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Abstract

An asset bubble, also referred to as a speculative mania or financial bubble, is an eco-
nomic situation characterised by trading in an asset at a price that is far above its real
value. This is often followed by a sharp drop which is known as bubble burst. As such,
a large amount of wealth can be destroyed, and this may lead to a continuing economic
crisis. Therefore, asset bubbles have become a subject of growing interest in mathemati-
cal finance. There are several approaches towards this subject which can be divided into
two main groups: models that quantify price bubbles in a classical arbitrage-free setting
and models that explain the mechanism of price bubbles. In this work, price bubbles
are introduced as the difference between a minimal equilibrium price and an intrinsic
value. The aim of this study was to find out how we can include sudden changes in the
underlying or the economic situation and what could be its possible effect on an asset
bubble. Our first approach was to introduce Markovian regime switching in the interest
rate. We revealed that the bubble contains a component that is entirely based on the
regime switching risk. The second approach was a Lévy model for the underlying asset.
Our findings in this part provide a basis for further research on the current topic with
numerical implementation.

Zusammenfassung

Unter einer Preisblase, auch Spekulations- oder Finanzblase genannt, versteht man eine
Situation, in der Finanzgüter zu Preisen, die weit über deren tatsächlichem Wert liegen,
gehandelt werden. Dem folgt oft ein abrupter Kurssturz, der als Platzen der Blase beze-
ichnet wird. Auf diese Weise können große Vermögen vernichtet und in Folge lang anhal-
tendes wirtschaftliches Chaos ausgelöst werden. Aus diesem Grund wuchs das Interesse
in Preisblasen für finanzmathematische Forschung in letzter Zeit stetig. Es gibt ver-
schiedene Zugangsweisen zu diesem Thema, die sich in zwei große Gruppen unterteilen
lassen: Modelle im Kontext klassischer, arbitragefreier Marktmodelle, die Blasen quan-
tifizieren, und Modelle, die versuchen, den Mechanismus dahinter zu erklären. In dieser
Arbeit bezeichnen wir den Unterschied zwischen minimalem Gleichgewichtspreis und
Sachwert als Blase. Das Ziel war zu erklären, wie sich plötzliche Änderungen im
Kurs des Finanzguts oder in der globalen wirtschaftlichen Situation auf mögliche Preis-
blasen auswirken. Unsere erste Herangehensweise war Markovsches Regime Switching
im Zinssatz. Dabei konnten wir zeigen, dass ein Teil der Blase ausschließlich durch die
Möglichkeit, das wirtschaftliche Regime zu ändern, erklärt wird. Die zweite Herange-
hensweise war ein Lévymodell für das Finanzgut. Unsere Ergebnisse legen den Grund-
stock für weitere Forschung zur numerischen Umsetzung.
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1. Introduction

1.1. Structure and Methodology

Beginning with a general review of asset bubbles, we put them into historical and eco-
nomic context. In the following two sections, we intend to give an overview of the
existing mathematical literature on asset bubbles focussing on more recent work. The
two large groups, the classical semimartingale approach and the equilibrium models, are
in the centre of our discussion. In the following chapter, we summarise regime switch-
ing, a field that has recently become particularly interesting. Next, we recapitulate
the model of Chen and Kohn [21] which will be subsequently generalised to a regime
switching environment as well as a Lévy setting.

The Preliminaries, described here, are for better understanding the mathematical
basis for the present work. First, we highlight the main concepts and properties of Lévy
processes and stability. Since there is no unique notation for them in literature, this
chapter helps to avoid ambiguities. Changing the measure is an essential step in all of
our models and therefore the Girsanov theorem will be mentioned. The following two
sections are used to introduce pseudodifferential equations and viscosity solutions. The
proofs can be found in the concerning references.

Afterwards, in Chapter 3, we modify Chen and Kohn’s model by replacing the Orn-
stein Uhlenbeck process with a square root diffusion process. The results allow us to
understand how every part of the theory is affected.

In Chapter 4, we set up a regime switching model for asset bubbles. Thereby, we
combine the approach from Chen and Kohn [21] with a classical regime switching setting
[36]. The switching affects only the interest rate for following reason: The model interest
rate is driven by a general economic situation that can be changed; The other model
parameters, however, remain constant over the time. In other words, the gap between
the investors’ opinion stays always the same. The dividend rate is the only source of
income from the asset and is given by an Ornstein-Uhlenbeck process. There are two
investors that disagree on only the mean-reversion-rate; they chose different measures.
Showing the equivalence between these measures is the first technical challenge. Here, we
took a similar approach as Elliott [36]. Due to the regime switching component, matrix
special functions as introduced in [66] get involved. Then, we discuss the solution of
a matrix differential equation which is an equilibrium price under some restrictions.
With the help of the theory of viscosity solutions, we can finally show that such an
equilibrium price is minimal. A discussion of the result with numeric examples rounds
up this chapter. The most interesting result we received is that we can indirectly price
the risk of a regime switch. The bubble contains a non-negligible component that is
merely based on the probability of changing to another regime.

Chapter 5 is dedicated to a Lévy model also based on [21]. We replace the classical
Ornstein-Uhlenbeck process with a Lévy driven process. Finding a general represen-
tation of the intrinsic value needs a few more assumptions, including α-stability. Our
definition of equilibrium prices involves transaction fees. Strategies like immediate re-
sale can just be optimal without transaction cost. However, the existence theorem of
minimal equilibrium prices can be generalised. Finally, we set up a pseudo-differential
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1. Introduction

equation including the generator of a Lévy process and show that its solution is an equi-
librium price. Taking a close look, we can see that for the α-stable case and supposing
time independence, our equation is in fact an integro-differential equation. Thereby, the
theory of viscosity solutions has been developed for this and we can proceed in a similar
way as Chen and Kohn to see that the solution of our integro-differential equation is
actually a minimal equilibrium price. Hence, we reach to the existence and the bubble’s
behaviour, but unfortunately no explicit representation.

The appendix explains special matrix functions where the matrix confluent hypergeo-
metric equation is solved. We studied the second Kummer matrix function and its limit
behaviour in detail. This was necessary as it has not been investigated before. Since
the proofs are quite long, but independent from the rest of our theoretical background,
they are described in a separate place. The results are also published in [100].

The literature research was mainly done with the help of MathSciNet (http://ams.
u-strasbg.fr/mathscinet/) with access provided by Technical University of Graz and
University Paris Diderot (Paris 7), directly in the library catalogue and occasionally
with Google Scholar https://scholar.google.at/. The later mentioned calculations
were implemented and performed both in Octave and in Matlab 2016 under a licence
provided by Montanuniversität Leoben on a computer with a 2.80GHz processor running
under Ubuntu.
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1.2. Introduction to Bubbles

1.2. Introduction to Bubbles

Throughout history, speculation bubbles have caused crises and chaos in the world’s
economy. The first documented and probably best known example for this phenomenon
is the Tulip mania between 1634 and 1637 (see [71] or [49] for a comprehensive analysis).
At this time, tulip bulbs were often bought at exorbitantly high prices and sold at even
higher amounts. “Typically, the buyer did not currently possess the cash to be delivered
on the settlement date and the seller did not currently possess the bulb. Neither party
intended a delivery on the settlement date; only a payment of the difference between
the contract and settlement price was expected” [49, p. 544]. Eventually, the high
prices could not be sustained. At an auction, people started selling their tulip bulbs at
increasingly lower prices, ultimately causing a substantial drop in price. The current
example explains the basic principle as to how bubbles work:

“[...] if the reason that the price is high today is only because investors
believe that the selling price will be high tomorrow – when ‘fundamental’
factors do not seem to justify such a price - then a bubble exists.” [93]
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Figure 1.1.: NASDAQ Composite Index (ˆIXIC). Historical data available at
https://finance.yahoo.com/quote/%5EIXIC/history?p=%5EIXIC.

Yet this topic is more pertinent than ever in today’s economy. In 2000, the internet-
bubble had its climax (see Figure 1.1) where some stocks had a growth of about 1000%.
For details, please refer to Shiller’s book Irrational Exuberance [95]. Similarly, bubbles in
the uranium and rhodium market were observed in 2007 and the U.S. real estate bubble
between 2006 and 2008 is widely seen as one of the main causes for the financial crisis
starting in 2008. Nevertheless, it is a highly debated issue whether we are currently in
a crypto-currency bubble or not. The highly volatile Bitcoin is often considered as pure
speculation and seen as a bubble. In other words, one could also ask about fundamental
value of Bitcoin. An empirical analysis [20] using data from 2010 to 2012 showed that
“the bubble price rises are so dramatic that the estimated long-term fundamental value
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1. Introduction

is not statistically different from zero.” However, the type of models used is constructed
in a way that Bitcoin has no fundamental value. Deciding whether there is a bubble,
highly depends on the market model and of course on the precise definition of a bubble
itself. In a realistic framework, detecting a bubble can turn into to a great challenge.
Therefore, a few questions rise including: How could we describe speculation bubbles
mathematically? How could we explain their formation and crash in a proper mathe-
matical way and which of those models could be used to detect speculation bubbles?

Since there is no uniform definition of asset bubbles in current literature, we distin-
guish them into two large main groups of models: one in a classical setting using strict
semimartingales (mainly based on the work by Jarrow, Protter et al. [63]) and the other
explaining the formation of bubbles via equilibria (such as the models by Scheinkman
and Xiong [89] or Chen and Kohn [21]). In the following sections, we shall focus on
mathematical modelling of bubbles.

4



1.3. The Semimartingale Approach for Asset Bubbles

1.3. The Semimartingale Approach for Asset Bubbles

Several recent papers introduced bubbles in standard market models with no-free-lunch-
without-vanishing-risk (NFLVR) and no-dominance-assumption as strict local martin-
gales. A strict local martingale is a local martingale that is not a martingale. Therefore,
one distinguishes between a market price and a fundamental price. The market price -
the amount to which the asset is traded - is assumed as a non-negative semimartingale
(St)t≥0 and the fundamental price denoted by S∗t is defined as expected future cash flows
under a risk neutral measure. Then, an asset bubble can be defined as the difference
between fundamental and market price

βt = St − S∗t .

These models merely describe asset bubbles, yet they do not provide an explanation
where bubbles come from. The theory was developed by the work of R.Jarrow and
P.Protter. Their articles Asset Price Bubbles in Complete Markets [63] and Asset Price
Bubbles in Incomplete Markets [64] became the fundament of a theory to which we will
give a short introduction. Due to their contribute also to further research [60,62–64,84],
their notation and their terminology has become a standard in literature. Moreover, it
is consistent with classical models from financial mathematics like Black-Scholes. In A
Mathematical Theory of Financial Bubbles [84], Protter gives a comprehensive survey
of the theory and discusses points that have been criticised.

First, we need to make the notation precise. On a filtered complete probability space(
Ω,A, (Ft)t≥0 ,P

)
, the model consists in a money market account and a risky asset.

Let a stopping time τ represent the maturity. The cumulative dividend process is
assumed to be a non-negative, càdlàg semimartingale D = (Dt)0≤t≤τ adapted to F .
The non-negative Xτ ∈ Ft is called terminal payoff or liquidation value. The market
price S = (St)0≤t≤τ is assumed as a non-negative, càdlàg semimartingale adapted to F .
Precisely, for t such that ∆Dt > 0, St denotes the price ex-dividend. Now we are able
to define the wealth process as

Wt = St +

∫ t∧τ

0
dDu +Xτ1τ≤t. (1.1)

This plays an important role in defining the set of risk neutral measures. An Equivalent
Local Martingale Measure (ELMM) is defined as a probability measure Q equivalent to
the real world measure P such that the wealth process W is a Q-local martingale and the
set of ELMMs is denoted by M loc(W ). The No-free-lunch-with-vanishing-risk (NFLVR)
condition form [31] is the key no-arbitrage argument in this theory. Let L1(W ) denote
the space of integrable processes according to [83]. A trading strategy is defined as a
pair of adapted processes (π, η) with π ∈ L1(W ) such that it represents the units of the
risky asset and the risk free asset respectively held at time t. The wealth process of the
trading strategy (π, η) is defined by V π,η

t = πtSt + ηt. A trading strategy is called self
financing, if π is predictable, η optional and

V π,η
t =

∫ t

0
πudWu. (1.2)

In other words, self-financing trading strategies start with V π,η
t = 0 and all purchases and

sales of the risky asset are financed by the money market account. Trading strategies are
called admissible, if they are self financing and there exists a ∈ R+ such that V π,η

t ≥ −a

5



1. Introduction

for all t almost sure. Amongst others, such strategies avoid doubling strategies and
impose a lower bound to the wealth process. The NFLVR condition is, roughly spoken,
excluding all self-financing strategies with zero investment that generate non-negative
cashflows with positive probability, i.e. arbitrage strategies, and all other strategies ap-
proaching them. Under this assumption, the first fundamental theorem of asset pricing
holds: If and only if the NFLVR hypothesis is satisfied, then there exists an ELMM. For
the exact definition and the details, we refer to [31] or [63]. The second fundamental
theorem also holds: In complete markets, the ELMM is unique [63]. Since the funda-
mental price is defined through the ELMM, it makes a huge difference, if the market
is complete. Let us first focus on this case. The fundamental price is defined as the
expected future dividends under the ELMM plus the payoff if the maturity is finite, or

S∗t = EQ
(∫ τ

t
dDu +Xτ1τ≤∞

∣∣∣∣FXt ) . (1.3)

As Q is unique, S∗t is also uniquely defined. Hence, we can define an asset price bubble
uniquely as βt = St − S∗t . The main finding of [63] is that there are only three different
types of non-trivial bubbles:

• Type 1: uniformly integrable martingales denoted by β1
t ,

• Type 2: non-uniformly integrable martingales denoted by β2
t ,

• Type 3: strict local martingales denoted by β3
t .

and the process St admits a unique decomposition (Theorem 5 in [63]) into

St = S∗t + β1
t + β2

t + β3
t .

Further, it can be shown that

• β1
t → X∞ a.s.

• β2
t → 0 a.s.

• β3
t → 0 a.s. and E

(
β3
t

)
→ 0.

This limit behaviour is very important for the interpretation of the different bubble
types. A few properties directly result from the decomposition theorem: First, bubbles
cannot be negative. Further, bubble maturities are always finite. The drawback of a
complete market is that bubbles exist either from the beginning or simply never arise.
Once they burst, the same bubble will not appear again. Another important property
is that those three different types occur in different situations. To make it clearer, we
repeat the examples from [63]:

• Type 1 bubbles exist when the asset has infinite life with a payoff at τ = ∞.
The represent a kind of stochastic gap between fundamental and market price.
From an economic point of view, they are uninteresting.
The classical example is the fiat money with St = 1, τ =∞, X∞ = 1 and Dt = 0.
Then, β = 1.

• Type 2 bubbles exist when the asset has finite life that is unbounded.
We give a martingale bubble as example: Consider a maturity τ with P(τ > t) > 0
and a payoff 1 at the maturity, i.e. S∗t = 1t≤τ . Setting

βt =
1− 1t≥t
Q(τ ≥ t)

(1.4)

6



1.3. The Semimartingale Approach for Asset Bubbles

one can show that β is not uniformly integrable and β∞ = 0 and define a market
price St = S∗t + βt. This process is finite with probability 1, but the asset’s life is
unbounded.

• Type 3 bubbles: for assets whose lives are bounded.
We take the strict local martingale bubble (from Section 2.1.1 in [28]) as an ex-
ample. Set τ = T <∞, D = 0 and S∗t = 1t≤T . On can show [63] that

βt =

∫ t

0

βt√
T − u

dBu, (1.5)

where B is a Q-Brownian motion, is a strict local martingale. So, the bubble exists
although the maturity is finite.

Under Merton’s no-dominance assumption, there are only type 1 bubbles, but neither
type 2 nor strict local martingale bubbles. Roughly spoken, no-dominance means that
financial agents prefer more to less. Here, we refer to the original definition [75] or
to its version in modern notation [63]. No-dominance implies NFLVR. Jarrow and
Protter [63] also investigated the relation between bubbles and derivatives. The most
interesting conclusion from [63] is that under the no-dominance assumption, bubbles for
standard options do not occur in complete markets. The other main reason to extend
the model to incomplete markets was the interest in the modelling of a “bubble birth”.

To adapt the model to incomplete markets [64], the definition of the fundamental
price needs to be generalised. Let σ = (σk)k≥0 be an increasing sequence of random
times with σ0 = 0 called the shift times. Suppose σ to be independent of the current
state of the economy and also of the filtration F to which S is adapted. Then, one can
define the number of regime shifts up to t as

Nt =
∑
k≥0

1t≥σk . (1.6)

If Nt = i, then Qi ∈ M loc(W ) denotes the ELMM selected by the market at time t.
This allows us to define the fundamental price as

S∗t =
∞∑
k=0

EQk
(∫ τ

t
dDu +Xτ1τ≤∞

∣∣∣∣FXt )1{t≤τ}∩{t∈[σk,σk+1)}. (1.7)

It is important to remark, that the existence of a equivalent measure Q∗ such that

S∗t = EQ∗
(∫ τ

t
dDu +Xτ1τ≤∞

∣∣∣∣FXt )1{t≤τ}. (1.8)

can be shown [64]. This is often called valuation measure and is an ELMM in a static
market without regime shifts. However, Q∗ is in general not a martingale measure.
Therefore, the choice of the ELMM always affects the fundamental value. With some
effort, [64] generalises the decomposition theorem to incomplete markets. The bubble
β can be decomposed to the same three types of bubbles, but the behaviour under no-
dominance changes. The bubble is no longer necessarily a martingale and bubbles can
arise at some regime shifts. However, a concrete example for the “bubble birth” at a
measure change was found later in a credit risk model setting [12].

7



1. Introduction

Ekström and Tysk [34] discuss some aspects of the Black-Scholes model in an economy
with bubbles. Several properties do not hold anymore in the new setting, such as put-
call-parity or uniqueness of the solution of the Black-Scholes equation. For a continuous
payoff function with at most linear growth, the risk-neutral option price is a solution of
the Black-Scholes equation with at most linear growth. Further, they discuss convexity
theory for European and for American options. Jarrow and Protter [61] discuss forward
and futures prices in the context of asset bubbles. Jarrow, Protter and Kchia [60]
focussed on statistical methods to detect bubbles and developed criteria when an asset’s
price exhibits a bubble. Within the standard semimartingale approach, they restrict
themselves to the model

dSt = µ (St) dt+ σ (St) dWt (1.9)

on a finite horizon where W denotes a Brownian motion and the function σ the volatility.
Then, the market price S is a strict semimartingale if and only if∫ ∞

α

x

σ(x)2
<∞ (1.10)

for all α > 0 (for a proof of this criterion see [72]). Obviously, type 3 bubbles are the
most relevant in a real economic environment. If S is a strict local martingale, one
can show that there is such a bubble. Therefore, by volatility estimations methods,
one can determine if S has semimartingale properties and hence if there is a bubble.
Finally, the internet bubble is chosen as a concrete example to illustrate their result.
A recent article by Jarrow [59] gives two further ideas to detect asset bubbles: Identi-
fying a bubble via a comparison of the asset’s put and call prices and a return factor
model decomposing into fundamental value and bubble. A more theoretical work by
Pal and Protter [81] on h-transformations also affects this subject. They give examples
for strict local martingales and put their theory in the context of option pricing. Mija-
tović and Urusov [78] provide a deterministic criterion for the absence of bubbles in a
generalised constant-elasticity-of-variance process setting. It is one application of their
theory about strict local martingale property. Jarrow, Protter and Roch [62] worked on
the influence of liquidity on asset bubbles. However, their approach is slightly different.
The fundamental price process is assumed to be exogenously given and the bubble en-
dogenously determined by market trading activity due to liquidity risk. The model by
Biagini, Föllmer and Nedelcu [11] slightly differs from the standard semimartingale ap-
proach. They examine a flow in the space of equivalent martingale measures. This allows
bubbles to arise an disappear within shifts of the measure. Guasoni and Rásonyi [51]
discuss the robustness of the local martingale diffusion models to small change like the
presence of transaction cost. A paper by Kardaras, Kehrer and Nikeghbali [69] gives
detailed examples of this theory’s application to option pricing and discusses the re-
lationship between risk neutral and real measure in this context. Under NFLVR, but
without no-dominance assumption, they examine the influence of bubbles on the pricing
of derivatives. After describing a last passage formula, the examples focus on path de-
pendent options like European and American exchange or chooser options. The model
of Biagini and Nedelcu [12] is particularly interesting, because it combines the find-
ings from [11] with [64] and gives a concrete example for a bubble birth. Within a
defaultable claim model (as discussed in [14]), they characterise the set Mloc(W ) and
explicitly calculate a measure change. Bilina Falafala, Jarrow and Protter [15] discuss
bubbles of bounded asset as for example bond bubbles. Under a change of numéraire
from the money market account to another one using the risky asset, they examine the
existence of local martingale measures. Jarrow [58] developed a multiple-factor model
with bubbles in an arbitrage-free, competitive, and frictionless market. A recent paper
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1.3. The Semimartingale Approach for Asset Bubbles

by Obayashi, Protter and Yang [80] generalises the method to detect an asset bubble
from [61] to a more realistic model including stochastic interest rate. They also provide
a detailed example of their method and estimation of a bubble’s lifetime on real data set.
The model by Herdegen and Schweizer [54] relies basically on the same concepts, but
the setting has various differences. Instead of NFLVR, they take a weaker no arbitrage
concept, the no unbounded profit with bounded risk (NUPBR) assumption. Moreover,
their definition of a fundamental price is also substantially different. However, they can
show that bubbles are strict local martingales. A different approach by Cox, Hou and
Ob lój [29] examines strict supermartingale bubbles in a robust derivative pricing setting.
The most interesting part of this paper is the discussion about trading and definition
of a fundamental price. They provide a justification of the semimartingale approach for
bubbles arising from trading restrictions and market prices. Keller-Ressel’s work [70] on
pure-jump strict local martingales provides a new direction to construct strict local mar-
tingales by a measure change. This could be an interesting way to follow in modelling
bubbles.

9



1. Introduction

1.4. Equilibrium Models for Asset Bubbles

While standard market models aim to quantify and detected bubbles, equilibrium models
try to explain them in different ways. Before entering in this direction, we want to ask
ourselves some crucial questions: where do price bubbles come from? What mechanism
lies behind them? Why do asset bubbles arise? Moreover, bubbles “are associated on
occasion with general ‘irrationality’ or mob psychology” [71, p. 36], but since rationality
is one of the key assumptions in efficient market theory and hence also in almost all
mathematical models, how to include this aspect? Kindleberger distinguishes in his
famous book about Manias, Panics and Crashes [71] into several possible explanations
for irrationality in a market:

• Group thinking and herd behaviour affects all market participants.

• The degree of rationality differs among groups - traders, investors and speculators
exhibit different behaviour as prices rise.

• The behaviour of a group of individuals differs from the sum of the behaviours of
each of the individuals in the group.

• Individuals choose a wrong model or fail to consider crucial information.

In general, the causes that lead to a bubble are manifold: structural, cultural and
psychological factors play together in a complex way. For a profound analysis of this
topic, we refer to Shiller’s book Irrational Exuberance [95]. A key notion is the term
rational bubble which describes bubbles that exist in rational markets.

“Possible explanations for the formation of bubbles include self-fulfilling
expectations (rational bubble), mispricing of fundamentals (intrinsic rational
bubble) and the endowment of irrelevant exogenous variables with asset pric-
ing value (extrinsic rational bubble). Rational bubbles exist when investors
anticipate that they can profitably sell an overvalued asset at an even higher
price. In contrast, irrational bubbles are formed when investors are driven
by psychological factors unrelated to the asset’s fundamental value.” [20]

There are a few examples of irrational bubbles. The most well-known is the so-called
Ponzi-scheme, a kind of a fraudulent pyramid scheme. The manager of such a scheme
promises large profits for investors, but his real investment is worth almost nothing.
Investors put confidence in other market participants above their own rationality; a
feedback effect for bubbles (see [95] for details) affects them. Albania’s crisis in 1997
serves as an outstanding example. Several different Ponzi schemes promised their possi-
ble investors extremely large returns with always the same strategy: the main payments
to old investors were financed through money contributed by new investors. The invest-
ment in such schemes went up to 30 % of the country’s GDP which after the collapse
of those pyramids caused a substantial economic and political crisis [95]. However,
capturing irrationality from a mathematical point of view is very difficult.

Since we want to examine the origin of asset bubbles in a mathematical way, the
appropriate concept of a price is indispensable. On a real market, prices are fixed
through supply and demand. Each investor chooses his portfolio by maximising his
expected utility subject to a wealth condition. In most models, the communication
between sellers and buyers is uniquely through prices. So, the prices the seller offers
have to correspond to those which the buyer accepts or it will not lead to a trade. Finding
such an equilibrium price will lead to prices that are often substantially different from
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the fundamental value of an asset. For a detailed, precise mathematical formalisation
of equilibrium theory, we recommend Barucci and Fontana’s book Financial Market
Theory [9]. They also dedicate a chapter of their book to rational asset bubbles, where
they refer to all important literature.

The literature for equilibrium bubbles is harder to categorise, since there are - unlike
for the semimartingale approach - many slightly different models and some branches of
the theory developed in a completely different direction. Blanchard and Watson [16]
investigate the consistency of bubbles with rationality in the market and provide first
tests for the existence of bubbles. Tirole [97] is dedicated to definitions and properties
of asset bubbles. He points out how important it is to precisely define fundamental
prices and how sensitive bubbles are to their definition. Tirole [97] provides necessary
and sufficient conditions for the existence of bubbles. An important result is the so called
“no-trade theorems”: private information must be excluded as a source of a bubble, since
all traders act rationally and have identical prior information. Bosi and Seegmuller [18]
set up a time-discrete model for rational bubbles close to Tirole’s approach.

In a dynamic asset pricing model, Santos and Woodford [87] have given conditions
such that bubbles cannot exist in a competitive equilibrium framework. A competitive
market means here that every agent chooses optimal consumption under a budget con-
straint and under allocation of all goods. A slight modification by Werner [101] points
out price bubbles can exist in equilibria with endogenous debt constraints. Loewenstein
and Willard [73] study rational bubbles in a continuous setting very similar to [87] and
developed conditions under which rational bubbles exist.

Further literature relies on this work or is inspired by it: Huang and Werner [56],
Abreu and Brunnermeier [2], Hellwig and Lorenzoni [53] Cheriyan and Kleygweit [23]
in an experimental setting, Bidian [13], Bosi, Le Van and Pham [17] in a multi-sector
model, Hirano and Yanagawa [55] in an endogenous growth model and many others.
In a more complex setting, Hugonnier [57] shows that portfolio constraints can create
rational bubbles. Miao, Wang and Xu [77] set up a dynamic general equilibrium model.
Self-fulfilling beliefs and a positive feedback loop create the bubble. There is an inter-
esting time-discrete model [4] in which the investors’ opinion on the future dividend is
heterogeneous. They show that there are only three possible situations in equilibria:
one investor will possess the entire wealth after some time, the return of the risky and
the risk-free asset are equal and several investors coexist or where many investors share
the total wealth. So, it can come to the case that one investor will drive out the others
of the market. The expectations of the surviving investor can push up the price and
create a bubble that will never break. Equilibria can also be defined and studied in
a more complex economy that distinguishes between households, final goods produc-
ers, capital goods producers and financial intermediaries [76]. Based on that fact that
bubbles occur mostly in one sector (as several housing bubbles or the internet bubble),
they intensively study the structure and impact of bubbles to several sectors. Recently,
econometric testing for rational bubbles has been examined intensively using different
statistical approaches. We give as examples: testing on exploding dividends in US stock
prices between 1974 and 2000 [46], an analysis of the S&P500 [48] and the G-7 stock
markets [103]. Demos [32] discusses testing of bubble birth and bursting with many
examples.

Here one has to mention Harrison and Kreps [52], because they were one of the
first who formalised, still in a very basic setting, the principle of how bubbles work.
Speculative behaviour means that an investor is willing to pay more than the expected,
discounted value of future dividends, because he is aware that other investors are willing
to do the same. In this case, the price of the asset can no longer be only justified by
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dividend payments, but is stable at some point. Harrison and Kreps [52] show the exis-
tence and uniqueness of such a balance. Without naming it an equilibrium price, this is
exactly the idea behind it. Heterogeneity is the source of this gap between two prices,
but they do not explain where these different beliefs come from. The model by Chen and
Kohn [21], which we discuss later, reuses the ideas from [52]. Scheinkman and Xiong [90]
provide a survey of the existing literature up to 2003 which summarises all the earlier
models. We refer the reader to his work for the earlier models. Moreover, they intro-
duce a more general equilibrium model [89, 90] for two different investor groups. The
dividend rate is seen as a non-observable Ornstein-Uhlenbeck-process. Their provided
model seems at first glance similar to our setting following [21]: Heterogeneous beliefs
are the source of the bubble and an Ornstein-Uhlenbeck process models the dividend
rate. However, they use different signals and linear filtering techniques to determine
pairs of equilibrium prices. The market participants just observe the cumulated divi-
dend, different “signals” for each group and different distorted “signals” correlated to
the dividend rate. Using a linear filtering technique each investor group estimates the
dividend rate. Under the assumption that a market price can be decomposed into a
fundamental price and resale value, the resale value fulfils a hypergeometric differential
equation and can be interpreted as a bubble. The model by Scheinkman and Xiong
also allows to analyse bubbles in dependence of their parameters like transaction costs,
interest rates or volatilities. A study of the boundary problem arising this setting and it-
erative algorithm [6,7] allows a generalisation of Scheinkman’s idea to a time-dependent,
dynamic framework.
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1.5. Regime Switching

It is mainly the work of Robert J. Elliott that made regime switching part of modern
financial mathematics. Nowadays, there is a large literature on this topic. The first book
of Elliott [35] on Hidden Markov Chains provides the most important theoretical frame-
work as well as methods of estimation. However, what we know as Markovian regime
switching was developed later. The article American Options with Regime Switching [36]
is a cornerstone for the theory. Elliott and Buffington consider a Black-Scholes economy
in which all the parameters switch between a “good” and a “bad” state. In a straight-
forward way, they show that a Black-Scholes type equation can be obtained. The basic
idea of regime switching is to combine classical models, such as a Black-Scholes envi-
ronment [36, 37, 40], a LIBOR market model [38] or a Heath-Jarrow-Morton model [45]
for example, with an additional stochastic component, the so called economic regime.

On a filtered probability space
(

Ω,A, (Ft)t≥0 ,P
)

a model is a assumed, where at least

one parameter changes over the time based on the economic regime, for example a
piecewise constant interest rate. The regime changes according to a continuous-time
Markov chain X = (Xt)t≥0 with N different states. The state space is the set of unit
vectors {e1, . . . , eN} with rate matrix A. Any parameter that depends on the regime,
can therefore easily be written as an inner product, for instance, an interest rate

rt = 〈r, Xt〉 (1.11)

where r is a vector of different interest rates. This is called the canonic notation of
the Markov states which facilitates all further calculation and is hence kept by the
overwhelming part of authors. However, the biggest advantage is obviously, that more
than one parameter can easily switch to another state at the same time, whenever
the economic situation changes. The interpretation of X itself is vast and depends
merely on the context of the model. It can be seen as an indicator that summarises
all “information about some (macro)-economic factors such as Gross Domestic Product
(GDP) and Retail Price Index (RPI)” as in [45] where the states of X can be interpreted
as “different categories of credit ratings produced by rating agencies which are publicly
available.” The Markov chain, recalling the semi-martingale-representation [35], is in
general decomposed as

Xt = X0 +

∫ t

0
AXsds+Mt (1.12)

where M is a martingale with respect to the filtration generated by X. This is the most
important tool to handle expectations containing a regime switching parameter. Due to
the additional random component, the modified models become incomplete. We want to
illustrate this within an example. In [37], the stock price is given by a Markov-modulated
Geometric Brownian Motion. A straight forward measure change is not possible, since
the appreciation rate and the volatility are stochastic. Moreover, let

(
FXt
)
t≥0

be the

natural filtration generated by X and
(
FZt
)
t≥0

generated by the stock’s logarithmic
return Zt. The Esscher transformation

dQθ

dP
=

exp
(∫ t

0 θsdZs

)
EP
(

exp
(∫ t

0 θsdZs

)∣∣∣FXt ) (1.13)

with θ determined by the model can be used to find an equivalent martingale measure.
Elliott [37] justifies his choice for an Esscher transformation by a minimal entropy argu-
ment - an idea taken from Lévy models. Under a certain choice of θ, the measure Q is
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the minimal entropy martingale measure. This allows a pricing analogous to standard
models.

The two books edited by Mamon and Elliott [38] and [39] contain important works
on application of regime switching and estimation of parameters and are rounded up by
numerical aspects. There has been an intense research on regime switching especially in
a Black-Scholes-setting the last years: Pricing European options via a system of coupled
Black-Scholes-like PDE [74], approximate pricing for barrier options [43], risk minimising
portfolios [40] and discrete-time, inhomogeneous Markov chain approximation method
to price options [47]. However, regime switching is not restricted to Black-Scholes nor a
Brownian motion setting. The Dupire model was also considered under regime switch-
ing [44]. There, the compounded interest rate, the local volatility and the appreciation
rate switch within a Markovian setting. As in [37], the risk-neutral Esscher measure is
used for defining a price. Finally, they derive a formula for pricing European call options
as a solution of a system of an initial value problem. In [42], Elliott et al. investigate the
pricing of options in a jump-diffusion model with regime switching. Even in this case,
they are able to stay in a standard setting. A generalised Esscher transformation is used
to determine an equivalent martingale measure and a PIDE approach for the pricing.
One of the main questions remains the choice of the risk neutral measure. [92] discusses
three different approaches to choose equivalent martingale measures: a stochastic dif-
ferential game, a general equilibrium approach and an Esscher transformation. For the
first two, a dynamic programming principle is used to determine the martingale measure.
The latest development [94] generalises to a non-Markovian regime switching.
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1.6. Chen and Kohn’s Model for Asset Bubbles

As we base the two following chapters on a model by Chen and Kohn [21], we give a
short introduction to their model here. There is only one risky asset paying a dividend
rate Dt at t ≥ 0 modelled by an Ornstein-Uhlenbeck process D = (Dt)t≥0 with two
investor groups differing only in their assessment of the mean-reversion rate λi, but
agreeing on the other parameters µ ∈ R and σ > 0. This process D is given by the
stochastic differential equation

dDt = λi (µ−Dt) dt+ σdW i
t

where W denotes a Brownian motion. The definition of a bubble is standard: the differ-
ence between minimal equilibrium price and intrinsic value. These two basic concepts
are crucial for understanding the model.

An intrinsic value is defined as the maximal expected amount of all future dividends.
In Chen and Kohn’s setting, this can be calculated explicitly by knowing that the solu-
tion of an Ornstein-Uhlenbeck equation.

Determining the equilibrium price is far more challenging. First, it can be shown that
the minimal equilibrium price is unique. Then, Chen and Kohn set up a second order
linear differential equation

max (λ1 (µ− x) , λ2 (µ− x)) Φ′(x) +
σ2

2
Φ′′(x)− rΦ(x) + x = 0

that can be transformed into a Weber differential equation and, hence, can be solved.
Its continuous solution with linear growth at infinity is unique. In a second step, this
solution is identified as the minimum equilibrium price. With help of the Itô formula,
Chen and Kohn [21] prove that such a solution is an equilibrium price. Then, through
help of the theory of viscosity solutions, they show its minimality. An erratum [22]
corrects some details of this proof. Finally, the size of the bubble - introduced as
the difference between the minimal equilibrium price and the intrinsic value - can be
computed explicitly.

The model is connected to other literature as mentioned above. It can be seen as
a continuous generalisation of the Harrison and Kreps’ [52] ideas. At first glance it
also bears resemblance to the setting by Scheinkman and Xiong [89, 90], but the differ-
ences are significant. Despite also using Ornstein-Uhlenbeck processes for modelling the
dividend rate, Scheinkman and Xiong assume that this process is not observable; the
heterogeneity in opinion comes from different signal processes used for linear filtering.
Moreover, Scheinkman and Xiong’s concept of equilibrium prices is majorly different.
Instead of expressing different opinions through different measures and connecting them
by a measure change, they define pairs of equilibrium prices.
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2. Preliminaries

2.1. An Introduction to Lévy Processes

In this chapter, we give an introduction to Lévy processes and discuss their basic prop-
erties. The notation used here follows mostly the book of Sato Lévy Processes and
Infinitely Divisible Distributions [88]; therefore it should be noted that it differs slightly
from the one used in the book of Applebaum [5]. A brief overview over the topic is also
provided in the book by Cont and Tankov Financial Modelling with Jump Processes [24]
as well as in Protter’s book Stochastic Integration and Differential Equations [83].

Throughout this whole work, we assume
(

Ω,A, (Ft)t≥0 ,P
)

to be a filtered probability

space satisfying the usual hypothesis. A stochastic process L = (Lt)t≥0 is called Lévy
process if the following conditions are satisfied:

• L0 = 0 almost sure,

• L has independent increments, i.e. for n ≥ 1 and 0 ≤ t0 < t1 < . . . < tn, the
random variables Lt0 , Lt1 − Lt0 , . . . , Ltn − Ltn−1 are independent.

• L has stationary increments, i.e. Lt − Ls has the same distribution as Lt−s for
0 ≤ s < t <∞,

• L is continuous in probability, i.e.

lim
s→t

P (|Ls − Ls| > ε) = 0 (2.1)

for t ≥ 0 and ε > 0.

Like Sato [88], we additionally assume all Lévy processes to be càdlàg. However, this
is not necessary and without this assumption, it can be shown that every Lévy process
has a unique càdlàg modification that is itself a Lévy process (see Theorem 2.1.8 in [5]
or Theorem 30 in [83]). Obviously, since a Lévy process is stationary and has indepen-
dent increments, it is a Markov process. Famous examples for Lévy processes are the
Brownian motion and the Poisson process. We denote the left limits of a process by

Lt− = lim
s→t−

Ls (2.2)

and the jumps of a process by
∆Lt = Lt − Lt− (2.3)

The big advantage of Lévy processes is that they allow to include those jumps into
models while having a wide range of helpful theoretical results.

Lévy processes are closely related to infinitely divisible distributions (see Chapter
2 in [88]): If L is a Lévy process, then Lt has an infinitely divisible distribution for
every t ≥ 0. Conversely, for each infinitely divisible distribution F there exists a Lévy
process L such that F is the distribution of L1. An important result about infinitely
divisible distributions, the Lévy Khintchine formula, can hence be also applied to
Lévy processes. We receive
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Theorem 1. Let ν be a measure on R satisfying∫ ∞
−∞

(
|x|2 ∧ 1

)
ν(dx) <∞. (2.4)

Let γ ∈ R, a ≥ 0 and L be a Lévy process, then L has the characteristic function

E
(
eiuLt

)
= exp

(
t

(
iγu− u2a2

2
+

∫
R\0

(
eiux − 1− iu1[−1,1](x)

)
ν(dx)

))
(2.5)

for u ∈ R.

The measure ν is called Lévy measure and (a, ν, γ) the generating or characteristic
triplet. It can be further shown that the characteristic function of Lt is uniquely
determined by this triplet and conversely, for each characteristic triplet there exists a
Lévy process. A detailed proof can be found in Chapter 2.8 in [88]. For A ∈ B(R), the
Lévy measure ν(A) can also be interpreted as the expected number of jumps with size
belonging to A between zero and one; we can also write

ν(A) = E (#{t ∈ [0, 1] : ∆Lt 6= 0,∆Lt ∈ A}) . (2.6)

With this, one can show that for a bounded, real-valued function f vanishing around
zero holds

E

 ∑
0<s≤t

∆Ls

 = t

∫ ∞
−∞

f(x)ν(dx). (2.7)

As shown in Chapter 2 of [24], for every càdlàg process there is a random measure on
R× [0,∞) describing the jumps. For a process L, we define its jump measure

J(B) = #{(t, Lt − Lt−) ∈ B} (2.8)

for B ∈ B(R × [0,∞)). Roughly spoken, J(dz, dt) counts the number of jumps of
L occurring in dt whose amplitude belong to dz. It is very useful as it helps us to
represent all quantities involving the jumps of L through an integral against the jump
measure J . We consider a compound Poisson process

Xt =

Nt∑
i=1

Yi (2.9)

with intensity λ and jump size distribution f . Then, its jump measure is a Poisson
random measure with intensity λf(dx)dt = ν(dx)dt (see Proposition 3.5 in [24]). One
can show that every compound Poisson process has the representation

Xt =
∑
s∈[0,t]

∆Xs =

∫ t

0

∫
R
zJ(dz, ds). (2.10)

We could have the idea to restrict ourselves to processes of the form

Lt = γt+Wt +Xt = γt+ aWt +

∫ t

0

∫
R
zJ(dz, ds). (2.11)

These are called jump-diffusion processes. In fact, jump-diffusion is quite commonly
used in financial modelling, such as Merton’s approach (see [25], and it is much easier
to handle. Drift, Brownian motion and jumps are its basic components - as it is with
Lévy processes, but not every Lévy process be represented in this form. A Lévy process
may have an infinite number of small jumps. Considering this fact, we can formulate an
important result.
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Theorem 2 (Lévy Itô decomposition). Let L be a Lévy process L with characteristic
triplet (a, ν, γ) that satisfies ∫

|z|≤1
zν(dz) <∞ (2.12)

and let J(dz, ds) be its jump measure. Then the following holds:

• J(dz, ds) is a Poisson random measure on [0,∞) with intensity measure ν(dx)dt.

• L has the decomposition

Lt = γt+ aWt +X1
t +X2

t (2.13)

where W is a standard Brownian motion,

X1
t =

∫ t

0

∫
|z|>1

zJ(dz, ds) (2.14)

describes the large jumps and

X2
t = lim

ε→0−

∫ t

0

∫
ε<|z|≤1

z (J(dz, ds)− ν(dz)ds) (2.15)

the compensated small jumps.

• The continuous part γt+ aWt and the jump part X1
t +X2

t are independent.

For a more general version with a proof see Chapter 4, Theorem 19.2 and 19.3, in [88].
Obviously, the Lévy Khintchine formula can also be seen as a direct consequence of the
Lévy Itô decomposition [24].

Lévy processes have the Markov property (see Chapter 3.8 in [24] or Chapter 3.1
in [5]). We say a process X has the Markov property if

E(f(Xt)|Fs) = E(f(Xt)|Xs) (2.16)

for all 0 ≤ s ≤ t <∞ and all bounded and measurable functions f . In other words, the
process after time s is independent on its past. The transition probability of a Markov
process X is defined as

Ps,t(x,B) = P (Xt ∈ B|Xs = x) (2.17)

for all B ∈ B(R) and 0 ≤ s ≤ t < ∞. It can be shown that for Lévy processes, they
are homogeneous in space and time (Theorem 10.5 in [88]). The transition operator for
Markov processes is defined as

Ts,tf(x) =

∫
R
f(y)Ps,t(x, dx) (2.18)

For homogeneous Markov processes, we write T0,t as Tt. Therefore, we get

Ptf(x) = E(f(x+Xt)) (2.19)

for t ≥ 0. Using the Chapman-Kolmogorov identity (Theorem 3.1.5 from [5])

Ps,u(x,B) =

∫
R
Ps,u(y,B)Ps,t(x, dy) (2.20)

19



2. Preliminaries

and the time homogeneity, one can show that the transition operators have the semigroup
relation

PtPs = Ps+t. (2.21)

The infinitesimal generator of a Lévy process is defined as

L f = lim
t↓0

Ptf − f
t

(2.22)

on a domain such that the limit on the right hand side exists. An important result is

Theorem 3. Let L be a Lévy process with generating triplet (a, ν, γ). Then, the in-
finitesimal generator can be written as

L f(x) =
a

2
f ′′(x) + γf ′(x) +

∫ ∞
−∞

f(x+ y)− f(x)− yf ′(x)1|x|≤1ν(dy) (2.23)

For a multidimensional version with proof we refer to Chapter 6.31 in [88]. The
infinitesimal generator appears often in partial integro-differential equations associated
with Lévy models and can provide a useful tool. Consider a function f ∈ C2(R). We
shall later see such a case in our model. For a Brownian motion, we receive L f = 1

2∆
with the Laplace operator ∆ and for the compound Poisson process

L f(x) =

∫ ∞
−∞

f(x+ y)− f(x)ν(dy). (2.24)

The following lemma is an important technical step we will need later. Proposition
11.10 in [88] shows that projections of Lévy processes are again Lévy processes as a
consequence of the Lévy-Khinchin formula (Theorem 1).

Lemma 1. Let L be a Lévy process with characteristic triplet (a, ν, γ) and c ∈ R \ {0}.
Then (cLt)t≥0 is a Lévy process with characteristic triplet (ac, νc, γc) where

ac = ca,

γc = c

(
γ +

∫ |c|
−|c|

xν(dx)−
∫ 1

−1
xν(dx)

)
,

νc(dx) = ν

(
dx

c

)
.

Lévy processes play an important rule in generalising famous stochastic differential
equations. One of them is the Non-Gaussian Ornstein-Uhlenbeck process, also called
Lévy driven Ornstein-Uhlenbeck process. Definitions are not unique in literature.
As introduced in Chapter 15.3 in [24], one definition could be

Yt = Y0e
−rt +

∫ t

0
e−r(t−s)dLs. (2.25)

This allows us to find a stochastic differential equation and to calculate the character-
istic triplet of the stationary distribution of Yt. Estimation for Lévy driven Ornstein-
Uhlenbeck processes can get complicated; in most cases, several additional assumptions
are taken. For a detail analysis see Barndorff-Nielsen and Shepard [8].

However, we choose a slightly different definition. A very basic, but important result
is
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Lemma 2. The stochastic differential Ornstein-Uhlenbeck equation

dDt = λ(µ−Dt−)dt+ σdLt (2.26)

has the unique solution

Dt = µ+ e−λt(x− µ) + σ

∫ t

0
e−λ(t−s)dLs. (2.27)

Proof. As a first step, we set Yt = µ −Dt and observe dYt = −dDt. Note that Yt has
jumps, but is still a (discontinuous) semimartingale. Using the Itô-formula for general
semimartingales (see [83, p. 78f]) onto f(t, Yt) = eλιtYt, we obtain

deλtYt = λeλιtYt−dt+ eλtdYt +
∑

0<s≤t

(
eλsYs − eλsYs− − eλs∆Ys

)
= λeλιtYt−dt− λιeλtYt−dt− σeλtdLt = −σeλtdLt.

By integration, we finally get

Yt = e−λιt
(
Y0 − σ

∫ t

0
eλιsdLιs

)
(2.28)

and hence, the above given representation of Dt.

Further interesting properties can be found in [5]. There is a closed form representa-
tion of the generator, see Example 6.7.6 in [5].
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2.2. Stablility

In this Section, we discuss an important class of Lévy processes that share many prop-
erties like self-similarity with the Brownian motion: stable processes. For a detailed
discussion see Samorodnitsky and Taqqu’s book Stable Non-Gaussian Random Pro-
cesses [86] or Chapter 3 in Sato [88]. Section 3.7 in [24] is rather comprehensive and
focussed on the most important properties.

There are several equivalent definitions of stability (see Chapter 1 in [86]). We call
a distribution of a random vector X stable if for any A,B > 0, there exists C > 0 and
D ∈ R such that

AX1 +BX2
d
= EX +D (2.29)

where X1 and X2 are independent copies of X and
d
= means equality in distribution. A

Lévy process is called stable if the distribution of L1 is stable, or alternatively, when
for every a > 0 there exist a b(a) > 0 and c(a) > 0 such that

E
(
eiuL1

)a
= E

(
eib(a)uL1

)
eic(a)u (2.30)

and strictly stable if

E
(
eiuL1

)a
= E

(
eib(a)uL1

)
. (2.31)

One can show that for every strictly stable process, there exists an α ∈ (0, 2] such that
b(a) = a1/α (see Corollary 2.1.3 from [86]); this α is called index of stability. Stable
processes with index α are also known as α-stable processes. For such processes there
is a c > 0 such that (

a−
1
αLat + tc

)
t≥0

d
= (Lt)t≥0 (2.32)

for all a > 0. If c = 0, the process is obviously self-similar. For our purposes, we
simplify Theorem 14.3 from [88], an important result about stable distributions (see
also Proposition 3.15 in [24]), to

Lemma 3. A non-trivial, infinitely divisible distribution with the characteristic triplet
(a, ν, γ) is α-stable with 0 < α < 2 if and only if γ = 0 and there exists a finite measure
λ such that

ν(B) =

∫ 1

0
λ(dξ)

∫ ∞
0

1B(rξ)
dr

r1+α
(2.33)

for B ∈ B(R). A distribution is α-stable with α = 2 if and only if it is Gaussian.

The function r−α−1 is obviously increasing in α for 0 < r < 1 and decreasing for
1 < r <∞. Hence, α-stable processes move mainly by big jumps as α is close to 0 and
mainly by small jumps if α is near 2. Rewriting Lemma 3, it follows that for an α-stable
Lévy process with a = 0 and 0 < α < 2 holds

ν(dx) = c1

1(0,∞)(x)

xα+1
dx+ c2

1(−∞,0)(x)

|x|α+1
dx (2.34)

where c1 ≥ 0, c2 ≥ 0 and c1 + c2 ≥ 0. We will use this notation throughout all further
chapters. The only 2-stable processes are Gaussian (Theorem 14.1 in [88]); as they don’t
have jumps, ν = 0. With some effort, it is possible to find a closed form representation
for the characteristic function. Theorem 14.15 from [88] gives us
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Theorem 4. If L is a non-trivial α-stable process with 0 < α < 2, the

E
(
eiuL1

)
=

{
exp

(
imu− |u|ασα

(
1− iβ sgn(u) tan

(
πα
2

)))
for α 6= 1,

exp
(
imu− |u|σ

(
1 + iβ 2

π sgn(u) log (|u|)
))

for α = 1
(2.35)

with σ > 0, −1 ≤ β ≤ 1 and m ∈ R. These constants are uniquely determined.
Conversely, for every σ > 0, −1 ≤ β ≤ 1 and m ∈ R there exists a non-trivial α-stable
process with 0 < α < 2 satisfying (2.35).

Hence, four parameters uniquely determine a stable process and one also finds the
term stable process with parameters (α, β,m, σ). This definition (from [88]), unfor-
tunately, is just one of many slightly different notations in the literature and one should
be very careful. If the parameter β is zero, the process is symmetric; if β = 1 the process
is on (0,∞) and if β = −1, the process is on (−∞, 0).

There are three important examples where a closed form of the density is known:

• (2, β,m, σ): the Gaussian process with L1 ∼ N(m,σ2),

• (1, 0,m, σ): the Cauchy process with density

fL1(x) =
σ

π((x−m)2 + σ2)
, (2.36)

• (1
2 , 1,m, σ): the process having Lévy distribution with density

fL1(x) =

√
σ

2π (x−m)3 exp

(
− σ

2(x−m)

)
(2.37)

for x > m.

However, there is a power series representation of the density. Among other examples
without a closed form density, we want to particularly mention the Meixner process;
an Ornstein-Uhlenbeck process driven by a Meixner process is studied intensively in [50].

In the last part of this section, we prove a theoretical result about stable processes,
we shall later need. In order to avoid confusion, we define a Lévy process with α-
stable jumps as a Lévy process such that its jump part (in the sense of the Lévy Itô
decomposition) is α-stable. From Lemma 1, we already know that linear transformations
of Lévy processes are again Lévy processes.

Lemma 4. Let L be a Lévy process with characteristic triplet (a, ν, γ) and α-stable
jumps. Let σ > 0. Then the process (σLt)t≥0 is also a Lévy process with characteristic
triplet (ă, ν̆, γ̆) where

ă = σa,

ν̆(dx) = σαν(dx),

γ̆ =

{
σ
(
γ − σα−1−1

α−1 (c2 − c1)
)

if α 6= 1,

σ (γ − log(σ)(c2 − c1)) if α = 1

and the jump part is α-stable.
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2. Preliminaries

Proof. The process (σLt)t≥0 is obviously a Lévy process. Making use of Theorem 1, we
determine the characteristic triplet. For α 6= 1, we examine∫

R\0

(
eiσux − 1− iσux1|x|≤1

)
ν(dx)

=

∫
R\0

(
eiuy − 1− iuy1|y|≤σ

)(c11y<0

yα+1
+
c21y>0

|y|α+1

)
σα+1dy

σ

=

∫
R\0

(
eiuy − 1− iuy1|y|≤σ

)
σαν(dy)

=

∫
R\0

(
eiuy − 1− iuy1|y|≤1

)
σαν(dy) + iu

σα − σ
α− 1

(c2 − c1).

The case α = 1 is similar. Hence, we obtain

E
(
eiu(σL1)

)
= E

(
ei(σu)L1

)
= exp

(
iγ(σu)− (σu)2a2

2
+

∫
R\0

(
ei(σu)x − 1− i(σu)x1|x|≤1

)
ν(dx)

)

= exp

(
iγ̆u− ă2u2

2
+

∫
R\0

(
eiuy − 1− iuy1|y|≤1

)
ν̆(dy)

)
.

Since we assumed σ > 0, the process is also α-stable.
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2.3. Change of Measure

Changing the measure is an important step in many parts of this work. Therefore, we
need the Girsanov theorem (see Theorem 39 in [83] or [68, p. 190ff] for a proof). In its
general version it can be formulated as following

Theorem 5 (Grisanov theorem for semimartingales). Let P and Q be equivalent mea-
sures. Let X be a semimartingale under P with the Doob-Meyer decomposition X =
M +A. Then X is also a semimartingale under Q and has a decomposition X = L+C,
where

Lt = Mt −
∫ t

0

1

Zs
d[Z,M ]s (2.38)

is a Q local martingale, and C = X − L is a Q finite variation process.

A very useful and important tool for verifying the martingale property is the Novikov
condition (see Theorem 45 in [83]). We have

Theorem 6 (Novikov condition). For a continuous local martingale satisfying

E
(

exp

(
1

2
[M,M ]∞

))
<∞, (2.39)

the stochastic exponential E(M) is a uniformly integrable martingale.

A special version of the Girsanov theorem (see Theorem 46 in [83]) is often used.
From Theorem 5 and Lévy’s theorem (see Theorem 39 in [83]) one can show

Theorem 7 (Girsanov theorem for Brownian motion). Let W be a Brownian motion
under P and H adapted, càglàd and bounded. Define B by

Bt =

∫ t

0
Hsds+Wt (2.40)

and define Q by
dQ
dP

= exp

(
−
∫ T

0
HsdWs −

∫ T

0
H2
sds

)
(2.41)

for some T > 0. Then B is Brownian motion under Q for 0 ≤ t ≤ T .

It is of importance to notice that there can be shown a version of Girsanov’s measure
change for Lévy processes, see Theorems 33.1 and 33.2 in [88] or Chapter 9.4 in [24]. [24]
gives the example for tempered α-stable processes, but for α-stable distributions our case
will violate the assumptions.
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2.4. Pseudo-Differential Operators

Apart from their application in the theory of partial differential equations, pseudo-
differential operators are closely related to infinitesimal generators of Lévy processes
(see Chapter 6.31 in [88]). Following the book of Wong [102], we summarise the theory
of pseudo-differential operators by giving some basic definitions and results and to in-
troduce the concept of weak and strong solutions. Details, proofs and examples can be
found in [102].

On the space Rn, we define the differential operator

Dj = − ∂

∂xj
(2.42)

for j ∈ {1, . . . , n}. Using a multi-index α ∈ Nn, the operator

P (x,D) =
∑
|α|≤m

aα(x)Dα (2.43)

is a linear partial differential operator of orderm ∈ N. Then, we can define the Schwartz
space or space of rapidly decreasing functions as

S =

{
ϕ ∈ C∞0 (Rn) : sup

x∈Rn

∣∣∣xαDβϕ(x)
∣∣∣ <∞ ∀α,β ∈ Nn

}
. (2.44)

In other words, this describes the set of all infinitely differentiable functions whose partial
derivatives all decrease faster than any power of x−α. The inclusion of S in C∞0 (Rn) is
proper, since e−x

2 ∈ S, but obviously not in C∞0 (Rn). Moreover, the Schwartz space S
is dense in Lp (Rn) for 1 ≤ p ≤ ∞ (see Theorem 3.9 in [102]). Further, we define a set

Sm = {ς(x, ξ) ∈ C∞0 (Rn × Rn) : ∀α,β ∈ Nn ∃Cα,β > 0 :∣∣∣Dα
xD

β
ξ ς(x, ξ)

∣∣∣ ≤ Cα,β (1− |ξ|)m−|β| ∀x, ξ ∈ Rn
}

(2.45)

for any m ∈ R. Let us consider function ς ∈ ∪m∈RSm. With

ϕ̂(ξ) = (2π)−
n
2

∫
Rn
ei〈x,ξ〉ϕ(x)dx (2.46)

we denote the Fourier transformed of ϕ ∈ S. Then, for a function ς : C × C → C, we
define an operator Tς as pseudo-differential operator, if

Tςϕ(x) = (2π)−
n
2

∫
Rn
ei〈x,ξ〉ς(x, ξ)ϕ̂(ξ)dξ (2.47)

for ϕ ∈ S holds. The function ς is called its symbol. Every linear partial differential
operator P (x,D) with aα(x) ∈ C∞ is also a pseudo-differential operator. By the prop-
erties of the Fourier transformation, one can represent (see Chapter 6 in [102]) a partial
differential operator as

P (x,D) =
∑
|α|≤m

aα(x)Dα = (2π)−
n
2

∫
Rn
ei〈x,ξ〉P (x, ξ)ϕ̂(ξ)dξ. (2.48)

Hence it is easy to show that P (x, ξ) =
∑
|α|≤m aα(x)ξα is in this case its symbol

and a polynomial in ξ. A pseudo-differential operator maps the Schwartz space into
itself. The composition of two pseudo-differential operators is again pseudo-differential
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2.4. Pseudo-Differential Operators

operator (see Chapter 8 in [102]). For any pair ϕ,ψ ∈ S we introduce an inner product
as

(ϕ,ψ) =

∫
Rn
ϕ(x)ψ(x)dx. (2.49)

It can be shown that there exists a formal adjoint operator T ∗ς : S → S, i.e.

(Tςϕ,ψ) =
(
ϕ, T ∗ς ψ

)
(2.50)

for every ϕ,ψ ∈ S. ref It is again a pseudo-differential operator. Further, Tς and its
symbol ς ∈ Sm are called elliptic if there exist C,R > 0 such that

|ς(x, ξ)| ≥ C (1− |ξ|)m (2.51)

for |ξ| ≥ R. In Chapter 10 of Wong [102], we find an approximation to the inverse of
elliptic operators. If there are C,R > 0, such that the inequality

Re ς(x, ξ) ≥ C(1 + |ξ|)m (2.52)

holds for all |ξ| ≥ R, then the operator Tς is said to be strongly elliptic. In order to
introduce the solution concepts for pseudo-differential equations, we have to repeat some
definitions and properties from functional analysis. For a linear operator T : X → Y , a
dense subspace of X is denoted as D (T ) and called the domain of T . An operator is said
to be closed if for any sequence (xk)k≥0 in D (T ) such that xk → x in X and Txk → y
in Y as k → ∞, we have x ∈ D (T ) and Tx = y. For two operators T1 and T2, with
domains D (T1) and D (T2) respectively, T2 is called extension of T1 if D (T1) ⊆ D (T2)
and T1x = T2x for all x ∈ D (T1). With Tς,0 we denote the smallest closed extension of
Tς called the minimal operator. We remark that the domain D (Tς,0) consists of all
functions u ∈ Lp (Rn) with 1 < p < ∞ for which a sequence (ϕk)k≥0 in S exists such
that ϕk → u in Lp (Rn) and Tςϕk → f in Lp (Rn) for some f ∈ Lp (Rn) as k →∞. Now
let u, f ∈ Lp (Rn). We say u ∈ D (Tς,1) and Tς,1u = f if and only if(

u, T ∗ς ϕ
)

= (f, ϕ) (2.53)

for ϕ ∈ S. One can show that Tς,1 is the largest closed extension of Tς and hence, called
the maximal operator. If the symbol ς ∈ Sm is elliptic, then Tς,0 = Tς,1. Let us
examine the pseudo-differential equation

Tςu = f (2.54)

where u, f ∈ Lp (Rn). Let us restrict to symbols ς ∈ Sm with m > 0. Then, the function
u is said to be a weak solution of Tςu = f on Rn if(

u, T ∗ς ϕ
)

= (f, ϕ) (2.55)

for every ϕ ∈ S. This is equivalent to the fact that u ∈ D (Tς,1) and Tς,1u = f . Now, we
characterise the functions f for which the pseudo-differential equation has a solution.

Lemma 5. The pseudo-differential equation Tςu = f on Rn has a weak solution u in
Lp (Rn) if and only if there exists C > 0 such that

|(f, ϕ)| ≤ C
∥∥T ∗ς ϕ∥∥p′ (2.56)

for every ϕ ∈ S, where p′ and p are conjugate.
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A function u ∈ Lp (Rn) that satisfies Tς,0u = f and u ∈ D (Tς,0) is called strong
solution of Tςu = f . Obviously, strong solutions are also weak solutions. If ς is elliptic,
then all weak solutions are also strong solutions. The following two important theorems
give conditions for the existence and uniqueness of strong solutions.

Theorem 8. Let ς ∈ Sm be a strongly elliptic symbol. Let I denote the identity operator.
Then there exists λ0 ∈ R such that for all f ∈ L2 (Rn) and λ ≥ λ0, the pseudo-differential
equation (Tς + λI)u = f on Rn has a unique strong solution in L2 (Rn).

Theorem 9 (Existence of a strong solution. Theorem 18.6 from [102]). Let ς ∈ Sm be
an elliptic symbol independent of x and ς(ξ) 6= 0 for all ξ ∈ Rn. Then for every function
f ∈ Lp (Rn) with 1 < p < ∞, the pseudo-differential equation Tςu = f on Rn has a
unique strong solution in in Lp (Rn).
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2.5. Viscosity Solutions for PIDE

The theory of viscosity solutions provide us with a definition concept for a solution
without imposing the existence of derivatives in advance. Introduced Crandall [30], it
has been generalised to partial integro differential equations (PIDE) under additional
assumptions (see [3, 24] or [25]). We only give the basic definitions and the notation in
a simplified version from chapter 12.2.4 from [24].

A locally bounded function u : R → R is called upper-semicontinuous if xk → x
implies

u(x) ≥ lim sup
k→∞

u(xk) = lim
k0→∞

sup
k≥k0

u(xk) (2.57)

and lower-semicontinuous if xk → x implies

u(x) ≤ lim inf
k→∞

u(xk) = lim
k0→∞

inf
k≥k0

u(xk) (2.58)

A function u is defined as continuous if it is upper- and lower-semicontinuous. The set
C+
p (R) is defined as the of measurable functions on R with polynomial growth of degree

p at positive infinity and bounded on R− such that

ϕ ∈ C+
p ([0, T ]× R⇔ ∃C > 0 : |ϕ(x)| ≤ C (1 + |x|p1x>0) . (2.59)

To simplify the notation, we restrict ourselves to partial integro differential operators
on C2(R) ∩ C+

p (R) of the form

Lu(x) = a1(x)u′′(x) + a2(x)u′(x) + a3(x)u(x) + f(x)

+

∫ ∞
−∞

u(x+ y)− u(x)− yu(x)

∂x
1|x|≤1ν(dy) (2.60)

where a1(x), a2(x), a3(x) are real valued functions. The polynomial growth condition
makes it well-defined (see [25]). Then, we are able to define viscosity solutions in a still
rather simple way (compare it with Definition 12.1 in [24]). A function u is a viscosity
subsolution of Lu = 0 if for any real x and any test function ϕ ∈ C2(R) ∩ C+

p (R) such
that u− ϕ has a global maximum point at x̂, the following holds

a1(x̂)ϕ′′(x̂) + a2(x̂)ϕ′(x̂) + a3(x̂)u(x̂) + f(x̂)

+

∫ ∞
−∞

ϕ(x̂+ y)− ϕ(x̂)− yϕ′(x̂)1|x̂|≤1ν(dy) ≤ 0. (2.61)

A function u is a viscosity supersolution of Lu = 0 if for any real x and any test function
ϕ ∈ C2(R) ∩ C+

p (R) such that u − ϕ has a global minimum point at x̂, the following
holds

a1(x̂)ϕ′′(x̂) + a2(x̂)ϕ′(x̂) + a3(x̂)u(x̂) + f(x̂)

+

∫ ∞
−∞

ϕ(x̂+ y)− ϕ(x̂)− yϕ′(x̂)1|x̂|≤1ν(dy) ≥ 0. (2.62)

A function is called a viscosity solution if it is a subsolution and a supersolution.
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3. A Square Root Diffusion Version of
Chen and Kohn’s Model

The question is how sensitive is the model of Chen and Kohn [21] to changes in the
setting. This Chapter will help us understanding the mechanisms behind the model
better. In the first step, we replace the Ornstein-Uhlenbeck by a square root diffusion
process

dDt = λi (µ−Dt) dt+ σ
√
DtdW

i
t (3.1)

to model the dividend rate. With the restriction 2λ2µ ≥ σ2 the square root diffu-
sion process stays almost surely positive. Let

(
W 1
t

)
t≥0

denote a Brownian motion on(
Ω,A, P 1

)
. By the Girsanov theorem (see Theorem 7), the process

(
W 2
t

)
t≥0

defined by

dW 2
t = dW 1

t +
(λ1 − λ2) (µ−Dt)

σ
√
Dt

dt (3.2)

is a Brownian motion on the probability space
(
Ω,A, P 2

)
, where P 2 and P 1 are equiv-

alent measures. Trading, intrinsic values and equilibria can be introduced exactly as in
in Chen and Kohn’s [21] model. Using the fact

eλi(s−t)Ds

τ(s− t)

∣∣∣∣∣Ft ∼ χ2(
4λiµ

σ2

)( Dt

τ(s− t)

)
(3.3)

with τ(x) = σ2

4λi

(
eλix − 1

)
for t < s we can determine the conditional expectation

EP
i
(Ds|Dt = x) =

τ(s− t)
eλi(s−t)

(
4λiµ

σ2
+

x

τ(s− t)

)
= e−λi(s−t)

(
µ
(
eλi(s−t) − 1

)
+ x
)
.

Thus, the intrinsic value can be written as

I(x) = I (x, t) =

{
x

r+λ1
+ µλ1

r(r+λ1) for x < µ,
x

r+λ2
+ µλ2

r(r+λ2) for x ≥ µ
(3.4)

which is remarkable, because it is the same as in the Ornstein-Uhlenbeck case. The
existence and time independence of the minimal equilibrium price is shown exactly as
in [21]. However, the equilibrium price is not the same. We need to examine another
differential equation which is due to the structure of the model still transformable into
a Kummer equation.

Lemma 6. The differential equation

σ2

2
xΦ′′(x) + λi (µ− x) Φ′(x)− rΦ(x) + x = 0 (3.5)

has a the general solution

Φ(x) = c1 M

(
r

λi
,
2λiµ

σ2
,
2λi
σ2

x

)
+ c2 U

(
r

λi
,
2λiµ

σ2
,
2λi
σ2

x

)
+

x

r + λi
+

µλi
r(r + λi)

(3.6)
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with real constants c1 and c2. The Kummer functions are defined (see [1]) as

M(a, b, x) =
∞∑
k=0

(a)k
(b)k k!

xk,

U(a, b, x) =
π

sin(πb)

(
M(a, b, x)

Γ(1 + a− b)Γ(b)
− x1−bM(1 + a− b, 2− b, x)

Γ(a)Γ(2− b)

)
,

for x ∈ R.

Proof. First, we transform the equation with

Φ(x) = Ψ(x) +
x

r + λi
+

µλi
r(r + λi)

(3.7)

into
σ2

2λi
xΨ′′(x) + (µ− x) Ψ′(x)− r

λi
Ψ(x) = 0. (3.8)

Setting

x̃ =
2λi
σ2

x, (3.9)

we get a confluent hypergeometric differential equation

x̃
d2

dx̃2
Ψ (x̃) +

(
2λiµ

σ2
− x̃
)
d

dx̃
Ψ(x̃)− r

λi
Ψ (x̃) = 0, (3.10)

which has the two given linearly independent solutions (see [1, p. 504ff]).

Lemma 7. The differential equation

max (λ1 (µ− x) , λ2 (µ− x)) Φ′(x) +
σ2

2
xΦ′′(x)− rΦ(x) + x = 0 (3.11)

has a continuously differentiable solution with Φ(x) = O(x) for x → ∞. This solution
can be written as

Φ(x) =

M
(
r
λ1
, 2λ1µ
σ2 , 2λ1

σ2 x
)
C1 + x

r+λ1
+ µλ1

r(r+λ1) for x < µ,

U
(
r
λ2
, 2λ2µ
σ2 , 2λ2

σ2 x
)
C2 + x

r+λ2
+ µλ2

r(r+λ2) for x ≥ µ.
(3.12)

The constants are

C1 =
ξ2λ1 (λ1 − λ2)µσ2

r (λ1 + r) (λ2 + r) (2ξ1ξ4λ1µ+ ξ2ξ3σ2)
,

C2 =
ξ1λ1 (λ1 − λ2)µσ2

r (λ1 + r) (λ2 + r) (2ξ1ξ4λ1µ+ ξ2ξ3σ2)

with

ξ1 = M

(
r

λ1
,
2λ1µ

σ2
,
2λ1µ

σ2

)
,

ξ2 = U

(
r

λ2
,
2λ2µ

σ2
,
2λ2µ

σ2

)
,

ξ3 = M

(
λ1 + r

λ1
,
2λ1µ+ σ2

σ2
,
2λ1µ

σ2

)
,

ξ4 = U

(
λ2 + r

λ2
,
2λ2µ+ σ2

σ2
,
2λ2µ

σ2

)
.
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Proof. From Lemma 6 we get the general solution

Φ(x) = c1 M

(
r

λ1
,
2λ1µ

σ2
,
2λ1

σ2
x

)
+ c2 U

(
r

λ1
,
2λ1µ

σ2
,
2λ1

σ2
x

)
+

x

r + λ1
+

µλ1

r(r + λ1)
(3.13)

for x < µ and

Φ(x) = c3 M

(
r

λ2
,
2λ2µ

σ2
,
2λ2

σ2
x

)
+ c4 U

(
r

λ2
,
2λ2µ

σ2
,
2λ2

σ2
x

)
+

x

r + λ2
+

µλ2

r(r + λ2)
(3.14)

for x ≥ µ. The solution has a singularity in x = 0, because the Kummer U is not defined
in this point. Under the condition 2λ2µ ≥ σ2, the inequality 2λ1µ

σ2 > 1 always holds.
Therefore, it can easily be seen from the definition of the Kummer functions, that the
limit

lim
x→0+

U

(
r

λ1
,
2λ1µ

σ2
,
2λ1

σ2
x

)
(3.15)

cannot exist. So we set the constant c2 = 0. We recall the asymptotic behaviour of the
Kummer functions (see [1, p. 504]) for x→∞,

M(a, b, x) =
Γ(b)

Γ(a)
exxa−b

(
1 +O

(
x−1

))
,

U(a, b, x) = x−a
(
1 +O

(
x−1

))
.

In order to get Φ(x) = O(x), the constant c3 obviously must be zero. As we want
continuous differentiability of Φ(x), we must choose the remaining constant such that
the function and its derivative are continuous in x = µ. Hence, we obtain a system of
linear equations in c1 and c4. Solving this system and renaming the constants we finally
end up with the statement of this lemma.

An analogous result to one of the main theorems of Chen and Kohn [21] can hence
be formulated as

Theorem 10. The function Φ (x) is an equilibrium price and the choice of the stopping
time τ = t is optimal.

Proof. Applying the Itô formula to f (Dt, t) = Φ (Dt) e
−rt results into

d
(
e−rtΦ (Dt)

)
= −re−rtΦ (Dt) dt+ e−rtΦ′ (Dt) dDt +

1

2
e−rtΦ′′ (Dt) (dDt)

2

= e−rt (−rΦ (Dt) dt

+Φ′ (Dt)
(
λi (µ−Dt) dt+ σ

√
DtdW

i
t

)
+

1

2
Φ′′ (Dt)σ

2Dtdt

)
= e−rt

((
λi (µ−Dt) Φ′ (Dt) +

σ2

2
DtΦ

′′ (Dt)− rΦ (Dt)

)
dt

+σ2
√
DtΦ

′ (Dt) dW
i
t

)
≤ e−rt (−Dt) dt+ σ2e−rt

√
DtΦ

′ (Dt) dW
i
t

for i = 1, 2. The inequality holds due to Lemma 7. Let τ ≥ t be a stopping time. Using

EP
i

(∫ τ

t
e−ruDuΦ′(u)dW i

u

∣∣∣∣Dt = x

)
= 0, (3.16)
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we obtain the inequality

EP
i (
e−rτΦ (Dτ )

∣∣Dt = x
)
≤ e−rtΦ (x) + EP

i

(∫ τ

t
e−ru (−Du) du

∣∣∣∣Dt = x

)
(3.17)

and by rearranging

EP
i

(∫ τ

t
e−ru (Du) du+ e−rτΦ (Dτ )

∣∣∣∣Dt = x

)
≤ e−rtΦ (x) . (3.18)

This inequality holds taking the maximum over i = 1, 2 and the supremum over the
stopping times and we receive

Φ (x) ≥ max
i=1,2

sup
τ≥t

EP
i

(∫ τ

t
e−r(u−t) (Du) du+ e−r(τ−t)Φ (Dτ )

∣∣∣∣Dt = x

)
. (3.19)

This holds with equality choosing τ = t because of

Φ (x) ≥ max
i=1,2

sup
τ≥t

EP
i

(∫ τ

t
e−r(u−t) (Du) du+ e−r(τ−t)Φ (Dτ )

∣∣∣∣Dt = x

)
≥ Φ (x) . (3.20)

Since Φ(x) = O(x), for the stopping time τ = N with N →∞ results

Φ (x) ≥ max
i=1,2

EP
i

(∫ ∞
t

e−r(u−t) (Du) du

∣∣∣∣Dt = x

)
= I (x) . (3.21)

Hence, Φ (x) ≥ I (x) and

Φ (x) = max
i=1,2

sup
τ≥t

EP
i

(∫ τ

t
e−r(u−t) (Du) du+ e−r(τ−t)Φ (Dτ )

∣∣∣∣Dt = x

)
(3.22)

hold. Therefore, Φ (x) is an equilibrium price and the choice τ = t is optimal.

With a link to the theory of viscosity solutions we now show that Φ (x) is in fact
the minimal equilibrium price. The ideas stay completely the same as in [21, 22], but
the proofs undergo some minor changes. Let P∗ (x) denote an iteratively constructed
minimal equilibrium price analogous to [21].

Lemma 8. Φ (x) ≤ P∗ (x) and limx→∞Φ (x)− P∗ (x) = 0 hold.

Proof. According to Theorem 10 the function Φ (x) is an equilibrium price the function
P∗ (x) is a minimal equilibrium price. Obviously follows Φ (x) ≤ P∗ (x). By construction
is P∗ (x) ≥ I (x). For x ≥ µ, we can write

Φ(x) = U

(
r

λ1
,
2λ1µ

σ2
,
2λ1

σ2
x

)
C2 + I(x). (3.23)

Apparently we obtain limx→∞Φ (x)− I (x) = 0.

0 ≤ lim
x→∞

Φ (x)− P∗ (x) ≤ lim
x→±∞

Φ (x)− I (x) = 0. (3.24)

As have shown Chen and Kohn [21], the minimal equilibrium price P∗ (x) is lower
semicontinuous following the same argumentation. In almost the same way, it can be
shown in a long technical proof with very small changes from [21] that
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Lemma 9. P∗ (x) is a viscosity supersolution of

−
(

max (λ1 (µ− x) , λ2 (µ− x))u′ (x) +
σ2

2
xu′′ (x)− ru (x) + x

)
= 0. (3.25)

Theorem 11. Φ (x) = P∗ (x) is the minimal equilibrium price.

Proof. We proceed almost analogously to the proof in the erratum by Kohn [22]. Due
to Theorem 10, the function Φ (x) is an equilibrium price. So, P∗ (x) ≤ Φ (x) clearly
holds and we just have to show P∗ (x) ≥ Φ (x). Consider infx∈R {P∗ (x)− Φ (x)}. The
minimum is zero for x → ∞ according to Lemma 8. Recall that Φ(x) is continuous
and P∗(x) lower semicontinuous. If x stays bounded, there exists a point x̂ where
P∗ (x)−Φ (x) takes its minimum. On the one hand Φ(x) fulfils the differential equation

max (λ1 (µ− x̂) , λ2 (µ− x̂)) Φ′ (x̂) +
σ2

2
x̂Φ′′ (x̂)− rΦ (x̂) + x̂ = 0 (3.26)

and on the other hand P∗(x) is according to Lemma 9 a viscosity supersolution which
leads to

−
(

max (λ1 (µ− x̂) , λ2 (µ− x̂)) Φ′ (x̂) +
σ2

2
x̂Φ′′ (x̂)− rP∗ (x̂) + x̂

)
≥ 0. (3.27)

Combining (3.26) and (3.27) we get

rP∗ (x̂)− rΦ (x̂) ≥ 0 (3.28)

and since r > 0 the desired result.

The last theorem allows us to calculate the minimal equilibrium price and thus also
the size of the asset bubble. The price bubble, defined as difference between minimal
equilibrium price and intrinsic value, can be written as

B(x) =

M
(
r
λ1
, 2λ1µ
σ2 , 2λ1

σ2 x
)
C1 for x < µ,

U
(
r
λ2
, 2λ2µ
σ2 , 2λ2

σ2 x
)
C2 for x ≥ µ

(3.29)

with the constants from Lemma 7. Concerning the properties, one can make very similar
observations to [21]. For λ1 − λ2 → 0 the constants C1 and C2 become zero and thus,
the bubble will disappear.

The key insight from this chapter is that modifications of the model assumptions will
have a big impact on the equilibrium price. The intrinsic value is more dependent on
the structure of the equation.
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4. A Regime Switching Equilibrium Model
for Asset Bubbles

4.1. Model Setting

In this chapter we present a regime switching equilibrium model for asset bubbles based
on [21]. We consider two investor groups ι = 1, 2 with heterogeneous beliefs. Let(

Ω,A, (Ft)t≥0 ,Pι
)

be a filtered probability space satisfying the usual hypothesis. We

assume that there is one asset which pays a dividend Dt at time t described by the
equation

dDt = λι(µ−Dt)dt+ σdW ι
t (4.1)

with the parameters µ ≥ 0, σ > 0 and λ2 > λ1 > 0. Let W 1 be a
(
FW ,P1

)
Brownian

motion. Then D is an Orstein-Uhlenbeck process for the first investor group. The inter-
est rate shall be piecewise constant and switch between different states. For example, it
could have just two states such as “good” or “bad” economic regime. Therefore, we pro-
ceed as in [41]. First, let X = (Xt)t≥0 be a continuous homogeneous

(
FX ,P1

)
Markov

chain in canonical representation on the state space of unit vectors {e1, . . . , eN} with
rate matrix A1. Note that A1ᵀ is the usual generator matrix and hence a Metzler matrix.
Let r = (r1, . . . , rn)ᵀ ∈ RN and 0 < r1 < . . . < rN < ∞. We assume that the group 1
uses the interest rate ρt = 〈r, Xt〉 at time t ≥ 0. Consider the filtration Ft = FW ∨ FX
where FW is the filtration generated by the Brownian motion and FX by the Markov
chain. The processes X and W 1 are supposed to be independent. Let A2 also be a rate
matrix of the same dimension as A1. First, we want to find a measure under which X is
an
(
FX ,P2

)
Markov chain and W 2 an

(
FW ,P2

)
Brownian motion. Therefore, we use a

similar idea as in [41]. Define the process ΛW by

dΛWt = exp

(
−
∫ t

0

λ1 − λ2

σ
(µ−Ds) dW

1
s −

1

2

∫ t

0

(
λ1 − λ2

σ
(µ−Ds)

)2

ds

)
. (4.2)

We show that this is a martingale by verifying the Novikov condition (see Theorem
6). Thereby, we remember that the Ornstein-Uhlenbeck process is normally distributed
with

Dt ∼ N
(
µ+ e−λ1t(D0 − µ),

σ2

2λ1

(
1− e−2λ1t

))
= N(mt, s

2
t ). (4.3)

Let c = 1
2e

(
λ2−λ1
σa

)2
and choose ε > 0 and δ such that 0 < δ ≤ 1 − εcs2

t for all t > 0.
Further, we define a sequence Tn = nε. Applying Jensen’s inequality and then Fubini’s
theorem results

EP1

(
exp

(
1

2

∫ Tn+ε

Tn

(
λ2 − λ1

σa

)2

D2
t

)
dt

)

≤ EP1

(
1

ε

∫ Tn+ε

Tn

exp

(
ε

2

(
λ2 − λ1

σa

)2

D2
t

)
dt

)
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≤ 1

ε

∫ Tn+ε

Tn

EP1
(

exp
(εc

2
D2
t

))
dt

=
1

ε

∫ Tn+ε

Tn

exp

(
εcm2

t

2− 2cεs2
t

)
1√

1− εcs2
t

dt

≤ 1

ε

∫ Tn+ε

Tn

exp

(
εcm2

t

2δ

)
1√
δ
dt ≤ 1

ε

∫ Tn+ε

Tn

k√
δ
dt =

k√
δ
<∞.

Hence, the Novikov condition holds (with Corollary 5.14 from [68, p. 199]) and ΛW

is a martingale. Now we consider the density process for the Markov chain. First,
we have to introduce the notation (see [33], [41]). We write A1 = (A1

ij)i,j=1,...,N and

a1 = (A1
11, A

1
22, . . . , A

1
NN )ᵀ. For any vector v we define with diag(v) the matrix which

has the vector v in its diagonal. Let I denote the N -dimensional unit matrix and 1 an
N -dimensional vector with 1 in each entry. Define the matrices A1

0 = A1 − diag(a1) and
B = (Bij)i,j=1,...,N where

Bij =


A2
ij

A1
ij

if A1
ij 6= 0,

0 otherwise.
(4.4)

The process N where

Nt =

∫ t

0
(I− diag (Xs−)) dXs (4.5)

counts in its i-th entry the number of times the process X jumps to ei in the interval
[0, t] from any other state. This notation allows us to write

Xt = X0 +

∫ t

0
(I−Xs−1

ᵀ) dNs. (4.6)

Now we can define a process ΛX by

ΛXt = 1 +

∫ t

0
ΛXs− (BXs− − 1)ᵀ

(
dNs − A1

0Xs−ds
)

(4.7)

and ΛX0 = 1. With the martingale representation of X (see [35]), we get

dNt = (I− diag (Xt−)) dXt

= (I− diag (Xt−)) A1Xtdt+ (I− diag (Xt−)) dM1
t

= A1
0Xtdt+ (I− diag (Xt−)) dM1

t .

Therefore, Nt−
∫ t

0 A
1
0Xsds is an

(
FXt ,P1

)
martingale. Thus, ΛX is a martingale. Finally,

we define a process Λ where Λt = ΛXt ΛWt . Due to

EP1
(Λt|Fs) = EP1

(
EP1 (

ΛWt
∣∣FWs )ΛXt

∣∣∣Fs)
= ΛWs EP1

(
EP1 (

ΛXt
∣∣FXs )∣∣∣Fs) = Λs,

the process Λ is an
(
Ft,P1

)
martingale. Let us now consider new measure P2 defined

by

dP2

dP1

∣∣∣∣
Ft

= Λt. (4.8)
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Applying the Itô formula to f
(
ΛXt
)

= log
(
ΛXt
)
, we get

log
(
ΛXt
)

=

∫ t

0

ΛXs−
ΛXs−

(BXs− − 1)ᵀ ΛXt +
∑

0<s≤t

(
log
(
ΛXs
)
− log

(
ΛXs−

)
−

∆ΛXs−
ΛXs−

)

=

∫ t

0
(BXs− − 1)ᵀ

(
dNs − A1

0Xsds
)

+
∑

0<s≤t
(1 + (BXs− − 1)ᵀ ∆Ns) .

Thus, we can write the density for the measure change as

Λt = exp

(
−
∫ t

0

λ1 − λ2

σ
(µ−Ds) dW

1
s −

1

2

∫ t

0

(
λ1 − λ2

σ
(µ−Ds)

)2

ds

−
∫ t

0
1ᵀ
(
A2

0 − A1
0

)
Xs−ds

) ∏
0<s≤t

(1 + (BXs− − 1)ᵀ ∆Ns) . (4.9)

By Girsanov’s theorem (see Theorem 7) the process W 2 defined by

dW 2
t = dW 1

t −
λ2 − λ1

σ
(µ−Dt) dt, (4.10)

is an
(
FWt ,P2

)
Brownian motion. Hence, D is an Ornstein-Uhlenbeck process for the

second investor group. A similar result holds also for the Markov chain after the measure
change.

Lemma 10. The process X is an
(
FXt ,P2

)
Markov chain with rate matrix A2.

Proof. (see Lemma 2.3 in [33]) We show that

M̄t = Nt −
∫ t

0
A2

0Xsds (4.11)

is an FXt martingale with respect to P2. Therefore, we have to show that ΛtM̄t is an
FXt martingale with respect to P1. Using the definition of the processes Λ and N we
obtain

ΛXt M̄t =

∫ t

0
ΛXs−dM̄s +

∫ t

0
M̄s−dΛXs +

[
ΛX , M̄

]
t

=

∫ t

0
ΛXs−dNs −

∫ t

0
ΛXs−A

2
0Xsds+

∫ t

0
M̄s−dΛXs

+
∑

0<s≤t
ΛXs− (B0Xs− − 1)ᵀ ∆Ns∆Ns

=

∫ t

0
ΛXs−dNs −

∫ t

0
ΛXs−A

2
0Xsds+

∫ t

0
M̄s−dΛXs

+

∫ t

0
ΛXs− diag (dNs) (B0Xs− − 1)

=

∫ t

0
ΛXs−dNs −

∫ t

0
ΛXs−A

2
0Xsds+

∫ t

0
M̄s−dΛXs

+

∫ t

0
ΛXs− diag

(
A1

0Xs

)
(B0Xs− − 1) ds

+

∫ t

0
ΛXs− diag

(
dNs − A1

0Xsds
)

(B0Xs− − 1) .
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Since for Xt = ei we have A1
ijXt(i) (bij − 1) =

(
A2
iiXs(i)−A1

iiXs(i)
)
, it is obvious that

A1
0Xt (B− 1) =

(
A2

0Xs − A1
0Xs

)
holds. Hence, we obtain

ΛXt M̄t =

∫ t

0
ΛXs−

(
dNs − A1

0Xsds
)

+

∫ t

0
M̄s−dΛXs

+

∫ t

0
ΛXs− diag

(
dNs − A1

0Xsds
)

(B0Xs− − 1) .

Obviously, ΛXt M̄t is an
(
FXt ,P1

)
martingale. Finally, using the definition of A2

0 we
receive

Xt = X0 +

∫ t

0
(I−Xs−1

ᵀ) dNs

= X0 +

∫ t

0
(I−Xs−1

ᵀ) A2
0Xsds+

∫ t

0
(I−Xs−1

ᵀ)
(
dNs − A2

0Xsds
)

= X0 +

∫ t

0
A2Xsds+M2

t

where M2
t is an

(
FXt ,P2

)
martingale.

We have seen that the investor groups can even disagree on the transition probabilities
of the Markov chain. Further, note that we are now discounting with a non-constant
interest rate. Therefore, we need the following lemma.

Lemma 11. Let s ≥ t. The expected discounted value of one monetary unit at time t
can be expressed as

EPι
(
e−
∫ s
t 〈r,Xu〉du

∣∣∣FXt ) =
〈
e(s−t)(Aι−diag (r))Xt, 1

〉
. (4.12)

Proof. The idea is taken from the proof of Theorem 4 in [91]. First, we recall ρt = 〈r, Xt〉.
We fix t > 0 and define a process

Γs = exp

(
−
∫ s

t
ρudu

)
Xs. (4.13)

Let us recall the semi-martingale-representation of X shown in [35]. It allows us the
decomposition

dXt = AιXtdt+ dM ι
t (4.14)

where M ι is a martingale under the measure Pι with respect to the filtration generated
by X. With this we obtain

dΓs = −ρsΓsds+ exp

(
−
∫ s

t
ρudu

)
(AιXsds+ dM ι

s) (4.15)

and therefore

Γs = Γt −
∫ s

t
ρvΓvdv +

∫ s

t
exp

(
−
∫ v

t
ρudu

)
(AιXvdv + dM ι

v) . (4.16)

Taking the expectation leads to

EPι (Γs∣∣FXt ) =

= Γt −
∫ s

t
ρvEPι (Γv∣∣FXt ) dv +

∫ s

t
EPι

(
exp

(∫ v

t
ρudu

)∣∣∣∣FXt ) AιXvdv

= Γt +

∫ s

t
(Aι − diag (r))EPι (Γv∣∣FXt ) dv.
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Fixing t ≥ 0, we can solve

EPι (Γs∣∣FXt ) = Γt +

∫ s

t
(Aι − diag (r))EPι (Γv∣∣FXt ) dv (4.17)

for EPι (Γs∣∣FXt ) and hence obtain

EPι (Γs∣∣FXt ) = exp ((s− t) (Aι − diag (r)))Xs. (4.18)

Finally, using the fact that

exp

(
−
∫ s

t
ρudu

)
= 〈Γs, 1〉 (4.19)

we receive

EPι
(

exp

(
−
∫ s

t
〈r, Xu〉 du

)∣∣∣∣FXt ) =
〈
EPι (Γs∣∣FXt ) , 1〉 . (4.20)

4.2. Intrinsic Value and Equilibrium Price

The intrinsic value at time t ≥ 0 is defined as the maximal price, an investor is willing
to pay for all expected discounted future dividends, i.e.

I(x, y) = max
ι=1,2

EPι
(∫ ∞

t
e−
∫ s
t 〈r,Xu〉duDsds

∣∣∣∣Dt = y,Xt = x

)
(4.21)

given the current state of the economy x ∈ {e1, . . . , eN}.

Lemma 12. The intrinsic value can be written as

I(x, y) = max
ι=1,2

xᵀIι(y) (4.22)

where Kι = Aι − diag(r) and

Iι(y) =
(

(λιI− Kι)−1 y − (Kι)−1 (λιI− Kι)−1 µλι

)ᵀ
1. (4.23)

Proof. Since the distribution of an Ornstein-Uhlenbeck process is well-known, we receive

I(x, y) = max
ι=1,2

∫ ∞
t

EPι
(
e−
∫ s
t 〈r,Xu〉duDs

∣∣∣Dt = y,Xt = x
)
ds

= max
ι=1,2

∫ ∞
t

EPι
(
EPι

(
e−
∫ s
t 〈r,Xu〉du

∣∣∣Xt = x
)
Ds

∣∣∣Dt = y,Xt = x
)
ds

= max
ι=1,2

∫ ∞
t

EPι
(
e−
∫ s
t 〈r,Xu〉du

∣∣∣Xt = x
)
EPι (Ds|Dt = y) ds

= max
ι=1,2

∫ ∞
t

EPι
(
e−
∫ s
t 〈r,Xu〉du

∣∣∣Xt = x
)(

µ+ e−λι(s−t)(y − µ)
)
ds

using the independence of X and D. With Lemma 11 we obtain

I(x, y) = max
ι=1,2

∫ ∞
t

〈
e(s−t)(Aι−diag (r))x

(
µ+ e−λι(s−t)(y − µ)

)
, 1
〉
ds. (4.24)
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This integral can be computed explicitly. Let L be a non-singular N × N matrix and
c ≥ t. First, we compute∫ c

t
e(s−t)Lds =

∫ c

t

∞∑
k=0

1

k!
(s− t)k Lkds =

∞∑
k=0

1

(k + 1)!
(s− t)k+1 Lk

∣∣∣∣∣
c

s=t

= L−1

(
−I +

∞∑
k=0

1

k!
(c− t)k Lk

)
= −L−1 + L−1e(c−t)L.

Now we show that for L = Kι and for L = Kι − λιI, the integral converges for c → ∞.
There are several methods to compute a matrix exponential [79]. We take a look at the
complex Jordan decomposition of the matrix L = TJT−1. Note, that the case where this
matrix is diagonalisable, can be interpreted a Jordan decomposition with block size one.
We can always write ecL = TecJT−1. Since Aι is a generator matrix,

N∑
i=1
i6=j

∣∣Kι
ij

∣∣ =
N∑
i=1
i6=j

Aιij = −Aιii (4.25)

holds. Due to the Geršgorin theorem, this is the radius of a Geršgorin cycle around Aιii−
ri and hence the matrix Kι has only eigenvalues with negative real part. Analogously,
it can be shown that the eigenvalues of Kι − λιI have all negative real part. So the
inverse of Kι and Kι − λιI exist. The matrix exponential of a Jordan normal form can
be computed explicitly [79]. Therefore, we observe that

lim
c→∞

ecL = T lim
c→∞

ecJT−1 = T0N,NT
−1 = 0N,N , (4.26)

where 0N,N is an N ×N zero matrix. Putting everything together, we receive

I(x, y) = max
ι=1,2

((
µ (−Kι)−1 + (y − µ) (λιI− Kι)−1

)
x
)ᵀ

1. (4.27)

Using

(−Kι)−1 = (λιI− Kι)−1 (λιI− Kι) (−Kι)−1 µ

= (λιI− Kι)−1 (−Kι)−1 λιµ+ (λιI− Kι)−1 µ

we get the desired representation.

We restrict the model to liquid markets without short selling and transaction costs.
An equilibrium price is defined as a continuous function satisfying

P (x, y) = max
ι=1,2

sup
τ≥t

EPι
(∫ τ

t
e−
∫ s
t 〈r,Xu〉duDsds

+ e−
∫ τ
t 〈r,Xu〉duP (Xτ , Dτ )

∣∣∣Xt = x, Dt = y
)

(4.28)

and
P (x, y) ≥ I(x, y) (4.29)

where the supremum is taken over all stopping times (see [21]). Additionally, we assume
|P (D∞, y)| < ∞. We assume that market participants trade only at equilibrium and
maximise their expected wealth. The next result gives us a method to construct the
minimal equilibrium price.
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4.2. Intrinsic Value and Equilibrium Price

Theorem 12. Define P0 (x, y) = I (x, y) and

Pk (x, y) =

max
ι=1,2

sup
τ≥t

EPι
(∫ τ

t

e−
∫ s
t
〈r,Xu〉duDsds+ e−

∫ τ
t
〈r,Xu〉duPk−1 (Xτ , Dτ )

∣∣∣∣Xt = x, Dt = y

)
(4.30)

for k ≥ 1. Then Pk (x, y) is monotonously increasing in k and

P∗ (x, y) = lim
k→∞

Pk (x, y) (4.31)

is an equilibrium price and minimal.

Proof. The proof in the regime switching case is almost completely analogous to the
original model (see [21]). Choosing the stopping time τ = t gives us

Pk(x, y) ≥ max
ι=1,2

EPι (Pk−1 (Xt, Dt)|Xt = x, Dt = y) ≥ Pk−1 (x, y) . (4.32)

Therefore the series (Pk(x, y))k≥0 is monotonously increasing. By the monotone con-
vergence theorem, P∗ (x) is an equilibrium price.The minimality is shown by induction.
Let P (x, y) be an equilibrium price. By definition, P (x, y) ≥ I (x, y) holds. Supposing
P (x, y) ≥ Pk−1 (x, y), we obtain

P (x, y) =

max
ι=1,2

sup
τ≥t

EPι
(∫ τ

t
e−
∫ s
t ρuduDsds+ e−

∫ τ
t ρuduP (Xτ , Dτ )

∣∣∣∣Xt = x, Dt = y

)
≥ max

ι=1,2
sup
τ≥t

EPι
(∫ τ

t
e−
∫ s
t ρuduDsds+ e−

∫ τ
t ρuduPk−1 (Xτ , Dτ )

∣∣∣∣Xt = x, Dt = y

)
= Pk (x, y) .

writing ρu = 〈r, Xu〉. Taking the limit follows P (x, y) ≥ limk→∞ Pk (x, y) = P∗ (x, y).
Thus, P∗ (x, y) is a minimal equilibrium price.

We have seen that the minimal equilibrium price depends on the initial state of the
Markov chain and via the construction also on the generator matrix. The following
result describes a fundamental property of equilibrium prices.

Theorem 13. Let P be an equilibrium price. For every j ∈ {1, . . . , N} we define
pj(y) = P (rj , y). Then pj(y) satisfies the system of differential inequalities

λι (µ− y) p′j (y) +
σ2

2
p′′j (y)− rjpj (y) +

N∑
k=1

(pk (y)− pj (y))Aιkj + y ≤ 0 (4.33)

and pj(y) ≥ I(ej , y) for all j = 1, . . . , N and for ι = 1, 2.

Proof. First we apply the Itô formula with jumps onto

f (Xs, Ds, s) := e−
∫ s
t 〈r,Xu〉duP (Xs, Ds) . (4.34)

Since X is a Markov chain, we receive

f (Xτ , Dτ , τ) = f (Xt, Dt, t) +

∫ τ

t
fy (Xs−, Ds, s) dDs

+

∫ τ

t
ft (Xs−, Ds, s) ds+

1

2

∫ τ

t
fyy (Xs−, Ds, s) d [D,D]cs

+
∑
t<s≤τ

(f (Xs, Ds, s)− f (Xs−, Ds, s))
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= P (Xt, Dt) +

∫ τ

t
e−
∫ s−
t 〈r,Xu〉duPy (Xs−, Ds) dW

ι
s

+

∫ τ

t
e−
∫ s−
t 〈r,Xu〉du (λι (µ−Ds)Py (Xs−, Ds)

+
σ2

2
Pyy (Xs−, Ds)− 〈r, Xs−〉P (Xs−, Ds)

)
ds

+
∑
t<s≤τ

(
e−
∫ s
t 〈r,Xu〉duP (Xs, Ds)− e−

∫ s
t 〈r,Xu〉duP (Xs−, Ds)

)
.

Putting this into the definition of P we receive

P (x, y) = max
ι=1,2

sup
τ≥t

EPι
(
P (Xt, Dt) +

∫ τ

t
e−
∫ s−
t 〈r,Xu〉duPy (Xs−, Ds) dW

ι
s

+

∫ τ

t
e−
∫ s−
t 〈r,Xu〉du (Dt + λι (µ−Ds)Py (Xs−, Ds)

+
σ2

2
Pyy (Xs−, Ds)− 〈r, Xs−〉P (Xs−, Ds)

)
ds

+
∑
t<s≤τ

e−
∫ s
t 〈r,Xu〉du (P (Xs, Ds)− P (Xs−, Ds))

∣∣∣∣∣∣Dt = y,Xt = x

 .

According to Lemma 11.2.3 from [14], the compensator of the jump part∑
t<s≤τ

e−
∫ s
t 〈r,Xu〉du (P (Xs, Ds)− P (Xs−, Ds))

is ∫ τ

t

N∑
k=1

(P (ek, Ds)− P (Xs−, Ds)) e
ᵀ
kA
ιXs−1(Xs− 6=ek)ds.

Note that if Xs− is in state ej , the expression e
ᵀ
kA
ιXs− represents Aιkj . By taking the

expectation, all terms integrated with respect to martingales are zero. Hence, we obtain

0 = max
ι=1,2

sup
τ≥t

EPι
(∫ τ

t
e−
∫ s−
t 〈r,Xu〉du (y + λι (µ−Ds)Py (Xs−, Ds)

+
σ2

2
Pyy (Xs−, Ds)− 〈r, Xs−〉P (Xs−, Ds)

)
+

N∑
k=1

(P (ek, Ds)− P (Xs−, Ds)) e
ᵀ
kA
ιXs−ds

∣∣∣∣∣Dt = y,Xt = x

)
.

The expression above can only be zero when the integrand is non-positive. Hence, we
get

λι (µ− y)Py (x, y) +
σ2

2
Pyy (x, y)− 〈r, x〉P (x, y)

+
N∑
k=1

(P (ek, y)− P (x, y)) eᵀkA
ιx + y ≤ 0. (4.35)

Rewriting this and using P (x, y) ≥ I(x, y), we have proven the theorem.
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Theorem 13 gives an idea how a minimal equilibrium price could look like. A function
that satisfies the inequality with equality is still an equilibrium price. First we shall
solve it and as a second step we identify a solution with a certain growth condition as
minimal equilibrium price. Since (4.33) resembles a Weber equation, we use the power
series method to find the solution. A similar approach has been studied for general
hypergeometric matrix equations in [65, 67]. Appendix A provides the definitions and
basic properties of some special matrix functions.

Lemma 13. Consider the vector Φ(y) := (Φ1(y), . . . ,ΦN (y))ᵀ and define Kι = Aι −
diag(r). Let 0 be a vector of N zeros. Then the system of differential equations

σ2

2
Φ′′(y) + λι (µ− y) Φ′(y) + (Kι)ᵀ Φ(y) + y1 = 0 (4.36)

has a solution

Φι(y) = F (Kι)ᵀ

λι

(√
2λι
σ

(y − µ)

)
kι0 + F (Kι)ᵀ

λι

(√
2λι
σ

(µ− y)

)
kι1

+
(

(λιI− (Kι)ᵀ)−1 y − ((Kι)ᵀ)−1 (λιI− (Kι)ᵀ)−1 µλι

)
1. (4.37)

Proof. Analogously to the proof of Lemma 16, we can show using the Geršgorin theorem
that the inverse of (Kι)ᵀ and λιI + (Kι)ᵀ exist. Now we define

φ(y) := Φ(y)− (λιI− (Kι)ᵀ)−1 y1 + ((Kι)ᵀ)−1 (λιI− (Kι)ᵀ)−1 µλι1. (4.38)

Hence, the equation above turns into

σ2

2
φ′′(y) + λι (µ− y)φ′(y) + (Kι)ᵀ φ(y) = 0. (4.39)

Let us now substitute ỹ =
√

2λι
σ (y − µ) and ψ(ỹ) = φ(y). Thus, we receive

ψ′′(ỹ) + ỹψ′(ỹ) +
1

λι
(Kι)ᵀ ψ(ỹ) = 0. (4.40)

Now we construct a series representation of a solution. Hence, we assume the solution
is of the form

ψ(ỹ) =

∞∑
k=0

ckỹ
k (4.41)

with vectors ck ∈ RN for k ∈ N. Putting this in the equation, we obtain

∞∑
k=2

k(k − 1)ckỹ
k−2 −

∞∑
k=1

kckỹ
k +

∞∑
k=0

1

λι
(Kι)ᵀ ckỹ

k = 0 (4.42)

and after rearranging

∞∑
k=0

(
(k + 2)(k + 1)ck+2 −

(
kI− 1

λι
(Kι)ᵀ

)
ck

)
ỹk = 0. (4.43)

If the series is a solution, then all coefficients must be zero, so we have

(k + 2)(k + 1)ck+2 −
(
kI− 1

λι
(Kι)ᵀ

)
ck = 0 (4.44)
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4. A Regime Switching Equilibrium Model for Asset Bubbles

for all k ≥ 0. Therefore, we must solve the recurrence relation

ck+2 =
1

(k + 2)(k + 1)

(
kI− 1

λι
(Kι)ᵀ

)
ck (4.45)

separately for even and odd k. First we show

c2k =
1

(2k)!

k−1∏
j=0

(
2jI− 1

λι
(Kι)ᵀ

)
c0 (4.46)

by induction. Obviously, this is true for k = 1. Let us now assume this holds for ck. So
we get

c2(k+1) =
1

(2k + 2)(2k + 1)

(
2kI− 1

λι
(Kι)ᵀ

)
1

(2k)!

k−1∏
j=0

(
2jI− 1

λι
(Kι)ᵀ

)
c0

=
1

(2(k + 1))!

k∏
j=0

(
2jI− 1

λι
(Kι)ᵀ

)
c0.

Analogously, we can show

c2k+1 =
1

(2k + 1)!

k−1∏
j=0

(
(2j + 1)I− 1

λι
(Kι)ᵀ

)
c1. (4.47)

Hence, we obtain

ψ(y) = c0 +
∞∑
k=1

1

(2k)!

k−1∏
j=0

(
2jI− 1

λι
(Kι)ᵀ

)
ỹ2kc0

+ ỹc1 +
∞∑
k=1

1

(2k + 1)!

k−1∏
j=0

(
(2j + 1)I− 1

λι
(Kι)ᵀ

)
ỹ2k+1c1.

Inductively, the relationship

(2k)! = 22k

(
1

2

)
k

k!,

(2k + 1)! = 22k

(
3

2

)
k

k!

can be easily shown. Moreover,

k−1∏
j=0

(
2jI− 1

λι
(Kι)ᵀ

)
= 22k

(
− 1

2λι
(Kι)ᵀ

)
k

,

k−1∏
j=0

(
(2j + 1)I− 1

λι
(Kι)ᵀ

)
= 22k

(
1

2
I− 1

2λι
(Kι)ᵀ

)
k

obviously holds, where we use the notation of a matrix Pochhammer symbol introduced
in Appendix A. Putting everything together, we can write

ψ(y) = 1F1

(
−(Kι)ᵀ

2λι
;
1

2
I;
ỹ2

2

)
c0 + |ỹ|1F1

(
1

2

(
I− (Kι)ᵀ

λι

)
;
3

2
I;
ỹ2

2

)
c1. (4.48)

Analogously to the case without regime switching, we will not choose this solution.
Putting ψ(−ỹ) into (4.40), we can observe that it also solves the equation. With the
proper choice of the constants, we rewrite the solution as linear combination of two
second Kummer functions (see Appendix A for the definitions). After resubstituting we
finally receive the desired representation.
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4.3. The Equilibrium Price as Solution of a Differential Equation

4.3. The Equilibrium Price as Solution of a Differential
Equation

In the next step, our aim is to show that a continuous differentiable solution of

max
ι∈{1,2}

σ2

2
Φ′′(y) + λι (µ− y) Φ′(y) + (Kι)ᵀ Φ(y) + y1 = 0 (4.49)

with linear growth at infinity is a minimal equilibrium price. For simplicity, we assume
that both investor groups agree on the same rate matrix for the regime switching,
although the comparison result from viscosity solution theory holds in general. The
following theorem characterises such a solution of (4.49). Since A1 = A2, it follows
K1 = K2. In order to shorten the notation, we write from now on

Iι(y) =
(

(λιI− K)−1 y − K−1 (λιI− K)−1 µλι

)ᵀ
1

Ĩι(y) =
(

(λιI− Kᵀ)−1 y − (Kᵀ)−1 (λιI− Kᵀ)−1 µλι

)
1.

Obviously, without regime switching Iι(y) and Ĩι(y) are identical.

Theorem 14. If A1 = A2, then the differential equation

σ2

2
Φ′′(y) + max

ι∈{1,2}
λι (µ− y) Φ′(y) + KᵀΦ(y) + y1 = 0 (4.50)

has a unique continuous differentiable solution Φ(y) with at most linear growth at infin-
ity. It can be determined explicitly as

Φ(y) =

F Kᵀ
λ2

(√
2λ2
σ (µ− y

)
k2 + Ĩ2(y) for y ≤ µ,

F Kᵀ
λ1

(√
2λ1
σ (y − µ

)
k1 + Ĩ1(y) for y ≥ µ,

(4.51)

with the constants

k1 = (F1)−1 (C1 + F2k2) ,

k2 =
(
F3 (F1)−1 F2 − F4

)−1 (
C2 − F3 (F1)−1 C1

)
where

F1 = Γ

(
1

2

)
Γ

(
1

2

(
I− (K)ᵀ

λ1

))−1

,

F2 = Γ

(
1

2

)
Γ

(
1

2

(
I− (K)ᵀ

λ2

))−1

,

F3 = Γ

(
−1

2

) √
λ1

σ
Γ

(
−(K)ᵀ

2λ1

)−1

,

F4 = −Γ

(
−1

2

) √
λ2

σ
Γ

(
−(K)ᵀ

2λ2

)−1

,

C1 = Ĩ2(µ)− Ĩ1(µ),

C2 =
(

(λ2I− Kᵀ)−1 − (λ1I− Kᵀ)−1
)
1.
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Proof. Combining the simplification A1 = A2 with the fact λ2 > λ1 and Theorem 13, we
are able to write the solution of (4.50) as

Φ(y) =

F Kᵀ
λ2

(√
2λ2
σ (y − µ)

)
k2

1 + F Kᵀ
λ2

(√
2λ2
σ (µ− y)

)
k2

2 + Ĩ2(y) for y ≤ µ,

F Kᵀ
λ1

(√
2λ1
σ (y − µ)

)
k1

1 + F Kᵀ
λ1

(√
2λ1
σ (µ− y)

)
k1

2 + Ĩ1(y) for y > µ.
(4.52)

Due to Appendix A, we know that

lim
y→∞

F Kᵀ
λι

(√
2λι
σ

(y − µ)

)
= 0 (4.53)

and

lim
y→−∞

F Kᵀ
λι

(√
2λι
σ

(µ− y)

)
= 0 (4.54)

for ι ∈ {1, 2}. On the other hand,

lim
y→−∞

F Kᵀ
λι

(√
2λι
σ

(y − µ)

)
and lim

y→∞
F Kᵀ
λι

(√
2λι
σ

(µ− y)

)
(4.55)

do not converge. Therefore, we set k2
1 = k1

2 = 0 and rename k1
1 = k1 and k2

2 = k2. As we
want the solution and its derivative to be continuous at y = µ, we take the limit from
both sides and solve

F Kᵀ
λ1

(0) k1 − F Kᵀ
λ2

(0) k2 = Ĩ2(µ)− Ĩ1(µ),

F′Kᵀ
λ1

(0) k1 − F′Kᵀ
λ2

(0) k2 =
(

(λ2I− K)−1 − (λ1I− K)−1
)
1

to determine the coefficients k1 and k2 uniquely. Note that one can easily show that all
matrices we need to invert are non-singular.

Now we will show that Φ(y) from Theorem 14 is a minimal equilibrium price. There-
fore, we proceed state-wise analogously to [21, 22]. Our problem resembles a stochastic
control problem. The idea of a so called verification argument is a common method in
literature (see e.g. [98]). One takes a solution of a differential equation and shows that
under some conditions this coincides with a solution of an optimisation problem. First,
we will prove that P∗ = (P∗ (e1, y) , . . . , P∗ (e1, y)) defined in Theorem 12 is a viscosity
supersolution.

Lemma 14. P∗ is lower semicontinuous in every entry.

Proof. Let (yk)k≥0 be a sequence converging to y. We define a stopping time

τk = inf {s ≥ t : Ds = y,Dt = yk} . (4.56)

Obviously, limk→∞ τk = t. Since P∗ (ej , y) is an equilibrium price, for ι = 1, 2 holds

lim inf
k→∞

P∗ (ej , yk) ≥ lim inf
k→∞

EPι
(∫ τk

t
e−
∫ s
t 〈r,Xu〉duDsds

∣∣∣∣Xt = ej , Dt = yk

)
+ lim inf

k→∞
EPι

(
e−
∫ τk
t 〈r,Xu〉duP∗ (Xτk , y)

∣∣∣Xt = ej , Dt = yk

)
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By the dominated convergence theorem, the first expectation is zero. Using the in-
dependence of X and D and applying again the dominated convergence theorem, we
obtain

lim inf
k→∞

P∗ (ej , yk) ≥

= EPι
(

lim inf
k→∞

e−
∫ τk
t 〈r,Xu〉du

N∑
l=1

P∗ (el, y) 1Xτk=el

∣∣∣∣∣Xt = ej , Dt = yk

)

= EPι
(

lim inf
k→∞

N∑
l=1

P∗ (ej , y) 1Xτk=el

∣∣∣∣∣Xt = ej , Dt = yk

)

=
N∑
l=1

P∗ (ej , y) lim inf
k→∞

Pι (Xτk = el|Xt = ej) = P∗ (ej , y) .

With the help of the last result, we can show the following lemma.

Lemma 15. P∗ is a viscosity supersolution.

Proof. Suppose P∗ is a not viscosity supersolution. Then there exists a vector ψ(y) =
(ψ1(y), . . . , ψN (y)) ∈ C2(RN ) and local maximum point ŷ of ψ(y)− P∗(y) that satisfies
ψ(ŷ) = P∗(ŷ) and

− max
ι∈{1,2}

(
λι (µ− ŷ)ψ′j(ŷ) +

σ2

2
ψ′′j (ŷ) +

(
Aιjj − rj

)
P∗ (ej , ŷ) + ŷ + f ιj (ŷ)

)
≤ −δ (4.57)

for every component j = 1, . . . , N where

f ιj(y) =
∑
k 6=j

P∗ (ek, y)Aιkj (4.58)

and δ > 0. Now we show that this leads to a contradiction. For ε > 0 let us choose an
interval [ŷ − ε, ŷ + ε] on which ψj(y)− P∗ (ej , y) ≤ 0 and

max
ι∈{1,2}

λι (µ− y)ψ′j(y) +
σ2

2
ψ′′j (y) +

(
Aιjj − rj

)
P∗ (ej , y) + f ιj(y) ≥ δ (4.59)

for j = 1, . . . , N hold. Let Xt be in state j0. We define a stopping time

τ = inf {s ≥ t : Ds = ŷ − ε ∨ Ds = ŷ + ε,Dt = ŷ, Xt = ej0} . (4.60)

Obviously, we can see that P (τ > 0) = 1. Let X be the state in which j1 when we stop,
i.e. Xτ = ej1 . Proceeding analogously as in the proof of Theorem 13, we apply the Itô
formula onto

e−
∫ s
t 〈r,Xu〉du

N∑
j=1

ψj(Ds)1Xt=ej , (4.61)

integrate and omit the terms integrated with respect to martingales. Hence, we receive

EPι
(
e−
∫ τ
t 〈r,Xu〉duψj1(Dτ )ds

∣∣∣Dt = ŷ, Xt = ej0

)
= ψj0(ŷ) + EPι

(∫ τ

t
e−
∫ s−
t 〈r,Xu〉du

(
λι (µ−Ds)ψ

′
j0(Ds) +

σ2

2
ψ′′j0(Ds)

+
(
Aιj0j0 − rj0

)
ψj0(Ds) + f ιj0(Ds)

)
ds
∣∣Dt = ŷ, Xt = ej0

)
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forbothinvestorgroups.SinceAι
j0j0

−rj0 ≤0andψj0(y)≤P∗(ej0,y),weget

max
ι∈{1,2}

EPι

e− τ
t

r,Xu duψj1
(Dτ)Dt=̂y,Xt=ej0 ≥ψj0(̂y)

+ max
ι∈{1,2}

EPι
τ

t

e− s
t

r,Xu du λι(µ−Ds)ψj0
(Ds)+

σ2

2
ψj0

(Ds)

+ Aι
j0j0

−rj0 P∗(ej0,Ds)+fι
j0

(Ds)dsDt=̂y,Xt=ej0

≥ψj0(̂y)+ max
ι∈{1,2}

EPι
τ

t

e− s
t

r,Xu duδdsDt=̂y,Xt=ej0 .

DuetoLemma11weobtain

max
ι∈{1,2}

EPι
e− τ

t r,Xu duψj1(Dτ)Dt=̂y,Xt=ej ≥ψj0(̂y)+δmax
ι∈{1,2}

cι (4.62)

where

cι= max
ι∈{1,2}

τ

t
e(s−t)(Aι−diag(r))ej0 µ+e−λι(s−t)(̂y−µ) ,1 ds>0. (4.63)

Wealsoknowthat P∗(y)isanequilibriumpriceandtherefore

p∗
j0

(̂y)≥

max
ι∈{1,2}

EPι
τ

t
e− s

t r,Xu duDsds+e− τ
t r,Xu duP∗(ej1,y)Xt=ej,Dt=̂y . (4.64)

Combining(4.62)and(4.64)withP∗(ej1,y)−ψj1(y)≥0,weobtain

0=P∗(ej0,̂y)−ψj0(̂y)

≥ max
ι∈{1,2}

EPι
e− τ

t r,Xu du(P∗(ej1,Dτ)−ψj1(Dτ))dsDt=̂y,Xt=ej +δcι

≥ max
ι∈{1,2}

δcι>0,

whichisthedesiredcontradiction. Since P∗(ej,y)isalsolowersemicontinuousby
Lemma14,itisaviscositysupersolution.

Finally,thefollowingtheoremgivesusaseriesrepresentationofthe minimalequilib-
riumprice.Intheproofweneedtheatmostlineargrowthofanequilibriumprice.This
isalwaysguaranteedwhenbothinvestorsagreeontheratematrixfortheregimeswitch-
ingbyTheorem14whereweevengetanexplicitsolutionoftheassociateddifferential
equationfortheequilibriumprice.

Theorem15. Theuniquesolutionofsystemofthedifferentialequationswithlinear
growthatinfinityisthe minimalequilibriumprice,i.e.Φ(y)=P∗(y).

Proof. SinceP∗(y)isthe minimalequilibriumpriceandΦ(y)isanequilibriumprice,
P∗(y)≤Φ(y)obviouslyholds.Proceedingstatewiseanalogouslyto[22],wedistinguish
intotwocases.Let

inf
y∈R

(P∗(y)−Φ(y)) (4.65)

beunbounded. DuetoΦ(y)−P∗(y)≤Φ(y)−I(y),weseethat

lim
|y|→∞

(P∗(y)−Φ(y))=0. (4.66)
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In the other case, when
inf
y∈R

(P∗(y)− Φ(y)) (4.67)

is bounded, there exists ŷ ∈ R, where the minimum is achieved. Since P∗(y) is a viscosity
supersolution due to Lemma 15,

− max
ι∈{1,2}

(
λι (µ− ŷ) Φ′j(ŷ) +

σ2

2
Φ′′j (ŷ) +Kι

jjP∗ (ej , ŷ) + ŷ + f ιj(ŷ)

)
≥ 0 (4.68)

for every component j = 1, . . . , N where

f ιj(y) =
∑
k 6=j

P∗ (ek, y)Aιkj . (4.69)

On the other hand Φ(y) is also a solution of the differential equation (4.49). Hence, we
get

− max
ι∈{1,2}

(
Kι
jjP∗ (ej , ŷ)−Kι

jjΦj (ŷ)
)
≥ 0. (4.70)

As Kι
jj = Aιjj − rj < 0 and ŷ is the minimal point of P∗ (ej , y)− Φj (y), we obtain

P∗ (ej , y)− Φj (y) ≥ P∗ (ej , ŷ)− Φj (ŷ) ≥ 0 (4.71)

for every j and therefore P∗(y)− Φ(y) ≥ 0.

4.4. Asset Bubbles: Results, Numerical Examples and
Discussion

We define a bubble as
B(x, y) = xᵀ (Φ(y)− I(y)) ,

i. e. as the difference between minimal equilibrium price and intrinsic value (as in any
other equilibrium model like [21] or [89]). Finally, for investor groups agreeing on the
rate matrix for the regime switching, Theorem 14 and Theorem 15 provide us an explicit
representation of an asset bubble as

B(x, y) =


xᵀ
(

F Kᵀ
λ2

(√
2λ2
σ (y − µ)

)
k2 + Ĩ2(y)− I2(y)

)
for y ≤ µ,

xᵀ
(

F Kᵀ
λ1

(√
2λ1
σ (µ− y)

)
k1 + Ĩ1(y)− I1(y)

)
for y > µ.

(4.72)

We start with a simple example with three different states of the interest rate. We
choose the generator matrix

Aᵀ =

 −2 1.5 0.5
0 −0.25 0.25

0.05 0.9 −0.95

 , (4.73)

and the vector of interest rate

R =

0.002
0.008
0.01

 (4.74)

the other model parameters are set

λ1 = 0.2, λ2 = 0.4, µ = 0.24, σ = 0.05. (4.75)
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Figure 4.1.: Mininmal equilibrium price and intrinsic value.
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Figure 4.2.: Difference between mininmal equilibrium prices and intrinsic values with
regime switching and with a fixed interest rate r1 = 0.002.
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Figure 4.3.: Difference between mininmal equilibrium prices and intrinsic values with
regime switching and with a fixed interest rate r2 = 0.008.
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regime switching and with a fixed interest rate r3 = 0.01.
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Figure 4.5.: Bubbles size for D0 = µ depending on λ2.
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Figure 4.8.: Bubbles size with for D0 = µ depending on σ.

Figure 4.1 depicts the minimal equilibrium price and intrinsic value depending on D0

for each X0. Since r1 < r2 < r3, we can see in both that the higher the interest rate
is in the initial state, the lower they get. Obviously, for the same expected dividend
scenario, investors are willing to pay less under a better interest rate situation. A quite
remarkable property of the regime switching model is shown by Figure 4.2. The differ-
ence between a classical model with r1 as fix interest rate and the switching model is
enormous. Without the possibility to switch to another interest rate state, the prices
and their difference, hence also the bubble, get at least three times larger. To under-
stand this, we take a look at the probabilities to stay in state e1. In one time unit,
the probability to leave this state is 0.86. This gets even clearer, if we compute the
stationary distribution (0.005236, 0.785340, 0.209424)ᵀ. Therefore, it obvious to be very
likely to get a better interest rate than r1. Figure 4.3 shows a similar behaviour, because
it is more likely to switch to a better interest rate than to a worse. Figure 4.4 compares
a model with r3 = 0.01 to the regime switching model starting in X0 = e3. Of course,
in this case, intrinsic value and minimal equilibrium price are lower in the simple model,
because the interest rate cannot get lower. Many monotonicity properties from [21] also
hold in more general regime switching model. Figure 4.5 shows that bubbles are increas-
ing in λ2 − λ1. The more heterogeneously markets participants anticipate the dividend
process, the larger the bubbles get. Moreover, Figure 4.6 shows that under possibility
to switch to a better interest rate, the difference between the bubble with and without
regime switch gets larger for growing λ2. In Figure 4.7, we can see that the bubble is
smaller, if the process D starts far away from µ. In that case, one participant is clearly
more optimistic than the other, which influences the price. Finally, Figure 4.8 depicts
an almost linear growth of the bubble in σ.

Let us now consider a two state economy with one absorbing state. We choose the
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parameters as:
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σ = 0.02.
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Figure 4.9.: Mininmal equilibrium price and intrinsic value.

Sometimes, numerical problems arise in inverting K = A + diag(r). Since the column
sum of A is zero, 1 is an eigenvector to the eigenvalue 0 and hence A is always singu-
lar. Although K is non-singular, its determinant can become very small according to
the choice of of the interest vector diag(r). An interesting point is also how to imple-
ment the matrix gamma function Γ(M) numerically. In our case we restrict ourselves to
diagonisable matrices. Then we decompose

Γ(M) = Γ(TDT−1) =

∫ ∞
0

e−tTeD ln(t)T−1t−1dt = TΓ(G)T−1 (4.76)

where the matrix

Γ(G) =


Γ(µ1) 0 . . . 0

0 Γ(µ2) . . . 0
...

...
. . .

...
0 0 . . . Γ(µN )

 (4.77)

can be calculated using common numerical methods for the gamma functions of the
eigenvalues µ1, . . . , µN of M in its diagonal entries. Another approach is to compute the
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Figure 4.10.: Relative bubble size.
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integral

Γ(M) =

∫ ∞
0

e(M−I) ln(t)e−tdt (4.78)

with the help of a Gauss-Laguerre quadrature (see [1, p. 890]) as

Γ(M) ≈
n∑
k=1

e(M−I) ln(t)wk (4.79)

with the weights

wk =
xnk

(n+ 1)2(Ln+1(xnk))2
(4.80)

where Ln is the n-th Laguerre polynomial (see [1, p. 778]) and xnk is the k-th root of
it. The drawback of this method is that the integral definition of the gamma matrix
function only holds for positive stable matrices. The classical definition of the gamma
function due to Weierstrass can be adapted for the gamma matrix function (see [65]), but
since we could not find an error estimate, this is useless for numerical implementation.
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5. A Lévy Model for Asset Bubbles

5.1. Model Setting

In this chapter we set up a model for asset bubbles in an arbitrage free market with just
one risky asset. Since this model generalises the idea of Chen and Kohn [21] to Lévy
processes, we have to start with several technical assumptions. Let L1 =

(
L1
t

)
t≥0

be a

one-dimensional, càdlàg Lévy process with characteristic triplet (a, ν, γ1) on a filtered

probability space
(

Ω,A, (Ft)t≥0 ,P1
)

satisfying the usual hypothesis. We exclude pure

jump processes such that a 6= 0. The market has two investor groups that have no other
investment possibilities than the risky asset. So, they compete only under each other.
We begin with the first group. Let the asset’s dividend rate process D = (Dt)t≥0 be
defined via the Lévy driven Ornstein-Uhlenbeck equation

dDt = λ1(µ−Dt−)dt+ σdL1
t (5.1)

with initial value D0 = x0 ∈ R. The parameters are chosen µ ≥ 0, σ > 0 and λ1 > 0.
From Lemma 2, we know the unique solution

Dt = µ+ e−λ1t(x− µ) + σ

∫ t

0
e−λ1(t−s)dL1

s. (5.2)

As discussed in Section 2.1, D is a stationary process and in the case x = 0 even a
Lévy process. The second group considers a similar development, but under another
probability measure. Therefore, we introduce another process L2

t through

dL2
t = dL1

t −
λ2 − λ1

σ
(µ−Dt−) dt (5.3)

where λ2 > λ1. Our aim is now to find a measure P2 under which L2 is also a Lévy
process. Using the Lévy- Itô decomposition (see Theorem 2),

L1
t = γ1t+ aW 1

t +

∫ t

0

∫
|z|≤1

z (J(dz, ds)− ν(dz)ds) +

∫ t

0

∫
|z|>1

zJ(dz, ds), (5.4)

and combining it with the definition of L2
t , we obtain

L2
t = L1

t −
∫ t

0

λ2 − λ1

σ
(µ−Ds−) ds

= γ1t+

(
aW 1

t +

∫ t

0

λ1 − λ2

σ
(µ−Ds−) ds

)
+

∫ t

0

∫
|z|≤1

z (J(dz, ds)− ν(dz)ds) +

∫ t

0

∫
|z|>1

zJ(dz, ds).

Now we define

W 2
t = W 1

t +
1

a

∫ t

0

λ1 − λ2

σ
(µ−Ds−) ds. (5.5)
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Further we assume that the integrand satisfies the Novikov condition (see Theorem 6),

EP1

(
exp

(
1

2

∫ T

0

(
λ2 − λ1

σa

)2

(µ−Ds−)2 dt

))
<∞, (5.6)

for all 0 ≤ T < ∞. Therefore, we can apply Girsanov’s theorem (see Theorem 7).
Hence, W 2

t is a Brownian motion with respect to P2 and therefore, L2
t is Lévy process

under the measure P2 with the characteristic triplet (a, ν, γ2).

Let us now consider trading in this model. We assume that the market participants
can lent or borrow money at a fixed interest rate r > 0 and that they are always liquid.
Let short selling be forbidden. Further, we suppose that there are constant transaction
costs in the following sense: We impose on the seller that for each transaction he has to
give away κp percent of the price to a third party, e.g. a governmental institution. For
simplicity reasons, we shall write from now on κ = 1−κp/100. Assuming 0 ≤ κp ≤ 100,
we know that 0 ≤ κ ≤ 1. Let us assume for a moment a market price at time t as an
Ft-measurable random variable. We consider only two classes of market participants
who both act risk neutral, i.e. they maximise the expected linear utility of their wealth.
As in the model by Chen and Kohn [21], the group ι holds uιt shares of the asset at time
t. Hence, each investor group maximises

EPι
(
uιt sup

τ≥t

(∫ τ

t
e−r(s−t)Dsds+ κe−r(τ−t)pτ

)
+ (1− uιt) pt

)
(5.7)

in order to choose the portfolio. The short selling constraint implies 0 ≤ uιt ≤ 1.
Therefore, we obtain uιt = 0 or uιt = 1 and so the asset is at any time held by the more
optimistic group.

5.2. Intrinsic Value and Equilibrium Price

The intrinsic value at time t ≥ 0 is defined as the maximal price, an investor is willing to
pay for all expected discounted future dividends assuming he cannot resell (see [21,99]),
i.e.

I(x, t) = max
ι=1,2

EPι
(∫ ∞

t
e−r(s−t)Dsds

∣∣∣∣Dt = x

)
. (5.8)

Let us further assume that the integral above exists, which is true for the special case
we see in the following lemma.

Lemma 16. For α ∈ (0, 1) et Lι be a Lévy process with α-stable jumps. For α ∈ [1, 2]
let Lι be a Lévy process with symmetric-α-stable jumps. Then the intrinsic value is
time-independent and can be written as

I(x) = I (x, t) =


x

r+λ2
+

µλ2+σ
(
γ2+

c2−c1
α−1

1α∈(0,1)

)
r(r+λ2) for x < xI ,

x
r+λ1

+
µλ1+σ

(
γ1+

c2−c1
α−1

1α∈(0,1)

)
r(r+λ1) for x ≥ xI ,

(5.9)

where

xI = µ+
σ

r

(
λ1γ2 − λ2γ1 + r (γ2 − γ1)

(λ2 − λ1)
− c2 − c1

α− 1
1α∈(0,1)

)
. (5.10)
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Proof. Using a stochastic version of Fubini’s theorem (see [83, p. 207f]), we obtain

EPι
(∫ ∞

t
e−r(s−t)Dsds

∣∣∣∣Dt = x

)
= EPι

(∫ ∞
t

(
µ+ e−λι(s−t)(Dt − µ)

)
e−r(s−t)ds

+ σ

∫ ∞
t

∫ s

t
e−λι(s−u)e−r(s−t)dLιuds

∣∣∣∣Dt = x

)
=
µ

r
+
x− µ
λι + r

+ σertEPι
(

lim
τ→∞

∫ τ

t

∫ s

t
e−(λι+r)s+λιudLιuds

∣∣∣∣Dt = x

)
=
µ

r
+
x− µ
λι + r

+ σertEPι
(

lim
τ→∞

∫ τ

t

(∫ τ

u
e−(λι+r)sds

)
eλιudLιu

∣∣∣∣Dt = x

)
=
µ

r
+
x− µ
λι + r

+ σertEPι
(∫ ∞

t

e−(λι+r)u

λι + r
eλιudLιu

∣∣∣∣∣Dt = x

)

=
µ

r
+
x− µ
λι + r

+
σert

λι + r
EPι

(∫ ∞
t

e−rudLιu

∣∣∣∣Dt = x

)
.

Our next steps is to decompose Lι in order to compute the integral expression above.
We shall approximate the jump part through the limit of a compound Poisson process.
Let 0 < ε ≤ 1. Let us define a compound Poisson process

Xε
t =

∫ t

0

∫
R\[−ε,ε]

zJ(dz, ds) (5.11)

with the Poisson random measure J having the intensity ν(dx)dt. In other words,
this process only comprises the jumps of Lι with absolute value larger than ε. Note
that by construction, both investor groups agree on the jumps of Lι which means that
∆L1

t = ∆L2
t for all t ≥ 0. Hence, we can also write

Xε
t =

∑
0≤s≤t
|∆Lιs|≥ε

∆Lιs. (5.12)

For ε > 0, this sum converges, but ν can have a singularity at zero. Therefore, we need
to compensate the small jumps as in the Lévy- Itô decomposition (see Theorem 2). We
start with the case α ∈ (0, 1). The compensator has the form

Aεt = t

∫
[−1,1]\[−ε,ε]

zν(dz). (5.13)

Using the notation from section 2.2, we get

Aεt = t

(
c2

∫ −ε
−1

z

(−z)α+1
dz + c1

∫ 1

ε

z

zα+1
dz

)
= t

(
c2

1− ε1−α

α− 1
− c1

1− ε1−α

α− 1

)
= t (c2 − c1)

1− ε1−α

α− 1

and therefore

lim
ε→0+

Aεt = t
c2 − c1

α− 1
. (5.14)

Obviously, the limit above does not converge for α ≥ 1. For α ∈ [1, 2], we need to
assume additionally symmetry, i.e. c1 = c2. In that case, we receive Aεt = 0. Later,
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we will also use this restriction. Now we examine the parameter λε of the compound
Poisson process Xε. We can compute

λε =

∫
R\[−ε,ε]

ν(dz) =

∫ −ε
−∞

c2

(−z)α+1
dz +

∫ ∞
ε

c1

zα+1
dz =

c1 + c2

αεα
. (5.15)

Let (N ε
t )t≥0 be a Poisson process with rate λε. We define a new measure

νε(A) =

∫
R\[−ε,ε]

1A(z)ν(dz) (5.16)

for A ∈ B(R). Obviously, νε(R) = λε. Let (Yk)k∈N0
be a sequence of i.i.d. random

variables with distribution νε(dx)
νε(R) independent of N ε. Hence, we can write

Xε
t =

Nε
t∑

k=1

Yk. (5.17)

Let T0 = 0 and denote with (T εk )k=1,...,Nε
T

the jump times of the Poisson process N ε on

the interval [0, T ], then we know that

T εk − T εk−1
i.i.d.∼ Exp(λε) (5.18)

for every k = 1, . . . , N ε
T . Suppose we knew the state of N ε at time t and let j ∈ N0 be

the amount of jumps until t. With that, we can calculate

EPι
(∫ T

t
e−rtdXε

t

∣∣∣∣N ε
t = j

)
= EPι

 Nε
T∑

k=Nε
t

e−r(T
ε
k−T

ε
k−1)Yi

∣∣∣∣∣∣N ε
t = j


=

∞∑
k=j

Pι (N ε
T = k)EPι

(
e−r(T

ε
k−T

ε
k−1)

)
EPι (Yk)

=

∞∑
k=j

(λεT )k

k!
e−λεT

λε
λε + r

EPι (Y1) .

Now we distinguish into two cases: First, let α ∈ (0, 1). Knowing the distribution of Y1,
we get

EPι (Y1) =
1

λε

∫
R
zνε(dz) =

1

λε

c1 − c2

(α− 1)εα−1
(5.19)

and hence

EPι
(∫ T

t
e−rtdXε

t

∣∣∣∣N ε
t = j

)
=
∞∑
k=j

(λεT )k

k!
e−λεT

(c1 − c2)αε

(c1 + c2 + rεα) (α− 1)
. (5.20)

Since the limit above holds for every j ∈ N0, it follows that

EPι
(∫ ∞

t
e−rtdXε

t

∣∣∣∣Dt = x

)
= lim

T→∞
EPι

(∫ T

t
e−rtdXε

t

∣∣∣∣Dt = x

)

= lim
T→∞

(
eλεT −

∑j
k=0

(λεT )k

(k)!

)
e−λεT (c1 − c2)αε

(c1 + c2 + rεα) (α− 1)

=
(c1 − c2)αε

(c1 + c2 + rεα) (α− 1)

ε→0→ 0.
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By the Lévy- Itô decomposition (see Theorem 2) we get

Lιt = γιt+ aW ι
t + lim

ε→0+
Xε
t +Aεt . (5.21)

and hence

dLιt = γιdt+ adW ι
t + lim

ε→0+
dXε

t +
c2 − c1

α− 1
dt. (5.22)

Putting everything together, we can now rewrite

I(x, t) = max
ι=1,2

µ

r
+
x− µ
λι + r

+
σert

λι + r
EPι

(∫ ∞
t

e−rudLιu

∣∣∣∣Dt = x

)
= max

ι=1,2

µ

r
+
x− µ
λι + r

+
σert

λι + r

∫ ∞
t

e−ru
(
γι +

c2 − c1

α− 1

)
du

= max
ι=1,2

µ

r
+
xr − µr + σγι + σ c2−c1α−1

(λι + r) r
.

Remembering the fact λ2 > λ1, we can solve the inequality

xr − µr + σγ1 + σ c2−c1α−1

λ1 + r
>
xr − µr + σγ2 + σ c2−c1α−1

λ2 + r
(5.23)

with respect to x and hence find the maximum.
For the case α ∈ [1, 2] we additionally assume symmetry and hence obtain obviously

EPι (Y1) = 0. Therefore, we see that

EPι
(∫ ∞

t
e−rtdXε

t

∣∣∣∣Dt = x

)
= 0 (5.24)

and by similar argumentation as above, we get

I(x, t) = max
ι=1,2

µ

r
+
x− µ
λι + r

+
σert

λι + r
EPι

(∫ ∞
t

e−rudLιu

∣∣∣∣Dt = x

)
= max

ι=1,2

µ

r
+
x− µ
λι + r

+
σert

λι + r

∫ ∞
t

e−ruγιdu

= max
ι=1,2

µ

r
+
xr − µr + σγι

(λι + r) r
.

Remembering again the fact λ2 > λ1, we can by the same argument as above explicitly
maximise over both investor groups and hence obtain the desired result.

Similarly to the model of Chen and Kohn (see [21]), we define an equilibrium price as
a continuous function satisfying

P (x, t) = max
ι=1,2

sup
τ≥t

EPι
(∫ τ

t
e−r(s−t)Dsds+ e−r(τ−t)P (Dτ , τ)κ

∣∣∣∣Dt = x

)
(5.25)

and
P (x, t) ≥ I(x, t) (5.26)

where the supremum is taken over all stopping times τ ≥ t. Additionally, we assume
|P (D∞,∞)| < ∞. The definition above includes transaction cost compared with [21].

Since the the expectation of
∫ T
t e−r(s−t)Dsds is finite for every T ≥ t, an equilibrium

price always exists and is by the definition above at least the intrinsic value. Note, that
an equilibrium price doesn’t have to be unique. If, for instance, P (x, t) is an equilibrium
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price, κ = 1 and c > 0, then P (x, t) + cert is obviously also an equilibrium price. This is
the reason why we are looking for a minimal equilibrium price. Since immediate resale
can obviously only be optimal in absence of transaction costs, the construction theorem
for the minimal equilibrium price from [21] also holds in the Lévy case with a slight
modification. Obviously, including transaction cost into the model, immediate resale
can never be optimal.This changes the situation dramatically. An interesting question
is also when to stop. Without resale, we can get at least the intrinsic value, but it
could be more. A possible strategy the never results into a loss would be to choose the
stopping time

τ∗ = inf

(
T ≥ t :

∫ T

t
e−r(s−t)Dsds+ e−r(T−t)P (DT )κ ≥ P (Dt)

)
. (5.27)

If τ∗ is infinite form the viewpoint of the owner and the other group, the asset will be
held forever. In other words, stopping before τ∗ is equivalent to selling the asset with
a loss which can never lead to an equilibrium. Thus, we can also write the definition of
an equilibrium price as

P (x, t) = max
ι=1,2

sup
τ≥τ∗

EPι
(∫ τ

t
e−r(s−t)Dsds+ e−r(τ−t)P (Dτ , τ)κ

∣∣∣∣Dt = x

)
(5.28)

Now we are finally able to formulate a theorem that shows how to construct a minimal
equilibrium price.

Theorem 16. Let I (x, t) be the intrinsic value. Then, we can construct a minimal
equilibrium price. Therefore, define P0 (x, t) = I (x, t), a sequence of stopping times

τk =

inf

(
T ≥ t :

∫ T

t
e−r(s−t)Dsds+ e−r(T−t)Pk−1 (DT , T )

kκ

k + 1
≥ Pk−1 (Dt, t)

)
(5.29)

and

Pk (x, t) =

max
ι=1,2

sup
τ≥τk

EPι
(∫ τk

t
e−r(s−t)Dsds+ e−r(τk−t)Pk−1 (Dτk , τk)

kκ

k + 1

∣∣∣∣Dt = x

)
(5.30)

for k ≥ 1. Then,
P∗ (x) = P∗ (x, t) = lim

k→∞
Pk (x, t) (5.31)

is the unique minimal equilibrium price and independent of t. For κ = 1, the sequence
Pk (x, t) is monotonously increasing in k.

Proof. By Lemma 16 and construction, P0 is independent of t. Analogously to Lemma
16, we can show that the conditional expectation EPι (Dt+h|Dt = x) is also time inde-
pendent for all h > 0. Thus, all Pk (x) = Pk (x, t) and their limit are independent of
the time t. Without transaction cost, it is easy to see that τk = t with the same idea as
in [21]. However, in general, we do not even know if τk is finite. Let P̃ (x) be a minimal
equilibrium price without transaction cost that is constructed as in [21] as limit of a

sequence
(
P̃k(x)

)
k≥0

defined by P̃0 = I(x) and

P̃k(x) = max
ι=1,2

sup
τ≥t

EPι
(∫ τ

t
e−r(s−t)Dsds+ e−r(τ−t)P̃k−1 (Dτ )

∣∣∣∣Dt = x

)
. (5.32)

66



5.2. Intrinsic Value and Equilibrium Price

Due to

P̃k(x) ≥ max
ι=1,2

sup
τ≥τk

EPι
(
P̃k−1 (Dτ )

∣∣∣Dt = x
)

= P̃k−1 (x) , (5.33)

the constructed sequence is monotonously increasing. Using Beppo Levi’s monotone
convergence theorem, P̃ exists and is an equilibrium price. By induction, all P̃k are
smaller than any equilibrium price and so is the limit. Since Pk is only monotonously
increasing if τk < ∞, we need to use another idea than monotone convergence for the
general case. We show now by induction that P̃ (x) ≥ Pk (x) for all k ≥ 1. Obviously,
P̃ (x) ≥ I(x) = P0 (x) holds. Since 0 < κ ≤ 1, using P̃ (x) ≥ Pk−1 (x), we obtain

P̃ (x) = max
ι=1,2

sup
τ≥t

EPι
(∫ τ

t
e−r(s−t)Dsds+ e−r(τ−t)Pk−1 (Dτ )

∣∣∣∣Dt = x

)
≥ max

ι=1,2
sup
τ≥τk

EPι
(∫ τ

t
e−r(s−t)Dsds+ e−r(τ−t)Pk−1 (Dτ )

kκ

k + 1

∣∣∣∣Dt = x

)
= Pk (x) .

Thus, |Pk (x)| ≤ P̃ (x) <∞ for all k ≥ 1. Since we have required that the intrinsic value
to be finite, the limit

P∗ (x) = lim
k→∞

Pk (x) (5.34)

always exits. By the dominated convergence theorem, we get

P∗(x) = max
ι=1,2

sup
τ≥τ∗k

EPι
(∫ τ

t
e−r(s−t)Dsds+ e−r(τ−t)P∗ (Dτ )κ

∣∣∣∣Dt = x

)
. (5.35)

Hence, such a price P∗ is always an equilibrium price. Let us now show its minimality
by induction. Let P (x, t) be an arbitrary equilibrium price. The initial step obviously
holds by definition. Supposing P (x, t) ≥ Pk−1 (x) for all t ≥ 0, we obtain

P (x, t) = max
ι=1,2

sup
τ≥τk

EPι
(∫ τ

t
e−r(s−t)Dsds+ e−r(τ−t)P (Dτ , τ)κ

∣∣∣∣Dt = x

)
≥ max

ι=1,2
sup
τ≥τk

EPι
(∫ τ

t
e−r(s−t)Dsds+ e−r(τ−t)Pk−1 (Dτ )

kκ

k + 1

∣∣∣∣Dt = x

)
= Pk (x) .

Taking the limit follows P (x, t) ≥ limk→∞ Pk (x) = P∗ (x). Thus, P∗ (x) is a minimal
equilibrium price.

As in the existing literature [21, 89, 90], an asset bubble is defined as the difference
between minimal equilibrium price and intrinsic value, i.e.

B(x, t) = P (x, t)− I(x, t). (5.36)

Apparently, an asset bubble cannot be negative by definition. It is important to note
that in our model the bubble is due to the α-stability of Lιt time-independent and will
therefore never burst. In order to determine its size, we shall find another representation
of the equilibrium price using the same idea as [21]. We begin with a technical lemma.

Lemma 17. The Lévy measure of Dt satisfies νD(A) = σαν(A).

67



5. A Lévy Model for Asset Bubbles

Proof. First, we compute the jumps

∆Dt = Dt −Dt− = σ

∫ t

t−
e−λι(t−s)dLιs = σ

(
Lιt − Lιt−

)
= σ∆Lιt. (5.37)

Hence, we get

νD(A) = EPι (# {t ∈ [0, 1] : ∆Dt 6= 0,∆Dt ∈ A})
= EPι (#{t ∈ [0, 1] : ∆Lιt 6= 0,∆Lιt ∈ σ−1A

})
= ν(σ−1A).

We remember the well known representation of the Lévy measure for α-stable processes

ν(dx) =
c11x<0

|x|α+1
dx+

c21x>0

xα+1
dx (5.38)

with c1 ≥ 0, c2 ≥ 0 and c1 + c2 > 0. By a linear substitution, we obtain

ν(σ−1dx) = ν(dy) =
c11y<0

|y|α+1
dy +

c21y>0

yα+1
dy

=
c11x<0

|xσ |α+1

dx

σ
+
c21x>0

(xσ )α+1

dx

σ
= σαν(dx).

According to Lemma 17 and Lemma 4, the process (σLιt)t≥0 is again a Lévy process
with an α-stable jumps having the characteristic triplet (ă, ν̆, γ̆ι) where

ă = σa,

ν̆(dx) = σαν(dx) = νD(dx),

γ̆ι =

{
σ
(
γι − σα−1−1

α−1 (c2 − c1)
)

if α 6= 1,

σ (γι − log(σ)(c2 − c1)) if α = 1
.

By Lemma 17 we get the important relation ν̆(dx) = νD(dx). Collecting now all our
information, we can find a pseudo-differential equation such that its solution, if it exists,
is an equilibrium price. As for calculating the intrinsic value, also in this proof α-stability
is a crucial assumption which allows us to characterise the jumps part of the dividend
process and hence construct a link to pseudo-differential equations via the Itô formula.

Theorem 17. Let Φ(x, t) : R × [0,∞, ) → R be a twice continuously differentiable
solution of the pseudo-differential equation

max
ι=1,2

((
λι (µ− x)− σ(γι +

c2 − c1

α− 1
1α∈(1,2))

)
∂

∂x
Φ(x, t) +

∂

∂t
Φ(x, t)− rΦ(x, t) +AιΦ(x, t) +

x

κ

)
= 0 (5.39)

where c1 and c2 are determined by the Lévy-measure of Lιt and the infinitesimal generator
of (σLιt)t≥0 can be written as

AιΦ(x, t) = γ̆ιΦx(x, t) +
ă2

2
Φxx(x, t)

+

∫
R\{0}

(
Φ(x+ z, t)− Φ(x, t)− Φx(x, t)z1|z|≤1

)
ν̆(dz).
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In the case α ≥ 1, we additionally assume that Lιt is symmetric. Then, Φ(x, t) is an
upper bound for an equilibrium price and the strategy

τ∗ = inf

(
T ≥ t :

∫ T

t
e−r(s−t)Dsds+ e−r(T−t)Φ (DT , T )κ ≥ Φ (Dt, t)

)
(5.40)

is optimal. If τ∗ <∞, then Φ(x, t) is an equilibrium price.

Proof. As a first step, we analyse the large jumps. The case α = 2 is trivial since there
are no jumps. For 0 < α < 1, we can interpret the large jumps as part of the drift.
Using Lemma 17, we can compute

∫
R\{0}

z1|z|>1νD(dz) =

∫ −1

−∞

c1σ
α

(−z)α
dz +

∫ ∞
1

c2σ
α

zα
dz =

c2 − c1

α− 1
σα. (5.41)

In the case α = 1 we make use of the symmetry and obtain

∫
R\{0}

z1|z|>1νD(dz) =

∫ −1

−∞

cσα

z
dz +

∫ ∞
1

cσα

z
dz = 0. (5.42)

By the same reason, the case α > 1 leads to

∫
R\{0}

z1|z|>1νD(dz) =

∫ −1

−∞

−cσα

(−z)α
dz +

∫ ∞
1

cσα

zα
dz =

c− c
α− 1

σα = 0. (5.43)

The second step shows the link to pseudo-differential equations. Applying the Itô for-
mula (see [83, p. 78f]) onto f(Dt, t) := e−rtΦ(Dt, t) and plugging in the stochastic
differential equation, we obtain

e−rTΦ(DT , T ) = e−rtΦ(Dt, t)

+

∫ T

t
e−rsΦx(Ds−, s)dDs +

∫ T

t
e−rs (Φt(Ds−, s)− rΦ(Ds−, s)) ds

+
1

2

∫ T

t
e−rsΦxx(Ds−, s)d[D,D]cs

+
∑
t≤s≤T

(
e−rsΦ(Ds, s)− e−rsΦ(Ds−, s)− e−rsΦx(Ds−, s)∆Ds

)
= e−rtΦ(Dt, t) +

∫ T

t
e−rsΦx(Ds−, s)λι (µ−Ds−) ds

+

∫ T

t
e−rsΦx(Ds−, s)σdL

ι
s +

∫ T

t
e−rs (Φt(Ds−, s)− rΦ(Ds−, s)) ds

+
1

2

∫ T

t
e−rsΦxx(Ds−, s)d[D,D]cs

+

∫ T

t

∫
R\{0}

e−rs (Φ(Ds− + z, s)− Φ(Ds−, s)− Φx(Ds−, s)z) JD(ds, dz)
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= e−rtΦ(Dt, t)

+

∫ T

t
e−rs (λι (µ−Ds−) Φx(Ds−, s) + Φt(Ds−, s)− rΦ(Ds−, s)) ds

+

∫ T

t
e−rsΦx(Ds−, s)σdL

ι
s +

1

2
σ2

∫ T

t
e−rsΦxx(Ds−, s)d[Lι, Lι]cs

+

∫ T

t

∫
R\{0}

e−rs (Φ(Ds− + z, s)− Φ(Ds−, s)− Φx(Ds−, s)z) J̃D(ds, dz)

+

∫ T

t

∫
R\{0}

e−rs
(
Φ(Ds− + z, s)− Φ(Ds−, s)− Φx(Ds−, s)z1|z|≤1

)
νD(dz)ds

−
∫ T

t
e−rsΦx(Ds−, s)

∫
R\{0}

z1|z|>1νD(dz)ds.

Now we use the properties of the quadratic variation, rewrite the large jumps as shown
in the first step of this proof and after rearranging the terms, we receive

e−rTΦ(DT , T ) = e−rtΦ(Dt, t) +

∫ T

t
e−rsΦx(Ds−, s)σdL

ι
s

+

∫ T

t
e−rs

((
λι (µ−Ds−)− σα c2 − c1

α− 1
1α∈(0,1)

)
Φx(Ds−, s)

)
ds

+

∫ T

t
e−rs

(
Φt(Ds−, s)− rΦ(Ds−, s) +

σ2a2

2
Φxx(Ds−, s)

)
ds

+

∫ T

t
e−rs

∫
R\{0}

(
Φ(Ds− + z, s)− Φ(Ds−, s)− Φx(Ds−, s)z1|z|≤1

)
ν̆(dz)ds

+

∫ T

t

∫
R\{0}

e−rs (Φ(Ds− + z, s)− Φ(Ds−, s)− Φx(Ds−, s)z) J̃D(ds, dz).

In the next step, let us assume that equation (5.39) holds for Φ(x, t). The terms inte-
grated with respect to ds simplify and so we get

e−rTΦ(DT , T ) ≤ e−rtΦ(Dt, t)−
∫ T

t
e−rs

Ds−
κ

ds+

∫ T

t
e−rsΦx(Ds−, s)σdL

ι
s

+

∫ T

t

∫
R\{0}

e−rs (Φ(Ds− + z, s)− Φ(Ds−, s)− Φx(Ds−, s)z) J̃D(ds, dz).

Since the integral with respect to the compensated Poisson random measure J̃D and the
integral with respect to the Lévy process Lι vanish by taking the expectation, we get
the inequality

EPι (e−rTΦ(DT , T )
∣∣Dt = x

)
≤ e−rtΦ(x, t)− EPι

(∫ T

t
e−ru

Du−
κ

du

∣∣∣∣Dt = x

)
. (5.44)

Rearranging leads to

EPι
(∫ T

t
e−r(u−t)Du−du+ e−r(T−t)Φ(DT , T )κ

∣∣∣∣Dt = x

)
≤ Φ(x, t) (5.45)

for all T ≥ t. Thus, the inequality also holds taking the supremum over all stopping
times and after the maximising we get

Φ(x, t) ≥ max
ι=1,2

sup
τ≥t

EPι
(∫ τ

t
e−r(u−t)Du−du+ e−r(τ−t)Φ(Dτ , τ)κ

∣∣∣∣Dt = x

)
. (5.46)
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Choosing the stopping time τ∗ leads to

Φ(x, t) ≥ max
ι=1,2

EPι
(∫ τ∗

t
e−r(u−t)Du−du+ e−r(τ

∗−t)Φ(D∗τ , τ
∗)κ

∣∣∣∣∣Dt = x

)
≥ Φ(x, t)

if τ∗ < ∞. From inequality (5.45) we obtain Φ(x, t) ≥ I(x, t) setting T → ∞. Hence,
Φ(x, t) is an equilibrium price for τ∗ <∞ and in general obviously an upper bound for
an equilibrium price.

Obviously, when κ = 1, the optimal strategy is immediate stopping at τ = t. In the
case when Lι is a Brownian motion, the infinitesimal generator is σ2a2

2 ∆x, where ∆ is
the Laplacian (see [88, p. 212]). Then, the equation turns into a partial differential equa-
tion and assuming time independence into a Weber differential equation (see the model
by Chen and Kohn [21]). However, in the more general case, the pseudo-differential
equation from Theorem 17 can be written as

∂

∂t
Φ(x, t) = −TxΦ(x, t)− x

κ
(5.47)

where Tx is a pseudo-differential operator (see Section 2.4) with symbol

p (x; ξ) = −r +

(
max
j=1,2

λj(µ− x) +
σα(c2 − c1)

α− 1
1α∈(0,1)

)
iξ

+ (c1 + c2)σα |ξ|α
(

1− ic1 − c2

c1 + c2
tan

(πα
2

)
sgn (ξ)

)
. (5.48)

We remark that in the case where both processes L1 and L2 are symmetric, the generator
simplifies to

Aι = −(−∆)
α
2 (5.49)

where ∆ denotes the one-dimensional Laplacian. In the general case, taking a close
look at the form of the equation, shows us that we are in fact dealing with a partial
integro differential equation (PIDE). The is quite common in Lévy modelling and can
be found in option pricing theory (see Chapter 12 in [24]). Solving it is of course more
complicated than solving a partial differential equation. Due to Theorem 16, we know
that a minimal equilibrium price is time independent. Hence, we additionally suppose

∂

∂t
Φ(x, t) = 0 (5.50)

and we further write Φ(x) = Φ(x, t). Therefore, we obtain the integro differential
equation

max
ι=1,2

(
λι (µ− x)− σα c2 − c1

α− 1
1α∈(1,2)

)
Φ′(x)− rΦ(x) +

ă2

2
Φ′′(x)

+ σα
∫
R\{0}

(
Φ(x+ z)− Φ(x)− Φ′(x)z1|z|≤1

)
ν(dz) +

x

κ
= 0. (5.51)

As the coefficients are not constant, following a Fourier transformation approach doesn’t
simplify the problem. So, we need another idea to examine the existence of a solution.
In a next step, we set

Ψ(x, t) = Φ(x)− x

κ(λi + r)
− µλi
rκ(λi + r)

(5.52)
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and our equation turns into

max
ι=1,2

(
λι (µ− x)− σα c2 − c1

α− 1
1α∈(1,2)

)
Ψ′(x)− rΨ(x) +

ă2

2
Ψ′′(x)

+ σα
∫
R\{0}

(
Ψ(x+ z)−Ψ(x)−Ψ′(x)z1|z|≤1

)
ν(dz) = 0. (5.53)

We write this as pseudo differential equation

(TΨ − r)Ψ(x, t) = 0 (5.54)

where TΨ is a pseudo-differential operator with symbol

p (x; ξ) =

(
max
j=1,2

λj(µ− x) +
σα(c2 − c1)

α− 1
1α∈(0,1)

)
iξ

+ (c1 + c2)σα |ξ|α
(

1− ic1 − c2

c1 + c2
tan

(πα
2

)
sgn (ξ)

)
. (5.55)

Due to
Re (p (x; ξ)) = (c1 + c2)σα |ξ|α (5.56)

the operator is strictly elliptic. Since r > 0 and the function constantly equal to 0 is in
L2 (R), we can apply Theorem 8 and receive the existence of a unique strong solution
in L2 (R). However, we do not know the asymptotic behaviour at infinity.

5.3. The Equilibrium Price as a Solution of a PIDE

Now let us suppose that there is a solution with linear behaviour at infinity. We will
show that Φ(y) from Theorem 17 is a minimal equilibrium price. Since the theory of
viscosity solutions can be generalised to pseudo differential equations (see chapter 2.5),
we can carefully adapt [21] and [22] to a Lévy setting. The main idea from stochastic
control theory is a verification argument: we take a solution of a differential equation
with certain properties and show that this is also the solution of an optimisation problem.
We start with proving that P∗ defined in Theorem 16 is a viscosity supersolution.

Lemma 18. P∗ is lower semicontinuous.

Proof. Let (xk)k≥0 be a sequence converging to x. Let us define a sequence of stopping
times

τ̃k = inf {s ≥ t : Ds = x,Dt = xk} . (5.57)

that obviously converges to t. Since P∗ (x) is an equilibrium price, for ι = 1, 2 holds

lim inf
k→∞

P∗ (xk) ≥

lim inf
k→∞

EPι
(∫ τ̃k

t
e−r(s−t)Dsds

∣∣∣∣Dt = xk

)
+ lim inf

k→∞
EPι

(
e−r(τ̃k−t)P∗ (x)

∣∣∣Dt = xk

)
(5.58)

By the dominated convergence theorem, the first expectation is zero and hence, we get

lim inf
k→∞

P∗ (xk) ≥ P∗ (x) . (5.59)
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Using the lower semicontinuity, we are now able to show the next lemma.

Lemma 19. P∗ is a viscosity supersolution.

Proof. We will prove it by contradiction. Let us suppose P∗ is a not viscosity superso-
lution. Then there exists ψ(x) ∈ C2(R)∩C and local maximum point x̂ of ψ(x)−P∗(x)
that satisfies ψ(x̂) = P∗(x̂) and

−max
ι=1,2

((
λι (µ− x̂)− σ(γι +

c2 − c1

α− 1
1α∈(1,2))

)
ψ′(x̂)

−rP∗(x̂) +Aιψ(x̂) +
x̂

κ

)
≤ −δ. (5.60)

for a δ > 0. For ε > 0 let us choose an interval [x̂− ε, x̂+ ε] on which ψ(x)− P∗ (x) ≤ 0
and

max
ι=1,2

((
λι (µ− x)− σ(γι +

c2 − c1

α− 1
1α∈(1,2))

)
ψ′(x)

−rP∗(x) +Aιψ(x) +
x

κ

)
≥ δ. (5.61)

We define a stopping time

τ̃ = inf {s ≥ t : Ds = x̂− ε ∨ Ds = x̂+ ε,Dt = x̂} . (5.62)

as first time hitting the interval border. Obviously, P (τ̃ > 0) = 1. With the same idea
as in Theorem 17, we apply the Itô formula onto

e−r(s−t)ψ(Ds). (5.63)

After integrating and ignoring the terms integrated with respect to martingales that are
zero, we get

EPι
(
e−r(τ̃−t)ψ(Dτ̃ )

∣∣∣Dt = x̂
)

= ψ(x̂) + EPι
(∫ τ̃

t
e−r(s−t)

((
λι (µ− x)− σ(γι +

c2 − c1

α− 1
1α∈(1,2))

)
ψ′(x)

−rψ(x) +Aιψ(x) +
x

κ

)
ds
∣∣∣Dt = x̂

)
for both ι ∈ {1, 2}. Since r > 0 and due to lower semicontinuity ψ(x) ≤ P∗ (x), we
receive

EPι
(
e−r(τ̃−t)ψ(Dτ̃ )

∣∣∣Dt = x̂
)

= ψ(x̂) + EPι
(∫ τ̃

t
e−r(s−t)

((
λι (µ− x)− σ(γι +

c2 − c1

α− 1
1α∈(1,2))

)
ψ′(x)

−rP∗(x) +Aιψ(x) +
x

κ

)
ds
∣∣∣Dt = x̂

)
≥ ψ(x̂) + EPι

(∫ τ̃

t
e−r(s−t)δds

∣∣∣∣Dt = x̂

)
> ψ(x̂).

On the other hand, P∗(x) is an equilibrium price and hence

P∗ (x̂) ≥ max
ι=1,2

EPι
(∫ τ

t
e−r(s−t)Dsds+ e−r(τ−t)P∗ (Dτ )κ

∣∣∣∣Dt = x̂

)
(5.64)
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5. A Lévy Model for Asset Bubbles

Putting everything together with P∗ (x)− ψ(x) ≥ 0, we obtain

0 = P∗ (x̂)− ψ(x̂) > max
ι∈{1,2}

EPι
(
e−r(τ̃−t) (P∗ (Dτ̃ )− ψ (Dτ̃ ))

∣∣∣Dt = x̂
)
≥ 0, (5.65)

which is a contradiction. Hence P∗ (x) is a viscosity supersolution, as it is also lower
semicontinuous by Lemma 18.

The next theorem shows the equivalence between the minimal equilibrium price and
the solution of a partial integro-differential equation. The crucial step in the proof uses
at most linear growth of an equilibrium price at infinity.

Theorem 18. The unique solution of the partial integro-differential equation with linear
growth at infinity is the minimal equilibrium price, in other words Φ(x) = P∗(x).

Proof. Obviously P∗(x) ≤ Φ(x) holds, because P∗(x) is the minimal equilibrium price
and Φ(x) is an equilibrium price. Analogously to [22], we examine

inf
x∈R

(P∗(x)− Φ(x)) (5.66)

and consider two cases. First, let the infimum be unbounded. Since we assumed linear
growth of Φ(x) and we know Φ(x)− P∗(x) ≤ Φ(x)− I(x), we obtain

lim
|x|→∞

(P∗(x)− Φ(x)) = 0. (5.67)

In the bounded case, there exists a minimal point x̂ ∈ R. Due to Lemma 19, P∗(y) is a
viscosity supersolution and hence,

−max
ι=1,2

(
λι (µ− x̂)− σ(γι +

c2 − c1

α− 1
1α∈(1,2))

)
Φ′(x̂)− rP∗(x̂) +AΦ(x̂) +

x̂

κ
≥ 0. (5.68)

As Φ(x) is a strong solution of a partial integro differenial equation and P∗(x)−Φ(x) ≤ 0,
we get

− max
ι∈{1,2}

(rP∗ (x̂)− rΦ (x̂)) ≥ 0 (5.69)

As r > 0 and x̂ is the minimal point of P∗ (x)− Φ (x), we obtain

P∗ (x)− Φ (x) ≥ P∗ (x̂)− Φ (x̂) ≥ 0 (5.70)

and finally P∗(x) = Φ(x).

The interesting point is to know if there in a bubble in our market. We remember the
definition of a bubble as

B(x) = Φ(x)− I(x).

There is unfortunately very few literature about how to handle PIDE numerically. We
could discretisise like [85], but in our case the coefficients are not constant. Therefore, the
situation is much more complicated and it can be an interesting field for future research.
Since we include transaction costs, the investors have a different optimal strategy than
in a simple model. Immediate resale is no longer optimal. They wait until the resale
value reaches at least the price they have paid plus the transaction fee. This also has
an effect on the bubble. For large transaction costs, the investors trade less and, as a
consequence, the bubble becomes smaller.
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A. Some Special Matrix Functions

This chapter introduces some special functions with matrix parameters. Most of their
properties and the link to matrix differential equations were discussed in several papers
by Jódar and Cortés [65–67]. The main difficulty in introducing such functions is the
invertibility of the involed matrices. Let L and M be N × N matrices. First, we define
the Pochhammer symbol for matrices as

(M)k = (M + (k − 1)I) . . . (M + I) M for k ≥ 1,

(M)0 = I.

We call a matrix positive stable, if it has only eigenvalues with positive real part. The
matrix exponential allows us to define

tM = eM ln t =
∞∑
k=0

Mk
(ln t)k

k!
.

The Gamma matrix function for positive stable matrices M has been introduced
by [66] as

Γ(M) =

∫ ∞
0

e−ttM−Idt.

By the help of infinite matrix products, the Gamma matrix function has been extended
(see [27]) to matrices with only non-negative-integer eigenvalues, i.e. −n /∈ σ(M) for
n ∈ N \ {0}. If M + nI is an invertible matrix for every integer n ≥ 0, then Γ(M) is also
invertible and its inverse corresponds to the inverse of the Gamma function [66]. The
Beta matrix function for positive stable matrices L and M is defined as

B(L, M) =

∫ 1

0
tL−I(1− t)M−Idt.

It can be shown that B(L, M) is symmetric if and only if L and M are commuting matrices
[66]. The following lemma describes the relationship between Beta and Gamma matrix
function.

Lemma 20. For positive stable, commuting matrices L and M such that L + M has only
non-negative-integer eigenvalues holds

B(L, M) = Γ(L)Γ(M)Γ(L + M)−1.

Proof. First, we write

Γ(L)Γ(M) =

(∫ ∞
0

e−ssL−Ids

)(∫ ∞
0

e−ttM−Idt

)
=

∫ ∞
0

∫ ∞
0

e−ssL−Ie−ttM−Idsdt.
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The change of variables x = s
s+t and y = s+ t and commutativity lead to

Γ(L)Γ(M) =

∫ ∞
0

∫ 1

0
e−xy(xy)L−Ie−y(1−x)(y(1− x))M−Iydxdy.

=

(∫ ∞
0

e−yyL+M−Idy

)(∫ 1

0
xL−I(x− 1)M−Idy

)
= Γ(L + M)B(L, M).

Note that the condition that L+ M has to be positive stable from Lemma 2 in [65] is not
necessary. The extension of th Gamma function by [27] makes Γ(L + M) is well-defined
and, hence, also invertible.

We repeat the integral representation of the Pochhammer matrix symbol from [65] in
the next lemma.

Lemma 21. For positive stable, commuting matrices L and M, such that M − L is also
positive stable, holds

(L)k(M)−1
k = Γ(L)−1Γ(M− L)−1

(∫ 1

0
tL+(k−1)I(1− t)M−L−Idt

)
Γ(M)

for every k ∈ N.

Proof. From Lemma 20, we get

(L)k(M)−1
k = Γ(L)−1Γ(L + kI)Γ(M)Γ(M + kI)−1

= Γ(L)−1Γ(L + kI)Γ(M + kI)−1Γ(M)

= Γ(L)−1Γ(M− L)−1Γ(M− L)Γ(L + kI)Γ(M + kI)−1Γ(M)

= Γ(L)−1Γ(M− L)−1B(L + kI, M− L)Γ(M)

= Γ(L)−1Γ(M− L)−1

(∫ 1

0
tL+(k−1)I(1− t)M−L−Idt

)
Γ(M).

The confluent hypergeometric function with matrix parameters, also called first Kum-
mer function, is defined as

1F1(L; M; z) =

∞∑
k=0

(L)k (M)−1
k

zk

k!
.

for z ∈ C (see [10]). From now, let ML = LM . If M − L is positive stable, using Lemma
21, we receive

1F1(L; M; z) =
∞∑
k=0

Γ(L)−1Γ(M− L)−1

(∫ 1

0
tL+(k−1)I(1− t)M−L−Idt

)
Γ(M)

zk

k!

= Γ(L)−1Γ(M− L)−1

(∫ 1

0
tL−I

∞∑
k=0

(tz)k

k!
(1− t)M−L−Idt

)
Γ(M).

This gives us the integral representation

1F1(L; M; z) = Γ(L)−1Γ(M− L)−1

(∫ 1

0
ezttL−I(1− t)M−L−Idt

)
Γ(M).
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for all z ∈ C. Since L commutes with (M + kI)−1 for all integers k ≥ 0, we can compute

d

dz
1F1(L; M; z) =

∞∑
k=1

(L)k (M)−1
k

zk−1

(k − 1)!

=
∞∑
k=0

(L + I)k L (M + I)−1
k M−1 z

k

k!

= 1F1(L + I; M + I; z) LM−1.

For k ≥ 0 we obtain

dk

dzk
1F1(L; M; z) = 1F1(L + kI; M + kI; z) (L)k (M)−1

k .

Let b ∈ R \ Z−. We define the second Kummer function with matrix parameters as

U(L, bI, z) = Γ (1− b) 1F1(L; bI; z) Γ (L + (1− b)I)−1

+ z1−bΓ(b− 1)1F1((1− b) I + L; (2− b)I; z) Γ (L)−1 .

for z ∈ C. We further introduce the matrix function

FY(z) = Γ

(
1

2

)
1F1

(
−1

2
Y;

1

2
I;
z2

2

)
Γ

(
1

2
(I− Y)

)−1

+
|z|Γ(−1

2)
√

2
1F1

(
1

2
(I− Y) ;

3

2
I;
z2

2

)
Γ

(
−1

2
Y

)−1

,

for z ∈ C. As we see that FY(z) = U
(
−1

2Y,
1
2I,

z2

2

)
we call

DY(z) = 2
Y
2 e−

z2

4 FY(z)

the parabolic cylinder function with matrix parameters (compare to [19, p. 39]). We
compute

d

dz
FY(z) = Γ

(
1

2

)
1F1

(
1

2
(2I− Y) ;

3

2
I;
z2

2

)
(−Y)Γ

(
1

2
(I− Y)

)−1

+
Γ(−1

2)
√

2
1F1

(
1

2
(I− Y) ;

3

2
I;
z2

2

)
Γ

(
−1

2
Y

)−1

sgn(z)

+
Γ(−1

2)
√

2
1F1

(
1

2
(3I− Y) ;

5

2
I;
z2

2

)
1

3
(Y− I) Γ

(
−1

2
Y

)−1

z2

for z ∈ R \ {0}. In z = 0 the function FY(z) is not differentiable as we have

∂+ FY(z)|z=0 =
Γ(−1

2)
√

2
Γ

(
−1

2
Y

)−1

,

∂− FY(z)|z=0 = −
Γ(−1

2)
√

2
Γ

(
−1

2
Y

)−1

.

Now we want to examine the asymptotic behaviour of the second Kummer function
with matrix parameters. Following a standard approach from Slater [96, p. 35] or Paris
and Kaminski [82, p. 106]), we compute the Mellin-Barnes integral using the residue
theorem.
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Lemma 22. Let L be a positive stable, diagonalizable matrix. For z ∈ C with | arg(z)| <
3π
2 and c <∞ holds

1

2πi

∫ c+i∞

c−i∞
Γ(−s)Γ(L + sI)Γ(L + (1− b+ s)I)|z|−sds

= |z|L U(L, bI, z)Γ(L)Γ(L + (1− b)I).

Proof. With λ1, . . . , λN we denote the eigenvalues of L. Since L is diagonalizable, we
have the eigenvalue decomposition L = TΛT−1 where Λ = diag ((λ1, . . . , λN )ᵀ) and T is the
matrix of the corresponding eigenvectors. We remark that L+kI has the the eigenvalue
decomposition T(Λ+kI)T−1 for all k ∈ N. As all eigenvalues have non-negative real part,
the singularities of Γ(λi + s) are on the negative real axis. Let α, β and R be positive
numbers. For each eigenvalue, we define an integral

Iλi,R =
1

2πi

∮
Cλi

Γ(−s)Γ(λi + sI)Γ(λi + (1− b+ s))|z|−sds,

where the curve Cλi is taken around a rectangular contour so that the poles at s =
−λi − k and at s = −λi − (1 − b + k) are inside the contour for all i ∈ 1, . . . , N and
k = 0, 1, 2, . . . , bRc. The poles of Γ(−s) are outside this contour. The residue theorem
gives us

Iλi,R = |z|λi
bRc∑
k=0

Γ(λi + k)Γ(1− b− k)
(−|z|)k

k!

+ |z|λi |z|1−b
bRc∑
k=0

Γ(λi + 1− b+ k)Γ(b− (k + 1))
(−|z|)k

k!
.

Now we define a matrix

IR = Tdiag ((Iλ1,R, . . . ,IλN ,R)ᵀ) T−1.

Using the fact Tdiag ((Γ(λ1), . . . ,Γ(λ1))ᵀ) T−1 = Γ(L), we obtain

IR = |z|L
bRc∑
k=0

Γ(L + kI)Γ(1− b− k)
(−|z|)k

k!

+ |z|L|z|1−b
bRc∑
k=0

Γ(L + (1− b+ k)I)Γ(b− (k + 1))
(−|z|)k

k!
.

Using Γ(L + kI) = (L)kΓ(L) for Gamma matrix functions and

(−1)kΓ(1− b− k) =
Γ(1− b)

(b)k

for Gamma functions and writing I = limR→∞ IR, we get

I = |z|L
∞∑
k=0

(L)k
(b)k

|z|k

k!
Γ(L)Γ(1− b)

+ |z|L|z|1−b
∞∑
k=0

(L + (1− b)I)k
(2− b)k

|z|k

k!
Γ(L + (1− b)I)Γ(b− 1)

= |z|L1F1(L; bI; z) Γ(L)Γ(1− b)

+ |z|L|z|1−b1F1(L + (1− b)I; (2− b)I; z) Γ(L + (1− b)I)Γ(b− 1).
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Since L and L+(1− b)I commute, also their Gamma matrix functions commute. There-
fore, we get

I = |z|L U(L, bI, z)Γ(L)Γ(L + (1− b)I).

In the next step, we find an integral representation for I. Therefore, we examine the
contour Cλi for R→∞ for each eigenvalue λi. We introduce the abbreviations

Iλi,C1 =
1

2πi

∫ −R
c

Γ(−x− iα)Γ(λi + x+ iα)Γ(λi + 1− b+ x+ iα)|z|−x−iαdx,

Iλi,C2 = − 1

2πi

∫ c+iα

c−iβ
Γ(R− t)Γ(λi −R+ t)Γ(λi + 1− b−R+ t)|z|R−tdt,

Iλi,C3 =
1

2πi

∫ c

−R
Γ(−x+ iβ)Γ(λi + x− iβ)Γ(λi + 1− b+ x− iβ)|z|−x+iβdx,

Iλi,C4 =
1

2πi

∫ c+iα

c−iβ
Γ(−s)Γ(λi + s)Γ(λi + 1− b+ s)|z|−sds.

Parametrising the contour, we obtain

Iλi,R = Iλi,C1 + Iλi,C2 + Iλi,C3 + Iλi,C4 .

Now, we show that Iλi,C1 → 0 and Iλi,C3 → 0 in a similar way as [96]. The Stirling
formula

|Γ(u+ iv)| .
√

2π|v|u−
1
2 e−

π
2
|v|

for the Gamma function with |u| finite and |v| large (see [26, p. 223]) gives us the
asymptotic inequalities

|Γ(−x− iα)| .
√

2πα−x−
1
2 e−

π
2
α,

|Γ(λi + x+ iα)| .
√

2π (α+ Im (λi))
Re (λi)+x− 1

2 e−
π
2

(α+Im (λi)),

|Γ(λi + 1− b+ x+ iα)| .
√

2π (α+ Im (λi))
Re (λi)+1−b+x− 1

2 e−
π
2

(α+Im (λi)).

Therefore,

|IC1 | ≤
√

2π

∫ −R
c
|Γ(−x+ iα)| |Γ(λi + x− iα)|

|Γ(λi + 1− b+ x− iα)| |z|−xeα arg(z)dx

.
√

2π

∫ −R
c

α−x−
1
2 (α+ Im (λi))

2 Re (λi)+2x−b

e−π Im (λi)|z|−xe−α( 3π
2
−arg(z))dx

and, since arg(z) < 3π
2 , we obtain

lim
α→∞

|Iλi,C1 | = 0.

Almost analogously, we find that

lim
β→∞

|Iλi,C3 | = 0.

In the last step, we analyse Iλi,C2 . We define

Jλi,R =
1

2πi

∫ c+i∞

c−i∞
Γ(R− t)Γ(λi −R+ t)Γ(λi + 1− b−R+ t)|z|R−tdt.
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Since t is complex valued, a slightly different calculation using the Stirling formula and
|Γ(z)| ≤ |Γ(Re (z))|, we obtain

lim
R→∞

|JR| = 0.

Finally, we get

I = lim
R→∞

Tdiag ((Iλ1,R, . . . ,IλN ,R)ᵀ) T−1 = Tdiag ((Iλ1,C4 , . . . ,IλN ,C4)ᵀ) T−1

=
1

2πi

∫ c+i∞

c−i∞
Γ(−s)Γ(L + sI)Γ(L + (1− b+ s)I)|z|−sds.

Combing this with the result from the residue theorem completes the proof.

In the following theorem, we take a closer look at the asymptotic behaviour whenever
|z| → ∞.

Theorem 19. Let L be a diagonalisable matrix. For |z| → ∞ the second Kummer
function behaves as

U(L, bI, z) ∼ |z|−L.

Proof. Fix R > 0. Similar to [96, p. 58], we define a contour integral

IR =
1

2πi

∮
C+R

Γ(−s)Γ(L + sI)Γ(L + (1− b+ s)I)|z|−sds

where the curve C+
R is constructed such that all poles of Γ(−s) lie inside and the poles

of Γ(L + sI) and Γ(L + (1 − b + s)I) outside. This is possible, because examining the
residues of the Gamma matrix function, we get

Γ(L + sI) =

∫ ∞
0

e−ttL+sI−Idt

=

∫ 1

0

∞∑
k=0

tL+(s+k−1)I (−1)k

k!
dt+

∫ ∞
1

e−ttL+sI−Idt

=
∞∑
k=0

∫ 1

0
e(L+sI+(k−1)I) ln(t) (−1)k

k!
dt+

∫ ∞
1

e−ttL+sI−Idt

=
∞∑
k=0

(∫ 0

−∞
e(L+sI+kI)udu

)
(−1)k

k!
+

∫ ∞
1

e−ttL+sI−Idt

=
∞∑
k=0

(−1)k

k!
(L + sI + kI)−1 +

∫ ∞
1

e−ttL+sI−Idt.

Obviously, Γ(L+ sI) has simple poles whenever det(L+ (s+ k)I) = 0 for k ∈ N. Hence,
Γ(L+sI) is singular if s = −λi−k for all eigenvalues λ1, . . . , λN of L. As |IR| is bounded
for large |z|, we can write

I = lim
R→∞

IR =

( ∞∑
k=0

Γ(L + kI)Γ(1− b− k)
(−|z|)−k

k!

)

by the residue theorem. Obviously, for |z| → ∞, the integral I converges to the unit
matrix. On the other hand we already know from Lemma 22 that

I = |z|L U(L, bI, z)Γ(L)Γ(L + (1− b)I).
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and, hence,
U(L, bI, z) = |z|−LIΓ(L)−1Γ(L + (1− b)I)−1.

From the eigenvalue decomposition L = TΛT−1, we get

lim
c→∞

e−cL = T lim
c→∞

diag
((
e−λ1c, . . . , e−λN c

)ᵀ)
T−1 = T0N×NT

−1 = 0N×N ,

where 0N×N is an N × N matrix with zero in all entries. If L is positive stable and
diagonalizable, Theorem 19 give us limx→∞U(L, bI, x) = 0N×N for x ∈ R. Hence,

lim
x→∞

FK(x) = lim
x→∞

U

(
−1

2
K,

1

2
I,
x2

2

)
= 0N×N

holds for negative stable matrices K.
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[67] L. Jódar and J. Cortés. Closed form general solution of the hypergeometric matrix
differential equation. Mathematical modelling in computer engineering sciences,
32(9):1017–1028, 2000.

[68] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer,
New York, Berlin, Heidelberg, Second edition, 1991.

86



Bibliography

[69] C. Kardaras, D. Kreher, and A. Nikeghbali. Strict local martingales and bubbles.
The Annals of Applied Probability, 25(4):1827–1867, 2015.

[70] M. Keller-Ressel. Simple examples of pure-jump strict local martingales. Stochastic
Processes and their Applications, 125(11):4142–4153, 2015.

[71] C. Kindleberger and R. Aliber. Manias, Panics and Crashes. A History of Finan-
cial Crises. Palgrave Macmillan, Basingstoke, Fifth edition, 2005.

[72] S. Kotani. On a Condition that One-Dimensional Diffusion Processes are Mar-
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[88] K. Sato. Lévy Processes and Infinitely Divisible Distributions. University Press,
Cambridge, 1999.

[89] J. Scheinkman and W. Xiong. Overconfidence and Speculative Bubbles. Journal
of Political Economy, 111:1183–1220, 2003.

[90] J. Scheinkman and W. Xiong. Heterogeneous Beliefs, Speculation and Trading
in Financial Markets. Lecture Notes in Mathematics. Paris-Princeton Lectures on
Mathematical Finance 2003, 1847(4):217–250, 2004.

[91] J. Shen and T. Siu. General equilibrium pricing with multiple dividend streams
and regime switching. Quantitative Finance, 15(9):1543–1557, 2015.

[92] Y. Shen and R. Elliott. Stochastic differential game, Esscher transform and general
equilibrium under a Markovian regime-switching Lévy model. Insurance: Mathe-
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