum hmin as well the adsorption energy Eads, of all seven hexagon-z sites as

depicted in Fig. 3.13
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12
3

4
5

6
7

F
ig
u
re

3.
16
:
A
d
so
p
ti
on

en
er
gy

on
5
×

5
×

1
gr
ap

h
en
e
su
p
er
ce
ll
w
it
h
a
va
ca
n
cy



CHAPTER 3. RESULTS AND DISCUSSION 52

3.3.3 Graphene with a Stone-Wales defect

The Stone-Wales defect was first observed in 1986 (92 , 93 ) and was described to be

two carbon atoms rotated by 90◦ around the center of their bond. Thus four hexagons

become two heptagons and two pentagons. It has also been possible to make the defect

visible in experiments using high-resolution transmission electron microscopy (HRTEM) (94 ,

95 ). Also the Stone-Wales defect was studied here for its capability to store a hydrogen

molecule.

3.3.3.1 Calculational setup

The procedure to create the maps is the same as for the vacancy defect as described in

section 3.3.2.1. However, the irreducible zone of the graphene supercell with the Stone-

Wales defect is different as shown in Fig. 3.17. Consequently, 110 points were used to

sample the relatively large zone.

Figure 3.17: Irreducible mesh for sampling the graphene supercell with a Stone-Wales

defect using 110 points.

For sampling the vacancy defect, the lattice vectors of the sampling lattice vector were

scaled in length but kept parrallel to those of the graphene lattice (Eq. 3.8), whereas here a
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rotation of 30◦ around z axis and a scaling was applied

a⃗′1 =
1

3
R̃(ϕ = 0, χ = 0, ψ = π/6, ) · a⃗1 and a⃗′2 =

1

3
R̃(ϕ = 0, χ = 0, ψ = π/6, ) · a⃗2

(3.12)

where R̃ is the general rotation matrix (Eq. A.29). The reason for the rotation is that also

the edges of the vertices of the irreducible zone are then covered with grid points. For each

of the lattice points shown in Fig. 3.17, the hydrogen molecule was placed at the calculated

interpolated height as described by Eqs. 3.10 , 3.9. In the next step, the hydrogen molecule

was placed at heights ranging from hintads+0.3 Å to hintads−0.3 Å with a step of 0.1 Å to sample

the adsorption minimum. The interaction energy is calculated analogously to Eq. 3.11

EStone-Wales
int,graphene+H2

= EStone-Wales
tot,graphene+H2

− EStone-Wales
tot,graphene − Etot,H2(hmin,DFT-TS) (3.13)

while EStone-Wales
tot,graphene = −458.541 eV and Etot,H2(hmin,DFT-TS) was calculated to −6.772 eV. Using

rotation and mirroring symmetry operations, the irreducible mesh was expanded over the

whole supercell. The adsorption energy Eads in Tab. 3.7 is defined as the minimum of the

interaction energy Eads = EStone-Wales
int,graphene+H2

(hrealads ).

Push through of the hydrogen molecule The point around which the defect bond

is rotated by 90◦ is hereafter referred to as the center of the Stone-Wales defect. The

procedure for the calculation setup is the same as for graphene with vacancy, thus the reader

is referred to section 3.3.2.1 for detailed information. The sites at which the H2 molecule

was pushed through the graphene plane are shown in Fig. 3.18



CHAPTER 3. RESULTS AND DISCUSSION 54

−5 0 5 10X [Å]
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Figure 3.18: Sites at which the hydrogen molecule was put through the graphene plane with

Stone-Wales defect. The increasing label numbers represent increasing distance from the

Stone-Wales defect.

3.3.3.2 Results

Adsorption energy and height map A closer look to Fig. 3.21 reveals that the Stone-

Wales strongly defect incluences its surroudings (hexagons 4, 6 and 2 in Fig. 3.18) exhibit

adsorption energy for the H2 molecule at the center of the hexagons of 66 − 67 meV which

is in the range of perfect graphene (69 meV) yet slightly higher. Consider a vector parallel

to the rotated, bond directly at the center of the defect. Along this direction, the hexagons

neighboring the pentagon adjacent to the defect seem to show similar or even deeper (69−70

meV) minima as calculated for perfect graphene (69 meV). Furthermore the pentagons are

not favored by the H2 molecule, while the heptagons show similar adsorption energy values

as the hexagons. Yet the fluctuation of the depth of the energy valleys in different interstitial

adsorption sites (hexagons, heptagons) is very small ≈ 68−70 meV over the whole supercell

(see Tab. 3.7). Contrary to the vacancy defect which is avoided by the hydrogen molecule,

the heptagons offer enough space for the molecule to be absorbed while the pentagons do
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not. Comparing Fig. 3.16 and Fig. 3.21 suggests that the Stone-Wales is a less severe

deformation since the adsorption minima and equilibrium heights differ less from perfect

graphene. Comparing the height maps (Fig. 3.20 and Fig. 3.15) it becomes obvious that,

especially around the vacancy defect, the adsorption separation increases more. Nevertheless,

both defects seem to have only a short-ranged influence on the adsorption behaviour.

Site Distance from defect [Å] E(h = 0) [eV] hads [Å] Eads [eV]

1 1.844 8.319 3.082 -0.069

2 3.330 12.526 3.142 -0.070

3 3.864 12.971 3.143 -0.070

4 4.375 12.019 3.147 -0.068

5 5.465 12.869 3.144 -0.070

6 5.711 12.369 3.146 -0.069

7 6.201 12.971 3.140 -0.071

8 6.361 12.469 3.146 -0.069

Table 3.7: Distance to the Stone-Wales defect center, height of the energy barrier, position

of the adsorption minimum hmin as well as depth of the adsorption minima Eads, of all eight

hexagon-z sites as depicted in Fig. 3.18
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Figure 3.19: EStone-Wales
int,graphene+H2

versus separation between hydrogen molecule and graphene plane

with Stone-Wales-defect for eight distinct hexagon-z molecule configurations on the su-

percell as illustrated in Fig. 3.18. The numbers in the parenthesis represent the distance of

the site to the vacancy defect

Push through of the hydrogen molecule Compared to the vacancy defect, when push-

ing the H2 molecule through the plane, Fig. 3.19 clearly shows that for site 1 no local mini-

mum is formed within the heptagon. The energy barrier of 8.319 eV is comparable to that of

the adjacent hexagon site next to the vacancy (site 2 in Fig. 3.13). Therefore, in contrast to

the vacancy, a Stone-Wales defect cannot act as a trap for the H2 molecule, being pushed

through the graphene. The energy barrier Eint(r = 0) with increasing distance converges to

a value of ≈ 12.4 − 12.9 eV which is consistent with the values calculated for the vacancy
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defect (see Fig. 3.6). Furthmore, comparing Fig. 3.19 with Fig. 3.14 reveals that the energy

barrier converges faster to this limit value than it does for the vacancy defect. Tab. 3.7 and

the detailed graph in Fig. 3.19 reveals that the adsorption energies vary only in a range of

3 meV (0.068− 0.071 eV) and thus only slightly differ from perfect the graphene (69 meV).
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3.3.4 Carbon-Nanotubes

The following section presents the adsorption energies for all molecule alignments, different

carbon nanotube diameters and geometries.

3.3.4.1 Calculational setup

After generating tube unit cells with a Python script according to Sec. 2.1.2.1, a buffer

vacuum of 20 Å was placed around the tube in the x and y directions (coordinate system as

indicated in Fig. 3.22) so that the CNTs do no interact with their periodic images. Four

different diameters were choosen for both armchair and zigzag chiralities, such that for each

(n − 0) zigzag CNT exists a compareable (n − n) armchair counterpart. In the first step,

the unit cells of the CNTs were relaxed, because the initially generated tube model refers to

a perfect CNT, therefore all atoms lie on the same cylinder. Because of different lengths of

zigzag and armchair unit cells (see Tab. 3.2) in the tube axis direction, the number k-points

of the Monkhorst-Pack mesh was set to have equal spacing in the reciprocal spacing

(Tab. 3.2). For all calculations in this section we used tubes with a length of ≈ 10 Å to

avoid interaction of the H2 molecule with one of its periodic images along the z (tube axis)

direction. Parallel to the stacking the relaxed geometry of the unit cell tubes, the resulting

charge density was also stacked in the z direction and used as input guess for relaxing the

whole tubes, to speed up the convergence of the DFT calculations.
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Figure 3.22: Definition of the cylindrical coordinates of a CNT. The cylinder represents the

CNT with tube axis along the z direction. The origin is located in the center of the tube.

P1 is an atom on the CNT

The procedure now is principally the same as for calculating the adsorption energies on

graphene. However, because a different coordinate system was introduced (Fig. 3.22), it is

convenient to employ a different naming of the molecule alignments. The graphene z axis

becomes the r axis, the x axis is the same as the CNT tube z axis, and finally the graphene

y direction maps on the CNTs φ axis. The calculations of pure CNTs are fast because of

their high symmetry. This dramatically changes when placing the H2 molecule and thus

significantly reducing the symmetry. To overcome this problem, a method (implemented

in Python) was developed to add up two discrete charge density meshes (see Sec. A.2)

while translating and rotating them relative to each other. By adding the charge densities

of a CNT and the H2 molecule, a good starting guess for the final charge density can be

made, resulting in a significant decrease of the computing time (reduction of up to 75 %).

The hydrogen molecule was placed above the CNTs at all sites and alignments, using the

corresponding height above the graphene plane as a starting guess, and the hydrogen ion

positions were relaxed (ISIF=2).

Analogous to the graphene case, the relaxed H2 molecule geometry was shifted along the

r direction to calculate the total energy (while keeping everything (all atom positions) fixed
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(ISIF=0, NSW=0) to finally obtain the interaction energy versus distance curves.

Eint,CNT+H2
= Etot,CNT+H2

− Etot,CNT − Etot,H2(rmin,DFT-TS) (3.14)

For Eint,CNT+H2
, only the hexagon-r position was choosen because previous studies con-

cluded it to be the most favourable adsorption site (96 ).

3.3.4.2 Results

Tab. 3.9 and Figs. 3.23, 3.24 show that the adsorption distance increases with increasing

diameter for both armchair and zigzag and approaches the graphene value. Although the

heights in Tab. 3.8 show good agreement with values of Krishnan et al. (23 ) again a

shift to more negative values of Eads is predicted similarly to the graphene case. However

the adsorption energies for hexagon-r and top-r configuration Tab. 3.9 agree with values

calculated by Han et al. with DFT-D3 (97 ). However, for both armchair (Fig. 3.23)

and zigzag (Fig. 3.24) the tubes with small diameters show even closer spacing between

the tube and the center of the H2 molecule than graphene, although the adsorption energy

is less negative. A closer look on Tabs. 3.9, 3.8 reveals that zizag tubes show a slightly

lower adsorption energy, than armchair tubes. The dependence on the chiralitity, however,

could not be observed by Zhou et al. (21 ). The discrepancy of hads and Eads between the

hexagon-r values in Tabs. 3.8, 3.9 is caused by the evaluation method. (direct optimisation

versus the cubic spline fit to Eint,CNT+H2
)
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Figure 3.23: Eint,CNT+H2
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hexagon-r alignment compared with the corresponding graphene configuration
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Figure 3.25: Eint,CNT+H2
for three different zigzag CNTs and armchair with different diam-

eters in the hexagon-r alignment compared with the corresponding graphene configuration

With increasing the tube diameter, the adsorption energy Eads decreases, which is con-

traintuitive since greater tube diameters refer to a more graphene like situation.

n−m Type ⌀[Å] rads [Å] Eads [eV]

5-0 zigzag 3.914 2.881 -0.051

3-3 armchair 4.068 2.933 -0.049

6-6 armchair 8.136 3.026 -0.045

11-0 zigzag 8.611 3.025 -0.047

12-12 armchair 16.272 3.097 -0.028

21-0 zigzag 16.441 3.086 -0.036

Graphene ∞ 3.153 -0.069

Table 3.8: Adsorption energy Eads and location of the adsorption minima, calculated by

cubic spline interpolation using data from Fig. 3.25 for the H2 hexagon-r alignment



CHAPTER 3. RESULTS AND DISCUSSION 65

The same trend of decreasing adsorption energy with increasing tube diameter is also

underpinned by Tab. 3.9 since the CNT tube columns in Tab. 3.9 are sorted in ascending

order by their diameter. Furthermore, the lowest energies, in contrast to graphene, can be

observed for the hexagon-z alingment which qualitatively contradicts the literature results

(96 , 97 ), however fits our own graphene results. Dissociaction of the molecule for the bridge-

φ configuration could be observed, so that no reasonable result could be obtained.
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Figure 3.26: Eint,CNT+H2
for the r, φ and z alingments for all adsorption sites. The top panel

shows hexagon the middle bridge and the bottom panel top position
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For the adsorption energies of the different molecule configurations as shown in Fig.

3.26 and Tab. 3.9 no corresponding literature values could be found, at least not for the

tube geometries used here. Qualitatively, our results tend to be in the same regime as

experimental data (98 , 99 ) reporting values between 40 - 50 meV as well as calculated

energies from different approaches (force-field) (100 ). Similarly, as reported for graphene,

the molecular configuration at the hexagon site, where the H2 axis is perpendicular (hexagon-

z ) or tangential (hexagon-φ) to the CNTs axis show again the lowest adsorption energies.

All values in Tab. 3.9 are even less negative than the corresponding graphene values, but

most importantly lie in the range between 16-56 meV which is one order of magnitude lower

than the desired optimum value (estimated to be between 0.2 - 0.5 eV (101 )).

Site Alignment
Tube

5-0 3-3 6-6 11-0 12-12 21-0 Graphene

⌀[nm] 3.914 4.068 8.136 8.611 16.272 16.441 ∞
Atoms in CNT 40 48 96 88 192 168 50

b
ri
d
ge r -0.033 -0.039 -0.036 -0.033 -0.021 -0.025 -0.064

φ -0.027 3.324 -0.035 -0.025 4.440 4.433 4.985

z -0.027 -0.036 -0.034 -0.030 -0.020 -0.024 -0.064

to
p

r -0.035 -0.033 -0.032 -0.034 -0.019 -0.027 -0.064

φ -0.030 -0.029 -0.028 -0.030 -0.016 -0.024 -0.063

z -0.030 -0.030 -0.030 -0.032 -0.016 -0.024 -0.063

h
ex
ag
on r -0.046 -0.046 -0.043 -0.045 -0.028 -0.036 -0.070

φ -0.052 -0.050 -0.048 -0.050 -0.033 -0.041 -0.076

z -0.056 -0.052 -0.049 -0.051 -0.034 -0.041 -0.076

Table 3.9: Adsorption energy Eads for all considered molecule adsorption sites and alignments

compared with corresponding configuration on graphene
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3.4 Summary

This section summarizes the most important results of this thesis in brief. In the theoretical

chapter the reader is comprehensively introduced to DFT and van-der-Waals correction

to DFT. Moreover, the mathematical background of the atomic structure of SWCNT’s is

provided.

The result section starts with an extensive benchmark study of van-der-Waals correction

methods applied to different carbon configurations (graphene, diamond, graphite). From this

study we concluded to employ the Tkatchenko-Schäffler dispersion correction method.

Interatomic potentials were calculated for the H2 molecule, sp2 and sp3 bonded car-

bon. Furthermore, it was shown that common analytical pair potentials such as Mosre,

Lennard-Jones or Buckingham do not provide a satisfactory description of those inter-

actions.

The adsorption energies and heights were calculated for all high symmetry adsorption

sites of graphene (top, bridge, and hexagon) and spatial molecule alignments (x, y and

z). Our calculations suggest that the most favourable site is the hexagon, where especially

hexagon-x and hexagon-y configurations are preferred by the H2 molecule.

Additionally to the perfect graphene the potential surface of graphene supercells with a

vacancy and a Stone-Wales defect were studied. Thus we could prove that these point

defects have only short-ranged influence on the adsorption behaviour. For both defected

supercells different hexagon sites were chosen to push the hydrogen through the graphene

plane. The interaction energy versus distance curves revealed that the vacancy defect can

possibly trap a hydrogen molecule, while a similar behaviour could not be observed for the

Stone-Wales defect.

Finally, the adsoption energetics of the H2 molecule configuration was studied for eight

different SWCNTs (four zigzag and four armchair). In contrast to grahpene the hexagon-r

configuration proved to be most favourable for CNTs. For the hexagon-r configuration, the

interaction energy was calculated for six different SWCNT (three zigzag and three armchair)

to study the influence of the CNT diameter on the adsorption behaviour. We could observe

that all CNTs exhibit a smaller adsorption height and smaller adsorption energy. Moreover,

CNTs with smaller diameter show a larger adsorption energy and smaller adsorption height

than those with larger diameter.
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Appendix A

Theoretical derivations

A.1 Self-consistent screening equation

The understanding of the Tkatchenko-Schäfflermethod with the self consistent screen-

ing proved to be difficult. Exactly for this reason electric screening as well as the underlying

mathematical conventions, such as interaction tensors are derived out in detail. The following

derivations are adapted and taken from Yamamoto (102 ).

A.1.1 Charge-charge interaction

At first, one starts with the charge-charge interaction from classical electrodynamics. For a

point charge at r⃗i, the electrostatic potential is

Φ(|r⃗ − r⃗i|)C =
Zie

4πϵ0

1

|r⃗ − r⃗i|
(A.1)

Therefore the electrostatic energy EC↔C for another point charge Zje is given by

EC↔C = ZjeΦ(|r⃗j − r⃗i|)C =
ZiZje

2

4πϵ0

1

|r⃗j − r⃗i|
(A.2)

A.1.2 Charge-dipole interaction

The charge dipole interaction can be approached in two ways. Either one thinks of an

interaction of a charge with a dipole field, or one tries to describe the phenomenon as the

interaction of a dipole with a charge field, where both lead, of course, to the same result.

Consider a negative point charge at r⃗j interacting with a positive one at r⃗i. Additionally,

we add another point charge at point r⃗j + u⃗j where u⃗j denotes the dipole axis. Since we are
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Figure A.1: Illustration of the charge-dipole interaction

studying long range phenomena, |r⃗j − r⃗i| ≫ u⃗j holds true. If one has a closer look on Fig.

A.1 it is obvious that the electrostatic energy term yields

EC↔D =
Zi(−Zj)e

2

4πϵ0

1

|r⃗j − r⃗i|
+
ZiZje

2

4πϵ0

1

|r⃗j + u⃗j − r⃗i|
(A.3)

For convienience, following notations are introduced r⃗j − r⃗i ≡ r⃗ji and |r⃗j − r⃗j| ≡ rji,

which allow to rewrite Eq. A.3 as

EC↔D = −ZiZje
2

4πϵ0

 1

rij
− 1

r2ji + 2r⃗jiu⃗j + u2j

 (A.4)

By factorising and approximating the second term with binomial series of a form (1 +

x)α =
∞

k=0


α
k


xk, the equation above can be approximated to (α = −1

2
→ (1 + x)−

1
2 ≃

1− x

2
+

3

8
x2 +O(x3))
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EC↔D = −ZiZje
2

4πϵ0rji

1− 1
1 +

2r⃗jiu⃗j

r2ji
+

u2
j

r2ij

 (A.5)

≃ −ZiZje
2

4πϵ0rji


1− 1 +

1

2

2r⃗jiu⃗j
r2ji

+
1

2

u2j
r2ji

− 3

8


2r⃗jiu⃗j
r2ji

+
u2j
r2ji

2


(A.6)

By neglecting small terms |r⃗j − r⃗i| ≫ u⃗j one ends up with

EC↔D = −ZiZje
2

4πϵ0

r⃗jiu⃗j
r3ji

=
ZiZje

2

4πϵ0
(A.7)

Now let p⃗j be the electric dipole moment of the dipole j, which is by definition p⃗j ≡ Zjeu⃗j.

Therefore, for the electric field of the charge E⃗i
C at position r⃗i one obtains

EC↔D = E⃗i
C(r⃗j)p⃗j = E⃗i

C(r⃗j)Zjeu⃗j ⇔ E⃗i
C(r⃗) =

Zie

4πϵ0

r⃗ − r⃗i
|r⃗ − r⃗i|3

(A.8)

A.1.3 Dipole-dipole interaction

The route to obtain an analytical formula for the dipole-diole is the same as before except

for the enhancement that another charge is placed at position r⃗i + u⃗i as illustrated in Fig.

A.2. u⃗i and u⃗j denote the dipole axes of the dipoles i and j respectively.

Analogously as in the previous section one arrives at the following formula for the energy

ED↔D =
e2

4πϵ0


(−Zi)(−Zj)

|r⃗j − r⃗i|
+

(−Zi)Zj

|r⃗j + u⃗j − r⃗i|
+

(−Zj)Zi

|r⃗j − u⃗i − r⃗i|
+

ZjZi

|r⃗j + u⃗j − u⃗i − r⃗i|


(A.9)
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Figure A.2: Illustration of the dipole-dipole interaction

Rewriting Eq. A.9 (as done in with Eq. A.4 in Eq. A.6)

ED↔D =
ZiZje

2

4πϵ0

 1

rji
− 1

r2ji + 2r⃗jiu⃗j + u2j

− 1
r2ji − 2r⃗jiu⃗i + u2i

+
1

r2ji − 2r⃗jiu⃗i + 2r⃗jiu⃗j − 2p⃗ip⃗j + u2j + u2i + p2j + p2i



=
ZiZje

2

4πϵ0rji

1− 1
1 +

2r⃗jiu⃗j
r2ji

+
u2j
r2ji

− 1
1− 2r⃗jiu⃗i

r2ji
+
u2i
r2ji

+
1

1− 2r⃗jiu⃗i
r2ji

+
2r⃗jiu⃗j
r2ji

− 2u⃗iu⃗j
r2ji

+
u2j
r2ji

+
u2i
r2ji

+
p2j
r2ji

+
p2i
r2ji



(A.10)
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Again expanding the equation into the binomial series leads to the following expression

ED↔D ≃ ZiZje
2

4πϵ0rij


1− 1 +

1

2

2r⃗iju⃗j
r2ij

+
1

2

u2j
r2ij

− 3

8


2r⃗iju⃗j
r2ij

+
u2j
r2ij

2

− 1 +
1

2

−2r⃗iju⃗i
r2ij

+
1

2

u2i
r2ij

− 3

8


−2r⃗iju⃗i
r2ij

+
u2i
r2ij

2

+ 1− 1

2

−2r⃗iju⃗i
r2ij

− 1

2

2r⃗iju⃗j
r2ij

− 1

2

u2i
r2ij

− 1

2

u2j
r2ij

+
1

2

2u⃗iu⃗j
r2ij

+
3

8


−2r⃗iju⃗i
r2ij

+
−2r⃗iju⃗j
r2ij

+
u2j
r2ij

+
u2i
r2ij

− 2u⃗iu⃗j
r2ij

2


=
ZiZje

2

4πϵ0r3ij


u⃗iu⃗j − 3

(r⃗iju⃗i)(r⃗iju⃗j)

r2ij



=
1

4πϵ0r3ij

Zieu⃗i  
p⃗i

Zieu⃗j  
p⃗j

−3
(r⃗ij

p⃗i  
Zieu⃗i)(r⃗ij

p⃗j  
Zieu⃗j)

r2ij


=

1

4πϵ0r3ij


p⃗ip⃗j − 3

(r⃗ij p⃗i)(r⃗ij p⃗j)

r2ij



(A.11)

where p⃗i and p⃗j represent the corresponding dipole moments. Again, one continues to find

electric E⃗i
D(r⃗) field from ith dipole the same way as in Eq. A.8 and thus obtains

E⃗i
D(r⃗) =

1

4πϵ0|r⃗ − r⃗i|3


p⃗i − 3

p⃗i(r⃗ − r⃗i)(r⃗ − r⃗i)

|r⃗ − r⃗i|2


(A.12)

A.1.4 Mathematical unified description

For convenience in mathematical notation, let qi = eZi be the charge of the ith dipole and

p⃗i = (pix, piy, piz) again the corresponding dipole momentum. Now consider a general system

built up by N dipoles. The total energy can be written as

4πϵ0Etot =
N
i

N
j>i

qir−1
ij qj  

C↔C

− qir
−3
ij [rij,xpjx + rij,ypjy + rij,zpjz]  

C↔D

+ qjr
−3
ij [rij,xpix + rij,ypiy + rij,zpiz]  

D↔C

+ r−5
ij


3pixr

2
ij,xpjx + . . .+ 3pixrij,xrij,ypjy + . . .− 3r2ij

  
D↔D


(A.13)
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However, this can be done much smarter using interaction tensors. Therefore let Tij be the

interaction tensor and ∇α =
∂

∂rij,α
where α = {x, y, z} represent the spatial direction. Now

by defining Tij as

Tij =
1

rij
(A.14)

T α
ij = ∇αTij = −rij,αr−3

ij (A.15)

T αβ
ij = ∇α ⊗∇βTij = (3rij,αrij,β − r2ijδαβ)r

−5
ij (A.16)

T αβγ
ij = ∇α ⊗ (∇β ⊗∇γTij) = −


15rij,αrij,βrij,γ − 3r2ij(rij,αδγβ + rij,βδαγ + rij,γδβα)


r−7
ij

(A.17)

Eq. A.13 can be simplified to

4πϵ0Etot =
N
i

N
j>i

qiTijqj  
C↔C

− qi

α

T α
ij pj,α  

C↔D

+

α

pi,αT α
ij qj  

D↔C

−

α


β

pi,αT αβ
ij pj,β  

D↔D

 (A.18)

A.1.5 Polarization

After having introduced all neccessary mathematical notations, we consider an atom i in a

solid. The electric field E⃗(r⃗i) can be represented as the sum of the electric fields of the other

charges E⃗j
C plus the electric field of the other dipoles E⃗j

D

E⃗(r⃗i) =

i ̸=j

E⃗j
C(r⃗i) + E⃗j

D(r⃗i). (A.19)

Furthermore, the dipole moment for a certain direction of the atom under consideration

can be denoted as

pi,α = pstatici,α + pindi,α ≃ pindi,α (A.20)

since one assumes pstatici,α ≈ 0. By applying the knowledge from the previous sections, the

electric field expands to
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E⃗(r⃗i) =
1

4πϵ0


i ̸=j


Zje

r⃗i − r⃗j
|r⃗i − r⃗j|3

− 1

|r⃗i − r⃗j|3


p⃗i − 3

p⃗i(r⃗i − r⃗j)(r⃗i − r⃗j)

|r⃗i − r⃗j|2


(A.21)

=
1

4πϵ0


i ̸=j


α


−T α

ij qj +

β

T αβ
ij pindj,β


. (A.22)

Now, the polarizability of an atom is defined as p⃗ = αE⃗ where p⃗ is the dipole moment, α the

polarizability and E⃗ the electric field. Since we deal with vector quantities, the relation is

p⃗indi = (αi1)E⃗i (A.23)

where 1 represents the unity matrix and αi the polarizability of the ith atom. Finally, one

arrives at the self-consistent screening equation by putting Eq. A.22 and Eq. A.23 together

pindi,α =
αi

4πϵ0


i ̸=q


−T α

ij qj +

β

T αβ
ij pindj,β


. (A.24)

A.2 Superposition of charge densities

Since DFT codes calculate the real space distribution of charge density , codes like VASP can

also start a calculation with a given pre-converged charge density which may significantly

reduce the time a calculation needs. This is especially significant for big systems, such as

the 21-0 nanotubes. Therefore, it is senseful to create routines to add up charge densities

from different systems.

A.2.1 Coordinate transformation

Consider a system with periodic boundary conditions with lattice parameters a, b, c, α, β

and γ (blue) with a charge density ρ(r⃗) to which the charge density ρ′(r⃗) of a second system

with lattice parameters a′, b′, c′, α′, β′ and γ′ (red) should be added, as shown in Fig. A.3.

However, the charge density is only given at the points of a regular discrete mesh. The

amount of points in each direction is given by VASP’s FFT grid parameters NGX, NGY and

NGZ.
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Thus all the fractional coordinates at which a value of the charge density is given for the

cells are therefore

x⃗fracijk =


i

NGX
,
j

NGY
,
k

NGZ

 i ∈ {0, . . . NGX} and j ∈ {0, . . . , NGY} and k ∈ {0, . . . , NGZ}

.

(A.25)

a

b

c
x

y

z

R

a′

b′

c′

P

Figure A.3: Schematic setup for adding the charge densities of two simulation cells

To convert this fractional coordinates to the global cartesian coordinates, a conversion

matrix must be applied

x⃗cartijk = G · x⃗fracijk

G =

a b cos (γ) c cos (β)

0 b sin (γ) c
sin (γ)

(cos (α)− cos (β) cos (γ))

0 0 V
ab sin (γ)


V = abc


1− cos2 (α) + 2 cos (α) cos (β) cos (γ)− cos2 (β)− cos2 (γ)

(A.26)

where V is the volume of the unit cell and G the conversion matrix(103 , 104 ). The orienta-

tion relationship between the two charge densities is specified by an arbitrary point P⃗ from
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which the fractional coordinates in both systems P⃗ frac and P⃗ ′,frac are known. Consequently

the translation vector between the two coordinate systems T⃗ can be computed by

T⃗ = G · P⃗ frac −G′ · P⃗ ′,frac. (A.27)

However, additionally to uniquely specify any arbitrary geometrical relationship, the

three Euler tilt angles ϕ, χ and ψ need to be specified. In the following section a simple

way to find those is given.

A.2.2 Finding rotation angles between two systems

To find a rotation matrix between two vectors the Rodrigues’ rotation formula is employed

(105 ). Assuming that a given unit vector u⃗ is known and given in the global coordinates.

The task it to map it onto a different unit vector v⃗. Therefore, a rotation matrix R can be

constructed as

R = 1+A+ (A ·A) · 1− u⃗ · v⃗
||u⃗× v⃗||2

k⃗ = u⃗× v⃗

A =

 0 −k3 k2
k3 0 −k1
−k2 k1 0


(A.28)

Furthermore, we know that the rotation matrix for any arbitrary Euler angles is

R̃ =

cos (χ) cos (ψ) sin (ϕ) sin (χ) cos (ψ)− sin (ψ) cos (ϕ) sin (ϕ) sin (ψ) + sin (χ) cos (ϕ) cos (ψ)

sin (ψ) cos (χ) sin (ϕ) sin (χ) sin (ψ) + cos (ϕ) cos (ψ) − sin (ϕ) cos (ψ) + sin (χ) sin (ψ) cos (ϕ)

− sin (χ) sin (ϕ) cos (χ) cos (ϕ) cos (χ)


(A.29)

By simply solving R = R̃ the corresponding Euler angles ϕ, χ and ψ as illustrated in

Fig. A.4 can be found.

Now, since the exact orientation angles between the two coordinate systems are known

the charge densities can be added up. At first a regular grid interpolator with nearest

neighbor interpolation (82 ) constructs a continous function ρ(x⃗)′int for all datapoints x⃗
′,frac
ijk
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(red box). All values x⃗fracijk must be transformed into the fractional coordinates of the target

cell (red) which is done with the following transformation rule

x⃗transijk = G′−1 · (R · (

tranlation to P  
G · x⃗fracijk − P⃗ frac)  

rotation)

(A.30)

where G′−1 is the conversion matrix which transforms cartesian to fractional coordinates.

Plugging all values of x⃗transijk into the interpolated charge density ρ′(x⃗)int will yield the desired

charge densities which can than be added to the intitial discrete set of charge densities (blue

box). Thus we arrive at the final result

ρ(x⃗)added = ρ(x⃗fracijk )  
initial charge density values (blue)

+ ρ′(x⃗transijk )int  
int. charge density

(A.31)

For all x⃗transijk which are outside of the (red) cell, 0 was used as a default fill value. Alter-

natively periodic boundary conditions could be applied.
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Figure A.4: The rotation matrix ˜⃗r (Eq. A.29) represents three chained rotations. ϕ around

x-axis, χ around y-axis and ψ around z-axis. R̃ = R⃗x(ϕ) ·Ry(χ) ·Rz(ψ)
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