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Abstract 

A new tensile creep testing facility for high temperature measurements of heterogeneous 

refractories was introduced in order to characterize materials applied for the lining of furnaces 

and vessels of the steel industry. The machine allowed accurate specimen alignment and holding 

systems. A uniform loading permitted to avoid bending and uneven stress distribution in the 

specimen. Prior to the measurements, thermo-mechanical simulations were carried out in order to 

optimize the testing procedure. Feasibility of the experiments was confirmed with the selection of 

an optimal heating rate. Observation of temperature and stress distributions in the hot zone and 

the cold ends confirmed the specimen shape and dimensions chosen.  

Creep behaviour of magnesia-chromite and magnesia-spinel bricks were measured as a function 

of tensile stress in the range from 0.2 to 1.9 MPa and as a function of temperature in the range 

from 1100 °C to 1600 °C. Three creep phases were revealed at these conditions indicating the 

strain-hardening, the steady state and the strain-softening behaviour of the materials. The 

procedure developed for the interpretation of the experimental results included the selection of 

Norton-Bailey creep law, the identification of the creep stages and the calculation of the creep 

parameters by inverse-estimation using the general reduced gradient (GRG) or Levenberg-

Marquardt (L-M) algorithms. A detailed study of creep behaviour of magnesia-chromite material 

was then carried on with bringing to light the evident correlation existing between the creep 

strain, the applied stress and the temperature. An approach which consisted on finding the 

transition points between the creep stages in dependence of stress and temperature can be 

implemented in a simulation program. The activation energy was evaluated for this material; 

however it was not evident to conclude about the different mechanisms happening during creep 

due to their probable simultaneous occurrence in the heterogeneous material.  

Norton-Bailey creep parameters describing the strain-hardening behaviour of magnesia-chromite 

were then implemented in the software Abaqus for a thermomechanical modelling of an RH-

snorkel. Three models were investigated and compared; the symmetrical tensile, the symmetrical 

compressive and the asymmetrical creep models. During process the refractory lining endures 

high thermal stresses. The temperature and stress distributions were evaluated and compared at 

different moments of the first heat. The asymmetrical creep model was more representative than 

the symmetrical ones.  
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Introduction 

Refractory materials are applied in diverse fields, among them the industries of steel, cement, 

nonferrous metals, glass and several others. They became indispensable for industrial processes 

at extremely high temperatures beyond 1000 °C. Refractory materials bring a level of high 

performance to industrial vessels because of their improved resistance against not only high 

temperature, but also against corrosion, external mechanical loads and thermal shock. However 

under operating conditions their performance over time may be altered due to continual thermal 

cycling and important tensile and compressive loadings, leading to their creep. The expected 

creep deformation affects the lining design and durability. 

Despite the influence of the tensile creep on refractories in service, there has been no subsequent 

advancement on that area. Many researches were capable to relate the creep of refractories under 

compressive loads, but only few of them showed concern on their tensile creep behaviour. This is 

due to the difficulties of testing heterogeneous refractory materials under the conditions of tensile 

creep loading. Many aspects have to be taken into consideration. Long term experiments capable 

of measuring small strains at temperatures up to 1600 °C should be performed. This induces 

providing a suitable alignment to avoid bending of the specimen and guarantee uniform uniaxial 

stresses during loading. Moreover, suitable fixtures at high temperatures for relatively brittle 

refractories could be difficult to implement. Presently only two standards for testing creep related 

properties of refractory materials at high temperature exist: Creep In Compression (CIC) and 

Refractoriness Under Load (RUL). However the applied compressive loads are restricted to 0.2 

MPa. During operation the loads influencing the creep additionally occur under tension and 

exceed 0.2 MPa. Creep data under tensile loading also need to be provided in order to design 

failure resistant systems.  

Experimental and numerical approaches are combined in this study for the characterization of 

creep under tensile loads at high temperature and for further simulating industrial refractory 

linings during service conditions.  

In the first chapter the state of the art concerning tensile creep of refractory materials is compiled. 

The detailed bibliographical review relates the various tensile creep testing procedures and 

mechanisms, the existing creep laws as well as their applications to the asymmetric creep 

response. 

The second chapter highlights the innovative design of the testing setup and the measurement 

procedure. The modelling conducted prior to measurements points out the chosen specimen and 

heating rate, and confirms the feasibility of the creep testing at extremely high temperatures.  

Chapter 3 sums up the tensile creep measurements for two refractory materials at high 

temperatures and different applied loads. The creep of a magnesia-chromite and a magnesia-

spinel refractory is represented as a material property in a simulation program. The processing of 

the creep data requests the use of powerful tools and accurate evaluation methods. 
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After having studied the creep of two refractories and implemented a valuable evaluation method 

for creep parameters identification, tensile creep data are applied to linings of an industrial vessel. 

In the last chapter the results of asymmetric creep model are presented for a case study.  
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 State of the art Chapter 1:

 

 Introduction 1.1

Industrial construction parts, viz. refractories, employed in steel production at high temperature 

are constrained with respect to their thermal expansion. This leads to a growth of tensile and 

compressive stresses during heating and cooling cycles. Depending on the refractories 

mechanical properties, their response is different. On the one hand creep may contribute to a 

stress decrease and avoid e.g. spalling of brittle materials. On the other hand creep close to the 

hot face after e.g. contact with liquid steel reduces the brick dimension. This may bring about a 

higher risk of tensile failure after further thermal equilibration. Therefore, quantitative material 

models for refractory creep are mandatory to assess the material behaviour. Several testing 

methods, including creep, investigate refractory material properties and describe their behaviour 

indicating threshold stresses for safety at high temperatures. This first chapter resumes the 

existing advanced technology for performance of such experiments and more specifically those 

related to creep; which is mainly performed under compressive loading for ordinary refractories 

or under tensile loading for advanced ceramics. Creep laws are numerous and should be well 

known, their use helps for understanding the comportment of refractory materials. Creep law 

parameters may be suitable to clarify the mechanisms occurring during creep. Creep laws are 

further integrated into simulations of industrial vessels in order to comprehend their performance 

in service and optimize their creep resistance under tough conditions. Creep of a ceramic material 

is above all asymmetrical, meaning that it is more severe in tension than in compression under the 

same loading level due to the dilatation of the material. Further studies managed to apply 

asymmetric creep models to ceramics taking into account both compressive and tensile creep 

influence.   

 

 Definition of creep 1.2

Creep is a type of deformation that occurs in dependence of time and under constant load, the 

amount of deformation is a function of stress, temperature, time and structure of the material [1]. 

After the elastic behaviour of the material, three stages as a consequence of irreversible 

deformation may follow. In the primary creep, also called transient creep, the material hardens 

while a decreasing strain rate is observed (cr/t ≠ constant and 
2cr/t

2
 < 0). It is followed by 

the secondary stage which is characterized by constant creep rate (cr/t = constant) not anymore 

time dependent. The tertiary regime shows a region of rapid increase of the creep rate (cr/t > 

0), the material experiences strain softening behaviour in anticipation of ultimate fracture. Fig. 1 

illustrates the typical creep behaviour with respect to time. 
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Figure 1: (a) Theoretical creep strain, (b) creep rate and acceleration with respect to time. 

 

 Creep laws 1.3

Creep laws describing the strain with respect to time were proposed for all types of materials 

including refractories. Factors like material composition, magnitude of the applied load or 

temperature have a direct effect on creep. The overall basic creep equation is written with respect 

to the applied stress σ, the time t and the temperature T as follows: 

 Ttf
cr

,,              (1) 

Several creep laws assume that the impact of the parameters can be separated [2, 3]: 

     Tftff
cr 321

              (2) 

In the past decades numerous hypotheses were proposed for the development of creep laws. 

Stress, time and temperature functions of creep according to literature references are described in 

a large number of alternative expressions [3, 4 and 5]. Although many stress dependent creep 

models were proposed [6, 7, 8], the power function of the applied stress ascribed to Norton [9] is 

nowadays one of the most commonly used law.  

  nbf 
11

              (3) 

Time dependence of creep was considered by Bailey [10] among many other existing creep 

functions [7, 11, 12 and 13], see Eq. 4. Many of them certainly describe the time function 

effectively. While the representation of creep performance may be comparable, they disagree in 

the number of involved constants.   

  mtbtf
22

               (4) 

Here b1 and b2 are material constants. The commonly used temperature dependent creep function 

was defined by Arrhenius [5, 14, 15 and 16] and is given as 
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A is the pre-exponential factor, Q is the activation energy, R is the general gas constant and T is 

the absolute temperature. The above creep function, Eq. 2, could be then represented as  











RT

Q
Atbb mn

cr
exp

21
             (6)  

If creep occurs under isothermal conditions, for a given temperature the function then may be 

simplified to: 

mn

cr
tB            (7) 

The latter equation, recognized as Norton-Bailey creep law, was often exploited for creep 

analysis and was applied under constant uniaxial stress [17, 18]. Creep under variable uniaxial 

stress - although being not completely satisfactory - was based on the theories derived from creep 

under constant stress. Two hypotheses were put forward [2]: time hardening; assuming that the 

creep strain rate is a function of stress, time and temperature (see Eq. 8), or strain hardening; 

where the creep strain rate is rather a function of stress, temperature and accumulated creep strain 

(see Eq. 9). 

   
 

 Tf
dt

tdf
fTtf

dt

d
cr

3

2

1
,, 


         (8) 

       TgggTf
dt

d
crcr

cr

321
,, 


        (9) 

The derivative of Eq. 7 with respect to time gives  

1
 mncr mtB
dt

d
           (10)  

By substituting the time variable from Eq. 7, the creep strain rate can be written as  

m

m

cr

m

n

mcr mB
dt

d 11 




           (11) 

Both of the Eq. 10 and Eq. 11 are strain rate functions that describe the time hardening and the 

strain hardening behaviour of the material, respectively [19]. They were used primarily to model 

the primary creep stage by determining the creep coefficients m, n and B. Several theories and 

laws emerged from these two hypotheses to describe the creep behaviour of ceramics. The 

general equation employed in many researches [20, 21 and 22] that expresses secondary creep of 

single phase ceramics by taking into consideration grain size exponent is written as follows 
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RT

Q

d
C

p

n

cr
exp           (12) 

C is a constant, d is the grain size, p is the grain size exponent, σ is the applied stress and n is the 

stress exponent. 

 Lin et al [23] adopted the model of Raj and Ashby [24] that was derived from the general creep 

equation to analyse the creep deformation of alumina-silicon carbide composites  














RT

Q

Vrd
C

qp

n

cr
exp          (13) 

V is the whisker content, r is the whisker radius and q is the radius exponent. Creep performance 

can be improved by varying whisker content and size as well as the matrix grain size. To describe 

a multiphase refractory system, MgO-CaMgSiO4, Snowden and Pask [25] employed the creep 

rate equation that considers shear modulus G. 








 







 


RT

Q

G
A

n

cr
exp           (14) 

Here n is a dimensionless constant and the factor A having a dimension of [1/time] varies linearly 

with G and inversely with the temperature. With assuming that two mechanisms operate 

simultaneously and by introducing a structural parameter S, the steady-state creep rate was then 

expressed [25]. 

  






 


1

exp,,
i

i

iicr

RT

Q
STfA         (15) 

Here fi represents the functional dependence for the i
th

 mechanism on the applied stress, 

temperature and structure parameter S. Qi is the apparent activation energy for creep by each 

mechanism. It was determined at several temperatures using the incremental temperature 

technique described by Dorn [5].  

Luecke and Wiederhorn [26, 27] suggested that creep of Si3N4 is mainly controlled by cavity 

formation and growth during the steady state and proposed a model of the creep strain rate in 

relation with the volume fraction of the amorphous phase Φ and a constant α. 

 
 











 
 exp

1
exp

2

3

RT
A

cr
         (16) 

Multi-axial creep was considered [28, 29] in order to establish constitutive creep models [30, 31]. 

Experiments showed for isotropic and homogeneous materials that creep can be dominated by 

shear stresses with the material volume maintained constant during creep; the rate of volume 

creep is then nil [32, 33 and 34]:  
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0
321
            (17) 

Here
21

,  and 
3
  are principal strain rates.  
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3

3

2

2

1
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          (18) 

Here   is a constant; 
21

,   and 
3
  are principal shear strain rates; 

21
,  and 

3
  are principal 

shear stresses. The principal shear strain rates are related to the principal shear stresses.  

2

32

1


 , 

2

13

2


  and 

2

21

3


  

321
  , 

132
  and 

213
   

The assumption made is that the effective strain rate,
e
 , is associated to the effective stress 

similarly to the uniaxial case: 

   tff
e 21

            (19) 

     2

31

2

32

2

21

2

2
        (20) 

Here  is Von Mises equivalent stress. 

 

 Creep mechanisms in ceramics and some representative creep functions 1.4

The mechanisms of creep are identified by the calculation of the stress, strain and grain size 

exponents in addition to the apparent activation energy, all derived from the steady-state creep 

regime. Theoretical creep mechanisms at high temperature describing intergranular or 

intragranular deformation progressions are described by the strain rate,  , which is in dependence 

on several parameters [35].  

np

Gd

b

kT

ADGb







 








            (21) 

A is a dimensionless constant, D is the  diffusion coefficient of the governing diffusion process, G 

is the shear modulus, b is the Burger’s vector, k is Boltzmann’s constant, T is the absolute 

temperature, d is the grain size, p is the exponent of the inverse grain size and n is the stress 

exponent. The diffusion coefficient is dependent on the activation energy, Q, necessary for the 
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diffusion process, the frequency factor D0, the gas constant R (8.31 J mol
-1

 K
-1

) and the 

temperature T.  








 


RT

Q
DD exp

0
           (22) 

Creep data are not easily interpretable especially for refractory ceramics, as they are in the most 

cases polycomponent materials with a porous grain/matrix structure and may develop liquid 

phases at service conditions.   

The dominant creep mechanism, viz. the rate controlling one, may be intragranular, meaning that 

there is no dependency on the incidence of grain boundaries. The exponent of the inverse grain 

size p is nil and the deformation processes are then lattice mechanisms [36]. Numbers of lattice 

mechanisms were developed according to the predicted values of the strain exponent n and the 

activation energy Q; for example different types of dislocations glide and climb [37]. When the 

rate controlling creep is intergranular, here grain boundaries are involved in the deformation 

process [37], the exponent p is then defined as greater than or equal to 1. The grains displaced are 

influencing each other with a move happening either at the grain boundary plane or not far from 

it. This arrangement may take place together with tensile elongation of the grains [38]. More than 

a few boundary mechanisms were established, for instance sliding limited by diffusion creep 

(Nabarro-Herring or Coble), sliding controlled by intragranular flow across the grains, or sliding 

with or without continuous glassy phase at the boundary. In the absence of the glassy phase 

sliding is accommodated by formation of grain boundary cavities or formation of triple-points 

folds [35].  

In the case of bonding phase displacement, creep rate is dependent on the tensile or the 

compressive deformation. A creep model assuming bonding of the grains via a Newtonian fluid 

(viscous grain boundary phase) was described by Dryden et al [39, 40]. Chadwick et al [41, 42] 

applied afterwards the theory of non-Newtonian viscous fluids based on the viscous flow models. 

 














 



3

3

3

3

1d
cr

         (23) 

Here d is the grain size, ω is the bonding phase thickness, η is the effective viscosity of the 

bonding phase and Φ is its volume fraction. The matrix flow model exhibits a creep rate 

proportional to the volume fraction of the matrix cubed.  

For solution-precipitation mechanism [43, 44 and 45] are involved parameters like grain size, 

diffusivity of ions from refractory grains through intergranular phase,
0
 , apparent activation 

enthalpy of precipitation from liquid, ΔΗ sol-ppt, and other empirical constants σ0, G0 and  [46]. 
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Cavitation is also likely to happen. Cavity formation usually accompanies creep in tension and 

can be the controlling factor for creep of some materials. It is a typical grain boundary 

mechanism which occurs often in polycrystalline materials, but it is not as active in compression 

as it is in tension; unless high magnitudes of stresses are involved in compression creep [47]. The 

creep law stating cavitation mechanism [46] can also be expressed in the following way 
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1
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3
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The rate of flow from the cavities, the total number of pockets and the fraction of the cavitated 

ones need to be defined [46]. k and α are empirical constants, η is the apparent viscosity, ΔΗvis is 

the apparent activation enthalpy for the viscosity of the bonding phase material in the pockets and 

multigrain junctions, and Vf is the volume fraction of the bonding phase. 

 

 Creep of ceramics 1.5

The undertaken experiments for the determination of creep behaviour of ceramics are numerous; 

however those dedicated to refractory materials turn out to be less frequent. Large interest was 

shown for advanced technical ceramic materials dedicated to many applications, for example as 

part of gas turbines, turbochargers and heat exchangers intended for aerospace, also for nuclear, 

automotive, electronics and biotechnology industries. The main technical advanced ceramic 

materials are Ceramic Matrix composites (CMCs) [48, 49], alumina/SiC micro-nanocomposites 

[20], silicon nitride [27], whiskers reinforced ceramics (SiC-whisker-reinforced Al2O3), glass-

bonded ceramics (sintered Si3N4) and powder compacts (Siliconized SiC) [50], sol-gel derived 

mullite ceramics [21], ZrB2-SiC composites [51], mullite or zircon-mullite-zirconia (ZMZ) [52] 

and ceramics for glass industry belonging to the AZS system [53]. All those materials are bi-

phasic or multi-phasic systems having grains/matrix with sizes in the range from nanometres to 

few micrometres. The grain size can be even larger in case of AZS refractories.  

Creep under tensile deformation differs from creep under the compressive deformation. Creep 

deformation of ceramics is activated by several displacement mechanisms. The early stage of 

deformation is characterized by the material transfer from compressive grain boundaries to 
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tensile grain boundaries [54]. In the case of a bonding phase the deformation may stop after the 

grains eventually come into contact. In some special cases creep can be controlled mainly by 

cavity formation and growth under tension, while in compression it is more controlled by 

solution-precipitation.  

 

1.5.1 Creep of silicon nitride and silicon carbide ceramics 

Wiederhorn [46] discussed the creep behaviour of particulate ceramic composites (silicon nitride 

and silicon carbide) in tension and compression at temperatures up to 1400 °C. The important 

properties controlling creep resistance are the refractoriness of the phases located at the grain-

boundaries and their volume fraction. The more refractory the second phases, the more the 

material is resistant to creep. In addition, a lower volume fraction of the bonding phase leads to a 

higher creep resistance. Q. Wei et al [55] studied the microstructure evolution of a self-reinforced 

silicon nitride associated with high temperature tensile creep process. The loads were applied 

from 60 MPa to 140 MPa at temperatures between 1100 °C and 1275 °C. They observed with 

extensive transmission electron microscopy (TEM) strain whorls, different types of dislocations, 

grain boundary sliding and cavities in certain samples. The major creep mechanism was 

concluded to be dislocations starting mostly from the grain boundaries. They assumed that grain 

boundary sliding and cavity formation contributed to the accelerated creep failure at high 

temperature, whereas at lower temperature creep was more controlled by diffusion.  

The tensile creep of silicon nitride ceramic, sintered with additions of Yb2O3 and SiO2, was 

studied by Cao et al [56]. The investigated temperatures were 1300 °C and 1400 °C under 

applied stresses from 125 MPa to 200 MPa. The specimens tested led to failure without 

observation of the tertiary stage. Transmission electron microscopy (TEM) observations revealed 

that the dominant creep mechanism was not cavitation in that case. Tensile creep behaviour of 

reaction-sintered ceramics was determined by Ienny and Boussouge [57]. Silicon nitride (RBSN) 

and silicon carbide (RBSC) were tested at temperatures up to 1200 °C and 1300 °C, respectively. 

Different stresses ranging from 10 MPa to 100 MPa were applied with or without unloading. 

Phenomenological and rheological models were used to describe transient creep. Viscoelastic 

deformation dominated the creep of RBSN, whereas RBSC exhibited viscoplastic creep 

behaviour. Creep of RBSN was assumed to be controlled by the bulk oxidation through the open 

porosity. Further measurements of this material were performed with pre-oxidation in air at 1050 

°C in order to reveal this effect. As a consequence, creep resistance decreased with higher 

oxidation time.  

The effect of heat-treatment by annealing (furnace or microwave) on creep behaviour of self-

reinforced silicon nitride ceramics Si3N4 were considered by Q. Wei et al [27]. Several tensile 

stress levels were applied and three creep stages were detected at 1200 °C and 100 MPa. Both 

furnace and microwave annealing enhanced the creep resistance of the material with microwave 

annealing presenting the most significant effect. High amount of multiple-junction cavitation and 
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a significant devitrification of the amorphous phases in the microwave annealed specimen were 

perceived.  

 

1.5.2 Creep of ceramic matrix composites (CMCs) 

A large participation for the investigations of several CMCs with respect to creep mechanisms 

and damage are available in the literature. Lamoureux et al [58] studied the effect of damage on 

creep behaviour of alumina fibre reinforced silicon carbide composite with the microcomposite 

model approach on the basis of several results. He pointed out a progressive fibre-matrix 

debonding induced by their creep rate mismatch, causing tertiary creep and a decrease of the 

longitudinal elastic modulus. Another research from Lamoureux et al [59] demonstrated the creep 

behaviour of alumina fibre/silicon carbide CMC characterized by a short primary stage followed 

by one or two tertiary stages. The secondary stage was limited to a single point. The mechanisms 

were controlled by viscoplastic creep of the alumina fibre or damage accumulation within the 

composite. Creep tests were carried out at a temperature of 1100 °C and stresses of 100 MPa and 

170 MPa, with unloading-reloading cycle of 2 MPa/s. The two tertiary stages presented different 

damage mechanisms; the first one was related to fibre-matrix debonding only, whereas the 

second one successive fibre failure was dominated at low creep stresses only. J.L. Chermant et al 

[60] resumed more than 10 years of research on creep of CMCs reinforced by long ceramic fibres 

in ceramic or glass-ceramic matrix. Primary and secondary stages were mostly detected. The 

stresses and the temperatures causing creep were low. In air or argon conditions, stresses were 

lower than 400 MPa and temperatures were below 1400 °C and 1100 °C for CMCs with the 

ceramic matrix and the glass-ceramic matrix, respectively. Creep of CMCs reinforced by 

continuous ceramic fibres with a ceramic matrix is controlled by damage creep mechanism, while 

creep for those with a glass ceramic matrix is controlled by the creep of the fibres above 1000 °C. 

They observed brittle damage creep mechanisms operating for these CMCs in two steps: matrix 

microcrack development until its saturation followed by an opening of some of these 

microcracks. Under certain conditions the latter enables creep of SiC fibres which bridge the 

microcracks.  

The effect of oxidation on the creep behaviour fibre-reinforced CMCs was modelled by Casas 

and Martinez-Esnaola [61]. The model took into account the interface and matrix oxidation and 

was compared to experimental results at 1000 °C and 1100 °C with stresses between 115 MPa 

and 300 MPa. The fraction of broken fibres increased and accelerated with time due to load 

transfer and fibre degradation. Unstable failure of the composite was concluded to be caused by a 

fraction of about 15% of broken fibres.  

Long-time tensile creep and also rupture of a 2D-woven SiC fibre-reinforced SiC matrix 

composite was investigated under air at 1315 °C and several stresses [62]. Three different SiC 

fibres and three different SiC-based matrixes were compared. Primary, secondary and sometimes 

tertiary stages were detected. The dominant factor, controlling creep and rupture properties of the 

composites, was the creep of the fibres. The formation and growth of most matrix microcracks 
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originated from the specimen surface. Through the whole specimen thickness matrix-cracking 

was not observed for creep over a period of 100 h. As the fibres were more creep resistant than 

the matrix, stresses were relaxed with time at the crack tip. Matrix crack growth was stopped 

until oxidized fibres breakage occurred in a matrix crack wake. It was also noted that a true 

steady-state strain rate condition was never achieved due to the fibres themselves that showed 

strong primary creep and also to stress transfer from matrix to fibres during creep of the 

composites. Creep resistance of a ceramic material is enhanced considerably by adding second 

phases. The addition could be a dilute arrangement of fine particles or multidimensional tows of 

continuous fibres infiltrated in matrix phase.  

A review of available models of creep behaviour and mechanisms in multiphase ceramic 

materials was given by David S Wilkinson [50], where particular attention was paid to whiskers 

reinforced ceramics, infiltrated powder compacts and glass-bonded ceramics. Models based on 

viscoplastic creep of the matrix phase showed that creep can be controlled by a combination of 

matrix flow, dissolution-precipitation creep and cavitation.  

Cyclic creep and recovery behaviour of an oxide-oxide continuous fibre ceramic composite, 

CMC, was studied in steam environments at 1200 °C for maximum stress levels of 100 MPa and 

125 MPa [48]. Primary creep stage was mainly detected. For an applied stress, creep rate and 

accumulated creep strain were lower in cyclic creep-recovery than in sustained creep experiment. 

Strain recovery led to improvement in creep lifetime. Presence of steam affected the cyclic creep 

recovery behaviour of some CMCs; strain recovery was lower compared to the one in air. 

Regions of fibrous fracture were noticed for creep-recovery tests under air. Steam environment 

had a dramatic effect on the fracture surface.  

Long-duration creep performance of SiOC containing composites material reinforced with fibres 

was considered at temperatures up to 1200 °C [49]. All measurements showed a period of 

primary regime and constant strain rate without tertiary creep. Creep of CMCs samples with fibre 

orientation of ± 45° was matrix dominated with pronounced primary stage. The steady state creep 

was attributed to viscous flow behaviour of the SiOC in the matrix. In the CMCs samples of 

0°/90° fibre orientation creep was independent of oxidation. It was rather dependent on the 

granular structure of the fibre. The change of the microstructure of the fibres to coarser and non-

uniform shape led to a reduction of the secondary stage and modification of the diffusional creep.  

Tensile creep of a novel mullite fibre at temperatures equal to 1100 °C and 1300 °C was 

performed by Almeida et al [63]. Only primary and secondary creep stages were observed, 

followed sometimes by failure with the absence of the tertiary stage, and creep deformation was 

not detected at lower temperature. Most of the tested fibres had what the authors called an elastic-

pseudo-plastic behaviour associated with grain boundary sliding mechanism at 1400 °C. Two 

main determinant aspects for the mechanical behaviour of the mullite fibre came out of these 

results: microstructure heterogeneity for the total deformation and density of defects for the 

strength.  

High temperature tensile creep, fatigue and fracture of single or multiphase ceramics, i.e. mullite 

and ZMZ, with additional glass/liquid phase were discussed by Davies et al [52]. The specimens 
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ended with fracture after only a continuously decelerating primary stage in case of mullite and 

mostly after a tertiary stage for ZMZ. Experiments were performed at temperatures between 1200 

°C and 1400 °C and several applied loads. All experiments ended with growth of a single crack. 

The cyclic fatigue periods were the longest because of the viscous crack bridging and crack 

healing while unloading. The authors concluded on an initial flow of the viscous glassy phase 

that was substituted by solution/precipitation when the grains lock up. Tertiary creep was denoted 

as a result of cavitation damage in the liquid phase.    

All previously discussed creep investigations of advanced ceramics were carried out at high 

applied stresses (approximately hundreds of MPa) and at moderately high temperatures (from 

1000 °C to 1400 °C), which are significant service conditions for this category of materials. In 

comparison to ordinary ceramic refractories the operating conditions do not attain such high 

stresses but can reach high temperatures like e.g. 1600°C. 

 

1.5.3 Creep mechanisms of advanced ceramics under compression 

More than three decades ago compressive creep was already investigated by Tsai and Raj [64] for 

MgO-fluxed hot pressed Si3N4 assuming solution-precipitation mechanism. Kinetic data for the 

dissolution rate of β-Si3N4 in Mg-Si-O-N glass were utilized. Creep happened by solution-

precipitation process as the fine-grained hot pressed Si3N4 contained amorphous phase in grain 

interfaces. Creep under uniaxial compression was applied at a temperature of 1400 °C and for a 

stress range from 100 MPa to 500 MPa. Solution-precipitation creep could be controlled either by 

the transport of atoms across the fluid/crystal interface or by diffusional transfer of atoms through 

the fluid medium [65]. The two steps acted in series and the slower one was assumed to be rate 

controlling. Tsai and Raj relying on previous studies opted for the interface reaction for creep in 

hot-pressed Si3N4 without taking into account the influence of the grain size. With monitoring the 

density they ensured that the measured strain did reflect deformation only and not cavitation. 

Theoretical estimations of creep rates were in good agreement with the experimental results. 

Further studies revealed the importance of secondary glassy phases and β-Si3N4 particular grain 

morphology for the influence on creep resistance of the material. Creep deformation mechanisms 

in compression for silicon-nitride materials could be viscous flow, grain boundary sliding, 

solution-precipitation, etc. and several models were developed to explain their particular 

properties. Melendez-Martinez et al [66] studied two sintered silicon nitride based ceramics at 

temperatures from 1450 °C to 1700 °C with argon atmosphere and applied stresses from 5 MPa 

up to 90 MPa. Creep curves showed no significant transient state and steady states were reached 

almost immediately after each stress change. The crept specimens presented no evidence of 

macroscopic failure. The use of scanning electron microscopy (SEM) after creep measurements 

revealed an absence of dynamic grain growth and some cavities around the grain boundaries. No 

intra-granular cavities formation was detected.  
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Another interesting study of long durations compressive creep behaviour in air of precursor-

derived Si-C-N ceramics was completed by Thurn et al [67]. The temperature range was between 

1200 °C and 1550 °C under compressive stresses from 30 MPa to 250 MPa. Stationary creep was 

not reached even after long time testing. Temperature dependency of creep behaviour for such 

materials turned out to be extremely low. For temperatures up to 1500 °C a dense inactive oxide 

layer was detected on the surface of crept specimens. However, at 1500 °C no oxidation layer 

was found, but an area of high porosity near to the surface representing specimens’ 

decomposition. The behaviour of the tested materials in terms of oxidation was controlled by the 

formation of silica layers at the surface. As there are no grain boundaries and intergranular oxide-

type phases, there is no internal diffusion of oxygen along grain boundary phases.  

Microstructure and high temperature compressive creep properties of alumina/zirconia ceramics, 

manufactured by powder processing or sol-gel precursors processing, were investigated [22]. 

Creep tests were carried out at temperatures from 1300 °C to 1450 °C under stresses from 10 

MPa to 150 MPa. Depending on the applied stresses and temperatures, brittle fracture, plastic 

behaviour or even some softening behaviour without failure were observed in the crept 

specimens. The results showed that the addition of 5.5 vol% zirconia particles to alumina matrix 

did not improve the creep resistance. Models correlating the microstructural evolution and the 

creep parameters were established to detect the predominant creep mechanism. Creep started by 

grain boundary sliding and was complemented by cavities formation. For powder processed 

materials showing large monoclinic zirconia grains at grain boundaries, linkage to cavitation was 

facilitated, whereas for sol-gel processed ceramics with tighter grain size distribution of small 

tetragonal zirconia grains cavities were present but showed lower microcracking activity. 

 

1.5.4 Creep mechanisms of advanced ceramics under bending  

Tensile creep of ceramics was also determined by means of 3-point or 4-point bending 

experiments. Ivankovic et al [21] reached temperatures in the range of 1320-1400 °C under 

stresses between 40 MPa and 160 MPa intended for 4-points bending creep of sol-gel derived 

mullite ceramics with mono-modal and bimodal distribution of grain sizes. The mono-modal 

exhibited the highest creep rate with low grain size (0.6 µm). After creep measurements the 

change in microstructure was obvious. Intergranular fracture was predominant near the tension 

surface and transgranular more planar fracture was predominant near the compression surface 

zone.  

Reveron et al [20] also investigated 4-point bending creep behaviour of pressureless sintered 

alumina/SiC micro-nanocomposites obtained by slip-casting. A temperature of 1200 °C in air and 

a stress of 100 MPa were applied and the results compared to pure alumina materials. A high 

purity Al2O3 powder and a SiC fine powder were used. Two suspensions containing 1% vol and 

5% vol SiC were obtained. The composite with 1 vol% SiC had lower amount of SiC particles 

located on the grain boundary than the composite with 5 vol% SiC. The volume of added SiC 

particles located on the grain boundary was much lower for 1 vol% SiC than the one for 5 vol% 
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SiC. The large SiC particles (having a high mean size) were mainly located at the alumina grain-

boundaries and almost all SiC particles with low mean size were bounded into alumina grains. 

Higher toughness and hardness of the composite were noticed with SiC addition. For 1 vol% SiC 

creep resistance was governed by the grain size in the matrix, whereas for 5 vol% SiC better 

creep resistance was achieved with the assumption that the SiC particles situated between 

adjacent grains may have contributed to reduce grain-boundary sliding. Primary creep was 

detected and creep resistance was considerably improved in materials containing 5 vol% of SiC. 

Lin et al [23] studied the grain-size effect on flexural creep deformation of alumina-silicon 

carbide composites. The material studied was alumina reinforced with 10 vol% SiC whiskers. 

The measurements were conducted at 1200 °C and 1300 °C and under stresses from 50 MPa to 

230 MPa in air. Grain boundary sliding mechanism was discerned at 1200 °C with grain offset 

and grain rotation. Creep resistance at this temperature rose with rising matrix grain size. 

Nevertheless at higher temperature creep rate was noticed to be insensitive to grain size increase 

due to the development of cracklike cavities. SEM observations showed that the predominant 

sites for cavity nucleation and growth were the grain boundary facets (two-grain junctions) 

oriented perpendicular to the stress axis in the case of coarse-grained materials. Fine-grained 

materials showed on the contrary that prevalent sites for cavity formation were triple-grain 

junctions. It was also noticed that the amount of the amorphous phase present at whisker-alumina 

interfaces did not depend on alumina grain size; it was not a determining factor in the creep 

results. 

 

1.5.5 Creep mechanisms of refractories under compression 

Research about tensile creep mechanisms of ordinary refractories is at the present time non-

existent. On the other hand it is not unlikely to find few outcomes of these materials tested for 

compressive creep. Creep mechanisms in corundum ceramic over a wide range of test conditions 

were studied by Bakunov et al [68]. Experiments at temperatures from 1300 °C to 1900 °C and 

stresses between 0.5 MPa and 50 MPa were carried out. The materials mainly worked in the 

region of the action of mechanisms like surface diffusion, creep along the grain boundaries, or by 

a combination of these mechanisms. In the region of loads up to 10 MPa (relatively small), 

surface diffusion effect was the most likely to happen. Concentration of impurities, porosity, 

shape of the crystals, etc. would influence the settled regions. Snowden and Pask [25] developed 

a study on the high temperature creep behaviour of MgO-CaMgSiO4 (monticellite, CMS) 

refractory system. Compressive creep tests were conducted in air from 1200 °C to 1450 °C, 

where the steady state region was determined. Three distinct stages of typical creep curves were 

not always revealed. A complex deformation process involving simultaneous mechanisms with 

increasing temperature was observed. At low temperature and high applied loads creep was 

controlled by dislocation processes in the MgO crystals; the silicate boundary phase being highly 

viscous was unable to deform independently. For higher temperatures and low applied loads 



  State of the art
 __________________________________________  

24 
 

viscous flow deformation of the boundary regions was the dominating mechanism, which 

resulted in a gradual break of the MgO framework.  

Compressive creep of calcia-silicate (CaO/SiO2) containing MgO refractories was detected by 

Wereszczak and Kirkland [69]. Commercially-available brands were tested over a temperature 

range of 1400-1550 °C and stresses of 0.1-0.3 MPa. MgO content was greater than 96 wt%. All 

brands showed a minimum C/S ratio equal to 1.9 wt% and a firing temperature exceeding 1535 

°C. Specimens were soaked and loaded sequentially at three different stresses from 0.1 MPa to 

0.3 MPa for 225 hours. Contraction was observed during the initial 15 h to 20 h soak. It is 

believed to be due to some microstructural rearrangement and/or sintering happening in the 

material. All brands had similar general appearance of creep curves with different creep 

resistance which was affected by the relative amount of impurities, type of phases present, 

porosity and grain size distribution. High MgO content and C/S wt% ratio were not efficient 

indicators for a better creep resistance. However, larger average grain size and wider size 

distribution, low iron content and absence of CaO-MgO-SiO2 ternary compounds would improve 

the resistance to creep. Transient creep was characterized by a long duration of slowly decreasing 

creep rate. Steady-state creep was rarely achieved and tertiary creep never observed. Some brands 

showed a stress exponent indicative of the diffusion mechanism dominance, while the activation 

energies suggested that creep was accommodated by grain boundary sliding through viscous 

deformation of the calcium-silicate boundary phase. Other brands were believed to have endured 

high contraction, time hardening effects, or more than a single active deformation mechanism.   

Investigations of creep mechanisms of refractories under compression could be found in the 

literature, but not in great numbers. Many of them, despite of determining the creep parameters 

with a power law expression of the creep rate, do not venture describing the occurring 

mechanisms, which makes sense from a perspective of heterogeneous refractory materials. 

Among these studies can be sited the creep of CaO/MgO refractories [70], compressive 

behaviour of ACS torpedo bricks [43] or compressive strength and creep behaviour of 

magnesium chromite refractory [44].  

 

 Creep testing methods 1.6

Refractory ceramics performance can be affected by high compressive loads and tensile 

constraints at elevated temperatures. For refractory selection and development, lining design and 

avoidance of failure it is important to perform creep experiments both under tension and 

compression. The available standards concerning refractory materials are Creep In Compression 

(CIC) [71] and Refractoriness Under Load (RUL) [72]. For both testing methods the specimens 

are of cylindrical shape and the applied load is not high enough to represent the conditions in 

service [77]. Furthermore, because deformation takes place while heating up of the specimen, 

creep possibly occurs before the final temperature is achieved. The RUL gives the temperature at 

which the specimen shows a defined deformation. The temperature increases with a rate of 5 

K/min and the applied compressive load is constant and equal to 0.2 MPa at maximum. CIC 
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measures the variation of the specimen length under constant compressive load and temperature. 

The method of measuring CIC is differently standardized in the applied load, heating rate and 

specimen dimensions according to national standards [73]. Creep assessment of ordinary 

ceramics is standardized only for compressive testing. Presently there are no existing standards 

that define high temperature tensile creep testing of heavy ceramics, which are heterogeneous 

with respect to microstructure and grain size. On the other hand developed tensile creep testing 

equipment and standards for advanced technical ceramics are numerous.  

 

1.6.1 Compressive creep testing of refractories 

High temperature creep under compression of ordinary refractory ceramics was largely 

investigated in the preceding years [74, 75 and 76], often more frequently comparing to tensile 

testing since fewer restrictions are involved for the former, like specimen shape, gripping and 

alignment during testing.   

Refractoriness under load and hot creep measurements of refractory ceramics were reviewed by 

Matsumura et al and the standards available from different countries were compared [71]. The 

difference of creep testing experiments remain mostly in the size of the tested specimen, the 

material of loading rod, the applied load and the heating rate. The aim of refractoriness under 

load (RUL) is to assess softening behaviour of the material in dependence of temperature, while 

creep in compression (CIC) intends observing the material deformation at selected service 

temperatures. This paragraph will mainly discuss essential compressive creep studies related to 

ordinary ceramic refractories including specimen geometry, testing conditions and apparatus 

when available.  

Compressive creep behaviour of ACS torpedo bricks was studied by Andreev et al [43]. 

Experiments were carried out on samples immersed in coke particles with a constraint of 100 N 

during the heating up period (heating rate 4 K/min). The temperature ranged from 800 °C to 1400 

°C and the applied loads from 10 MPa to 40 MPa. Several specimen designs were employed, 

among them the cylindrical one with 30 mm dimeter and 50 mm height. Primary and secondary 

creep regimes were attained for all curves. Tertiary creep, defined by increasing strain rate, was 

also observed in some of them.  

Compressive strength and creep behaviour of magnesium chromite (20 wt% MgO and 80 wt% 

Cr2O3) refractory in nitrogen atmosphere was investigated by Krause [44]. Creep measures were 

carried out at a temperature range from 1300 °C to 1600 °C and applied loads ranging from 1.4 

MPa to 5.6 MPa. A linear voltage displacement transducer with a sensitivity of ±1 µm was 

monitoring the crosshead displacement while the specimen deforms. Creep experiments lasted 

from 3 to 170 hours when no steady-state regime was attained. Specimens with dimensions of 

8×9×18 mm
3 

were diamond-sawed and diamond-grounded to have bearing faces as flat, parallel 

and perpendicular to adjacent sides as possible. A preload of 50 N was applied to take into 

consideration the alignment and thermal expansion of the material during heating up; the 

crosshead movement was monitored automatically by the machine (10 % variation). 
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Molybdenum disilicide resistive heating elements were used to be able to reach temperatures up 

to 1600 °C. The furnace was heated in 20 minutes until 1200 °C, afterwards at a heating rate of 

20 K/min up to the target temperature. One hour dwell time was added to get a homogenous 

temperature equilibration. Jin et al [77] investigated the compressive creep testing at elevated 

loads and temperatures of shaped and unshaped refractory ceramics. They applied service related 

creep loads between 0.5 MPa and 9 MPa and temperatures ranging from 1100 °C to 1550 °C. The 

materials studied were burnt magnesia-chromite bricks and an ultra-low cement high alumina 

castable. A spindle-driven universal testing machine supplemented with an electrical furnace was 

employed to reach loads up to about 20 MPa. The specimens, prepared by diamond-grinding, 

were of cylindrical geometry with dimensions of 35×70 mm². A height/diameter ratio of 2 was 

necessary to avoid that friction of the end faces affects the measurements. The recording of the 

displacement was ensured by a rear and a front extensometer with an initial gauge length of 50 

mm. The change of the end face of the upper piston into a spherical surface helped to avoid 

uneven loading during creep testing. The preheating was performed with a rate of 10 K/min and a 

low preload.  

A report from Ferber et al [78] sums up a research about compressive creep and thermo-physical 

performance of refractories regarding creep testing, specimen preparation, data interpretation and 

microstructural characterization. They carried out experiments at a temperature range from 1300 

°C to 1650 °C and several applied stresses depending on the material tested. For the 

measurements, the compressive creep frame of the testing device was equipped with an 

electrically heated furnace. Either a digitally controlled pneumatic or hydraulic drive controlled 

by an analogue controller was employed. Several refractory materials were tested; silica, mullite, 

fusion-cast alumina and fused spinel refractories. Specimen preparation was depending on the 

tested material. For instance in the case of the silica and mullite refractories, cylindrical 

specimens having dimensions of 25.4×76.2 mm² were core-drilled. The deformation of 

refractories was measured using at least two linear variable differential transducers (LVDTs), 

which is until now an efficient and accurate measurement method, as long as the recorded 

deformation coincides with the specimen heights measured before and after testing. 

 

 

1.6.2 Tensile creep testing of advanced ceramics 

The investigated studies about tensile creep process of ceramics at high temperature remain 

mostly dedicated to fine technical ceramics quoted previously. Adequate and efficient standards 

including tensile creep have been developed for these categories of fine structural ceramics (ISO, 

ASTM, CEN and JISC) defining specimen design, testing assembly and detailed measurement 

approaches. A listing of the existing standards related to tensile creep of ceramics is available in 

Refs [79, 80]. It is of high interest to consider some relevant tensile creep tests designed for this 

type of materials in addition to those for refractories.  
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Ferber et al [81] studied the high temperature stress sensitivity of the creep rate for commercially 

available alumina (94% Al2O3) and silicon nitride ceramics, which are used as structural 

components in advanced automotive gas turbine engines. Button-head specimens were gripped 

outside the compact heating furnace that is capable of heating at temperatures up to 1600 °C. The 

cold grips were connected to the load frame by hydraulic couplers to reduce bending. A direct-

contact capacitance extensometer was recording the deformation during testing with a resolution 

lower than 1µm. The materials were machined with a numerically controlled four-axis grinder 

into button-head specimens. The gauge section of the specimen was equal to 6 mm in diameter 

and 25.4 mm in length. Three creep stages could be achieved until failure for silicon nitride at 

1200 °C and loads between 20 MPa and 32 MPa. Regarding alumina material, transient or steady 

state regimes mostly followed by failure, were revealed at a temperature of 1000 °C and loads 

ranging from 21 MPa to 39 MPa.  

The tensile creep investigation from Ienny and Boussuge [57] for the determination of tensile 

creep behaviour of RSSC and RBSN was made with specimens having an overall length of 100 

mm and a gauge length of 20 mm. Thermal gradient in the gauge length was not higher than ± 10 

K. Cylindrical test pieces of mullite and ZMZ investigated by Davies et al [52] for high 

temperature tensile creep were manufactured with 150 mm length and 9 mm diameter with a 

reduced gauge length of 20 mm and a gauge diameter of 5 mm. Both ends of the specimens were 

gripped to water cooled chucks. Cao et al [56] performed tensile creep measurements with flat 

dog-bone specimens having a total length of 70 mm and a rectangular cross-section of 4×2.5 mm² 

in the gauge area. The gauge length measured 20 mm. Creep tests were performed under air using 

a dead-weight loading apparatus. The furnace was equipped with six MoSi2 heating elements 

ensuring a maximal temperature error of 5 °C. Specimen ends were fixed in hot grips via four 

SiC pins connected to SiC loading fixtures. Optical image analyser was employed to measure the 

displacement of the inner positions of the hot grips. Bending strain expressed as percent bending 

could be reduced to a value lower than 5 % for an applied stress of 60 MPa at room temperature. 

Details of the percent bending calculation are present in [56]. Specimens where heated with a 

heating rate of 15 K/min and 15 min dwell time under a preload of 98 N. 

For the study of Nextel 610 reinforced polymer derived CMCs at 1000 °C [49] a Kappa 050 

creep testing machine (Zwick) was utilized according to DIN EN 1893:2005 [82]. A constant 

heating rate of 30 K/min and a dwell time of 10 min were applied. The recording of the strain 

was done with a laser system at both ambient and high temperatures. Dog bone shaped specimens 

were manufactured with the gauge section dimensions equal to 180 mm length and 15 mm width. 

The gauge length for displacements measurements was equal to 25 mm.  

The previously announced tensile and creep testing of a novel mullite fibre at high temperatures 

[63] was performed under the following conditions: single filament tensile experiments were 

accomplished according to DIN EN 1007-4 and 1007-6 [83]. Two SiC heating elements were 

employed in a furnace that achieved a temperature of 1400 °C. The gauge length utilized for 

displacement measurements was equal to 25 mm. In order to achieve a better control of the 

applied load a dead load system was utilized.  
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These testing methods for tensile creep of advanced ceramics were interesting to consider in 

terms of the reached temperatures and employed furnace, specimen geometry, displacement 

measurements or holding systems. The chosen machine characteristics are indeed suitable for 

these categories of fine ceramics; nevertheless they would not be totally efficient when applied to 

ordinary ceramic refractories due to their high heterogeneity.  

 

1.6.3 Tensile testing of refractories 

Moreover, not numerous but sufficient amount of investigations for high temperature uniaxial 

tensile testing of refractories, without measuring creep, could be found in the literature. An 

ancient study [84] that was established 80 years ago depicted some refractory properties under 

tensile loads, for e.g. tensile strength and Young’s modulus. Several brands of fireclay bricks 

representing a large range in silica content and obtained from different manufacturing methods 

were investigated. The specimens were of cylindrical shape with shoulders and flanges. Their 

dimensions were adopted after trying 3 different methods of obtaining specimens from the 

individual brick. The length of the tested specimens was decided to be either 114.3 mm or 161.93 

mm, corresponding to 50.8 mm and 76.2 mm gauge lengths, respectively. The cross sectional 

area of all specimens was equal to 38.1 mm² in the gauge segment. Sections were cut crosswise 

and lengthwise to the bricks. The testing machine was of counterbalanced simple beam type 

(lever type) with aligning bearings and was assembled with Tuckerman optical strain gauges 

[85]. The tested specimens were held with porcelain grips which were supported by porcelain 

clamping rings. The reason was that the machine was intended for studying the tensile properties 

of refractories at elevated temperatures. The results showed that the properties of the lengthwise 

specimens were better than those of the crosswise ones. However, their strengths were 

approximately equal and Young’s modulus of the lengthwise specimens was lower than the 

crosswise ones. 

Tensile and compressive behaviour of magnesia carbon refractories was determined by Schmitt et 

al [86]. They examined the Young’s modulus and tensile strength of two materials, one bonded 

with phenolic resin and the other one with pitch. The study included, inter alia, a uniaxial 

compression crushing test and a special uniaxial tensile testing forced by an elastic restraint to 

deform homogeneously. Non-symmetrical compression-tensile material behaviour and presence 

of nonlinear domain were revealed. To overcome the early strain localisation that occurs during 

tensile loading and to delay the initiation of microcracking a special setup, developed formerly 

[87, 88], was employed. The principle is based on first having aluminium bars fixed on the lateral 

faces of the specimens (specimen dimensions 160×80×40 mm
3
). The load is then transmitted 

through these bars secured with the grips of the testing machine. Strain gauges were in contact 

with the bars and the specimen to guarantee the uniformity of the displacement. The central zone 

could therefore undergo uniaxial loading. A strain rate of 1.5 10
-5

 s
-1

 was applied during loading. 

The specimens showed a linear elastic behaviour followed by hardening-softening regimes owing 

to emergence of microcracks around the aggregates. Nazaret et al [89] also performed uniaxial 
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tensile testing with two refractory materials: andalusite and cordierite reinforced with short steel 

fibres based refractory castables. The testing machine was a servo hydraulic universal type. 

Extremities of the sample were glued on metallic plates, which were water-cooled. The central 

part of the specimen was covered by the furnace capable to provide a maximum temperature of 

1400 °C. The specimen showed a reduced cross section of 30×25 mm². The strain was measured 

with two high temperature extensometers with gauge length of 12.5 mm. This assembly allowed 

measurements in the range of 20-900 °C. Monotonic or cyclic loading/unloading tests were 

carried out. Kakroudi et al [90, 91] studied the pure tensile properties of refractory castables at 

different temperatures, from 20 °C to 1200 °C. An electro-mechanical universal tensile testing 

machine was utilized. The specimen had a shape of a cylindrical rod of 18 mm diameter that was 

glued with two metallic parts. Additional machining of the system was made in order to improve 

the symmetry. Strain variations were measured by silicon carbide rods of two extensometers 

placed in parallel. The gauge length was equal to 25 mm. The material reached displacement 

values at rupture between 3 µm and 5 µm. Tensile behaviour of magnesia-spinel refractories was 

investigated by Grasset-Bourdel et al [92] using the same uniaxial tensile equipment, however 

the final central diameter obtained after machining was equal to 16 mm. The specimens utilized 

were prepared from a cylindrical road of 20 mm diameter and the gauge length remained as 

quoted above.  

 

1.6.4 Tensile creep testing of refractories 

It is nevertheless not impossible to find investigations about tensile creep of ordinary ceramics at 

elevated temperature. One of the first researches that brought about tensile creep of refractory 

bricks was made almost 70 years ago by Mong [76]. He exposed different brands of firebricks to 

creep measurements. The measurements were performed at temperatures from 25 °C to 950 °C 

during long time periods (approximately 240 days). Specimens were attached to porcelain load 

links. Cylindrical specimens with a length of 228.6 mm and a minimal diameter of 25.4 mm have 

been used. The temperature variation of the furnace was controlled to be from less than 3 °C to 

about 9 °C after the heating units deteriorated. The temperature was increased with a rate of 

approximately 40 K/h and kept constant for 3 hours. Kandil and Dyson [93] developed a tensile 

creep testing facility intended for glass ceramics and refractories up to a temperature of 1500 °C. 

The furnace was of cylindrical shape with a height of 165 mm; maximum temperature variation 

was believed to be less than ±2 K. The sample was glued to metallic caps by an adhesive. It was 

machined from a solid cylindrical rod to 9.4 mm diameter and 270 mm length. The gauge section 

was of 22 mm in length and of 4 mm in diameter. Bending stresses were reduced to values within 

±2 %. Details of bending measurement are available in [93]. The test piece was heated with a rate 

of 10 K/min and a low applied preload. Tensile creep experiments of reaction-bonded silicon 

nitride (RBSN) were carried out at 1450 °C to assess the capability and accuracy of the system. 

Tensile tests of this material were also performed at room temperature. Bisson and Regent [94] 

proposed a high temperature tensile testing apparatus for industrial ceramics showing 
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heterogeneous and coarse microstructure. Specimens with rotational symmetry were 230-320 mm 

long. The central diameter was 20-30 mm. The ends of the specimens were also attached by cold 

grips. A short furnace allowed experiments up to a temperature of 1500 °C.  

A tensile creep facility intended for creep measurements of refractory ceramics up to 1600 °C 

was established by Rendtel and Hübner [95]. Displacements were measured by flag-based 

scanning laser extensometers on hot-pressed silicon nitride samples at 1500 °C. A screw-driven 

universal testing machine with a load train comprising a sintered α-SiC upper and lower pull-road 

connected to grips via pins. Flat dog bone specimens geometry with a cross section of 2×4.6 mm² 

in the gauge segment and a gauge length of 38 mm were utilized. Specimen ends were fixed to 

upper and lower grips by in all four α-SiC pins. The specimens, the grips and the end of the pull 

rods are housed by a chamber furnace with a volume of 150×150×150 mm
3
.  

It is obvious that there is a lack of knowledge in investigating tensile creep of ordinary ceramic 

refractories because of the several criteria that have to be met in order to accomplishing reliable 

and accurate measurements. Specifications like recording small displacements (in µm level) at 

high temperatures, ensuring accurate alignment in order to reduce bending considerably, uniform 

and uniaxial stresses distribution during loading, and a suitable and robust gripping system for 

relatively brittle materials are indispensable.  

 

 Asymmetric creep models 1.7

Creep modelling of ceramics turned out to be a valuable tool for their lifetime prediction. As the 

mechanical structures undergo not only compressive creep but also tensile creep during 

operation, it is of high significance to take both processes into consideration, especially since 

they do not act in the same manner [96]. Indeed, early investigations on refractory materials 

indicated non-symmetrical creep behaviour under tension in comparison with compression [76, 

97, 98, 99 and 100]. For instance, Mong [76] concluded on an asymmetrical behaviour between 

creep under compression and creep under tension for several brands of firebrick. Moreover, 

asymmetric creep behaviour could be more pronounced when a glassy phase surrounds the grains 

[101]. In tension, a separation of grains in the direction of loading may occur and creep may be 

influenced by a viscous phase. Whereas in compression, grains can come into contact and exert 

pressure onto one another thereby modifying the microstructure. Damage can also be an 

influencing process, as it is more sensitive under tension than under compression due to the onset 

of cavitation in the former one [97, 50]. Ferber et al [81] attributed these creep dissimilarities to 

the generation of creep-induced damage zone under tension (creep cavitation effects) that 

augments the creep rate. Based on tensile-compressive asymmetric creep model, Chuang et al 

[102] suggested power-law creep functions using the parameters of effective stress/strain. Finite 

element method was applied to study the long-term compressive creep deformation of a 

siliconized silicon carbide ceramic Si-SiC C-ring at 1300 °C. They utilized an asymmetric creep 

function by generalizing a symmetric creep equation with different creep constants in tension and 

compression. The sign of the largest principal stress in magnitude determined the asymmetric 
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creep response. Lim et al [103] indicated that if there is a small difference in magnitudes between 

tensile and compressive principal stresses this model is then questionable. Accordingly, the 

authors generated a finite element model for high temperature asymmetric creep behaviour of 

alumina and siliconized SiC ceramics. They analysed creep response of ceramic structures with 

general loading conditions via finite element calculations in Abaqus. Details of the proposed 

model are available in ref. [103]. The simulations were compared to experimental results from 

the literature for siliconized SiC (C-rings) under compression and for alumina and siliconized SiC 

under bending. Multiaxial creep equations were proposed and implemented into a user subroutine 

(UMAT) of Abaqus with considering elastic and creep behaviour only; damage was not 

considered. Finite element calculations for the variation of creep strain with time were in good 

agreement with experimental bending data for alumina specimens at 1000 °C. However, this 

agreement was achieved only for principal stresses smaller than the threshold stress of creep 

damage. The difference between experimental and simulated results at higher applied stress was 

attributed to damage in the tensile region of the specimen under flexion, for the reason that no 

damage model was considered. For siliconized SiC, finite element calculations assuming non-

constant principal stresses were in accordance with compressive creep experiments (Si-SiC C-

ring) at 1300 °C and with four-point bending creep experiments (Si-SiC) for the conditions of the 

cavitation zone. A region bearing tensile stresses exceeding 100 MPa represented the cavitation 

zone, with fast growing cavities in Si-SiC specimens.   

Asymmetric creep deformation of hot-isostatically-pressed Y2O3-doped-Si3N4 under tension and 

compression was examined at different temperatures by Wereszczak et al [104]. Different 

compressive and tensile stresses were applied at temperatures between 1316 °C and 1399 °C. 

Primary and secondary creep stages were observed in both cases. The proposed empirical creep 

model represented the minimum creep rate in dependence of temperature and was designed for 

both tensile and compressive stresses. The creep strain rate depended on a product of exponential 

and linear functions of stress in addition to the creep rate function according to Norton’s law with 

a stress exponent equal to 1. Creep was depicted as being asymmetrical with creep rates more 

severe in tension than in compression at equivalent stress magnitudes. Microstructural analyses 

were carried out after creep testing using transmission electron microscopy (TEM). Creep strain 

asymmetry in tension and compression was essentially due to the variation between tensile- and 

compressive-stress-induced cavitation amounts. All tensile samples exhibited multigrain junction 

cavities, while a few of compressive samples showed it at a far less concentrations. Cavity types, 

size and location also differed for specimens crept in tension comparing to the ones crept in 

compression. E. Blond et al [101] proposed a high temperature asymmetric tensile-compressive 

creep model to characterize the behaviour of ceramics. The material investigated was a refractory 

bauxite-based brick utilized in working linings of steel ladles. The model developed is an 

extension of the Bingham-Norton’s rheological model [105, 106], which reflects the different 

viscoplastic creep behaviour of the material in tension (3 point-bending) and compression. It was 

simplified with ignoring the viscoplastic dilatancy during creep caused by void or microcrack 

nucleation and/or growth. Furthermore, the mass conservation of the elementary volume was 



  State of the art
 __________________________________________  

32 
 

assumed in the case the material contained a high content of soft glassy phase. Two mechanisms, 

assumed being responsible for the deformation, were introduced in the constitutive model: matrix 

creep that was activated by tensile loads and grains creep, which was rather initiated by 

compressive loads. Consequently, a decomposition of the stress tensor into positive and negative 

parts was added in order to illustrate the unilateral behaviour of damage, which was due to 

opening-closure of microcracks [107, 108 and 109].   
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 Testing machine design and application  Chapter 2:

 

 Introduction 2.1

In this research a testing setup was especially designed and adapted for performing tensile creep 

measurements of refractory ceramics. In the literature mainly facilities for creep-testing of 

refractories under compressive loading are described. To date, no significant studies relating 

tensile creep of coarse grained refractories are available. This is due to the various obstacles that 

could appear in this case, like specimen fastening and alignment, insuring an adequate heating 

rate that avoids irreversible strain before creep testing, or appearance of bending while applying 

the mechanical load. Therefore, a feasibility study was accomplished prior to testing, comprising 

a finite element modelling built with Abaqus software which permitted to determine, inter alia, 

optimal specimen geometry and heating up schedule. A detailed design and the main features of 

the tensile creep setup are afterwards described in this chapter as well as the creep testing 

procedure.  

 

 Innovative setup design and procedures  2.2

 

2.2.1 Choice of the specimen shape  

A major questioning for an adapted testing procedure design was the choice of a specimen type 

and shape compatible with the investigated materials, i.e. coarse-ceramic refractories. Many 

specimen shapes were considered in the past [110, 111 and 112], the rectangular or the flat dog 

bone specimens were often utilized in researches that are mainly dedicated to advanced technical 

ceramics [56, 59, 60 and 62]. The dimensions, mostly rather small, differ according to the 

materials tested and their applications. Those shapes are complex and their manufacturing could 

be inappropriate and limited to coarse-ceramic refractories due to the large range of grain sizes 

from few micrometres up to approximately 5 mm. Advanced technical ceramics differ completely 

from refractory ceramics in terms of composition, intrinsic flaws and defects, porosity and 

microstructure. For an adequate and representative tensile creep measurement of ceramic 

refractories, specimens of sufficiently large volume were needed. Specimens having small 

proportions would not be suitable due to the size of the biggest grains in refractory ceramics. 

Consequently the selected geometry was a simple cylindrical one with dimensions of 230 mm 

length and 30 mm diameter. Drilling a cylindrical geometry permitted to improve even loading 

and to avoid undesired further stresses. Other advantages of manufacturing cylindrical shapes 

were a gain in time and prevention from unintentional pre-cracking.  
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2.2.2 FE simulation prior to measurements and choice of the heating up schedule 

For an optimal design of the high temperature tensile creep setup it was decided that both 

specimen ends would be attached outside the furnace. They were glued to steel adapters which 

were secured by water-cooled grips. To verify the feasibility of the proposed design with respect 

to the specimen geometry and dimensions a FE simulation was carried out in advance using the 

software Abaqus. This preliminary investigation allowed for the prediction of the temperature 

and stress distributions in the specimen during preheating and creep experiment. It permitted also 

to estimate these distributions in the hot central zone and at the cold ends. The heated section of 

the specimen was 100 mm long.  

A two-dimensional axisymmetric FE model was established as the specimen shape showed radial 

symmetry. A simple symmetrical boundary condition at the lower end of the model was applied. 

Coupled temperature-displacement type was chosen with a mesh comprising 1740 quadrilateral 

elements. The specimen underwent an increase of temperature from ambient (20 °C) temperature 

up to 1600 °C followed by a dwell time of 1 h without any preloading. In order to consider an 

optimal heating up schedule without engendering significant thermal stresses within the sample 

three different preheating rates were simulated; 2.5 K/min, 5 K/min and 10 K/min. The applied 

heat transfer coefficient for the heating of the specimen in the furnace was equal to 10000 

W/(m².K). This value was taken as an upper limit to represent a worst-case design condition with 

respect to heterogeneity of the temperature distribution. The heat transfer coefficient should be 

lower, but the cold end temperature needed also to be taken into account. The water cooling of 

the specimen ends was therefore modelled with a temperature of 20 °C and a heat transfer 

coefficient of 500 W/(m².K) (Fig. 2b)). Creep was then simulated by applying a tensile 

mechanical load of 0.25 MPa for 2 h. Norton-Bailey constitutive equation was used for the 

prediction of the specimen behaviour. Only the creep strain hardening approach was considered 

in this model [113]. Specimen geometry and FE model are presented in Fig. 2. 

 

 

Figure 2: (a) Specimen dimensions and (b) axisymmetric finite element model. 
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The model showed an increase of temperature up to 1600 °C in the specimen heated zone, which 

remained constant until the end of the creep experiment. The difference of the temperature 

between the centre and the surface of the specimen caused emergence of thermal stresses. Fig. 3 

illustrates the axial stresses at the centre and on the surface of the specimen in the beginning of 

the preheating for the three different heating rates. The selected nodes, where the stresses were 

observed, are shown in Fig. 4. 

 

 

 
Figure 3: (a) Axial tensile stresses in the centre and (b) compressive stresses on the surface of the 

specimen for different heating rates. 

 

 
Figure 4: Nodes chosen for stresses observation. 

 

During heating up the maximal temperature is found at the specimen surface, this leads to 

emergence of compressive stresses at the outer surfaces and tensile stresses at the centre of the 

heated specimen. After some time the stresses stabilize and keep relatively constant until the 

temperature within the specimen reaches 1600 °C. It is seen if Fig. 3 that increasing the heating 

rate leads to the rise of the stress gradients. The maximum thermal stresses increased from 0.78 

MPa at 2.5 K/min to 1.57 MPa at 5 K/min. By increasing the heating rate further from 5 K/min to 

10 K/min resulted in the doubling of the thermal stresses, to 3.15 MPa. This means that the 
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heating rate can seriously affect the mechanical integrity of the specimen. A high rate of 10 

K/min is expected to generate important stresses that immediately trigger micro-crack formation. 

By applying lower heating rates at, for example, 2.5 K/min and 5 K/min, considerably lower 

compressive and tensile residual stresses are obtained at the surface and at the centre. Radial 

stresses also present a smaller scatter for 5 K/min preheating at the selected nodes. The tensile 

radial stresses reach a value of approximately 0.8 MPa in the centre and the compressive ones a 

value of approximately -1.55 MPa at the surface.  

 

In order to apply an efficient heating up schedule, the tensile creep experiments were decided to 

be carried out with a heating rate of 5 K/min; which is the same rate as the one applied for the 

RUL and CIC standard methods. A dwell time of one hour was added in order to ensure a 

homogeneous temperature and stress distribution. The temperature distribution of the specimen 

before applying the mechanical load is presented in Fig. 5a). The colour scale from red and blue 

indicates higher and lower temperatures, respectively. As expected the maximum temperature of 

1600 °C was found at the heated zone and the minimum temperature, equal to 139.3 °C was 

situated at the cold ends. The cold end temperature is considered as being appropriate and low 

enough to secure the specimens to the stainless steel adapters with the use of thermally resistant 

organic glue. Along the gauge length of the specimen a homogeneous temperature distribution is 

observed. The maxima of the principal stresses occur outside the heated zone, as shown in Fig. 

5b). The highest stresses were located at a vertical distance of 65.5 mm from the centre, which 

was a result of the presence of a thermal gradient at already a low value and far from the 

extensometers position. Moreover, low and homogeneously distributed stresses were observed at 

the area where the deformation is measured. It can also be noticed within the simulation that a 

high length/radius ratio of the specimen has benefits with regards to the stresses and the 

temperature difference. 
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Figure 5: (a) Temperature and (b) stress distribution before application of tensile load (320 min 

preheating and 60 min dwell time). 

 

The probable influence of thermal stresses during heating up was verified by carrying out FE 

simulations with two different models. The first model considered the creep when the 

temperature attained a value of 1600 °C. The second model took into account the creep during 

the heating-up period at temperatures above 1300 °C. The results of the two models, with and 

without considering creep during heat-up, were analysed and compared. Initially, and for setting 

up the testing machine design, the creep data were estimated for the simulation. After the 

measurements documented in Table 2 were acquired, the preliminary calculations were repeated 

for verification. The following results illustrate the behaviour of the material using the creep data 

from Table 2. 

The specimen was heated up to 1600 °C during approximately 5h20min and then kept at a 

constant temperature for one additional hour. Fig. 6 illustrates the axial stresses on the surface of 

the specimen with and without allowing of the creep during preheating (Fig. 6a)) and the 

difference between the two simulated creep strains, Δε (Fig. 6b)). For the model that considers 

creep during preheating, tensile stresses in the centre and compressive stresses at the surface 

gradually decreased after 4h20min which corresponds to a temperature of 1300 °C. The model 

that does not allow for creep during preheating shows a harsh decrease of axial surface stresses at 

1600 °C. Following one hour dwell time, the temperature gradient in the heated region is 

completely equalized and tensile and compressive stresses diminished to nearly zero. The creep 

strains, with and without considering the creep during preheating, indicated nearly no 

divergences.  
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Figure 6: (a) Axial stresses on the surface with (dashed line) and without (solid line) considering 

the creep during preheating. (b) Temperature evolution and difference between the simulated 

creep strains at 5 K/min. 

 

Fig. 6a) shows a minor jump in the axial stresses at 5h20min, as the thermal homogenization in 

the specimen when reaching the target temperature (1600 °C) was attained. At 4h20min, in Fig. 

6b) a drop of Δε happens due to the creep deformation already at 1300 °C while considering the 

creep during preheating, leading to a slight increase of the irreversible strain. This deviation 

between the two simulated creep strains, Δε, augmented to a value of 0.0003 until the end of the 

simulation. However this value remained minor even after two hours of creep testing. Moreover, 

for an experiment performed at 1600 °C with an applied stress of 0.25 MPa (Fig. 13b)) the total 

creep strain at the end of the primary creep differed by only 0.01 % of the simulated value while 

considering the creep during preheating. From these outcomes, it can be noticed that the testing 

technique is not significantly influenced by low thermal strains during the heating up period. It is 

then concluded that the chosen heating up procedure does not influence the material creep. 

 

2.2.3 Details of design and main features of the tensile creep machine 

The tensile creep testing facility was developed and established in close collaboration with the 

company Messphysik [114]. The tensile creep testing machine is based on a single rotating 

spindle connected to a load cell that measures the applied force and sustained by a rigid frame. A 

maximum loading capacity of 20 kN which corresponds to approximately 28 MPa for the 

specimens cross sectional area is assured by the setup. The measurement can be performed either 

load or displacement controlled; the first option was chosen here. The loading device and the 

testing furnace are illustrated in a schematic diagram in Fig. 7. The compact high-temperature 

furnace, with heating elements made of molybdenum disilicide (MoSi2), permits temperatures of 

up to 1700 °C. It is made of two symmetrical parts fixed in the vertical orientation and it covers 

the isothermal region of the specimen. During heating, the two sections are sealed together by 

means of clamps, which are easy to operate.  
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The electric furnace has openings at the rear and at the front for the extensometers and openings 

at the top and at the bottom for the specimen. It is perfectly centred and does not come into 

contact with the specimen or the extensometers. Displacements are recorded at high resolution 

(<0.1 µm) by two extensometers with a class-0.5 accuracy of measurement according to ISO 

9513. They are diametrically arranged at the rear and at the front of the machine. Two corundum 

rods for each extensometer are in direct contact with the specimen surface. Relative movement 

between the two rods is restricted to a single degree of freedom (in a vertical direction). High 

initial gauge length of 50 mm was favoured to cover a large area of the specimen and thus take 

into consideration the heterogeneous material microstructure comprising the large grains. To 

verify the thermal homogeneity of the specimen within the gauge length, 3 thermocouples were 

placed at its surface during testing; one thermocouple placed in the centre and the two remaining 

ones were placed at the upper and the lower limits of the gauge length, respectively. 

 

 

Figure 7: Schematic representation of the loading device and the testing furnace (courtesy of 

Messphysik [114]). 

The specimen ends were decided to be glued to steel adapters outside the furnace because of the 

absence of feasible solutions to fix the specimens at high temperatures. The furnace is of 

cylindrical shape with a height of 102 mm and a diameter of 140 mm. The specimen, having 

dimensions of 230 mm height by 30 mm diameter, is large enough to allow for a homogeneous 

distribution of the loads, induced at the fixtures, in the volume defined by the gauge length. The 

distance between the specimen centre and the cold ends is appropriate for ensuring homogeneous 

temperature distributions and low thermal stresses in the specimen along the gauge length. The 

creep experiments were performed at ambient air and atmospheric pressure. Two Platinel II 

thermocouples of type B according to [115] placed inside the furnace and located in the centre in 

a close distance to the specimen’s gauge length, constantly monitor the temperature.  
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The lower and upper adapters are glued to the specimen and are both safely connected to water 

cooling tubes in order to reduce their temperature during testing. They are also gripped by a 

hydraulic system providing a pressure of 100 bars, which is also water cooled. Fig. 7 exhibits a 

detailed schematic of the electrical furnace and the device with all its features. An alignment unit 

is integrated in the upper part of the machine to avoid uneven loading and to ensure the alignment 

adjustment of the superior piston with the inferior one along the vertical axis. The unit comprises 

a connecting flange with centring and connecting bolts for the adjustment of eccentric and 

angular misalignments of the loading axis. The uniformity of the stress field in the specimen was 

assured by room-temperature measurements using the strain gauges method. The alignment 

procedure of the machine was certified according to ASTM E 1012 [116]. 

 

 

 
Figure 8: Tensile creep testing equipment; specimen, opened furnace and front extensometer. 

 

2.2.4 Specimen preparation and testing   

The investigated materials were fired magnesia chromite and magnesia spinel bricks particularly 

suitable for high temperature applications in the steel industry. The first one was designed with a 

high resistance to thermal shock and erosion. Its composition consisted of 56.5 wt% MgO, 25.5 

wt% Cr2O3, 6.0 wt% Al2O3, 10 wt% Fe2O3, 1.3 wt% SiO2 and 0.6 wt% CaO. The second one was 

designed to sustain high thermomechanical, thermal and chemical loads, especially for the 

application in cement rotary kilns. It had the following composition: 86.53 wt% MgO, 11.22 wt% 

Al2O3, 0.34 wt% Fe2O3, 0.58 wt% SiO2 and 1.09 wt% CaO. Their microstructure is shown in Fig. 

9. 
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Figure 9: Reflected light microscopic image of the investigated materials. a) magnesia-chromite: 

1. chromite, 2. magnesia-chromite coclinker; and b) magnesia spinel: 3. spinel, 4. magnesia. 

 

The cylindrical specimens, having dimensions of 230 mm length and 30 mm diameter, were core 

drilled and cut from commercially available bricks. The specimens were aligned and glued to the 

adapters using a fixing device. Fig. 10 shows the alignment and gluing of a magnesia-chromite 

specimen with the steel adapters on the fixing device. This device comprises a controlled level 

platform located between two symmetrical adapter holders. Water-cooled adapters were fixed 

parallel to each other on both sides of the device. The sample was then positioned on the platform 

that kept it perfectly straight and its ends were inserted into the adapters. Through adjustment of 

the platform level it was possible to ensure an accurate alignment of the sample and the adapters. 

The specimen ends were then glued to the steel adapters. The high temperature resistant adhesive 

contains two components, a resin and a hardener in a ratio of 2:1. A 50 ml cartridge manual 

applicator with a mixing nozzle was used to inject the adhesive through the orifices of the water-

cooled adapters. The two components of the epoxy were mixed inside the mixing nozzle. The 

cartridge was used multiple times and the mixing nozzles were of single use. The hardening of 

the adhesive lasted approximately eight hours at room temperature. 

 

 

 
Figure 10: Fixing device. 
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Once the adhesive hardened, the specimen and the adapters were introduced into the testing 

machine in a vertical position. The lower adapter was first gripped, then the lower piston was 

moved upwards until the upper adapter coincided with the superior grip. At this state of the 

procedure, the force of the loading cell needs to be set to zero in order to take into account the 

weight of the specimen. The upper adapter was then gripped. If the upper adapter deviates from 

the vertical axis when it coincides with the superior grip, the force will rise quickly before 

activation of the hydraulic grip due to contact. This provides an indication and confirmation of 

the specimen alignment. Both parts of the furnace could be then joined together and fastened. The 

rear and front extensometers are lastly introduced into the machine just before starting the 

experiment.  

At the end of each creep measurement, the broken specimens together with the adapters were 

released and removed from the tensile creep machine. As the specimen ends are still glued to the 

adapters it is necessary to burn out the adhesive and clean the adapters for a multiple use. 

Therefore, to burn the adhesive, the adapters were placed in an electrically heated furnace set at 

400 °C during 2 hours. They were then cooled to ambient temperature for a period of 2 to 3 hours 

and cleaned by scraping off the glue deposits. 

 

 Conclusion  2.3

High temperature measurements of heterogeneous refractories were performed using an 

innovative tensile creep testing setup. The machine had a new design that improved the specimen 

alignment and fixture. An even distribution of stresses permitted to avoid bending during testing. 

Thermo-mechanical simulations were carried out preliminary to the measurements with the 

purpose of optimizing the tensile creep procedure. The choice of specimen geometry and heating 

rate were adequate for optimized experimental conditions. Observations of temperature and stress 

distribution in the hot zone and at the cold ends confirmed the viability of the experiments. The 

design and dimensions of the testing device and the specimen provided reliable results. The 

testing procedure was not significantly influenced by low thermal strains during the heating up 

period.   
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 Testing results and evaluation procedures Chapter 3:

 

 Introduction  3.1

After having implemented the tensile creep machine, measurements were performed with two 

refractory ceramics containing spinel, magnesia chromite and magnesia alumina spinel materials. 

Magnesia chromite material is consistently employed in applications necessitating high hot-strength 

and resistance against attack by slags and liquid metals [117, 118]. Magnesia alumina spinel 

materials have largely replaced the application of magnesia chromite refractories in cement rotary 

kilns as they offer a chrome free eco-friendly alternative. They combine favourable properties 

with respect to their thermomechanical behaviour and their thermal and chemical resistivity. 

After creep testing an evaluation of the experimental results was needed. In this chapter, the creep 

behaviour for these two refractory materials is described together with an efficient approach 

developed to analyse the creep data. A constitutive creep equation is applied to fit the 

measurements and its parameters are inversely estimated using two different approaches. An 

investigation is continued for magnesia-chromite material, which consists of finding the relation 

between the creep strain, the applied stress and the temperature. These correlations give evidence 

about the beginning of the creep stages. An implementation in a thermomechanical simulation 

program will permit to apply the corresponding creep parameters and therefore predict the 

behaviour of industrial vessels.  

 

 Experimental results and discussion 3.2

For the period of the preheating, a tensile preload of 0.01 MPa and a heating rate of 5 K/min were 

applied. The low preload value was chosen in order to stabilize the specimen during preheating 

without causing undesirable irreversible strain. The target temperature was maintained constant 

for one hour to ensure steady-state thermal conditions inside the sample. The extensometers were 

attached before the application of the testing load. The rear and front extensometers showed good 

agreement for all tests approving the accurate specimen alignment at high temperature. Fig.11 

illustrates the extensometers recording of one experiment with magnesia-chromite specimen at 

1400 °C and 0.5 MPa having a standard deviation equal to 0.012.  
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Figure 11: Displacement according to both extensometer readings dependent on time at 1400 °C 

and 0.5 MPa for the magnesia-chromite specimen. 

 

3.2.1 Magnesia-chromite material 

Tensile creep experiments of magnesia-chromite specimens were performed for several loads at 

1300 °C, 1400 °C, 1500 °C and 1600 °C. The results of the experimental total strains are plotted 

in Figs. 12 and 13. 

 

 

Figure 12: Measured total strains over time at (a) 1300 °C and (b) 1400 °C for the magnesia-

chromite material. 
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Figure 13: Measured total strains over time at (a) 1500 °C and (b) 1600 °C for the magnesia-

chromite material. 

 

Three creep stages (strain-hardening, steady-state, and strain-softening) were revealed for all 

measurements at temperatures from 1300 °C to 1600 °C for loads between 0.2 MPa and 1.75 

MPa. All measurements ended with rupture of the specimens between the extensometer rods. 

The ultimate strains of all tests varied between 0.008 and 0.02. Fig. 12a) represents the 

experimental total strain at 1300 °C under loads of 1.5 MPa and 1.75 MPa. The experiment lasted 

for more than 20 hours for a 1.5 MPa load and about 10 hours for a 1.75 MPa load. The elapsed 

time until failure at this temperature was approximately halved while increasing the stress by 

only 0.25 MPa. The tertiary creep stage required the longest duration for each test. The maximal 

total strains reached were approximately 0.08 before failure. As seen in Fig. 12b), at 1400 °C and 

0.5 MPa the test lasted 44 hours with 13 hours of tertiary creep. By increasing the loads the creep 

test was shortened to 6 hours at 0.75 MPa and to less than 3 hours at 1 MPa. At 1500 °C and 0.25 

MPa (Fig. 13a)) the creep lasted for 15 hours with the tertiary creep representing the longest 

phase (10 hours). At higher loads the creep time dropped significantly to 50 min for a 0.5 MPa 

load and less than 15 min for a 0.75 MPa load. The load of 0.5 MPa was applied for two 

temperatures (1400 °C and 1500 °C). The creep time was significantly reduced from 40 hours at 

1400 °C to only 50 min at 1500 °C. Creep was more apparent at 1600 °C for the low applied 

stresses of 0.2 and 0.25 MPa (see Fig. 13b)). At these conditions creep proceeded rapidly for 

both tests, lasting almost two hours at 0.2 MPa and more than one hour at 0.25 MPa. For the 

same load (0.25 MPa) and at an increased temperature of 1600 °C, the creep time was also 

significantly reduced from 15 h to only 1 h 40 min. 

 

3.2.2 Magnesia-spinel material 

Tensile creep experiments of magnesia-spinel specimens were also performed for several loads at 

temperatures of 1150 °C, 1200 °C, 1250 °C, 1300 °C and 1400 °C. The results of the 

experimental total strains are plotted in Figs. 14 and 15. 
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Figure 14: Measured total strains over time at (a) 1150 °C and (b) 1200 °C for the magnesia-

spinel material. 

 

 

           

Figure 15: Measured total strains over time at (a) 1250 °C and (b) 1300 °C for the magnesia-

spinel material. 

 

 

       

Figure 16: Measured total strains over time at 1400 °C for the magnesia-spinel material. 
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As for magnesia-chromite the strain-hardening, steady-state and strain-softening behaviours were 

detected for all measurements at temperatures from 1150 °C to 1400 °C with applied stresses 

between 0.25 MPa and 1.9 MPa. Also for magnesia-spinel specimens measurements ended with 

their rupture between the extensometer rods. 

Ultimate strains of all measurements differed from 0.004 to 0.021. Fig. 14a) illustrates the 

experimental total strains at 1150 °C under loads between 1.5 MPa and 1.9 MPa. Compared to 

higher temperatures, failure occurred at lower total strain for a high applied mechanical load. At 

this temperature the experiments lasted for more than 23 hours under a 1.5 MPa load, about 13 

hours under a 1.75 MPa load and almost 5 hours under a 1.9 MPa load. Here also the creep time 

until failure at 1150 °C approximately doubled with decreasing the applied stress by only 0.25 

MPa. The maximal total strains did not vary much from an experiment to another at this 

temperature; their values attained around 0.01 before failure. At 1200 °C and 1.25 MPa (Fig. 

14b) the creep lasted almost 15 hours with the tertiary creep representing one third of the overall 

creep time. At higher loads the duration of the creep test dropped to a bit more than 8 hours for a 

1.5 MPa load and more than 20 min for a 1.75 MPa load. The total ultimate strain of the highest 

applied load (1.75 MPa) at this temperature considerably decreased from about 0.015 at 1.5 MPa 

to 0.0093. The loads of 1.5 MPa and 1.75 MPa were applied for two temperatures (1150 °C and 

1200 °C). The creep time harshly reduced from 23 hours at 1150 °C to only 8 hours at 1200 °C 

with an applied stress of 1.5 MPa, and from 13 hours at 1150 °C to 2 hours at 1200 °C with an 

applied stress of 1.75 MPa. As seen in Fig. 15a), at 1250 °C and 0.75 MPa the test lasted 37 

hours with about 15 hours of tertiary creep. By increasing the loads the creep test was reduced to 

15 hours at 1 MPa and to more than 4 hours at 1.25 MPa. 

Creep was more significant at higher temperatures (1300 °C and 1400 °C) under lower applied 

stresses between 0.25 MPa and 0.75 MPa (see Figs. 15b) and 16). Indeed, creep proceeded 

extremely rapidly for the highest temperature, lasting less than 15 minutes at 0.25 MPa. At 1300 

°C the same observations were made as for 1250 °C and 1200 °C; the ultimate strain at 0.75 MPa 

is much lower than those at 0.6 MPa and 0.5 MPa. Failure occurred earlier at higher applied load. 

Equivalent loads (0.75 MPa) were applied at 1250 °C and 1300 °C. Increasing the temperature by 

only 50 °C led to a decline of the elapsed creep time by almost 34 hours, which is extreme. 

 

 Norton-Bailey creep law 3.3

Numerous investigations defined the tensile creep behaviour of a material by means of Norton-

Bailey creep law [44, 77, 70 and 119], mostly to describe the compressive creep when it comes to 

refractory ceramics. The parameters of Norton-Bailey power law were assessed from the 

experimental tensile creep results. The total strain, which is equal to the summation of the creep 

strain and the elastic strain (Eq. 29), was acquired from the extensometers displacement with an 

initial gauge length of 50 mm.  

 tf
total
            (28)  
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                                   (29) 

The resulting total strain,
to tal
  responding to an applied stress is represented as a summation of the 

elastic and non-elastic strain. The creep strain,
cr
 , is then obtained by the subtraction of the 

elastic strain σ/E from the total elongation 
to tal
  (Eq. 30). 

E
totalcr


          (30) 

Where σ is the applied stress and E is Young’s modulus of the material determined by impulse 

excitation technique (IET) [120].   

As mentioned previously, principally two formulations are possible for the determination of 

creep; the time hardening formula where the creep rate is function of time and the strain 

hardening formula where it is rather function of strain. Experimental results on metal based 

materials have shown a better agreement with the strain hardening law [121]. For a constant 

applied stress, both laws showed the same results. However, for relatively long creep time, if the 

stress varies significantly, a smaller creep rate is resulted with the time hardening formula. In 

contrary, strain hardening formula ignores the time. Time hardening law can be utilized only 

when small stress variations are to be expected [121]. Norton-Bailey strain rate constitutive 

equation utilized for the analysis of the creep data is a function of creep strain, stress and 

temperature:  

  

                                    (31) 

 

K(T) is temperature dependent function [MPa
-n

s
-1

], n and a are the stress and the strain 

exponents. Those tensile creep parameters were to be determined by regression analysis at each 

of the three creep stages. 

 

 Creep evaluation procedure 3.4

After having obtained the experimental creep curves comprising three stages, an accurate and 

rapid evaluation method to define the creep parameters was required. The first step was the 

determination of the transition points, i.e. the time and the corresponding experimental total strain 

between the stages. Creep parameters were then evaluated for the primary, secondary and tertiary 

stage in dependence on the transition points.  

The creep deformation can be measured during the increase of the load and at constant stress. For 

the investigations presented here, only material creep under constant load was evaluated, viz. the 

ascending part of the load-time curve was neglected. Eqs. 30 and 31 can then be easily solved 

elasticcrtotal
εεε 

a

cr
ε)( ncr TK

t
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with a rearrangement of the variables cr and t followed by integration with respect to creep strain 

and time, respectively, to yield the following equation for the creep strain: 
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Here ti denotes the i
th

 time step used for evaluation, j denotes the creep stages, j=1, 2, 3. t is the 

elapsed time and ts,j the staring time of that stage j to which ti belongs: 

 
ik,sk,s

,,k
j,s
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 321

 

All parameters (Kj, aj, nj and ts,j) were determined through several measurements using an inverse 

evaluation procedure. The value of ts,1 was determined from the moment when the constant stress 

was achieved. The starting values for ts,2 and ts,3 were determined by using a polynomial curve fit 

of the experimental total strain data. The derivative was then calculated and the starting values 

determined from its roots. With these starting values for each measurement, and with suitable 

estimations for nj, aj and Kj, all creep parameters were then determined from an inverse 

estimation procedure using two different approaches. The first one applied the non-linear 

Generalized Reduced Gradient (GRG) algorithm [122], whereas the second one utilized the 

Levenberg-Marquardt (L-M) algorithm [123]. These two procedures iteratively minimize the sum 

of squared differences between the measured and the calculated total strain values for each 

experiment performed. The L-M optimization technique, exploited in the software Matlab, can be 

more efficient with respect to accuracy and gain of time. The implemented approach for detecting 

Norton-Bailey creep parameters by inverse estimation is schematized below:  
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Figure 17: Approach to define the Norton-Bailey creep parameters. 

 

The inverse estimation principle is the minimization of an objective function while refining the 

parameter vector. The objective function h(x) can be defined by: 

     xYxYxh
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1
          (33) 
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n
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            (36) 

Here x is the parameter vector, n the number of parameters, Y(x) the residual vector and p the 

number of time steps.  

 

3.4.1 Evaluation approach using the GRG algorithm 

The Generalized Reduced Gradient Method (GRG) is a generalization of the reduced gradient 

method. It is an approximation by allowing also nonlinear constraints and arbitrary auxiliary 

conditions for the variables. The algorithm minimizes the objective function that is subjected to 
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the constraints. The reduced gradient (RG) algorithm is defined as an iterative first-order 

optimization algorithm for constrained convex optimization. The algorithm considers a linear 

approximation of the objective function for the iteration, and moves slightly towards a minimizer 

of this linear function, which is taken over the same domain. The fundamental idea of GRG 

method is comparable to how the Simplex method of linear programming operates [124].  

The approach that uses the GRG algorithm was developed as follows: a fifth order polynomial 

curve to fit the experimental total strain was plotted. The first derivative of this polynomial 

function, which represents the total strain rate, was then calculated and plotted with respect to 

time. The selection of the transition points corresponded to the two minima of the strain rate 

curve. See the following figure (Fig.18). 

 

           

Figure 18: Total strain (blue), polynomial regression model (black) and its first derivative (red) 

with respect to time – creep of burnt magnesia-chromite material at 1400 °C and 0.5 MPa. 

 

At each temperature at least three creep experiments with three different applied mechanical 

loads were necessary to determine the Norton-Bailey parameters. These creep parameters nj, aj 

and Kj at each of the three stages and the transition times ts,2 and ts,3 were progressively 

inversely estimated. The figure below (Fig. 19) illustrates the procedure for one experiment. 

 

 

 

 

 

 

Primary creep  Tertiary creep  Secondary creep  

Figure 19: Inverse estimation of the creep parameters using the GRG algorithm – creep of 

magnesia-chromite material at 1300 °C and 1.75 MPa. 
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A reference function was integrated in order to instantaneously find and incorporate in the 

Norton-Bailey creep strain law the transition total strains  
2,stotal

t  and  
3,stotal

t corresponding to 

the transition times, ts,2 and ts,3.  

 

3.4.2 Evaluation approach using the L-M algorithm 

The L-M algorithm provides a numerical solution to the minimization problem of a function, 

often non-linear and dependent on several variables. The algorithm interpolates the Gauss-

Newton algorithm and the gradient algorithm. More stable than Gauss-Newton, L-M algorithm 

finds a solution even if it starts far from a minimum. However, for some very regular functions, it 

may converge somewhat less rapidly. The algorithm was established by Kenneth Levenberg 

[125] and published by Donald Marquardt [123].  

The L-M algorithm was employed in the software Matlab, where a code was developed and 

improved in order to gain in efficiency and time for the inverse identification of Norton-Bailey 

creep parameters. It consisted of first determining the fifth order polynomial curve to fit the 

experimental total strain graphs. The third derivative of this polynomial function, representing a 

second order polynomial (convex curve), was calculated and their roots were determined. The 

selection of the transition times ts,2 and ts,3 corresponded in this case to the minimum and the 

maximum values of the roots, respectively. See Fig. 20. 

 

 

Figure 20: Polynomial regression model (black) and its third derivative (red) – creep of burnt 

magnesia-chromite material at 1400 °C and 0.5 MPa. 

 

Different transition points were selected by this method. This alternative allowed of a rapid 

separation between the three creep stages and a simultaneous application of the L-M algorithm to 

inversely identify the creep parameters at each of the three stages. 
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Nevertheless, a third alternative can be proposed and applied in the software Matlab; which was 

the determination of the second derivative of the fifth order polynomial function equivalent to the 

creep acceleration. Also here the minimum and the maximum values of its roots could represent 

the transition times ts,2 and ts,3, respectively. The three alternatives are sketched in Fig. 21. 

 

 

Figure 21: First, second and third derivatives of the polynomial function illustrating the transition 

points ts,2 and ts,3 from the first (red), second (purple) and third (green) alternatives – creep of 

magnesia-chromite material at 1400 °C and 0.5 MPa. 

 

The code written in Matlab program enables not only the application of L-M inverse estimation 

method, it also provides a clever and rapid way to obtain satisfactory results (See Appendix A). 

With the creation of a function that extracts the measurement files the user is able to apply the 

procedure to one, two, three or n experiments.  The measurement files should be written in the 

following manner:   

measure_temperature_applied load (units)_applied load (tenths).data.  

This means for an experiment performed at 1400 °C under a load equal to 0.5 MPa the test file 

should be written:  

measure_1400_0_5.data 

The data of the test file should provide the creep time in seconds, the applied mechanical load in 

Newton and the average displacement in millimetres. This is how the data are actually extracted 

after the tensile creep measurements.  



  Testing results and evaluation procedures
 __________________________________________  

54 
 

The program applies an approximation function, derives the function and defines its roots for 

every measurement file that is added. The minimum and the maximum of the roots are then 

considered as the beginning points of the secondary and the tertiary stages, respectively. 

The data are afterwards separated and rearranged according to each stage in order to perform the 

inverse evaluation. Norton-Bailey creep law is then applied with the consideration of the 

transition points.  

All testing curves were resized to the same number of data points. The longest tests would have 

had a higher influence on the optimization. 

The evaluation program considers also the elastic behaviour (Young’s modulus  of the material 

with respect to temperature. It is possible to allocate the elastic modulus value to each 

measurement file and therefore obtain common results for different temperatures. 

 

3.4.3 Norton-Bailey creep parameters  

 

a. Magnesia-chromite material  

Creep parameters of the Norton-Bailey constitutive equation (ni, ai and Ki) are summarized in 

Table 1. The parameters at 1300 °C and 1600 °C were determined with GRG algorithm by fitting 

two curves and those at 1400 °C and 1500 °C by fitting three. 

 

Table 1: Creep parameters ni, ai and Ki [MPa
-n

s
-1

] for magnesia-chromite bricks at 1300-1600 °C 

(GRG algorithm). 

 

Stage  I II III 

T(°C) K1 a1 n1 K2 n2 K3 a3 n3 

1300 3.05E-09 -0.34 2.45 9.13E-09 5.31 2.36E-06 1.14 7.48 

1400 1.87E-07 -0.18 2.81 7.17E-07 3.18 3.08E-04 1.01 4.18 

1500 1.05E-06 -0.38 3.01 1.58E-05 3.05 1.07E-02 0.99 3.99 

1600 6.16E-06 -0.08 1.45 1.66E-05 1.69 1.50E-02 1.15 1.75 
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It is noticed in Table 1 that K increases with the increasing temperature. For each isotherm, K 

also rises as the creep stage develops, with a higher increase from the secondary to the tertiary 

stage by three orders of magnitude.   

The stress exponent n rises considerably with the creep stage progression at 1300 °C. At 1400 °C 

and 1500 °C n is approximately 3 for the primary and the secondary stages, and equal to 4 in the 

tertiary stage. At 1600 °C the stress exponent n slightly increases with creep stage progression, 

showing values between 1.45 and 1.75. 

For the primary creep stage at 1300 °C, 1400 °C and 1500 °C the parameters a and n are similar. 

These values are reduced at 1600 °C to –0.08 and 1.45, respectively. In the secondary creep stage 

n decreases from 5.31 at 1300 °C to approximately 3.1 at 1400 °C and 1500 °C. At 1600 °C, the 

stress exponent n drops to 1.69, equivalent to the values in the primary stage. Similar 

observations are made for the tertiary creep stage, but with higher values of n compared to those 

of the secondary stage. Indeed, n is equal to 7.48 at 1300 °C, reduced to approximately 4 at 1400 

°C and 1500 °C, and then further reduced to 1.75 at 1600 °C. In the tertiary creep stage a is 

approximately equal to 1 for all isotherms, demonstrating significant acceleration at the last creep 

stage that eventually led to fracture. 

 

The creep parameters of the Norton-Bailey constitutive equation (ni, ai and Ki) resolved with L-M 

algorithm are presented in Table 2. The parameters at 1300 °C and 1600 °C were also 

determined by fitting two curves and those at 1400 °C and 1500 °C by fitting three. 

 

Table 2: Creep parameters ni, ai and Ki [MPa
-n

s
-1

] for magnesia-chromite bricks at 1300-1600 °C 

(L-M algorithm). 

 

Norton-Bailey creep parameters that were inversely-estimated with the L-M algorithm showed 

similar results comparing to the ones determined with the GRG algorithm. Some differences can 

Stage  I II III 

T(°C) K1 a1 n1 K2 n2 K3 a3 n3 

1300 1.34E-09 -0.38 3.63 6.19E-09 5.42 4.82E-05 1.68 7.26 

1400 2.31E-07 -0.15 2.82 7.60E-07 3.29 4.45E-04 1.08 4.33 

1500 3.91E-06 -0.22 3.13 1.91E-05 3.19 2.30E-03 0.74 3.75 

1600 8.74E-06 -0.04 1.43 5.67E-06 0.85 6.28E-02 1.36 1.99 
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be noticed, especially for the temperature dependent function K within the tertiary creep and for 

the temperatures where only two curves were fitted, viz. 1300 °C and 1600 °C. The minor 

dissimilarities can be due to the different method utilized for the selection of the transition points. 

 

b. Magnesia-spinel material  

Table 3 summarizes the Norton-Bailey creep parameters (ni, ai and Ki) resolved with GRG 

algorithm. The parameters at temperatures between 1150 °C and 1300 °C were solved by fitting 

three curves at each of the temperatures.  

 

Table 3: Creep parameters ni, ai and Ki [MPa
-n

s
-1

] for magnesia-spinel bricks at 1150-1300 °C 

(GRG algorithm). 

 

The temperature dependent function K(T) increases with the increasing stage and increasing 

temperature. The fit for this material at 1150 °C and 1200 °C was not as precise as at higher 

temperatures, see Fig. 22. The evaluation was achieved with the GRG method. The heterogeneity 

of the material makes it difficult to obtain perfectly matching experimental and theoretical 

curves; specifically within the tertiary stage where damage mechanisms could have also taken 

part. 

 

Stage  I II III 

T(°C) K1 a1 n1 K2 n2 K3 a3 n3 

1150 5.27E-11 -0.81 5.81 1.28E-08 4.56 2.19E-07 0.49 4.66 

1200 7.78E-10 -0.71 3.56 6.11E-08 3.82 1.34E-06 0.47 3.50 

1250 1.17E-09 -0.74 3.02 1.68E-07 2.88 4.56E-04 1.39 3.29 

1300 8.18E-07 -0.21 5.33 2.12E-06 4.50 4.48E-03 1.41 4.81 
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Figure 22: Measured (–) and inverse-estimated () total strains over time of magnesia-spinel 

bricks at (a) 1150 °C and (b) 1300 °C – GRG method. 

The stress exponent n is considerably high at 1150 °C for the primary stage, 5.81, and then it 

decreases at 1200 °C and 1250 °C for the same stage to 3.56 and 3.02, respectively. At 1300 °C it 

rises again to approximately the same value as for 1150 °C. At temperatures of 1200 °C and 1250 

°C, the stress exponent is equal to approximately 3 for all stages. For the two other temperatures, 

1150 °C and 1300 °C, exponent n is higher. At these temperatures it attains values between 4.5 

and 5.81 also for all of the three stages.  

The strain exponent a increases in the primary stage from -0.81 at 1150 °C up to -0.21 at 1300 

°C. At 1200 °C and 1250 °C for the primary stage the strain exponents are comparable. In the 

tertiary creep stage the exponents a are not so close to 1 for all isotherms as for the magnesia-

chromite material.  At lower temperatures a is equal to about 0.48, the value increases to 1.39 and 

1.41 at 1250 °C and 1300 °C, respectively. The changes in the strain exponent may indicate a 

change in the creep behaviour at those temperatures. In some distance from crack faces other 

further cracks, which did not cause total failure, occurred (crack branching). See Fig. 23. This 

was not observed in the magnesia-chromite material. Furthermore, the cracks were propagating 

between matrix/grains interphase and not in an intragranular way. These may have significantly 

influenced the resulting parameters in the tertiary stage. 

 

 

           
Figure 23: Magnesia-spinel specimen after creep testing at 1300 °C and 0.75 MPa. 
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Table 4 shows the Norton-Bailey creep parameters (ni, ai and Ki). The parameters were obtained 

with L-M algorithm by fitting three curves at each temperature..    

 

Table 4: Creep parameters ni, ai and Ki [MPa
-n

s
-1

] for magnesia-spinel bricks at 1150-1300 °C (L-

M algorithm). 

 

For magnesia-spinel evaluation, Norton-Bailey creep parameters determined with L-M algorithm 

also showed comparable results with those obtained using the GRG algorithm. Nevertheless the 

fit achieved for magnesia-spinel at lower temperatures was not as accurate as that obtained from 

magnesia-chromite curves, especially in the tertiary stage. A better fit was attained at higher 

temperatures, i.e. 1250 °C and 1300 °C. See Fig. 24. 

 

 

          
Figure 24: Measured (–) and inverse-estimated () total strains over time of magnesia-spinel 

bricks at (a) 1150 °C and (b) 1300 °C – L-M method. 

 

Both methods for detecting the starting values show similar results despite the difference in the 

selection of the transition points. The evaluation with GRG algorithm was however more 

Stage  I II III 

T(°C) K1 a1 n1 K2 n2 K3 a3 n3 

1150 4.60E-11 -0.85 5.29 1.28E-08 4.56 5.03E-08 0.25 5.20 

1200 1.23E-09 -0.64 3.72 5.97E-08 3.83 1.55E-07 0.10 3.86 

1250 6.88E-09 -0.52 3.20 1.87E-07 3.00 2.40E-04 1.39 3.39 

1300 6.38E-07 -0.21 4.88 2.51E-06 4.66 2.30E-03 1.21 5.41 
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constraining and more time consuming. In the future L-M will be utilized for the determination of 

the Norton-Bailey creep parameters. Matlab program could also be further improved with 

inverse-estimating to the transition points in order to achieve a higher performance. 

 

 Creep behaviour of magnesia-chromite 3.5

 

3.5.1 Ultimate strains and correlations  

An additional study was carried on for magnesia-chromite material consisting on finding the 

correlations between the ultimate strain, stress and temperature collected from the tensile creep 

experimental results. The ultimate total strains at each of the three stages were considered for 

three temperatures; 1300 °C, 1400 °C and 1500 °C. Figs. 25 and 26 illustrate the ultimate total 

strains with respect to the creep stage at 1400 °C and 1500 °C, respectively, under several applied 

loads. 

 

                 

Figure 25: Ultimate primary total strains (a) with respect to creep stage and (b) the applied stress 

for the magnesia-chromite material at 1400 °C. 
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Figure 26: Ultimate primary total strains (a) with respect to creep stage and (b) the applied stress 

for the magnesia-chromite material at 1500 °C. 

The ultimate strain regarding each stage is temperature and stress dependent; it is inversely 

related to the applied load and the temperature. Furthermore the longer the creep time the higher 

the ultimate strain. It is also noted that the difference in ultimate strain between two experiments 

at different load or different temperature increases with the creep stage, especially for a higher 

level of loads. 

A correlation between the ultimate strains, stress and temperature makes it possible to identify the 

creep stage prevailing under these conditions. An approach can be implemented in a 

thermomechanical simulation program that will allow applying the corresponding creep 

parameters of each stage and therefore predicting the material behaviour and performance during 

service.  

The results shown in Figs. 25b) and 26b) suggest a representation of the ultimate strain for the 

primary stage in the following way: 

   TB

Ult TA 1

11,               (37) 

After verification, Eq. 37 was then generalized for the three stages (See Appendix B).   

   TB

iUlt
iTA  1,           (38) 

Ai(T) and Bi(T) are temperature dependent coefficients regarding to each stage, see Fig. 27.  
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Figure 27: Temperature dependent coefficients Ai(T) and Bi(T) for all three creep stages for the 

investigated magnesia-chromite material. 

 

The coefficients Ai(T) and Bi(T) will be applied to the FE simulation in the software Abaqus in 

order to predict the strain-hardening, steady-state and strain-softening behaviour of magnesia-

chromite linings during operation.  

Figs. 28 and 29 illustrate the ultimate total strains at 1400 °C, 1500 °C and 1600 °C under 

equivalent applied stresses. 

 

               

Figure 28: Ultimate total strains with respect to time at (a) 0.5 MPa and (b) 0.75 MPa for the 

investigated magnesia-chromite material. 
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Figure 29: Ultimate total strains with respect to time at 0.25 MPa for the investigated magnesia-

chromite material. 

 

For similar applied load magnesia-chromite material underwent more intensive creep at higher 

temperature. The ultimate total strains corresponding to each stage diminished with the increasing 

temperature. Furthermore, by raising the temperature, creep time reduced dramatically inducing 

the reduction of the ultimate strains. The change in ultimate strains was more significant for the 

tertiary stage.  

 

3.5.2 Arrhenius equation and creep behaviour  

In chemical kinetics, the Arrhenius empirical law allows of describing the change in the rate of a 

chemical reaction depending on the temperature. It shows the dependence of the rate constant K 

of the reaction on the absolute temperature T. As already mentioned, the temperature dependent 

creep function can be written as the following: 











RT

Q
expAK           (39) 

Here Q is the activation energy, A is the pre-exponential factor and R is the universal gas 

constant. By introducing the logarithm Arrhenius' equation yields: 

   
TR

Q
AK

1
lnln             (40) 

This means that ln (K) is a linear function of 1/T. Thus if a reaction has a rate constant that obeys 

Arrhenius' equation, a plot of ln (K) with respect to T
-1

 gives a straight line. The gradient and 

intercept are used to determine Q and A. The activation energy is therefore defined to be (-R) 

times the slope of a plot of ln (K) vs. T
-1

. 
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The activation energy of the magnesia-chromite material was determined during the steady-state 

creep in temperature range between 1300 °C and 1500 °C.  

 

 

Figure 30: ln (K) with respect to (1/T ). 

 

Table 5: Activation energy calculated for magnesia-chromite material. 

Stage    Q (kJ/mol  Q (kcal/mol  A (  a-ns-1  

1300-1500 °C 606.09 144.86 4.237E-17 

 

Creep mechanisms are usually derived from the stress exponent and the grain size exponent 

mostly from the secondary stage and the activation energy. In this research creep mechanisms 

could not be investigated in that manner since the studied materials are heterogeneous and poly-

disperse -that is, grain size dependence cannot be determined from the investigated materials 

alone. However, the graph representing -ln (K) with respect to 1/T suggests a change in creep 

mechanisms between 1500 °C and 1600 °C. In this temperature range and as the material shows a 

low C/S-ratio it is clear that the variations in the creep parameters are a consequence of formation 

of high amount of liquid phase. 
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 Conclusions  3.6

Tensile creep was detected for magnesia-chromite and magnesia-spinel refractories at various 

temperatures and loads. Measurements were performed at 1300-1600 °C under loads between 0.2 

MPa and 1.75 MPa for magnesia-chromite materials and at 1100-1400 °C under loads from 0.25 

MPa to 1.90 MPa for magnesia-spinel materials. Three creep stages were distinguished at these 

conditions representing the strain-hardening, the steady state creep and the strain-softening 

behaviours of the materials. Evaluation was performed using a newly developed approach that 

comprised the choice of Norton-Bailey creep law for the interpretation of the experimental 

results, the identification of the creep stages and the calculation of the creep parameters by 

inverse estimation using the GRG or the L-M methods.  

 

a. Magnesia-chromite material  

In Table 1 individual creep parameters were identified at each applied temperature for magnesia-

chromite material. A second table can be provided showing common creep parameters 

determined for different temperatures. The values for the parameters a and n are valid at 1300-

1500 °C for the primary creep stage. Only two parameter sets are therefore necessary, one at 

1300-1500 °C and another at 1600 °C, instead of the four intended for each temperature. At 1400 

°C and 1500 °C for the secondary and tertiary creep stages it is also possible to reduce the 

number of parameter sets. Table 6 illustrates the common creep parameters for magnesia-

chromite material. 

Table 6: Common creep parameters ni, ai and Ki [MPa
-n

 s 
-1

] for magnesia-chromite bricks at 

1300-1600 °C. 

 

Stage  I II III 

T(°C) K1 a1 n1 K2 n2 K3 a3 n3 

1300 7.25E-09 

-0.20 2.95 

9.48E-09 5.01 2.37E-06 1.14 7.48 

1400 1.75E-07 6.73E-07 

3.11 

2.79E-04 

1.00 4.01 

1500 3.55E-06 1.58E-05 1.07E-02 

1600 6.16E-06 -0.08 1.45 1.66E-05 1.69 1.05E-02 1.15 1.75 
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The application of Norton-Bailey creep law is appropriate to express the results for ordinary 

ceramic refractory materials. Fig. 31 illustrates the experimental and the inverse estimated total 

strains at 1400 °C using the parameters of Table 6. The Norton-Bailey creep law identified by 

the inverse procedure presented above shows a satisfactory fit for all three creep stages. In the 

tertiary creep stage materials are expected to experience cavity coalescence, crack growth and 

possible necking phenomena before rupture [126]. Because the Norton-Bailey law does not take 

into consideration the crack growth, estimated curves slightly deviated from the experimental 

ones for the tertiary creep stage. The graphs corroborate the agreement between the 

measurements and the calculated total strains using the common creep parameters. 

 

 

Figure 31: Measured (–) and inverse-estimated () total strains over time of burnt magnesia-

chromite bricks at 1400 °C. 

Creep mechanisms and changes of creep parameters are not yet addressed in this work. Indeed, 

there is no explanation for the reduction of the stress exponent n at the secondary and tertiary 

creep stages from 1300 °C to higher temperatures. However, the lower values of the strain 

exponent a at 1600 °C and a large difference in the values of the stress exponent n compared to 

those at the lower temperatures suggest a change in creep mechanisms. At this high temperature 

with a low C/S-ratio it is obvious that the variations in the creep parameters were due to a high 

amount of liquid phase formation. Valuable further research should also focus on structural 

influences on creep, especially the amount of fines. Further structural changes during the creep 

process including crack growth observation in stage 3 may be of high relevance. 

 

b. Magnesia-spinel material  

Common creep parameters, applied for several temperatures, were also investigated for 

magnesia-spinel material. The values of the parameters a and n are similar at 1200 °C and 1250 

°C for the primary and secondary creep stages. Three parameter sets are therefore necessary 

instead of four, one at 1150 °C, a second one at 1200-1250 °C and a third one at 1300 °C. At 
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1200 °C and 1250 °C for the tertiary creep stage it was not possible to reduce the number of 

parameter sets. Table 7 exhibits the common creep parameters for magnesia-spinel material. Fig. 

32 illustrates the experimental and the inverse estimated total strains at 1400 °C using the 

parameters of Table 7. 

 

Table 7: Common creep parameters n, a and K [MPa
-n

 s 
-1

] for magnesia-spinel bricks at 1150-

1300 °C. 

 

Figure 32: Experimental (–) and inverse-estimated () total strains over time of magnesia-spinel 

bricks at 1200 °C. 

 

Creep mechanisms for magnesia-spinel have also not been subjected to study; the material being 

as much heterogeneous as magnesia-chromite. However, it was observed by visual inspection at 

the end of the test that damage accumulation was more intense for magnesia-spinel material. Its 

Young’s modulus in dependence with the temperature shows a hysteresis because the material is 

known to have a high density of microcracks [127]. The microcracks present in the material close 

during preheating; at 1200-1250 °C Young’s modulus of the material is at its maximum.  uring 

Stage  I II III 

T(°C) K1 a1 n1 K2 n2 K3 a3 n3 

1150 4.60E-11 -0.85 5.29 8.33E-09 5.30 5.03E-08 0.25 5.20 

1200 1.23E-09 

-0.74 2.94 

5.97E-08 

3.38 

1.55E-07 0.10 3.86 

1250 6.88E-09 1.87E-07 2.40E-04 1.39 3.39 

1300 6.38E-07 -0.21 4.88 2.51E-06 4.66 2.30E-03 1.21 5.41 
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cooling it reaches at 900 °C a second maximum, which is equal to app. the double of the 

maximum value during heating. The damage observed at the end of testing could also have been 

caused during cooling.  

Norton-Bailey creep parameters were determined according to two procedures that used the GRG 

or the L-M algorithm. Both methods showed comparable results. In the first evaluation (that uses 

GRG algorithm) the first derivative of the polynomial fit was considered to determine the 

transition points. Despite the fact that this procedure allowed of inverse-estimating the transition 

times ts,2 and ts,3  the evaluation was constraining and time consuming. On the other hand the 

evaluation that uses L-M was more rapid and efficient. This second method considers the third 

derivative of the polynomial fit for the detection of the transition points and does not take into 

consideration their inverse-estimation. A further improvement of L-M programming can be 

considered with implementing an inverse-estimation of the transition points. 
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 Application of tensile creep data for a case study  Chapter 4:

 

 Introduction  4.1

In 1950s, RH (Rurhstahl Heraeus) degassers were developed for secondary steelmaking 

processes in Germany with the purpose of generating quality steel by decreasing the hydrogen 

content so that “hair crack” formation is lowered. Since then, their function was enlarged to 

produce high quality steel which contains low hydrogen, low nitrogen and low total oxygen 

contents, as well as ultra-low sulphur and carbon contents. Many existing vacuum treatment 

techniques are employed for degassing purposes. Their process depends on the requirement for 

the steel grade to be produced. For instance, the Vacuum Tank Degassing (VTD) encourages 

good conditions in terms of sulphur removal for the reason that during molten steel treatment 

high slag-metal interaction occurs, whereas lower slag-metal interaction takes place during RH 

treatment [128]. If desulphurization is required to be conducted on RH plant, an assortment of 

fluxes, like CaO and Al2O3, is blown during RH treatment via a lance on the surface of molten 

steel. Nowadays, RH vacuum degassing facilities are integrated more frequently compared to 

VTD ones in the steel production line. The main motives are the high mixing performance, short 

cycle time for decarburization and degassing which increases the daily number of heats. RH 

degasser is composed of two vessels (upper and lower) in addition to inlet and outlet snorkels 

which are considered as insertion and evacuation chambers when immersed into the liquid steel. 

The assembly of their cylindrical shape is complex and time consuming. Snorkels are made of 

shaped refractories; viz. magnesia-chromite bricks, monolith refractories (concrete), and are 

reinforced and maintained by a steel structure, See Fig. 33.  

 

 

Figure 33: Inlet snorkel including steel construction and refractory linings (Voestalpine 

construction drawing). 
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Prior to RH process, the water bound by monoliths is evaporated by drying the interior of the 

snorkels during e.g. 35 hours at a temperature of 550 °C. This evades any case of failure caused 

by high vapour pressure. The snorkels are then fixed to the lower vessel and conveyed to the 

whole degasser entity. The RH degasser is an essential reactor for the metallurgy plants that 

involves complex reactions between molten steel, gas, slag, inclusions, and refractories [129]. 

The vessel is preheated from the top by means of a lance burner with the aim of decreasing the 

thermal shock instigated during submersion into the molten steel. The preheating is carried on for 

7 hours, nevertheless at the end of the preheating the temperature of the upper parts varies from 

500 °C to 200 °C comparing to the lower parts. The snorkels are then submerged into the liquid 

steel with a temperature of 1600 °C. After 35 minutes the snorkels emerge from the steel and 

hold on for a further cycle of immersion. During process the steel construction flange is water 

cooled at about 50 °C. Snorkel lifetime prediction withstands a great number of heats. The 

process engenders deterioration of the linings through long thermal cycling and severe thermal 

shock by cracking formation, spalling and corrosion [130, 131]. This leads to a frequent 

maintenance of the snorkels with adequate refractory mixes [132, 133]. The study of the 

behaviour of these types of lining materials that endure intensive thermal stresses may apply 

various damage and crack models [134, 135, 136 and 137]. For instance, the fictitious crack 

model according to Hillerborg [138] can be established for the simulation of crack formation by 

applying the strain softening behaviour of the material. The model assumes a linear stress-strain 

relation for the unaffected material, while a linear or non-linear stress-crack opening relation 

describes the crack propagation by considering a fictitious crack with cohesive forces acting 

between its faces. The failure mode of refractory materials under compression depends on the 

stress state and may be triggered by either tensile or shear stresses. This mode of failure can be 

described by the Drucker-Prager yield criterion [139]. It is a pressure-dependent model for 

determining whether a material has endured plastic yielding or failed. The shear strain energy 

criterion of von Mises is considered and the criterion is defined in terms of the principal stresses 

related to the hydrostatic pressure, the material cohesion and the friction angle function. The 

difference between Drucker-Prager creep model and the classical creep model is that the first one 

considers the elastic region in addition to the plastic deformation.     

Creep with no doubts plays an important role in the material response when subjected to high 

stresses and elevated temperatures; the irreversible strain response of refractories in operation 

contributes intensively. Only few researchers investigated creep of linings [140, 141 and 142] 

mainly with the purpose of improving their design without having reflective depiction of creep 

impact.     

This last chapter discusses creep applied to the RH snorkel during one heat including the 

preheating, the immersion and the idle time. Three creep models applied to magnesia-chromite 

bricks were implemented in Abaqus software: symmetric creep model with tensile data (1300-

1600°C), symmetric creep model with compressive data (1100-1550°C) and asymmetric creep 

model including both tensile and compressive data. Magnesia-chromite bricks behaviour is 

discussed with respect to temperature and stress distributions at each stage of the process 
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(preheating, immersion, idle time). The Norton-Bailey strain hardening constitutive law was 

applied for the description of the three creep models. 

 

 Creep model applied to the RH snorkel 4.2

Three-dimensional geometry with radial and axial symmetries defines the model as the snorkel is 

of cylindrical shape. The parts included were the magnesia-chromite bricks, the inner and outer 

monoliths (concrete) and the steel construction, see Fig. 34. Three magnesia-chromite bricks 

were disposed in the same way as during process. The bricks are lengthwise in contact to the 

inner monolith and in the axial direction the lower magnesia-chromite brick is in contact with the 

outer monolith. The steel construction is arranged between the inner and outer monoliths. The 

process was simulated with three distinct and continuous steps: the preheating, the submerging 

and the emerging of the snorkel. Material properties, i.e. conductivity, density, Poisson ratio, 

Young’s modulus, etc., were assigned to each of the bricks type and to the steel construction. The 

preheating lasted for 7 hours and was simulated with increasing the temperature of the hot face. 

Adequate temperature dependent heat transfer coefficients and temperatures up to 200 °C, 300 

°C, 400 °C and 500 °C were applied at each of the magnesia-chromite and concrete outer (Fig. 

34).     

 

 

Figure 34: Snorkel illustration in a 3D model. 

 

An initial temperature of 20 °C was applied in the upper outer part of the geometry with a 

temperature dependent heat transfer coefficient. The process, namely the submerging, lasted 35 

min. It was modelled by harshly increasing the temperature of the outer concrete and magnesia-
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chromite bricks to 1600 °C and applying a severe heat transfer coefficient. Water cooling of the 

flange was created with a temperature of 50 °C. Creep was simulated during process by applying 

Norton-Bailey creep parameters. Only the creep strain hardening approach was considered in this 

model. As mentioned previously, a symmetrical creep model was first computed with the 

compressive creep parameters applied between 1100 °C and 1500 °C [143], and then a second 

symmetrical creep model was computed with the tensile creep parameters applied between 1300 

°C and 1600 °C. Finally an asymmetrical creep model applying compressive creep parameters at 

1100-1500 °C and tensile creep parameters at 1300-1600 °C was carried out. The performance of 

the asymmetrical creep model needed a subroutine to be implemented in Abaqus software. The 

program used was according to Jin [144].  The emerging, or idle time, was simulated for 25 min 

by deactivating the intensive heating. A temperature history of the central magnesia-chromite 

brick is shown in Fig. 35. Creep was applied to magnesia-chromite lining only, the steel 

construction and the monoliths were assigned a linearly elastic behaviour. 

 

 

Figure 35: Temperature history of the central magnesia-chromite brick during preheating, 

immersion and idle time. 

 

 Simulation results 4.3

 

4.3.1 Temperature distribution 

Temperature gradient of the snorkel is presented in the following figures (Figs. 36, 37, 38). The 

colour scale from red to blue indicates higher and lower temperatures, respectively. At the end of 

the preheating the upper part of the working lining reached a maximal temperature of 439.2 °C at 

its hot face approaching the defined target temperature of 500 °C.  The central and lower bricks 

reached maximal surface temperatures of 366 °C and 292.8 °C. The outer concrete showed a 

relatively low temperature of 183 °C at its surface. 
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Figure 36: Temperature distribution in the snorkel at the end of the preheating – 7 h. 

 

The submerging was simulated by a quick temperature increase of the working lining at its 

surface. As expected the maximum temperature of 1600 °C was found at the magnesia-bricks 

surface, which represents the hot face. Minimum temperature, equal to app. 50 °C was situated at 

the cold ends. At the end of the submerging the hot face temperature still keeps its maximum 

value of 1600 °C. Magnesia-chromite bricks endured a severe hot thermal shock. The outer 

concrete also endured thermal shock. Due to thermal conductivity of the material, temperature 

propagated through the lining thickness (See Fig. 37).  

 

           

Figure 37: Temperature distribution in the snorkel at (a) the beginning (5 min) and (b) the end (35 

min) of the submerging. 
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After immersion the emerging follows. The temperature of the snorkel at the end of the idle time 

is illustrated in Fig. 38.  

 

Figure 38: Temperature distribution in the snorkel at the end of the idle time – 8 h. 

 

After 8 hours (end of idle time) the hot face temperature has decreased to approximately 892 °C 

but the heat still propagated in radial and circumferential directions as a result of heat diffusion 

from the outer surfaces (magnesia-chromite bricks and outer concrete) to the inside of the 

snorkel. The propagation of the heat through the working lining thickness continues to rise during 

the idle time. As a consequence the cold end temperatures grew over the entire length of 

magnesia-chromite bricks up to 148.6 °C (upper part) and 446 °C (lower part). However, the 

temperature of the snorkel was relatively low before the next immersion. 

 

4.3.2 Stress distribution 

Fig. 39 illustrates the state of the working lining in terms of temperature and stress distribution at 

the end of the preheating. The colour gradient from red to blue indicates higher and lower 

stresses, respectively. After 7 hours preheating the maximal temperature was located at the 

surface of the upper brick. The axial stresses in this area reached a maximal tensile value of 14.5 

MPa. At this state the bricks, although having different temperatures, showed low stresses. Creep 

did not occur at these levels of temperature.   
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Figure 39: (a) Temperature and (b) stress distribution at the end of the preheating for magnesia-

chromite bricks.  

 

The stresses state during process (submerging) and idle time are observed and compared between 

different creep models. This is shown in the next sections.   

 

4.3.3 Creep models comparison  

As mentioned above, three creep models were simulated and applied to magnesia-chromite 

bricks: The symmetrical compressive model, the symmetrical tensile model and the asymmetrical 

model that considers different creep behaviour of the material when under tension and 

compression. Fig. 40 shows the axial stresses of the three creep models for magnesia-chromite 

bricks after 2 minutes of submerging. 

 

Figure 40: Axial stresses distribution (S22) – comparison between the three creep models after 2 

min of submerging. 

 



  Application of tensile creep data for a case study
 __________________________________________  

75 
 

The stress distribution differed with the applied model. The highest compressive stresses were 

concentrated at the hot face of the lower brick for the compressive model, whereas they were 

situated in the central brick for the tensile model. The asymmetrical model presented a more 

realistic stress distribution with high compressive stresses at the hot face of the three bricks 

followed by tensile stresses in some distance from the hot face. Tensile stresses further decrease 

with the increasing distance from the hot face. 

Fig. 41 presents the axial stresses and the axial irreversible strains with respect to time during the 

first minutes of the submerging. The node at the hot face of the lower brick was selected. The 

chosen node for stresses and strains observations is shown in Fig. 42. 

 

 

          

Figure 41: (a) Axial stresses and (b) axial irreversible strains with respect to time during the first 

minutes of the submerging. 

 

 

Figure 42: Node selected at the hot face for axial stresses and axial irreversible strains 

observation in Fig. 41.  
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Axial stresses decreased severely as the brick endured thermal shock. The hot face was under 

compression. Lower values (viz. higher absolute values) of S22 (Y) for the tensile creep model 

were observed; -670.23 MPa for the tensile creep model and -594.85 MPa for the compressive 

model. The material was assumed to behave linear elastically prior to creep. Compressive creep 

was applied in a range of 1100-1550 °C and tensile creep in a range of 1300-1600 °C. As soon as 

creep took place, the axial stresses for both tensile and compressive creep models sharply 

increase up to a near-zero value. Creep led to a release of the stresses inside the brick. The 

increase of stresses occurred earlier for the compressive creep model comparing to the tensile 

one. It happened already at 1100 °C. The presence of intense stresses engendered a high 

irreversible deformation of the brick. Compressive irreversible creep strains (CE22), already 

high, decreased until values of -0.025 and -0.023 for the tensile and the compressive creep 

models, respectively, see Fig. 41b). At 7.1 h for the tensile model, CE22 decreased again to -0.04 

before finally stabilizing to -0.026 at 7.5 h, whereas for the compressive model CE22 stabilized 

earlier to a higher value of -0.020. The asymmetric creep model presented smother curves. The 

increase of axial stresses and irreversible strains was not as sharp as for the symmetrical ones. 

The three models show different behaviours, although the asymmetrical creep model approached 

the compressive symmetrical model. As under thermal shock compressive stresses emerged in the 

short laps of time following the thermal shock. 

The following figure, Fig. 43a), shows the axial stress distribution after 5 minutes of submerging. 

The hot face was under high thermal shock. Low compressive axial stresses were noticed (area 

1). Higher compressive stresses were now at a small distance from the hot face (area 2). In area 3 

high tensile stresses were found, as the temperature at this area was lower than at the hot face. 

High levels of radial compressive stresses were present. The heat was diffusing through the width 

of the bricks. Fig 43b) illustrates the axial stresses along the width of the brick for the three creep 

models 5 minutes after immersion (see sketch in Fig.43b)). Here as well extremely high tensile 

stresses were observed for the tensile model because creep was applied only for temperatures 

exceeding 1300 °C. As the heat transferred inside the brick, creep occurred and instigated a 

release of stresses. Tensile stresses appeared at a distance larger than app. 50 mm. Compressive 

and asymmetrical models present lower values of compressive stresses near to the hot surface 

(about 20 mm). For these two models tensile stresses appeared already at a distance of app. 35 

mm from the hot face. In the cold end the three models converged together and show app. similar 

and relatively low compressive stress values.   
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Figure 43: a) Axial stresses distribution (S22) and b) axial stresses with respect to time along the 

brick – after 5 min of submerging. 

 

The next figure (Fig. 44) illustrates the axial stresses at the end of the submerging. No 

compressive stresses were present at the hot face. The stresses were propagating along the brick, 

which pointed out a more significant opening of the joints (see Fig. 44a)). Maximal compressive 

stresses were at a distance of app. 30 mm from the hot face for the three creep models. 

 

                   

Figure 44: a) Axial stresses distribution (S22) and b) axial stresses with respect to time along the 

brick – at the end of submerging. 

 

Tensile creep Compr. creep Asym. creep 

Tensile creep Compr. creep Asym. creep 
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Tensile stresses covered a high area of the brick in its centre. Here also the three models show 

similar values of stress when approaching the cold end with the compressive model being the 

closest to the asymmetrical one.  

Axial irreversible strains were also observed at the end of submerging. Fig. 45 illustrates the 

irreversible strain distributions in the axial direction at the end of the process. In Fig. 45a) one 

can see high compressive strains (up to -0.02) between the bricks at the hot face. The joints were 

on the other hand opened in the cold end. Fig 45b) shows the difference in evolution of the axial 

creep strains along the brick for the three creep models. At the hot surface the irreversible strains 

were equal to about -0.008 in the three models. With a further increase of the distance from the 

hot face the irreversible axial strains diminished up to nearly zero. The tensile creep model 

overestimated the axial irreversible strains and the compressive creep model underestimated 

them, whereas the asymmetrical creep model showed smother and more or less the mean 

progression of the strains along the brick.   

 

             

Figure 45: a) Axial irreversible strain distribution (CE22) and b) axial irreversible stain with 

respect to time along the brick – at the end of submerging. 

 

It was interesting to compare the symmetrical and asymmetrical creep models in terms of stress 

and strain distributions. Due to the fact that the working lining endured hot thermal shock, the 

compressive creep model presented more comparable results to the asymmetrical one. 

 

Tensile creep Compr. creep Asym. creep 
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4.3.4 Asymmetrical creep model evaluation  

Stresses in the axial (Y), radial (X) and circumferential (Z) directions are plotted over the whole 

process at a distance of 15 mm in the radial direction from the hot face in Fig. 46a). The chosen 

node is shown in Fig. 47. Intensive decrease of stresses was observed not only in the axial but 

also in the circumferential direction at the beginning of the immersion causing irreversible 

deformation of the brick (see Fig. 46b)). Important radial irreversible strains (CE11) are noticed 

although there was nearly no variation of the radial stresses (S11) at that area. The reason is 

because the applied creep model refers to a constant volume of the material. If the material is 

compressed in two directions, an expansion in the third direction is assumed to achieve a constant 

volume. Nevertheless in this simulation damage was not taken into account. The evolution of 

CE11 with respect to time showed therefore an expansion in the radial direction and not a tensile 

deformation. The third direction is counterbalancing the two others. 

 

 

 

Figure 46: Axial (Y), radial (X) and circumferential (Z) (a) stresses and (b) irreversible strains 

over time at a distance of 15 mm from the hot face – considering asymmetrical creep. 
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Figure 47: Node selected for stresses and irreversible strains observation at a distance of 15 mm 

from the hot face (representing 7.5 % of the brick thickness) – considering asymmetrical creep 

model. 

The opening of the vertical joints between the working lining bricks was observed at different 

moments of the submerging. Fig. 48a) represents the contact opening after 1 min, 16 min and 35 

min of the submerging with respect to the distance along the brick. The selected distance 

coordinate is shown in Fig. 49.  

 

 

         

Figure 48: (a) Contact opening and (b) circumferential stresses (S33) along the brick at different 

moments of the submerging – for the asymmetrical creep model. 
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Figure 49: Coordinate selected for depicting the contact opening and circumferential stresses in 

Fig. 48. 

 

Joint opening occurred immediately after immersion, but not at the hot face. After 1 min 

immersion, the joint opened at a distance larger than 10 mm from the hot face. The opening 

continued up to a maximal value of 0.1 mm through the whole width of the brick. Accordingly, 

the circumferential compressive stresses (S33) at this moment of the process, although extremely 

high at the hot face, decreased along the lining width and vanished starting at app. 10 mm. Joints 

are closed at locations of compressive stresses near to the hot face. They may be opened where 

compressive stresses vanish. After 16 min of immersion the absolute values of compressive 

circumferential stresses were reduced, but they extended to about 20 mm from the hot face, as the 

heat diffused through the lining. The opening of the joint reached a value of up to 0.2 mm in the 

stress free region. At the end of the process the opening of the joint was equal to 0.3 mm as a 

consequence of a further reduction of the circumferential compressive stresses. For further heats 

the joint opening will increase. It is clear that the creep participated in the reduction of the 

compressive stresses. Moreover, at the end of the immersion, the areas close to the hot face 

presented nearly no stresses.   

 

 Conclusion  4.4

Three creep models were applied to the RH snorkel which are the symmetrical tensile, the 

symmetrical compressive and the asymmetrical one. One heat was simulated including the 

preheating, the submerging and the emerging of the vessel. Temperature and stress distributions 

at each stage of the process were shown. A detailed comparison between the creep models 

revealed that the asymmetrical model presented smother curves of stresses during thermal shock 

and showed more realistic results for describing the snorkel behaviour. It is more representative 

than tensile and compressive creep models. Nevertheless, the compressive model results 

approached the asymmetrical ones. It was clear that the temperature of the snorkel was relatively 

low before immersion; the preheating temperatures were not high enough to minimalize the 

thermal shock. The onset of temperature of creep could also have influenced the results. At the 
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immersion it was noticed that the area close to the hot face had nearly no stresses. For further 

heats this area will increase. Finally, joint opening occurred immediately at the immersion. 
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General conclusion  

Refractory linings applied in pyro-processes are generally altered after a period of time since they 

are exposed to high mechanical loads at elevated temperatures. Their major role is to sustain such 

tough conditions in the long term. The behaviour of refractory materials under tensile loading is 

in general greatly affected by their creep strain. Therefore, it was important to quantify creep for 

a better understanding of the material performance and designing failure resistant systems. The 

present thesis aimed at investigating the creep of two refractory materials at high temperature. 

The setup permitted to detect three creep stages up to failure of the specimens in a reasonable 

time. Creep data were generated in a broad range of stress and temperature, which enabled the 

determination of parameters derived from Norton-Bailey creep constitutive law. The data were 

analysed according to two parameterization methodologies using the GRG and L-M algorithms. 

Asymmetric creep was finally applied to the RH snorkel during one heat including the 

preheating, the immersion and the idle time. The creep reduced considerably the stresses within 

the working lining. The reduction in stresses is especially influenced by the onset temperature of 

creep. This triggers a sensitivity study, both for the influence of creep parameters and the onset 

temperature. In the future, some further modelling efforts should be made to better understand the 

thermo-mechanical behaviour of whole lining systems applied in industrial vessels and furnaces. 

Accordingly, failure model associated to the asymmetrical creep model will be investigated and 

thus implemented in the simulation program.  
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Appendices 

 

A. mul_process_origin_v3 
 

% Mul_process_origin  

% Version:                     3.3 

% Author:                      Amina SIDI MAMMAR 

% Creation Date:               01-Sep-2015 

% Last Update Date:            16-Feb-2016 

  

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

%------PART 1: Parameters Definition and Initialization-------------------% 

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

  

% Define the optimisation algorithm + related parameters 

options = 

optimset('LargeScale','off','Display','off','MaxFunEvals',10000,'MaxIter',1000

0,'Tolfun',1e-10,'TolX',1e-8); 

options = optimset(options,'Algorithm','levenberg-marquardt'); 

  

% Define the folder that contains the measurements 

measurement_folder = 'Measurements'; 

  

% Define the extension of the measurement files 

measurement_extension = 'data'; 

  

% Define constant parameters file name 

constant_param_file_name = 'constant_parameters.mat'; 

  

% Define Norton-Bailay parameters file name for each stage (a, n and k) 

nb_fn_stage1 = 'nb_stage1.mat'; 

nb_fn_stage2 = 'nb_stage2.mat'; 

nb_fn_stage3 = 'nb_stage3.mat'; 

  

% Define the colors of the theoretical and experimental figures for each stage 

color_theo_stage1 = 'b'; 

color_theo_stage2 = 'b'; 

color_theo_stage3 = 'b'; 

color_exp_stage1 = 'r'; 

color_exp_stage2 = 'g'; 
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color_exp_stage3 = 'k'; 

  

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

%------PART 2: Data Measurements and Related Parameters Extraction--------% 

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

  

% Get the constant parameters, including the mapping between the 

%temperatures and E 

const_param = load(constant_param_file_name); 

  

% Get the Norton-Bailey parameters for each stage 

nb_stage1 = load(nb_fn_stage1); 

nb_stage2 = load(nb_fn_stage2); 

nb_stage3 = load(nb_fn_stage3); 

  

% Get the measures and transition times for each file in the measurement 

%folder 

measures = extract_measurements(measurement_folder, measurement_extension, 

const_param); 

  

% Resize all the arrays before mul_norton_bailey (to 75000) 

is_resized = true; 

  

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

%------PART 3: Calculate a, n and k for each stage------------------------% 

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

  

% Split the measures for each stage 

[measures_stage1, measures_stage2, measures_stage3] =split_measures(measures); 

  

% Use the optimization of mul_norton_bailey for each stage, and get the 

%corresponding values of a, n and k 

  

[a1, n1, k1] = mul_norton_bailey(measures_stage1, nb_stage1, options, 

is_resized); 

[a2, n2, k2] = mul_norton_bailey(measures_stage2, nb_stage2, options, 

is_resized); 

[a3, n3, k3] = mul_norton_bailey(measures_stage3, nb_stage3, options, 

is_resized); 
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%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

%------PART 4: Get the results and Plot the Experimental------------------% 

%--------------------and the Theoretical Functions------------------------% 

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

%-------------------------------------------------------------------------% 

  

measures_stage1 = update_theo_strain(measures_stage1, a1, n1, k1); 

measures_stage2 = update_theo_strain(measures_stage2, a2, n2, k2); 

measures_stage3 = update_theo_strain(measures_stage3, a3, n3, k3); 

  

hold on; 

measures_plot(measures_stage1, color_theo_stage1, color_exp_stage1); 

measures_plot(measures_stage2, color_theo_stage2, color_exp_stage2); 

measures_plot(measures_stage3, color_theo_stage3, color_exp_stage3); 

hold off; 
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B. Ultimate strains and correlations 
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Figure 50: Ultimate primary total strains (a) with respect to creep stage and (b) the applied stress 

for the magnesia-chromite material at 1300 °C. 
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Figure 51: Ultimate secondary total strains with respect to the applied stress for the magnesia-

chromite material at (a) 1300 °C and (b) 1400 °C. 
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Figure 52: Ultimate secondary total strains with respect to the applied stress for the magnesia-

chromite material at 1500 °C. 
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Figure 53: Ultimate tertiary total strains with respect to the applied stress for the magnesia-

chromite material at (a) 1300 °C and (b) 1400 °C. 
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Figure 54: Ultimate tertiary total strains with respect to the applied stress for the magnesia-

chromite material at 1500 °C. 

  



   

101 
 

 


