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Abstract
In this dissertation, we analyze various discretization of recent mathematical models for

turbulent flow modeling. These models share the same complexity. Indeed, they are partial

differential, stochastic, and nonlinear equations. By nonlinear, we mean the equations in-

volve terms which are non-globally Lipschitz or/and non-monotone. And stochastic means,

we add noise into the model to capture some disturbances which are inherent in nature.

These make the model even more realistic.

The results in this work would serve scientist to choose the appropriate numerical methods

for their simulations.

In the first part of this dissertation, we consider a stochastic evolution equation in its abstract

form. The noise added is a multiplicative noise defined in an infinite Hilbert space. The

nonlinear term is non-monotone. Models which fall into this abstract equation are the GOY

and Sabra shell models and also nonlinear heat equation, of course in presence of noise. The

numerical approximation is based on a semi and fully implicit Euler–Maruyama schemes for

the time discretization and a spectral Galerkin method for the space discretization. Our

result shows a convergence with rate in probability.

In the second part, we address the very well-known Navier–Stokes equations with an additive

noise. A projection method based on the penalized form of the equation is used. We consider

only time-discretization since different technicalities appearing after a space-discretization

may obscure the main difficulty of the projection method. This method breaks the saddle

point character of the Navier–Stokes system which is now a sequence of equations much

easier to solve. We show the convergence with rate in probability of the scheme for both

variables: velocity and pressure. In addition, we also prove the strong convergence of the

scheme.
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Zusammenfassung
In dieser Dissertation analysieren wir verschiedene Diskretisierungen neuester mathematis-

cher Modelle für die Modellierung turbulenter Strömungen. Diese Modelle teilen die gleiche

Komplexität. Tatsächlich sind sie teilweise differentielle, stochastische und nichtlineare Gle-

ichungen. Mit nichtlinear meinen wir, dass die Gleichungen Terme enthalten, die nicht-global

Lipschitz oder / und nicht-monoton sind. Und stochastisch bedeutet, wir fügen Rauschen

in das Modell ein, um einige Störungen einzufangen, die der Natur innewohnen. Dies macht

das Modell noch realistischer.

Die Ergebnisse dieser Arbeit würden demWissenschaftler helfen, die geeigneten numerischen

Methoden für ihre Simulationen auszuwählen.

Im ersten Teil dieser Arbeit betrachten wir eine stochastische Evolutionsgleichung in ihrer

abstrakten Form. Das hinzugefügte Rauschen ist ein multiplikatives Rauschen, das in

einem unendlichen Hilbert-Raum definiert ist. Der nichtlineare Term ist nicht monoton.

Modelle, die in diese abstrakte Gleichung fallen, sind die GOY- und Sabra-Schalenmodelle

und auch die nichtlineare Wärmeleitungsgleichung, natürlich in Anwesenheit von Rauschen.

Die numerische Approximation basiert auf einem halb - und vollständig impliziten Euler -

Maruyama - Schema für die Zeitdiskretisierung und einer spektralen Galerkin - Methode für

die Raumdiskretisierung. Unser Ergebnis zeigt eine Konvergenz mit der Wahrscheinlichkeit-

srate.

Im zweiten Teil werden die sehr bekannten Navier-Stokes-Gleichungen mit additivem Rauschen

behandelt. Eine Projektionsmethode basierend auf der bestraften Form der Gleichung

wird verwendet. Wir betrachten nur die Zeitdiskretisierung, da verschiedene nach einer

Raumdiskretisierung auftretende technische Details die Hauptschwierigkeit der Projektion-

smethode verdecken können. Diese Methode bricht den Sattelpunktcharakter des Navier -

Stokes - Systems, der jetzt eine viel leichter zu lösende Abfolge von Gleichungen ist. Wir

zeigen die Konvergenz mit der Wahrscheinlichkeitsrate des Schemas für beide Variablen:

Geschwindigkeit und Druck. Darüber hinaus beweisen wir auch die starke Konvergenz des

Systems.
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Chapter 1

Introduction

A fluid flow is usually described by a deterministic PDEs, the Navier–Stokes equations

(NS). When the fluid is Newtonian, and the flow is incompressible and homogeneous, these

equations are defined by the so called incompressible NS

⎧⎨⎩vt−νΔv+[v ·∇]v+∇q=f , in Rd,

divv=0, in Rd.
(0.1)

Here v={v(t,x) : t∈ [0,T ]} and q={q(t,x) : t∈ [0,T ]} are unknown vector fields on Rd, rep-

resenting, respectively, the velocity and the pressure fields of a fluid with kinematic viscosity

ν filling, for instance, the whole space Rd, in each point of Rd with d=2,3.

We stress that the Navier–Stokes equations are not the only mathematical models used in

fluid dynamics. Other models are used depending on the nature of the flow or the property

of the fluid. For instance, in rarefied flows when the flow is slower compared with the speed

of sound, the Boltzmann equation is often preferred. The Navier–Stokes equation is valid

only under the continuum hypothesis. In addition, it suffers from a perpetual competition

between the linear diffusion term νΔv and the nonlinear kinematic term [v ·∇]v. This is the

reason why problems are still open for the Navier–Stokes equations such as the existence,

uniqueness, regularity, and asymptotic behavior of the solution. Nonetheless, it has already

proven its worth for the last two centuries. Several applications in physics or engineering

1



Introduction. 2

have been made thank to the Navier–Stokes equations and many other applications are still

based on it. To name but a few, weather forecasting, aeronautic, astrophysics.

However attractive as it is, we cannot cover neither all the mathematical theory of NS nor

the beautiful history behind. The reader interested to the mathematical analysis of NS may

consult [19, 50, 90, 91] which we will often refer to in this dissertation. These references

concern the deterministic NS, that is every noise which may perturb the system is neglected.

But at fully developed turbulence, when the inertial effects are dominants compared with the

viscous forces, the flow reaches a violent state and considering noise into the system becomes

pertinent. Kolmogorov, in a series of papers [64, 65, 66], characterizes this phenomenon by a

cascade of energy. This starts from a large scale where the unstable energy is produced and

collapses towards smaller scales. This energy is eventually diffused by heat at the smallest

scale of the cascade also called Kolmogorov length scale and denoted η. This scale depends on

the Reynolds number denoted Re which roughly speaking measures the ratio of the inertial

effects over the viscous effects in the flow. In fact, η∼Re−3/4.

A direct approach in numerical simulation of turbulence flow requires to solve the NS in a

mesh smaller than the scale at which there is no turbulence at all, that is η. This approach

is referred to as Direct Numerical Simulation (DNS) and is a well known method in fluid

dynamics which consists to solve the NS directly without any turbulence modeling. But,

already for moderate Reynolds number Re∼1000 we would need to solve the equation in

a very thin mesh. Obviously, that would be computationally expensive or time consum-

ing. Due to its cost in terms of computational resources, using DNS is affordable only for

research purpose. Engineering applications must rely on turbulence modelings which are

computationally cheaper compare to the DNS. These include the Large Eddy Simulation

(LES) where only larger scales are considered and the Reynold Averaged Navier–Stokes

(RANS) where the flow is decomposed into small and large scales. In the next section, we

present two other turbulence modelings, among other: the Shell models and the stochastic

Navier–Stokes equations (SNS) which is very close the RANS. The first model is derived

from the spectral NS and is actually an approximation of this later by retaining with a

rigorous way only some wave numbers. Such approximation of the spectral NS has been

introduced by Obukhov (1971) and Gledzer (1973). Two examples are briefly described in

Section 1.2. In the second model we start with the RANS. Then, the velocity of the flow
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at small scales is assumed to be a stochastic process. In this last model, Birnir reports in

[15, 16] that at fully developed turbulence the random force which governs the flow takes

the form of a Lévy noise.

1.1 Stochastic models for fully developed turbulence

There are several turbulence modelings available in the literature at the moment and prob-

ably more already used in industry. Two type of models are treated in this dissertation and

on which we apply some numerical schemes: the SNS derived from the RANS and the Shell

models.

1.1.1 Reynold Averaged Navier–Stokes

Typically, it is common to use the Reynolds decomposition and analyze the flow as two

parts: a mean (or average) component (U ,P) which governs the large scale and a fluctuat-

ing component (u,p) which governs the small scale. Thus the instantaneous velocity and

pressure (v,q) can be written as:

v=U+u, q=P+p,

where the fluctuating velocity and pressure are stochastic processes with vanishing mean.

After substitution of v and q in (0.1) we have

⎧⎨⎩(U+u)t−νΔ(U+u)+div[(U+u)⊗(U+u)]+∇(P+p)=f , in Rd,

div(U+u)=0, in Rd.
(1.2)

Since we assume that u is a Gaussian noise with mean denoted by u=0 and the operation of

taking the expectation commutes with differential operators. An equation for the averaged

motion, also called the mean flow, can be derived by taking the mean of (1.2) which leads
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to the RANS ⎧⎨⎩U t−νΔU+[U ·∇]U+∇P=f−div(u⊗u), in Rd,

divU =0, in Rd.
(1.3)

Subtracting (1.2) from (1.3) gives an equation for the fluctuating velocity,

⎧⎨⎩ut−νΔu+[u ·∇]u+∇p=−[U ·∇]u− [u ·∇]U−div(u⊗u), in Rd,

divu=0, in Rd.
(1.4)

The presence of U in (1.4) characterizes the collapse of energy all the way down to the small

scale. While the so called eddy viscosity div(u⊗u) in (1.3) represents the force produced

from the small scale and acting on the large scale.

Due to the complexity of the flow at fully developed turbulence, simplifications are imposed

during the experiment and in theory as well while maintaining as much as possible the main

property of a real flow. For instance, in the concept of homogeneous turbulent flow intro-

duced by Taylor [88] (see also [7]), the fluctuating velocity u is statistically homogeneous.

This means that the fluctuating velocity is statistically invariant by translation. In practice,

this can be easily applied in a Variable Density Turbulence Tunnel Facility or VDTTF [18].

Through a VDTTF, the flow can be adjusted so that no direction are privileged and effects of

the boundaries are minimal. An homogeneous turbulent flow is consequently boundless and

the mean velocity gradient is spatially uniform [7, 52], i.e. ∇U =0. This concept implies,

among other, that the flow is boundless. However, in experiment, instead of the unbounded

space theory we must consider a “turbulent box” which is big enough to capture the integral

scales but smaller than the test duct. This leads to the study of a periodic boxed homoge-

neous fields. Therefore, (1.4) is supplemented with a periodic boundary condition which is

even more attractive for mathematical and numerical analysis.

1.1.2 Stochastic Navier–Stokes equations

The SNS has a very long history. The noise added is a term that captures small scales

perturbation which is inherent in nature. Different models lead to the stochastic version

of the NS including the models developed by Kraichnan [67], Frisch and Lesieur [51], and
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Mikulevicius and Rozovskii [59, 75]. In the present subsection, we introduce the model

derived recently by Birnir in [14, 16] for fully developed turbulence.

In homogeneous turbulence we can assume that ∇U =0, and because of the Galilean invari-

ance of the NS, we can restrict the study of (1.4) to the study of the following equation

⎧⎨⎩ut−νΔu+[u ·∇]u+∇p=−div(u⊗u), in Rd,

divu=0, in Rd.
(1.5)

One of the major issues in RANS is to solve the closure problem for the eddy viscosity. Using

probability theories, notably the Central Limit Theorem and Large Deviation Principle,

Birnir deals with this issue by introducing a stochastic forcing term � defined by

d�=
∑
k �=0

[
c
1/2
k dβk

t +dk|k|1/3dt+
∫
R

hk(t,z)N
k
(dt,dz)

]
ek(x),

where ek(x)=exp(2πikx). Here, βk
t is a standard Brownian motion, c

1/2
k and dk are co-

efficients that converge sufficiently fast enough to ensure convergence of the entire series.

These coefficients are determined to fit the data obtained from experiments [62]. If we let Nk

denotes the number of velocity jumps associated to the k-th wave number, N
k
is the com-

pensated jump, and hk measures the size of the jump. Hence, instead of (1.5) we consider

the stochastic partial differential equations (SPDEs)

⎧⎨⎩du+[−νΔu+[u ·∇]u+∇p]dt=d�, in Rd,

divu=0, in Rd.
(1.6)

1.2 Shell models for turbulent flow

In this section we adopt the following formulation of (0.1)

⎧⎨⎩∂tvj−ν∂kkvj+vk∂kvj+∂jq=fj,∂jvj =0,
(2.7)



Introduction. 6

where ∂jvk :=∂vk/∂xj, ∂jkv� :=∂
2v�/∂xj∂xk. Moreover, we use the Einstein convention of

summing repeated indices; ∂��f :=Δf denotes the Laplacian of f . Assuming the body force

f to be rotational, i.e. ∂jfj =0, we obtain a Poisson equation for the pressure by applying

the divergence operator to the NS

∂jjp=−∂jvk∂kvj. (2.8)

Shell models are based on the Fourier representation of the NS. Thus, it is obvious to define

the Fourier transform of the velocity field at ξ by

vj(ξ)=
1

(2π)3

∫
exp(−iξ ·x)vj(x)dx, (2.9)

where i=
√−1. Similar to the Fourier representation of NS the time evolution of the shell

variables is governed by an infinite system of coupled ordinary differential equations (ODEs).

1.2.1 Spectral Navier–Stokes equation

A Fourier transform of (2.7) and (2.8) gives

⎧⎪⎨⎪⎩
∂tvj(ξ)+νξkξkvj(ξ)+ i

∫
vk(ξ−ξ′)vj(ξ

′)k′kdξ
′+ iξjq(ξ)=fj(ξ),

ξ′jvj(ξ
′)=0,

(2.10)

and

−ξkξkq(ξ)=−
∫
k�k

′
mvm(ξ−ξ′)v�(ξ

′)dξ′. (2.11)

Inserting (2.11) into (2.10) gives the Fourier representation of NS

⎧⎪⎨⎪⎩
∂tvj(ξ)+νξ

2vj(ξ)+ iξj

∫ (
δjm− ξiξ

′
�

k2

)
vk(ξ

′)vm(ξ−ξ′)dξ′=fj(ξ),

ξ′jvj(ξ
′)=0.

(2.12)
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where ξ2= ξkξk. In a periodic box D=[−L,L]3, the Fourier transform is substituted by a

Fourier series and the integral in (2.12) becomes a sum

∂tvj(n)+νn
2vj(n)+ i(2π/L)nk

∑
n′

(
δjm− njn

′
m

n2

)
vk(n

′)vm(n−n′)=fj(n), (2.13)

where the wave vectors are ξ(n)=2πn/L. As mentioned in the beginning of this Chapter,

even for moderate Reynold number the number of waves N necessary to resolve scales larger

than η grows with Re as N ∼η−3∼Re9/4. Some sort of reduction has to be done in practice.

We divide the spectral space into concentric spheres of radii ξn=λ
n, where λ>1 is constant.

The set of wave numbers contained in the nth sphere not contained in the (n−1)th sphere

is called the nth shell, i.e. ξn−1< |ξ|<ξn. The equations are

v̇n=an−1vn−1vn−anv2n+1−νnvnδn>N +fδn,1, n∈N. (2.14)

1.2.2 Gledzer–Okhitani–Yamada model

If only interactions between the first and second neighbor shells are allowed, we obtain the

so called GOY model (see [78]),

v̇n= iξn

(
ãv∗n+1v

∗
n+2+ b̃v

∗
n−1v

∗
n+1+ c̃v

∗
n−2v

∗
n−1

)
−νξ2nvn+fδn,1, n∈N, (2.15)

where the body force f acts on the large-scale in order to preserve a statistically stationary

dynamical state. The parameters ã, b̃, and c̃ are introduced to conserve the energy E=∑
n|vn|2, i.e. ξn(ã+ b̃λ+ c̃λ2)=0. The following form of the GOY model can also be found

in literature,

v̇n= iξn

(
v∗n+1v

∗
n+2− ε

λ
v∗n−1v

∗
n+1+

ε−1

λ2
v∗n−2v

∗
n−1

)
−νξ2nvn+fδn,1, n∈N. (2.16)

Therefore, two free parameters define the model, ε and λ.
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1.2.3 Sabra model

An improvement of the GOY model is proposed in [73] and defined by

v̇n= i

(
ξn+1vn+2v

∗
n+1+− ε

λ
ξnvn+1v

∗
n−1−

ε−1

λ2
ξn−1vn−1vn−2

)
−νξ2nvn+fδn,4. (2.17)

As in the GOY model, the body force is active only for some small wave numbers. The

parameters ε and λ are chosen in such a way that the energy is conserved. In addition,

(2.17) fulfill the requirement of closing the triads if ξn defined a Fibonacci sequence, i.e.

ξn= ξn−1+ξn−2.

The aim of this dissertation is to investigate numerical schemes that can be used to solve

SPDEs such as (1.6), or (2.16) and (2.17) in presence of noise. Two different approaches

are presented for the two group of equations. The first one is based on a fully discretization

scheme for the Shell models while the second one is based on a time-discretization scheme

which can also be interpreted as a projection method for SNS. In Chapter 2, we treat an

abstract and quite general form of (2.16) and (2.17). The convergence with rate of a fully

implicit and semi-explicit schemes is proven. In Chapter 3, we present a time-discretization

of a stochastic Navier–Stokes equations. An interesting fact of the Navier–Stokes equation

is the presence of the pressure which maintains the incompressibility condition. The scheme

we use is based on the penalized version of the Navier–Stokes equation and the convergence

is obtained for both variables, velocity and pressure.



Chapter 2

Numerical approximation of

stochastic evolution equations:

Convergence in scale of Hilbert spaces

The present chapter is devoted to the numerical approximation of an abstract stochastic

nonlinear evolution equation in a separable Hilbert space H. Examples of equations which

fall into our framework include the GOY and Sabra shell models and a class of nonlinear heat

equations. The space-time numerical scheme is defined in terms of a Galerkin approximation

in space and a semi-implicit Euler–Maruyama scheme in time. We prove the convergence

in probability of our scheme by means of an estimate of the error on a localized set of

arbitrary large probability. Our error estimate is shown to hold in a more regular space

Vβ ⊂H with β∈ [0, 1
4
) and that the explicit rate of convergence of our scheme depends on

this parameter β. The results of this chapter will appear in Journal of computational and

applied mathematics:

H Bessaih, E Hausenblas, TA Randrianasolo, PA Razafimandimby, Numerical approximation

of stochastic evolution equations: Convergence in scale of Hilbert spaces.

9
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2.1 Introduction

Throughout this paper we fix a complete filtered probability space U=(Ω,F ,F,P) with the

filtration F={Ft;t≥0} satisfying the usual conditions. We also fix a separable Hilbert space

H equipped with a scalar product (·, ·) with the associated norm | · | and another separable

Hilbert space H . In this chapter, we analyze numerical approximations for an abstract

stochastic evolution equation of the form

⎧⎨⎩ du=−[Au+B(u,u)]dt+G(u)dW, t∈ [0,T ],

u(0)=u0,
(1.1)

where hereafter T >0 is a fixed number and A is a self-adjoint positive operators on H.

The operators B and G are nonlinear maps satisfying several technical assumptions to be

specified later and W ={W (t);0≤ t≤T} is a H -valued Wiener process.

The abstract equation (1.1) can describe several problems from different fields including

mathematical finance, electromagnetism, and fluid dynamic. Stochastic models have been

widely used to describe small fluctuations or perturbations which arise in nature. For a

more exhaustive introduction to the importance of stochastic models and the analysis of

stochastic partial differential equations, we refer the reader to [32, 58, 69, 81, 84].

Numerical analysis for stochastic partial differential equations (SPDEs) has known a strong

interest in the past decades. Many algorithms which are based on either finite difference

or finite element methods or spectral Galerkin methods (for the space discretization) and

on either Euler schemes or Crank-Nicholson or Runge-Kutta schemes (for the temporal dis-

cretization) have been introduced for both the linear and nonlinear cases and their rate of

convergence have been investigated widely. Here we should note that the orders of con-

vergence that are frequently analyzed are the weak and strong orders of convergence. The

literature on numerical analysis for SPDEs is now very extensive. Without being exhaustive,

we only cite amongst other the recent papers [2, 28, 29, 42, 71], the excellent review paper

[61] and references therein. Most of the literature deals with the stochastic heat equations

with globally Lipschitz nonlinearities, but there are also several papers that treat abstract
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stochastic evolution equations. For example, Gyongy and Millet in [57] investigated a gen-

eral evolution equation with an operator that has the strong monotone and global Lipschitz

properties. They were able to implement a space-time discretization and showed a rate of

convergence in mean under appropriate assumptions. Similar rate of convergence have been

obtained by Bessaih and Schurz in [13] for an equation with globally Lipschitz nonlinearities.

When a system of SPDEs with non-globally Lipschitz nonlinearities, such as the stochastic

Navier–Stokes equations, is considered the story is completely different. Indeed, in this case

the rate of convergence obtained is generally only in probability. This kind of convergence

was introduced for the first time by Printems in [82] and is well suited for SPDEs with

locally Lipschitz coefficients. When the stochastic perturbation is in an additive form (addi-

tive noise), then using a path wise argument one can prove a convergence in mean, we refer

to breckner2000galerkin in [20]. Let us mention that in this case, no rate of convergence can

be deduced.

Recent literatures involving nonlinear models with nonlinearities which are locally Lipschitz

are [10, 22, 30, 44] and references therein. In [22], martingale solutions to the incom-

pressible Navier–Stokes equations with Gaussian multiplicative noise are constructed from a

finite element based space-time discretizations. The authors of [30] proved the convergence

in probability with rates of an implicit and a semi-implicit numerical schemes by means of

a Gronwall argument. The main issue when the term B is not globally Lipschitz lies on

its interplay with the stochastic forcing, which prevents a Gronwall argument in the con-

text of expectations. This issue is for example solved in [20, 27] by the introduction of a

weight, which when carefully chosen contributes in removing unwanted terms and allows to

use Gronwall lemma. In [30], the authors use different approach by computing the error

estimates on a sample subset Ωk⊂Ω with large probability. In particular, the set Ωk is

carefully chosen so that the random variables ‖∇u�‖L2 are bounded as long as the events

are taken in Ωk, and limk↘0P(Ω\Ωk)=0. The result is then obtained using standard argu-

ments based on the Gronwall lemma. Other kinds of numerical algorithms have been used

in [10] for a 2D stochastic Navier–Stokes equations. There, a splitting up method has been

used and a rate of convergence in probability is obtained. A blending of a splitting scheme

and the method of cubature on Wiener space applied to a spectral Galerkin discretisation

of degree N is used in [44] to approximate the marginal distribution of the solution of the
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stochastic Navier–Stokes equations on the two-dimensional torus and rates of convergence

are also given. For the numerical analysis of other kind of stochastic nonlinear models that

enjoy the local Lipschitz condition, without being exhaustive, we refer to [41, 35, 17, 40] and

references therein. They include the stochastic Schrödinder, Burgers, and KdV equations.

In the present chapter, we are interested in the numerical treatment of the abstract stochastic

evolution equations (1.1). We first give a simple and short proof of the existence and

uniqueness of a mild solution and study the regularity of this solution. The result about the

existence of solution is based on a fixed point argument recently developed in [24]. Then,

we discretize (1.1) using a coupled Galerkin method and (semi-)implicit Euler scheme and

show convergence in probability with rates in Vβ :=D(Aβ). Regarding our approach it

is similar to [30] and [82], however, the results are different. Indeed, while [30] and [82]

establish their rates of convergence in the space H where the solution lives, we establish our

rate of convergence in Vβ ⊂H where β∈ [0, 1
4
) is arbitrary. Hence, our result does not follow

from the papers [30] and [82]. In contrast to the nonlinear term of Navier–Stokes equations

with periodic boundary condition treated in [30], our nonlinear term does not satisfy the

property 〈B(u,u),Au〉=0 which plays a crucial role in the analysis in [30]. We should also

point out that our model does not fall into the general framework of the papers [57] and

[13], see Remark 2.2.

Examples of semilinear equations which fall into our framework include the GOY and Sabra

shell models. These toy models are used to mimic some features of turbulent flows. It seems

that our work is the first one rigorously addressing the numerical approximation of such

models. Our result also confirm that, in term of numerical analysis, shell models behave

far better than the Navier–Stokes equations. On the theoretical point of view, we provide

a new and simple proof of the existence of solutions to stochastic shell models driven by

Gaussian multiplicative noise. On the physical point of view, it is also worth mentioning

that shell models of turbulence are toy models which consist of infinitely many nonlinear

differential equations having a structure similar to the Fourier representation of the Navier–

Stokes equations, see [43]. Moreover, they capture quite well the statistical properties of

three dimensional Navier–Stokes equations, like the Kolmogorov energy spectrum and the

intermittency scaling exponents for the high-order structure functions, see [43] and [54]. Due

to their success in the study of turbulence, new shell models have been derived by several
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prominent physicists for the investigation of the turbulence in magnetohydrodynamics, see

for instance [79].

Another example of system of equations which falls into our framework is a class of nonlinear

heat equations described in Section 2.5. We do not know whether our results can cover the

numerical analysis of 1D stochastic nonlinear heat equations driven by additive space-time

noise. Despite this fact we believe that our paper is still interesting as we are able to treat

a class of 2D stochastic nonlinear heat equations with locally Lipschitz coefficients and we

are not aware of results similar to ours. In fact, most of results related to stochastic heat

equations are either about 1D model, or d-dimensional, d∈{1,2,3}, models with globally

Lipschitz coefficients and deal with weak convergence or convergence in weaker norm, see

for instance [2, 29, 42, 71].

This chapter is organized as follows: in Section 2.2, we introduce the necessary notations and

the standing assumptions that will be used in the present work. In Section 2.3, we present

our numerical scheme and also discuss the stability and existence of solution at each time

step. The convergence of the proposed method is presented in Section 2.4. In Section 2.5 we

present the stochastic shell models for turbulence and a class of stochastic nonlinear heat

equations as motivating examples.

2.2 Notations, assumptions, preliminary results and

the main theorem

In this section we introduce the necessary notations and the standing assumptions that will

be used in the present work. We will also introduce our numerical scheme and state our

main result.

2.2.1 Assumptions and notations

Throughout this chapter, we fix a separable Hilbert space H with norm | · | and a fixed

orthonormal basis {ψn;n∈N}. We assume that we are given a linear operator A :D(A)⊂
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H→H which is a self-adjoint and positive operator such that the fixed orthonormal basis

{ψn;n∈N} satisfies

{ψn;n∈N}⊂D(A), Aψn=λnψn,

for an increasing sequence of positive numbers {λn;n∈N} with λn→∞ as n↗∞. It is clear

that −A is the infinitesimal generator of an analytic semigroup e−tA, t≥0, on H. For any

α∈R the domain of Aα denoted by Vα=D(Aα) is a separable Hilbert space when equipped

with the scalar product

((u,v))α=
∞∑
k=1

λ2αk ukvk, for u, v∈Vα. (2.2)

The norm associated to this scalar product will be denoted by ‖u‖α, u∈Vα. In what follows

we set V :=D(A
1
2 ).

Next, we consider a nonlinear map B(·, ·) :V×V→V∗ satisfying the following set of assump-

tions, where hereafter V∗ denotes the dual of the Banach space V.

(B1) There exists a constant C0>0 such that for any θ∈ [0, 1
2
) and γ∈ (0, 1

2
) satisfying

θ+γ∈ (0, 1
2
], we have

‖B(u,v)−B(x,y)‖−θ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0‖u−x‖ 1
2
−(θ+γ)(‖v‖γ+‖y‖γ)+‖v−y‖γ(‖u‖ 1

2
−(θ+γ)+‖x‖ 1

2
−(θ+γ))

for any u,x∈V 1
2
−(θ+γ) and v,y∈Vγ,

C0(‖u‖γ+‖x‖γ)‖v−y‖ 1
2
−(θ+γ)+‖u−x‖γ(‖v‖ 1

2
−(θ+γ)+‖y‖ 1

2
−(θ+γ))

for any v,y∈V 1
2
−(θ+γ) and u,x∈Vγ.

(2.3)

Due to the continuous embedding V−θ⊂V− 1
2
, θ∈ [0, 1

2
), (2.3) holds with θ and 1

2
−(θ+

γ) respectively replaced by 1
2
and 1

2
−γ where γ >0 is arbitrary.

In addition to the above, we assume that for any ε>0 there exists a constant C>0

such that

|B(u,v)|≤C|u|‖v‖ 1
2
+ε, for any u∈H,v∈V 1

2
+ε. (2.4)
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(B2) We assume that for any u,v∈V

〈Av+b(u,v),v〉≥‖v‖21
2
. (2.5)

(B3) We also assume that for any u∈H we have

B(0,u)=B(u,0)=0. (2.6)

Note that Assumptions (B1) and (B3) imply

(B1)′ There exists a constant C0>0 such that for any numbers θ∈ [0, 1
2
) and γ∈ (0, 1

2
) satis-

fying θ+γ∈ (0, 1
2
], we have

‖B(u,v)‖−θ≤C0

⎧⎪⎨⎪⎩‖u‖ 1
2
−(θ+γ)‖v‖γ for any u∈V 1

2
−(θ+γ) and v∈Vγ,

‖u‖γ‖v‖ 1
2
−(θ+γ) for any v∈V 1

2
−(θ+γ), and u∈Vγ.

(2.7)

If θ= 1
2
, then (2.7) holds with 1

2
−(θ+γ) replaced by 1

2
−γ where γ >0 is arbitrary.

Let {wj; j∈N} be a sequence of mutually independent and identically distributed standard

Brownian motions on U. Let H be separable Hilbert space and L1(H ) be the space of all

trace class operators on H . Recall that if Q∈L1(H ) is a symmetric, positive operator and

{ϕj;j∈N} is an orthonormal basis of H consisting of eigenvectors of Q, then the series

W (t)=
∞∑
j=1

√
qjwj(t)ϕj, t∈ [0,T ],

where {qj; j∈N} are the eigenvalues of Q, converges in L2(Ω;C([0,T ];H )) and it defines

an H -valued Wiener process with covariance operator Q. Furthermore, for any positive

integer �>0 there exists a constant C�>0 such that

E‖W (t)−W (s)‖2�H ≤C�|t−s|� (TrQ)� , (2.8)

for any t,s≥0 with t �=0. Before proceeding further we recall few facts about stochastic

integral. Let K be a separable Hilbert space, L (H ,K) be the space of all bounded linear
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K-valued operators defined on H , M 2
T (K) be the space of all equivalence classes of F-

progressively measurable processes Ψ :Ω× [0,T ]→K satisfying

E

∫ T

0

‖Ψ(s)‖2Kds<∞.

IfQ∈L1(H ) is a symmetric, positive and trace class operator thenQ
1
2 ∈L2(H ) and for any

Ψ∈L (H ,K) we have Ψ◦Q 1
2 ∈L2(H ,K), where L2(H ,K) (with L2(H ) :=L2(H ,H ))

is the Hilbert space of all operators Ψ∈L (H ,K) satisfying

‖Ψ‖2L2(H ,K)=
∞∑
j=1

‖Ψϕj‖2K<∞.

Furthermore, from the theory of stochastic integration on infinite dimensional Hilbert space,

see [36], for any L (H ,K)-valued process Ψ such that Ψ◦Q1/2∈M 2
T (L2(H ,K)) the process

M defined by

M(t)=

∫ t

0

Ψ(s)dW (s),t∈ [0,T ],

is a K-valued martingale. Moreover, we have the following Itô’s isometry

E

(∥∥∥∥∫ t

0

Ψ(s)dW (s)

∥∥∥∥2

K

)
=E

(∫ t

0

‖Ψ(s)Q
1
2‖2L2(H ,K)ds

)
, ∀t∈ [0,T ],

and the Burkholder-Davis-Gundy inequality

E

(
sup
0≤s≤t

∥∥∥∥∫ s

0

Ψ(τ)dW (τ)

∥∥∥∥q

K

)
≤CqE

(∫ t

0

‖Ψ(s)Q
1
2‖2L2(H ,K)ds

) q
2

, ∀t∈ [0,T ], ∀q∈ (1,∞).

Now, we impose the following set of conditions on the nonlinear term G(·) and the Wiener

process W .

(N) Let H be a separable Hilbert space. We assume that the driving noise W is a H -

valued Wiener process with a positive and symmetric covariance operator Q∈L1(H ).
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(G) We assume that the nonlinear function G :H→L (H ,V 1
4
) is measurable and that

there exists a constant C1>0 such that for any u∈H, v∈H we have

‖G(u)−G(v)‖L (H ,V 1
4
)≤C1|u−v|.
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Remark 2.1.

(a) Note that the above assumption implies that G :H→L (H ,H) is globally Lipschitz and

of at most linear growth, i.e, there exists a constant C2>0 such that

‖G(u)−G(v)‖L (H ,H)≤C2|u−v|,
|G(u)|≤C2(1+ |u|),

for any u, v∈H.

(b) There also exists a number C3>0 such that

‖G(u)−G(v)‖L (H ,V 1
4
)≤C3‖u−v‖ 1

4
,

‖G(u)‖L (H ,V 1
4
)≤C3(1+‖u‖ 1

4
),

for any u, v∈V 1
4
.

(c) Owing to item (a) of the present remark, if u∈M 2
T (H), then G(u)◦Q

1
2 ∈M 2

T (L2(H ,H))

and the stochastic integral
∫ t

0
G(u(s))dW (s) is a well defined H-valued martingale.

To close the current subsection we formulate the following remark.

Remark 2.2. Our assumptions on our problem do not imply the assumptions in neither

[57] nor [13]. To justify this claim assume that the coefficient of the noise G of our paper

and those of [57] and [13] are both zero. Let us now set

A(t,u)=−Au−B(u,u),

which basically corresponds to the drift in both [57] and [13]. For the sake of simplicity we

take θ=0 and γ= 1
4
in our assumption (B1). The spaces H and V in [57] and [13] are

respectively V0 and V 1
2
in our framework. The map A(t,u) defined above satisfies

〈A(t,u)−A(t,v),u−v〉≤−|u−v|2+C0|u−v|‖u−v‖ 1
4

(
‖u‖ 1

4
+‖v‖ 1

4

)
.

This implies that our assumptions does not imply neither [57, Assumptions 2.1(i) and

(2.2)(1)] nor [13, Assumption (H2)].
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2.2.2 Preliminary results

In this subsection we recall and derive some results that will be used in the remaining part

of the paper. To this end, we first define the notion of solution of (1.1).

Definition 2.3. An F-adapted process u is called a weak solution of (1.1) (in the sense of

PDEs) if the following conditions are satisfied

(i) u∈L2(0,T ;V)∩C([0,T ];H) P-a.s.,

(ii) for every t∈ [0,T ] we have P-a.s.

(u(t),φ)=(u0,φ)−
∫ t

0

(〈Au(s)+b(u(s),u(s)),φ〉)ds+
∫ t

0

〈φ,G(u(s))dW (s)〉, (2.9)

for any φ∈V.

Definition 2.4. An F-adapted process u∈C([0,T ];H) P-a.s. is called a mild solution to (1.1)

if for every t∈ [0,T ],

u(t)= e−tAu0+

∫ t

0

e−(t−r)AB(u(r),u(r))dr+

∫ t

0

e−(t−r)AG(u(r))dW (r), P-a.s. (2.10)

Remark 2.5. Observe that if u∈L2(0,T ;V)∩C([0,T ],H) is a mild solution to (1.1), then

for any t>s≥0,

u(t)= e−(t−s)Au(s)+

∫ t

s

e−(t−r)AB(u(r),u(r))dr+

∫ t

s

e−(t−r)AG(u(r))dW (r), P-a.s.

In fact, we have

u(t)=e−(t−s)A

(
e−sAu0+

∫ s

0

e−(s−r)AB(u(r),u(r))dr+

∫ s

0

e−(s−r)AG(u(r))dW (r)

)
+

∫ t

s

e−(t−r)AB(u(r),u(r))dr+

∫ t

s

e−(t−r)AG(u(r))dW (r)

=e−(t−s)Au(s)+

∫ t

s

e−(t−r)AB(u(r),u(r))dr+

∫ t

s

e−(t−r)AG(u(r))dW (r), P-a.s.

This remark is used later to prove a very important lemma for our analysis, see Lemma 2.12.

Next, we state and give a short proof of the following results.
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Proposition 2.6. If the assumptions (B1) to (B3) hold and (G) is satisfied with V 1
4

replaced by H and u0∈L2(Ω,H), then the problem (1.1) has a unique global mild, which is

also a weak, solution u. Moreover, if u0∈L2p(Ω,H) for any real number p∈ [2,8], then there

exists a constant C>0 such that

E sup
t∈[0,T ]

|u(t)|2p+E

∫ T

0

|u(s)|2p−2|A 1
2u(s)|2ds≤C(1+E|u0|2p), (2.11)

and

E

(∫ T

0

|A 1
2u(s)|2ds

)p

≤C(1+E|u0|2p). (2.12)

If, in addition, Assumption (G) is satisfied and u0∈Lp(Ω,V 1
4
) with p∈ [2,8], then there

exists a constant C>0 such that

E sup
t∈[0,T ]

‖u(t)‖p1
4

+E

(∫ T

0

‖u(s)‖23
4
ds

)p

≤C(1+E‖u0‖p1
4

+(E|u0|2p)2). (2.13)

Proof. Let us first prove the existence of a local mild solution. For this purpose, we study the

properties of B in order to apply a contraction principle as in [24, Theorem 3.15]. Let B(·)
be the mapping defined by B(x)=B(x,x) for any x∈Vβ. Let β∈ (0, 1

2
). Using Assumptions

(B1) with θ= 1
2
−β, γ=β, we derive that

‖B(x)−B(y)‖β− 1
2
≤C0|x−y|(‖x‖β+‖y‖β)+C‖x−y‖β(|x|+ |y|), (2.14)

for any x,y∈Vβ. Since, by [92, Theorem 1.18.10, pp 141], Vβ coincides with the complex

interpolation [H,D(A
1
2 )]2β, we infer from the interpolation inequality [92, Theorem 1.9.3, pp

59] and (2.14) that

‖B(x)−B(y)‖β− 1
2
≤C0|x−y|(|x|1−2β‖x‖2β1

2

+ |y|1−2β‖y‖2β1
2

)

+C‖x−y‖2β1
2

|x−y|1−2β(|x|+ |y|),
(2.15)

for any x,y∈V. Now, we denote by XT the Banach space C([0,T ];H)∩L2(0,T ;V) endowed

with the norm

‖x‖XT
= sup

t∈[0,T ]

|x(t)|+
(∫ T

0

‖x(t)‖21
2
dt

) 1
2

.
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We recall the following classical result, see [37, Theorem 3, pp 520].

The linear map Λ :L2(0,T ;V∗)�f �→x(·)=
∫ ·

0

e−(·−r)Af(r)dr∈XT is continuous. (2.16)

Thus, thanks to (2.15), (2.16), and Assumption (G) we can apply [24, Theorem 3.15] to

infer the existence of a unique local mild solution u with lifespan τ of (1.1) (we refer to [24,

Definition 3.1] for the definition of local solution). Let {τj; j∈N} be an increasing sequence

of stopping times converging almost surely to the lifespan τ . Using the equivalence lemma

in [36, Proposition 6.5] we can easily prove that the local mild solution is also a local weak

solution satisfying (2.9) with t replaced by t∧τj, j∈N. Now, we can prove by arguing as

in [25, Appendix A] or [27, Proof of Theorem 4.4] that the local solution u satisfies (2.11)

uniformly w.r.t. j∈N. With this observation along with an argument similar to [24, Proof of

Theorem 2.10] we conclude that (1.1) admits a global solution (i.e., τ =T a.s.) u satisfying

(2.11) and u∈XT almost-surely.

As mentioned earlier the proof follows a similar argument as in [25, Appendix A], but for the

sake of completeness we sketch the proof of (2.11). We apply Itô’s formula first to | · |2 and

the process u(·∧τj) and then to the map x→xp p≥2 and the process |u(·∧τj)|2. Then,

using the assumption (B2) and (G) we infer that there exists a constant C>0 such that

for any j∈N

sup
t∈[0,T ]

|u(t∧τj))|2p+
∫ T

0

|u(s)|2p−2|A 1
2u(s)|2ds≤CE|u0|2p+C

∫ T

0

|u(s∧τj)|2p−2|(1+ |u(s∧τj)|2)ds

+2p sup
t∈[0,T ]

∫ t∧τj

0

|u(s)|2p−2〈u(s),G(u(s))dW (s)〉.

Using the Burkholder–Holder–Davis inequality we deduce that

E sup
t∈[0,T ]

∫ t∧τj

0

|u(s)|2p−2〈G(u(s)),u(s)〉dW (s)≤E

(∫ T

0

(|u(s∧τj)|4pds
)1/2

+E

(∫ T

0

(|u(s∧τj)|4p−2ds

)1/2

.
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Using Young’s inequality, we infer that for any ε∈ (0, 1
2
) there exists a constant C(ε)>0 such

that

E

(∫ T

0

(|u(s∧τj)|4pds
)1/2

≤ εE sup
t∈[0,T ]

|u(t∧τj))|2p+C(ε)E
∫ T

0

sup
s∈[0,t]

|u(s∧τj)|2pdt.

For the second integral, we need to use Hölder’s inequality and then Young’s inequality and

the previous calculations

E

(∫ T

0

(|u(s∧τj)|4p−2ds

)1/2

≤ εE sup
t∈[0,T ]

|u(t∧τj))|2p+C(ε)E
∫ T

0

sup
s∈[0,t]

|u(s∧τj)|2pdt+T
1
2p .

Now collecting all the estimates we get that

(1−2ε)E sup
t∈[0,T ]

|u(t∧τj))|2p+
∫ T

0

E|u(s)|2p−2|A 1
2u(s)|2ds≤C(1+E|u0|2p)

+CE
∫ T

0

sup
s∈[0,t]

|u(s∧τj)|2pdt.

Now, choosing ε= 1
4
, applying Gronwall’s lemma and passing to the limit as j→∞ complete

the proof of (2.11). The estimate (2.12) easily follows from (2.11), so we omit its proof.

We shall now prove the inequality (2.13). To start with, we will apply Itô’s formula to

ϕ(u)=‖u‖21
4

. Note that thanks to the estimates (2.11) and (2.12), Assumptions (B1) and

(G) we readily check that there exists a constant C>0 such that

E

∫ T

0

[
‖Au+B(u,u)‖2− 1

2
+‖G(u)‖2L (H ,V 1

4
)

]
(t)dt≤C.

Hence the general Itô’s formula in [68, Section 3] is applicable to (1.1) and the functional

ϕ(u)(t)=‖u(t)‖21
4

. Thus, an application of Itô’s formula to the functional ϕ(u)(t∧τj)=
‖u(t∧τj)‖21

4

gives

ϕ(u(t∧τj))=ϕ(u(0))+
∫ t∧τj

0

ϕ′(u(s))du(s)+ 1

2

∫ t∧τj

0

Tr(ϕ′′(u(s))G(u(s))Q(Gu(s))∗)ds,

which along with the inequality 1
2
‖ϕ′′(u)‖≤1, where the norm is understood as the norm

of a bilinear map, implies
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‖u(t∧τj)‖21
4
+2

∫ t∧τj

0

(
‖u(s)‖23

4
+2〈A 1

2u(s),B(u(s),u(s))〉
)
ds

≤‖u0‖21
4
+2

∫ t∧τj

0

〈A 1
2u(s),G(u(s))dW (s)〉

+CTrQ

∫ t∧τj

0

‖G(u(s))‖2L (H ,V 1
4
)ds.

(2.17)

Since the embedding V 1
2
+α⊂V2α is continuous for any α∈ [0, 1

2
], we can use Assumptions

(B1)′ and the Cauchy inequality to infer that

∣∣∣∣∫ t∧τj

0

〈A 1
2u(s),B(u(s),u(s))〉ds

∣∣∣∣≤C∫ t∧τj

0

‖u(s)‖ 1
2
|B(u(s),u(s))|ds

≤ 1

2

∫ t∧τj

0

‖u(s)‖23
4
ds+C

∫ t∧τj

0

‖u(s)‖21
2
−γ
‖u(s)‖2γds,

for some γ∈ (0, 1
2
). From an application of a complex interpolation inequality, see [92,

Theorem 1.9.3, pp 59], we infer that

∣∣∣∣∫ T

0

〈A 1
2u(s),B(u(s),u(s))〉ds

∣∣∣∣≤1

2

∫ T

0

‖u(s)‖23
4
ds+

∫ T

0

|u(s)|2‖u(s)‖21
2
ds.

Plugging the latter inequality into (2.17), using the assumption on G we obtain

‖u(t∧τj)‖21
4
+
3

2

∫ t∧τj

0

‖u(s)‖23
4
ds≤‖u(0)‖21

4
+C sup

s∈[0,T ]

|u(s)|2
∫ T

0

‖u(s)‖21
2
ds

+CT +C

∫ T

0

‖u(s)‖21
4
ds+2

∣∣∣∣∫ t∧τj

0

〈A 1
4u(s),A

1
4G(u(s))dW (s)〉

∣∣∣∣.
(2.18)

Taking the supremum over t∈ [0,T ], then raising both sides of the resulting inequality to the

power p/2, taking the mathematical expectation, and finally using the Burkholder–Davis–

Gundy inequality yield



Chapter 2. Numerical approximation of stochastic evolution equations 24

E sup
s∈[0,t]

‖u(s∧τj)‖p1
4

+2E

(∫ t∧τj

0

‖u(s)‖23
4
ds

)p/2

≤
(
CE‖u(0)‖p1

4

+CT +CE

[∫ t∧τj

0

‖u(s)‖21
4
ds

] p
2

)

+C

(
E sup

s∈[0,T ]

|u(s)|2p
) 1

2 [
E

(∫ T

0

‖u(s)‖21
2
ds

)p] 1
2

+2CE

(∫ t∧τj

0

|A 1
4u(s)|2‖G(u(s))‖2L (H ,V 1

4
)ds

) p
4

.

(2.19)

Here we have used the fact that for any integer � and n we can find a constant C�,n such

that
n∑

i=1

a�i ≤
(

n∑
i=1

ai

)�

≤C�,n

n∑
i=1

a�i (2.20)

for a sequence of non-negative numbers {ai; i=1,2, . . . ,n}.

Using the assumptions on G and Young’s inequality we infer that there exists a constant

C>0 such that for any j∈N

E

(∫ t∧τj

0

|A 1
4u(s)|2‖G(u(s))‖2L (H ,V 1

4
)ds

) p
4

≤CT +
1

4
E sup

s∈[0,t]
‖u(s∧τj)‖p1

4

+CE

[∫ t∧τj

0

‖u(s)‖21
4
ds

] p
2

,

which along with (2.19), (2.11), and (2.12) implies

E sup
s∈[0,t]

‖u(s∧τj)‖p1
4

+2E

(∫ t∧τj

0

‖u(s)‖23
4
ds

) p
2

≤E‖u(0)‖p1
4

+C2(1+E|u0|2p)2+CT

+E

[∫ t∧τj

0

‖u(s)‖21
4
ds

] p
2

.

Now, we infer from the interpolation inequality [92, Theorem 1.9.3, pp 59], (2.11) and (2.12)

that there exists a constant C>0 such that for any j∈N

E

[∫ t∧τj

0

‖u(s)‖21
4
ds

] p
2

≤T p
2E

(
sup

s∈[0,T ]

|u(s)| p2
[∫ T

0

‖u(s)‖2ds
] p

4

)
≤CT.
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Hence,

E sup
s∈[0,t]

‖u(s∧τj)‖p1
4

≤CT (1+E‖u(0)‖p1
4

+(E|u0|2p)2),

from which along with a passage to the limit we readily complete the proof of the proposition.

2.2.3 The numerical scheme and the main result

Let N be a positive integer, HN ⊂H the linear space spanned by {ψn; n=1, . . . ,N}, and
πN :H→HN the orthogonal projection of H onto the finite dimensional subspace HN . The

projection of u by πN is denoted by

uN :=πNu=
N∑

n=1

(ψn,u)ψn, (2.21)

for u∈H. The Galerkin approximation of the SPDEs (1.1) reads

duN =[πNAu
N +πNB(u

N ,uN)]dt+πNG(u
N)dW (t), uN(0)=πNu0. (2.22)

Due to the assumptions (B1)-(B3) and (G), we can use Proposition 2.6 to prove that (2.22)

has a global weak solution.

To derive an approximation of the exact solution u of (1.1) we construct an approximation Uj

of the Galerkin solution uN . To this end, letM be a positive integer and IM =([tm,tm+1))
M
m=0

an equidistant grid of mesh-size k= tm+1− tm covering [0,T ]. Now, for any j∈{0, . . . ,M−1}
we look for a sequence of F-adapted random variables Uj ∈HN , j=0,1, . . . ,M such that for

any w∈V

⎧⎨⎩U0=πNu0,

〈Uj+1−Uj+k[πNAU
j+1+πNB(U

j,Uj+1)], w〉= 〈w,πNG(Uj)Δj+1W 〉,
(2.23)

where Δj+1W :=W (tj+1)−W (tj), j∈{0, . . . ,M−1}, is an independent and identically dis-

tributed random variables. We will justify in the following proposition that for a given
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U0=πNu0 the numerical scheme (2.23) admits at least one solution U j ∈HN , j∈{1, . . . ,M}
and that (2.23) is stable in H and D(A

1
4 ).

Proposition 2.7. Let the assumptions (B1)-(B3) and (G) hold. Let N and M be two fixed

positive integers and u0∈L2p(Ω;H) for any integer p∈ [2,4]. Then, for any j∈{1, . . . ,M}
there exists at least a Ftj -measurable random variable Uj ∈HN satisfying (2.23). Moreover,

there exists a constant C>0 (depending only on T and TrQ ) such that

E max
0≤m≤M

|Um|2+
M−1∑
j=0

|Uj+1−Uj|2+2kE
M∑
j=1

‖Uj‖21
2
≤C(E|u0|2+1), (2.24)

E

[
max

1≤m≤M
|Um|2p +k

M∑
j=1

|Uj|2p−1‖Uj‖2
1
2

]
≤C(1+E|u0|2p−1

), (2.25)

and

E

[
k

M∑
j=1

‖Uj‖2
1
2

]2p−1

≤C(1+E|u0|2p). (2.26)

Furthermore, if u0∈L8(Ω,D(A
1
4 )), then there exists a constant C>0 such that

E max
1≤m≤M

‖Um‖21
4
+E

M−1∑
j=0

‖Uj+1−Uj‖21
4
+kE

M∑
j=1

‖Uj‖23
4
≤C, (2.27)

and

E max
1≤m≤M

‖Um‖41
4
+E

(M−1∑
j=0

‖Uj+1−Uj‖21
4

)2

+k2E

( M∑
j=1

‖Uj‖23
4

)2

≤C (2.28)

Proof. The detailed proofs of the existence, measurability, and the estimates (2.27) and

(2.28) will be given in Section 2.3. Thanks to the assumption (B2), the proof of the in-

equalities (2.24)-(2.26) is very similar to the proof of [30], so we omit it.

We should note that the estimates (2.27) and (2.28) hold even if u0∈L4(Ω,D(A
1
4 )), but for

the sake of consistency we take u0∈L8(Ω,D(A
1
4 )).

Now, we proceed to the statement of the main result of this paper.
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Theorem 2.8. Let the assumptions (B1)-(B3) and (G) hold and assume that u0∈L16(Ω;H)∩
L8(Ω;V 1

4
). Then for any β∈ [0, 1

4
), there exists a constant k0>0 such that for any small

number ε>0 we have

max
1≤j≤M

E
(
1Ωk

‖u(tj)−Uj‖2β
)

+2kE

(
1Ωk

M∑
j=1

‖u(tj)−Uj‖21
2
+β

)
<k0k

−2ε[k2(
1
4
−β)+λ

−2( 1
4
−β)

N ],
(2.29)

where the set Ωk is defined by

Ωk=

{
ω∈Ω: sup

t∈[0,T ]

‖u(t,ω)‖21
4
< logk−ε, max

0≤j≤M
‖Uj(ω)‖21

4
< logk−ε

}
.

Proof. The proof of this theorem will be given in Section 2.4.

Remark 2.9. Note that owing to (2.13) and (2.28) and the Markov inequality it is not

difficult to prove that the set Ωk satisfies

lim
k↘0

P[Ω\Ωk]=0.

Corollary 2.10. If all the assumptions of Theorem 2.8 are satisfied, then the solution

{Uj; j=1, 2, . . . ,M} of the numerical scheme (2.23) converges in probability in the Hilbert

space Vβ, β∈ [0, 1
4
). More precisely, for any small number ε>0, any θ0∈

(
0, 1

4
−β−ε) and

θ1∈ (0, 1
4
−β) we have

lim
Θ↗∞

lim
k↘0

lim
N↗∞

max
1≤j≤M

P

(
‖u(tj)−Uj‖β+k 1

2

( M∑
j=1

‖u(tj)−Uj‖21
2
+β

) 1
2

≥Θ[kθ0 +Λ−θ1
N ]

)
=0.

(2.30)

Proof. To shorten notation let us set ej :=u(tj)−Uj and

ΩΘ
k,N ={ω∈Ω; ‖ej‖2β+k

M∑
j=1

‖ej‖21
2
+β

≥Θ[kθ0 +Λ−θ1
N ]},

for any positive numbersM and k. Let Ωk be as in the statement of Theorem 2.8. Owing to

(2.29), (2.13), (2.28) and the Chebychev-Markov inequality, we can find a constant C̃5>0
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such that

P
(
ΩΘ

k,N

)
=P(ΩΘ

k,N ∩Ωk)+P(ΩΘ
k,N ∩Ωc

k)

≤P(ΩΘ
k,N ∩Ωk)+P(Ωc

k)

≤ k0
Θ
k2(

1
4
−β)−2ε−2θ0 +

k0
Θ
k−2ελ

−2( 1
4
−β)+2θ1

N +
C̃5

logk−ε
.

Letting N↗∞, then k↘0, and finally Θ↗∞ in the last line we easily conclude the proof

of the corollary.

To close this section let us make some few remarks. Instead of the scheme (2.23) we could

also use a fully-implicit scheme. More precisely, for any j∈{0, . . . ,M−1} we look for a

Ftj -measurable random variable U j ∈HN such that for any w∈V

⎧⎨⎩U0=πNu0,

〈U j+1−U j+k[πNAU j+1+πNB(U j+1,U j+1)], w〉= 〈w,πNG(U j)Δj+1W 〉,
(2.31)

where Δj+1W :=W (tj+1)−W (tj), j∈{0, . . . ,M−1}. We have the following theorem:

Theorem 2.11. Let the assumptions (B1)-(B3) and (G) hold and assume that u0∈L16(Ω;H)∩
L8(Ω;V 1

4
). Let N and M be two fixed positive integers. Then,

(a) for any j∈{0, . . . ,M−1} there exists a unique Ftj -measurable random variable U j ∈HN

satisfying (2.31) and the estimates (2.24) and (2.28).

(b) For any β∈ [0, 1
4
) there exists a constant k0>0 such that for any small number ε>0

we have

max
1≤j≤M

E
(
1Ωk

‖u(tj)−U j‖2β
)

+2kE

(
1Ωk

M∑
j=1

‖u(tj)−U j‖21
2
+β

)
<k0k

−2ε[k2(
1
4
−β)+λ

−2( 1
4
−β)

N ],

where

Ωk=

{
ω : sup

t∈[0,T ]

‖u(t,ω)‖21
4
< logk−ε, max

0≤j≤M
‖U j(ω)‖21

4
< logk−ε

}
.
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(c) Moreover, for any small number ε>0, any θ0∈
(
0, 1

4
−β−ε) and θ1∈ (0, 1

4
−β)

lim
Θ↗∞

lim
k↘0

lim
N↗∞

max
1≤j≤M

P

⎛⎝‖u(tj)−U j‖2β+k
1
2

(
M∑
j=1

‖u(tj)−U j‖21
2
+β

) 1
2

≥Θ[kθ0 +λ−θ1
N ]

⎞⎠=0.

Proof. The arguments for the proof of this theorem are very similar to those of the proofs

of Proposition 2.7, Theorem 2.8, and Corollary 2.10, thus we omit them.

2.3 Existence and stability analysis of the scheme: Proof

of Proposition 2.7

In this section, we will show that for any j∈{0, . . . ,M−1} the numerical scheme (2.23)

admits at least one solution Uj ∈HN . We will also show that (2.23) is stable in D(A
1
4 ), see

Proposition 2.7 for more precision.

Proof of Proposition 2.7. As we mentioned in Subsection 2.2.3 we will only prove the ex-

istence, measurability, and the estimates (2.27) and (2.28). The proof of the inequalities

(2.24)-(2.26) will be omitted because it is very similar to the proof of [30] (see also [22]).

Proof of the existence. We first establish that for any j∈{0, . . . ,M−1} there exists Uj ∈HN

satisfying the numerical scheme (2.23). To this end, let us fix ω∈Ω and for a given Uj ∈HN

consider the map Λj
ω :HN →HN defined by

〈Λj
ω(v),ψ〉= 〈v−Uj(ω),ψ〉+k〈Av+πNB(Uj(ω),v),ψ〉−〈ψ,πNG(Uj(ω))Δj+1W (ω)〉

for any ψ∈HN . Note that since HN ⊂D(A) the map Λj
ω is well-defined. From assumptions

(B1) and (G) and the linearity of A, it is clear that for given Uj the map Λj
ω is continuous.

Furthermore, using Hölder’s inequality, the fact that λ1|ψ|2≤‖ψ‖21
2

, ψ∈V and assumptions

(B2) and (G) we derive that

〈Λj
ωv,v〉≥|v|2

(
λ1k+

1

2
− k

2

)
− |Uj(ω)|2

2

(
1+‖Δj+1W (ω)‖2H C2

2

)− 1

2
‖Δj+1W (ω)‖2H C2

2

≥γ|v|2−Γj
ω.
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Since k<1, and by Assumption (N), ‖Δj+1W‖2H <∞, the constant γ is positive and

μj =
√

Γj
ω

γ
<∞ whenever |Uj|2<∞. Thus, we have 〈Λj

ωv,v〉≥0 for any v∈Hj
N(ω) :={ψ∈

Hn; |ψ|=Rμj} where R>1 is an arbitrary constant. Since U0=πNu0 is given, we can con-

clude from the above observations and Brouwer fixed point theorem that there exists at least

one U1∈HN satisfying

Λ0
ω(U

1)=0 and |U1|≤Rμ0.

In a similar way, assuming that Uj ∈HN , we infer that there exists at least one Uj+1∈HN

such that

Λj
ω(U

j+1)=0 and |Uj+1|≤Rμj.

Therefore, we have to prove by induction that given U0∈HN and a H -valued Wiener process

W , for each j, there exists a sequence {Uj; j=1, . . . ,M}⊂HN satisfying the algorithm (2.23).

Proof of the measurability. In order to prove the Ftj -measurability of Uj it is sufficient to

show that for each j∈{1, . . . ,M} one can find a Borel measurable map Ej :HN ×H →HN

such that Uj =Ej(U
j−1,ΔjW ). In fact, if such claim is true then by exploiting the Ftj -

measurability of ΔjW one can argue by induction and show that if U0 is F0-measurable

then Ej(U
j−1,ΔjW ) is Ftj -measurable, hence Uj is Ftj -measurable. Thus, it remains to

prove the existence of Ej. For this purpose we will closely follow [38]. Let P(HN) be the set

of subsets of HN and consider a multivalued map E S
j+1 :HN ×H →P(HN) such that for each

(Uj,ηj+1), E S
j+1(U

j,ηj+1) denotes the set of solutions U
j+1 of (2.23). From the existence result

above we deduce that E S
j+1 maps HN ×H to nonempty closed subsets of HN . Furthermore,

since we are in the finite dimensional space HN , we can prove, by using the assumptions (B1)

and (G) and the sequential characterization of the closed graph theorem, that the graph

of E S
j+1 is closed. From these last two facts and [8, Theorem 3.1] we can find a univocal

map Ej+1 :HN ×H →HN such that Ej(U
j,ηj+1)∈E S

j+1(U
j,ηj+1) and Ej is measurable when

HN ×H and HN are equipped with their respective Borel σ-algebra. This completes the

proof of the measurability of the solutions of (2.23).

Proof of (2.24)-(2.26). Thanks to the assumption (B2), the proof of the inequalities (2.24)-

(2.26) is very similar to the proof of [30], so we omit it and we directly proceed to the proof

of the estimates (2.27) and (2.28).
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Proof of (2.27). Taking w=2A
1
2Uj+1 in (2.23), using the Cauchy-Schwarz inequality and

the identity

2(a−b)a= |a|2−|b|2+ |a−b|2, (3.32)

yield

‖Uj+1‖21
4
−‖Uj‖21

4
+‖Uj+1−Uj‖21

4
+2k‖Uj+1‖23

4

≤2k|πNB(Uj,Uj+1)|‖Uj+1‖ 1
2
+2‖πNG(Uj)Δj+1W‖ 1

4
‖Uj+1−Uj‖ 1

4

+2〈A 1
4Uj,A

1
4πNG(U

j)Δj+1W 〉.

Using the fact that ‖πN‖L (H,HN )≤1, we obtain

‖Uj+1‖21
4
−‖Uj‖21

4
+‖Uj+1−Uj‖21

4
+2k‖Uj+1‖23

4

≤2k|B(Uj,Uj+1)|‖Uj+1‖ 1
2
+2‖G(Uj)Δj+1W‖ 1

4
‖Uj+1−Uj‖ 1

4

+2〈A 1
4Uj,A

1
4πNG(U

j)Δj+1W 〉.

(3.33)

Using Assumption (B1)′, the complex interpolation inequality in [92, Theorem 1.9.3, pp 59],

the Young inequality, and the continuous embedding V 1
2
⊂V 1

4
we obtain

2|B(Uj,Uj+1)|‖Uj+1‖ 1
2
≤C|Uj|4‖Uj+1‖21

4
+‖Uj+1‖23

4
(3.34)

≤C|Uj|4‖Uj+1‖21
2
+‖Uj+1‖23

4
,

which implies that

‖Uj+1‖21
4
−‖Uj‖21

4
+
1

2
‖Uj+1−Uj‖21

4
+2k‖Uj+1‖23

4
≤2Ck|Uj|4‖Uj+1‖21

2

+4‖G(Uj)Δj+1W‖21
4

+2〈A 1
4Uj,A

1
4πNG(U

j)Δj+1W 〉.

(3.35)

Since Uj is a constant, adapted and hence progressively measurable process, it is not difficult

to prove that

2E〈A 1
4Uj,A

1
4πNG(U

j)Δj+1W 〉=0.
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Using (2.25) and (2.26) with p=2 and p=3 respectively, we easily prove that there exists a

constant C>0, depending only on T , such that

kE

(
M−1∑
j=0

|Uj|4‖Uj+1‖21
2

)
≤
(
E max

1≤m≤M
|Um|8

) 1
2
(
E

(
k

M∑
j=1

‖Uj‖21
2

)2) 1
2

≤C(1+E|u0|8)2.
(3.36)

Now, since Uj is Ftj -measurable and Δj+1W is independent of Ftj , we infer that there exists

a constant C>0 such that for any j∈{0, . . . ,M−1}

E
(
‖G(Uj)Δj+1W‖21

4

)
≤E

(
E

(
‖G(Uj)‖2L (H ,V 1

4
)‖Δj+1W‖2H |Ftj

))
=mE

(
‖G(Uj)‖2L (H ,V 1

4
)E

(‖Δj+1W‖2H |Ftj

))
≤Ck (trQ) 1

2 (1+E‖Uj‖21
4
), (3.37)

where (2.8) and Assumption (G) along with Remark 2.1-(b) were used to derive the last

line of the above chain of inequalities.

Now taking the mathematical expectation in (3.35), summing both sides of the resulting

equations from j=0 to m−1 and using the last three observations imply

max
1≤m≤M

E‖Um‖21
4
+
1

2
E

(M−1∑
j=0

‖Uj+1−Uj‖21
4

)
+2kE

M∑
j=1

‖Uj‖23
4

≤CT +E‖u0‖21
4
+CTrQk

M∑
m=1

max
1≤j≤m

E‖Uj‖21
4
,

from which along with the discrete Gronwall lemma we infer that there exists a constant

C>0 such that

max
1≤m≤M

E‖Um‖21
4
+
1

2
E

(M−1∑
j=0

‖Uj+1−Uj‖21
4

)

+2kE
M∑
j=1

‖Uj‖23
4
≤C(1+E‖u0‖21

4
+[E|u0|8]2).

(3.38)
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Note that from (3.35) we can derive that there exists a constant C>0 such that

E max
1≤m≤M

‖Um‖21
4
≤E‖u0‖21

4
+CkE

M−1∑
j=0

|Uj|4‖Uj+1‖21
2
+E

M−1∑
j=0

‖G(Uj)Δj+1W‖21
4

+2E max
1≤m≤M

m−1∑
j=0

〈A 1
4πNG(U

j)Δj+1W,A
1
4Uj〉

=:
4∑

i=1

Ii.

Arguing as in [22, proof of (3.9)] we can establish that

I4≤ 1

2
E‖u0‖21

4
+
1

2
E max

1≤m≤M
‖Um‖21

4
+Ck

M−1∑
j=0

E‖Uj‖21
4
,

which altogether with (3.38) yields that

I4≤ 1

2
E max

1≤m≤M
‖Um‖21

4
+C(1+E‖u0‖21

4
).

Using the same idea as in the proof of (3.37) and using (3.38) we infer that

I3≤C(1+E‖u0‖21
4
).

Using these two estimates and the inequality (3.36) we derive that there exists a constant

C>0 such that

E max
1≤m≤M

‖Um‖21
4
≤C(1+E‖u0‖21

4
+[E|u0|8]2),

which along with (3.38) completes the proof of (2.27).

Now, we continue with the derivation of an estimate of max1≤m≤ME‖Um‖41
4

. Multiplying

(3.33) by ‖Uj+1‖21
4

and using identity (3.32) and then summing both sides of the resulting
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equation from j=0 to m−1 implies

1

2
‖Um‖41

4
+
1

2

m−1∑
j=0

∣∣∣∣‖Uj+1‖21
4
−‖Uj‖21

4

∣∣∣∣2+m−1∑
j=0

‖Uj+1‖21
4
‖Uj+1−Uj‖21

4
+2k

m−1∑
j=0

‖Uj+1‖21
4
‖Uj+1‖23

4

≤ 1

2
‖u0‖41

4
+Ck

m−1∑
j=0

|B(Uj,Uj+1)|2‖Uj+1‖21
2
‖Uj+1‖21

4

+2
m−1∑
j=0

〈A 1
4 [Uj+1−Uj],A

1
4πNG(U

j)Δj+1W 〉‖Uj+1‖21
4

+2
m−1∑
j=0

〈A 1
4Uj,A

1
4πNG(U

j)Δj+1W 〉‖Uj+1‖21
4

=:
1

2
‖u0‖41

4
+J1+J2+J3.

(3.39)

Thanks to the estimate (3.34) we can estimate J1 as follows

EJ1≤CKE

M−1∑
j=0

|Uj|4‖Uj+1‖41
4
+kE

M−1∑
j=0

‖Uj+1‖21
4
‖Uj+1‖23

4
=:J1,1+J1,2.

Since the second term J1,2 can be absorbed in the LHS later on, we will focus on estimating

the second term J1,1. We have

J1,1≤Ck
M−1∑
j=0

|Uj|4|Uj+1|2‖Uj+1‖21
2

≤C
(
E max

0≤j≤M−1
[|Uj|8|Uj+1|4]

) 1
2
(
E

[
k

M∑
j=1

‖Uj‖21
2

]2) 1
2

≤C
(
E[ max

0≤j≤M−1
|Uj|12]

) 1
2
(
E

[
k

M∑
j=1

‖Uj‖21
2

]2) 1
2

≤C(1+E|u0|16),

where (2.25) and (2.26) are used to obtain the last line. Hence,

EJ1≤C(1+E|u0|16)+Ek
M−1∑
j=0

(
‖Uj+1‖2− 1

4
‖Uj+1‖23

4

)
.
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Now we estimate J2 as follows

EJ2≤CE
M−1∑
j=0

‖G(Uj)Δj+1W‖21
4

(
‖Uj+1‖21

4
−‖Uj‖21

4
+‖Uj‖21

4

)
+
1

2
E

M−1∑
j=0

‖Uj+1−Uj‖21
4
‖Uj+1‖21

4

≤CE
M−1∑
j=0

‖G(Uj)Δj+1W‖41
4
+CE

M−1∑
j=0

‖G(Uj)Δj+1W‖21
4
‖Uj‖21

4
+
1

8
E

M−1∑
j=0

∣∣∣∣‖Uj+1‖21
4
−‖Uj‖21

4

∣∣∣∣2

+
1

2
E

M−1∑
j=0

‖Uj+1−Uj‖21
4
‖Uj+1‖21

4
.

As long as J3 is concerned we have

EJ3=2E
m−1∑
j=0

〈A 1
4Uj,A

1
4πNG(U

j)Δj+1W 〉‖Uj‖21
4

+2E
m−1∑
j=0

〈A 1
4Uj,A

1
4G(Uj)Δj+1W 〉

(
‖Uj+1‖21

4
−‖Uj‖21

4

)
=2E

m−1∑
j=0

〈A 1
4Uj,A

1
4πNG(U

j)Δj+1W 〉
(
‖Uj+1‖21

4
−‖Uj‖21

4

)
≤CE

M−1∑
j=0

‖A 1
4G(Uj)Δj+1W‖21

4
‖Uj‖21

4
+
1

8
E

M−1∑
j=0

∣∣∣∣‖Uj+1‖21
4
−‖Uj‖21

4

∣∣∣∣2

because for any j

E〈A 1
4Uj,A

1
4πNG(U

j)Δj+1W 〉‖Uj‖21
4
=0.

By a similar idea as used to derive (3.37) we can prove that

CE

M−1∑
j=0

‖G(Uj)Δj+1W‖41
4
+CE

M−1∑
j=0

‖G(Uj)Δj+1W‖21
4
‖Uj‖21

4
≤C+CkE

M−1∑
j=0

‖Uj‖41
4
.

Thus,

E[J2+J3]≤C+CkE
M−1∑
j=0

‖Uj‖41
4
+
1

4
E

M−1∑
j=0

∣∣∣∣‖Uj+1‖21
4
−‖Uj‖21

4

∣∣∣∣2+ 1

2
E

M−1∑
j=0

‖Uj+1−Uj‖21
4
‖Uj+1‖21

4
.
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Taking the mathematical expectation in (3.39) and by plugging the information about Ji,

i=1,2,3 in the resulting equation yield

max
1≤m≤M

1

2
E‖Um‖41

4
+
1

4
E

M−1∑
j=0

∣∣∣∣‖Uj+1‖21
4
−‖Uj‖21

4

∣∣∣∣2

+
1

2
E

M−1∑
j=0

‖Uj+1‖21
4
‖Uj+1−Uj‖21

4
+kE

M∑
j=1

‖Uj‖21
4
‖Uj‖23

4

≤C(1+E|u0|12+‖u0‖41
4
)+CkE

M−1∑
j=0

‖Uj‖41
4
,

which along with the Gronwall inequality yields

max
1≤m≤M

1

2
E‖Um‖41

4
≤C(1+E|u0|12+‖u0‖41

4
).

The latter inequality is used in the former one to derive that

max
1≤m≤M

1

2
E‖Um‖41

4
+
1

4
E

M−1∑
j=0

∣∣∣∣‖Uj+1‖21
4
−‖Uj‖21

4

∣∣∣∣2+ 1

2
E

M−1∑
j=0

‖Uj+1‖21
4
‖Uj+1−Uj‖21

4

+kE
M∑
j=1

‖Uj‖21
4
‖Uj‖23

4
≤C(1+E|u0|12+‖u0‖41

4
).

(3.40)

Now we continue our analysis with the estimation of Emax1≤j≤M‖Uj‖41
4

. To start with this

analysis, we easily derive from (3.39) the following inequality

max
1≤m≤M

1

2
E‖Um‖41

4
≤Ck

M−1∑
j=0

|Uj|4‖Uj+1‖2‖Uj+1‖21
2

+C
M−1∑
j=0

(
‖G(Uj)Δj+1‖41

4
+‖G(Uj)Δj+1‖21

4
‖Uj‖21

4

)

+ max
0≤j≤M−1

j−1∑
�=0

〈A 1
4U�,A

1
4πNG(U

�)Δ�+1W 〉‖U�‖21
4
=:J1+J2+J3.

Arguing as in the proof of (3.37) and using (3.40), the mathematical expectation of J1+J2

can be estimated as follows

E(J1+J2)≤CE(1+ |u0|16+‖u0‖41
4
).
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The same idea as used in the proof of [22, inequality (3.15)] yields

EJ3≤ 1

4
E max

1≤m≤M
‖Um‖41

4
+CE‖u0‖41

4
+CkE

M−1∑
j=0

‖Uj‖41
4
,

from which altogether with (3.40) we infer that

EJ3≤CE(1+ |u0|16+‖u0‖41
4
)+

1

4
E max

1≤m≤M
‖Um‖41

4
.

Thus, summing up we have shown that there exists a constant C>0 such that

E max
1≤m≤M

‖Um‖41
4
≤CE(1+ |u0|16+‖u0‖41

4
). (3.41)

Now, we estimate E
(∑M−1

j=0 ‖Uj+1−Uj‖21
4

)2

+E
(
k
∑M

j=1‖Uj‖23
4

)2

. To do this we first observe

that from (3.35) we infer that

(
1

2

M−1∑
j=0

‖Uj+1−Uj‖21
4

)2

+

(
2k

M−1∑
j=0

‖Uj+1‖21
4

)2

≤C
(
k
M−1∑
j=0

|Uj|4‖Uj+1‖21
2

)2

+C

(M−1∑
j=0

‖G(Uj)Δj+1W‖21
4

)2

+C

(M−1∑
j=0

〈A 1
4Uj,A

1
4πNG(U

j)Δj+1W 〉
)2

.

(3.42)

Then, using the same strategies to estimate the Ji-s (or Ji ), the sum of the three terms in

the right hand side of the above inequality can be bounded from above by

[
E

(
max

0≤j≤M
|Uj|16

)] 1
2
[
E

(
k

M∑
j=1

‖Uj‖21
2

)4] 1
2

+CMk2
M∑
j=0

E‖Uj‖41
4
+Ck

M∑
j=0

E‖Uj‖41
4
,

which along with the estimate for Emax1≤m≤M‖Um‖41
4

and the inequalities (2.25) and (2.26)

implies that

(
1

2

M−1∑
j=0

‖Uj+1−Uj‖21
4

)2

+

(
2k

M−1∑
j=0

‖Uj+1‖21
4

)2

≤E(1+ |u0|16+‖u0‖41
4
). (3.43)

The last estimate along with (3.41) completes the proof of (2.28) and hence the whole

proposition.
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2.4 Error analysis of the numerical scheme (2.23): Proof

of Theorem 2.8

This section is devoted to the analysis of the error ej =u(tj)−Uj at the time tj between the

exact solution u of (1.1) and the approximate solution given by (2.23). Since the precise

statement of the convergence rate is already given in Theorem 2.8, we proceed directly to

the promised proof of Theorem 2.8.

Before giving the proof of Theorem 2.8 we state and prove the following important result.

Lemma 2.12. Let β be as in Theorem 2.8. Then,

(i) there exists a constant C7>0 such that

E‖u(t)−u(s)‖2β ≤C7[(t−s)2−2β+(t−s)2( 14−β)+(t−s)], (4.44)

for any t,s≥0 and t �= s.

(ii) There also exists a positive constant C8 such that

E

∫ t

s

‖u(t)−u(r)‖21
2
+β
dr≤C8

(
(t−s) 3

2
−2β+(t−s)2( 14−β)+(t−s)2−2β

)
, (4.45)

for any t>s≥0.

Proof of Lemma 2.12. As in the statement of the lemma we divide the proof into two parts.

Proof of item (i). Let t,s∈ [0,T ] such that t �= s. Without loss of generality we assume that

t>s. Thanks to (2.10) of Remark 2.5 we have

‖u(t)−u(s)‖2β ≤C|Aβ− 1
4 (I−e−(t−s)A)A

1
4u(s)|2+C

∣∣∣∣∫ t

s

Aβe−(t−r)AB(u(r),u(r))dr

∣∣∣∣2
+C

∣∣∣∣∫ t

s

Aβe−(t−r)AG(u(r))dW (r)

∣∣∣∣2.
Before proceeding further we recall that there exists a constant C>0 such that for any γ >0

and t≥0, we have
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‖A−γ(I−e−tA)‖L (H)≤Ctγ.

Applying this inequality, the Hölder inequality, Assumption (B1)′, the Itô isometry and

Assumption (G) imply

E
(‖u(t)−u(s)‖2β

)≤C(t−s)E(∫ t

s

(t−r)−2β‖u(r)‖21
4
‖u(r)‖21

2
− 1

4
dr

)
+C(t−s)2( 14−β)E‖u(s)‖21

4
+E

∫ t

s

|e−(t−r)AAβG(u(r))|2dr

≤C(t−s)2−2βE

(
sup
r∈[s,t]

‖u(r)‖21
4
sup
r∈[s,t]

‖u(r)‖21
2
− 1

4

)

+C[(t−s)2( 14−β)+(t−s)]E
(

sup
r∈[s,t]

‖u(r)‖41
4

)
,

from which along with (2.13) we easily infer that

E
(‖u(t)−u(s)‖2β

)≤C[(t−s)2−2β+(t−s)2( 14−β)+(t−s)].

Thus, we have just finished the proof of the first part of the lemma.

Proof of item (ii). Let t>s≥0. Using (2.10) of Remark 2.5, it is not difficult to see that

∫ t

s

‖u(t)−u(r)‖21
2
+β
dr≤C

∫ t

s

(∫ t

r

|A 1
2
+βe−(t−τ)AB(u(τ),u(τ))|dτ

)2

dr

+C

∫ t

s

∣∣∣∣∫ t

r

A
1
4
+βe−(t−τ)A[A

1
4G(u(τ))]dW (τ)

∣∣∣∣2dr
+C

∫ t

s

|Aβ− 1
4 (e−(t−r)A− I)A

3
4u(s)|2dr,

from which and the assumption on B we infer that

∫ t

s

‖u(t)−u(r)‖21
2
+β
dr≤C sup

0≤τ≤T

(
‖u(τ)‖21

4
‖u(τ)‖21

2
− 1

4

)∫ t

s

(∫ t

r

(t−τ)− 1
2
−βdτ

)2

dr

+C

∫ t

s

∣∣∣∣∫ t

r

A
1
4
+βe−(t−τ)A[A

1
4G(u(τ))]dW (τ)

∣∣∣∣2dr
+C

∫ t

s

(t−r)2( 14−β)‖u(s)‖23
4
dr.
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Taking the mathematical expectation and using (2.13) yield

E

(
1Ωk

∫ t

s

‖u(t)−u(r)‖21
2
+β
dr

)
≤C(t−s)2−2β+C(t−s)2( 14−β)E

∫ T

0

‖u(r)‖21
2
+β
dr

+

∫ t

s

E

(∣∣∣∣∫ t

r

A
1
4
+βe−(t−τ)AA

1
4G(u(τ))dW (τ)

∣∣∣∣2)dr.
Owing to the Itô isometry, the assumption (G) and (2.13), we obtain

E

(∫ t

s

‖u(t)−u(r)‖21
2
+β
dr

)
≤E

(
sup

0≤τ≤T
(1+‖u(τ)‖21

4
)

)∫ t

s

∫ t

r

(t−τ)− 1
2
−2βdτdr

+(t−s)2−2β+(t−s)2( 14−β),

from which altogether with (2.13) we infer that there exists a constant C>0 such that

E

(∫ t

s

‖u(t)−u(r)‖21
2
+β
dr

)
≤C(t−s)2−2β+C(t−s)2( 14−β)+C(t−s) 3

2
−2β,

for any t>s≥0.

We now give the promised proof of Theorem 2.8.

Proof of Theorem 2.8. Since the embedding Vβ ⊂H is continuous for any β∈ (0, 1
4
), it is

sufficient to prove the main theorem for β∈ (0, 1
4
).

Note that the numerical scheme (2.23) is equivalent to

(Uj+1,w)+

∫ tj+1

tj

〈AUj+1,w〉ds

+

∫ tj+1

tj

〈〉πNB(Uj,Uj+1),w〉ds=(Uj,w)+

∫ tj+1

tj

〈w,πNG(Uj)dW (s)〉
(4.46)
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for any j∈{1, . . . ,M} and w∈V. Integrating (1.1) and subtracting the resulting equation

and the identity (4.46) term by term yield

(ej+1−ej,w)

+

∫ tj+1

tj

〈Aej+1+A(u(s)−u(tj+1))

+B(u(s),u(s))−πNB(Uj,Uj+1),w〉ds=
∫ tj+1

tj

〈w, [G(u(s))−πNG(Uj)]dW (s)〉.

(4.47)

Observe that if v∈D(A
1
2
+α) with α>β, then A2βv∈D(A

1
2
+α−β)⊂D(A

1
2
−α), Av∈D(Aα− 1

2 )

and the duality product 〈Av,A2βv〉 is meaningful. Thus, we are permitted to take w=

2A2βej+1 in (4.47) and derive that

‖ej+1‖2β−‖ej‖2β+‖ej+1−ej‖2β+2k‖ej+1‖21
2
+β

−2

∫ tj+1

tj

‖A 1
2
+β(u(s)−u(tj+1))‖ 1

2
+β‖ej+1‖ 1

2
+βds

≤2

∫ tj+1

tj

∣∣∣(Aβ− 1
2 [B(u(s),u(s))−πNB(Uj,Uj+1)],A

1
2
+βej+1)

∣∣∣ds
+2

∫ tj+1

tj

〈A2βej+1, [G(u(s))−πNG(Uj)]dW (s)〉,

where we have used the identity (v−x,2A2βv)=‖v‖2β−‖x‖2β+‖v−x‖2β. Now, by using the

identity v=(πN +[I−πN ])v, the fact that

B(u(s),u(s))−πNB(Uj,Uj+1)=B(u(s),u(s))−πNB(u(tj),u(tj+1))

+πNB(u(tj),u(tj+1))−B(Uj,Uj+1),

the Cauchy–Schwarz inequality, the Cauchy inequality ab≤ a2

4
+b2, a,b>0 and Assumption

(B1) we obtain

‖ej+1‖2β−‖ej‖2β+‖ej+1−ej‖2β+k‖ej+1‖21
2
+β

≤2Lj+16C2
0

5∑
i=1

Nj,i+2Wj, (4.48)
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where for each j∈{0, . . . ,M−1} the symbols Lj, Nj,i, i=1, . . . ,5, and Wj are defined by

Lj :=

∫ tj+1

tj

‖u(s)−u(tj+1)‖21
2
+β
ds,

Nj,1 :=

∫ tj+1

tj

‖u(s)−u(tj+1)‖2β(‖Uj‖2β+‖u(s)‖2β)ds,

Nj,2 :=

∫ tj+1

tj

‖ej+1‖2β(‖Uj+1‖2β+‖u(s)‖2β)ds,

Nj,3 :=

∫ tj+1

tj

‖u(s)−u(tj)‖2β(|Uj+1|2+ |u(s)|2)ds,

Nj,4 :=

∫ tj+1

tj

‖ej‖2β(|Uj+1|2+ |u(s)|2)ds,

Nj,5 :=

∫ tj+1

tj

‖(I−πN)B(u(s),u(s))‖2β− 1
2
ds,

Wj :=

∫ tj+1

tj

〈A2βej+1, [G(u(s))−πNG(Uj)]dW (s)〉.

Let m∈ [1,M ] an arbitrary integer. Summing (4.48) from j=0 to m−1, multiplying by

1Ωk
, taking the mathematical expectation, and finally taking the maximum over m∈ [1,M ]

imply

max
1≤m≤M

E
[
1Ωk

‖em‖2β
]
+

M−1∑
j=0

E
[
1Ωk

‖ej+1−ej‖2β
]
+k

M∑
j=1

E
[
1Ωk

‖ej‖21
2
+β

]
≤E‖e0‖2β+16C2

0

M−1∑
j=0

5∑
i=1

E [1Ωk
Nj,i]+2

M−1∑
j=0

E [1Ωk
Lj]+2 max

1≤m≤M

m−1∑
j=0

E [1Ωk
Wj] .

Invoking the two items of Lemma 2.12 and the fact that ‖u(s)‖2β+max0≤j≤M ‖Uj‖2β ≤f(k)
on the set Ωk we infer that

max
1≤m≤M

E
[
1Ωk

‖em‖2β
]
+

M−1∑
j=0

E
[
1Ωk

‖ej+1−ej‖2β
]
+k

M∑
j=1

E
[
1Ωk

‖ej‖21
2
+β

]
≤E‖e0‖2β+16C2

0kf(k)
M−1∑
j=0

E
(
1Ωk

[‖ej+1‖2β+‖ej‖2β]
)
+2C8f(k)Mk[Ψ(k)+k1+

1
2
−β]

+64C2
0C8[f(k)]

2Mk[Ψ(k)+k]+16C2
0

M−1∑
j=0

Nj,5+2 max
1≤m≤M

m−1∑
j=0

E [1Ωk
Wj] ,

(4.49)
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where ψ(k) :=k2−2β+k2(
1
4
−β). Now, thanks to Assumption (B1)′ we have

1Ωk

∫ tj+1

tj

‖(I−πN)B(u(s),u(s))‖2β− 1
2
ds=1Ωk

∫ tj+1

tj

∞∑
n=N+1

λ2β−1
n |Bn(u(s),u(s))|2ds

≤λ2β−1
N

∫ tj+1

tj

1Ωk

∞∑
n=0

|Bn(u(s),u(s))|2ds

≤λ2β−1
N

∫ tj+1

tj

1Ωk
|B(u(s),u(s))|2ds

≤Cλ2β−1
N k sup

s∈[0,T ]

‖u(s)‖41
4
.

Hence, owing to (2.13) we find a constant C>0 such that

E1Ωk

∫ tj+1

tj

‖(I−πN)B(u(s),u(s))‖2β− 1
2
ds≤Cλ2β−1

N k.

Notice also that

M−1∑
j=0

‖ej+1‖2β(‖Uj+1‖2β+‖u(s)‖2β)

=
M−1∑
j=0

‖Uj+1−Uj+Uj−u(tj)+u(tj)−u(tj+1)‖2β(‖Uj+1‖2β+‖u(s)‖2β)

≤3
M−1∑
j=0

(‖Uj+1−Uj‖2β+‖ej‖2β+‖u(tj)−u(tj+1)‖2β
)
( max
0≤j≤M

‖Uj+1‖2β+‖u(s)‖2β).

Therefore,

E

(
1Ωk

M−1∑
j=0

‖ej+1‖2β(‖Uj+1‖2β+‖u(s)‖2β)
)
−Cf(k)E

M−1∑
m=0

‖ej‖2β+f(k)C7[ψ(k)+k]

≤C
⎛⎝E

(
M−1∑
j=0

‖Uj+1−Uj‖2β
)2

⎞⎠ 1
2 (

E max
0≤j≤M

‖Uj‖4β+E sup
s∈[0,T ]

‖u(s)‖4β
) 1

2

.

As long as the initial data is concerned, we have

E‖e0‖2β =‖[πN +(I−πN)]u0−πNu0‖2β ≤
∞∑

n=N+1

λ
2(β− 1

4
)

n λ
1
2
N |u0,n|2≤λ2(β−

1
4
)

N ‖u0‖2.
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From all the above observations, (4.49), Assumption (B1)′, (2.24)-(2.26) and (2.28) we infer

that there exists a constant C9>0 such that

max
1≤m≤M

E
[
1Ωk

‖em‖2β
]
+

M−1∑
j=0

E
[
1Ωk

‖ej+1−ej‖2β
]
+k

M∑
j=1

E
[
1Ωk

‖ej‖21
2
+β

]
≤C9f(k)[Ψ(k)+k1+

1
2
−β]+C9f(k)[Ψ(k)+k]+C9

(
λ2β−1
N +λ2(β−

1
4
)
)
+2 max

1≤m≤M

m−1∑
j=0

E [1Ωk
Wj]

+C9kf(k)
M−1∑
m=0

max
1≤j≤m

E
[
1Ωk

‖ej‖β]+16C2
0kf(k) max

1≤m≤M
E
[
1Ωk

‖em‖2β
]
.

(4.50)

Now we deal with the term containing Wj. After subtracting from Wj the martingale M0

with mean zero defined by

M0=

∫ tj+1

tj

〈Aβej+1,Aβ[G(u(s))−πNG(Uj)]dW (s)〉,

then taking the mathematical expectation, using the Young inequality and the Itô isometry

give

E1Ωk
Wj ≤CE1Ωk

∥∥∥∥∫ tj+1

tj

[G(u(s))−πNG(Uj)]dW (s)

∥∥∥∥2

β

+
1

4
E1Ωk

‖ej+1−ej‖2β

≤C
∫ tj+1

tj

E1Ωk
‖G(u(s))−πNG(Uj)‖2L (H ,Vβ)

ds+
1

4
E1Ωk

‖ej+1−ej‖2β

≤
3∑

i=1

E[1Ωk
Wj,i]+

1

4
E1Ωk

‖ej+1−ej‖2β,

where the first two symbols Wj,i, i∈{1,2} satisfy the following equalities and inequalities

E[1Ωk
Wj,1]=C

∫ tj+1

tj

E1Ωk
‖πNG(u(s))−πNG(u(tj))‖2L (H ,Vβ)

ds

≤CC2
3

∫ tj+1

tj

E‖u(s)−u(tj)‖2βds

≤CC2
3C

2
7k[k

2−2β+k2(
1
4
−β)+k];
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E[1Ωk
Wj,2]=C

∫ tj+1

tj

E1Ωk
‖πNG(u(tj))−πNG(U j)‖2L (H ,Vβ)

ds

≤CC2
3kE1Ωk

‖ej‖2β,

where Lemma 2.12 was used to get the last line.

The third term Wj,3 satisfies

E[1Ωk
Wj,3]=

∫ tj+1

tj

E
(
1Ωk

‖(I−πN)G(u(s))‖2L (H ,Vβ)

)
ds

=

∫ tj+1

tj

E

(
1Ωk

∞∑
n=N+1

λ
2(β− 1

4
)

n λ
1
2
n sup
h∈H ,‖h‖H ≤1

|Gn(u(s))h|2
)
ds

≤λ2(β−
1
4
)

N

∫ tj+1

tj

E

(
1Ωk

∞∑
n=1

λ
1
2
n sup
h∈H ,‖h‖H ≤1

|Gn(u(s))h|2
)
ds

≤λ2(β−
1
4
)

N kE

(
1Ωk

sup
s∈[0,T ]

‖G(u(s))‖2L (H ,V 1
4
)

)
.

Now, using Assumption (G) and the estimate (2.13) we infer that

E[1Ωk
Wj,3]≤CC2

3λ
2(β− 1

4
)

N k,

for any j∈ [0,M ]. Thus, summing up we have obtained that

2 max
1≤m≤M

m−1∑
j=0

E [1Ωk
Wj]≤CC2

3C
2
7T [ψ(k)+k]+CC

2
3Tλ

2(β− 1
4
)

N

+CC2
3k

M−1∑
m=0

max
1≤j≤m

E[1Ωk
‖ej‖2β]+

1

2

M−1∑
m=0

E
(
1Ωk

‖em+1−em‖2β
)
.

By plugging this last estimate into (4.49), we find a constant C10>0 such that

max
1≤m≤M

E
[
1Ωk

‖em‖2β
]
+

M−1∑
j=0

E
[
1Ωk

‖ej+1−ej‖2β
]
+2k

M∑
j=1

E
[
1Ωk

‖ej‖21
2
+β

]
≤C10f(k)[Ψ(k)+k+k1+

1
2
−β]+C10f(k)[Ψ(k)+k]+C10λ

2β−1
N +C10λ

2(β− 1
4
)

N

+C10k[f(k)+1]
M−1∑
m=0

max
1≤j≤m

E
[
1Ωk

‖ej‖β] .
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Now, an application of the discrete Gronwall lemma yields

max
1≤m≤M

E
[
1Ωk

‖em‖2β
]
+

M−1∑
j=0

E
[
1Ωk

‖ej+1−ej‖2β
]
+2k

M∑
j=1

E
[
1Ωk

‖ej‖21
2
+β

]
≤
(
C10f(k)[Ψ(k)+k+k1+

1
2
−β]+C10f(k)[Ψ(k)+k]+C10λ

2β−1
N +C10λ

2(β− 1
4
)

N

)
eC10T [f(k)+1].

Since

min{k2−2β,k1+
1
2
−β,k2(

1
4
−β),k}=k2( 14−β) and min{λ2(β−

1
4
)

N ,λ2β−1
N }=λ2(β−

1
4
)

N ,

for any β∈ [0, 1
4
), and kεf(k)=kε logk−ε≤ 1

2
, then for any k>0 and ε∈

(
0,2(1

4
−β)

)
, we

derive that there exists a constant C>0 such that

max
1≤m≤M

E
[
1Ωk

‖em‖2β
]
+

M−1∑
j=0

E
[
1Ωk

‖ej+1−ej‖2β
]

+2k
M∑
j=1

E
[
1Ωk

‖ej‖21
2
+β

]
≤Ck−2ε[k2(

1
4
−β)+λ

−2( 1
4
−β)

N ].

(4.51)

This estimate completes the proof of the Theorem 2.8.

2.5 Motivating Examples

In this section, we give two examples of evolution equations to which we can apply our

abstract result.

2.5.1 Stochastic GOY and Sabra shell models

The first examples we can take is the GOY and Sabra shell models. To describe this model

let us denote by C the field of complex numbers, CN the set of all C-valued sequences, and

we set

H=

{
u=(un)n∈N⊂C;

∞∑
n=1

|un|2<∞
}
.



Chapter 2. Numerical approximation of stochastic evolution equations 47

Let k0 be a positive number and λn=k02
n be a sequence of positive numbers. The space H

is a separable Hilbert space when endowed with the scalar product defined by

〈u,v〉=
∞∑
k=1

ukv̄k, for u, v∈H,

where z̄ denotes the conjugate of any complex number z.

We define a linear map A with domain

D(A)={u∈H;
∞∑
n=1

λ4n|un|2<∞},

by setting

Au=(λ2nun)n∈N, for u∈D(A).

It is not hard to check that A is a self-adjoint and strictly positive operator. Moreover, the

embedding D(Aα)⊂D(Aα+ε) is compact for any α∈R and ε>0. Thanks to this observation

we can and will assume that there exists an orthonormal basis {ψn;n∈N} of H such that

Aψn=λnψn.

We can characterize the spaces D(Aα), α∈R as follow

D(Aα)={u=(un)n∈N⊂C;
∞∑
n=1

λ4αn |un|2<∞}.

For any α∈R the space Vα=D(Aα) is a separable Hilbert space when equipped with the

scalar product

((u,v))α=
∞∑
k=1

λ4αk ukv̄k, for u, v∈Vα. (5.52)

The norm associated to this scalar product will be denoted by ‖u‖α, u∈Vα. In what follows

we set V=D(A
1
2 ).

Now, let α0>
1
2
and {wj; j∈N} be a sequence of mutually independent and identically dis-

tributed standard Brownian motions on filtered complete probability space U=(Ω,F ,F,P)

satisfying the usual condition. We set
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W (t)=
∞∑
n=0

λ−α0
n wn(t)ψn.

The process W defines a H-valued process with covariance A−2α0 which is of trace class.

We also consider a Lipschitz map g : [0,∞)→R such that |g(0)|<∞. We define a map

G :H→L (H,V 1
4
) defined by

G(u)h=g(‖u‖0)h, for any u∈H,h∈H.

This map satisfies Assumption (G).

With the above notation, the stochastic evolution equation describing our randomly per-

turbed GOY and Sabra shell models is given by

⎧⎨⎩du=[Au+B(u,u)]dt+G(u)dW,

u(0)=u0,
(5.53)

where B(· , ·) is a bilinear map defined on V×V taking values in the dual space V∗. More

precisely, we assume that the nonlinear term

B : CN×CN→CN,

(u,v) �→B(u,v)=(b1(u,v), . . . ,bn(u,v), . . .)

for the GOY shell model (see [55]) is defined by

bn(u,v) := (B(u,v))n

:= iλn

(
1

4
vn−1un+1− 1

2
(un+1vn+2+vn+1un+2)+

1

8
un−1vn−2

)
,

and for the Sabra shell model, it is defined by

bn(u,v) :=(B(u,v))n :=
i

3
λn+1 [vn+1un+2+2un+1vn+2]

+
i

3
λn [un−1vn+1−vn−1un+1]

+
i

3
λn−1 [2un−1vn−2+un−2vn−1] ,
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for any u=(u1, . . . ,un, . . .)∈CN and v=(v1, . . . ,vn, . . .)∈CN.

Lemma 2.13. (a) For any non-negative numbers α and β such that α+β∈ (0, 1
2
], there

exists a constant c0>0 such that

‖B(u,v)‖−α≤ c0

⎧⎪⎨⎪⎩‖u‖ 1
2
−(α+β)‖v‖β for any u∈V 1

2
−(α+β),v∈Vβ

‖u‖β‖v‖ 1
2
−(α+β) for any v∈V 1

2
−(α+β),u∈Vβ.

(5.54)

(b) For any u∈H,v∈V

〈b(u,v),v〉=0. (5.55)

Proof. The item (b) was proved in [33, Proposition 1], thus we omit its proof.

Item (a) can be viewed as a generalization of [33, Proposition 1]. We will just prove the

latter item for the Sabra shell model since the proofs for the two models are very similar.

Let u∈V 1
2
−(α+β), v∈Vβ, and w∈Vα such that ‖w‖α≤1. We have

|〈B(u,v),w〉|=|
∞∑
n=1

bn(u,v)w̄n|≤
∞∑
n=1

|bn(u,v)||wn|

≤1

3

∞∑
n=1

λn+1 (|un+1| · |vn+2|+ |un+2| · |vn+1|) |wn|

+
1

3

∞∑
n=1

λn (|un−1| · |vn+1|+ |un+1| · |vn−1|) |wn|

+
1

3

∞∑
n=1

λn−1 (|un−1| · |vn−2|+ |un−2| · |vn−1|) |wn|

≤I1+I2+I3.

For the term I1 we have

I1≤1

3

∞∑
n=1

λn+1|un+1| · |vn+2||wn|+ 1

3

∞∑
n=1

λn+1|un+2| · |vn+1||wn|

≤I1,1+I1,2.
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We will treat the term I1,1. By Hölder’s inequality we have

I1,1≤ 1

3

∞∑
n=1

k02λ
1−2α|un+1| · |vn+2|λ2αn |wn|

≤ 2

3
k0

( ∞∑
n=1

k02λ
2−4(α+β)
n |un+1|2λ4βn |vn+2|2

) 1
2
( ∞∑

n=1

λ4αn |wn|2
) 1

2

.

Since ‖w‖α≤1 and λn+p=k
p
02

pλn we can find a constant C>0 depending only on α,β and

k0 such that

I1,1≤C
(
max
k∈N

λ
2−4(α+β)
n+1 |un+1|2

) 1
2

( ∞∑
n=1

λ4βn+2|vn|2
) 1

2

≤C
⎛⎝ 1

2∑
n=1

λ
4[ 1

2
−(α+β)]

n+1 |un+1|2
⎞⎠

1
2 ( ∞∑

n=1

λ4βn+2|vn|2
) 1

2

,

from which we easily derive that

I1,1≤C‖u‖ 1
2
−(α+β)‖v‖β.

One can use an analogous argument to show that

I1,2≤C‖u‖ 1
2
−(α+β)‖v‖β.

Hence,

I1≤C‖u‖ 1
2
−(α+β)‖v‖β.

Using a similar argument we can also prove that for any non-negative numbers α and β

satisfying α+β∈ (0, 1
2
] there exists a constant C>0 such that

I2+I3≤C‖u‖ 1
2
−(α+β)‖v‖β,

for any u∈V 1
2
−(α+β) and v∈Vβ. Therefore, for any non-negative numbers α and β satisfying

α+β∈ (0, 1
2
] we can find a constant C>0 such that

‖B(u,v)‖−α≤C‖u‖ 1
2
−(α+β)‖v‖β,
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for any u∈V 1
2
−(α+β) and v∈Vβ. Interchanging the role of u and v we obtain that for any

two numbers α and β as above there exists a positive constant C such that

‖B(u,v)‖−α≤C‖v‖ 1
2
−(α+β)‖u‖β,

for any v∈V 1
2
−(α+β) and u∈Vβ. Thus, we have just completed the proof of the lemma for

the Sabra shell model. As we mentioned earlier, the case of the GOY model can be dealt

with a similar argument.

For more mathematical results related to shell models we refer to [6], [11], [12], and references

therein.

2.5.2 Stochastic nonlinear heat equation

Let O be a bounded domain of Rd, d=1,2. We assume that its boundary ∂O is of class C∞.

Throughout this section we will denote by Hθ(O), θ∈R, the (fractional) Sobolev spaces as

defined in [92] and H1
0(O) be the space of functions u∈H1 such that u|O =0. In particular,

we set H=L2(O) and we denote its scalar product by (·, ·).

We define a continuous bilinear map a :H1
0(O)×H1

0(O)→R by setting

a(u,v)=(∇u,∇v),

for any u,v∈H1
0(O). Thanks to the Riesz representation there exists a densely linear map

A with domain D(A)⊂H such that

〈Av,u〉=a(v,u),

for any u,v∈H1
0(O). It is well known that A is a self-adjoint and definite positive and its

eigenfunctions {ψn;n∈N}⊂C∞(O) form an orthonormal basis of H. The family of eigen-

values associated to {ψn;n∈N} is denoted by {λn;n∈N}. Observe that the asymptotic

behaviour of the eigenvalues is given by λn∼λ1n 2
d . For any α∈R we set Vα=D(Aα), in
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particular we put V :=D(A
1
2 ). We always understand that the norm in Vα is denoted by

‖·‖0.

Now, let α0>
d+1
4

and {wj; j∈N} be a sequence of mutually independent and identically dis-

tributed standard Brownian motions on filtered complete probability space U=(Ω,F ,F,P)

satisfying the usual condition. We set

W (t)=
∞∑
n=0

λ−α0
n wn(t)ψn.

The process W defines a H-valued with covariance A−2α0 which is of trace class. We also

consider a Lipschitz map g : [0,∞)→R such that |g(0)|<∞. We define a map G :H→
L (H,V 1

4
) defined by

G(u)h=g(‖u‖0)h, for any u∈H,h∈H.

This map satisfies Assumption (G).

The second example we can treat is the stochastic nonlinear heat equation

du− [Δu−|u|u]dt=g(‖u‖0)dW, (5.56a)

u=0 on ∂O, (5.56b)

u(0,x)=u0 x∈O. (5.56c)

This stochastic system can be rewritten as an abstract stochastic evolution equation

du+[Au+B(u,u)]dt=G(u)dW, u(0)=u0∈H,

where A and G are defined as above and the D(A− 1
2 )-valued nonlinear map B is defined on

H×D(A
1
2 ) or D(A

1
2 )×H by setting

B(u,v)= |u|v,

for any (u,v)∈H×D(A
1
2 ) or (u,v)D(A

1
2 )×H. It is clear that

〈Av+B(u,v),v〉≥‖v‖21
2
, (5.57)
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for any u,v∈V. Here we should note that thanks to the solution of Kato’s square root

problem in [3, Theorem 1], see also [1, Section 7], we have ‖u‖ 1
2
�|∇u| for any u∈H1

0(O),

i.e, V=H1
0(O).

Now we claim that for any numbers α∈ [0, 1
2
) and β∈ (0, 1

2
) such that α+β∈ (0, 1

2
), there

exists a constant c0>0 such that

‖B(u,v)‖−α≤ c0

⎧⎪⎨⎪⎩‖u‖ 1
2
−(α+β)‖v‖β for any u∈V 1

2
−(α+β),v∈Vβ

‖u‖β‖v‖ 1
2
−(α+β) for any v∈V 1

2
−(α+β),u∈Vβ,

(5.58)

and

‖B(u,v)‖− 1
2
≤ c0‖u‖ 1

4
‖v‖ 1

4
for any v∈V 1

4
,u∈V 1

4
. (5.59)

To prove these inequalities, let β>0 such that α+β< 1
2
. Since

(
1

2
−α

)
+

(
1

2
−1+2(α+β)

)
+

(
1

2
−β

)
=1,

we have

|〈|u|v,w〉|≤C0‖u‖Lr‖v‖Ls‖w‖Lq , (5.60)

where the constants q,r,s are defined through

1

q
=

1

2
−α, 1

s
=α+β,

1

r
=

1

2
−β.

Recall that Vα⊂H2α⊂Lq with 1
q
= 1

2
−α if α∈ (0, 1

2
) and q∈ [2,∞) arbitrary if α= 1

2
. Then,

we derive from (5.60) that the second inequality in (5.58) holds. By interchanging the role

of r and s we derive that the first inequality in (5.58) also holds. One can establish (5.59)

with the same argument. The estimates (5.58) and (5.59) easily imply (2.3) and (2.7).

Now we need to check that B(·, ·) satisfies (2.4). For this purpose we observe that there

exists a constant C>0 such that

|B(u,v)|≤C‖u‖0‖v‖L∞ ,

which with the continuous embedding V 1
2
+ε⊂L∞ for any ε>0 implies (2.4).



Chapter 3

Time-discretization scheme of

stochastic 2-D Navier–Stokes

equations by a penalty-projection

method

A time-discretization of the stochastic incompressible Navier–Stokes problem by penalty

method is analyzed. The main issue concerns the nonlinear term which in the stochastic

framework prevents from using a Gronwall argument. Moreover, the approximate solution

is slightly compressible and therefore, the nonlinear term does not satisfy the additional

orthogonal property. Usually in two-dimension and with a periodic boundary condition this

orthogonal property allows to get some useful estimates. To tackle these issues we use the

classical decomposition of the solution into an Ornstein–Uhlenbeck process and a solution of

a deterministic Navier–Stokes equation depending on a stochastic process. The first part is

stochastic but linear while the second one is nonlinear but deterministic. Both sub problems

are still approximated with a numerical scheme based on penalty method. Error estimates

for both of them are derived, combined, and eventually arrive at a convergence in probability

with order 1/4 of the main algorithm towards the initial problem for the pair of variables

velocity and pressure. The strong convergence of the scheme is achieved by means of the

Bayes formula.

54
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3.1 Introduction

Let T >0 andP := (Ω,F ,F,P) be a filtered probability space with the filtration F := (Ft)0≤t≤T

satisfying the usual conditions. We refer to the following system of equations as the stochas-

tic incompressible Navier–Stokes problem (SNS),

⎧⎨⎩ut−νΔu+[u ·∇]u+∇p=Ẇ , in R2,

divu=0, in R2.
(1.1)

Here u={u(t,x) : t∈ [0,T ]} and p={p(t,x) : t∈ [0,T ]} are unknown stochastic processes on

R2, representing respectively the velocity and the pressure of a fluid with kinematic viscosity

ν filling the whole space R2, in each point of R2.

In R2, we endow (1.1) with an initial condition,

u(0,x)=u0(x)

and periodic boundary conditions,

u(t,x+Lbj)=u(t,x), j=1,2, t∈ [0,T ],

where u has a vanishing spatial average. Here (b1,b2) is the canonical basis of R
2 and L>0

is the period in the jth direction; D=(0,L)×(0,L) is the square of the period. The term

W :={W (t) : t∈ [0,T ]} is a K-valued Wiener process where K is a separable Hilbert space.

An incompressible fluid flow is usually modeled with a deterministic Navier–Stokes equation.

The stochastic Navier–Stokes (1.1) is a well known model that captures fluid instabilities

under ambient noise [14] or small scales perturbation for homogeneous turbulent flow, see

e.g. [9], [15], and [80].

Strong approximation of Stochastic Partial Differential Equations (SPDEs) such as the SNS

is mostly the natural approach because of its link with the numerical analysis of deterministic

equations. However, this type of approximation is often inaccessible for nonlinear SPDEs.

Indeed, when the nonlinearity is neither globally Lipschitz nor monotone, weak convergence
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or convergence in probability are frequently considered, see e.g. [5], [22], [39], [41], [49], [60],

and [76]. Another notion, the speed of convergence in probability, was first put forward by

Printems in [82] for some parabolic SPDEs. Regardless of the type of convergence, we may

also have to consider different approaches according to the characteristic of the equation.

In particular for the SNS, we can use e.g. a numerical approximation using an Ornstein–

Uhlenbeck as an auxiliary step such as in [49], or using splitting methods such as in [10, 28],

or using the Wiener chaos expansion such as in [60], or using the layer method (probabilistic

representation) such as in [76]. Carelli and Prohl proved in [30] that a speed of convergence

in probability can be derived from some direct numerical approximations of the SNS. Here

the convergence concerns only one variable, the velocity field.

The SNS shares the same complexity as its deterministic counter part, when it comes to

computations. Velocity and pressure are both coupled by the incompressibility constraint,

which often requires a saddle point problem to solve. To break this saddle point character of

the system, velocity and pressure are decoupled by perturbing the divergence free condition

by a penalty method [72, Chapter 3] and choosing a penalty operator in a similar fashion

as in [34]. This consists, for every ε>0, to solve the penalized version of (1.1), i.e.⎧⎪⎨⎪⎩
uε

t −νΔuε+[uε ·∇]uε+
1

2
(divuε)uε+∇pε=Ẇ , in R2,

divuε+εpε=0, in R2.

(1.2)

This belongs to a more general class of approximation methods for the Navier–Stokes equa-

tion, called projection and quasi-compressible methods. This includes the artificial com-

pressibility method, the pressure stabilization, and the pressure correction method. For a

complete survey or review on these methods, the reader is referred for instance to [56] or the

monograph [83]. Even though these methods are already very popular and efficient in the

deterministic framework, the paper of Carelli, Hausenblas, and Prohl, see [28], is the only

work, which treats on projection and quasi-compressible methods for the stochastic Stokes

equation by using the pressure stabilization and the pressure correction methods to derive

an algorithm based on a time marching strategy. The artificial compressibility method has

already been used to prove existence and pathwise uniqueness of global strong solutions of

SNS, see [74], or adapted solutions to the backward SNS by a local monotonicity argument,
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see [93]. Concerning the penalty method, it has been introduced in [89] by Temam for the

deterministic Navier–Stokes equations where he established its convergence. Since then,

the method has been improved by Shen with the addition of error estimates in a sequence

of papers including [86] and [87]. It has been used (with a different penalty operator) in

a stochastic framework in [26] as an auxiliary step to prove the existence of a spatially

homogeneous solution of a SNS driven by a spatially homogeneous Wiener random field.

In this paper, we study a semi-implicit time-discretization scheme for the full stochastic

incompressible 2D Navier–Stokes equation based on the penalized system Equation (1.2).

Formally, the scheme consists of solving the following equations:

Given 0<η<1/2, α>1, u0, φ
0=0. For �=1, . . . ,M :

• Step 1 (Penalization): Find ũ� such that

ũ�−νkΔũ�+kB̃(ũ�,ũ�)−k1−η∇divũ�=Δ�W +u�−1−k∇φ�−1;

• Step 2: Find φ� such that

Δφ�=Δφ�−1+(αk)−1divũ�;

• Step 3 (Projection): u�=P Hũ
�, i.e.

u�= ũ�−αk∇(φ�−φ�−1), p�= p̃�+φ�+α(φ�−φ�−1).

More details are given in Algorithm 3.4. We focus on the time-discretization, since different

technical endeavors may obscure the main difficulty of the time-discretization. A paper

which is similar to ours is [30], where the authors show the convergence in probability of a

space-time discretization of stochastic incompressible Navier–Stokes in 2D. The numerical

schemes they use are implicit/semi-implicit in time and use a divergence-free finite element

pairing such as the Scott–Vogelius finite element for the velocity and the pressure. The

proof needs also some a priori estimates of the approximate solution in V, the divergence-

free space with finite enstrophy. These estimates are obtained by means of the additional
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orthogonal property of the nonlinear term in 2D and under periodic boundary conditions, i.e.

〈[u.∇]u,Δu〉=0 for each u∈V. As we see in Equation (1.2), the approximate solution is

only slightly compressible, thus uε �∈V. Even with the projection step added, the additional

orthogonal property required in [30] is inapplicable here. To overcome this issue we use the

classical decomposition of the SNS into an Ornstein–Uhlenbeck process and a deterministic

SNS. This decomposition has already been used for different purpose, e.g. in [23], [45], [46],

[48], and [49]. The algorithm depends on the spatial perturbation parameter ε>0, a stability

preserving parameter α>1, and the time-step k. If we fix ε=kη with some 0<η<1/2 and

with any α>1, a speed of convergence in probability of order 1/4 is obtained for both

velocity and pressure. Then, by means of the law of total probability, we deduce strong

convergence of the scheme for both variables velocity and pressure. In this context, we

respond to the lack of results regarding (speed of) convergence for the pressure iterates from

algorithms based on pseudo-compressible and projection method for stochastic (Navier)–

Stokes equations addressed by [28].

This paper is organized as follows. In Section 3.2, we introduce the assumptions and nota-

tions used and review some of the basic facts of the SNS, which are important for the proof,

such as the time regularity of the solution and present a splitting argument that will be

used later on. In the Section 3.3, we develop stability of the main algorithm and derive error

estimates for some auxiliary algorithms. In Section 3.8, we treat the speed of convergence

in probability, then the strong convergence of the main algorithm.

3.2 Preliminaries

In this section, we present the assumptions and notations used in this work. We also prove

the time regularity of the pressure. As a preparatory work, before going into the numerical

analysis, we formulate (1.1) according to the classical decomposition of the SNS into an

Ornstein–Uhlenbeck process and a deterministic Navier–Stokes depending on a stochastic

process.
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3.2.1 Functional settings and notations

To introduce a spatial variable process, i.e. a vector-valued process to the Brownian motion

W , we introduce a family of mutually independent and identically distributed real-valued

Brownian motions {βj(t) : t∈ [0,T ]}, j∈N, and a covariance Q. If Q∈L (K) (the space

of bounded linear operators from K to K) is non-negative definite and symmetric with an

orthonormal basis {dj : j∈N} of eigenfunctions with corresponding eigenvalues qj ≥0 such

that
∑

j∈Nqj<∞, then Q∈L1(K) (the space of trace-class operator on K) and the series

W (t)=
∞∑
j=1

√
qjβj(t)dj, ∀ t∈ [0,T ],

converges in L2(Ω;C([0,T ];K)) and it defines a K-valued Wiener process with covariance

operator Q also called Q-Wiener process. Furthermore, for any �∈N there exists a constant

C�>0 such that

E‖W (t)−W (s)‖2�K≤C�(t−s)� (TrQ)� , ∀ t∈ [0,T ] and ∀ s∈ [0,t). (2.3)

Let H be another separable Hilbert space. We define by L2(KQ,H) the space of Hilbert–

Schmidt operator from KQ to H, where KQ is the separable Hilbert space defined by

KQ :=Q1/2K.

We can define the H-valued Itô integral with respect to a Q-Wiener process W by

∫ t

0

Φ(s)dW (s) :=
∞∑
j=1

∫ t

0

Φ(s)
√
qjdjdβj(s), ∀ t∈ [0,T ]

which is also a H-valued martingale satisfying the Burkholder–Davis–Gundy inequality (see

[63, Theorem 3.3.28]), given by

E sup
0≤s≤t

∥∥∥∥∫ s

0

Φ(τ)dW (τ)

∥∥∥∥2r

H
≤Cr

(∫ t

0

‖Φ(τ)‖2L2(KQ,H)dτ

)r

, ∀ t∈ [0,T ], ∀ r>0. (2.4)

In the case of scalar functions, we denote the usual Sobolev spaces by Wm,2(D) (m=
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0,1,2, . . . ,∞). The corresponding scalar product and the corresponding norm for any non-

negative integer m is denoted by

(u,v)m=

∫
D

m∑
�=0

∂�u∂�vdx and ‖u‖m=‖u‖Wm,2 =(u,u)1/2m .

By Wm,2
0 (D), we denote the closure in Wm,2(D) of the space C∞

0 (D) of all smooth func-

tions defined on D with compact support. Further, W−m,2(D) is the space that is dual to

Wm,2(D)∩W 1,2
0 (D). Particularly for m=0, the spaceWm,2(D) is usually denoted by L2(D)

and then the scalar product and norm are denoted simply by (·, ·) and ‖·‖, respectively. We

reserve the notation 〈·, ·〉 for the duality bracket. In general, we denote the usual Lebesgue

spaces by Lp, 1≤p≤∞, which are endowed with the standard norms denoted by ‖·‖Lp . We

denote by Lp
per and Wm,2

per the Lebesgue and Sobolev spaces of functions that are periodic

and have vanishing spatial average, respectively. The spaces of vector-valued functions will

be indicated with Blackboard bold letters, for instance L2
per := (L2

per)
2. In further analy-

ses, we will not distinguish between the notation of inner products and norms in scalar or

vector-valued applications.

The two spaces frequently used in the theory of Navier–Stokes equations are

H=
{
v∈L2

per(D) : divv=0 in R2
}

and V=
{
v∈W1,2

per(D) : divv=0 in R2
}
.

The space V is a Hilbert space with the scalar product (·, ·)1 and the Hilbert norm induced

by W1,2.

Let P H denote the L2-projection on the space H also known as Helmholtz–Leray projector.

As an orthogonal projection, it satisfies the following identity

〈P Hv−v,P Hv〉=0, ∀v∈L2
per. (2.5)

The projection PH is continuous from W1,2(D)0 into W1,2(D) (cf. [91, Remark 1.6] and [19,

Proposition IV.3.7.]) and we can find a positive constant C=C(D) such that

‖P Hu‖1≤C‖u‖1, ∀u∈W1,2(D). (2.6)
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Due to the Helmholtz–Hodge–Leray decomposition, any function u∈L2(D) can be repre-

sented as u=P Hu+∇q, where q is a scalar D-periodic function such that q∈L2
per(D). It

is natural to introduce the notation P⊥
Hu :=∇q and hence write

u=P Hu+P⊥
Hu, with P⊥

Hu∈H⊥=
{
v :v∈L2(D),v=∇q

}
.

With periodic boundary conditions the Stokes operatorA=−P HΔ coincides with the Lapla-

cian operator −Δ. The operator A can be seen as an unbounded positive linear selfadjoint

operator on H with domain D(A)=W2,2∩V. We can define the powers Aα, α∈R, with

domain D(Aα). The norm ‖As/2u‖ on D(As/2) is equivalence to the norm induced by

W
s,2
0 (D). In addition, we also have the following equivalence of norm:

Proposition 3.1 (Equivalence of norms). There exist positive numbers c1 and c2 such that

∀u∈H:

(i) ‖A−1u‖s≤ c1‖u‖s−2, s=1,2;

(ii) c2‖u‖2−1≤ (A−1u,u)≤ c21‖u‖2−1.

Proof. The reader is referred to [85, Equation (2.1)] or [83, Lemma 2.3] for the proof. It

relies on the elliptic regularity of the Stokes operator and the definition of negative Sobolev

norms.

We now introduce some operators usually associated with the Navier–Stokes equations and

their approximations. In particular,

B(u,v)= [u ·∇]v, B̃(u,v)=B(u,v)+(divu)v/2,

b(u,v,w)= 〈B(u,v),w〉 , b̃(u,v,w)= 〈B̃(u,v),w〉.

The trilinear forms b and b̃ satisfy the following properties:

Skew-symmetry property

b(u,v,w)=−b(u,w,v), u∈H and v,w∈V,

b̃(u,v,w)=−b̃(u,w,v), u,v∈W1,2(D) and w∈W1,2
per(D).

(2.7)
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Orthogonal property

b(u,v,v)=0, ∀u∈H, ∀v∈W1,2
per(D); b̃(u,v,v)=0, ∀u,v∈W1,2

per(D). (2.8)

The following estimates of the trilinear form b̃ will be used repeatedly in the upcoming

sections. Let v∈W2,2(D)∩W1,2
per(D) and u,w∈W1,2

per(D); a combination of integration by

parts and Hölder inequality gives

b̃(u,v,w)≤‖u‖L4‖v‖1‖w‖L4 . (2.9)

From this estimate we can deduce using the Sobolev embedding W1,2(D)⊂L4(D),

b̃(u,v,w)≤C(L)‖u‖1‖v‖1‖w‖1, (2.10)

or using the Ladyzhenskaya’s inequality ‖u‖L4 ≤C(L)‖u‖1/2‖u‖1/21 ,

b̃(u,v,w)≤C(L)‖u‖1/2‖u‖1/21 ‖v‖1‖w‖1/2‖w‖1/21 . (2.11)

To find more about the above properties or additional properties of b or b̃, and other esti-

mates, the reader is referred to [90, Section 2.3].

3.2.2 General assumption and spatial regularity of the solution

In the following we choose H=V, i.e. a solenoidal noise in SNS. An example of solenoidal

noise is given in [28, Section 6]. We summarize the assumptions needed for data W , Q, and

u0:

(S1) For Q∈L (K), let W ={W (t) : t∈ [0,T ]} be a Q-Wiener process with values in a

separable Hilbert space K defined on the stochastic basis P.

(S2) u0∈V.

In addition, we recall the notion of a strong solution to (1.1).
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Definition 3.2 (Strong solution). Let T >0 be given and let Assumptions (S1) and (S2)

be valid, with H=V. A V-valued process u={u(t, ·) : t∈ [0,T ]} on (Ft)0≤t≤T is a strong

solution to (1.1) if

(i) u(·, ·,ω)∈C([0,T ];V)∩L2(0,T ;W2,2∩V)P-a.s.,

(ii) for every t∈ [0,T ] and every ϕ∈V, there holds P-a.s.

(u(t),ϕ)+ν

∫ t

0

(∇u(s),∇ϕ)+b(u(s),u(s),ϕ)ds=(u0,ϕ)+

∫ t

0

(ϕ,dW (s)) .

If Assumption (S1) holds and H=V, we can prove (cf. [47, Appendix 1]) that the solutions

u of (1.1) as defined by Definition 3.2 satisfies for 2≤p<∞ the estimate

E sup
0≤t≤T

‖u(t)‖p+νE
[∫ T

0

‖u(s)‖p−2‖∇u(s)‖2ds
]
≤CT,p, (2.12)

where CT,p=CT,p(TrQ,E‖u0‖p,E‖u0‖pV)>0. In addition to the above estimate, if Assump-

tion (S2) holds for 2≤p<∞, it is proven in [30, Lemma 2.1] that u satisfies also the

estimates

sup
0≤t≤T

E‖u(t)‖pV+νE
[∫ T

0

‖u(s)‖p−2
V ‖Au(s)‖2ds

]
≤CT,p, (2.13)

and E sup
0≤t≤T

‖u(t)‖pV≤CT,p. (2.14)

We associate a pressure p to the velocity u by using a generalization of the de Rham theorem

to processes, see [70, Theorem 4.1]. In addition, we also have the following estimate for the

pressure:

Proposition 3.3. Under Assumptions (S1) and (S2), there exists a constant C>0 such

that the velocity fields u and pressure fields p satisfy P-a.s.

‖p(t)‖≤C‖A1/2u(t)‖2, ∀ t∈ [0,T ]. (2.15)

Proof. To show the Proposition 3.3 we project equation (1.1) into H⊥ using the projection

operator P⊥
H. Since P⊥

H commutes with the Laplacian operator (we work with a periodic
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boundary condition) and divu=0, then

P⊥
Hut=0 and P⊥

HΔu=0.

In Assumption (S1) we suppose that the forcing term is divergence-free, hence, each solenoidale

term vanishes after projection with P⊥
H. The remaining terms give

∇p(t)=−P⊥
HB(u(t),u(t)), ∀ t∈ [0,T ].

It follows from [53, Lemma 2.2] for r=2,n=2, δ=1/2,θ=ρ=1/2 and (2.11) that

‖∇p(t)‖−1=‖P⊥
HB(u(t),u(t))‖−1≤‖P HB(u(t),u(t))‖−1+‖B(u(t),u(t))‖−1

≤C‖A1/2u(t)‖2.

Finally, it follows by the Nečas inequality for functions with vanishing spatial average (cf.

[19, Proposition IV.1.2.]), that there exists a constant C>0, such that

‖p(t)‖≤C‖A1/2u(t)‖2, ∀ t∈ [0,T ]. (2.16)

The constant C comes from the Nečas inequality, more precisely from the definition of the

norm in W−1,2 by the Fourier transform. Therefore, C depends on the spatial dimension d

and the Lp-estimates for the Fourier transform multipliers. Here we have d=2 and p=2,

but a similar estimate can be obtained for d≥2 and 2≤p<∞, see [31, Corollaries 1 and 2]

and [77, Lemma 7.1].

3.2.3 Regularity in time of the solution of the SNS

Lemma 3.4. Suppose that Assumption (S1) holds, and H=V. For the solution of (1.1),

with u0∈V, 2≤p<∞, we can find a constant C=C(T,p,L)>0, such that for 0≤ s<t≤T
we have

(i) E‖u(s)−u(t)‖p
L4 ≤C|s− t|ηp ∀0<η< 1

2
,
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(ii) E‖u(s)−u(t)‖pV ≤C|s− t|
ηp
2 ∀0<η< 1

2
,

(iii) E‖p(s)−p(t)‖
p
2 ≤C|s− t|

ηp
4 ∀0<η< 1

2
.

Proof. The assertions (i) and (ii) are direct quotations of [30, Lemma 2.3]. We only prove

the assertion (iii). Let t∈ [0,T ]. Applying the projection P⊥
H on (1.1) we get

∇p(t)=−P⊥
HB(u(t),u(t)).

The following identity holds for 0≤ s<t

∇(p(s)−p(t))=P⊥
HB(u(t),u(t)−u(s))+P⊥

HB(u(t)−u(s),u(s)). (2.17)

Using the Nečas inequality for vanishing spatial average and Proposition 3.3, we obtain

‖p(s)−p(t)‖≤‖P⊥
HB(u(t),u(t)−u(s))‖−1+‖P⊥

HB(u(t)−u(s),u(s))‖−1

≤C‖u(t)‖1‖u(t)−u(s)‖1+C‖u(t)−u(s)‖1‖u(s)‖1.

Taking the p/2-moment and using the Hölder inequality we get

E‖p(s)−p(t)‖p/2≤C(L)
[
(E‖u(t)‖p1)1/2+(E‖u(s)‖p1)1/2

]
(E‖u(t)−u(s)‖p1)1/2 .

We deduce from (2.13) and the assertion (i) of the present lemma that

E‖p(s)−p(t)‖p/2≤CT,2(L)|s− t|ηp/4. (2.18)
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3.2.4 Classical decomposition of the solution

Before going to the next section we introduce a splitting argument which is essential for the

rest of the paper. We consider the auxiliary Stokes equation

⎧⎨⎩dz+[−νΔz+∇π]dt=dW , in R2,

divz=0, in R2,
(2.19)

with z(0)=0 and which corresponds the penalized system

⎧⎨⎩dz
ε+[−νΔzε+∇πε]dt=dW , in R2,

divzε+επε=0, in R2,
(2.20)

with zε(0)=0.

As already pointed out by [30], the nonlinear term of the SNS does not allow to use a

Gronwall argument. To tackle this issue, we use the classical decomposition of the solution

u into two parts: one part, given by the process z, will be random, but linear; the other

part, denoted by v, will be nonlinear, but deterministic. In this way, we write the solution

of (1.1) as u=v+z, where v solves⎧⎪⎨⎪⎩
dv

dt
+B̃(v+z,v+z)−νΔv+∇ρ=0, in R2,

divv=0, in R2,

(2.21)

with v(0)=u0. The corresponding penalized system⎧⎪⎨⎪⎩
dvε

dt
+B̃(vε+zε,vε+zε)−νΔvε+∇ρε=0, in R2,

divvε+ερε=0, in R2,

(2.22)

with vε(0)=u0.

The system (2.21) (resp. (2.22)) are interpreted as deterministic equations which solves v

(resp. vε) for a given random process z (resp. zε).
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3.3 Main algorithm and auxiliary results

We consider a time discretization of (1.1) based on the penalized system Equation (1.2).

For that purpose we fix M ∈N and introduce an equidistant partition Ik :={t� : 1≤ �≤M}
covering [0,T ] with mesh-size k=T/M >0, t0=0, and tM =T . Here the increment Δ�W :=

W (t�)−W (t�−1)∼N (0,kQ) and we choose an uniform mesh size k := t�+1− t�. For every

t∈ [t�−1,t�] and all ϕ∈W1,2
per, there hold P-a.s.,

(u(t�)−u(t�−1),ϕ)+ν

∫ t�

t�−1

(∇u(s),∇ϕ)ds

+

∫ t�

t�−1

b̃(u(s),u(s),ϕ)ds+

∫ t�

t�−1

(∇p(s),ϕ)ds=

∫ t�

t�−1

(ϕ,dW (s)) , (3.23)

(divu(t�),χ)=0. (3.24)

Note that instead of b we use b̃. We can switch between both without any confusion since

for each s∈ [0,T ], u(s)∈H.

Now we discretize the penalized system Equation (1.2) instead of the original equation and

project the result into H. We derive the following algorithm:

Algorithm 3.4 (Main algorithm). Assume uε,0 :=u0 with ‖u0‖≤C. Find for every �∈
{1, . . . ,M} a pair of random variables (uε,�,pε,�) with values in W1,2

per×L2
per, such that we

have P-a.s.

• Penalization:

(ũε,�−uε,�−1,ϕ)+νk(∇ũε,�,∇ϕ)+kb̃(ũε,�,ũε,�,ϕ)

+k(∇p̃ε,�,ϕ)+k(∇φε,�−1,ϕ)=(Δ�W ,ϕ), ∀ϕ∈W1,2
per, (4.25)

(divũε,�,χ)+ε(p̃ε,�,χ)=0, ∀χ∈L2
per; (4.26)
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• Projection:

(uε,�− ũε,�,ϕ)+αk(∇(φε,�−φε,�−1),ϕ)=0, ∀ϕ∈W1,2
per, (4.27)

(divuε,�,χ)=0, ∀χ∈L2
per, (4.28)

pε,�= p̃ε,�+φε,�+α(φε,�−φε,�−1).

Proposition 3.5. There exist iterates {u� : 1≤ �≤M} which solve (4.25) and (4.26) at each

time-step. Moreover, for every integer l, with 1≤ �≤M , u� is a Ft�-measurable.

Proof. Let us fix ω∈Ω. We use Lax-Milgram fixed-point theorem to show the existence of

a V-valued sequence {uε,� : 1≤ �≤M}.

• Penalization: Since uε,0 and φ0 are given, and |Δ�W (ω)|K<∞ for all �∈{1, . . . ,M},
we assume that ũε,1(ω), . . . ,ũε,�−1(ω) are also given. To find the pair of random variables

(uε,�,pε,�) in Algorithm 3.4 we need first to solve a nonlinear, nonsymmetric variational

problem. Therefore, let us denote by A the nonlinear operator from V to V′ (V′: dual of

V) defined by:

〈A ũε,�(ω),w(ω)〉= ũε,�(ω)+ν(∇ũε,�(ω),∇w�(ω))

+ b̃(ũε,�(ω),ũε,�(ω),w�(ω)), ∀w�((ω))∈V.
(4.29)

Because b̃ satisfies the orthogonal property (2.8), then putting w�= ũε,� in (4.29) we thus

have

〈A ũε,�(ω),w(ω)〉≥ν‖uε,�(ω)‖2V.

The operator A is therefore V-elliptic and the Lax–Milgram theorem allows us to infer the

existence of a unique solution of (4.29).

• Projection: If we take ϕ=∇φε,� in (4.27) we see that this step is actually a Poisson

problem. Since uε,� is given from the previous step, the existence of a unique solution φε,�

is deduced from the ellipticity of the Laplacian operator.

Since uε,�= ũε,�−αk∇(φε,�−φε,�−1) and pε,�= p̃ε,�+φε,�+α(φε,�−φε,�−1), the existence of a

unique uε,� and pε,� follows.
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The proof of the Ft�-measurability of ũε,� and φε,� can be done in a similar fashion as in

[39], see also [5]. Since uε,� (resp. pε,�) are obtained from ũε,� (resp. φε,�) we also obtain

their Ft�-measurability.

3.4.1 Stability

This section is inspired by [22, Lemma 3.1] and [30, Lemma 3.1]. Here we consider a coupled

system, the first one is derived from the penalization and the second one is a projection step.

Lemma 3.6. Let φε,0=0. Suppose that Assumptions (S1) and (S2) are valid with ‖u0‖≤C.
Then, there exists a positive constant C=C(L,T,u0,ν) so that for every ε>0 and α>1,

the iterates {uε,� : 1≤ �≤M} solving Algorithm 3.4 and the intermediary iterates {ũε,� : 1≤
�≤M}, {p̃ε,� : 1≤ �≤M}, and {φε,� : 1≤ �≤M} satisfy for q=1 or q=2:

(i) νE

(
k

M∑
�=1

‖∇ũε,�‖2‖uε,�‖2q−2

)
≤C,

(ii) k2E max
1≤m≤M

‖∇φε,m‖2‖uε,m‖2q−2+εE

(
k

M∑
�=1

‖p̃ε,�‖‖uε,�‖2q−2

)
≤C,

(iii) E max
1≤m≤M

‖uε,m‖2q +νE
(
k

M∑
�=1

‖∇uε,�‖2‖uε,�‖2q−2

)
≤C.

Proof. The proof consits of three steps. First, we give some preparatory estimates. Then,

we handle the case q=1, and, finally, we handle the case q=2.

Step (I) Preparatory estimate. We take ϕ=2ũε,� in Equation (4.25) and χ=divũε,�

in Equation (4.26), and use the orthogonal property (2.8) of b̃, to get

(ũε,�−uε,�−1,ũε,�)+2νk‖∇ũε,�‖2+2k(∇p̃ε,�,uε,�)

+2k(∇φε,�−1,ũε,�)=2(Δ�W ,ũε,�),
(4.30)

(∇p̃ε,�,ũε,�)=
1

ε
‖divũε,�‖2.

Using the algebraic identity

2(a−b)a=a2−b2+(a−b)2 (4.31)
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in (4.30) we obtain

‖ũε,�‖2−‖uε,�−1‖2+‖ũε,�− ũε,�−1‖2+2νk‖∇ũε,�‖2+2εk‖p̃ε,�‖2

+2k(∇φε,�−1,ũε,�)=2(Δ�W ,ũε,�).
(4.32)

Let α>0. We take ϕ=2ũε,� in (4.27) and obtain

α−1

α

(‖uε,�‖2−‖ũε,�‖2+‖uε,�− ũε,�‖2)=0. (4.33)

Then, we take ϕ=uε,�+ ũε,� in (4.27) and obtain

1

α

(‖uε,�‖2−‖ũε,�‖2)+ k

2
(∇(φε,�−φε,�−1),ũε,�)=0. (4.34)

Collecting together (4.32) to (4.34) we obtain

‖uε,�‖2−‖uε,�−1‖2+‖ũε,�− ũε,�−1‖2+ α−1

α
‖uε,�− ũε,�‖2+2νk‖∇ũε,�‖2

+2εk‖p̃ε,�‖2+k(∇(φε,�−1+φε,�),ũε,�)≤2(Δ�W ,ũε,�).

(4.35)

We take ϕ=∇(φε,�+φε,�−1) in (4.27) and obtain

(∇(φε,�+φε,�−1),ũε,�)=αk‖∇φε,�‖2−αk‖∇φε,�−1‖2.

This implies,

‖uε,�‖2−‖uε,�−1‖2+‖ũε,�− ũε,�−1‖2+ α−1

α
‖uε,�− ũε,�‖2+2νk‖∇ũε,�‖2

+2εk‖p̃ε,�‖2+αk2‖∇φε,�‖2−αk2‖∇φε,�−1‖2≤2(Δ�W ,ũε,�).

(4.36)

Step (II) Case q=1. Summing (4.36) from �=1 to �=m, we get

‖uε,m‖2+
m∑
�=1

‖ũε,�− ũε,�−1‖2+(α−1
α

)
m∑
�=1

‖uε,�− ũε,�‖2+2νk
M∑
�=1

‖∇ũε,�‖2

+2εk
m∑
�=1

‖p̃ε,�‖2+αk2‖∇φε,m‖2≤‖u0‖2+2
m∑
�=1

(Δ�W ,ũε,�).

(4.37)
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The last term of the right side can be splitted as follows,

Noiseε,m1 :=2
m∑
�=1

(Δ�W ,ũε,�)=2
m∑
�=1

(Δ�W ,ũε,�− ũε,�−1)+2
m∑
�=1

(Δ�W ,ũε,�−1).

Let δ1>0 be an arbitrary number. Applying the Young inequality to the first term on the

right side, we get

. . .≤C(δ1)
m∑
�=1

‖Δ�W ‖2+δ1
m∑
�=1

‖ũε,�− ũε,�−1‖2+2
m∑
�=1

(Δ�W ,ũε,�−1). (4.38)

Taking first the maximum of (4.38) over 1≤m≤M , and then the expectation, exactly with

this order, give the following estimate

E max
1≤m≤M

Noiseε,m1 ≤C(δ1)
M∑
�=1

E‖Δ�W ‖2+δ1
M∑
�=1

E‖ũε,�− ũε,�−1‖2

+2E max
1≤m≤M

m∑
�=1

(Δ�W ,ũε,�−1).

(4.39)

It follows from (2.3), that E‖Δ�W ‖2=k. By applying successively the Burkholder–David–

Gundy inequality, the Hölder inequality, and the Young inequality to the last term of (4.39),

we obtain

E max
1≤m≤M

Noiseε,m1 ≤C(δ1,T )+δ1
M∑
�=1

E‖uε,�−uε,�−1‖2+E

(
M∑
�=1

k‖uε,�−1‖2
)1/2

≤C(δ1,T,u0)+δ1

M∑
�=1

E‖uε,�−uε,�−1‖2+δ1E max
1≤�≤M

‖uε,�‖2.

Now, taking the maximum of (4.37) over 1≤m≤M , and, then, expectation, give the fol-

lowing estimate,

E max
1≤m≤M

{‖uε,m‖2+αk2‖∇φε,m‖2}
+E

m∑
�=1

‖ũε,�− ũε,�−1‖2+(α−1
α

)E
m∑
�=1

‖uε,�− ũε,�‖2

+νE

(
k

M∑
�=1

‖∇ũε,�‖2
)
+εE

(
k

m∑
�=1

‖p̃ε,�‖2
)
≤‖u0‖2+E max

1≤m≤M
Noiseε,m1 .

(4.40)
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The terms with ‖ũε,�− ũε,�−1‖2 and max1≤�≤M‖ũε,�‖2 of (4.39) are absorbed by the left hand

side of (4.40) which leads to

(1−δ1)E max
1≤m≤M

‖uε,m‖2+αk2E max
1≤m≤M

‖∇φε,m‖2

+(1−δ1)E
m∑
�=1

‖ũε,�− ũε,�−1‖2+(α−1
α

)E
m∑
�=1

‖uε,�− ũε,�‖2

+νE

(
k

M∑
�=1

‖∇ũε,�‖2
)
+εE

(
k

m∑
�=1

‖p̃ε,�‖2
)
≤C(δ1,T,u0).

(4.41)

The parameters α and δ1 are chosen such that the left hand side stays positive. Thus, we

chose α>1 and 0<δ1<1.

Step (III) Case q=2. We multiply (4.36) by 2‖uε,�‖2 and use again the algebraic

identity (4.31) to give

‖uε,�‖4−‖uε,�−1‖4+2‖ũε,�− ũε,�−1‖2‖uε,�‖2

+ α−1
α

‖uε,�− ũε,�‖2‖uε,�‖2+4νk‖∇ũε,�‖2‖uε,�‖2+4εk‖p̃ε,�‖2‖uε,�‖2

+2αk2‖∇φε,�‖2‖uε,�‖2−2αk2‖∇φε,�−1‖2‖uε,�‖2=2(Δ�W ,ũε,�)‖uε,�‖2.

(4.42)

On the left hand side we use the same calculation that we used on the term Noiseε,m1 . In

particular, we compute

Noiseε,m2 :=2
m∑
�=1

(Δ�W ,ũε,�)‖uε,�‖2

≤C(δ1)
m∑
�=1

‖Δ�W ‖2+δ1
m∑
�=1

‖ũε,�− ũε,�−1‖2‖uε,�‖2 (4.43)

+2
m∑
�=1

(Δ�W ,ũε,�−1)‖uε,�‖2.

In the next step, we first take the maximum of (4.43) over 1≤m≤M , and, then, we

take the expectation, exactly with this order. Now, applying the Young inequality, and

the Hölder inequality, and using (4.41) to bound some terms, we can find a constant
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C=C(δ1,δ2,L,T,u
0,ν)>0 such that

E max
1≤m≤M

Noiseε,m2 ≤C+δ1

M∑
�=1

‖ũε,�− ũε,�−1‖2‖uε,�‖2+δ2E max
1≤�≤M

‖uε,�‖4. (4.44)

Summing up (4.44) for �=1 to �=m, taking the maximum over 1≤m≤M , and taking the

expectation in (4.42) we have

E max
1≤m≤M

{‖uε,m‖4+αk2‖∇φε,�‖2‖uε,�‖2}+E

M∑
�=1

‖ũε,�− ũε,�−1‖2‖uε,�‖2

+(α−1
α

)E
M∑
�=1

‖uε,�− ũε,�‖2‖uε,�‖2+νE
(
k

M∑
�=1

‖∇ũε,�‖2‖uε,�‖2
)

+εE

(
k

M∑
�=1

‖p̃ε,�‖2‖uε,�‖2
)

≤C(δ1,δ2,L,T,u0,ν)+δ1

M∑
�=1

‖ũε,�− ũε,�−1‖2‖uε,�‖2+δ2E max
1≤�≤M

‖uε,�‖4.

(4.45)

The terms with ‖uε,�‖4 and ‖ũε,�− ũε,�−1‖2‖uε,�‖2 are absorbed by the left side of (4.45).

Therefore, we get

E max
1≤m≤M

{
(1−δ2)‖uε,m‖4+αk2‖∇φε,m‖2‖uε,m‖2}

+(1−δ1)E
M∑
�=1

‖ũε,�− ũε,�−1‖2‖uε,�‖2+(α−1
α

)E
M∑
�=1

‖uε,�− ũε,�‖2‖uε,�‖2

+νE

(
k

M∑
�=1

‖∇ũε,�‖2‖uε,�‖2
)
+εE

(
k

M∑
�=1

‖p̃ε,�‖2‖uε,�‖2
)
≤C(δ1,δ2,L,T,u0,ν).

We conclude by choosing α,δ1, and δ2 such that, (α−1)>0, (1−δ1)>0, and (1−δ2)>0.

In the next lemma we use the LBB inequality (see [4, 21])

‖p‖≤C sup
ϕ∈W1,2

(∇p,ϕ)

‖ϕ‖1 (4.46)

to transfer the estimate from the velocity fields uε,� to the pressure fields pε,�.
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We start with a direct discretization of (1.1) which leads to the following algorithm:

Algorithm 3.5. Assume u0 :=u0 with ‖u0‖≤C. Find for every �∈{1, . . . ,M} a pair of

random variables (u�,p�) with values in V×L2
per, such that P-a.s.

(u�−u�−1,ϕ)+νk(∇u�,∇ϕ)+kb̃(u�,u�,ϕ)

+k(∇p�,ϕ)=(Δ�W ,ϕ), ∀ϕ∈W1,2
per,

(5.47)

(divu�,χ)=0, ∀χ∈L2
per.

(5.48)

We define the sequences of errors e�=u�−uε,�, ẽ�=u�− ũε,�, and q�=p�−pε,�. We subtract

(4.25) and (4.26) from (5.47) and (5.48), and get

(e�−e�−1,ϕ)+νk(∇ẽ�,∇ϕ)

+k(∇q�,ϕ)=kb̃(ũε,�−1,ũε,�,ϕ)−kb̃(u�,u�,ϕ), ∀ϕ∈W1,2
per.

(5.49)

Lemma 3.7. Under the assumption of Lemma 3.6, there exists a constant C=C(L,T,u0)>

0 such that for every ε>0, the iterates {pε,� : 1≤ �≤M} solving Algorithm 3.4 satisfies

E

(
k

M∑
�=1

‖pε,�‖2
)
≤C.

Proof. Since (e�−e�−1)∈D(A−1), we can take ϕ=A−1(e�−e�−1) in (5.49) and use Propo-

sition 3.1. Then we apply the Young inequality, and use estimate (2.11) of b̃. This leads to

the following results:

i) c2‖e�−e�−1‖2−1≤ (e�−e�−1,A−1(e�−e�−1)),

ii) νk(∇e�,∇A−1(e�−e�−1))≤C(δ1)ν2k2‖e�‖21+δ1‖e�−e�−1‖2−1,

iii) k(∇q�,A−1(e�−e�−1))=0,
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iv) kb̃(ũε,�−1,ũε,�,A−1(e�−e�−1))≤C(L,δ1)k22 ‖ũε,�−1‖2‖ũε,�−1‖21 +C(L,δ1)
k2

2
‖ũε,�‖2‖ũε,�‖21+

δ1‖e�−e�−1‖2−1,

v) kb̃(u�,u�,A−1(e�−e�−1))≤C(L,δ1)k2‖u�‖2‖u�‖21+δ1‖e�−e�−1‖2−1.

Fixing δ1>0 such that (c2−3δ1)>0, and collecting i), ii), iii), iv), and v), we obtain

(c2−3δ1)E
M∑
�=1

‖e�−e�−1‖2−1≤C(L,δ1,ν)kE
(
k

M∑
�=1

‖uε,�‖21
)
+kE

(
k

M∑
�=1

‖u�‖21
)

+kE

(
k

M∑
�=1

‖ũε,�−1‖2‖ũε,�−1‖21
)
+kE

(
k

M∑
�=1

‖ũε,�‖2‖ũε,�‖21
)
+kE

(
k

M∑
�=1

‖u�‖2‖u�‖21
)
.

By Lemma 3.6 and [22, Lemma 3.1 (iii)] we obtain

E

M∑
�=1

‖e�−e�−1‖2−1≤C(T,L,u0)k. (5.50)

Now we rearrange (5.49) and get

k(∇q�,ϕ)=−(e�−e�−1,ϕ)−νk(∇ẽ�,∇ϕ)+kb̃(ũε,�−1,ũε,�,ϕ)−kb̃(u�,u�,ϕ). (5.51)

With the skew symmetry property of b̃ (see (2.7)) and the estimate (2.11), identity (5.51)

becomes

k(∇q�,ϕ)

‖ϕ‖1 ≤‖e�−e�−1‖−1+νk‖∇ẽ�‖+C(L)k‖ũε,�−1‖‖ũε,�−1‖1

+C(L)k‖uε,�‖‖uε,�‖1+C(L)k‖u�‖‖u�‖1.

Using the inequality (4.46), we have

k2‖q�‖2≤C‖e�−e�−1‖2−1+ν
2k2‖∇ẽ�‖2+C(L)k2‖ũε,�−1‖2‖ũε,�−1‖21

+C(L)k2‖ũε,�‖2‖ũε,�‖21+C(L)k2‖u�‖2‖u�‖21.
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Summing up for �=1 to �=M , and taking expectation, we obtain

kE

(
k

M∑
�=1

‖q�‖2
)
≤CE

M∑
�=1

‖e�−e�−1‖2−1+ν
2kE

(
k

M∑
�=1

‖∇ũε,�‖2
)

+ν2kE

(
k

M∑
�=1

‖∇u�‖2
)
+C(L)kE

(
k

M∑
�=1

‖ũε,�−1‖2‖ũε,�−1‖21
)

+C(L)kE

(
k

M∑
�=1

‖ũε,�‖2‖ũε,�‖21
)
+C(L)kE

(
k

M∑
�=1

‖u�‖2‖u�‖21
)
.

From Lemma 3.6, [22, Lemma 3.1 (iii)], and estimate (5.50), we obtain

E

(
k

M∑
�=1

‖q�‖2
)
≤C(T,L,ν,u0).

The Minkowsky inequality and Poincaré inequality imply

E

(
k

M∑
�=1

‖pε,�‖2
)
≤C(T,L,ν,u0)+C(L)E

(
k

M∑
�=1

‖∇p�‖2
)
.

We finish the proof with using [30, Lemma 3.2 (i)], where the authors proved that

E

(
k

M∑
�=1

‖∇p�‖2
)
≤C(T ).

3.5.1 Auxiliary error estimates

We start with Algorithm 3.6. Let z={z(t, ·) : t∈ [t�−1,t�]} be the strong solution of (2.19) as

defined in Definition 3.2 and π={π(t, ·) : t∈ [t�−1,t�]} the associated pressure, i.e. for every
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t∈ [t�−1,t�], all ϕ∈W1,2, and all χ∈L2
per, we have P-a.s.

(z(t�)−z(t�−1),ϕ)+ν

∫ t�

t�−1

(∇z(s),∇ϕ)ds

+

∫ t�

t�−1

(∇π(s),ϕ)ds=
∫ t�

t�−1

(ϕ,dW (s)) ,

(5.52)

(divz(t�),χ)=0. (5.53)

For (5.52) and (5.53) we have the following algorithm:

Algorithm 3.6 (First auxiliary algorithm). Let z0 :=0. Find for every �∈{1, . . . ,M} a pair

of random variables (z�,π�) with values in W1,2
per×L2

per, such that we have P-a.s.

• Penalization:

(z̃ε,�−zε,�−1,ϕ)+νk(∇z̃ε,�,∇ϕ)+k(∇π̃ε,�,ϕ)

+k(∇ξε,�−1,ϕ)=(Δ�W ,ϕ), ∀ϕ∈W1,2
per,

(6.54)

(div z̃ε,�,χ)+ε(π̃ε,�,χ)=0, ∀χ∈L2
per.

(6.55)

• Projection:

(zε,�− z̃ε,�,ϕ)+αk(∇(ξε,�−ξε,�−1),ϕ)=0, ∀ϕ∈W1,2
per, (6.56)

(divzε,�,χ)=0, ∀χ∈L2
per, (6.57)

πε,�= π̃ε,�+ξε,�+α(ξε,�−ξε,�−1).

Define the errors ε̃�=z(t�)− z̃ε,�, ε�=z(t�)−zε,� and ��=π(t�)−πε,�. We subtract (6.54)

from (5.52) to get

(ε̃�−ε�−1,ϕ)+ν

∫ t�

t�−1

(∇(z(s)− z̃ε,�),∇ϕ)ds

+

∫ t�

t�−1

(∇(π(s)− π̃ε,�−ξε,�−1),ϕ)ds=0,

(6.58)
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and choose χ=divϕ in (6.55) to get

−(∇πε,�,ϕ)=
1

ε
(∇div z̃ε,�,ϕ). (6.59)

Thanks to the following identities

(∇(z(s)− z̃ε,�),∇ϕ)=(∇ε̃�,∇ϕ)+(∇(z(s)−z(t�)),∇ϕ) and (6.60)

(∇(π(s)−πε,�−ξε,�−1),ϕ)=(∇π(s),ϕ)+ 1

ε
(∇div z̃ε,�,ϕ)−(∇ξε,�−1,ϕ), (6.61)

the equation (6.58) is reduced to

(ε̃�−ε�−1,ϕ)+νk(∇ε̃�,∇ϕ)− k

ε
(∇div z̃ε,�,ϕ)

−k(∇ξε,�−1,ϕ)=Rz
� (ϕ)−

∫ t�

t�−1

(∇π(s),ϕ)ds,
(6.62)

where

Rz
� (ϕ)=ν

∫ t�

t�−1

(∇(z(t�)−z(s)),∇ϕ)ds.

To (6.62) we associate the following projection equation

⎧⎨⎩(ε�− ε̃�,ϕ)=kα(∇(ξε,�−ξε,�−1),ϕ),

divε�=0.
(6.63)

Lemma 3.8. Let α>1 and 0<η<1/2. For every ε>0, there exists a constant C=C(T,ν,η)>

0 such that

E max
1<m≤M

‖εm‖2+νE
(
k

M∑
�=1

‖∇ε�‖2
)
≤C(kη+ε). (6.64)

Proof. We take ϕ=2ε̃� in (6.62). Then we use the algebraic identity (4.31) and the fact

that divz(t�)=0 to get

‖ε̃�‖2−‖ε�−1‖2+‖ε̃�−ε�−1‖2+2νk‖∇ε̃�‖2+ 2k

ε
‖div ε̃�‖2

=2k(∇ξε,�−1, ε̃�)+Rz
� (2ε̃

�)+

∫ t�

t�−1

(div ε̃�,π(s))ds.
(6.65)
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Let us take ϕ= ε̃�+ε� in (6.63) to get

α−1

α

(‖ε�‖2−‖ε̃�‖2+‖ε̃�−ε�‖2)=0, (6.66)

1

α

(‖ε�‖2−‖ε̃�‖2)= k

2
(∇(ξε,�−ξε,�−1), ε̃�). (6.67)

Collecting (6.65) to (6.67) together, we arrive at

‖ε�‖2−‖ε�−1‖2+‖ε̃�−ε�−1‖2+(α−1
α

)‖ε̃�−ε�‖2+2νk‖∇ε̃�‖2

+
2k

ε
‖div ε̃�‖2≤2k(∇(ξε,�+ξε,�−1), ε̃�)+Rz

� (2ε̃
�)+

∫ t�

t�−1

(div ε̃�,π(s))ds.
(6.68)

First, notice that from (6.63) it follows

ε̃�=ε�−kα∇(ξε,�−ξε,�−1).

Therefore, we have

2k(∇(ξε,�+ξε,�−1), ε̃�)=2αk2‖ξε,�−1‖2−2αk2‖ξε,�‖2. (6.69)

Secondly, applying the Young inequality to Rz
� (2ε̃

�), we get

Rz
� (2ε̃

�)≤Cδ1ν

∫ t�

t�−1

‖∇(z(t�)−z(s))‖2ds+δ1k‖∇ε̃�‖2, (6.70)∫ t�

t�−1

(div ε̃�,π(s))ds≤ k

ε
‖div ε̃�‖2+ε

∫ t�

t�−1

‖π(s)‖2ds. (6.71)

We add (6.69) to (6.71) with (6.68). Summing up for �=1 to �=m,

‖εm‖2+2αk2‖ξε,m‖2+(α−1
α

)
m∑
�=1

‖ε̃�−ε�‖2

+(2−δ1)ν
(
k

m∑
�=1

‖∇ε̃�‖2
)
+
1

ε
E

(
k

m∑
�=1

‖div ε̃�‖2
)

≤Cδ1ν

m∑
�=1

∫ t�

t�−1

E‖∇(z(t�)−z(s))‖2+ε
m∑
�=1

∫ t�

t�−1

E‖π(s)‖2ds.
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Using the identity (2.5), we have

1

α
‖εm‖2+ α−1

α
‖ε̃m‖2+2αk2‖ξε,m‖2+ α−1

α

m−1∑
�=1

‖ε̃�−ε�‖2

+(2−δ1)ν
(
k

m∑
�=1

‖∇ε̃�‖2
)
+
1

ε
E

(
k

m∑
�=1

‖div ε̃�‖2
)

≤Cδ1ν
m∑
�=1

∫ t�

t�−1

E‖∇(z(t�)−z(s))‖2+ε
m∑
�=1

∫ t�

t�−1

E‖π(s)‖2ds.

Now taking the maximum for 1<m≤M , and expectation, we arrive at

E max
1≤m≤M

{
1

α
‖εm‖2+ α−1

α
‖ε̃m‖2+2αk2‖ξε,m‖2

}
+
α−1

α
E

M−1∑
�=1

‖ε̃�−ε�‖2

+(2−δ1)νE
(
k

M∑
�=1

‖∇ε̃�‖2
)
+
1

ε
E

(
k

M∑
�=1

‖div ε̃�‖2
)

≤Cδ1ν
M∑
�=1

∫ t�

t�−1

E‖∇(z(t�)−z(s))‖2+ε
M∑
�=1

∫ t�

t�−1

E‖π(s)‖2ds.

(6.72)

Finally, we choose δ1>0 so that (2−δ1) stays positive and conclude the proof with Lemma 3.4,

Proposition 3.3 and (2.14), and the stability of P H in W1,2.

Lemma 3.9. Let α>1 and 0<η<1/2. For every ε>0, there exists a constant C=C(T,ν,η)>

0 such that we have

E

(
k

M∑
�=1

‖��‖2
)
≤C(kη+ε). (6.73)

Proof. We substitute (6.63) to (6.62) and arrange the result such that we obtain

(ε�−ε�−1,ϕ)+νk(∇ε̃�,∇ϕ)

+k(∇��,ϕ)=Rz
� (ϕ)+

∫ t�

t�−1

(∇(π(t�)−π(s)),ϕ)ds.
(6.74)
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Using identity (6.59), we get

k(∇��,ϕ)=(ε�−1−ε�,ϕ)+

∫ t�

t�−1

(∇(π(t�)−π(s)),ϕ)ds−kν(∇ε̃�,∇ϕ)+Rz
� (ϕ).

Using inequality (4.46), we derive that

k2‖�ε,�‖2≤C‖Rz
� ‖2−1+C‖ε�−ε�−1‖2−1+(νk)2‖∇ε�‖2

+Ck

∫ t�

t�−1

‖π(t�)−π(s)‖2ds.
(6.75)

For brevity let us introduce the numbering

I+II+III+IV

:=C‖Rz
� ‖2−1+C‖ε�−ε�−1‖2−1+Ck

∫ t�

t�−1

‖π(t�)−π(s)‖2ds+(νk)2‖∇ε�‖2.

First, we have for I

I= sup
ϕ∈W1,2

(Rz
� (ϕ))

2

‖ϕ‖21
=

(∫ t�

t�−1

sup
ϕ∈W1,2

ν
(∇(z(t�)−z(s)),∇ϕ)

‖ϕ‖1 ds

)2

≤C(ν,L)k
∫ t�

t�−1

‖∇(z(t�)−z(s)‖2ds. (6.76)

Now, we estimate the term II. Since ε�−ε�−1∈D(A−1), we can take ϕ=A−1(ε�−ε�−1) in

identity (6.74). From the orthogonality we get

k(∇��,A−1(ε�−ε�−1))=

∫ t�

t�−1

(∇(π(t�)−π(s)),A−1(ε�−ε�−1))ds=0, (6.77)

k(∇��,A−1(ε�−ε�−1))=

∫ t�

t�−1

(∇(π(t�)−π(s)),A−1(ε�−ε�−1))ds=0, (6.78)

and from Proposition 3.1 we get

II≤C(ε�−ε�−1,A−1(ε�−ε�−1)). (6.79)
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Applying the Young inequality we obtain the following results:

Rz
� (A

−1(ε�−ε�−1))≤C(δ1,ν)k
∫ t�

t�−1

‖∇(z(t�)−z(s))‖2ds+δ1II. (6.80)

Collecting the last four estimates we obtain

(1−2δ1)II≤C(δ1)k2‖∇ε̃�‖2+C(δ1,ν)k
∫ t�

t�−1

‖∇(z(t�)−z(s))‖2ds. (6.81)

After choosing δ1 so that (1−2δ1)>0, we substitute the estimates of I and II in (6.75), let

the terms II and IV unchanged, and get in this way the following new estimate

k2‖��‖2≤C(ν,L)k
∫ t�

t�−1

‖∇(z(t�)−z(s)‖2ds+C(ν)k2‖∇ε̃�‖2

+Ck

∫ t�

t�−1

‖∇(z(t�)−z(s))‖2ds+Ck
∫ t�

t�−1

‖π(t�)−π(s)‖2ds.
(6.82)

By taking the sum for �=1 to �=M and expectation in (6.82), we get

kE

(
k

M∑
�=1

‖��‖2
)
≤C(ν,L)k

M∑
�=1

∫ t�

t�−1

E‖∇(z(t�)−z(s)‖2ds++C(ν)kE

(
k

M∑
�=1

‖∇ε̃�‖2
)

+C(ν)k
M∑
�=1

∫ t�

t�−1

E‖∇(z(t�)−z(s))‖2ds+Ck
M∑
�=1

∫ t�

t�−1

E‖π(t�)−π(s)‖2ds.

From Lemma 3.4 (iii) and Lemma 3.8 we obtain

kE

(
k

M∑
�=1

‖��‖2
)
≤C(L,T,ν)(kη+1+k(kη+ε)).

Let v={v(t, ·) : t∈ [t�−1,t�]} be the strong solution of (2.21) as defined in Assumption 3.2

and ρ={ρ(t, ·) : t∈ [t�−1,t�]} the associated pressure, i.e. for every t∈ [t�−1,t�] and all ϕ∈
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W1,2, χ∈L2
per, we have P-a.s.

(v(t�),ϕ)+ν

∫ t�

t�−1

(∇v(s),∇ϕ)ds+

∫ t�

t�−1

b̃(u(s),u(s),ϕ)ds

+

∫ t�

t�−1

(∇ρ(s),ϕ)ds=
∫ t�

t�−1

(ϕ,dW (s)) ,

(6.83)

(divv(t�),χ)=0. (6.84)

To these equations correspond the following algorithm:

Algorithm 3.7 (Second auxiliary algorithm). Let v0 :=u0 be a given V-valued random

variable. Find for every �∈{1, . . . ,M} a tuple of random variables (vε,�,ρε,�) with values in

W1,2
per×L2

per, such that we have P-a.s.

• Penalization:

(ṽε,�−vε,�−1,ϕ)+νk(∇ṽε,�,∇ϕ)+kb̃(ṽε,�+ z̃ε,�,ṽε,�+ z̃ε,�,ϕ)

+k(∇ρ̃ε,�,ϕ)+k(∇ψε,�−1,ϕ)=0, ∀ϕ∈W1,2,
(7.85)

(div ṽε,�,χ)+ε(ρ̃ε,�,χ)=0, ∀χ∈L2
per. (7.86)

• Projection:

(vε,�− ṽε,�,ϕ)+αk(∇(ψε,�−ψε,�−1),ϕ)=0, ∀ϕ∈W1,2
per, (7.87)

(divvε,�,χ)=0, ∀χ∈L2
per, (7.88)

ρε,�= ρ̃ε,�+ψε,�+α(ψε,�−ψε,�−1).

Define the errors σ�=v(t�)−vε,�, σ̃�=v(t�)− ṽε,�, �̃�=ρ(t�)− ρ̃ε,�, and ��=ρ(t�)−ρε,�. Sub-
tracting (7.85) from (6.83) we get

(σ̃�−σ�−1,ϕ)+ν

∫ t�

t�−1

(∇(v(s)− ṽε,�),∇ϕ)ds+

∫ t�

t�−1

b̃(u(s),u(s),ϕ)ds

−
∫ t�

t�−1

b̃(u�,u�,ϕ)ds+

∫ t�

t�−1

(∇(ρ(s)− ρ̃ε,�),ϕ)ds−k(∇ψε,�−1,ϕ)=0.

(7.89)
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Choosing χ=div ṽε,� in (7.86) we get

−(∇ρ̃ε,�,ϕ)= 1

ε
(∇div ṽε,�,ϕ). (7.90)

Thanks to the identities

(∇(v(s)− ṽε,�),∇ϕ)=(∇σ̃�,∇ϕ)+(∇(v(s)−v(t�)),∇ϕ) and (7.91)

(∇(ρ(s)− ρ̃ε,�),ϕ)=(∇(ρ(s),ϕ)+
1

ε
(∇div ṽε,�,ϕ), (7.92)

equation (7.89) is reduced to

(σ̃�−σ�−1,ϕ)+νk(∇σ̃�,∇ϕ)+
k

ε
(∇div ṽε,�,ϕ)

−k(∇ψε,�−1,ϕ)=Q�(ϕ)+R
v
� (ϕ)+

∫ t�

t�−1

(divσ̃�,ρ(s))ds,
(7.93)

where

Q�(ϕ)=

∫ t�

t�−1

(
b̃(u(s),u(s),ϕ)− b̃(ũε,�,ũε,�,ϕ)

)
ds,

Rv
� (ϕ)=ν

∫ t�

t�−1

(∇(v(t�)−v(s)),∇ϕ)ds.

To (7.93) we associate the following projection equation

⎧⎨⎩(σ�− σ̃�,ϕ)=kα(∇(ψε,�−ψε,�−1),ϕ),

divσ�=0.
(7.94)

Let κ1,κ2,κ3>0 some fixed constants, and let us introduce the sample subsets

Ωκ1 =

{
ω∈Ω: sup

0≤t≤T
‖u(t)‖2V+k

M∑
�=1

‖u�‖21≤κ1
}
,

Ωκ2 =

{
ω∈Ω: max

1≤m≤M
‖εm‖2+νk

M∑
�=1

‖ε�‖21+k
M∑
�=1

‖��‖2≤κ2
}
, and

Ωκ3 =

{
ω∈Ω:∀0≤ s<t≤T, ‖u(s)−u(t)‖2L4 ≤κ3|t−s|2η

}
.

(7.95)
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In the next paragraph we derive some error estimates on the intersection of these subsets of

Ω.

Lemma 3.10. Let α>1 and 0<η<1/2. For every ε>0, there exists a constant C=

C(L,T,ν)>0 such that on Ωκ1 ∩Ωκ2 ∩Ωκ3 we have

max
1<m≤M

‖σm‖2+νk
M∑
�=1

‖∇σ�‖2≤C(κ1κ3k2η+κ1κ2+κ22+kη+ε)exp(κ1). (7.96)

Proof. We take ϕ=2σ̃� in (7.93) and proceed exactly like in the proof of Lemma 3.8 until

(6.72). Doing so we arrive at

max
1≤m≤M

{
(α+1

2α
)‖σm‖2+(α−1

2α
)‖σ̃m‖2}+(α−1

2α
)
M−1∑
�=1

‖σ̃�−σ�‖2

+(ν−δ1)k
M∑
�=1

‖∇σ̃�‖2≤C(δ1)ν
M∑
�=1

∫ t�

t�−1

‖∇(v(t�)−v(s))‖2

+ε
M∑
�=1

∫ t�

t�−1

‖ρ(s)‖2ds+2 max
1≤m≤M

m∑
�=1

Q�(σ̃
�),

(7.97)

where

Q�(σ̃
�)=

∫ t�

t�−1

b̃(u(s),u(s),σ̃�)− b̃(ũε,�,ũε,�,σ̃�)ds.

We aligned the term Q� into four terms as follows

Q�(σ̃
�)≤

∫ t�

t�−1

(
b̃(u(s),u(s)−u(t�),σ̃

�)+ b̃(u(s)−u(t�),u(t�),σ̃
�)

+ b̃(u(t�),u(t�)− ũε,�,σ̃�)+ b̃(u(t�)− ũε,�,ũε,�,σ̃�)
)
ds

≤
∫ t�

t�−1

(
NLT1(σ̃

�)+NLT2(σ̃
�)+NLT3(σ̃

�)+NLT4(σ̃
�)
)
ds.

In the next lines, we will estimate the terms NLTj(σ̃
�), j=1, . . . ,4, one by one.

• NLT1(σ̃�): From (2.9), the Sobolev embedding W1,2(D)⊂L4(D), and the Young inequal-

ity, we get the estimate

NLT1(σ̃
�)≤|b̃(u(s),σ̃�,u(s)−u(t�))|≤C(δ1,L)‖u(s)‖21‖u(s)−u(t�)‖2L4 +δ1‖σ̃�‖21.
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Then, integrating over the time interval [t�−1,t�] with respect to s, using the Hölder inequal-

ity, and since ω∈Ωκ1 ∩Ωκ2 ∩Ωκ3 , we get

∫ t�

t�−1

NLT1(σ̃
�)ds≤C(δ1,L)

∫ t�

t�−1

‖u(s)‖21‖u(s)−u(t�)‖2L4ds+δ1k‖σ̃�‖21

≤C(δ1,L) sup
t�−1≤s≤t�

‖u(s)‖21
∫ t�

t�−1

‖u(s)−u(t�)‖2L4ds+δ1k‖σ̃�‖21

≤C(δ1,L) sup
t�−1≤s≤t�

‖u(s)‖21
∫ t�

t�−1

κ3|s− t�|2ηds+δ1k‖σ̃�‖21

≤C(δ1,L)κ1κ3k2η+1+δ1k‖σ̃�‖21.

• NLT2(σ̃�): Again from (2.9) and the Young inequality, we infer

NLT2(σ̃
�)≤|b̃(u(s)−u(t�),u(t�),σ̃

�)|≤C(δ1)‖u(s)−u(t�)‖2L4‖u(t�)‖21+δ1‖σ̃�‖21.

Again, integrating over the time interval [t�−1,t�] with respect to s and since ω∈Ωκ2 , we get∫ t�

t�−1

NLT2(σ̃
�)ds≤C(δ1)‖u(t�)‖21

∫ t�

t�−1

‖u(s)−u(t�)‖2L4ds+δ1k‖σ̃�‖21

≤C(δ1)‖u(t�)‖21
∫ t�

t�−1

κ3|s− t�|2ηds+δ1k‖σ̃�‖21

≤C(δ1)κ3k2η+1‖u(t�)‖21+δ1k‖σ̃�‖21.

Summing up from �=1 to �=M, using the Hölder inequality, and since ω∈Ωκ1 , we get

M∑
�=1

∫ t�

t�−1

NLT2(σ̃
�)ds≤C(δ1)κ3k2η+1

M∑
�=1

‖u(t�)‖21+δ1k
M∑
�=1

‖σ�‖21

≤C(δ1,T )κ1κ3k2η+δ1k
M∑
�=1

‖σ�‖21.

• NLT3(σ̃
�): Since u(t�)− ũε,�= ε̃�+ σ̃� and thanks to the orthogonal property of b̃ (see

Equation (2.8)), we have

NLT3(σ̃
�)= |b̃(u(t�),u(t�)− ũε,�,σ̃�)|= |b̃(u(t�), ε̃�+ σ̃�,σ̃�)|= |b̃(u(t�), ε̃�,σ̃�)|.
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From (2.10) and the Young inequality, we have

NLT3(σ̃
�)≤C(δ1,L)‖u(t�)‖21‖ε̃�‖21+δ1‖σ̃�‖21.

As before, integrating over the interval [t�−1,t�] with respect to s, we obtain

∫ t�

t�−1

NLT3(σ̃
�)ds≤Cδ1(L)k‖u(t�)‖21‖ε̃�‖21+δ1k‖σ̃�‖21.

Summing up from �=1 to �=M , using the Hölder inequality, and since ω∈Ωκ1 ∩Ωκ2 , we

have

M∑
�=1

∫ t�

t�−1

NLT3(σ
�)ds≤C(δ1,L)k

M∑
�=1

‖u(t�)‖21‖ε̃�‖21+δ1k
M∑
�=1

‖σ̃�‖21

≤C(δ1,L) max
1≤�≤M

‖u(t�)‖21
(
k

M∑
�=1

‖ε̃�‖21
)
+δ1k

M∑
�=1

‖σ̃�‖21

≤C(δ1,L)κ1κ2+δ1k
M∑
�=1

‖σ̃�‖21.

• NLT4(σ̃�): By similar computations as before and using the fact that u(t�)− ũε,�= ε̃�+ σ̃�,

we get

NLT4(σ̃
�)= |b̃(ε̃�+ σ̃�,ũε,�,σ̃�)|≤ |b̃(ε̃�,ũε,�,σ̃�)|+ |b̃(σ̃�,ũε,�,σ̃�)|,

For simplicity, let us introduce the notation

NLT4,a(σ̃
�) := |b̃(ε̃�,ũε,�,σ̃�)| (7.98)

and

NLT4,b(σ̃
�) := |b̃(σ̃�,ũε,�,σ̃�)|. (7.99)
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We aligned NLT4,a into two terms by replacing ũε,� by ũ(t�)+ ε̃�. Next, we apply (2.10) and

(2.11) respectively. Finally, we use the Young inequality to get

NLT4,a(σ̃
�)≤|b̃(ε̃�,u(t�),σ̃�)|+ |b̃(ε̃�, ε̃�,σ̃�)|

≤C(δ1,L)‖ε̃�‖21‖u(t�)‖21+C(δ1,L)‖ε̃�‖2‖ε̃�‖21+δ1‖σ̃�‖21.

The term NLT4,b(σ̃
�) satisfies the skew-symmetry property (see (2.7)). Therefore, using the

estimate (2.11) and the Young inequality, we get

NLT4,b(σ̃
�)= |b̃(σ̃�,σ̃�,ũε,�)|≤C(L)‖σ̃�‖‖σ̃�‖1‖ũε,�‖1

≤C(δ1,L)‖σ̃�‖2‖ũε,�‖21+δ1‖σ̃�‖21.

From these estimates, we obtain after an integration over the time interval [t�−1,t�] with

respect to s the estimate

∫ t�

t�−1

NLT4(σ̃
�)ds≤C(δ1,L)k‖ε̃�‖21‖u(t�)‖21+C(δ1,L)k‖ε̃�‖2‖ε̃�‖21

+C(δ1,L)k‖σ�‖2‖u�‖21+δ1k‖σ�‖21.

Then, summing up,

M∑
�=1

∫ t�

t�−1

NLT4(σ̃
�)ds≤C(δ1,L)k

M∑
�=1

[‖ε̃�‖21‖u(t�)‖21+‖ε̃�‖2‖ε̃�‖21+‖σ̃�‖2‖ũ�‖21
]

+δ1k
M∑
�=1

‖σ̃�‖21

≤C(δ1,L)
[
κ1κ2+κ

2
2+k

M∑
�=1

‖σ̃�‖2‖ũε,�‖21
]
+δ1k

M∑
�=1

‖σ̃�‖21.

Finally, the estimates obtained for NLTi(σ̃
�), i=1 . . .4 imply

M∑
�=1

Q�(σ̃
�)≤C(δ1,L,T )

[
k

M∑
�=1

‖σ̃�‖2‖ũε,�‖21+(κ1κ3k
2η+κ1κ2+κ

2
2)

]

+δ1k
M∑
�=1

‖σ̃�‖21.
(7.100)
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We plug (7.100) into (7.97). We fix δ1 so that 0<δ1<ν. Since ω∈Ωκ1 ∩Ωκ2 ∩Ωκ3 , we can

find a constant C=C(δ1,L,T )>0 such that

max
1≤m≤M

{
(α+1

2α
)‖σm‖2+(α−1

2α
)‖σ̃m‖2}

+(α−1
2α

)
M−1∑
�=1

‖σ̃�−σ�‖2+(ν−δ1)
(
k

M∑
�=1

‖∇σ̃�‖2
)

+
1

ε

(
k

M∑
�=1

‖divσ̃�‖2
)
≤C

[
k

M∑
�=1

‖σ̃�‖2‖ũε,�‖21+(κ1κ3k
2η+κ1κ2+κ

2
2+k

η+ε)

]
.

Since we choose 0<δ1<ν, we have (ν−δ1)>0. In addition, since ω∈Ωκ1 , we apply the

Gronwall’s Lemma we conclude that

max
1≤m≤M

{
(α+1

2α
)‖σm‖2+(α−1

2α
)‖σ̃m‖2}

+k
M∑
�=1

‖∇σ̃�‖2≤C(δ1,L,T )(κ1κ3k2η+κ1κ2+κ22+kη+ε)exp(κ1).

Remember that P H is stable in W1,2, thus ‖∇σ�‖≤C‖∇σ̃�‖.

Lemma 3.11. Under the same assumption as in Lemma 3.10, there exists a constant C=

C(L,T,ν)>0 such that on Ωκ1 ∩Ωκ2 ∩Ωκ3 the error iterates {�� : 1≤ �≤M} of the pressure

term in Algorithm 3.7 satisfies

k

M∑
�=1

‖��‖2≤C(κ1κ3k2η+κ1κ2+κ22+kη+ε)exp(κ1). (7.101)

Proof. We add (7.94) and (7.93) and get

k(∇��,ϕ)=Q�(ϕ)+R
v
� (ϕ)+

∫ t�

t�−1

(∇(ρ(t�)−ρ(s)),ϕ)ds

−(σ�−σ�−1,ϕ)−k(∇σ̃�,∇ϕ).

(7.102)
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Using the inequality (4.46), we derive that

k2
M∑
�=0

‖��‖2≤C
M∑
�=0

sup
ϕ∈W1,2

1

‖ϕ‖21
[Q�(ϕ)+R�(ϕ)+

∫ t�

t�−1

(∇(ρ(t�)−ρ(s)),ϕ)ds

−(σ�−σ�−1,ϕ)−k(∇σ�,∇ϕ)]2.

For simplicity let us introduce the following abbreviation

Ĩ+ ĨI+ ĨII+ ĨV+ Ṽ

:=
1

‖ϕ‖1Q�(ϕ)+R�(ϕ)+

∫ t�

t�−1

(∇(ρ(t�)−ρ(s)),ϕ)ds−(σ�−σ�−1,ϕ)−k(∇σ�,∇ϕ).

In the following we estimate each term of the right side.

• Term Ĩ: Here, we get

Ĩ≤C
∫ t�

t�−1

sup
ϕ∈W1,2

1

‖ϕ‖1 (NLT1(ϕ)+NLT2(ϕ)+NLT3(ϕ)+NLT4(ϕ))ds,

≤C
∫ t�

t�−1

(ÑLT 1+ÑLT 2+ÑLT 3+ÑLT 4)ds,

where with (2.9) and (2.10) we arrive at

ÑLT 1≤C(L) sup
ϕ∈W1,2

1

‖ϕ‖1‖u(s)‖1‖ϕ‖1‖u(s)−u(t�)‖L4 =‖u(s)‖1‖u(s)−u(t�)‖L4 ,

ÑLT 2≤ sup
ϕ∈W1,2

1

‖ϕ‖1‖u(s)−u(t�)‖L4‖u(t�)‖1‖ϕ‖1=‖u(s)−u(t�)‖L4‖u(t�)‖1,

ÑLT 3≤C(L) sup
ϕ∈W1,2

1

‖ϕ‖1‖u(t�)‖1‖ε̃
�‖1‖ϕ‖1=‖u(t�)‖1‖ε̃�‖1,

ÑLT 4≤C(L) sup
ϕ∈W1,2

1

‖ϕ‖1{‖ε̃
�‖1‖u(t�)‖1‖ϕ‖1+‖ε̃�‖‖ε̃�‖1‖ϕ‖1},

=C(L){‖ε̃�‖1‖u(t�)‖1+‖ε̃�‖‖ε̃�‖1}.
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Integrating gives

∫ t�

t�−1

ÑLT 1ds≤C(L) sup
t�−1≤s≤t�

‖u(s)‖1
∫ t�

t�−1

‖u(s)−u(t�)‖L4ds,∫ t�

t�−1

ÑLT 2ds≤‖u(t�)‖1
∫ t�

t�−1

‖u(s)−u(t�)‖L4ds,∫ t�

t�−1

ÑLT 3ds≤k‖u(t�)‖1‖ε̃�‖1,∫ t�

t�−1

ÑLT 4ds≤C(L)k{‖ε̃�‖1‖u(t�)‖1+‖ε̃�‖‖ε̃�‖1}.

From the estimates of
∫ t�
t�−1

ÑLT ids, for i=1, . . . ,4, we obtain

Ĩ
2≤kC(L) sup

t�−1≤s≤t�

‖u(s)‖21
∫ t�

t�−1

‖u(s)−u(t�)‖2L4ds+k‖u(t�)‖21
∫ t�

t�−1

‖u(s)−u(t�)‖2L4ds

+k2‖u(t�)‖21‖ε̃�‖21+C(L)k2{‖ε̃�‖21‖u(t�)‖21+‖ε̃�‖2‖ε̃�‖21}.

Summing up for �=1 to �=M gives

M∑
�=1

Ĩ
2≤C(L,T )k(κ1κ2+κ1κ3+κ22).

• Term ĨI: Here, we have

ĨI
2≤k

∫ t�

t�−1

sup
ϕ∈W1,2

ν2
‖∇(v(t�)−v(s)‖2‖∇ϕ‖2

‖ϕ‖21
ds≤Ck

∫ t�

t�−1

ν2‖∇(v(t�)−v(s)‖2ds.

Then, summing up and using Lemma 3.4 gives

M∑
�=1

ĨI
2≤C(ν,T )≤C(ν)kη+1.

• Term ĨII: Here, we have

ĨII
2≤ sup

ϕ∈W1,2

1

‖ϕ‖21
k

∫ t�

t�−1

‖ρ(t�)−ρ(s)‖2‖ϕ‖21ds=k
∫ t�

t�−1

‖ρ(t�)−ρ(s)‖2ds.
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Again summing up and using Lemma 3.4 gives

M∑
�=1

ĨII
2≤k

M∑
�=1

∫ t�

t�−1

‖ρ(t�)−ρ(s)‖2ds≤CT,4k
M∑
�=1

k2η+1=CT,4k
2η+1.

• Term ĨV: Here, we proceed in two steps. First, we estimate ĨV with a term under a

weak norm. Then, we use the Proposition 3.1 to bound this later with terms under H1 or

L2-norm. Thereby, we have

ĨV= sup
ϕ∈W1,2

1

‖ϕ‖1 (σ
�−σ�−1,ϕ)≤ sup

ϕ∈W1,2

1

‖ϕ‖1‖σ
�−σ�−1‖−1‖ϕ‖1≤‖σ�−σ�−1‖−1.

Next, since σ�−σ�−1∈D(A−1), we can take ϕ=A−1(σ�−σ�−1) in (7.102), use Proposi-

tion 3.1, and arrive at the following estimates:

i) ‖σ�−σ�−1‖2−1≤C(σ�−σ�−1,A−1(σ�−σ�−1)),

ii) k(∇σ̃�,∇A−1(σ�−σ�−1))≤ δ1‖σ�−σ�−1‖2−1+Cδ1k
2‖∇σ̃�‖2,

iii) k(∇��,A−1(σ�−σ�−1))=
∫ t�
t�−1

(∇(ρ(t�)−ρ(s)),A−1(σ�−σ�−1))ds=0,

iv) Rv
� (A

−1(σ�−σ�−1))≤C(ν,δ1)kη+2+δ1‖σ�−σ�−1‖2−1.

We aligned the term Q�(A
−1(σ�−σ�−1)) as follows

Q�(A
−1(σ�−σ�−1))≤

∫ t�

t�−1

NLT1(A
−1(σ�−σ�−1))+NLT2(A

−1(σ�−σ�−1))

+NLT3(A
−1(σ�−σ�−1))+NLT4(A

−1(σ�−σ�−1))ds,
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where each of terms NLTj(A
−1(σ�−σ�−1)) for j=1,2,3,4, are estimated as follows:

NLT1(A
−1(σ�−σ�−1))≤Cδ1(L)k‖u(s)‖21‖u(s)−u(t�)‖2L4 +

δ1
k
‖A−1(σ�−σ�−1)‖21,

NLT2(A
−1(σ�−σ�−1))≤Cδ1k‖u(s)−u(t�)‖2L4‖u(t�)‖21+

δ1
k
‖A−1(σ�−σ�−1)‖21,

NLT3(A
−1(σ�−σ�−1))≤C(δ1,L)k‖u(t�)‖21‖ε̃�‖21+

δ1
k
‖A−1(σ�−σ�−1)‖21,

NLT4(A
−1(σ�−σ�−1))≤C(δ1,L)k

{‖ε̃�‖21‖u(t�)‖21+‖ε̃�‖2‖ε̃�‖21+‖σ̃�‖2‖ũε,�‖21
}

+
2δ1
k

‖A−1(σ�−σ�−1)‖21.

All together, the estimates of NLTi(A
−1(σ�−σ�−1)), for i=1, . . . ,4, lead to

Q�(A
−1(σ�−σ�−1))≤C(δ1,L)k

∫ t�

t�−1

‖u(s)−u(t�)‖2L4

[‖u(s)‖21+‖u(t�)‖21
]
ds

+C(δ1,L)k
2
{‖ε̃�‖21‖u(t�)‖21+‖ε̃�‖2‖ε̃�‖21+‖σ̃�‖2‖ũε,�‖21

}
+C(δ1,L)k

2‖u(t�)‖21‖ε̃�‖21+4δ1‖A−1(σ�−σ�−1)‖21.

In addition on Ωκ3 we have

Q�(A
−1(σ�−σ�−1))≤C(δ1,L)( sup

t�−1≤s≤t�

‖u(s)‖21+C(δ1)‖u(t�)‖21)κ3k2η+2

+C(δ1,L)k
2
{‖ε̃�‖21‖u(t�)‖21+‖ε̃�‖2‖ε̃�‖21+‖σ̃�‖2‖ũε,�‖21

}
+C(δ1,L)k

2‖u(t�)‖21‖ε̃�‖21+4δ1‖σ�−σ�−1‖2−1.

Now summing for �=1 to �=M , we have

M∑
�=1

Q�(A
−1(σ�−σ�−1))≤C(δ1,L)( sup

0≤s≤T
‖u(s)‖21+ max

1≤�≤M
‖u(t�)‖21)κ3k2η+2

+C(δ1,L)k max
1≤�≤M

‖u(t�)‖21
(
k

M∑
�=1

‖ε̃�‖21
)
+k max

1≤�≤M
‖ε̃�‖2

(
k

M∑
�=1

‖ε̃�‖21
)

+k max
1≤�≤M

‖σ̃�‖2
(
k

M∑
�=1

‖ũε,�‖21
)
+4δ1

M∑
�=1

‖σ�−σ�−1‖2−1.
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Since we have due to the assumptions ω∈Ωκ1 ∩Ωκ2 ∩Ωκ3 we obtain using (7.96)

M∑
�=1

Q�(A
−1(σ�−σ�−1))≤C(δ1,L)k

(
κ1κ3k

2η+1+κ1κ2+κ
2
2

)
+4δ1

M∑
�=1

‖σ�−σ�−1‖2−1

+C(δ1,L,T )k(κ1κ3k
2η+κ1κ2+κ

2
2+k

η+ε)exp(κ1).

All together we obtain,

M∑
�=1

‖σ�−σ�−1‖2−1≤6δ1

M∑
�=1

‖σ�−σ�−1‖2−1+C(δ1)k
2

M∑
�=1

‖∇σ̃�‖2+C(ν,δ1)kη+1

+C(δ1,L,T )k(κ1κ3k
2η+κ1κ2+κ

2
2+k

η+ε)exp(κ1).

The terms with ‖σ�−σ�−1‖2−1 are absorbed by the left hand side. Thanks to (7.96),

(1−6δ1)
M∑
�=1

‖σ�−σ�−1‖2−1≤C(δ1,L,T )k(κ1κ3k2η+κ1κ2+κ22+kη+ε)exp(κ1).

We can choose δ1 so that (1−6δ1)>0. Note that 1≤ exp(x) for all x∈R. Therefore,

M∑
�=1

ĨV
2≤C(L,T )k(κ1κ3k2η+κ1κ2+κ22+kη+ε)exp(κ1).

• Term Ṽ: Here, we have

Ṽ= sup
ϕ�∈W1,2

1

‖ϕ‖1k(∇σ̃�,∇ϕ)≤ sup
ϕ∈W1,2

1

‖ϕ‖1k‖∇σ̃�‖‖∇ϕ‖=Ck‖∇σ̃�‖.

Summing up and using (7.96) gives

M∑
�=1

Ṽ
2≤Ck2

M∑
�=1

‖∇σ̃�‖2≤C(δ1,L,T )k(κ1κ3k2η+κ1κ2+κ22+kη+ε)exp(κ1).



Chapter 3. Time-discretization of stochastic Navier–Stokes equations 95

Collecting Ĩ,II, ĨII, ĨV, and Ṽ, we obtain

k2
M∑
�=0

‖��‖2≤
M∑
�=0

{Ĩ+ ĨI+ ĨII+ ĨV+ Ṽ}2,

≤C(L,T )k(κ1κ2+κ1κ3+κ22)+C(ν,T )kη+1+CT,4k
2η+1

+C(L,T )k(κ1κ3k
2η+κ1κ2+κ

2
2+k

η+ε)exp(κ1)

+C(L,T )k(κ1κ3k
2η+κ1κ2+κ

2
2+k

η+ε)exp(κ1).

Because 1< exp(x) for all x∈R and with a limiting order term (kη), we have

k

M∑
�=0

‖��‖2≤C(L,T,ν)(κ1κ3k2η+κ1κ2+κ22+kη+ε)exp(κ1).

3.8 Main results

Let us define the errors e�=u(t�)−uε,� and q�=p(t�)−pε,�. Here in the final section, we use

the estimates of the iterates {ε�,��}� and {σ�,��}� to derive an estimate for {e�,q�}�, show
convergence in probability of Algorithm 3.4, and deduce from that strong convergence.

We set

EM := max
1≤m≤M

‖em‖2+νk
M∑
�=1

‖∇e�‖2+k
M∑
�=1

‖q�‖2, (8.103)

ẼM := max
1≤m≤M

‖em‖2+
(
νk

M∑
�=1

‖∇e�‖2
)1/2

+

(
k

M∑
�=1

‖q�‖2
)1/2

, (8.104)

EM
1 := max

1≤m≤M
‖εm‖2+νk

M∑
�=1

‖∇ε�‖2+k
M∑
�=1

‖��‖2, (8.105)

EM
2 := max

1≤m≤M
‖σm‖2+νk

M∑
�=1

‖∇σ�‖2+k
M∑
�=1

‖��‖2. (8.106)
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Theorem 3.12. Let EM be defined in (8.103). If ε=κη, the Algorithm 3.4 converges in

probability with order 0<r<η. In particular, we have

lim
˜C→∞

lim
k→0

P
[
EM ≥ C̃kr

]
=0.

Proof. Let C̃,r>0 be some arbitrary constants which will be fixed at the end of the proof.

By the Chebyshev inequality

P
[
EM ≥ C̃kr

]
≤P(Ω\Ωκ1)+P(Ω\Ωκ2)+P(Ω\Ωκ3)+P

[
EM ≥ C̃kr∣∣Ωκ1 ∩Ωκ2 ∩Ωκ3

]
≤ 1

κ1
E

[
sup

0≤s≤T
‖u(s)‖2V+νk

M∑
�=1

‖u�‖21
]
+

1

κ2
E

[
max

1≤�≤M
‖ε�‖2+νk

M∑
�=1

‖ε�‖21+k
M∑
�=1

‖��‖2
]

+
1

κ3|t−s|2ηE
[‖u(s)−u(t)‖2L4

]
+
E
[EM

∣∣Ωκ1 ∩Ωκ2 ∩Ωκ3

]
C̃kr

.

Observe, that we can write e�=ε�+σ� and q�=��+��. Now, it follows by the definition of

Ωκ2 (see (7.95)), by Lemma 3.10, and Lemma 3.11

E
[EM

∣∣Ωκ1 ∩Ωκ2 ∩Ωκ3

]≤E
[EM

1

∣∣Ωκ1 ∩Ωκ2 ∩Ωκ3

]
+E

[EM
2

∣∣Ωκ1 ∩Ωκ2 ∩Ωκ3

]
≤κ2+C(κ1κ3k2η+κ1κ2+κ22+kη+ε)exp(κ1),

where EM
1 and EM

2 are defined by (8.105) and (8.106) respectively. Moreover, by estimate

(2.14), Lemma 3.6, and Lemma 3.8 we obtain

P
[
EM ≥ C̃kr

]
≤ κ2+C(κ1κ3k

2η+κ1κ2+κ
2
2+k

η+ε)exp(κ1)

C̃kr
+
C

κ1
+
C(kη+ε)

κ2
+
C

κ3

≤ C(κ2+κ3k
2η+κ22+k

η+ε)exp(2κ1)

C̃kr
+
C

κ1
+
C(kη+ε)

κ2
+
C

κ3
.

Let μ>0. We fix ε=kη, κ1=lnk−μ/2, κ2=k
μ+r, and κ3=k

−η. Therefore, we have

P
[
EM ≥ C̃kr

]
≤ C(kr+kη−μ)

C̃kr
− C

lnkμ
+Ckη−μ−r+Ckη.
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Let us remind, that we fixed the constant r in the beginning, such that η−μ−r>0. Now,

we are ready to go to the limit:

lim
˜C→∞

lim
k→0

P
[
EM ≥ C̃kr

]
≤ lim

˜C→∞
lim
k→0

(
C

C̃
− C

lnkμ
+Ckη−μ−r+Ckη

)
= lim

˜C→∞

C

C̃
=0.

This gives the assertion.

A consequence of this theorem is strong convergence of iterates of the scheme. This will be

shown by the following corollary.

Corollary 3.13. Let ẼM be defined as in (8.104). Under the assumption of Theorem 3.12

we have

lim
M→∞

E
[
ẼM

]
=0.

Proof. Let C̃ >0 an arbitrary constant. We define the sample set

Ω
˜C,k :=

{
EM ≥ C̃kr

}
.

From the law of total probability we deduce that

E
[
ẼM

]
=E

[
ẼM

∣∣∣Ω
˜C,k

]
P(Ω

˜C,k)+E
[
ẼM

∣∣∣Ω\Ω
˜C,k

]
P(Ω\Ω

˜C,k).

Since P(Ω\Ω
˜C,k)≤1, and by definition of Ω

˜C,k,

E
[
ẼM

]
≤E

[
ẼM

∣∣∣Ω
˜C,k

]
P(Ω

˜C,k)+ C̃k
r/2.

Using the definition of conditional expectation and the Cauchy–Schwartz inequality we ob-

tain

E
[
ẼM

∣∣∣Ω
˜C,k

]
P(Ω

˜C,k)≤E

[(
ẼM

)2
](

P(Ω
˜C,k)

)1/2

.
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Remember that e�=u(t�)−uε,� and e�=p(t�)−pε,�. Using now Equation (2.12), Lemma 3.6(iii),

Equation (2.13), Proposition 3.3, and Lemma 3.7, we arrive at

E

[(
ẼM

)2
]
≤E

[
max

1≤m≤M
‖u(tm)‖4

]
+E

[
max

1≤m≤M
‖uε,m‖4

]
+E

(
νk

M∑
�=1

‖∇u(t�)‖2
)

+E

(
νk

M∑
�=1

‖∇uε,�‖2
)
+E

(
k

M∑
�=1

‖p(t�)‖2
)
+E

(
k

M∑
�=1

‖pε,�‖2
)
≤C(T,L,u0,ν).

Consequently, we get

E
[
ẼM

]
≤C(T,L,u0,ν)

(
P(Ω

˜C,k)
)1/2

+ C̃kr/2.

Now we fix C̃=k−r/4 from the beginning and define Ω̃M :=ΩMr/4,M−1 . To conclude, we take

the limit for M→∞ and apply Theorem 3.12,

lim
M→∞

E
[
ẼM

]
≤C(T,L,u0,ν)

(
lim

M→∞
P(Ω̃M)

)1/2

+ lim
M→∞

1

M r/4
=0.

This gives the assertion.
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[32] P. Chow. Stochastic Partial Differential Equations. Advances in Applied Mathematics.

Taylor & Francis, 2007.

[33] P. Constantin, B. Levant, and E. S. Titi. Analytic study of shell models of turbulence.

Physica D: Nonlinear Phenomena, 219(2):120 – 141, 2006.

[34] R. Courant. Variational methods for the solution of problems of equilibrium and vibra-

tions. Bulletin of the American Mathematical Society, 49(1):1–23, 01 1943.

[35] J. Cui, J. Hong, and Z. Liu. Strong convergence rate of finite difference approxima-

tions for stochastic cubic Schrödinger equations. Journal of Differential Equations,

263(7):3687–3713, 2017.

[36] G. Da Prato and J. Zabczyk. Ergodicity for infinite-dimensional systems, volume 229

of London Mathematical Society Lecture Note Series. Cambridge University Press,

Cambridge, 1996.

[37] R. Dautray, J. Lions, and A. Craig. Mathematical Analysis and Numerical Methods

for Science and Technology: Volume 5 Evolution Problems I. Mathematical Analysis

and Numerical Methods for Science and Technology. U.S. Government Printing Office,

1999.

[38] A. De Bouard and A. Debussche. A semi-discrete scheme for the stochastic nonlinear

Schrödinger equation. Numerische Mathematik, 96(4):733–770, 2004.

[39] A. De Bouard and A. Debussche. A semi-discrete scheme for the stochastic nonlinear

Schrödinger equation. Numerische Mathematik, 96(4):733–770, 2004.



Bibliography 103

[40] A. Debussche and J. Printems. Numerical simulation of the stochastic Korteweg–de

Vries equation. Physica D: Nonlinear Phenomena, 134(2):200 – 226, 1999.

[41] A. Debussche and J. Printems. Convergence of a semi-discrete scheme for the stochastic

Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 6:761,

2006.

[42] A. Debussche and J. Printems. Weak order for the discretization of the stochastic heat

equation. Mathematics of Computation, 78(266):845–863, 2009.

[43] P. D. Ditlevsen. Turbulence and Shell Models. Cambridge University Press, 2010.

[44] P. Dörsek. Semigroup splitting and cubature approximations for the stochastic Navier—

Stokes equations. SIAM Journal on Numerical Analysis, 50(2):729–746, 2012.
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